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Abstract: Artificial intelligence (AI) presents a novel platform for improving disease diagnosis.
However, the clinical utility of AI remains limited to discovery studies, with poor translation to
clinical practice. Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of
colorectal cancers are missed during colonoscopies. The primary aim of this study was to explore
the role of artificial intelligence in real-time histological prediction of colorectal lesions during
colonoscopy. A systematic search using MeSH headings relating to “AI”, “machine learning”,
“computer-aided”, “colonoscopy”, and “colon/rectum/colorectal” identified 2290 studies. Thirteen
studies reporting real-time analysis were included. A total of 2958 patients with 5908 colorectal lesions
were included. A meta-analysis of six studies reporting sensitivities (95% CI) demonstrated that
endoscopist diagnosis was superior to a computer-assisted detection platform, although no statistical
significance was reached (p = 0.43). AI applications have shown encouraging results in differentiating
neoplastic and non-neoplastic lesions using narrow-band imaging, white light imaging, and blue
light imaging. Other modalities include autofluorescence imaging and elastic scattering microscopy.
The current literature demonstrates that despite the promise of new endoscopic AI models, they
remain inferior to expert endoscopist diagnosis. There is a need to focus developments on real-time
histological predictions prior to clinical translation to demonstrate improved diagnostic capabilities
and time efficiency.

Keywords: artificial intelligence; machine learning; colonoscopy; colorectal cancer; colorectal polyps

1. Introduction

Artificial intelligence (AI) presents a novel platform for improving disease diagnosis
and improve clinician performance. However, the clinical utility of AI remains limited
to discovery studies, with poor translation to clinical practice. AI encompasses machine
learning and deep learning methods. Machine learning methods allow the system to be
trained in characterising key features, differentiating samples, and subsequently exploiting
this to classify new information [1,2]. Support vector machines require manual input of
target features to train the system to identify and discriminate features for analysis [3].
Convolutional neural networks (CNNs) are supervised machine learning algorithms that
function from multiple input features, which are collated to produce a final classification
output [3]. Computer-aided diagnosis (CAD) with AI systems has been investigated in
gastrointestinal endoscopy. The vision for the integration of AI in endoscopic procedures is
the improvement of diagnostic accuracy, time efficiency, and facilitating decision-making
for polyp resection; this remains in the exploratory phase; however, CAD has been heavily
researched in radiological imaging, such as colorectal cancer lymph node metastases,
lymphovascular invasion, and their associated survival and prognostic outcomes.

In rectal cancer, AI applications in pelvic magnetic resonance imaging (MRI) have
shown promise in accurate staging of cancer, lymph node detection, and predictions of
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response to neoadjuvant chemoradiotherapy [4]. Another advanced area in AI is breast
cancer imaging. The Wisconsin Breast Cancer Dataset allows the training of AI models for
early breast cancer detection. Novel platforms, such as the least-squares support vector
machine, with a 98.5% classification accuracy, are being used in national screening pro-
grammes [5]. Other AI-based technologies are developing in prostate cancer for treatment
response prediction, lung cancer for early detection to improve survival outcomes, and
other fields, such as classifying genetic abnormalities from genetic data [6–8].

Endoscopy is a complex procedure that has become widely used for diagnostics,
including screening and surveillance of gastrointestinal pathology. More recently, its role
in therapeutic procedures in both upper and lower gastrointestinal endoscopy has been
established, requiring highly technical skills with a well-documented learning curve. These
procedures require advanced training and a highly skilled practitioner, so hence remain
largely provider-dependent. Given the variation in skills between providers, 11.3% of
upper gastrointestinal neoplasms are missed on the initial upper endoscopy, and 2.1–5.9%
of colorectal polyps or cancers are missed on colonoscopy [9]. Research has shown that
each 1% increase in adenoma detection rate could translate to a 3% decrease in the risk of
colorectal cancer [10]. Advancements in endoscopy are focused on two main areas. Firstly,
to improve polyp detection and reduce polyp miss rates, especially for sessile polyps.
Secondly, once polyps have been detected, there is a need to minimise the resection of
hyperplastic polyps following the ‘diagnose and leave’ strategy [11]. To achieve this, there
is a need to develop techniques for in situ classification of detected polyps.

