25 research outputs found

    Rule-Based System Architecting of Earth Observing Systems: Earth Science Decadal Survey

    Get PDF
    This paper presents a methodology to explore the architectural trade space of Earth observing satellite systems, and applies it to the Earth Science Decadal Survey. The architecting problem is formulated as a combinatorial optimization problem with three sets of architectural decisions: instrument selection, assignment of instruments to satellites, and mission scheduling. A computational tool was created to automatically synthesize architectures based on valid combinations of options for these three decisions and evaluate them according to several figures of merit, including satisfaction of program requirements, data continuity, affordability, and proxies for fairness, technical, and programmatic risk. A population-based heuristic search algorithm is used to search the trade space. The novelty of the tool is that it uses a rule-based expert system to model the knowledge-intensive components of the problem, such as scientific requirements, and to capture the nonlinear positive and negative interactions between instruments (synergies and interferences), which drive both requirement satisfaction and cost. The tool is first demonstrated on the past NASA Earth Observing System program and then applied to the Decadal Survey. Results suggest that the Decadal Survey architecture is dominated by other more distributed architectures in which DESDYNI and CLARREO are consistently broken down into individual instruments."La Caixa" FoundationCharles Stark Draper LaboratoryGoddard Space Flight Cente

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la p脿gina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global.Postprint (published version

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global

    Development and update of aerospace applications in partitioned architectures

    Get PDF
    Tese de mestrado em Engenharia Inform谩tica, apresentada 脿 Universidade de Lisboa, atrav茅s da Faculdade de Ci锚ncias, 2011Para enfrentar os desafios e requisitos impostos por miss玫es espaciais futuras, a ind煤stria aeroespacial tem vindo a seguir uma tend锚ncia para adoptar arquitecturas computacionais inovadoras e avan莽adas, cumprindo requisitos estritos de tamanho, peso e consumo energ茅tico (SWaP) e assim diminuir o custo total da miss茫o assegurando a seguran莽a na opera莽茫o e a pontualidade do sistema. A arquitectura AIR (ARINC 653 in Space Real-Time Operating System), desenvolvida para responder ao interesse da ind煤stria aeroespacial, particularmente da Ag锚ncia Espacial Europeia (ESA), fornece um ambiente compartimentado para o desenvolvimento e execu莽茫o de aplica莽玫es aeroespaciais, seguindo a no莽茫o de compartimenta莽茫o temporal e espacial, preservando os requisitos temporais das aplica莽玫es e a seguran莽a na opera莽茫o. Durante uma miss茫o espacial, a ocorr锚ncia de eventos inesperados ou altera莽玫es aos planos da miss茫o introduz novas restri莽玫es. Assim, 茅 de grande import芒ncia ter a possibilidade de alojar novas aplica莽玫es na plataforma computacional de ve铆culos espaciais ou modificar aplica莽玫es j谩 existentes em tempo de execu莽茫o e, deste modo, cumprir os novos requisitos ou melhorar as fun莽玫es do ve铆culo espacial. O presente trabalho introduz na arquitectura AIR o suporte 脿 inclus茫o e actualiza莽茫o de novas funcionalidades ao plano de miss茫o durante o funcionamento do sistema. Estas funcionalidades podem ser formadas por componentes de software modificados ou pelos requisitos temporais correspondentes. O melhoramento da arquitectura AIR com a possibilidade de realizar actualiza莽玫es de software requer um ambiente e ferramentas de desenvolvimento adequados. Neste sentido, a metodologia para o desenvolvimento de software em sistemas baseados na arquitectura AIR 茅 revisitada.To face the challenges and requirements imposed by future space missions, the aerospace industry has been following the trend of adopting innovative and advanced computing system architectures fulfilling strict requisites of size, weight and power consumption (SWaP) thus decreasing the mission overall cost and ensuring the safety and timeliness of the system. The AIR (ARINC 653 in Space Real-Time Operating System) architecture has been defined dependent on the interest of the aerospace industry, especially the European Space Agency (ESA). AIR provides a partitioned environment for the development and execution of aerospace applications, based on the idea of time and space partitioning (TSP), aiming the preservation of the application requirements, timing and safety. During a space mission, the occurrence of unexpected events or the change of the mission plans introduces new constraints to the mission. Therefore, it is paramount to have the possibility to host new applications in spacecraft onboard computer platform, or modify the existing ones in execution time, thus fulfilling new requirements or enhancing spacecraft functions. The work described on this thesis introduces in the AIR architecture the support for the inclusion of new features to the mission plan during the system operation. These new features may be composed of modified software components or the corresponding timing requirements. The improvement of the AIR architecture with the ability to perform software updates requires a suitable development environment and tools. Therefore, the methodology for software development in AIR-based systems, regarding the build and integration process, is reexamined

