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Abstract: Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial
task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for
just a visualization of the knee structure, without post processing, offering objective cartilage
modeling. In this paper, we propose the multiregional segmentation method, having ambitions to
bring a mathematical model reflecting the physiological cartilage morphological structure and spots,
corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from
magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel’s
classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular
fuzzy membership functions, when their localization is driven by the modified artificial bee colony
(ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real
cartilage features. In the second part of the segmentation model, the original pixel’s membership in a
respective segmentation class may be modified by using the local statistical aggregation, taking into
account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts,
which are commonly presented in the MR images, may be identified and eliminated. This fact makes
the model robust and sensitive with regards to distorting signals. We analyzed the proposed model
on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage
segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared
our model performance against the selected conventional methods in application on the MR image
records being corrupted by additive image noise.
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1. Introduction

The articular cartilage is focused on a resistance to the compressive forces, load distribution, and
with a combination of the synovial fluid, frictionless movement of the articular joint components.
Structurally, the articular cartilage contains approximately 70–80% of fluid and 20–30% of cellular matrix
of the chondrocytes, having a sparse distribution. The chondrocytes are responsible for homeostatic
and repair processes, modulating composition of the fluid-like macromolecular network [1,2].

From the view of the clinical practice, osteoarthritis (OA) represents one of the most prevalent
musculoskeletal disorders, causing a substantial part of the elderly population. Furthermore, there is
an unfavorable prediction of the next increase in the future time due to the population aging [1–3].
A severe complication, which relate to OA are structural changes of the articular cartilage, causing its
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degradation, having progressive and irreversible consequences. Also, it is closely linked with adjacent
joint structures pathologies, including, for instance, the subchondral bone and meniscus [4–6].

In the clinical diagnosis of the OA, the structural diagnosis is essential. This assessment is based
on the indication of a definite osteophyte in anterior-posterior X-ray images. Such image modalities are
capable of finding the joint space, but they are not sensitive to a progression of the cartilage loss. This
method is frequently used for indication of the effectiveness of disease-modifying OA drugs [7–10].
Another imaging alternative for the articular cartilage is the ultrasound. [11] As well as the radiographs,
ultrasound imaging is not capable of reliably imaging the articular cartilage morphological structure.
Thus, tiny structural changes cannot be properly investigated [12,13].

In comparison with others, magnetic resonance imaging (MRI) enables a structural visualization
of all the tissues related with the OA disease, including the articular cartilage. A great benefit
of MRI is qualitative and quantitative morphologic assessment [14,15]. MRI-based approaches
enable characterization and quantification of the articular cartilage biochemical composition. Such
techniques include the relaxometry measurements, including T2, T1, T2* imaging and T1rho mapping,
sodium imaging, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), glycosaminoglycan
specific chemical exchange saturation transfer (gagCEST), and diffusion weighted imaging (DWI).
Compositional MR-based imaging techniques have a strong potential to serve as a quantitative,
reproducible, and non-invasive techniques for OA investigation [16–18]. On the other hand, current
needs of articular cartilage clinical imaging are focused on autonomous extraction and modeling of the
cartilage structure, with the regard of the OA. Such segmentation techniques should be capable of
extracting the physiological structure of the articular cartilage, and classify the pathological tissues
affected by OA. A summary drawback of the MR imaging is a relative smaller proportion of the
articular cartilage, regarding the whole knee area. Therefore, the early pathological cartilage loss is
insufficiently differentiated from the healthy cartilage, as it is shown in the Figure 1.
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Figure 1. Clinical cases of the MR knee cartilage visualization, including the early cartilage loss,
indicated as red marked circles.

In this paper, we are focused on the regional segmentation of the knee MR images. Particularly,
we are focusing on extraction and modeling of the physiological structure of the articular cartilage,
with regard of identification of the early cartilage loss caused by OA. We propose a multiregional
segmentation scheme, which is based on soft fuzzy thresholding, where forming the individual
segmentation classes is driven by the modified evolutionary artificial bee colony (ABC) optimization
scheme. This hybrid segmentation method, including fuzzy based thresholding and evolutionary
computing, offers promising results of the cartilage segmentation even in a noisy environment.
We provide testing and evaluation of the proposed segmentation method, applied on the native clinical
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MR knee images, containing OA, as well as the synthetically degraded MR images by deterministic
noise generators to evaluate robustness of the proposed method.

The organization of the paper is as follows. In Section 2 we describe the recent methods for the
cartilage segmentation, which are grouped based on the level of a user’s interaction. Section 3 deals
with the proposal of the segmentation model for the cartilage segmentation. We define the basic
concept of the soft thresholding, including intensity segmentation and spatial aggregation. Further, we
introduce the optimization procedure of the soft thresholding based on the modified ABC algorithm.
Section 4 brings the results of the proposed model for the cartilage segmentation. We are especially
focused on the healthy cartilage segmentation and indication of the early cartilage loss, caused by
the early osteoarthritis. Section 5 deals with the quantitative comparison and objective evaluation of
the proposed method against selected state of the art segmentation techniques. Section 6 brings the
discussion about the results of the proposed segmentation scheme for the cartilage segmentation.

2. Recent Methods of Cartilage Segmentation

This chapter describes recent segmentation models for the cartilage segmentation. Generally,
there are various reasons for the cartilage segmentation, as it is modeling of the morphological
cartilage structure, or the pathological finding objective assessment. On the one hand, the ideal
segmentation method should work as autonomous as possible, on the other hand, different MR
sequences provide cartilage imaging with different intensity manifestation. Therefore, a development
of the fully autonomous system allowing for precise segmentation is still the topic of the recent
development. Individual methods are grouped by level from the user’s interaction [19,20].