Colonoscopy remains the gold standard investigation of the lower gastrointestinal
tract, with pattern recognition of colorectal lesions such as polyps and cancer dependent
on the endoscopist. Recent developments in AI technology have focussed on detailed real-
time analysis of colonoscopic images and videos of diminutive polyps for identification
and characterisation. However, the majority of developments remain in the training and
validation phases.

Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of
colorectal cancers are missed during colonoscopy, even with advancing imaging tech-
niques, such as narrow-band imaging (NBI) [12–14]. The NBI International Colorectal
Endoscopic Classification or the Japan NBI Expert Team classifications allow endoscopists
to make histological predictions of diminutive polyps by detailed pit pattern recognition
and microvasculature. Nevertheless, clinician diagnosis is subjective, relying on endo-
scopists’ experience. Comparative analyses have shown AI to be beneficial to novice
endoscopists with lower diagnostic capabilities of clinically indeterminate lesions and
to reduce inter-observer variability [1,3]. The current literature in upper gastrointestinal
endoscopy similarly demonstrates a potential but limited application for use in its current
state with endoscopist diagnosis superior to the AI outputs [15].

The role of AI in endoscopy needs to be further defined as an adjunct to facilitate
real-time classification and discrimination of lesions with increased accuracy and efficiency.
The aim of this study is to explore the role and efficacy of artificial intelligence in real-time
histological prediction of colorectal lesions during colonoscopy.

2. Methods
2.1. Search Strategy

A systematic search was performed using EMBASE (OvidSP) and MEDLINE (OvidSP)
to identify potentially relevant articles published between 1966 and 6 August 2023 us-
ing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [16]. A systematic search strategy comprising keywords and MeSH headings
relating to “artificial intelligence”, “machine learning”, “computer-aided”, “colonoscopy”,
and “colon/rectum/colorectal” used in combination with Boolean operators AND and OR
was conducted. Only completed studies were considered for inclusion. The search criteria
detailing the combination of terms used are shown in Supplementary Table S1.
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2.2. Eligibility Assessment and Data Extraction

Studies reporting on prospectively designed, real-time prediction of histology of
colorectal lesions during colonoscopy were selected for further review. Specific inclusion
criteria were real-time artificial assessments and histological predictions. All types of AI
systems were included. Studies were excluded if they primarily used images or videos
retrospectively and/or from datasets. Review articles, case reports, editorials, opinions,
conference abstracts, news articles, and articles not written in the English language were
excluded. Two independent reviewers (BV, MT) screened all titles and abstracts to identify
articles meeting the criteria for full-text review. Reference lists of selected articles were
screened to identify additional relevant articles.

Parameters for data extraction from the full-text review included the number of
patients and polyps detected, the type of AI platform used and their previous validation
methods, and primary outcomes and results, including sensitivity, specificity, positive
predictive value, negative predictive value, and area under the curve (AUC).

2.3. Outcomes

The primary outcome was to identify the diagnostic accuracy of various AI platforms
in the histological prediction of colorectal polyps. Single-arm studies and those with
a comparative group (for example, neoplastic versus non-neoplastic lesions and CAD
platforms versus endoscopists) were included.

2.4. Statistical Analysis

Descriptive information, including the country of the study, the number of patients
enrolled, the number of lesions detected, and the type of AI platform used, was collected.
Forest plots were created to demonstrate the diagnostic performance of CAD (machine
intelligence) and endoscopists (human intelligence) using the sensitivity of histological
prediction of the lesions. An overall pooled estimate of sensitivity and specificity, with their
reported 95% confidence interval, was performed to assess CAD performance between
selected articles (RevMan Version 5.4).

3. Results

A total of 2290 articles were screened using the titles and abstracts. A full-text review
was performed on 51 articles, and a final 13 articles were included for analysis. Detailed
article selection is described in Figure 1.

A total of 2958 patients and 5908 colorectal lesions were included in the analysis.
Six studies used Japanese populations, followed by one study performed in Singapore
(patients, n = 1514; lesions, n = 2876) [17–23]. Studies from the Western world included
three from the USA and one each from the UK, The Netherlands, Norway, Canada, and
Brazil (patients, n = 1444, lesions, n = 3032) [19,24–29]. There was an equal distribution of
studies from the Eastern and Western world.

Nine studies used an Olympus colonoscopy module, three studies used Fujifilm,
and one study did not specify. Ten studies assessed colorectal lesions, and three studies
assessed rectosigmoid lesions specifically. All studies aimed to distinguish neoplastic
lesions from benign lesions, and two studies in particular assessed diminutive lesions. The
study characteristics are summarised in Table 1, and diagnostic performance is detailed in
Table 2 and Figure 2.