    Rule-based system architecting of Earth observation satellite systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 399-412).System architecting is concerned with exploring the tradespace of early, high-level, system design decisions with a holistic, value-centric view. In the last few years, several tools and methods have been developed to support the system architecting process, focusing on the representation of an architecture as a set of interrelated decisions. These tools are best suited for applications that focus on breadth - i.e., enumerating a large and representative part of the architectural tradespace -as opposed to depth - modeling fidelity. However, some problems in system architecting require good modeling depth in order to provide useful results. In some cases, a very large body of expert knowledge is required. Current tools are not designed to handle such large bodies of knowledge because they lack scalability and traceability. As the size of the knowledge base increases, it becomes harder: a) to modify existing knowledge or add new knowledge; b) to trace the results of the tool to the model assumptions or knowledge base. This thesis proposes a holistic framework for architecture tradespace exploration of large complex systems that require a large body of expert knowledge. It physically separates the different bodies of knowledge required to solve a system architecting problem (i.e., knowledge about the domain, knowledge about the class of optimization or search problem, knowledge about the particular instance of problem) by using a rule-based expert system. It provides a generic population-based heuristic algorithm for search, which can be augmented with rules that encode knowledge about the domain, or about the optimization problem or class of problems. It identifies five major classes of system architecting problems from the perspective of optimization and search, and provides rules to enumerate architectures and search through the architectural tradespace of each class. A methodology is also defined to assess the value of an architecture using a rule-based approach. This methodology is based on a decomposition of stakeholder needs into requirements and a systematic comparison between system requirements and system capabilities using the rules engine. The framework is applied to the domain of Earth observing satellite systems (EOSS). Three EOSS are studied in depth: the NASA Earth Observing System, the NRC Earth Science Decadal Survey, and the Iridium GEOscan program. The ability of the framework to produce useful results is shown, and specific insights and recommendations are drawn.by Daniel Selva Valero.Ph.D

    The NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT): Its Purpose, Practices and Experiences

    Get PDF
    This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe key issues and findings from several of the recent GN&C-related independent assessments and consultations performed and/or supported by the NESC GN&C TDT. Among the examples of the GN&C TDT s work that will be addressed in this paper are the following: the Space Shuttle Orbiter Repair Maneuver (ORM) assessment, the ISS CMG failure root cause assessment, the Demonstration of Autonomous Rendezvous Technologies (DART) spacecraft mishap consultation, the Phoenix Mars lander thruster-based controllability consultation, the NASA in-house Crew Exploration Vehicle (CEV) Smart Buyer assessment and the assessment of key engineering considerations for the Design, Development, Test & Evaluation (DDT&E) of robust and reliable GN&C systems for human-rated spacecraft

    The Sixth Alumni Conference of the International Space University

    Get PDF
    These proceedings cover the sixth alumni conference of the International Space University, coordinated by the ISU U.S. Alumni Organization, which was held at Rice University in Houston, Texas, on July 11, 1997. The alumni conference gives graduates of the International Space University's interdisciplinary, international, and intercultural program a forum in which they may present and exchange technical ideas, and keep abreast of the wide variety of work in which the ever-growing body of alumni is engaged. The diversity that is characteristic of ISU is reflected in the subject matter of the papers published in this proceedings. This proceedings preserves the order of the alumni presentations given at the 1997 ISU Alumni Conference. As in previous years, a special effort was made to solicit papers with a strong connection to the two ISU 1997 Summer Session Program design projects: (1) Transfer of Technology, Spin-Offs, Spin-Ins; and (2) Strategies for the Exploration of Mars. Papers in the remaining ten sessions cover the departmental areas traditional to the ISU summer session program

    Separated spacecraft interferometry : system architecture design and optimization

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.Includes bibliographical references (p. 123-126).Through a process of system design, analysis, and optimization, the trade space for future optical separated spacecraft interferometers (SSI's) is explored. Using Distributed Satellite System principles, eleven separate architectures ranging in size from three to five spacecraft are compared on the basis of four metrics: 1) capability, 2) performance, 3) adaptability, and 4) cost per function. The independent SSI architecture variables include the total number of spacecraft, the type of spacecraft, the number of combiner payloads, and the number of collector payloads. Architecture variables held constant in this study, but which may be varied in future studies, include the array's geometric configuration, the maximum baseline, the mass and power requirements of each payload, the spacecraft propulsion system, the component failure rates, and the mission design life. Three models are developed and coupled to analyze each architecture. A capability model calculates the instantaneous u-v coverage, image quality, angular resolution, and imaging rate of each proposed architecture. The reliability model uses combinatorial analysis and Markov techniques to determine both the probability that the system will continue to function over a given amount of time and the likelihood with which the system will function in different partially failed states throughout the mission. The reliability model is then coupled with the capability model to calculate total performance over the mission lifetime. The cost model, which is divided into payload, spacecraft bus, launch, and operations costs, estimates the total lifecycle cost of each architecture. On the basis of the cost per synthesized image metric, two architectures were identified as providing the greatest value for the money. The design features in order of importance are imaging rate, total system cost, and total system reliability.v by Cyrus D. Jilla.S.M

    Framework for multidisciplinary integrated modeling and analysis of space telescopes

    Full text link

    Design Development Test and Evaluation (DDT and E) Considerations for Safe and Reliable Human Rated Spacecraft Systems

    Get PDF
    A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy
    corecore