
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

DEVELOPMENT AND UPDATE OF
AEROSPACE APPLICATIONS IN

PARTITIONED ARCHITECTURES

Joaquim Luı́s Santo Rodrigues Cleto Rosa

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2011

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

DEVELOPMENT AND UPDATE OF
AEROSPACE APPLICATIONS IN

PARTITIONED ARCHITECTURES

Joaquim Luı́s Santo Rodrigues Cleto Rosa

DISSERTAÇÃO

Trabalho orientado pelo Prof. Doutor José Manuel de Sousa de Matos Rufino

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2011

This work was partially funded by:

ESA/ITI - European Space Agency Innovation Triangular Initiative
(through ESTEC Contract 21217/07/NL/CB - Project AIR-II)

FCT - Fundação para a Ciência e a Tecnologia
(through the Multiannual Funding Programme)

http://air.di.fc.ul.pt/

Acknowledgements

This thesis represents for me the conclusion of five years of study with results
which I could not achieve without the help and support of several people. I ex-
press herein my gratitude to all of them.

Firstly, I would like to thank my advisor, Prof. José Rufino, for his crucial help
during the development of this thesis. His remarks and suggestions have always
contributed to the increase of my knowledge and to develop further my work.
His dedication and support while I was writing this thesis and related articles
was truly important. His motivation and enthusiasm forced me to keep working
even in the hardest moments, and to always choose my own way to achieve the
proposed goals.

Secondly I would like to thank João Craveiro, Jeferson Souza, and Ricardo
Pinto, for all the valuable insights given during my research work and academic
route. Their availability, good advices, and friendship were extremely important
for me.

Thirdly, I would like to thank Navigators and all of the LaSIGE fellows for the
interesting and constructive discussions where I learnt a lot.

I also would like to thank all my colleagues from Informatics Engineering,
especially those from 2006/2007 class, with whom I shared the same passion.

Moreover, I am very grateful to all my professors and people from the DI, for
being so warm and helpful, and for having taught me so many interesting things.
I thank FCUL for being my school and my home for the last five years.

I thank all my friends from FCUL, from whom I learnt interesting topics be-
yond Informatics, I thank new friends, for sharing their diversified life experi-
ences, and to old friends, for always being there when I needed.

Lastly but not least, I would like to thank my family for all the support and
opportunities given. Thank you for believing in me.

Lisboa, April 2011
Joaquim Luı́s Santo Rodrigues Cleto Rosa

v

À minha famı́lia e amigos.

Abstract

To face the challenges and requirements imposed by future space missions, the
aerospace industry has been following the trend of adopting innovative and ad-
vanced computing system architectures fulfilling strict requisites of size, weight
and power consumption (SWaP) thus decreasing the mission overall cost and en-
suring the safety and timeliness of the system.

The AIR (ARINC 653 in Space Real-Time Operating System) architecture has
been defined dependent on the interest of the aerospace industry, especially the
European Space Agency (ESA). AIR provides a partitioned environment for the
development and execution of aerospace applications, based on the idea of time
and space partitioning (TSP), aiming the preservation of the application require-
ments, timing and safety.

During a space mission, the occurrence of unexpected events or the change
of the mission plans introduces new constraints to the mission. Therefore, it is
paramount to have the possibility to host new applications in spacecraft onboard
computer platform, or modify the existing ones in execution time, thus fulfilling
new requirements or enhancing spacecraft functions.

The work described on this thesis introduces in the AIR architecture the sup-
port for the inclusion of new features to the mission plan during the system op-
eration. These new features may be composed of modified software components
or the corresponding timing requirements. The improvement of the AIR architec-
ture with the ability to perform software updates requires a suitable development
environment and tools. Therefore, the methodology for software development in
AIR-based systems, regarding the build and integration process, is reexamined.

Keywords: Aerospace systems and applications, software update, time and
space partitioning (TSP), adaptability and reconfigurability, real-time embedded
systems

ix

Resumo

Para enfrentar os desafios e requisitos impostos por missões espaciais futuras, a
indústria aeroespacial tem vindo a seguir uma tendência para adoptar arquitec-
turas computacionais inovadoras e avançadas, cumprindo requisitos estritos de
tamanho, peso e consumo energético (SWaP) e assim diminuir o custo total da
missão assegurando a segurança na operação e a pontualidade do sistema.

A arquitectura AIR (ARINC 653 in Space Real-Time Operating System), de-
senvolvida para responder ao interesse da indústria aeroespacial, particularmente
da Agência Espacial Europeia (ESA), fornece um ambiente compartimentado para
o desenvolvimento e execução de aplicações aeroespaciais, seguindo a noção de
compartimentação temporal e espacial, preservando os requisitos temporais das
aplicações e a segurança na operação.

Durante uma missão espacial, a ocorrência de eventos inesperados ou alte-
rações aos planos da missão introduz novas restrições. Assim, é de grande im-
portância ter a possibilidade de alojar novas aplicações na plataforma computa-
cional de veı́culos espaciais ou modificar aplicações já existentes em tempo de
execução e, deste modo, cumprir os novos requisitos ou melhorar as funções do
veı́culo espacial.

O presente trabalho introduz na arquitectura AIR o suporte à inclusão e actua-
lização de novas funcionalidades ao plano de missão durante o funcionamento
do sistema. Estas funcionalidades podem ser formadas por componentes de soft-
ware modificados ou pelos requisitos temporais correspondentes. O melhora-
mento da arquitectura AIR com a possibilidade de realizar actualizações de soft-
ware requer um ambiente e ferramentas de desenvolvimento adequados. Neste
sentido, a metodologia para o desenvolvimento de software em sistemas basea-
dos na arquitectura AIR é revisitada.

Palavras-chave: Sistemas e aplicações aeroespaciais, actualização de software,
compartimentação temporal e espacial, adaptabilidade e reconfigurabilidade,
tempo-real

xi

Resumo alargado 1

Missões espaciais futuras precisam de uma nova geração de veı́culos espaciais.
Esta necessidade tem suscitado o interesse de agências espaciais e parceiros in-
dustriais na definição e desenho dos pilares de construção fundamentais para no-
vas plataformas computacionais a bordo de veı́culos espaciais, onde as necessida-
des estritas de confiabilidade, pontualidade, segurança na operação e segurança
da informação são combinadas com um requisito global para reduzir o tamanho,
peso e consumo energético da infraestrutura computacional.

A definição de arquitecturas compartimentadas que implementem a conten-
ção lógica de aplicações em domı́nios de criticalidade, designados por partições,
permite alojar diferentes partições na mesma infraestrutura computacional e pos-
sibilita o cumprimento dos requisitos referidos. A noção de compartimentação
temporal e espacial assegura que as actividades de uma partição não afectam a
pontualidade das actividades em execução noutras partições e impede as aplica-
ções de acederem ao espaço de endereçamento de cada uma das outras.

No contexto das aplicações aeroespaciais suportadas por uma arquitectura
compartimentada, as diversas funções de um veı́culo espacial, tais como o subsis-
tema de Controlo Orbital e de Orientação, ou o subsistema de Telemetria, Rastreio
e Comando, partilham os mesmos recursos computacionais e ao mesmo tempo
mantêm a sua independência no que diz respeito à contenção de eventuais faltas
e à validação e verificação de software, ficando alojadas em partições distintas.
No domı́nio temporal, as diferentes partições são escalonadas de acordo com ta-
belas de escalonamento fixas e cı́clicas.

Para a escrita, construção, depuração, e manutenção das aplicações em arqui-
tecturas compartimentadas é necessário ultrapassar algumas limitações próprias
das ferramentas clássicas de geração de software, que não foram desenhadas para
o desenvolvimento deste género de aplicações. Identificadas as limitações, um
dos desafios é encontrar soluções e adaptar as ferramentas já existentes de forma
a conseguir ter um ambiente de desenvolvimento de aplicações em arquitecturas
compartimentadas funcional. Este ambiente de desenvolvimento deve permitir
realizar a construção das aplicações de cada partição de forma independente e a
sua posterior integração, tendo em conta que num cenário tı́pico estas são forne-
cidas por diferentes equipas de desenvolvimento ou fornecedores de software.

xiii

A arquitectura AIR (ARINC 653 In Space Real-Time Operating System), de-
senvolvida para responder aos interesses da indústria aeroespacial, particular-
mente da Agência Espacial Europeia (ESA), emerge como uma arquitectura com-
partimentada para o desenvolvimento e execução de aplicações aeroespaciais
aplicando os conceitos de compartimentação temporal e espacial, contemplando
os requisitos de tempo-real e segurança na operação. A arquitectura AIR per-
mite a execução de sistemas operativos, tanto de tempo-real como genéricos,
em partições independentes respeitando a norma ARINC 653, assegura inde-
pendência da infraestrutura de processamento, e possibilita a verificação e va-
lidação independente dos componentes de software. O processo de verificação e
validação assegura que o software cumpre com as suas especificações e responde
aos requisitos definidos para a missão.

Durante o decorrer de uma missão espacial, podem surgir situações nas quais
pode ser necessário, útil ou mesmo primordial modificar funções já existentes ou
introduzir novas funcionalidades no computador de bordo de uma nave espacial
para lidar com eventos inesperados. Para além disso, por exemplo na presença de
falhas de alguns componentes, pode revelar-se útil proceder a alterações no plano
de missão, tais como reconfigurar o escalonamento das aplicações em execução
ou efectuar modificações nas aplicações existentes. Exemplos reais evidenciam
a utilidade da realização de actualizações de software sem implicar a ocorrência
de quebras de serviço ou paragens do sistema. Neste sentido, é preciso explorar
abordagens que consigam concretizar as actualizações de componentes de soft-
ware das partições em arquitecturas compartimentadas e ao mesmo tempo ga-
rantir que todos os requisitos dos sistemas crı́ticos são cumpridos. É por isso
muito importante que, para além da existência de uma plataforma adequada
para o desenvolvimento e integração de aplicações, seja possı́vel concretizar a
transferência de actualizações das aplicações durante o normal funcionamento
do sistema, sem que isso implique colocar em causa a segurança na operação e
a pontualidade das aplicações em execução. Assim, o desenvolvimento de uma
metodologia para actualização de componentes de software deve permitir que as
alterações ao software possam ser aplicadas continuando a cumprir os requisitos
temporais definidos para as restantes aplicações e a segurança no funcionamento.

Para efectuar actualizações de software assegurando os requisitos descritos,
é necessário verificar quais as dependências que podem existir entre os diversos
componentes do sistema, determinar quais os instantes em que as actualizações
podem ser efectuadas, e concretizar, efectivamente, a substituição dos compo-
nentes. Isto requer um ambiente e ferramentas de desenvolvimento adequados,
incluindo o suporte para a verificação e validação dos componentes modificados,
durante o processo de construção e integração de aplicações.

xiv

Esta tese aborda soluções que, suportadas por métodos e ferramentas de de-
senvolvimento apropriadas, permitem proceder à actualização de aplicações em
partições especı́ficas e de tabelas de escalonamento de partições, tendo em conta
os conceitos de separação espacial impostos pela norma ARINC 653, no que
diz respeito à existência de mecanismos de protecção do acesso ao espaço de
endereçamento das partições, e os requisitos temporais das mesmas.

Durante o decurso do trabalho desta dissertação foi desenvolvida uma meto-
dologia para realizar actualizações para arquitecturas compartimentadas aplica-
das aos sistemas aeroespaciais. Esta metodologia serviu de base para a concreti-
zação de duas funcionalidades essenciais. A primeira diz respeito à actualização
de tabelas de escalonamento de partições, de forma a contribuir para a reconfigu-
rabilidade do sistema, tornando disponı́vel novas tabelas de escalonamento de
partições construı́das a partir de novos planos de missão. A segunda funciona-
lidade desenvolvida permite realizar a actualização de componentes de software
das partições, permitindo assim adaptar as funções do veı́culo espacial durante
a missão. Foi concretizado um protótipo para a demonstração das funcionali-
dades de actualização descritas no contexto da arquitectura AIR, acrescentando
assim um novo mecanismo para atingir adaptabilidade à arquitectura. O melho-
ramento da arquitectura AIR com a possibilidade de realizar actualizações intro-
duziu alterações no ambiente e ferramentas de desenvolvimento. Neste sentido,
o processo de desenvolvimento de software em sistemas compartimentados foi
revisitado, com vista à definição de um processo de construção e integração de
aplicações que possibilite a concretização flexı́vel de actualizações de partições e
respectivos requisitos temporais.

O trabalho descrito nesta tese consistiu na análise dos problemas em aberto
relacionados com a actualização de componentes de software e tabelas de esca-
lonamento de partições, e no desenho e construção de soluções que permitem
realizar actualizações durante o funcionamento do sistema. As soluções aborda-
das obedecem aos conceitos da segregação temporal e espacial das arquitecturas
compartimentadas presentes nos sistemas aeroespaciais.

Futuros desenvolvimentos dizem respeito à actualização de partições dina-
micamente, i. e., modificar os componentes de software sem que a partição cor-
respondente tenha de ser parada. Isto pressupõe o estudo e desenvolvimento
de serviços de gestão dinâmica de memória, e a sua adaptação às arquitecturas
compartimentadas. A actualização de parâmetros de configuação e controlo do
sistema, o estudo e aplicação de metodologias de actualização dinâmica de siste-
mas operativos em arquitecturas compartimentadas estão também previstos.