The manual segmentation, performed by the clinical experts, has been perceived as a gold
standard for the segmentation method’s performance assessment. It is a substantially demanding
and time-consuming approach which may represent analysis over several hours depending on the
image size, quality, and particular pathological findings. Furthermore, this methods lack of relevant
reproducibility is caused by subjective error and requires special training [21,22].

From a practical point of view, a balance between the algorithm’s performance, preciseness,
robustness, and the user interaction level should be kept. An ideal automatic segmentation algorithm
would restrict the user’s interaction to a minimum and, at the same time, maximize the algorithm’s
preciseness. There are several factors making this task complicated. The articular cartilage thickness is
thin, less than a millimeter. Also, a significant issue is having sufficient contrast achieved between
the cartilage and adjacent tissues. Furthermore, the cartilage tissue is not homogenous in certain
parts. Therefore, the automatic algorithm should be trained in order to recognize these patterns.
The fully cartilage segmentation includes the following techniques: Texture analysis [22], supervised
learning [23], statistical methods (active shape models and adaptive template matching) [21], graph-cut
methods [22,24], and edge detection methods [19,20,25,26].

The semi-automatic segmentation methods are aimed to reduce the user’s interaction as much
as possible. These methods commonly require the initialization, meaning that the user is required
to specify certain parameters driving the segmentation process. The semi-automatic methods may
be divided as follows: Intensity-based [27], thresholding, watershed [28], edge detection [29], energy
minimization [30], Live Wire [31], and active contours [30,32].

3. Materials and Methods

In the comparison with the adjacent knee tissues, the articular cartilage manifestation belongs
to a different part of the intensity range. By this assumption, it can be modelled by the regional
segmentation identifying individual tissues by their intensity spectrum. Since different MR devices
and sequences produce the knee images with various resolutions and image quality, there is not a
unified finite intensity range reliably approximating the cartilage area. Furthermore, we must consider
that the presence of the image noise and the MR artifacts will significantly modify the intensity
distribution, which can never be excluded from the MR image records. The proposed segmentation
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method compensates these facts by the way that creates adjustable image regions on the base of the
pixel’s intensity and spatial information driven by evolutionary optimization with the cartilage image
features. The overall flow chart of the proposed method is depicted in Figure 2.
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Figure 2. A complex structure of the proposed methodology of segmentation and cartilage modeling.

In the proposed method, we tried to avoid using the image preprocessing operations to not modify
native clinical information. We only use a selection of region of the interest (RoI) in order to expand the
area of the articular cartilage due to its small size when comparing with the other knee structures like
bones. Unlike many methods for the cartilage segmentation proposed in the recent literature dealing
with the cartilage extraction, the proposed method is focused on the cartilage surface analysis, which
enables the mapping of tiny structural changes, representing the early cartilage loss.

The basic version of the soft thresholding in [33] utilizes a decomposition of the image area based
on the fuzzy sets with clustering and consequent statistical aggregation. This approach represents a
general regional image segmentation procedure, not regarding any particular tissues. We bring an
optimization of the soft thresholding based on evolutionary computing, selecting the best configuration
of the fuzzy class distribution. It is a hybrid segmentation scheme, utilizing the soft thresholding
approach which is driven by the evolutionary optimization. Furthermore, in the proposed approach,
the configuration of the fuzzy sets are not only done by the clustering, but the real cartilage features
are incorporated. This improves accuracy and robustness of the proposed segmentation model.

3.1. Soft Segmentation of Intensity Spectrum

A soft multiregional segmentation supposes that the knee image area may be decomposed
into a predefined number of the segmentation classes, which should correspond with individual
tissues, having different intensity spectrum. In order to perform this task, the MR image histogram is
approximated by a sequence of the triangular fuzzy membership functions. In this configuration, the
image histogram values are approximated by the fuzzy membership values, so that each pixel will
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have a certain membership in each segmentation class. We process the image data, represented by
256 gray levels, so the fuzzy approximation is done by: (0; 255)→ (0; 1) . Membership values (0; 1)
assign a level of the membership for each pixel from the range (0; 255) of gray levels. In this scheme,
membership 0 stands for a pixel that does not belong to this class, contrarily membership 1 indicates
the full-assignment to this class. In this scheme, the original pixel’s distribution expressed by the image
histogram is replaced by the system of membership functions (Figure 3).
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For construction of such a segmentation model, the triangular functions are defined. Individual
triangular membership functions are defined based on its centroid. In this case, a centroid is represented
by the triangular membership vertex. Supposing we have a system of p triangular membership classes:
µn(x), n = 1, 2, . . . , p, we need to determine an equivalent system of centroids represented by the
triangular feature vector: V =

{
V1, V2, . . . , Vp

}
, where V represents a vertex of a respective triangular

function. An illustration of a system of the triangular functions approximating the MR image histogram
is depicted in Figure 3.

A membership of pixel k in the image I(k), in the nth segmentation class is given as µn(k). When
using the triangular function, a membership satisfies a condition:∑p

n=1
µn(I(k)) = 1 (1)

Thus, each pixel is transformed into a space of the fuzzy membership, defined as follows:

µ(I(k)) =
[
µ1(I(k)) µ2(I(k)) . . . µp(I(k))

]
(2)

When using the triangular fuzzy membership functions, only two adjacent elements of µ(I(k))
are non-zero. A system of the triangular membership functions satisfies the following requirements:

• Complete division: ∀k, ∃µl(k), 1 ≤ l ≤ p, so that µl(k) > 0.
• Consistency: if µn(k0) = 1, then µm(k0) = 0, ∀n , m.
• Normality: max(µn(k)) = 1.
• Intersection between adjacent fuzzy sets: µn(k0) = µn+1(k0) = 0.5

∣∣∣∣∣∣ µn−1(k0) = µn(k0) = 0.5 .

