13,567 research outputs found

    From coinductive proofs to exact real arithmetic: theory and applications

    Full text link
    Based on a new coinductive characterization of continuous functions we extract certified programs for exact real number computation from constructive proofs. The extracted programs construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded trees describing when the algorithm writes and reads digits. We discuss several examples including the extraction of programs for polynomials up to degree two and the definite integral of continuous maps

    Potential infinity, abstraction principles and arithmetic (Leniewski Style)

    Get PDF
    This paper starts with an explanation of how the logicist research program can be approached within the framework of Leśniewski’s systems. One nice feature of the system is that Hume’s Principle is derivable in it from an explicit definition of natural numbers. I generalize this result to show that all predicative abstraction principles corresponding to second-level relations, which are provably equivalence relations, are provable. However, the system fails, despite being much neater than the construction of Principia Mathematica (PM). One of the key reasons is that, just as in the case of the system of PM, without the assumption that infinitely many objects exist, (renderings of) most of the standard axioms of Peano Arithmetic are not derivable in the system. I prove that introducing modal quantifiers meant to capture the intuitions behind potential infinity results in the (renderings of) axioms of Peano Arithmetic (PA) being valid in all relational models (i.e. Kripke-style models, to be defined later on) of the extended language. The second, historical part of the paper contains a user-friendly description of Leśniewski’s own arithmetic and a brief investigation into its properties

    On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers

    Get PDF
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two dierent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of inequality) proposed by Witold Wilkosz, a Polish logician, philosopher and mathematician, in 1932. The axioms W are those of ordered sets without largest element, in which every non-empty set has a least element, and every set bounded from above has a greatest element. We show that P and W are equivalent and also that the systems of arithmetic based on W or on P, are categorical and consistent. There follows a set of intuitive axioms PI of integers arithmetic, modelled on P and proposed by B. Iwanuś, as well as a set of axioms WI of this arithmetic, modelled on the W axioms, PI and WI being also equivalent, categorical and consistent. We also discuss the problem of independence of sets of axioms, which were dealt with earlier

    Polynomial Size Analysis of First-Order Shapely Functions

    Get PDF
    We present a size-aware type system for first-order shapely function definitions. Here, a function definition is called shapely when the size of the result is determined exactly by a polynomial in the sizes of the arguments. Examples of shapely function definitions may be implementations of matrix multiplication and the Cartesian product of two lists. The type system is proved to be sound w.r.t. the operational semantics of the language. The type checking problem is shown to be undecidable in general. We define a natural syntactic restriction such that the type checking becomes decidable, even though size polynomials are not necessarily linear or monotonic. Furthermore, we have shown that the type-inference problem is at least semi-decidable (under this restriction). We have implemented a procedure that combines run-time testing and type-checking to automatically obtain size dependencies. It terminates on total typable function definitions.Comment: 35 pages, 1 figur

    Classical System of Martin-Lof's Inductive Definitions is not Equivalent to Cyclic Proofs

    Full text link
    A cyclic proof system, called CLKID-omega, gives us another way of representing inductive definitions and efficient proof search. The 2005 paper by Brotherston showed that the provability of CLKID-omega includes the provability of LKID, first order classical logic with inductive definitions in Martin-L\"of's style, and conjectured the equivalence. The equivalence has been left an open question since 2011. This paper shows that CLKID-omega and LKID are indeed not equivalent. This paper considers a statement called 2-Hydra in these two systems with the first-order language formed by 0, the successor, the natural number predicate, and a binary predicate symbol used to express 2-Hydra. This paper shows that the 2-Hydra statement is provable in CLKID-omega, but the statement is not provable in LKID, by constructing some Henkin model where the statement is false

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Interactive Realizability and the elimination of Skolem functions in Peano Arithmetic

    Get PDF
    We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is conservative over Peano Arithmetic alone for arithmetical formulas. This result - which shows that the Excluded Middle principle can be used to eliminate Skolem functions - has been previously proved by other techniques, among them the epsilon substitution method and forcing. In our proof, we employ Interactive Realizability, a computational semantics for Peano Arithmetic which extends Kreisel's modified realizability to the classical case.Comment: In Proceedings CL&C 2012, arXiv:1210.289

    Coinductive Formal Reasoning in Exact Real Arithmetic

    Full text link
    In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations -- of which field operations are special cases-- on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of M\"{o}bius maps and form the basis of the Edalat--Potts exact real arithmetic. We use the machinery of the Coq proof assistant for the coinductive types to present the formalisation. The formalised algorithms are only partially productive, i.e., they do not output provably infinite streams for all possible inputs. We show how to deal with this partiality in the presence of syntactic restrictions posed by the constructive type theory of Coq. Furthermore we show that the type theoretic techniques that we develop are compatible with the semantics of the algorithms as continuous maps on real numbers. The resulting Coq formalisation is available for public download.Comment: 40 page

    Formalizing Termination Proofs under Polynomial Quasi-interpretations

    Full text link
    Usual termination proofs for a functional program require to check all the possible reduction paths. Due to an exponential gap between the height and size of such the reduction tree, no naive formalization of termination proofs yields a connection to the polynomial complexity of the given program. We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its normal form, which is defined as the least fixed point of a monotone operator. We show that termination proofs for programs reducing under lexicographic path orders (LPOs for short) and polynomially quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields an alternative proof of the fact that every function computed by an LPO-terminating, polynomially quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal since every polynomial-space computable function can be computed by such a program. The crucial observation is that inductive definitions of minimal function graphs under LPO-terminating programs can be approximated with transfinite induction along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Minimisation of Multiplicity Tree Automata

    Full text link
    We consider the problem of minimising the number of states in a multiplicity tree automaton over the field of rational numbers. We give a minimisation algorithm that runs in polynomial time assuming unit-cost arithmetic. We also show that a polynomial bound in the standard Turing model would require a breakthrough in the complexity of polynomial identity testing by proving that the latter problem is logspace equivalent to the decision version of minimisation. The developed techniques also improve the state of the art in multiplicity word automata: we give an NC algorithm for minimising multiplicity word automata. Finally, we consider the minimal consistency problem: does there exist an automaton with nn states that is consistent with a given finite sample of weight-labelled words or trees? We show that this decision problem is complete for the existential theory of the rationals, both for words and for trees of a fixed alphabet rank.Comment: Paper to be published in Logical Methods in Computer Science. Minor editing changes from previous versio
    • …
    corecore