3,538 research outputs found

    Iris recognition based on 2D Gabor filter

    Get PDF
    Iris recognition is a type of biometrics technology that is based on physiological features of the human body. The objective of this research is to recognize and identify iris among many irises that are stored in a visual database. This study employed a left and right iris biometric framework for inclusion decision processing by combining image processing and artificial bee colony. The proposed approach was evaluated on a visual database of 280 colored iris pictures. The database was then divided into 28 clusters. Images were preprocessed and texture features were extracted based Gabor filters to capture both local and global details within an iris. The technique begins by comparing the attributes of the online-obtained iris picture with those of the visual database. This technique either generates a reject or approve message. The consequences of the intended work reflect the output’s accuracy and integrity. This is due to the careful selection of attributes, as well as the deployment of an artificial bee colony and data clustering, which decreased complexity and eventually increased identification rate to 100%. We demonstrate that the proposed method achieves state-of-the-art performance and that our recommended procedures outperform existing iris recognition systems

    Effective image clustering based on human mental search

    Get PDF
    Image segmentation is one of the fundamental techniques in image analysis. One group of segmentation techniques is based on clustering principles, where association of image pixels is based on a similarity criterion. Conventional clustering algorithms, such as k-means, can be used for this purpose but have several drawbacks including dependence on initialisation conditions and a higher likelihood of converging to local rather than global optima. In this paper, we propose a clustering-based image segmentation method that is based on the human mental search (HMS) algorithm. HMS is a recent metaheuristic algorithm based on the manner of searching in the space of online auctions. In HMS, each candidate solution is called a bid, and the algorithm comprises three major stages: mental search, which explores the vicinity of a solution using Levy flight to find better solutions; grouping which places a set of candidate solutions into a group using a clustering algorithm; and moving bids toward promising solution areas. In our image clustering application, bids encode the cluster centres and we evaluate three different objective functions. In an extensive set of experiments, we compare the efficacy of our proposed approach with several state-of-the-art metaheuristic algorithms including a genetic algorithm, differential evolution, particle swarm optimisation, artificial bee colony algorithm, and harmony search. We assess the techniques based on a variety of metrics including the objective functions, a cluster validity index, as well as unsupervised and supervised image segmentation criteria. Moreover, we perform some tests in higher dimensions, and conduct a statistical analysis to compare our proposed method to its competitors. The obtained results clearly show that the proposed algorithm represents a highly effective approach to image clustering that outperforms other state-of-the-art techniques

    Chemical and biological reactions of solidification of peat using ordinary portland cement (OPC) and coal ashes

    Get PDF
    Construction over peat area have often posed a challenge to geotechnical engineers. After decades of study on peat stabilisation techniques, there are still no absolute formulation or guideline that have been established to handle this issue. Some researchers have proposed solidification of peat but a few researchers have also discovered that solidified peat seemed to decrease its strength after a certain period of time. Therefore, understanding the chemical and biological reaction behind the peat solidification is vital to understand the limitation of this treatment technique. In this study, all three types of peat; fabric, hemic and sapric were mixed using Mixing 1 and Mixing 2 formulation which consisted of ordinary Portland cement, fly ash and bottom ash at various ratio. The mixtures of peat-binder-filler were subjected to the unconfined compressive strength (UCS) test, bacterial count test and chemical elemental analysis by using XRF, XRD, FTIR and EDS. Two pattern of strength over curing period were observed. Mixing 1 samples showed a steadily increase in strength over curing period until Day 56 while Mixing 2 showed a decrease in strength pattern at Day 28 and Day 56. Samples which increase in strength steadily have less bacterial count and enzymatic activity with increase quantity of crystallites. Samples with lower strength recorded increase in bacterial count and enzymatic activity with less crystallites. Analysis using XRD showed that pargasite (NaCa2[Mg4Al](Si6Al2)O22(OH)2) was formed in the higher strength samples while in the lower strength samples, pargasite was predicted to be converted into monosodium phosphate and Mg(OH)2 as bacterial consortium was re-activated. The Michaelis�Menten coefficient, Km of the bio-chemical reaction in solidified peat was calculated as 303.60. This showed that reaction which happened during solidification work was inefficient. The kinetics for crystallite formation with enzymatic effect is modelled as 135.42 (1/[S] + 0.44605) which means, when pargasite formed is lower, the amount of enzyme secretes is higher

    Prediction model of alcohol intoxication from facial temperature dynamics based on K-means clustering driven by evolutionary computing

    Get PDF
    Alcohol intoxication is a significant phenomenon, affecting many social areas, including work procedures or car driving. Alcohol causes certain side effects including changing the facial thermal distribution, which may enable the contactless identification and classification of alcohol-intoxicated people. We adopted a multiregional segmentation procedure to identify and classify symmetrical facial features, which reliably reflects the facial-temperature variations while subjects are drinking alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature map. In our paper, we propose the segmentation model based on the clustering algorithm, which is driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the goal of facial temperature features extraction from the IR (infrared radiation) images. This model allows for a definition of symmetric clusters, identifying facial temperature structures corresponding with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster's distribution to the clustering method the best approximate individual areas linked with gradual alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken to reflect the process of alcohol intoxication. The proposed method was represented by multiregional segmentation, allowing for classification of the individual spatial temperature areas into segmentation classes. The proposed method, besides single IR image modelling, allows for dynamical tracking of the alcohol-temperature features within a process of intoxication, from the sober state up to the maximum observed intoxication level.Web of Science118art. no. 99

    Is swarm intelligence able to create mazes?

    Get PDF
    In this paper, the idea of applying Computational Intelligence in the process of creation board games, in particular mazes, is presented. For two different algorithms the proposed idea has been examined. The results of the experiments are shown and discussed to present advantages and disadvantages

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86
    corecore