1Em cumprimentos do disposto no Artigo 27.o, n.o3, da Deliberação n.o1506/2006 Regula-
mento de Estudos Pós-Graduados da Universidade de Lisboa, de 30 de Outubro

xv

Contents

Acknowledgements v

Abstract ix

Resumo xi

Resumo alargado xiii

List of Figures xxi

List of Tables xxiii

List of Algorithms xxv

Abbreviations xxix

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and contributions . 3
1.3 Institutional context . 4
1.4 Publications . 4
1.5 Document outline . 5

2 Background 7
2.1 Spacecraft systems overview . 7
2.2 Onboard computers . 9
2.3 Common faults in spacecraft . 14
2.4 Verification and validation process 17
2.5 Software update . 19
2.6 Summary . 20

3 AIR Technology design 21
3.1 System architecture . 21

3.1.1 Portable Application Executive (APEX) interface 22

xvii

3.1.2 AIR Health Monitor . 22
3.1.3 Interpartition communication 23

3.2 Schedulability . 23
3.3 Composability . 24
3.4 Build and integration process . 24

3.4.1 Partition build process . 25
3.4.2 System integration . 26
3.4.3 Impact on the software development lifecycle 27

3.5 Summary . 28

4 Problem definition 29
4.1 Computational model . 29

4.1.1 Defining requirements and components 29
4.1.2 Integration on spacecraft onboard platform 30

4.2 Open challenges in onboard software update 31
4.2.1 Problem definition . 31
4.2.2 Proposed methodology . 32

4.3 Summary . 33

5 Updating partition schedules 35
5.1 Scheduling partitions . 35
5.2 Safe update of partition schedules 36

5.2.1 The XAPEX PSTUPDATE service 36
5.2.2 Onboard update of PSTs . 37
5.2.3 Achieving reconfigurability 39

5.3 PSTs update algorithm analysis . 39
5.3.1 Code complexity . 39
5.3.2 Computational complexity 40

5.4 Proof-of-concept prototype and evaluation 40
5.4.1 Prototyping . 40
5.4.2 Evaluation . 41

5.5 Summary . 44

6 Updating partition software components 47
6.1 Safe update of partitions . 47

6.1.1 The XAPEX PUPDATE service 47
6.1.2 Onboard update of partitions in the idle mode 48
6.1.3 Achieving adaptability . 51
6.1.4 Impact of the update methodology 51

6.2 Proof-of-concept prototype and evaluation 52

xviii

6.2.1 Prototyping . 52
6.2.2 Evaluation . 53

6.3 Summary . 55

7 Conclusion 57
7.1 Future work . 57

Bibliography 65

xix

List of Figures

2.1 Structural organization of spacecraft subsystems 8
2.2 Onboard processor evolution . 12
2.3 Simplified onboard computational infrastructure 13
2.4 Subsystems affected during a mission 15
2.5 Time to failure after launch . 16
2.6 Spacecraft failures during 1981–2000 17

3.1 AIR system architecture and integration of partition operating sys-
tems . 22

3.2 Two-level mode-based partition scheduling 23
3.3 Software building by partition application developers 25
3.4 System integration . 26
3.5 Impact on the software development lifecycle 27

4.1 Spacecraft time- and space-partitioned computing platform 30

5.1 Update of a set of PSTs . 37
5.2 Prototype implementation demonstration, featuring the VITRAL

text-mode windows manager for RTEMS 41
5.3 Partition scheduling tables used in test scenarios 43

6.1 Impact of the update methodology on the software development
lifecycle . 52

6.2 Prototype for the update of partitions, featuring the VITRAL text-
mode windows manager for RTEMS 53

6.3 Demonstration: activation of the partitions update operation 53
6.4 Demonstration: original partition has stopped its execution 54
6.5 Demonstration: the updated partition has replaced the original

one and was initialized . 54

xxi

List of Tables

2.1 CPUs used in spacecraft . 11

5.1 Logical SLOC and cyclomatic complexity (CC) for the XAPEX PST-
UPDATE primitive and the AIR Partition Scheduler 40

5.2 Partition scheduling tables used in test scenarios (for the prototype
implementation demonstration) . 42

6.1 XAPEX memory management services foreseen 48
6.2 Partition scheduling table for the partitions update prototype . . . 52

xxiii

List of Algorithms

1 APEX SWITCH SCHEDULE primitive 35
2 AIR Partition Scheduler (mode-based schedules) 36
3 XAPEX PSTUPDATE primitive . 37
4 XAPEX PUPDATE primitive . 48
5 AIR PMK Time Manager (original) 50
6 Modified version of the AIR PMK Time Manager 50

xxv

Abbreviations

AIR ARINC 653 in Space RTOS
AOCS Attitude and Orbit Control Subsystem
APEX In ARINC 653 and AIR technology: Appli-

cation Executive
ARINC Aeronautical Radio, INCorporated

BOL Beginning-of-life

CAN Controller Area Network
CC Cyclomatic Complexity
COTS Commercial Off-The-Shelf
CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

E2PROM Electrically Erasable Programmable Read-
Only Memory

EOL End-of-life
EPROM Erasable Programmable Read-Only Mem-

ory
EPS Electrical Power Subsystem
ESA European Space Agency

FDIR Failure Detection, Isolation and Recovery

GNU GNU’s Not UNIX

HM In AIR technology: Health Monitor

I/O Input/Output
IEC International Electrotechnical Commission
IMA Integrated Modular Avionics
IMADE Integrated Modular Avionics Development

Environment
ISS International Space Station

KiB Kibibyte

xxvii

LEO Low Earth Orbit

MCC Mission Control Center
MECH Structure and Mechanism
MiB Mebibyte
MIPS Million Instructions Per Second
MISRA Motor Industry Software Reliability Associ-

ation
MTF Major Time Frame

NASA National Aeronautics and Space Adminis-
tration

OBC Onboard Computer
OBDH Onboard Data Handling
OI Orbit Insertion
OO On-orbit
OOS On-orbit Servicing
OS Operating System

PAL In AIR technology: POS Adaptation Layer
PC Personal Computer
PMK In AIR technology: Partition Management

Kernel
POS In AIR technology: Partition Operating Sys-

tem
POSIX Portable Operating System Interface (for

Unix)
PST Partition Scheduling Table

RAM Random-Access Memory
RF Radio Frequency
RISC Reduced Instruction Set Computing
ROM Read-Only Memory
RTEMS Real-Time Executive for Multiprocessor Sys-

tems
RTOS Real-Time Operating System

SDRAM Synchronous Dynamic Random-Access
Memory

SLOC Source Lines of Source Code
SPARC Scalable Processor Architecture
SRAM Static Random-Access Memory
SWaP Size, Weight and Power consumption

xxviii

Abbreviations xxix

TCS Thermal Control Subsystem
TSP Time and Space Partitioning
TTC Telemetry, Tracking and Command

V & V Verification and Validation

WCET Worst-Case Execution Time

XAPEX In AIR technology: Extended APEX
XML Extensible Markup Language

Chapter 1

Introduction

Future space missions call for a new generation of space vehicles. This need has
led to the interest of space agencies and industrial partners in defining the build-
ing blocks for new onboard computational platforms, where strict requirements
of reliability, timeliness, safety and security are combined with a global requisite
to decrease the size, weight and power consumption (SWaP) of the computational
infrastructure.

The definition of partitioned architectures implementing the logical contention
of applications in criticality domains, named partitions, allows to host different
partitions in the same computational infrastructure and meet the enumerated re-
quirements [1]. The notion of time and space partitioning (TSP) ensures that the
execution of applications in one partition does not affect other partitions’ timing
requisites and that separated addressing spaces are assigned to different parti-
tions [2].

The design of the AIR (ARINC 653 in Space Real-Time Operating System)
Technology has been prompted by the interest of the space industry partners, es-
pecially the European Space Agency (ESA), in applying the TSP concepts to the
aerospace domain [3, 4]. The AIR architecture allows the execution of both real-
time and generic operating systems in distinct partitions, ensures independence
from the processing infrastructure, and enables independent development, vali-
dation and verification (V & V) of software components.

The computational infrastructure of a typical spacecraft hosts several subsys-
tems, consisting of avionics functions, such as Attitude and Orbit Control Sub-
system (AOCS), Onboard Data Handling (OBDH) and Telemetry, Tracking and
Command (TTC), and payload, which closely interact with each other. In TSP sys-
tems, the several functions share the same computational resources being hosted
in different partitions, and supported by embedded systems.

The writing, build, debug and maintenance of applications in partitioned ar-
chitectures requires overcoming some limitations imposed by the standard devel-

1

2 CHAPTER 1. INTRODUCTION

opment tools, that were not designed to the development of such applications. It
is necessary to adapt the existing tools in order to have an environment suitable
to develop applications for partitioned architectures.

Furthermore, due to unexpected events or the change of environmental condi-
tions, it may be necessary to improve the functions hosted in a spacecraft or even
to add new ones, during a mission. This way, the onboard computing systems
should be able to handle the reconfiguration and update of spacecraft functions
without compromising the timeliness and the safety of the system.

This thesis describes a methodology for reconfigure and update system com-
ponents and applications for time- and space-partitioned architectures, applied to
aerospace systems, motivated by the need to adapt system behaviour to chang-
ing conditions or unexpected events during the system operation. The proof-of-
concept prototype will be implemented within the scope of the AIR architecture.
This involves improving the AIR architecture with the support for the remote
modification of system’s parameters and the update of software onboard compo-
nents.

1.1 Motivation

Throughout time, space exploration experience has demonstrated that recovery
from many severe failures can be achieved through the update of software com-
ponents [5]. The need for in-flight programmability has been identified by space
agencies [6]. The incentive to build a system that supports the system reconfigu-
ration, or even the modification of software components, comes from several inci-
dents in the scope of aerospace missions, almost always related to failure events.
The software upgradeability is a crucial property to spacecraft survival in long-
term missions [7].

Mars Pathfinder success history

During the course of a mission, there may appear situations on which it could be
necessary, useful and even primordial to change the actual system configuration.
An anthology example is the case of the NASA’s Mars Pathfinder mission [8].
The rover Pathfinder, after landing on Mars surface and start collecting mete-
orological data, began suffering of system restarts constantly. The failure in the
system was identified has a classic priority inversion problem. The team working
in Mars Pathfinder mission identified the reason of the system restarts through
event log analysis and debug capabilities that fortunately were enabled. Then, to
solve the problem, it was built a program to change the value of the global vari-
ables that were causing the malfunction. The program was uploaded to the rover

1.2. Goals and contributions 3

and executed, turning the system back to its normal execution state.
Without the ability to debug and modify system parameters during its exe-

cution, Mars Pathfinder mission could have failed because the problems would
have not been resolved. Instead of that, this mission and the onboard software
system form a success story due to the way that the problem was identified and
solved.

NASA’s Mars rover Spirit now working as a stationary research platform

On a similar way, in the presence of events, such as component failures, it may
be useful to change the mission plan, which may involve, for instance, the redefi-
nition of the scheduling of applications or the modification and inclusion of new
features.

NASA’s rover Spirit was sent to Mars in 2003 to, with its twin rover Opportu-
nity, continue the work started with the Mars Pathfinder mission, having as the
major purpose the exploration of Mars surface and geology. At May 2009, Spirit
become stuck on a soft sand terrain and after several months of trying without
success to release the rover and put it back to its original path, the mission plans
were changed [9]. NASA’s team on Earth decided that Spirit would work as a
stationary research platform and thus contributing on such a way that would
been impossible to a mobile platform, such as detecting small oscillations on the
rotation of the planet that could foresee the presence of a liquid core on it. The
system capability to change the mission’s payload was essential to continue to
use the rover, albeit in a different manner.

More recently, the efforts in assigning a new mission plan to the rover revealed
to be fruitful, since the analysis of the results over the research performed by the
Spirit demonstrated the presence of water in Mars [10].

1.2 Goals and contributions

The work presented in this thesis concerns improving a platform for the devel-
opment of applications for partitioned architectures; the analysis of the open re-
search questions related to the update of software components and system config-
urations, and; the design and development of solutions to allow performing up-
dates during the system execution, obeying to the segregation concepts of time-
and space-partitioned architectures aiming aerospace systems.

The development of this thesis involves:

• Understanding the importance of performing software updates in space-
craft and modifying system control parameters, during the course of a mis-
sion.

4 CHAPTER 1. INTRODUCTION

• The definition of an update methodology for time- and space-partitioned
architectures, concerning the reconfiguration of the scheduling of the sys-
tem applications at execution time, and the update of application software
components hosted in partitions.

• The implementation and integration of these features in the AIR architec-
ture, the evaluation, and the discussion of the obtained results.

1.3 Institutional context

The development of this thesis took place at the Large-Scale Informatics Systems
Laboratory (LaSIGE-FCUL), a research unit of the Informatics Department (DI)
of the University of Lisbon, Faculty of Sciences. This work was developed within
the scope of the AIR-II (ARINC 653 in Space RTOS – Industrial Initiative) project1,
which fits in the Timeliness and Adaptation in Dependable Systems research line
of the Navigators group. The author of this thesis integrated the LaSIGE-FCUL
AIR-II team as a junior researcher.

1.4 Publications

There were produced several articles in the scope of the AIR-II project, some of
them presenting preliminary work on the subject approached in this thesis, and
the remaining resulting of the work herein described.

The following papers were published in international and national confer-
ences:

1. J. Rosa, J. Craveiro, and J. Rufino, “Safe Online Reconfiguration of Time-
and Space-Partitioned Systems”, in 9th IEEE International Conference on In-
dustrial Informatics (INDIN’2011), Caparica, Lisboa, Portugal, Jul. 2011, ac-
cepted for publication. [11]

2. J. Rosa, J. Craveiro, and J. Rufino, “Adaptability and Survivability in Space-
borne Time- and Space-Partitioned Systems”, in EUROCON 2011 - Interna-
tional Conference on Computer as a Tool, Lisboa, Portugal, Apr. 2011. [12]

3. J. Rosa, J. Craveiro and J. Rufino, “Exploiting AIR Composability towards
Spacecraft Onboard Software Update”, in Actas do INForum 2010, Simpósio
de Informática, Braga, Portugal, Sep. 2010. [13]

1http://air.di.fc.ul.pt/air-ii

http://lasige.di.fc.ul.pt/
http://lasige.di.fc.ul.pt/
http://air.di.fc.ul.pt/air-ii

1.5. Document outline 5

The following AIR-II technical reports, relevant to this thesis, were produced:

1. J. Rufino, J. Rosa and J. Craveiro, “Desenvolvimento e actualização de soft-
ware para sistemas aeroespaciais em arquitecturas compartimentadas”, AIR-
II Technical Report RT-10-10, Oct. 2010. [14]

2. J. Rosa, J. Craveiro, and J. Rufino, “Challenges in the Design and Devel-
opment of Spacecraft Onboard Software Update”, AIR-II Technical Report
RT-10-12, Nov. 2010. [15]

1.5 Document outline

The remainder of this document is organized as follows:

Chapter 2 Concerns the important concepts to the unroll of this thesis. This in-
cludes a brief description of spacecraft systems and components as well as
onboard computing platforms and software; a summary of the common
faults in spacecraft during the past thirty years along with some statistical
results, and examples of missions that involved spacecraft failures; issues
concerning the verification and validation of critical applications, and; anal-
ysis of software update methodologies.