Six studies assessed a CAD-AI system with direct comparison to the standard endo-
scopist interpretation of a lesion. Analysis using the sensitivity of each test (endoscopist
versus CAD) revealed that endoscopist diagnosis was favourable to a CAD platform,
although no statistical significance was reached (p = 0.43)—Figure 3.
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Table 1. Study characteristics of 13 articles selected for review. NR = not reported.

Year Author Country Number of
Patients

Number of
Lesions

Analysed
Site Colonoscopy

Module Used Type of System How Were the
Systems Validated

2012 Aihara et al. [20] Japan 32 102 Colorectal Olympus Corp Autofluorescence
endoscopy NR

2013 Inomata et al. [23] Japan 88 163 Colorectal CF-FH260AZI,
Olympus

Autofluorescence
endoscopy NR

2016 Kominami et al. [17] Japan 48 118 Colorectal Olympus
NBI, magnifying

colonoscopy with a
support vector machine

Training set: 2247 images
from 1262 colorectal

lesions

2018 Mori et al. [21] Japan 327 475 Rectosigmoid CF-Y-0058 Olympus

Endocytoscope with light
microscopy NBI mode

and methylene
blue staining

Training: 61,925 images

2020 Shahidi et al. [29] Canada - 644 Colorectal Olympus White light and NBI Previously trained
and validated

2021 Rodriguez-Diaz et al. [24] USA 169 367 Colorectal NR Elastic-scattering
spectroscopy

Training set:
512 measurements from

294 polyps

2022 Barua et al. [19] Norway/
UK/Japan 518 892 Rectosigmoid Olympus Corp

High-resolution
magnification

colonoscopies, NBI, SVM

Previous training and
validation: 35,000 polyps
images from five Japanese

endoscopy centres

2022 Rondonotti et al. [26] USA 389 596 Rectosigmoid ELUXEO 7000
endoscopy, Fujifilm Blue light imaging Previously validated

2022 Quan et al. [28] USA 100 - Colorectal CF-HQ190 Olympus Endovigilant

Training: 83,000 images
from 300 colonoscopy

videos. Validation:
21,454 images from

30 videos—sensitivity 0.90,
specificity 0.97, AUC 0.94

2022 Minegishi et al. [22] Japan 181 465 Colorectal EVIS-X1 Olympus White light and NBI Training: 18,079 images
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Table 1. Cont.

Year Author Country Number of
Patients

Number of
Lesions

Analysed
Site Colonoscopy

Module Used Type of System How Were the
Systems Validated

2023 Li et al. [18] Singapore 320 661 Colorectal ELUXEO 7000
endoscopy, Fujifilm

CNN with blue
laser imaging

Commercially
available tool

2023 Dos Santos et al. [25] Brazil 74 110 Colorectal Fujifilm

Magnification with
multi-light technology
(WLI and link colour

imaging)

NR

2023 Houwen et al. [27] The Netherlands 194 423 Colorectal Olympus POLyp
Artificial Recognition

Training: Eight hospitals
collected 2637 annotated
images from 1339 polyps

Table 2. Diagnostic performance of AI-assisted colonoscopy. CI = confidence interval 0.95, PPV = positive predictive value, NPV = negative predictive value, p < 0.05
is considered statistically significant, NR = not reported.

Computer Assisted Diagnosis Endoscopist Diagnosis

Year Author Sensitivity
(CI)

Specificity
(CI) PPV (CI) NPV (CI) Accuracy

(CI)
Sensitivity

(CI)
Specificity

(CI) PPV (CI) NPV (CI) Accuracy
(CI) p Value

2012 Aihara et al. [20] 0.94 0.89 0.96 0.85 NR NR NR NR NR NR NR

2013 Inomata et al. [23] 0.84 0.83 0.53 0.96 0.83 NR NR NR NR NR NR

2016 Kominami et al. [17] 0.96 0.93 0.96 0.93 0.95 NR NR NR NR NR NR

2018 Mori et al. [21] NR NR NR 0.96
(0.92–0.99) NR NR NR NR 0.92

(0.88–0.95) NR NR

2020 Shahidi et al. [29] NR NR NR NR NR NR NR NR NR NR

2021 Rodriguez-Diaz et al. [24] 0.92
(0.87–0.96)

0.87
(0.80–0.93)

