7,155 research outputs found

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Dopplerā€™s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    High precision hybrid RF and ultrasonic chirp-based ranging for low-power IoT nodes

    Get PDF
    Hybrid acoustic-RF systems offer excellent ranging accuracy, yet they typically come at a power consumption that is too high to meet the energy constraints of mobile IoT nodes. We combine pulse compression and synchronized wake-ups to achieve a ranging solution that limits the active time of the nodes to 1 ms. Hence, an ultra low-power consumption of 9.015 ĀµW for a single measurement is achieved. The operation time is estimated on 8.5 years on a CR2032 coin cell battery at a 1 Hz update rate, which is over 250 times larger than state-of-the-art RF-based positioning systems. Measurements based on a proof-of-concept hardware platform show median distance error values below 10 cm. Both simulations and measurements demonstrate that the accuracy is reduced at low signal-to-noise ratios and when reflections occur. We introduce three methods that enhance the distance measurements at a low extra processing power cost. Hence, we validate in realistic environments that the centimeter accuracy can be obtained within the energy budget of mobile devices and IoT nodes. The proposed hybrid signal ranging system can be extended to perform accurate, low-power indoor positioning

    CABE : a cloud-based acoustic beamforming emulator for FPGA-based sound source localization

    Get PDF
    Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.</jats:p

    Reflexive obstacle avoidance for kinematically-redundant manipulators

    Get PDF
    Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration

    A noncontact ultrasonic platform for structural inspection

    Get PDF
    Miniature robotic vehicles are receiving increasing attention for use in nondestructive testing (NDE) due to their attractiveness in terms of cost, safety, and their accessibility to areas where manual inspection is not practical. Conventional ultrasonic inspection requires the provision of a suitable coupling liquid between the probe and the structure under test. This necessitates either an on board reservoir or umbilical providing a constant flow of coupling fluid, neither of which are practical for a fleet of miniature robotic inspection vehicles. Air-coupled ultrasound offers the possibility of couplant-free ultrasonic inspection. This paper describes the sensing methodology, hardware platform and algorithms used to integrate an air-coupled ultrasonic inspection payload into a miniature robotic vehicle platform. The work takes account of the robot's inherent positional uncertainty when constructing an image of the test specimen from aggregated sensor measurements. This paper concludes with the results of an automatic inspection of a aluminium sample

    A probabilistic framework for source localization in anisotropic composite using transfer learning based multi-fidelity physics informed neural network (mfPINN)

    Get PDF
    The practical application of data-driven frameworks like deep neural network in acoustic emission (AE) source localization is impeded due to the collection of significant clean data from the field. The utility of the such framework is governed by data collected from the site and/or laboratory experiment. The noise, experimental cost and time consuming in the collection of data further worsen the scenario. To address the issue, this work proposes to use a novel multi-fidelity physics-informed neural network (mfPINN). The proposed framework is best suited for the problems like AE source detection, where the governing physics is known in an approximate sense (low-fidelity model), and one has access to only sparse data measured from the experiment (highfidelity data). This work further extends the governing equation of AE source detection to the probabilistic framework to account for the uncertainty that lies in the sensor measurement. The mfPINN fuses the data-driven and physics-informed deep learning architectures using transfer learning. The results obtained from the data-driven artificial neural network (ANN) and physicsinformed neural network (PINN) are also presented to illustrate the requirement of a multifidelity framework using transfer learning. In the presence of measurement uncertainties, the proposed method is verified with an experimental procedure that contains the carbon-fiberreinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers. The results conclude that the proposed technique based on a probabilistic framework can provide a reliable estimation of AE source location with confidence intervals by taking measurement uncertainties into account

    Deep Learning for Instrumented Ultrasonic Tracking: From synthetic training data to in vivo application

    Get PDF
    Instrumented ultrasonic tracking is used to improve needle localisation during ultrasound guidance of minimally-invasive percutaneous procedures. Here, it is implemented with transmitted ultrasound pulses from a clinical ultrasound imaging probe that are detected by a fibre-optic hydrophone integrated into a needle. The detected transmissions are then reconstructed to form the tracking image. Two challenges are considered with the current implementation of ultrasonic tracking. First, tracking transmissions are interleaved with the acquisition of B-mode images and thus, the effective B-mode frame rate is reduced. Second, it is challenging to achieve an accurate localisation of the needle tip when the signal-to-noise ratio is low. To address these challenges, we present a framework based on a convolutional neural network (CNN) to maintain spatial resolution with fewer tracking transmissions and to enhance signal quality. A major component of the framework included the generation of realistic synthetic training data. The trained network was applied to unseen synthetic data and experimental in vivo tracking data. The performance of needle localisation was investigated when reconstruction was performed with fewer (up to eight-fold) tracking transmissions. CNN-based processing of conventional reconstructions showed that the axial and lateral spatial resolution could be improved even with an eight-fold reduction in tracking transmissions. The framework presented in this study will significantly improve the performance of ultrasonic tracking, leading to faster image acquisition rates and increased localisation accuracy

    Acoustic Echo Estimation using the model-based approach with Application to Spatial Map Construction in Robotics

    Get PDF
    • ā€¦
    corecore