Chapter 3 Presents the AIR architecture. It describes the properties inherent to
the AIR architecture, including schedulability and composability, and ex-
plains the application development process.

Chapter 4 Defines the challenges approached in this thesis. This involves the de-
scription of the computational model used; the definition of open problems
and issues in onboard software update, and; a brief discussion featuring
possible solutions to onboard software update.

Chapter 5 Addresses the reconfiguration of the scheduling of system applica-
tions at execution time, presenting an algorithm for the safe update of appli-
cation schedules and its complexity analysis; a proof-of-concept prototype,
and; relevant results.

Chapter 6 Addresses the update of application software components hosted in
partitions that can be shut down, without significant functional impact.
This includes the presentation of an algorithm for update application soft-
ware components; the proof-of-concept prototype, and; relevant results.

Chapter 7 Presents some concluding remarks of the work approached in this the-
sis and highlights future work developments.

Chapter 2

Background

This chapter starts with a description of spacecraft subsystems, probing the on-
board computational infrastructure, thus giving an information background re-
quired to understand the issues addressed in this thesis. Then, common failures
in spacecraft are presented along with statistical data, motivating the need for on-
line1 reconfiguration and software update. This leads to the necessity to under-
stand the space mission requirements and adopt strict verification and validation
(V & V) measures, which will also be addressed. Finally, this chapter exposes
methodologies for software update described in the literature.

2.1 Spacecraft systems overview

A spacecraft consists of several individual subsystems, which closely interact
with each other2. Spacecraft can be divided in two principal elements, the pay-
load and the avionics functions. The payload consists of scientific instruments
and experiments, being the motivation for the mission. Avionics may consist of
the following spacecraft subsystems, here described briefly:

Communications Subsystem Provides an interface with radio frequency (RF)
systems and antennas, allowing the data transfer between the space ve-
hicle and the ground control. The data transfer is supported by (se-
cure) communication protocols. The communications subsystem includes
a non-executive command detection component responsible for receiving
and passing all the commands originating from the ground control to the
Telemetry, Tracking and Command (TTC) subsystem, which interprets and
executes them [16].

1In the scope of this thesis, “online” or “in-field” means performing certain task during the
operational phase of a spacecraft, i. e., during a mission.

2The subsystems physical distribution and implementation may vary considerably between
spacecraft, as well as the designations assigned to each subsystem described in this work.

7

8 CHAPTER 2. BACKGROUND

Telemetry, Tracking and Command Subsystem (TTC) Executes the spacecraft
telemetry, telecommand and control functions. It receives and processes
commands to control the spacecraft and to operate the payload, as well
as housekeeping and science data originating from the ground control
(passed through the communications subsystem) or other spacecraft sub-
systems [17, 18].

Figure 2.1 presents the common spacecraft subsystems, highlighting the sub-
systems relevant to follow the development of this thesis. These, represented
in the top of the figure, correspond to the subsystems responsible for the space
vehicle control and can be somehow managed by software. At the bottom are rep-
resented the subsystems associated in the first instance to the mechanical part of
the spacecraft. This representation of spacecraft organization was adapted from
Magellan space flight system functional block diagram that can be found in [17].

Figure 2.1: Structural organization of spacecraft subsystems

The remaining subsystems included in spacecraft, although with no direct
relevance to this work, are the following:

Failure Detection, Isolation and Recovery Subsystem (FDIR) Is responsible for
switch between onboard components in the presence of failures and ensure
that a failure with origin in a certain component, such as the payload, does
not propagate to other spacecraft subsystems. The main goal of FDIR is to
effectively detect faults and accurately isolate them to a failed component
in the shortest time possible [19]. If a single failure is detected and can be
isolated, FDIR switches to a redundant component, marking the failed one
as unhealthy [20].

Onboard Data Handling Subsystem (OBDH) Is responsible for collect, store,
process and format spacecraft housekeeping and mission data for downlink
or to be used by onboard computers and other spacecraft subsystems [16, 5].

Attitude and Orbit Control Subsystem (AOCS) Has as its prime purpose stabi-
lize the main structure of the spacecraft correctly and orient it in desired

2.2. Onboard computers 9

directions during the mission [18]. This requires the vehicle to determine its
attitude, using sensors, and control it, using actuators (e. g., reaction wheels;
thrusters) [16]. It monitors and modifies the spacecraft attitude and trajec-
tory to meet mission objectives despite disturbances during on-orbit opera-
tions.

Electrical Power Subsystem (EPS) Generates and stores all of the spacecraft’s
power, feeding the other spacecraft subsystems. Solar panels are used to
derive electricity from the sunlight [18, 21].

Structure and Mechanism Subsystem (MECH) Supports the mechanics of the
other spacecraft subsystems [5].

Propulsion Subsystem Is composed by rocket engines and thrusters that are
used to accelerate spacecraft, make trajectory correction maneuvers, and
maintain the spacecraft in its orbit [22].

Thermal Control Subsystem (TCS) Provides reliable temperature control to ac-
commodate variations in the spacecraft heat load thus maintaining the tem-
peratures of each component on the spacecraft within their allowable lim-
its [21].

The launch vehicle plays an important role in a mission as it carries the space-
craft through the Earth’s atmosphere and places it in orbit. Manned spacecraft
must also include a life support subsystem, which consists of a group of devices
that allow a human being to survive in space. The mission management and re-
mote support to space vehicles is done on Earth by the Mission Control Center
(MCC), commonly referred to as ground segment. The ground segment is some-
times seen as a spacecraft component as it is vital to its operation [18].

A complete description of all spacecraft subsystems including their compo-
nents and operations can be found in [18]. Design of spacecraft and mission anal-
ysis aspects are addressed in [16].

2.2 Onboard computers

The space technology has evolved greatly over the past decades. Besides the no-
table advances in energy-conversion technologies as well as in many other areas,
the electronic computers and software have occupied the first places during this
period [18]. The space industry has quickly assimilated the emerging technology,
which revolutionized the autonomy and flexibility of spacecraft, and allowed to
turn a potential mission failure into a grand success [8, 22, 23].

10 CHAPTER 2. BACKGROUND

The production of the onboard software follows formal documentation such
as national and international standards, hardware/software control documents,
specifications and user manuals. Code reuse in different missions and space-
craft has turned to be a common practice. The missions are defined by advanced
software due to its complexity, and the flight software is developed following
approaches identical to those used to develop terrestrial control applications [18].

Onboard computers (OBCs) are designed to accomplish requirements for re-
liability, complex data organization, autonomous decision-making, intensive sig-
nal processing and multitasking [24].

Spacecraft should have a high level of autonomy since they may spend some
time out of range of any ground station3. For example, Low Earth Orbit (LEO)
polar orbiter satellites spend only one hour per day over a mid-latitude ground
station [18]. This way, the investment on onboard software should not be under-
estimated.

In the past, spacecraft were designed to have OBCs, i. e., CPUs and micro-
controllers, in all major subsystems and payloads, being each OBC responsible
for a spacecraft function [25]. Although, a new generation of space vehicles, en-
abling reduced size, weight and power consumption (SWaP), has been adopted,
and nowadays typical spacecraft have a single OBC to handle with all computa-
tional functions. The transition from federated architectures to integrated modu-
lar avionics (IMA) motivated the use of time- and space-partitioned (TSP) archi-
tectures in spacecraft computational systems, to implement the logical separation
of each spacecraft function [26, 2].

The CPUs used in spacecraft must be highly reliable and very durable. Actu-
ally, spacecraft designers opt to use microprocessors that have been largely tried
and tested (according to the MIL-STD-883 standard, for instance, to insure re-
liable operation [27]), instead of using the latest and greatest chips. Spacecraft
OBCs use 32-bit or 64-bit microprocessors programmed using secure and certi-
fied methods and tools. Microprocessor programs are written in languages such
as C, C++ or ADA.

Table 2.1 presents some examples of CPUs used in different spacecraft [25, 28].
Some spacecraft use radiation-tolerant versions of processors found in common
computers whereas others employ processors especially developed for space use
such as those from the SPARC LEON family [29]. Figure 2.2, adapted from [30],
represents the evolution of onboard microprocessors used in (European and North
American) space vehicles over the years, presenting the values for million in-
structions per second (MIPS) and typical Random-Access Memory (RAM) chip
size for a type of processor. This graphic is complemented with the program-

3A ground station is a terrestrial terminal handling telecommunications with spacecraft.

2.2. Onboard computers 11

ming languages of the flight software and the type of real-time operating systems
(RTOS) used.

The interaction between the several spacecraft subsystems may be done using
controlled area network (CAN) buses. The processing power and storage avail-
able onboard follows those found on Earth, however, techniques of data compres-
sion are used in order to spare as much storage space as possible [18]. Typically,
data is stored in RAM or Flash solid-state memories, operating on a block or file
basis. Read-Only Memory (ROM) is built into the OBC before launch and con-
tains the basic instructions and safe guard modes during operations [17].

Table 2.1: CPUs used in spacecraft

Spacecraft and launch
year

CPU description

Viking (1976) RCA 1802 (built with Silicon-on-Sapphire
which is much more stable in a radiation
environment)

Voyager 1 and 2 (1977) RCA 1802

Space Shuttle (1981) Intel 8086 and RCA 1802, later Intel 80386
(uses the APA-101S computer)

Galileo (1989) RCA 1802

Hubble Space Telescope
(1990)

Originally a DF-224 (8-bit) and now a 80486

Pathfinder (1996) BAE RAD6000

International Space Station
(ISS) (1998)

Intel 80386SX-20 w/ Intel 80387 (there are
several computers on the ISS. The most im-
portant are the common computers which
use the i386)

Cluster (2000) 1750A (MIL-STD 16-bit non-RISC CPU)

Spirit and Opportunity
Rovers (2003)

BAE RAD6000

SMART-1 (2003) ERC32 (version of SPARC V7 enabling the
use of commercial software)

Rosetta (2004) 1750A

12 CHAPTER 2. BACKGROUND

Onboard memory types and typical capacity can be classified as follows:

EPROM (Erasable Programmable Read-Only Memory) Hosts the board boot
and initialization software (typically 16 – 256 KiB4).

E2PROM (Electrically Erasable Programmable Read-Only Memory) / Flash
Hosts the mission software and boot container (typically 2 – 8 MiB4).

SRAM (Static Random-Access Memory) Contains the executing software and
variables (typically 4 – 16 MiB).

DRAM (Dynamic Random-Access Memory) Is typically used for store large
amounts of data (typically 16 – 512 MiB).

Figure 2.2: Onboard processor evolution

Onboard data storage, performed by the OBDH subsystem, is achieved using
solid-state memories, namely Flash memories [30]. Data storage is usually a re-
quired feature in spacecraft computational infrastructure since the data collecting
rate and volume could exceed the capacity of the link with the ground segment,
as well as its availability [5, 18]. Data coding and error correction techniques are
used to maintain the integrity of the data. The OBC memory is organized in the
same way that is done in storage disks found in terrestrial computers, with data
arranged hierarchically and files identified by name.

4 1 kibibyte (KiB) = 210 bytes = 1024 bytes; 1 mebibyte (MiB) = 220 bytes = 1024 kibibytes. This
corresponds to the prefixes for binary multiples defined in the IEC 60027-2 standard specifica-
tion [31]

2.2. Onboard computers 13

Spacecraft flight software is integrated in high reliable and robust real-time
operating systems, such as Wind River VxWorks5 or Real-Time Executive for
Multiprocessor Systems6 (RTEMS). RTEMS is particularly interesting for use in
space onboard software systems given its qualification for spaceborne applica-
tions [32]. Flight software associated to a certain spacecraft function, such as
AOCS or TTC, usually does not exceed few hundreds of KiB [33].

The components of a space vehicle computational infrastructure described
throughout this section are illustrated in Fig. 2.3. This scheme embraces a space-
craft structural organization where a single CPU handles the execution of several
spacecraft functions.

Figure 2.3: Simplified onboard computational infrastructure based on a unique
CPU

As long as the spacecraft is visible and available from Earth it is tracked by
real-time software operating in the associated ground station. With the ability to
access the several spacecraft OBCs from ground segment, one may calibrate the
spacecraft parameters, adjust the control algorithms and upload new functions or
control software to enhance performance or adapt to new requirements. Nowa-
days, there is a trend in space industry to adopt commercial off-the-shelf (COTS)
products in ground stations in order to reduce costs. Concerning the spacecraft
equipment, the adoption of COTS components is also related to achieving bet-
ter performance results. Although, the interaction with standard components
requires additional interface mechanisms [34].

Unlike past practice, designing spacecraft computational systems supporting
advanced interactions with the ground segment, which may include operations
such as the modification and debug of the flight software, may prove to be a
measure of great importance particularly with regard to overcome the occurrence
of failures [18, 5].

5http://www.windriver.com/products/vxworks/
6http://www.rtems.com/

http://www.windriver.com/products/vxworks/
http://www.rtems.com/

14 CHAPTER 2. BACKGROUND

2.3 Common faults in spacecraft

During the course of a mission, it may be useful or even necessary to introduce
new functions or modify existing ones in order to deal with unexpected events.
An early example where such features had an essential role was the NASA’s
Apollo 14 mission [35]. Prior to the descent to Moon’s surface, the Antares lu-
nar excursion module had a serious problem related to a faulty abort switch. The
erratic behaviour of the switch could cause the onboard computer to order the
spacecraft to climb back into orbit. The solution approached to overcome this
issue involved reprogramming the flight software to ignore the false abort com-
mand. The software modifications were transmitted via voice communication
and the changes were manually entered by the spacecraft crew. These kind of
episodes in the history of space missions highlighted the importance of repro-
grammability as a required property in space systems [33].