3.2. Process of Centroids Extraction

The original idea of the centroid extraction deals with the clustering methods. Nevertheless, the
clustering methods require a choice of the initial centroid selection. When selecting improper initial
centroids, it may result to inaccurate segmentation results, which badly reflect the knee structures.
Note that there is not a versatile method for the initial cluster’s selection.

In the proposed method, we use a hybrid scheme for the centroid’s definition, based on the
K-means clustering and modified ABC evolutionary optimization algorithm. From the K-means, we
only use the found centroids, consequently serving for the initial forming of the triangular fuzzy
functions, not representing the articular cartilage. The physiological cartilage centroid, as well as others,
are found by a modified version of the ABC algorithm utilizing the physiological cartilage features.
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3.3. Modified ABC Algorithm

ABC algorithm represents an evolutionary optimization algorithm inspired by a bee swarm
seeking for the food [34–37]. In this algorithm, there are three groups of artificial bees: Employed bees
(EB), onlooker bees (OB), and scout bees (SB). Each kind of the bees search for food sources. A food
source represents one solution of the optimization problem. Each such solution particularly represents
one configuration of the fuzzy class’s distribution for the image segmentation. A proper distribution
of the fuzzy classes is a crucial step in the whole segmentation algorithm. Within the optimization
procedure, we are searching for the configuration of the fuzzy sets having the maximal compactness.
Therefore, we use the entropy for an evaluation of each fuzzy sets configuration. In our approach, we
use the Kapur’s entropy as an evaluator of each configuration. In this context, we suppose that a higher
entropy corresponds with better fuzzy sets distribution. The optimization problem is determined by
finding the optimal distribution of fuzzy classes centroids based on the fitness function. The fitness
function is based on the Kapur’s entropy calculation for each region. The optimization process searches
for maximization of the entropy function of the segmentation model. For this task we use the fitness
function as an evaluator of individual solutions.

Firstly, we suppose an equal number of EB and OB. We also suppose that one EB has one food
source. The parameter Xi =

{
Xi,1, Xi,2, . . . , Xi,p

}
represents ith solution in the bee swarm, where p

stands for a size of the dimension, and in other words these are the number of optimized centroids of
the multiregional soft segmentation model.

In this point, we specify Xi solution in the bee’s swarm. In the conventional ABC algorithm,
these solutions are given randomly. In the proposed method, we utilize the real cartilage features in a
combination with the random number generator. In order to determine representative cartilage features,
we use the estimator of the physiological cartilage intensity average value. In order to perform this
task, we employed the segmentation model based on the active contours driven by minimization of the
Gaussian energy [32]. This model can adopt the healthy cartilage structure. Since the healthy cartilage
is represented by the nearly focused intensity spectrum, not containing intensity fluctuations, it may
be well approximated by the Gaussian distribution. Figure 4 shows an example of the physiological
cartilage modeling by using the active contour driven by Gaussian energy minimization.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 24 
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cartilage (right).

We analyzed the sample of the MR knee images containing 260 image records. 200 of these images
were used for investigation of the healthy cartilage features, the rest of them were used for testing of
the proposed model with the target of the osteoarthritis identification. All the images were acquired in
MR 1.5T with the fat suppression technique, within the period 2014–2017. Images have the unified
spatial resolution 1200 × 800 px and dynamical range (0; 255) gray levels. All the images were acquired
in the DICOM format. For each of them we obtained the binary model reflecting the physiological
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structure of the cartilage. Based on these models, we compute an estimation of the intensity spectrum
based on two alternative methods for interval estimation.

Firstly, we selected the median interval estimation with the reliability 95%. Estimation of median
range for the physiological cartilage is given:

〈x̂0.5 − 1.57
(x̂0.75 − x̂0.25)

√
n

; x̂0.5 + 1.57
(x̂0.75 − x̂0.25)

√
n

〉 (3)

where xp represents 100 p% quantile and n represents the range of sample data (we analyzed 200 MR
image records).

The second alternative, for the physiological cartilage average value estimation, is the Gastwirth
median. The Gastwirth median is calculated based on the selected median by the following expression:

x̂GST = 0.4.x̂0.5 + 0.3.(x̂0.33 + x̂0.66) (4)

Estimation of the Gastwirth median is given:

〈x̂GST − 1.57
x̂0.75 − x̂0.25
√

n
; x̂GST + 1.57

x̂0.75 − x̂0.25
√

n
〉 (5)

We computed the following parameters for median estimation:

x̂0.25 = 204.39
x̂0.5 = 210.96
x̂0.75 = 215.33

The median interval estimation (Equation (3)) is calculated:

〈210.96− 1.57 (215.33−204.33)
√

150
; 210.96 + 1.57 (215.33−204.33)

√
150

〉

〈209.54; 212.37〉

The parameters for calculation of the Gastwirth median are follows:

x̂0.5 = 210.96
x̂0.33 = 207.043
x̂0.66 = 213.49
x̂GST = 210.54

Then, the Gastwirth median is calculated:

〈210.54− 1.57 215.33−204.33
√

150
; 210.54 + 1.57 215.33−204.33

√
150

〉

〈209.12; 211.95〉

Based on the selected interval estimations, we computed a median estimation for the physiological
cartilage from 200 MR images (Table 1). Results from both of the methods do not exhibit significant
statistical differences. For the ABC algorithm, we use an intersection of both intervals reported in
Table 1. Note that we worked with the MR images represented by 256 shade levels.