0.87
(0.80–0.93) 0.91 NR NR NR NR NR NR

2022 Barua et al. [19] 0.90
(0.87–0.93)

0.86
(0.82–0.89)

0.82
(0.78–0.86)

0.93
(0.90–0.95)

0.88
(0.84–0.92)

0.83
(0.79–0.86)

0.79
(0.74–0.83)

0.92
(0.89–0.94) NR NR

2022 Rondonotti et al. [26] 0.89
(0.84–0.91)

0.88
(0.84–0.91)

0.85
(0.80–0.89)

0.91
(0.87–0.94)

0.92
(0.85–0.91)

0.89
(0.84–0.92)

0.89
(0.85–0.92)

0.86
(0.81–0.90)

0.91
(0.87–0.94)

0.89
(0.86–0.91) NR
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Table 2. Cont.

Computer Assisted Diagnosis Endoscopist Diagnosis

Year Author Sensitivity
(CI)

Specificity
(CI) PPV (CI) NPV (CI) Accuracy

(CI)
Sensitivity

(CI)
Specificity

(CI) PPV (CI) NPV (CI) Accuracy
(CI) p Value

2022 Quan et al. [28] NR NR NR NR NR NR NR NR NR NR NR

2022 Minegishi et al. [22] 0.96
(0.93–0.98)

0.67
(0.57–0.76)

0.89
(0.84–0.92)

0.86
(0.76–0.93)

0.88
(0.84–0.91)

0.94
(0.90–0.95) 0.63 NR 0.86 NR NR

2023 Li et al. [18] 0.62
(0.57–0.67)

0.87
(0.83–0.91)

0.89
(0.85–0.92)

0.59
(0.54–0.64)

0.72
(0.68–0.75)

0.70
(0.66–0.75)

0.83
(0.78–0.87)

0.87
(0.83–0.90)

0.63
(0.58–0.69)

0.75
(0.72–0.78) 0.001

2023 Dos Santos et al. [25] 0.76
(0.65–0.85)

0.97
(0.83–1.00)

0.98
(0.91–1.00)

0.60
(0.45–0.74)

0.82
(0.79–0.85)

0.93
(0.84–0.97)

0.97
(0.83–1.00)

0.99
(0.93–1.00)

0.83
(0.66–0.93)

0.94
(0.92–0.95) <0.01

2023 Houwen et al. [27] 0.89
(0.86–0.93)

0.38
(0.27–0.48)

0.86
(0.82–0.89)

0.46
(0.34–0.58)

0.79
(0.75–0.83)

0.92
(0.90–0.95)

0.44
(0.33–0.55)

0.87
(0.84–0.91)

0.58
(0.46–0.70)

0.83
(0.79–0.86) 0.1
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Figure 3. Forest plot demonstrating no significant difference in distinguishing colorectal neoplastic and
non-neoplastic lesions when comparing endoscopist diagnosis to CAD output (p = 0.43) [18,19,22,25–27].
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3.1. Elastic Scattering Microscopy

Elastic scattering microscopy (ESS) uses short light pulses of 50 microseconds covering
a wavelength of 300–900 nm (ultraviolet to infrared spectra) [24,30]. The short pulses
reduce the influence of the surrounding lighting for higher-quality detection of lesions. The
ESS comprises optical probes with two columns of fibres (200 µm) for illumination and
detection. The probes allow the assessment of a tissue depth of 350 µm and a tissue volume
of less than 0.2 mm3. The probes can be built into the biopsy forceps to appear between the
jaws or affixed adjacent to the biopsy forceps. The integrated ESS probe has direct contact
with the lesion for spectroscopic optical biopsies and a binary output of neoplastic and
non-neoplastic. To account for the spectral light variations, calibration is performed with a
white colour. Rodriguez-Diaz et al. demonstrated a sensitivity of 0.92, specificity of 0.87,
and NPV of 0.87 for distinguishing neoplastic polyps [24]. Diminutive polyps achieved a
sensitivity of 0.91, specificity of 0.88, and NPV of 0.89 [24]. Overall, ESS demonstrated high
sensitivity for characterising polyps.