Along with the rising processing power and complexity of OBCs, the poten-
tial for software errors leading to spacecraft failures increased. The causes of
software failures may be systematic, however the faults occur randomly in time.
Typically, the software errors are originated by (i) inadequate system and soft-
ware engineering, (ii) inadequate review activities, (iii) ineffective system safety
engineering, (iv) inadequate human factors engineering, and (v) flaws in the test
and simulation environments [36, 18].

Failures in space missions

The study and analysis on spacecraft failures done in [5], based on information
retrieved from various sources, over a set of on-orbit spacecraft failures occurred
in 129 spacecraft between 1980 and 2005, revealed that many spacecraft suffer
unrecoverable failures in early times after their launch and others, despite the oc-
currence of several failures, exceed their expected lifetime after applying failure
recovery procedures. The purpose of the work described in [5] was to estimate
the impact of failures on the mission and identify the critical subsystems and re-
current failure modes. The failure analysis fell over the following subsystems
groups: AOCS; EPS; OBDH and TTC; MECH, payload and some other miscella-
neous subsystems. The results revealed that the software failures represented a
small percentage of the overall spacecraft failures when comparing to the failures
caused by electrical and mechanical spacecraft components.

The spacecraft failures caused by software errors, although, can be more eas-
ily fixed if the system supports software patching and modification. For example,
during the first European lunar mission, ESA SMART-1, software modules con-
trolling the electric propulsion which have suffered anomalies, for instance in

2.3. Common faults in spacecraft 15

the error detection and correction algorithm, were subjected to adjustments and
onboard software patching in order to overcome the adverse situation [22].

With respect to the impact of spacecraft failures in the mission itself, nearly
40% of the failures analysed resulted in catastrophic events, such as the loss of the
mission, and the percentage of mission degradation rises to about 65% [5]. This
supports the recommendations for the development of more flexible aerospace
systems and the adoption of trusted software verification and validation (V & V)
techniques [5, 16]. The SMART-1 mission benefited greatly from the spacecraft ca-
pabilities to handle software modifications and parameter tunings. Nonetheless,
not all the parameters offered flexibility, which caused a negative impact in the
mission in specific situations. For example, a malfunction of sensitivity to radia-
tion in EPS inducing shutdowns could have been solved modifying the software
not to trigger the alarm, thus avoiding the EPS shutdown and the waiting time to
restart [22].

In the graphic of Fig. 2.4 are represented the percentages of the most signifi-
cant spacecraft subsystems affected, as they appear in [5]. AOCS is the subsystem
most affected (32%). Most of the AOCS anomalies are caused by environmental
conditions and can be overcome via software patches [22]. AOCS is followed by
the EPS (27%), OBDH (15%), TTC (12%) and other spacecraft subsystems (the
remaining 14%).

Figure 2.4: Percentage of subsystems affected during a mission

Temporal considerations

A space mission is composed by several phases. The launch phase concerns all
the preparations for spacecraft launch and the launch itself. The failures occurred
during this phase are the launch failures. After the launch, the spacecraft en-
ters the cruise phase where are performed diverse operations such as real-time
commanding, spacecraft tracking and monitoring, or preparation for encounter.

16 CHAPTER 2. BACKGROUND

The encounter phase includes all the operations related to planetary orbit inser-
tion, descent and landing, and sampling, for example. Depending on the state of
spacecraft health and mission funding, the mission cruise and encounter phases
may be extended [17]. Failures occurred during the operational phases can be
grouped in beginning-of-life (BOL) failures; orbit insertion (OI), either Earth or
distant planets and on-orbit (OO) failures, and; end-of-life (EOL) failures [5, 37].

BOL failures include the in-orbit checkout. OI failures happens during the
spacecraft orbit insertion maneuver, i. e., deceleration or acceleration maneuvers
to allow the spacecraft to be captured into orbit. OO failures occur during space-
craft operational events while on orbit. EOL failures correspond to the spacecraft
consumable depletion or component obsolescence.

The time to failure is here classified as follows. BOL failures concern all fail-
ures occurred in the first year of the mission, that correspond to 41% of all fail-
ures, suggesting insufficient testing or inadequate modeling. OI and OO failures
are those occurred between the second and the eighth year, totaling 53%. EOL
failures happen from the eighth year forward, corresponding to only 6% of all
failures [5]. The graphic of Fig. 2.5 shows the relation between the percentage of
failures and the time to failure after the spacecraft launch.

Figure 2.5: Time to failure after launch

Spacecraft failures analysis throughout the years

Spacecraft failures analysis throughout the years has demonstrated that the fail-
ures rate can be mitigated either by the use of software patches or through on-
orbit servicing (OOS), i. e., maintenance, upgrade and repair of equipment. The
graphic illustrated in Fig. 2.6 compares the average per year in the overall study
time (1981–2000) and the period during 1996–2000, according to [37]. It can be
observed an increase of the number of failures in the period 1996–2000, with the
exception of the OI failures, were this number remains approximately constant.
EOL failures were not documented. The high failure rates during the period of

2.4. Verification and validation process 17

1996–2000 may be justified with the existence of more extensive and accurate fail-
ure reporting methods and tools, comparing to earlier dates, as suggested in [37].

Figure 2.6: Spacecraft failures during 1981–2000

2.4 Verification and validation process

In the scope of spaceborne systems and applications, the verification and valida-
tion (V & V) process ensures that the developed software meets its specifications
and satisfies the requirements defined for the mission. The in-field V & V of sys-
tem configurations and software components have a remarkable importance to
determine whether is safe to proceed with update operations and reconfigura-
tions. There are different approaches with regard to the V & V process [38, 39],
although the majority of them agrees that the verification and validation should
be performed during all stages of the development process. Furthermore, it may
be required to extend the V & V process also to the product’s operational lifetime
featuring, for instance, the possibility to perform additional tests or to verify the
correctness of in-flight software updates. This implies that the spacecraft’s com-
putational system should somehow support the online verification of software
components, to ensure the safety and robustness of the system [40, 41].

Shortcomings in requirements development and the lack of a strong V & V
process can cause failures either individually, collectively, or in conjunction with
other faults. For example, in Apollo 13 mission, the operating voltage of the
thermostatic switches for the heaters of the oxygen tanks were modified with-
out changing the voltage specification and testing the new value on the switches.
This was a configuration management failure that should be detected by verifica-
tion. However, the mission was a success because the lunar module, the crew and
the backup systems were robust [38]. Another famous example is Space Shuttle
Challenger. The requirements for the mission seemed to be correct, however the

18 CHAPTER 2. BACKGROUND

design, manufacturing, testing, and operation were faulty. The low air temper-
ature, which led to the explosion of Challenger, was below design expectations.
The decision to launch in an environment for which the system was not designed
was a validation mistake [38].

An adequate certification of software and qualification of tools is of extreme
importance to meet the development requirements. Current practices of civil avi-
ation, military aviation and aerospace industry, along with airborne systems and
equipment guidelines remain vague, which can lead to different interpretations
by the industry. The software developed for safety-critical systems must be sup-
ported by qualified tools and implemented using appropriate mechanisms pro-
vided by programming languages. Despite the popularity of C and C++ pro-
gramming languages in the development of safety-critical systems, these lan-
guages include many features that are not suitable for this purpose, whereas
Ada is well suited and meets the safety requirements [39]. Furthermore, some
standards are not fully adapted for building safety-critical systems, such as the
MISRA C standard, which aims to contribute to make C a safer language, al-
though does not address all known fault models [42].

Besides the strict verification and validation applied to the spacecraft flight
software on the ground, it is important to have safeguard mechanisms to verify
the system parameters during the flight and prevent faults in unexpected situa-
tions, namely due to the difficulty of simulate the space environmental conditions
on the ground. The onboard validation of software is crucial to ensure whether is
safe to proceed with the system execution. This is specifically important after the
modification or update of software components [40, 41].

The in-field safety validation may benefit from the use of contracting mecha-
nisms based on formal methods [41]. This technique supports the verification of
system reconfigurations and upgrades based on the analysis of the current system
configuration. The methodology suggested in [41] consists on the requirements
analysis of the application to be updated and on the validation of contracts during
system execution, before admitting corresponding configurations to take effect in
the system. This allows the modification of system parameters and the integra-
tion of software components to be verified autonomously by the system itself.

Since the inability to avoid several failures on spacecraft is related to the dif-
ficulty to simulate the space conditions on Earth, it is noteworthy the importance
of having the possibility to perform tests under similar conditions. The work
present in [43] focuses on test methodologies and simulation environments. The
approach followed was designed to test software behaviour under disturbed con-
ditions, simulating the space environmental conditions and attaining the greatest
possible dependability of embedded software systems by reducing development

2.5. Software update 19

errors and handling runtime anomalies. This work discusses the advantages of
software-in-the-loop simulations over the hardware-in-the-loop simulation ap-
proach, this is, testing the real software carried out on a simulated environment
versus the use of prototypes of the system under simulation.

2.5 Software update

This section addresses methodologies for system reconfiguration and software
update. There are different approaches regarding the reconfiguration of aerospace
applications. In airborne systems, those concern complex online or offline tech-
niques to ensure the flight or mission’s effectiveness. System reconfiguration can
be achieved using methods such as multi-static reconfiguration, which consists of
the activation of a predefined configuration selected autonomously according to
the system health state [44]. The possibility to reconfigure autonomously a space
vehicle in operation through adjustments of the system control parameters and
algorithms, for example, is essential to its adaptation to different mission phases.

Moreover, the onboard software running on spacecraft OBCs should be up-
gradeable, i. e., the system should support the update or modification of software
when required. There are diverse techniques and methodologies for software
update. However, the requirements for software update methodologies in space
vehicles are much more strict than those required for updating terrestrial comput-
ers. For instance, the updates should be executed in exact moments considered
safe, their duration should be predictable and well specified, and they should not
interfere with the system operation [45, 46]. The update methodology proposed
in [45] preserves the original deadline guarantees, however it does not address
what should be done when the timing requisites need to be modified. Software
update methodologies may be built based on replication principles, such as the
definition of two execution blocks to perform the updates [47].

There are several works in the literature concerning software update in the
domain of real-time systems [46, 47, 48] including in the avionics industry [49],
however with respect to performing updates in spaceborne systems, there is no
research line established. With respect to the update of software in TSP-based
systems, there were not found works covering this subject in the literature.

Techniques of dynamic software update, which refers to the modification of
software components without the need to stop the current system execution, may
be applied to update onboard software, although fulfilling the requirements for
onboard update methodologies referred [50, 51]. An approach for dynamic up-
date of applications in C-like languages is provided in [51] and focuses on the
update of the code and data at predetermined times, allowing the online verifi-

20 CHAPTER 2. BACKGROUND

cation of the code’s safety. The methodology suggested in [50] covers the timeli-
ness requirements to achieve a safety environment for dynamic software update
on real-time systems, running a COTS operating system. The methodology pro-
posed requires the identification of specific points in time to perform the compo-
nent’s update while in [48] is proposed an approach to the update of real-time
applications without any presumption about the application execution times.

2.6 Summary

This chapter grouped several aspects with relevance to the development of this
thesis. It described spacecraft subsystems, focusing on the onboard computers;
common spacecraft mission failures; verification and validation process, and;
methodologies for software update.

The following chapter will address the AIR architecture, a time- and space-
partitioned environment for the development and execution of aerospace appli-
cations, along with its inherent properties, and the applications development pro-
cess.

Chapter 3

AIR Technology design

This chapter aims to present the AIR architecture, which will support the features
proposed in this thesis, concerning the update of partition schedules and appli-
cations. Beyond a general description of the architecture, this chapter details the
architecture components. It explains how is defined the AIR partition scheduling.
Then, it presents the composability properties of the AIR architecture. Finally, this
chapter exposes the AIR applications build and integration process.

3.1 System architecture

The AIR (ARINC 653 in Space Real-Time Operating System) architecture defines
a partitioned environment for the development and execution of aerospace appli-
cations, following the notion of time and space partitioning (TSP), implying that
the execution of applications in a partition does not affect other partitions’ time-
liness and that different partitions have independent addressing spaces. The AIR
architecture allows applications to be executed in logical containers called parti-
tions. An AIR-based system provides a way to achieve the containment of faults
to the domain where they occur using the architectural principle of robust TSP.
Temporal partitioning ensures that the real-time requisites of the different func-
tions executing in each partition are guaranteed. The spatial partitioning relies
on having dedicated addressing spaces for applications executing on different
partitions [3, 4].

The AIR architecture, illustrated in Fig. 3.1, relies on the AIR Partition Manage-
ment Kernel (PMK) to enforce robust TSP. An operating system, herein referred as
Partition Operating System (POS), is provided per partition. It is foreseen the use
of different operating systems among the partitions, either real-time operating
systems (RTOS) or generic non-real-time ones. Each POS is wrapped by the AIR
POS Adaptation Layer (PAL) hiding its particularities from other AIR components
thus ensuring flexibility and independence in the integration of each POS kernel.

21

22 CHAPTER 3. AIR TECHNOLOGY DESIGN

At the Application Software Layer (Fig. 3.1), applications consist of one or
more processes, which make use of the services provided by an Application Ex-
ecutive (APEX) interface. In addition, a partition holding system functions, may
invoke also specific functions provided by the POS, thus being allowed to bypass
the standard APEX interface.

Figure 3.1: AIR system architecture and integration of partition operating systems

3.1.1 Portable Application Executive (APEX) interface

The Application Executive (APEX) interface component provides a standard pro-
gramming interface with a service definition derived from the ARINC 653 spec-
ification [52]. The set of available services concerns partition and process man-
agement, time management, intra and interpartition communication and health
monitoring. The AIR architecture implements the advanced notion of Portable
APEX, ensuring portability between the different POSs [53].