Table 1. Comparison of interval estimations for articular cartilage.

Interval median estimation 〈209.54; 212.37〉
Gastwirth median estimation 〈209.12; 211.95〉



Symmetry 2019, 11, 861 8 of 23

Based on the results from Table 1, we determine estimation of the physiological cartilage as
follows: Ic = 〈209; 211〉. Firstly, we define a scheme for the Xi in the Equation (6).

Xi = Ri,L ∗CL (6)

where Ri,L ∈ 〈0; 1〉 stands for the random numbers of ith solution and L denotes a vector of segmentation
classes: L =

{
1, 2, . . . , p

}
. Vector CL stands for the ith sequence of the centroids generated by

the K-means clustering in the form: CL =
{
C1, C2, . . .Cp

}
. In each CL, we have to identify and

replace centroid representing the cartilage area. In order to do this task, we use the following

formulation: Ci,cartilage = min
∀k∈L

∣∣∣∣Ci, k − IRi
c

∣∣∣∣. Ccartilage replaces a respective centroid from CL for each solution

in the swarm based on the minimal distance where IRi
c stands for randomly chosen value from Ic.

When Xi is generated, each OB generates a new candidate solution Vi in the Xi neighborhood. Vi
is given as following:

Vik = Xik + φik ×
(
Xik −X jk

)
(7)

where X jk represents a random candidate solution (i , j), k represents a random index, given:
k ∈

{
1, 2, . . . p

}
and function φik represents a generator of the random numbers in the range: [−0.1; 0.1].

Based on the selection, the Xi and Vi are compared on the base of their fitness functions. If fitVi > fitXi ,
Vi is stored in the memory. Otherwise, a new Vi is generated. The maximal number of such repetitions
is controlled by the choice limit Lv (we use: Lv=10). When the Lv is exhausted, the Xi is perceived as an
exhausted food source.

In the second stage of the ABC, OB test and evaluate the individual solutions from a global view.
This process is done based on the probabilistic selection (Equation (8)), performed as many times, as
many solutions we have for Xi.

Pi =
f iti∑SN

j=1 f it j
(8)

It is supposed that more optimal solution has a greater Pi. When the Xi is selected, the Vi is
determined from Equation (7) and their fitness functions are compared. As same as in the first stage, a
solution having greater fitness function is selected.

The last part of the algorithm are the scouts, seeking for the new food sources, instead of exhausted
food sources. When flagging an exhausted food source as Xi,e, consequently scout finds a new one,
and the whole procedure is repeated within a predefined number of iterations (NI) (we use NI = 200).
A new food source is given by the expression:

Xik = lb j + rand(0, 0.1) ×
(
ub j − lb j

)
(9)

where lb, ub represent lower and upper limit of dimension, respectively. In the proposed segmentation
method these limits represent boarders of the normalized intensity spectrum (0;1). In the final step, a
solution having the biggest Pi is selected as the most optimal solution for the centroids specification.

3.4. Features Extraction Based on Fitness Function

Generally, it is supposed that for each segmentation class theoretically unlimited alternatives
may be defined, better or worse reflect features of a respective knee structure. Each alternative
should be considered based on the histogram features. This situation (for Vk segmentation class) is
illustrated on the Figure 5. The key aspect of the entire genetic optimization is a fitness function, which
globally evaluate a respective segmentation class in order to determine an optimal placement of the
segmentation classes to reliably approximate individual knee tissues.
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An important aspect is an optimization criterion defining a fitness function. Theoretically, a finite
set of features characterizing the articular cartilage intensity manifestation may be used. We suppose
that the articular cartilage represents a homogenous compact structure on the MR imaging. When
intensity fluctuations are presented, they indicate pathological findings. Based on these facts, Kapur’s
entropy is used for the fitness function design. It is supposed that the higher entropy respective fuzzy
function has the more optimal solution represents. Regarding manifestation of the articular cartilage
on the MR images, the MR signal of the physiological cartilage is represented by concentrated and
compact intensity values, without significant intensity fluctuations. This fact is also proved by the
interval estimations reported in Table 1. In such configurations, it can be supposed that a region of the
cartilage, containing the intensity values with a high probability will be approximated with a higher
entropy. In this optimization procedure, we search for the maximization of the Kapur’s entropy of the
segmentation model. The higher entropy we obtain for the particular Xi, the more suitable solution is.
Firstly, the probability pk of each gray level h(k) is represented by the relative frequency divided by a
total number of gray levels, defined as follows:

pk =
h(k)∑L−1

k=0 h(k)
(10)

We suppose that the MR image contains L intensity components, where: k = 0, 1, 2, . . . , L − 1. Each
segmentation class represented by the triangular function is described by two thresholds t and centroid
V in the form:

{
ti,1, Vi, ti,2

}
where i stands for order of the segmentation class. The Thresholding vector

T of the segmentation model, containing p classes is given:

T =
[{

t1,1, V1, t1,2
}
,
{
t2,1, V2, t2,2

}
, . . . ,

{
tp,1, Vp, tp,2

}]
(11)

The Kapur’s entropy enables measuring compactness and separability of the segmentation classes
is defined by the following equations:

H1 = −

t1,2∑
i=t1,1

pi

ω1
ln

(
pi

ω1

)
,ω1 =

t1,2∑
i=t1,1

pi (12)

H2 = −

t2,2∑
i=t2,1

pi

ω2
ln

( pi

ω2

)
,ω2 =

t2,2∑
i=t2,1

pi (13)

Hp−1 = −

tp−1,2∑
i=tp−1,1

pi

ωp−1
ln

(
pi

ωp−1

)
,ωp−1 =

tp−1,2∑
i=tp−1,1

pi (14)
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Hp = −

tp,2∑
i=tp,1

pi

ωp
ln

(
pi

ωp

)
,ωp =

tp,2∑
i=tp,1

pi (15)

By this way, the multiregional thresholding is configured as a multi-dimensional optimization
problem. Based on the maximization, the fitness function, assessing each solution, is defined with the
target of the entropy maximization (Equation (16)).

f iti = argmax
(∑ps

k=1
Hk

)
(16)
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In Figure 6, we present a structure of the ABC evolutionary optimization for the cartilage
segmentation. In order to track an evolution of the fitness function on the NI, we report the convergence
characteristics for the fitness function (Figure 7). In this regard, an important parameter, influencing
the fitness function is a number of the food sources Xi.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 24 
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Figure 7. Convergence characteristics for the fitness function evolution within 100 iterations: (a) 100
food sources and (b) 50 food sources.

The following Table 2 brings the statistical evaluation of the ABC optimization for six segmentation
classes. The testing was done for 60 MR knee images containing OA. We present extract of six images.
In the testing, we evaluated the best, worst, median, and standard deviation of the fitness function
(Equation (16)).

Table 2. Extract of comparison fitness function of ABC optimization.

Testing Image Number of Classes fitbest fitworst fitmedian f itmean f itSD

1 6 21.43 21.11 21.43 21.41 0.11
2 6 22.65 22.14 22.33 22.29 0.14
3 6 22.44 21.99 22.12 22.11 0.12
4 6 22.12 21.44 21.99 21.97 0.11
5 6 21.99 21.54 21.68 21.72 0.21

Another challenging issue of the segmentation procedure is the time complexity of the
segmentation. In this regard, we evaluated the time complexity for different image resolution.
From this point of the view, size of the image matrix plays an important role (Table 3).

Table 3. Time complexity of soft segmentation.

Testing Image [px] Image Order Number of Classes Time Complexity [s]

(800 × 800)
1 6 8.92
2 6 10.54
3 6 10.12

(300 × 300)
1 6 9.91
2 6 9.11
3 6 8.59

(150 × 150)
1 6 5.45
2 6 5.22
3 6 6.12

We can interpret the intensity segmentation model of the articular cartilage in the form of a
sequence of segmentation classes. The outputs a)–f) in Figure 8 represent the segmentation classes one
to six of the segmentation procedure. It is apparent that the hard tissues (bones) are mostly classified
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in the class one. This sequence of the segmentation models indicates the most significant content of
the articular cartilage in the segmentation classes five and six. Nevertheless, classes three and four
indicate the edge points, having a significant association to the articular cartilage. Based on these facts,
uniqueness of the physiological cartilage classification is limited by its surface inhomogeneities. In this
context, the MR signal distribution is not homogenous.
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Figure 8. Extract of native MR image, containing the articular cartilage, with the osteoarthritis change,
indicated by the blue RoI. A sequence of individual segmentation models of the articular cartilage
by using 6 segmentation classes is represented by (a–f). The color spectrum differentiates a level of
individual tissue membership. Yellow color represents presence of individual tissue, while blue color
identifies the background (non-presence) of the respective tissue.

3.5. Local Statistical Aggregation

Intensity soft segmentation may lack of robustness, especially when the noisy pixels are present. It
is supposed that the pixels representing the image noise have significantly different intensity in regards
to pixels belonging to the articular cartilage area. This fact often leads to the incorrect classification
of the noisy pixels, and the articular cartilage area contains so called blind spots deteriorating the
structure of the cartilage model.

In the cartilage model, we use a local statistical aggregation scanning the membership values of all
the pixels. By considering local statistical features of each segmentation region, the originally assigned
membership values may be modified, and pixels may be re-classified, depending on the statistical
features of the surrounding pixels.

Supposing we define for k pixel its neighborhood η(k), for such area we can consider local statistical
features. In our model we use the median aggregation defined as follow:

µs
l (I(k)) = medians∈η(k)

{
µ(I(s))

}
(17)

In the comparison with the average value, the median is invariant in a presence of outliers. Such
pixels often represent the image noise, deteriorating the segmentation results. With the median as
50% quantile can reliably approximate the mean value, even if the noise is present. We suppose that
the median represents a robust position parameter being invariant against the distant observations.
Robustness ensures an effective using for the spatial segmentation which should not be affected
by deviating membership values, with the goal of maximization of the segmentation efficiency,
especially when the image noise is presented. The local aggregation is implemented by using the cyclic
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convolution with the kernel η(k), going through all the segmentation regions. We report an example of
using the median aggregation (Figure 9) for pixel’s neighborhood of eight pixels.Symmetry 2019, 11, x FOR PEER REVIEW 14 of 24 
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Figure 9. Neighborhood of analyzed pixel, indicated as red where: (a) it is not supposed a presence of
the noisy pixels and (b) analyzed centered pixel represents the image noise.