3.2. Autofluorescence Imaging

Autofluorescence imaging (AFI) utilises real-time analysis of colour ratios of red (R),
blue (B), and green (G). Each colour is represented by an integer standardised by the
International Electrotechnical Commission and accounts for the intensity of light emitted to
a charge-coupled device [20]. The output is assessed on an endoscopic monitor for real-time
analysis. The principle is based on the G/R ratio correlating with the intensity of the lesion
distinguishing neoplasia. Aihara et al. demonstrated a cut-off value of 1.01, demonstrating
that a ratio less than 1.01 was suggestive of neoplasia, and a ratio greater than 1.01 was
non-neoplastic, yielding a sensitivity of 0.94, specificity of 0.89, and NPV 0.85 [20]. Inomata
explored real-time AFI in 2013 by identifying potential lesions initially with NBI and/or
chromoendoscopy. A G/R cut-off value of 0.89 was discriminatory, with a ratio less than
0.89 indicative of neoplasia [23]. Furthermore, a ratio of 0.77 was suggestive of submucosal
deep cancers [23].

3.3. Narrow Band Imaging, Magnification Analysis, Supper Vector Machine

Narrow band imaging (NBI) has made marked advances in the characterisation of
lesions during colonoscopy by endoscopists’ assessment of the microvasculature and pit-
pattern recognition using a filtered xenon light (for shorter wavelength). The system was
taught to recognise target features and categorise lesions into three types, and the SVM
output differentiated neoplastic (>0.5) and non-neoplastic lesions (≤0.5) automatically [17].
Kominami et al. demonstrated a sensitivity of 0.93, specificity of 0.93, and NPV of 0.93 with
this novel system with an SVM output [17]. Barua et al. trialled a similar system named
EndoBRAIN with an analysis of 892 polyps showing a sensitivity of 0.90 and specificity
of 0.86 with CAD with SVM compared to visual inspection (sensitivity 0.88, specificity
0.83) [19].
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Studies showed an increase in neoplastic lesion detection with CAD; however, these
were not statistically significant. Mori et al. used NBI followed by methylene blue staining
(for visualising cellular architecture) with a three-step algorithm: (1) feature analysis,
(2) lesion classification with SVM, and (3) histopathology prediction [21]. The NBI and
staining method of 466 diminutive polyps predicted histopathology 98.1% of the time with
an NPV of 0.96 [21]. Houwen et al. created the polyp artificial recognition system (POLAR),
which characterised features from polyps in NBI mode with a 0.89 sensitivity compared to
0.92 with endoscopists without a significant difference [27].

3.4. White Light Imaging and Narrow Band Imaging

White light imaging (WLI) is based on the diffuse reflectance of a xenon white light
where multiple wavelengths of white light are scattered and absorbed in the tissues.
Shahidi et al. used WLI and NBI in a deep convolutional neural network setting to demon-
strate a 71.1% concordance with histopathological diagnosis of diminutive lesions [29].
Although the clinical decision support solution (CDSS) agreed with endoscopic diagnosis
89.6% of the time, there remains a discrepancy with histology results [29]. Minegishi et al.’s
approach used WLI to confirm colorectal lesions, after which NBI was employed, and
an in-built CAD software was used to characterise polyp detection [22]. With NBI-CAD,
the overall sensitivity for detection was increased from 0.93 to 0.96, although it was not
statistically significant [22].

3.5. Blue Light Imaging (CAD-EYE System)

Blue light imaging (BLI) has been utilised in a real-time convolutional neural network
AI system. BLI is based on two monochromatic lasers at 410 nm and 450 nm wavelengths
to assess microvasculature patterns. The CAD-EYE system based on pattern recognition
showed an optical diagnosis in 92.3% of cases, with poorer performance in non-experts
(82.3%) compared to experts (91.9%) [26]. However, for non-expert endoscopists, CAD-EYE
improved their diagnostic performance from 81.8% to 86.2% [26]. Li et al. also used
CAD-EYE, demonstrating a higher sensitivity for endoscopist diagnosis (sensitivity 0.70)
compared with CAD-EYE (sensitivity 0.62) [18]. Dos Santos et al. utilised BLI in addition to
WLI with magnification to show a sensitivity of 0.76 compared with endoscopist analysis
at 0.94 [25]. All convolutional neural networks were shown to be inferior to the standard
endoscopist diagnosis.

3.6. Other

Quan et al. used the EndoVigilant platform, which was established in the USA based
on features extracted from real-time colorectal lesion detection to provide an output to aid
in the diagnosis [28]. The EndoVigilant system displayed a tendency towards improved
identification compared to historical standard diagnoses; however, no statistical significance
was achieved [28].