3.1.2 AIR Health Monitor

The AIR architecture incorporates a Health Monitor (HM) component which is
responsible for handling and containing errors to their domains of occurrence.
The action to be performed in the event of an error is defined by the application
programmer through an appropriate error handler. This error handler is an ap-
plication process that should include a systemwide reconfigurability logic, which
comprises the redefinition of control parameters or the issue of a different sched-
ule request, thus helping achieve system adaptability.

3.2. Schedulability 23

3.1.3 Interpartition communication

The organization of spacecraft software components in different partitions re-
quires interpartition communication facilities, since a function hosted in a par-
tition may need to exchange information with other partitions (e. g., the commu-
nications subsystem passes the commands issued by the ground mission control
to the TTC subsystem, which in its turn proceeds with the suitable operations).
Interpartition communication consists of the authorized transfer of information
between partitions without violating spatial separation constraints [4].

3.2 Schedulability

The AIR architecture uses a two-level scheduling scheme, where partitions are
scheduled under a predetermined sequence of time windows, cyclically repeated
over a major time frame (MTF). In each partition, the respective processes are
scheduled according to the native operating system’s process scheduler (Fig. 3.2).

Figure 3.2: Two-level mode-based partition scheduling

The original ARINC 653 [52] notion of a single fixed partition scheduling ta-
ble, defined offline, is limited in terms of timeliness control and fault tolerance.
To address this limitation, the AIR Technology design incorporates the notion of
mode-based partition schedules (Fig. 3.2), allowing the switch between different par-
tition scheduling tables (PSTs) according to different mission phases or operating
modes during the execution time, and regarding the accommodation of compo-
nent failures [4, 54]. A schedule switch can be requested by a specifically autho-

24 CHAPTER 3. AIR TECHNOLOGY DESIGN

rized and certified partition through the invocation of an APEX primitive [39].
This can result from a command issued from ground mission control or from the
reaction to environmental conditions. The AIR Partition Scheduler is responsible
for guaranteeing to make a schedule switch effective at the end of the respective
MTF.

3.3 Composability

The modularity of the AIR architecture design and of its build and integration
process further enables the composability of AIR-based systems [55], in both time
and space domains. Composability means properties established for individual
components hold also after the components are assembled together into the sys-
tem. With respect to the temporal domain, the use of a fixed cyclic partition
scheduling scheme dictates that the timeliness guarantees of each partition are
defined by the processing time assigned to each partition. In the spatial do-
main the composability properties ensure that the partition’s memory and I/O
resources are protected against unauthorized access from other partitions. The
composability properties are thus inherent to the AIR modular architecture.

Composability allows the independent verification and validation of software
components to different software developers during the build and integration
process, facilitating the overall system certification. From the point of view of
one partition’s provider, this further signifies that the development and valida-
tion do not depend on knowledge of the other partitions. At most, the develop-
ment of one partition should be aided by a set of guidelines for its applicability
to the target TSP systems in general. The system integrator is responsible for
guaranteeing a correct partition scheduling, so that partitions and the system as a
whole meet their timing requisites. This may be done using schedulability anal-
ysis tools [55, 56].

3.4 Build and integration process

Development environments provide in general an adequate support for writ-
ing, building, debugging and maintaining computer-based applications, such as
those present in desktop PCs as well as applications for embedded systems. This
development process is known as the canonical build and integration process. It
consists of using a compiler and/or assembler to build one or more object files
that are linked together with a runtime library to form an executable image that’s
stored as a file on disk (on PCs) or in ROM memory in the case of embedded
applications when no disk is available [57].

3.4. Build and integration process 25

With respect to the development of software for partitioned architectures,
such as those aboard aerospace systems, several limitations regarding the canon-
ical build and integration process and standard build tools, such as those pro-
vided by GNU1, need to be revisited and adapted to support the development of
partitioned-based applications.

This way, because of the particularities of the AIR architecture, the software
build and integration process differs from the canonical one, as provided by stan-
dard compilers and linkers. This process is pictured in Fig. 3.3 and Fig. 3.4, and it
will now be described in detail.

3.4.1 Partition build process

The first stage concerns building each partition independently (Fig. 3.3). In the
typical scenario, the applications to be executed in the context of a partition, the
APEX library, and the underlying POS libraries (wrapped by the AIR PAL) may
be provided by different teams or providers. Therefore, the build process is tai-
lored to expect these independent object files, and link them together to produce
an object file with no unresolved symbols but including relocation information
(to allow linking with the remaining partitions). Although the AIR PAL also in-
vokes the AIR PMK (which symbols are as of yet undefined), these interactions
are wrapped using data structures to reference the appropriate primitives, which
the AIR PMK will register by executing code generated at system integration time
with the assistance of a specific AIR tool.

Figure 3.3: Software building by partition application developers

1http://www.gnu.org/

http://www.gnu.org/

26 CHAPTER 3. AIR TECHNOLOGY DESIGN

The introduction of a scheduling analysis phase in the application develop-
ers’ software production chain [55] takes advantage of the composability proper-
ties, which will be defined next, to provide independent schedulability analysis.
Application developers can perform this analysis using the timing requirements
(period, worst-case execution time (WCET), deadline, etc.) of their applications’
processes. This information can be either estimated, or tentatively determined
through static code analysis [58, 59].

3.4.2 System integration

The system integration process (Fig. 3.4) receives input (partition object files)
from potentially different teams or providers. Since all partitions will include
the common interface provided by the AIR PAL and AIR APEX libraries, the var-
ious partitions’ object files will have symbol name collisions; partitions running
the same POS or POSs providing the same standardized interfaces (e. g., POSIX)
have additional name collisions. Therefore, linking these objects will require pre-
vious preprocessing. This preprocessing can be in the form of a tag filter utility
which prefixes all symbols and calls in each partition’s object files with unique
prefixes (e. g., P1, P2, etc.). This process can be further optimized by automating
the generation of partition prefixes, namely deriving them from the configuration
file.

Figure 3.4: System integration

3.4. Build and integration process 27

The partition objects can now be linked with the AIR PMK and the configu-
ration object. This configuration object is derived by compiling C source code
files, which in turn have been converted from XML (Extensible Markup Lan-
guage) configuration files. The use of XML for the configuration file is motivated
by the overall intention to comply, up to a certain degree, with the ARINC 653
specification [52]. Besides the parameters translated from these XML files (such
as partition scheduling tables, addressing spaces, and interpartition communica-
tion ports and channels), configuration objects include routines for the AIR PMK
to register the adequate primitives in the AIR PAL structures. This linking step
produces the system object file, from which in turn one can generate the most
adequate deployment format for the target platform. In the system integration
phase, scheduling analysis capabilities shall be introduced in relation with the
generation of a systemwide configuration [55].

3.4.3 Impact on the software development lifecycle

The applications development process for partitioned architectures modifies the
classic software lifecycle, usually referred to as the “V” model, since it allows the
development of each partition independently by different teams or providers.
The impact over the classic software lifecycle, represented in Fig. 3.5, is observed
in the stages performed independently: partition requirements, design, imple-
mentation, and application testing. Figure 3.5 represents the impact resulting
from the independent development of different partitions (Fig. 3.3) and the sys-
tem integration process (Fig. 3.4). The system validation is performed facing the
mission requirements through the system testing [60].

Figure 3.5: Impact on the software development lifecycle

28 CHAPTER 3. AIR TECHNOLOGY DESIGN

3.5 Summary

This chapter described the AIR architecture, detailing the components with rele-
vance to the development of this thesis. It explained the AIR schedulability and
composability, followed by a complete description of the AIR build and integra-
tion process.

The following chapter will focus on the problem definition, which involves
the description of the computational model adopted and the open challenges con-
cerning the update of partition scheduling tables and software components.

Chapter 4

Problem definition

This chapter does a complete presentation of the issues regarding onboard up-
date in the context of partitioned architectures for aerospace systems. It starts
by characterizing the computational model used in the definition of a partitioned
environment. It highlights the assumptions that will be taken to approach the
problems discussed in the development of this thesis.

4.1 Computational model

Beyond embedded software general requirements for reliability, performance and
cost, as well as the specific TSP requisites, there are several aspects that deserve
some attention. Regarding the computational system and the AIR architecture,
these aspects need to be specified adequately in order to know the requirements
and limits of the solutions approached to improve the AIR architecture with the
support for onboard software update.

4.1.1 Defining requirements and components

The focus of this work centers on the procedures taken in the spacecraft compu-
tational platform after receiving the update data from the communication sub-
system. It is assumed that the upload of modified software components and par-
tition scheduling tables (PSTs) is supported by a (secure) communication channel
and data communication protocol. The data sent by the ground station, which
may consist of a new set of PSTs or partition application components in the scope
of onboard updates, are received by the system partition associated to commu-
nication functions. This partition is responsible for (i) the identification of the
components to be updated; (ii) the allocation of the required memory resources,
and; (iii) the functional integration of each component. It is assigned a guaran-
teed processing time to this partition in order to execute the referred operations.

29

30 CHAPTER 4. PROBLEM DEFINITION

It is assumed that the modified components have been subjected to offline V
& V and were submitted to a set of tests in order to ensure that its integration
on the target system will not change the system’s correct behaviour or affect its
safety.

To support the introduction of onboard software update operations, the orig-
inal APEX interface must be extended to cope with new services, provided by
an extended APEX (XAPEX) interface. These services are related to the update
of PSTs sets and partition software components, and would be addressed in the
next chapters. This XAPEX interface will be provided only to specific partitions,
such as the partition that will perform the update procedures.

4.1.2 Integration on spacecraft onboard platform

The several spacecraft functions will be executed in independent partitions. Some
of these functions are related to the system operation (avionics) whereas others
operate the payload itself. The system partitions are those that usually must not
stop their execution since it may be vital to the survivability of the spacecraft. Al-
though, there may be scenarios where they can be momentarily stopped, such in
the case of the AOCS functions when the space vehicle is stabilized in orbit. This
small down-time may be used to perform update operations. It is noteworthy
that it could also happen scenarios where stopping application partitions (i. e.,
the spacecraft payload) could bring undesired consequences and high costs. For
example, stopping the payload functions of a telecommunications satellite will
not result in any damage to the space vehicle but will shut down TV, Internet or
telephone connections for thousands of clients, implying high monetary losses to
the telecommunications provider.

Figure 4.1: Spacecraft time- and space-partitioned computing platform

The entity responsible for controlling the update of partition applications and
PSTs is the Update Handler, which will be hosted in the partition associated to
the communications. The Update Handler, defined as a process/thread, interacts

4.2. Open challenges in onboard software update 31

with the AIR PMK through calls to XAPEX primitives to perform the updates.
The communications partition includes also a component for command detec-
tion, which passes the commands issued from the ground mission control to the
TTC subsystem through an interpartition communication channel. Examples in-
clude a ground command to switch schedule or to set a partition’s mode. Figure
4.1 illustrates a spacecraft computational system hosting communications, TTC
and AOCS partitions, highlighting the operations concerning the loading of PSTs.

In AIR architecture, the partition responsible for the communications subsys-
tem assumes executive functions assigned by the TTC, concerning the process
of transfer of updated components and configurations. This avoids to exchange
large amounts of information through communication channels between parti-
tions thus increasing the efficiency of these operations. Memory management
functions are also delegated to the communications subsystem by the TTC for
the same reason.

4.2 Open challenges in onboard software update

The challenges that come to allow the inclusion of new features on a spacecraft
during a mission are related to maintaining the real-time and safety guarantees of
the original mission [13]. This should not affect the correct overall behaviour of
the system, including the timeliness of the already running applications, and re-
quires the verification and validation of the software components. This way, there
are mission/flight phases that imply a best-effort approach to perform the up-
date operations. This could involve switch to a scheduling mode where a shorter
execution time is assigned to the communications partition running the Update
Handler. This could also be achieved through tasks priority adjustments inside
the communications partition, without the need to switch schedule. The space ve-
hicle may be out of range of a ground station during the updates, which suggests
that the Update Handler must also be prepared for the occurrence of communi-
cation blackouts and to achieve the expected results without affecting the correct
system behaviour, in an autonomous way, i. e., without the need to interact with
the ground mission control.

4.2.1 Problem definition

This section addresses two distinct scenarios, which one corresponding to a prob-
lem with different requisites. The first one concerns updating a set of PSTs,
whereas the second is related to the update of application software components
hosted in partitions. Actually, a third scenario may exist involving the occur-
rence of the previous two scenarios simultaneously. This consists of the issue by

32 CHAPTER 4. PROBLEM DEFINITION

the ground mission control of a single update message containing either the set
of modified PSTs and the modified software application components.

Updating a set of partition scheduling tables

The update of a set of PSTs consists of making available to the partition sched-
uler a modified set of PSTs, in order to meet new temporal requirements, such
as those imposed by severe unexpected events or drastic changes in the environ-
mental conditions. This operation involves providing the new set of PSTs to the
Partition Scheduler component of the AIR PMK. The activation of the new set of
PSTs must guarantee the safety of the switch operation between the old and the
new sets of PSTs, thus ensuring that the correctness of partition scheduling is not
compromised.

Updating a partition in the idle mode

This scenario concerns the update of application software components hosted in
a partition in the idle mode, being the method suitable for performing the update
of partitions executing non-critical spacecraft functions, such as some payload
functions. A partition is said to be in the idle mode when it is shut down and
is not scheduling or executing any application processes [4, 52]. A partition may
enter the idle mode after a command issued from the ground mission control,
upon the detection of a partition internal fault, or explicitly by request of the
partition’s application. The update of software components that can be stopped is
simplified when is possible to reuse the resources assigned to the old application
to the updated one.

The update of a partition in the active mode, in which process scheduling is
enable and application processes are being executed, has been left to future work.

