2,863 research outputs found

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    Riley v. California and the Stickiness Principle

    Get PDF
    In Fourth Amendment decisions, different concepts, facts and assumptions about reality are often tethered together by vocabulary and fact, creating a ‘Stickiness Principle.’ In particular, form and function historically were considered indistinguishable, not as separate factors. For example, “containers” carried things, “watches” told time, and “phones” were used to make voice calls. Advancing technology, though, began to fracture this identity and the broader Stickiness Principle. In June 2014, Riley v. California and its companion case, United States v. Wurie, offered the Supreme Court an opportunity to begin untethering form and function and dismantling the Stickiness Principle. Riley presented the question of whether cell phone searches incident to a lawful arrest were constitutional. The Court, which had clung to pre-digital concepts such as physical trespass well into the twenty-first century, appeared ready to explore how technology is reshaping historically understood conceptions of privacy. From a broader perspective, the case offers an initial step in reconciling pre-digital rules based on outdated spatial conceptions of physical things with the changing realities of a technology driven world

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Feasibility Study of a Campus-Based Bikesharing Program at UNLV

    Get PDF
    Bikesharing systems have been deployed worldwide as a transportation demand management strategy to encourage active modes and reduce single-occupant vehicle travel. These systems have been deployed at universities, both as part of a city program or as a stand-alone system, to serve for trips to work, as well as trips on campus. The Regional Transportation Commission of Southern Nevada (RTCSNV) has built a public bikesharing system in downtown Las Vegas, approximately five miles from the University of Nevada, Las Vegas (UNLV). This study analyzes the feasibility of a campus-based bikesharing program at UNLV. Through a review of the literature, survey of UNLV students and staff, and field observations and analysis of potential bikeshare station locations, the authors determined that a bikesharing program is feasible at UNLV

    Food systems for sustainable development: Proposals for a profound four-part transformation

    Get PDF
    Evidence shows the importance of food systems for sustainable development: they are at the nexus that links food security, nutrition, and human health, the viability of ecosystems, climate change, and social justice. However, agricultural policies tend to focus on food supply, and sometimes, on mechanisms to address negative externalities. We propose an alternative. Our starting point is that agriculture and food systems' policies should be aligned to the 2030 Agenda for Sustainable Development. This calls for deep changes in comparison with the paradigms that prevailed when steering the agricultural change in the XXth century. We identify the comprehensive food systems transformation that is needed. It has four parts: first, food systems should enable all people to benefit from nutritious and healthy food. Second, they should reflect sustainable agricultural production and food value chains. Third, they should mitigate climate change and build resilience. Fourth, they should encourage a renaissance of rural territories. The implementation of the transformation relies on (i) suitable metrics to aid decision-making, (ii) synergy of policies through convergence of local and global priorities, and (iii) enhancement of development approaches that focus on territories. We build on the work of the “Milano Group,” an informal group of experts convened by the UN Secretary General in Milan in 2015. Backed by a literature review, what emerges is a strategic narrative linking climate, agriculture and food, and calling for a deep transformation of food systems at scale. This is critical for achieving the Sustainable Development Goals and the Paris Agreement. The narrative highlights the needed consistency between global actions for sustainable development and numerous local-level innovations. It emphasizes the challenge of designing differentiated paths for food systems transformation responding to local and national expectations. Scientific and operational challenges are associated with the alignment and arbitration of local action within the context of global priorities

    A novel random neural network based approach for intrusion detection systems

    Get PDF
    • 

    corecore