A summary of the AI technologies is detailed in Table 3.

Table 3. Summary of the current artificial intelligence platforms used for real-time histological
detection of colorectal lesions.

Artificial
Intelligence System Technology System Integration Detection

Electric scattering microscopy
Short light pulses of 50

microseconds encompassing
wavelengths of 300–900 nm.

Optical probes with two 200 µm
columns of fibres for illumination
and lesion detection. Probes can

be built into biopsy forceps.

Spectroscopic optical biopsy with
binary output: neoplastic

vs. non-neoplastic.

Autofluorescence imaging

Real-time analysis of colour ratios
of red, blue, and green. The

green/red ratio represents the
intensity of light on the lesion.

The intensity of light is emitted to
a charge-coupled device and

displayed on the
endoscopic monitor.

A cut-off value of the green/red ratio
was distinguishable between

neoplastic and non-neoplastic lesions.
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Table 3. Cont.

Artificial
Intelligence System Technology System Integration Detection

Narrow band imaging,
magnification, and support

vector machine

Algorithm recognising target
features, including

microvasculature and pi-patterns,
using a filtered xenon light

(shorter wavelength).

Support vector system outputs
from targeted feature analysis
using narrow-band imaging.

Lesion characterisation using a cut-off
value to differentiate neoplastic and

non-neoplastic lesions.

White light imaging and
Narrow band imaging

Diffuse reflectance of a xenon
light where multiple wavelengths

are absorbed in tissues.

Algorithm incorporating features
from white light and narrow band
imaging for characterisation (deep

convolutional neural network).

Lesion characterisation using
feature analysis.

Blue light imaging
(CAD-EYE system)

Blue light imaging is based on
two monochromatic lasers at

410 nm and 450 nm wavelength to
assess microvasculature patterns.

Real-time convolutional neural
network system based on

pattern recognition.

Optical diagnosis distinguishing
neoplastic and non-neoplastic lesions.

EndoVigilant Video and augmentation of
lesion attributes.

Real-time computer-aided
outputs on the endoscopic screen.

Lesion attributes are displayed on the
endoscopic screen to aid in diagnosis.

4. Discussion

Colorectal cancer remains the third most common cancer globally, with more than
1.9 million new cases annually [31]. Histopathological analysis remains the gold standard
for definitive diagnosis; however, clinical expertise in pattern recognition of polyps is
vital for early polyp cancer diagnosis. This study reviewed the diagnostic performance of
real-time CAD systems in predicting histopathology of colorectal lesions. Thirteen studies
included in the analysis used six different platforms with various adaptations of them. The
systems were trained using still images of polyps/lesions, feature identification, extraction,
and classification into the defined groups (neoplastic versus non-neoplastic). A meta-
analysis of six of the thirteen studies comparing endoscopist and CAD diagnosis demon-
strated superiority with the current standard of endoscopist diagnosis. Rondonotti et al.
demonstrated that CAD-assisted diagnosis was beneficial for junior endoscopists; however,
this waned with an increase in expertise. AI applications have shown encouraging results in
optical biopsies using NBI, WLI, and BLI with associated magnification. Other techniques,
such as autofluorescence imaging using colour ratios and elastic scattering microscopy, are
less common but show equal promise. The current literature shows comparable advances
in real-time histological analysis in the Eastern and Western worlds, demonstrating the
external validity of the presented results.

Advancements in light technologies such as narrow band imaging and white light
imaging with magnification have allowed improved and more detailed analysis of the
microvasculature and pit patterns. Naturally, junior endoscopists’ skills and interpretation
require nurturing to identify the subtleties associated with high-risk lesions. However,
at any level, artificial intelligence-based platforms can provide an important adjunct for
the optical diagnosis of polyps, which may benefit from excision. Furthermore, the imple-
mentation of AI-based platforms may decrease the heterogeneity between endoscopists.
Overall, CAD-assisted platforms are expected to improve optical diagnosis, decision for
polypectomy, and time efficiency.

Although much research is underway in establishing the value of AI platforms in gas-
trointestinal endoscopy, it has had more success in radiology. McKinney et al. demonstrated
that the AI system outperformed radiologists in breast cancer detection in mammography
across large UK and USA datasets [32]. Similarly, a Swedish group showed a double
screening of mammograms with AI, resulting in a 4% higher non-inferior cancer detection
rate [33]. The national breast screening programme has published a report to further the
use of AI in breast cancer screening, highlighting the real-world value of AI in healthcare.
Industrial partners such as Google’s DeepMind Health are contributing to building robust
platforms with deep neural networking to mimic the human mind for early diagnosis
decision-making and provide training digitally. Furthermore, CAD platforms have been as-
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sociated with significant cost-savings, demonstrating a 4.8% incremental gain in colorectal
cancer incidence in the screening tools facilitated with AI [34].