4.2.2 Proposed methodology

The onboard update methodology that will be followed consists of the definition
of a new set of PSTs and the modification of application software components, in
order to upgrade the original mission adapting it according to new requirements.

The envisaged methodology can be divided in four main steps, that can be
adapted for both the update of PST and the update of software application com-
ponents. The first step is the offline verification and validation of software modi-
fications and PSTs, corresponding to the AIR original verification and validation
process to ensure that safety and timeliness would not be compromised with the
introduction of new components. This first step is performed on the ground ei-
ther by or at least under the coordination of the system integrator. The second

4.3. Summary 33

step concerns the extraction of updated components, which consists of identi-
fying the components that have been modified, extract them from the complete
system object file and create a new one that will be uploaded to the spacecraft.
This second step concludes the operations on the ground. The third step is the
transfer of the received information, namely the updated PSTs and application
components, to the appropriate memory addressing space in the spacecraft on-
board computational infrastructure, after the reception of those elements by the
spacecraft. The update of application components requires also to stop the old
partition. The fourth and last step, also performed on the spacecraft, concerns
the activation of updated components, which consists of the safe application of
an updated set of PSTs, or the proper placement and activation of updated soft-
ware components.

The further development of these steps and the practical implementation de-
tails, along with the relevant results, will be addressed in the next two chapters.
The modifications introduced by this methodology to the AIR native build and
integration process will also be addressed.

4.3 Summary

This chapter presented the computational model assumed for the development
of onboard update solutions. It described the open challenges in onboard update
and defined the problem approached in this thesis, introducing also the core ideas
for the methodology which will be addressed in detail in the following chapters.

The contributions of this chapter produced the following conference paper:

J. Rosa, J. Craveiro and J. Rufino, “Exploiting AIR Composability towards
Spacecraft Onboard Software Update”, in Actas do INForum 2010, Simpósio
de Informática, Braga, Portugal, Sep. 2010. [13]

The next chapter describes the methodology, algorithms and implementation
results for the update of partition scheduling tables.

Chapter 5

Updating partition schedules

This chapter addresses the update of partition scheduling tables in time- and
space-partitioned systems. The methodology defined here was motivated by
spaceborne systems’ need to adapt to changing conditions and unexpected events.
This chapter details the AIR partition scheduling and its relation with reconfig-
urability. Then, it is described and analysed the algorithm for updating PSTs.
This chapter ends with the presentation of the proof-of-concept prototype and
results.

5.1 Scheduling partitions

As was introduced in Chapter 3, the AIR architecture uses a two-level scheduling
scheme (remember Fig. 3.2) and incorporates mode-based partition schedules.
The support for mode-based schedules is provided through APEX services. The
APEX SWITCH SCHEDULE service, represented in Algorithm 1, sets the sched-
ule that will start executing at the begin of the next major time frame (MTF). This
primitive receives, as its only parameter, the scheduleId, referencing the index of
the next PST to be used.

Algorithm 1 APEX SWITCH SCHEDULE primitive
1: function APEX SWITCH SCHEDULE(scheduleId)
2: nextSchedule ← scheduleId
3: end function

The AIR Partition Scheduler, responsible for guaranteeing to make a schedule
switch effective at the end of the respective MTF, is described in the Algorithm 2.
The first verification to be made is whether the current instant is a partition pre-
emption point (Algorithm 2, line 2). In case it is not, the execution of the partition
scheduler is over; this is both the best case and the most frequent one. If it is a par-
tition preemption point, a verification is made (Algorithm 2, line 3) as to whether

35

36 CHAPTER 5. UPDATING PARTITION SCHEDULES

there is a pending schedule switch to be applied and the current instant is the
end of the MTF. A pending schedule switch is originated by a request to change
to a different PST (Algorithm 1). Since a schedule switch happens only after the
end of the current MTF, in order to maintain the timeliness, this may result on a
waiting time before the PSTs switching [4]. If the referred conditions apply, then
a different PST will be used henceforth (Algorithm 2, line 4). The partition which
will hold the processing resources until the next preemption point, dubbed the
heir partition, is obtained from the PST in use (Algorithm 2, line 8) and the AIR
Partition Scheduler will now be set to expect the next partition preemption point
(Algorithm 2, line 9) [4].

Algorithm 2 AIR Partition Scheduler (mode-based schedules)
1: ticks ← ticks + 1 . ticks: global system clock tick counter
2: if schedulescurrentSchedule .tabletableIterator .tick =

(ticks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf then

3: if currentSchedule 6= nextSchedule ∧
(ticks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf = 0 then

4: currentSchedule ← nextSchedule
5: lastScheduleSwitch ← ticks
6: tableIterator ← 0
7: end if
8: heirPartition←

schedulescurrentSchedule .tabletableIterator .partition
9: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionWindows
10: end if

5.2 Safe update of partition schedules

5.2.1 The XAPEX PSTUPDATE service

To support the introduction of the operation for update PSTs, the original APEX
interface was extended with an appropriate service. The XAPEX PSTUPDATE
primitive, provided by an extended APEX (XAPEX) interface, is available only
to specifically authorized partitions, such as the one responsible for the space-
craft communications, as illustrated in Fig. 4.1 (Chapter 4, page 30). Algorithm 3
concerns the pseudo-code representation of the XAPEX PSTUPDATE service.

5.2. Safe update of partition schedules 37

Algorithm 3 XAPEX PSTUPDATE primitive
1: function XAPEX PSTUPDATE(newSchedules)
2: while ¬safePstUpdate do
3: if currentSchedule = nextSchedule then
4: for newSchedules i ∈ newSchedules do
5: if newSchedules i≡schedulescurrentSchedule then
6: safePstUpdate ← TRUE
7: newCurrentSchedule ← i
8: break
9: end if

10: end for
11: end if
12: end while
13: SWAP(schedules ,newSchedules)
14: currentSchedule ← newCurrentSchedule
15: end function

5.2.2 Onboard update of PSTs

The methodology for the onboard update of PSTs consists of the definition of
a new set of PSTs to reconfigure the mission according to new requirements.
The activation of a new set of PSTs must guarantee the safety of switch between
the old and the new sets of PSTs, thus ensuring that the correctness of system
scheduling is not compromised. This is illustrated in Fig. 5.1, which will be clar-
ified later in the algorithm description. The update methodology consists of a
four-step procedure described as follows.

Figure 5.1: Update of a set of PSTs

38 CHAPTER 5. UPDATING PARTITION SCHEDULES

Offline verification and validation of redefined PSTs

The definition of new sets of PSTs must involve the verification and validation of
the updated components. This aims to secure the correctness of the redefined set
of PSTs thus ensuring that the safety and timeliness of the target system would
not be compromised [55, 56]. This step benefits from AIR composability which al-
lows the verification and validation of PSTs to be done by software development
teams or providers independently.

Formatting of redefined PSTs

The general goal of this step is to create an object file consisting of the new set of
PSTs. This object file should be built according to a specific format in order to be
recognized by the Update Handler. After this step, the object file with the new
PSTs set will be uploaded to the spacecraft onboard computer.

Transfer of redefined PSTs

In the spacecraft, the PSTs are received by the partition hosting the communi-
cation functions (Fig. 4.1). The Update Handler inspects the uploaded object,
recognizes it as a set of PSTs and invokes the XAPEX PSTUPDATE primitive to
issue a request to apply the set of PSTs updated.

Activation of redefined PSTs

The first condition for the safe application of a new set of PSTs is that a sched-
ule switch is not pending (Algorithm 3, line 3). This further means that a re-
quest to switch to another schedule was not issued, through the invocation of the
APEX SWITCH SCHEDULE primitive (Algorithm 1). The activation of the new
set of PSTs will only become effective at the end of the current MTF. The second
condition to the safe application of a new set of PSTs is that the currently selected
schedule has an identical counterpart in the new PSTs set (Algorithm 3, lines 4–7).
In other words, a requested PSTs set update operation can be performed if the set
of the modified PSTs received has a non-empty subset identical to a subset of the
PSTs set currently active on the system. If this second condition is not met, the
update will only be applied when a switch to a PST which meets the said criterion
occurs. This scenario is illustrated in Fig. 5.1. To allow the possibility to update
currently operational PSTs, a safe-mode PST (which is guaranteed to always exist
on both the old and the new PSTs set) can be employed (represented in Fig. 5.1 as
χ2 and χ′

2).

5.3. PSTs update algorithm analysis 39

5.2.3 Achieving reconfigurability

System reconfiguration facing new mission constraints is essential to ensure the
survivability of the spacecraft and the mission itself. The support for robust re-
configuration in the AIR architecture is done through mechanisms such as mode-
based schedules; health monitor, responsible for handling and containing errors
to their domains of occurrence; process deadline violation monitoring, to detect
deadline violations of the partitions’ timing requirements, and; low-level event
overload control, to control the timeliness of asynchronous events [61, 4]. These
mechanisms enable the safe reconfiguration of system components. By offering
the possibility to host natively multiple PSTs and switch among them on demand
during the execution of the system, AIR allows for (self-)adaptation of the sys-
tem to the mission’s different phases and to operational condition changes [61].
For example, a request to use a different set of PSTs can be issued by the ground
mission control or autonomously by the onboard system through the spacecraft
AOCS when an event implies changing the partitions’ temporal requirements.
Furthermore, the inclusion of onboard update of PSTs features in the AIR archi-
tecture introduces another level of reconfigurability since it allows the introduc-
tion of new PSTs according to new requirements imposed by unexpected events
during a mission.

5.3 PSTs update algorithm analysis

The requirements for code efficiency and bounded execution times should be
met during the implementation of the update of the PSTs set operation, although
maintaining the safety and timeliness of the remaining system functions.

5.3.1 Code complexity

Code complexity increases the probability of there being software bugs and re-
quires more efforts on the verification, validation and certification process. A
metric for code complexity concerns its size, in source lines of code (SLOC). To
compare programs written by distinct developers, the use of standardized ac-
counting methods is required, such as the logical source lines of code (logical
SLOC) metric of the Unified CodeCount tool [62]. Other typical software metric
is the cyclomatic complexity (CC), which gives an upper bound for the number
of tests needed for full branch coverage, and a lower bound for those needed for
full path coverage. The Table 5.1 shows the logical SLOC and CC values for the
C implementation of the XAPEX PSTUPDATE primitive and the AIR Partition
Scheduler [61].

40 CHAPTER 5. UPDATING PARTITION SCHEDULES

Table 5.1: Logical SLOC and cyclomatic complexity (CC) for the XAPEX PST-
UPDATE primitive and the AIR Partition Scheduler

Logical SLOC CC

XAPEX PSTUPDATE 9 4

AIR Partition Scheduler 13 4

5.3.2 Computational complexity

This section focus on the computational complexity analysis for the
XAPEX PSTUPDATE primitive (Algorithm 3). Access to multielement structures,
such as schedules and newSchedules, is made by index thus the inherent complex-
ity does not depend on the number of elements.

Searching the set of the updated PSTs (newSchedules in Algorithm 3) to find
one PST that matches with the currently selected PST (schedulescurrentSchedule in
Algorithm 3) is a linear operation (lines 4 and 5). In the best case, this wields
O(1), which happens if the first PST in the set of the updated PSTs is identical to
the one currently selected. In the worst case, this operation wields O(n), where n
is the number of PSTs, since it may be necessary to compare all the PSTs in the
updated set until reach one that is identical to the PST currently active. Verify-
ing if two PSTs are identical is also a linear operation (Algorithm 3, line 5). This
comparison involves verifying whether the MTF values and the number of pre-
emption points of the two PSTs being compared are equal, and; verifying, for each
preemption point, whether the same clock tick corresponds to the same partition.
PSTs that do not meet these conditions are considered non-identical. This opera-
tion wields O(m), where m is the number of preemption points. The remaining
XAPEX PSTUPDATE instructions wields O(1).

The overall computational complexity of the XAPEX PSTUPDATE primitive
wields O(m) × O(n) = O(mn). In practice, n corresponds to the number of dif-
ferent mission phases. The expected value for m is the maximum number of
partition preemption points.

5.4 Proof-of-concept prototype and evaluation

5.4.1 Prototyping

Aiming to demonstrate the onboard update of partition scheduling tables, it was
modified an existing prototype of an AIR-based system to include the facilities
for the update of PSTs.

The AIR prototype is constituted by several mockup applications based on

5.4. Proof-of-concept prototype and evaluation 41

Real-Time Executive for Multiprocessor Systems (RTEMS), version 4.8.1 [63].
The prototype includes four partitions, each one running an application rep-

resenting typical spacecraft functions (a subset of these functions are pictured in
Fig. 5.2). Partition P1 is associated to the AOCS functions; P2 features the commu-
nications functions, being responsible for the execution of the Update Handler;
P3 concerns OBDH, and; P4 features the TTC operations.

In order to allow the visualization and interaction during the proof of con-
cept demonstration, the prototype takes profit of VITRAL, a text-mode windows
manager for RTEMS [64], illustrated in Fig. 5.2. Each partition has its own output
window, which presents relevant information concerning the partitions’ applica-
tions. There are also two windows allowing the observation of the behaviour of
AIR components. For demonstration purposes, the support for keyboard interac-
tion allows the activation of the update of PSTs (Algorithm 3) and the switching
between different partition scheduling tables (Algorithm 1). The demonstration
was implemented for an Intel IA-32 target platform and tested on the QEMU em-
ulator [65].

Figure 5.2: Prototype implementation demonstration, featuring the VITRAL text-
mode windows manager for RTEMS

5.4.2 Evaluation

The behaviour of the partition scheduling was analysed during the update of
a new set of PSTs. In order to test different scenarios and compare the results,
the demonstration was set up with different possible configurations. Then, there
were performed several operations in a specific execution order. These operations
concern the activation of the PSTs set update, which is achieved through a call to
the XAPEX PSTUPDATE primitive (Algorithm 3), and; the request to switch to

42 CHAPTER 5. UPDATING PARTITION SCHEDULES

a different schedule, through a call to the APEX SWITCH SCHEDULE primi-
tive (Algorithm 1). In the real world, a request to change to a different schedule
may be either issued autonomously by the spacecraft or upon decision from the
ground control [4].