It is obvious when not supposing a presence of the noisy pixels, all the pixels will have great
membership values for respective region (Figure 9a). When noise is presented by the centered pixel,
indicated as red (Figure 9b), such pixel has a significantly lower membership value for a respective
region, when comparing with surrounding pixels, due to its different intensity features which can
be expected in the image noise. The median local aggregation has the task to modify the originally
assigned membership in a dependence of the pixel’s surrounding. If the analyzed pixels have similar
intensity values, the median aggregation does not rapidly change them, contrarily the noise pixels
membership may be substantially modified when considering their surroundings. Such a situation is
illustrated in Figure 10 where we report an application of the median aggregation for the situation
from Figure 9.
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4. Results

The main intention of the proposed model is a proper localization of the healthy articular cartilage,
with regard to the early stage of the cartilage loss caused by the osteoarthritis. MR imaging enables a
reliable and contrast visualization of the healthy cartilage nevertheless the early pathological changes
are often difficult to recognize by naked eyes.

We did the cartilage modeling on two issues. The first mentioned alternative deals with a selection
of the region of the interest where the segmentation procedure is consequently applied. A certain
disadvantage of this approach is a spatial limitation of the articular cartilage when only a part of the
cartilage is subjected to the segmentation analysis. The second alternative deals with the analysis of
the whole knee area where the cartilage is relatively small. In Figure 11, we report the example of
the segmentation procedure applied on the MR image, containing the early cartilage loss, which is
difficult to observe by naked eyes. We marked the analyzed cartilage area as red, and the early cartilage
loss as violet in the segmentation model. The proposed segmentation model enables a differentiation
between the physiological cartilage structure, indicated as yellow and the early cartilage loss, which is
recognizable as the interruption between the healthy cartilage structures. For testing parameters of the
ABC: Number of food sources (i = 100) and number of iterations (NI = 200).
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One of the segmentation procedure implementations is the analysis of time-inverse knee 
images, which are evaluated for instance for the reason of presence the focal defects (Figure 12 a)), 
where the focal defect is manifested on the trochlear socket. The red RoI is segmented with eight 
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Figure 11. Example of cartilage segmentation model: (a) Native MR knee images, containing the early
cartilage loss where the cartilage area is indicated as red, (b) proposed soft segmentation model with 8
classes—cartilage is shown by yellow contour, and (c) extraction of the articular cartilage where the
violet RoI indicate the cartilage interruptions caused by the early cartilage loss.

One of the segmentation procedure implementations is the analysis of time-inverse knee images,
which are evaluated for instance for the reason of presence the focal defects (Figure 12a), where the
focal defect is manifested on the trochlear socket. The red RoI is segmented with eight classes and
aggregated by the median window with size 9 × 9 pixels. In the Figure 12b, we present the resulting
cartilage model.

Next, we tested the segmentation procedure in sagittal 2D SE images. Figure 13a represents the
articular cartilage with the cartilage defect (arrows). The segmentation procedure differentiate the
cartilage area (blue RoI), where other knee structures are suppressed.
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One type of the articular cartilage morphological assessment is FLASH imaging. This technique 
is also usable for evaluation of time change of the cartilage thickness and volume. The physiological 
cartilage characterized by high signal intensity in the FLASH imaging. For this reason, the 
superficial lesions are better observable in deeper contrast. On the other hand, such lesions may be 
incorrectly jointed with the cartilage defects, for instance fissures. In the following output (Figure 
14), we present the cartilage model, reflecting the complete cartilage loss of medial area with the 
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Figure 12. Time-inverse knee image (a), indicating the full chondral defect (arrows), with marked RoI
for segmentation, and segmentation model (eight segmentation classes) of the time-inverse knee image
after region of articular cartilage extraction (b), where the focal defect is sharply indicated in red RoI.
Artificial colors represent segmentation classes in the cartilage, according to the MR signal strength and
other knee tissues are suppressed.
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Figure 13. The native data of the knee area (a), obtained by 2D SE imaging. The native image gives
a better contrast between the cartilage surface and synovial fluid. A high contrast well differentiate
cartilage defect (arrows), where the blue RoI indicates the area of the interest for segmentation. The
segmentation model (b) identifies a part of the cartilage region, where the cartilage defect is sharply
indicated by yellow contour in the red RoI.

One type of the articular cartilage morphological assessment is FLASH imaging. This technique
is also usable for evaluation of time change of the cartilage thickness and volume. The physiological
cartilage characterized by high signal intensity in the FLASH imaging. For this reason, the superficial
lesions are better observable in deeper contrast. On the other hand, such lesions may be incorrectly
jointed with the cartilage defects, for instance fissures. In the following output (Figure 14), we present
the cartilage model, reflecting the complete cartilage loss of medial area with the degenerative lesions.

The last application, where we tested the proposed segmentation methodology is the MR imaging
with variable force fields. These modalities are not conventionally used, but they are mostly used in an
area of the clinical research. The main benefit of stronger magnetic fields is in contrast imaging of the
articular cartilage. On the other hand, there is worse magnetic susceptibility in tissues, and images are
more inclinable to the flow artefacts. Based on the studies, using the 7.0T MR imaging this modality is
more effective for imaging of the morphological structure of the articular cartilage. The benefit of this
imaging is achieving a better resolution, with a shorter acquisition time, when comparing with the
3.0T systems.