AI in radiology has advanced far more rapidly than endoscopy, not only in the di-
agnostic setting but for metastatic surveillance and prognostication. However, AI use in
endoscopy requires more focussed development. Still, image recognition has achieved bet-
ter outcomes than real-time dynamic images. Earlier adenoma detection is a fundamental
need to prevent the progression of cancer. Polyp recognition and characterisation is an
endoscopist skill; however, subjective. An algorithm based on feature analysis, including
microvascular pit pattern during colonoscopy, can facilitate a decision to excise a potential
adenoma, particularly with junior endoscopists. This technology will facilitate the decision
for polyp excision and reduce the need for a repeat colonoscopy.

There is a noticeable paradigm shift in medical diagnostics with the application
of AI platforms to improve the timely interpretation of interventions to direct further
management. Prior to the implementation of new technology within healthcare systems, it
is important to critique the current literature and ensure robust studies for safe translation,
implementation, and maintaining patient safety. Most evidence supporting diagnostic
algorithms has been published without AI-specific reporting guidelines. The STARD-
AI Steering Group is developing an AI-specific extension to the STARD statement to
complement the EQUATOR (Enhancing Quality and Transparency of Health Research)
network program, CONSORT-AI (Consolidated Standards of Reporting Trials), SPIRIT-AI
(Standard Protocol Items: Recommendations for Interventional Trials) and TRIPOD-ML
(Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis) [35–37].

However, it is important to consider the ‘black box’ associated with AI systems, where
internal biases are not apparent or assessable by the users. A sophisticated deep learning
algorithm utilises specific data points and features correlation to produce a clinically
relevant output. However, there is no rationalisation of the decision-making process and
the in-built mechanisms, making this a complex system to understand for clinicians and
developers. In the real world, there would be concerns for clinical auditing.

The implementation of AI in healthcare faces several obstacles that will need to be
addressed. These obstacles arise at all levels of AI adoption, including data collection
concerns, algorithm development concerns, ethical and societal concerns, and clinical
implementation concerns with the lack of empirical data validating the effectiveness of
AI-based platforms in clinical trials [38].

Limitations

There is much-published literature on AI use in colonoscopy using still images and
retrospective videos. However, the true test for its clinical utility comes from prospective
data. A number of limitations still exist. The complexity of colorectal disease means the
input features need to be refined to prevent causing false classifications. For example,
background inflammation may impact feature extraction. It is important to mitigate the
number of false negatives, and therefore, AI is routinely applied on withdrawal only.
Colorectal AI algorithms benefit from larger datasets; however, data thus far show its
inferiority to experienced endoscopists. It is important to note the heterogeneity of the
AI applications, with variable iterations of the same platform. Data so far shows AI use
in combination with expert opinion, not alone. Pooled analyses were not performed
due to variability in the platforms, diagnostic parameters, and cut-off values. Due to
the heterogeneity in the AI platforms used, it was not possible to perform a hierarchical
summary of receiver operating curves or bivariate analysis. More robust studies on the
same platform would generate more accurate and reliable data for users and policymakers.
Currently, comparative studies are limited in interpreting clinical utility. More focus
on developing a real-time system that is superior to current practice is required. Once
these systems are tested and validated, randomised controlled trials comparing these
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platforms with each other and with current clinical practice will be required prior to
clinical translation.

5. Conclusions

AI applications have shown encouraging results in distinguishing neoplastic and non-
neoplastic colorectal lesions. Current endoscopic advancements with NBI have achieved
significantly improved real-time histological predictions. However, AI research largely
focuses on still image analysis, with few prospective studies that did not demonstrate
a significant improvement with the addition of AI. Although there was a diagnostic im-
provement with junior endoscopists, it failed to equal that of expert endoscopists. With
expert endoscopists’ diagnoses superior to current prospective models, there is further
work needed to improve the characterisation of the lesions before clinical translation. How-
ever, there is potential in the proposed use of AI in colonoscopy for improved diagnostic
capabilities and time efficiency.
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