Table 5.2: Partition scheduling tables used in test scenarios (for the prototype
implementation demonstration)

Preemption point Partitions (per PST)
(time units) χ1 χ2 ≡ χ′

2 χ′
1

0 P1 P1 P4

200 P2 P4 P1

300 P3 P3 P4

400 P4 P2 P2

1000 P2 P4 P4

1100 P3 P3 P3

1200 P2 P2 P1

MTF = 1300 time units

For demonstration purposes, the system is configured with a set of two PSTs,
χ1 and χ2. The set of redefined PSTs is composed by two PSTs, χ′

1 and χ′
2, de-

scribed in Fig. 5.3 and Table 5.2. The PST χ′
1 is an update of χ1, whereas the

PST χ′
2 is identical to χ2 and therefore both assume the role of safe-mode PSTs

(Fig. 5.1). The referred PSTs have all a MTF of 1300 time units.
At first were defined four base scenarios and then were discussed some vari-

ations. The following test scenarios 1 to 4 cover those four cases, which concern
update currently active/inactive PSTs with/without a pending switch schedule
request (Algorithm 3, line 3).

Test scenarios:

1. The initial PST is χ1. There is no switch schedule request pending (Algo-
rithm 3, line 3). The update of PSTs set is requested, simulating the issuing
of a command with this purpose from the ground mission control, but the
new set of PSTs is not activated.

Result: the system continues its execution according to PST χ1. Since a con-
dition required to the safe update was not accomplished (Algorithm 3, line
5), the update cannot be applied. The XAPEX PSTUPDATE algorithm in-
voked by partition P2 remains in loop (Algorithm 3, line 2) until the referred
condition is reached, which only occurs if a request to switch to PST χ2 is
issued. This scenario is addressed in Fig. 5.1.

5.4. Proof-of-concept prototype and evaluation 43

Figure 5.3: Partition scheduling tables used in test scenarios

2. The initial PST is χ1. There is no switch schedule request pending (Algo-
rithm 3, line 3). A switch to PST χ2 is requested. Then, the update of PSTs
set is activated. After the current MTF, the system starts being scheduled by
χ2. When the process which remained blocked on the XAPEX PSTUPDATE
primitive’s loop is scheduled for execution, during a time window assigned
to partition P2, the update is applied (the conditions represented in lines 3
and 5 of the Algorithm 3 were accomplished). Following, a switch to PST
χ1 is requested.

Result: After the end of the current MTF, the system starts being scheduled
by the updated PST χ′

1.

3. The initial PST is χ2. There is no switch schedule request pending (Algo-
rithm 3, line 3). The update of PSTs set is activated. The update is applied
during a time window of the partition P2 (the conditions represented in
lines 3 and 5 of the Algorithm 3 were accomplished). Following, a switch to
PST χ1 is requested.

Result: After the end of the current MTF, the system starts being scheduled
by the updated PST χ′

1.

4. The initial PST is χ2. There is no switch schedule request pending (Algo-
rithm 3, line 3). A switch to PST χ1 is requested. Then, the update of PSTs
set is activated.

44 CHAPTER 5. UPDATING PARTITION SCHEDULES

Result: After the end of the current MTF, the system starts being scheduled
by the PST χ1. The update is not applied (the condition represented in line
3 of the Algorithm 3 was not accomplished). This will happen eventually
when the system conditions change. In this case we face another scenario,
namely the test scenario 2. The update would only be applied during the
execution of the Update Handler process in the partition P2, after an effec-
tive schedule switch to the PST χ2. Thus, on the next schedule switch to PST
χ1, the system would start being scheduled by the updated PST χ′

1.

Additional tests concern modifying χ′
1 and simulate the update of a new set

of PSTs to the spacecraft. The purpose of these tests was to verify that the ob-
tained results were in conformity with those achieved in the four base scenarios
previously described. The first additional test concerns defining χ′

1 with differ-
ent time window durations. The second additional test defines a PST χ′

1 with no
time window attributed to the partition P3. Switching to this PST may be useful
in a mission phase that requires more processing time to be assigned to a specific
spacecraft function. For example, during an orbit insertion maneuver, the AOCS
may require more processing time than the OBDH. The third additional test uses
a MTF of 650 time units in the definition of χ′

1. The results obtained through the
alternative definitions of the PST χ1 correspond to the same as those described in
test scenarios 1 to 4.

5.5 Summary

This chapter presented a methodology for the update of partition scheduling ta-
bles, addressing the requisites of time- and space-partitioned systems. The up-
date of partition scheduling tables is motivated by the need to adapt to chang-
ing and unexpected environmental conditions, and to overcome severe incidents
or internal failures during the system operation. This chapter detailed and dis-
cussed the algorithm behind the onboard update methodology.

The main results of this chapter produced two publications, listed below. The
reconfigurability issues addressed in Section 5.2.3 were published in:

J. Rosa, J. Craveiro, and J. Rufino, “Adaptability and Survivability in Space-
borne Time- and Space-Partitioned Systems”, in EUROCON 2011 - Interna-
tional Conference on Computer as a Tool, Lisboa, Portugal, Apr. 2011. [12]

A second article, accepted for publication at the time of the writing of this
thesis, described the technical details, demonstration prototype, and evaluation
of the methodology for update of partition scheduling tables:

5.5. Summary 45

J. Rosa, J. Craveiro, and J. Rufino, “Safe Online Reconfiguration of Time- and
Space-Partitioned Systems”, in 9th IEEE International Conference on Industrial
Informatics (INDIN’2011), Caparica, Lisboa, Portugal, Jul. 2011, accepted for
publication. [11]

The next chapter describes the methodology, algorithms and implementation
results for the update of partition software components.

Chapter 6

Updating partition software
components

This chapter addresses the update of partitions in time- and space-partitioned
systems. Here, the focus is on the update of partitions on idle mode. A parti-
tion in the idle mode is shut down and not scheduling or executing application
processes [4, 52]. This chapter describes the several steps of a methodology for
update partitions. Then, it explains how adaptability can be achieved with the
possibility to perform update of partitions, and the impact of the update method-
ology on the software development process. Finally, this chapter does the presen-
tation of the proof-of-concept prototype and evaluation.

6.1 Safe update of partitions

6.1.1 The XAPEX PUPDATE service

Similarly to the creation of the primitive XAPEX PSTUPDATE to enable the up-
dates of PSTs, the APEX need to be extended with a specific service, named
XAPEX PUPDATE, to allow the update of partitions. This service is provided
in the XAPEX interface to specifically authorized partitions, such as the com-
munications partition. The XAPEX PUPDATE primitive concerns the update of
partitions on the idle mode and its main goal is the safe replace of an old partition
by a new one with updated software components.

The primitive XAPEX PUPDATE receives the id of the partition to be updated
and the updated software components as specified in Algorithm 4. This primitive
simply invokes an AIR PMK function that will initiate the update process (Algo-
rithm 4). The execution control of the partition under update is transferred to the
AIR PMK during this process. For simplification purposes, the Update Handler
provides the partition and the updated software components on the same call to
the AIR PMK.

47

48 CHAPTER 6. UPDATING PARTITION SOFTWARE COMPONENTS

Algorithm 4 XAPEX PUPDATE primitive
1: function XAPEX PUPDATE(partitionId ,updatedComponents)
2: PMK PUPDATE(partitionId ,updatedComponents)
3: end function

It is foreseen the inclusion of dynamic memory allocation/deallocation ser-
vices, presented in Table 6.1, in the XAPEX interface in order to enable the up-
date of partitions in the active mode, which is the normal operational mode of a
partition, i. e., in which processes are being executed [4, 52]. The original APEX
interface does not include dynamic memory allocation/deallocation services due
to the non-determinism that these operations could introduce to the system ex-
ecution thus affecting the timeliness of operations. The adoption of these ser-
vices in real-time systems requires a deep analysis and may involve the study of
the recommendations present in standards for the implementation of embedded
software, such as MISRA C rules [42] or Galileo SW-DAL B [66]. In the context
of this thesis’ work, an early implementation of the referred services has been
approached, although this needs to be consolidated in the future.

Regarding memory management aspects, the methodology described in this
thesis assumes that the new version of the partition that is being updated does
not exceed the memory size of the partition that will be replaced, this is, the up-
dated partition can be placed in the same memory addressing space of the parti-
tion being updated without the use of dynamic memory allocation/deallocation
techniques.

Table 6.1: XAPEX memory management services foreseen
Primitive Short description

XAPEX MALLOC Allocate memory from the partition’s free mem-
ory pool

XAPEX MFREE Deallocate a memory zone for the partition’s free
memory pool

XAPEX MCLAIM Claim memory from a specified partition for the
partition’s free memory pool

The step-by-step methodology implemented for the update of partitions in
the idle mode is described as follows.

6.1.2 Onboard update of partitions in the idle mode

The update procedures of a partition whose execution of software components
can be stopped are simplified to a certain extent, allowing claim in advance and

6.1. Safe update of partitions 49

reuse the memory of the original application to host the updated software com-
ponents of the partition. After the update of partition software components the
application should be restarted using a cold start procedure, which means it will
be restarted discarding the previous execution context.

Offline verification and validation of software modifications

This step corresponds to the AIR original verification and validation process of
software components to ensure that safety and timeliness would not be com-
promised with the introduction of new components. Due to the composability
properties, this may be done by software development teams or providers inde-
pendently. Application testing benefits from the inclusion of tools such IMADE,
from the GMVIS-Skysoft Portugal company, which supports the development,
test, simulation and analysis of software applications without the need to access
the target platform [67].

Extraction of updated components

The final goal of this step is to identify which components need to be uploaded to
the spacecraft onboard computer, extract them from the complete system object
file, and create a new one composed only of the modified components. Using
appropriate tools, this object file should be built according to a specific format in
order to be recognized by the Update Handler. After this step, the new object file
will be uploaded to the spacecraft.

Transfer of the updated components

In the spacecraft, the application software components are received by the Up-
date Handler in the partition hosting the communication functions. The Up-
date Handler upon reception of these components invokes the XAPEX PUPDATE
primitive to initiate the update process.

The update of a partition requires stopping that partition, i. e., change it to the
idle mode, to do the replacement. A first approach involves the modification of
the original AIR PMK Time Manager internal component, responsible for handle
the scheduling and dispatching of partitions, in order to stop the dispatch of the
partition that is being updated. Then, the partition will stop its execution calling
the appropriate APEX primitive.

The PMK Time Manager, implemented by the AIR clock tick function repre-
sented in Algorithm 5, passes the interrupt to the PMK Partition Scheduler and
then to the PMK Partition Dispatcher, responsible for secure the management of
all provisions required to guarantee spatial segregation [4]. The AIR clock tick

50 CHAPTER 6. UPDATING PARTITION SOFTWARE COMPONENTS

function is called at every system clock tick interrupts, passed to the PMK Time
Manager. This function, presented in Algorithm 6, was modified in order to jump
the partition dispatcher during an update. This happens when the condition
updateActivated ∧ heirPartition.number = partitionId is true (Algorithm 6, line 4).
This allows the AIR PMK to perform the update. The scheduler, however, con-
tinues its normal execution. At this level, the update is completely transparent.

Algorithm 5 AIR PMK Time Manager (original)
1: function AIR CLOCK TICK

2: number total clock ticks ← number total clock ticks + 1
3: AIR PARTITION SCHEDULER()
4: AIR PARTITION DISPATCHER()
5: if hasInitialized then
6: number active clock ticks ← number active clock ticks + 1
7: end if
8: end function

Algorithm 6 Modified version of the AIR PMK Time Manager
1: function AIR CLOCK TICK

2: number total clock ticks ← number total clock ticks + 1
3: AIR PARTITION SCHEDULER()
4: if ¬(updateActivated ∧ heirPartition.number = partitionId) then
5: AIR PARTITION DISPATCHER()
6: end if
7: if hasInitialized then
8: number active clock ticks ← number active clock ticks + 1
9: end if

10: end function

The same result could be achieved modifying the current partition scheduling,
using a specific PST to perform the updates. However, this would imply to have
available specific PSTs to permit the update of any partition required (i. e., a PST
without the partition P1 to allow the update of P1, other without P2, and so on),
and performing schedule switches between PSTs (a schedule switch to the PST
without the partition being updated, and a switch to the original PST after the
update). This approach, although, involves the execution of several operations,
whereas the technique described in Algorithm 6 simply lies in the validation of a
condition (Algorithm 6, line 4), at a lower level.

The AIR PMK, after stopping the dispatch of the partition being updated upon
the call from XAPEX PUPDATE, will signal that partition to finalize its execution.
The partition, duly authorized to this effect, performs its shut down invoking an
APEX primitive, which in turn calls the appropriate POS function.

6.1. Safe update of partitions 51

Activation of updated components

As soon as the old partition ends its execution through the shut down process,
the AIR PMK proceeds with the proper placement of the updated software com-
ponents in the memory addressing space of the partition. The approach followed
is simplified to facilitate the integration of the updated components in the mem-
ory space assigned to the old partition thereby reusing and sparing memory re-
sources.

The new version of the partition is then initialized through a cold start action
discarding the execution context of the old partition. This initialization is done
through a process similar to the one performed during the initialization of the
partition operating systems at system startup.

6.1.3 Achieving adaptability

Adaptation to changing or unexpected conditions is of great importance for a
mission’s survival. AIR architecture employs mechanisms such as mode-based
schedules to maintain or improve the system effectiveness when facing internal
or external changes [61]. Furthermore, the possibility of update partition soft-
ware components, enabled through the methodology described in this thesis,
adds more potential to the AIR architecture regarding system adaptability, since
it allows the modification of partitions to include new features during the course
of a mission. The methodology described offers flexible system adaptation as the
partition software components updated are not forced or expected to have the
functionalities provided by the old version of the partition.