The following results shows application possibilities of the articular cartilage modeling from 3.0T
(Figure 15) and 7.0T MR images (Figure 16). Analyzed data shows, in both cases, the physiological
cartilage, which is represented by a higher level of the MR signal, which leads to a better contrast in
comparison with adjacent tissues. The first important aspect in homogeneousness of the cartilage,
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which is, in the segmentation models, accompanied mostly by unified color spectrum (yellow spectrum).
An important aspect of the segmentation model is also a robustness against the artefacts, caused by the
magnetic field. The 7.0T image data are affected by the magnetic susceptibility, this phenomenon is
indicated by arrows (Figure 16), nevertheless, this artefact is eliminated in the model.Symmetry 2019, 11, x FOR PEER REVIEW 17 of 24 
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Figure 14. T2 weighted image with fat suppression (a) reflects locations of the complete cartilage loss
in medial tibia-femoral area with degenerative lesions in the subchondral bone (arrows), where red RoI
indicates area of the interest for segmentation procedure. The segmentation model (b) of the articular
cartilage, reflecting the highest signal intensity (yellow contours), contrarily model detects the locations
of the cartilage loss (red areas of interest), degenerative lesions are sharply indicated by yellow contour
in the blue RoI.
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Figure 16. Sagittal 7.0T MR image of the knee area of healthy volunteer, not exhibiting significant
differences in manifestation of the articular cartilage (a). The native data contain artefacts, caused by
the magnetic susceptibility (arrows). The segmentation model of the articular cartilage (b) identifies
the morphological structure compactness (yellow contour).
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5. Quantitative Comparison and Segmentation Performance

This section is dedicated to the quantitative testing and evaluation of the proposed segmentation
model. The testing was done based the gold standard cartilage segmentation, defined by the clinical
experts from the orthopedics (Figure 17), and against selected regional segmentation methods. In the
second part of the testing, we evaluated optimal settings of the local aggregation for the cartilage
segmentation. The gold standard images for the comparison were done by manual tracing of the
cartilage boarders by clinical experts, having the attestation from orthopedics.
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Figure 17. Example of the gold standard definition by tracing the articular cartilage by clinical expert:
(a) manual tracing of the femoral cartilage and (b) binary model of the cartilage.

Firstly, we present a comparative analysis against some conventional segmentation methods.
For this task, we consider methods based on the fuzzy approach, as well as the methods taking into
account the spatial information. These methods are considered as significantly representative for
the comparison.

• Otsu thresholding (Otsu-N): Hard thresholding segmentation utilizing image partitioning into
N regions.

• Fuzzy C means (FCM): Represents clustering. An algorithm generates clusters into c parts,
attempts to find centroids of natural clusters in the data. For this task, a minimization of the inner
clustering variance based on error function is used.

• Iterative thresholding (ITS): The initial thresholding is iteratively adjusted based on the local
information and the resulting threshold is less sensitive against the noise.

• Maximal Spatial Probability (MASP): It is a segmentation, considering the spatial information.
A probability of pixel’s belonging to respective class, in a frame of spatial restrictions, is defined
as spatial probability.

The following scalar metrics are used for the quantitative comparison:
Rand Index (RI): Measures a similarity between two segmentation regions. RI compares the

compatibility of an assignment between pairs of elements in two regions. The RI formulation is
as follows:

RI(C1, C2) =
2n11 + n00

N(N − 1)
(18)

where N stands for number of pixels, n11 denotes a number of pairs belonging to the same area C1 and
C2, and n00 stands for a number of pairs in different segmentation classes. RI gives values 0–1 where 0
indicates completely dissimilar regions and 1 stands for exactly same data.
Variation Information (VI): measures distance between two segmentations in a sense of their
conditional entropy, which is defined:

VI(C1, C2) = H(C1) +H(C2) − 2I(C1, C2) (19)

whereH(Ci) represents an entropy associated with the Ci and I is a mutual information between C1

and C2.
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Segmentation Overlapping: overlapping C1 by C2 is defined as follows:

C(S2 → S1) =
1
N

∑
R1∈S1
|R1|max

R2∈S2
O(R1, R2) (20)

where O(R1, R2) is an overlapping between the regions R1 and R2 defined as follows:

O(R1, R2) =
|R1 ∩R2|

R1 ∪R2
(21)

We used two complementary descriptors: C(S2 → S1) and C(S1 → S2).
We did testing for 100 MR image records where cartilage was extracted. Averaged results of

native images (Nat), as well as additive Gaussian (Gauss) and multiplicative Rayleight (Mult) noise of
all the tests are summarized in the Table 4. The best result, for each test, are highlighted. For each
MR image, the gold standard was generated (Figure 17) by using the manual segmentation by clinical
expert from the orthopedics.

Table 4. Comparative analysis of quantitative evaluation of proposed of regional segmentation. (The
bold font highlights the best results in the table.).

MedAg AvAg FCM Otsu-N ITS MASP

RI
Nat. 0.791 0.728 0.723 0.723 0.739 0.698

Gauss. 0.697 0.669 0.601 0.683 0.681 0.667
Mult. 0.681 0.697 0.665 0.654 0.612 0.571

VI
Nat. 2.956 2.611 2.979 2.675 2.922 3.459

Gauss. 3.122 3.788 3.312 3.367 3.122 3.998
Mult. 3.233 3.811 3.711 3.568 3.679 3.799

C(S2→S1)
Nat. 0.366 0.343 0.354 0.343 0.371 0.219

Gauss. 0.298 0.322 0.291 0.262 0.312 0.242
Mult. 0.345 0.289 0.271 0.233 0.327 0.236

C(S1→S2)
Nat. 0.498 0.448 0.455 0.411 0.467 0.341

Gauss. 0.499 0.295 0.353 0.412 0.399 0.277
Mult. 0.391 0.365 0.343 0.367 0.389 0.311

We tested two alternatives of the proposed soft multiregional segmentation, differing in the local
aggregation: Median (MedAg) and average (AvAg) aggregation. The greater values of RI and C we
give, the better result of test we obtain, while the lower VI is, the better results we obtain. The reported
results in the Table 4 show that the proposed method gives the best, and the most robust results, when
comparing with other considered methods, even in the noisy environment represented by the Gaussian
and multiplicative noise. When analyzing only the proposed method with different aggregators, we
mostly get better results for the median aggregation. This fact is predictable regarding the fact that
median represents a robust estimator of position.

In the next step, we compared the median aggregation with a different number of the segmentation
classes (Figure 18). When selecting a higher number of the segmentation classes, the knee segmentation
model (blue contour) contains tiny pixels clusters, especially in the femoral bone area, as well as the
cartilage is severed. Contrarily, when selecting a lower number of clusters, the early cartilage loss is
badly detectable in the model, due to a lower sensitivity.

The next important aspect of the testing is the robustness against the additive image noise. We
report results of this testing for MR image RoI 500 × 400 pixels. Analysis is done for the additive image
noise salt and pepper (Figure 19), additive Gaussian (Figure 20), and multiplicative Rayleight noise
(Figure 21).
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The proposed method was tested for deterministic noise reported in Figure 19, Figure 20, and
Figure 21 for variable noise settings from softer deterioration of the intensity distribution, up to the
cases where the intensity information completely missing. Based on the comparison, the proposed
method gives the most robust results for the multiplicative noise. In this case, the shape parameters of
the articular cartilage are mostly perceived. Contrarily, it is apparent that the proposed method is the
most sensitive when the Gaussian noise is presented. Despite the cartilage contour smoothness being
perceived, the main observable fact is the discontinuity of the cartilage structure where the cartilage
loss is not nearly recognizable.
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Figure 21. Native results corrupted by the multiplicative Rayleight noise (up row) and segmentation
results (down row) for average value (µ) and dispersion (σ2): (a) µ = 0, σ1

2 = 0.01, (b) µ = 0, σ2
2 = 0.08,

(c) µ = 0, σ3
2 = 0.1, and (d) µ = 0, σ4

2 = 0.8.

The last tested parameter of the segmentation procedure is the size of the median aggregation
window. Based on the pixel’s surrounding, pixel’s membership may be re-considered. Based on the
experimental results, the median aggregation appears as the most effective. Nevertheless, the size of
the aggregation window has significant impact on the segmentation effectivity. The greater aggregation
window is selected, the more pixels in neighborhood are considered. In order to clarify this situation,
we report the comparative analysis for different aggregation settings of the aggregation (Figure 22).
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Figure 22. A comparison of different settings of median aggregation procedure on RoI 500 × 400 pixels,
with square kernel: (a) 3, (b) 5, (c) 8, and (d) 15 pixels.

The aggregation procedure gives a different smoothness of the segmentation classes, depending
on the aggregation kernel size. When selecting the 3-square kernel (Figure 22a), the segmentation
result gives a relatively higher proportion of the noisy clusters in the femoral bone area (blue contour).
Contrarily, when selecting the greatest size 15-square of the median kernel (Figure 22d) these artifacts
are nearly eliminated. Nevertheless, when selecting a higher kernel size, the cartilage is reduced. Such
a fact underestimates the effect of the segmentation procedure. This fact is well represented in the
Figure 23, indicated as red RoI.Symmetry 2019, 11, x FOR PEER REVIEW 22 of 24 
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6. Discussion

The articular cartilage diagnosis is one of the key procedures in the clinical practice of the
orthopedics. Therefore, a proper evaluation of the morphological cartilage features, with regards to
the early pathological changes is important. The MR imaging represents a current standard for the
cartilage imaging due to a high spatial resolution and optimization of the imaging by using variable
MR sequences. Despite all these benefits, the early cartilage loss, predicting a severe development
of the cartilage deterioration, is badly recognizable from the native MR images. For this reason,
a development of fully automatic method allowing for the identification and quantification of the
physiological cartilage, and early cartilage loss is still challenging issue.

The proposed segmentation model utilizes a histogram partitioning based on a sequence of the
triangular fuzzy sets. Conventional fuzzy thresholding enables a definition of the fuzzy model based
on the centroids calculated by the clustering. Clustering usually requires initialization which influences
clusters accuracy. This fact is a limitation for a proper distribution of the intensity segmentation.
In the proposed approach, we performed the fuzzy thresholding model driven by the evolutionary
optimization, based on the modified ABC algorithm, taking advantage the real cartilage features.
Optimization method, in comparison with clustering, generates multiple solutions for the fuzzy set
placement, where each of them is evaluated by using the fitness function within the segmentation.
Furthermore, the proposed method is able to identify the respective class, representing the articular
cartilage. This intensity segmentation is consequently completed by the local spatial aggregation.
In the articular cartilage model, we use the median square kernel window which appears, based on
the quantitative testing, as the most robust for both the native MR images and images corrupted by
deterministic noise.

In the future, we are going to focus on the cartilage features extraction based on the proposed
model. There are two challenging issues. Determining cartilage features, including the cartilage
thickness and volumetric parameters enable to evaluate condition of the articular cartilage and they also
serve as predictors for objectification of the cartilage deterioration. Since the proposed segmentation
model is able to classify the physiological cartilage from the early cartilage loss, it would be worth
measuring quantification of this impairment. This model feature would be able to objectivize a cartilage
damage level.
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