6.1.4 Impact of the update methodology

The methodology defined for updating PSTs and software components intro-
duces new constraints in the software development lifecycle, with major impact
on the verification and validation phases, and introduces new steps, namely those
related to the extraction of the modified components that will be transferred later
to the spacecraft’s onboard computing platform. The impact of the methodology
is illustrated in Fig. 6.1 (cf. Fig. 3.5, Chapter 3, page 27), where only the partitions
related to new mission requirements need to be modified, along with the new sets
of PSTs. The model presented in Fig. 6.1 represents requirement analysis, design
and implementation, followed by the extraction and format of the components
that are being updated.

52 CHAPTER 6. UPDATING PARTITION SOFTWARE COMPONENTS

Figure 6.1: Impact of the update methodology on the software development life-
cycle

6.2 Proof-of-concept prototype and evaluation

6.2.1 Prototyping

The functionality for the update of partitions was implemented in the scope of
an AIR-based system prototype. For demonstration purposes, the prototype has
three RTEMS-based mockup applications, each one concerning a spacecraft sub-
system in the domain of a partition. Partition P1 is associated to the AOCS; parti-
tion P2 concerns the communications functions, being responsible for the recep-
tion and activation of the updates through the Update Handler component, and;
partition P3 features the OBDH subsystem. The partitions in this prototype are
scheduled by the partition scheduling table χ1, described in Table 6.2.

Table 6.2: Partition scheduling table χ1 for the partitions update prototype
Preemption point (time units) Partition

0 P1

200 P2

300 P3

400 P1

1000 P2

1100 P3

1200 P2

MTF = 1300 time units

Like the prototype adapted for the demonstration of the safe update of PSTs,
described in the previous chapter, the prototype concerning the update of par-
titions takes profit of VITRAL windows manager for RTEMS applications [64],
illustrated in Fig. 6.2. VITRAL windows manager has an output window associ-
ated to each partition, a debug window illustrating the scheduling of partitions,
and an AIR PMK Monitor window showing the initialization/termination of par-
titions. The activation of the update of partitions is made through interaction with

6.2. Proof-of-concept prototype and evaluation 53

keyboard, for demonstration purposes. This prototype was implemented for an
Intel IA-32 target platform and tested on the QEMU emulator [65].

Figure 6.2: Prototype for the update of partitions, featuring the VITRAL text-
mode windows manager for RTEMS

6.2.2 Evaluation

The update of a partition was tested over the partition P3, simulating OBDH func-
tions. The activation of the update, illustrated in the communications window
(partition P2 running the Update Handler), Fig. 6.3, triggers the update process
at instant 2099, according to the system clock.

Figure 6.3: Activation of the partitions update operation

Figure 6.4 illustrates the moment after the finalization of the execution of P3,
described in the update methodology. This can be observed in the last output
line of the AIR PMK Monitor window. Finally, Fig. 6.5 illustrates the moment af-
ter the update process. It shows, in the communications window, that the update

54 CHAPTER 6. UPDATING PARTITION SOFTWARE COMPONENTS

has ended at instant 3399. The AIR PMK Monitor window shows the initializa-
tion of the update partition, referred to as P ′

3, executing the new version of the
OBDH subsystem. P ′

3 is a modified version of the partition P3 with different text
labels, for demonstration purposes. The only differences between the two ver-
sions of the OBDH partition concern the strings in the source code. The original
partition P3 had the labels “Acquiring data...” and “: data acquired!” whereas
the new partition P ′

3 has the labels “Handling data...” and “: data handled!”. The
modifications resulted from the update can easily be observed comparing the P3

OBDH window in Fig. 6.4, for instance, with its updated version P ′
3 in Fig. 6.5.

Figure 6.4: Original partition P3 has stopped its execution

Figure 6.5: The updated partition P ′
3 has replaced the original partition P3 and

was initialized

6.3. Summary 55

6.3 Summary

This chapter addressed a methodology for the update of partition software com-
ponents. It focused on the update of partitions in the idle mode. It described
the XAPEX PUPDATE service, to allow the activation of the update. Then, this
chapter addressed adaptability concerns and explained the impact of the update
methodology on the software development process. Finally, this chapter pre-
sented the proof-of-concept prototype and demonstration of the integration of
partitions update features on the AIR architecture.

The adaptability concerns, addressed in Section 6.1.3, contributed the results
presented in the following publication:

J. Rosa, J. Craveiro, and J. Rufino, “Adaptability and Survivability in Space-
borne Time- and Space-Partitioned Systems”, in EUROCON 2011 - Interna-
tional Conference on Computer as a Tool, Lisboa, Portugal, Apr. 2011. [12]

The next chapter ends this dissertation, issuing concluding remarks and fu-
ture work.

Chapter 7

Conclusion

The objective of this thesis was the development of an onboard reconfiguration
and update methodology for time- and space-partitioned (TSP) architectures aim-
ing the aerospace systems, having the AIR architecture, an ARINC 653-based
partitioned architecture for aerospace applications featuring strong temporal and
spatial segregation, as the background technology.

The development of the onboard reconfiguration and update methodology
was motivated by the need to adapt to changing and unexpected environmental
conditions, thus overcome severe incidents or internal failures. This way, it is
of extreme importance to have the possibility to reconfigure system parameters,
such as partition scheduling tables, and to update partition software components
during a mission, i. e., during the operational mode of a space vehicle and with-
out the need to stop the system execution. This may contribute to reach a safe
system upon the occurrence of environmental changes or spacecraft failures, thus
increasing the mission’s survivability.

The main contributions of this work were: (i) the definition of an onboard
update methodology for TSP architectures in aerospace systems, concerning the
reconfiguration of the scheduling of the system applications at execution time,
and the update of application software components hosted in partitions, and;
(iii) the improvement of the AIR architecture with the safe reconfiguration and
update capabilities.

7.1 Future work

Future development concerns the update of a partition while maintaining it in the
active mode, i. e., in which partition processes are being executed [4, 52]. This re-
quires the proper implementation of dynamic memory allocation services, which
would require deep analysis and more time. The ability to update software com-
ponents of a partition in the active mode is deemed appropriate to the update

57

58 CHAPTER 7. CONCLUSION

of critical spacecraft functions, namely avionics. The update of a partition in
the active mode may further need to cope with update specific parts of a parti-
tion (e. g., a software procedure), which may benefit from the developments in
dynamic software update area [51, 50] (Chapter 2), although applying the refer-
enced methodologies to TSP systems.

The spacecraft computational system may benefit of roll-back update features
to allow flexible and robust replacement of the original partition software or con-
figurations, for example to replace the original application after a certain mission
phase in order to spare memory resources or reconfigure system parameters ac-
cording to old configurations. Although, this may require the implementation of
a partition version control system thus introducing additional complexity to the
spacecraft software. Therefore, it should be studied how to incorporate this fea-
ture in spacecraft computational system, and how to implement it in an efficient
manner.

Besides the focus on the update of applications in the context of partitions,
it may be useful to proceed with updates of the operating system kernel itself,
without modifying the partition applications. The update of common operating
systems, such as Linux, without the need to restart the execution has been stud-
ied and applied to diverse purposes [68, 69, 70, 71]. However, the adaptation of
common techniques to the update of operating systems suitable to safety-critical
systems, such as those found in the aerospace industry, still requires great efforts
in the analysis and design of referred techniques. Other challenges concern the
update of operating system kernels in TSP architectures.

Bibliography

[1] J. Rushby, “Partitioning in avionics architectures: Requirements, mecha-
nisms and assurance,” SRI International, California, USA, Tech. Rep. NASA
CR-1999-209347, Jun. 1999.

[2] TSP Working Group, “Avionics time and space partitioning user needs,”
Technical Note TEC-SW/09-247/JW, Aug. 2009, ESA, European Space Re-
search and Technology Centre.

[3] J. Rufino, J. Craveiro, T. Schoofs, C. Tatibana, and J. Windsor, “AIR Tech-
nology: a step towards ARINC 653 in space,” in Proc. DASIA 2009 “DAta
Systems In Aerospace” Conf. Istanbul, Turkey: EUROSPACE, May 2009.

[4] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and time-
liness in a new generation of aerospace systems,” in Architecting Dependable
Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and C. Gacek, Eds., vol.
6420. Berlin Heidelberg: Springer, 2010.

[5] M. Tafazoli, “A study of on-orbit spacecraft failures,” Acta Astronautica,
vol. 64, no. 2-3, pp. 195–205, 2009.

[6] P. Plancke and P. David, “On board computer & data systems,” European
Space Agency (ESA), Technology Harmonisation - Technical Dossier Issue 1,
Revision 2, Feb. 2003.

[7] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, W. H. Sanders, and S. William H.,
“Low-cost error containment and recovery for onboard guarded software
upgrading and beyond,” IEEE Trans. Computers, vol. 2, pp. 121–137, 2002.

[8] M. Jones, “What really happened on Mars Rover Pathfinder,” The Risks Di-
gest (http://catless.ncl.ac.uk/Risks), Forum on Risks to the Public in Com-
puters and Related Systems Issue 49, Dez 1997.

[9] D. Brown and G. Webster, “Now a Stationary Research Platform, NASA’s
Mars Rover Spirit Starts a New Chapter in Red Planet Scientific Stud-
ies,” http://www.nasa.gov/mission pages/mer/news/mer20100126.html,
Jan 2010.

59

http://www.nasa.gov/mission_pages/mer/news/mer20100126.html

60 BIBLIOGRAPHY

[10] ——, “NASA Trapped Mars Rover Finds Evidence of Subsurface Wa-
ter,” http://www.nasa.gov/mission pages/mer/news/mer20101028.html,
Oct 2010.

[11] J. Rosa, J. Craveiro, and J. Rufino, “Safe online reconfiguration of time- and
space-partitioned systems,” in 9th IEEE International Conference on Industrial
Informatics (INDIN’2011), Caparica, Lisboa, Portugal, Jul. 2011, accepted for
publication.

[12] ——, “Adaptability and survivability in spaceborne time- and space-
partitioned systems,” in EUROCON 2011 - International Conference on Com-
puter as a Tool, Lisboa, Portugal, Apr. 2011.

[13] ——, “Exploiting AIR composability towards spacecraft onboard software
update,” in Actas do INForum - Simpósio de Informática 2010, Braga, Portugal,
Sep. 2010.

[14] J. Rufino, J. Rosa, and J. Craveiro, “Desenvolvimento e actualização de soft-
ware para sistemas aeroespaciais em arquitecturas compartimentadas,” Fac-
uldade de Ciências da Universidade de Lisboa, AIR-II Technical Report RT-
10-10, Oct. 2010.

[15] J. Rosa, J. Craveiro, and J. Rufino, “Challenges in the design and develop-
ment of spacecraft onboard software update,” Faculdade de Ciências da
Universidade de Lisboa, AIR-II Technical Report RT-10-12, Nov. 2010.

[16] J. R. Wertz and W. J. Larson, Eds., Space Mission Analysis and Design, 3rd ed.
Microcosm Press and Kluwer Academic Publishers, 1999.

[17] D. Doody, “Basics of Space Flight,” http://www2.jpl.nasa.gov/basics/bd.
php, Nov 2010, NASA Jet Propulsion Laboratory, California Institute of
Technology.

[18] P. Fortescue, J. Stark, and G. Swinerd, Eds., Spacecraft Systems Engineering,
3rd ed. John Wiley and Sons, 2003.

[19] “Fault-detection, fault-isolation, and recovery (FDIR) techniques,” NASA,
Johnson Space Center (JSC), Tech. Rep. Technique DFE-7.

[20] P. Rathsman, J. Kugelberg, P. Bodin, G. D. Racca, B. Foing, and L. Stagnaro,
“Smart-1: Development and lessons learnt,” Acta Astronautica, vol. 57, no. 2-
8, pp. 455–468, 2005, infinite Possibilities Global Realities, Selected Proceed-
ings of the 55th International Astronautical Federation Congress, Vancouver,
Canada, 4-8 October 2004.

http://www.nasa.gov/mission_pages/mer/news/mer20101028.html
http://www2.jpl.nasa.gov/basics/bd.php
http://www2.jpl.nasa.gov/basics/bd.php

Bibliography 61

[21] A. Meyer, “Genesis: Search for Origins,” http://genesismission.jpl.nasa.
gov/gm2/spacecraft/index.html, nov 2009.

[22] O. Camino, M. Alonso, D. Gestal, J. de Bruin, P. Rathsman, J. Kugelberg,
P. Bodin, S. Ricken, R. Blake, P. P. Voss, and L. Stagnaro, “Smart-1 operations
experience and lessons learnt,” Acta Astronautica, vol. 61, no. 1-6, pp. 203–
222, 2007, bringing Space Closer to People, Selected Proceedings of the 57th
IAF Congress, Valencia, Spain, 2-6 October, 2006.

[23] J.-R. C. Cook, “Engineers Diagnosing Voyager 2 Data System,” http://www.
jpl.nasa.gov/mobile/news/index.cfm?release=2010-151, May 2010, NASA
Jet Propulsion Laboratory, California Institute of Technology.

[24] J. Sølvhøj, M. Breiting, and M. B. Thomsen, “Onboard computer for pico
satellite,” Technical University of Denmark, Tech. Rep., Jan 2002.

[25] CPUShack.Net, “The CPUs of Spacecraft Computers in Space,” http://
www.cpushack.com/space-craft-cpu.html, 2005.

[26] C. Watkins and R. Walter, “Transitioning from federated avionics architec-
tures to integrated modular avionics,” in Digital Avionics Systems Conference,
2007. DASC ’07. IEEE/AIAA 26th, Oct. 2007, pp. 2.A.1–1 –2.A.1–10.

[27] “Test method standard, microcircuits,” Department of Defense, United
States of America, Tech. Rep. MIL-STD-883, Feb 2010.

[28] G. D. Racca, A. Marini, L. Stagnaro, J. van Dooren, L. di Napoli, B. H. Foing,
R. Lumb, J. Volp, J. Brinkmann, R. Grünagel, D. Estublier, E. Tremolizzo,
M. McKay, O. Camino, J. Schoemaekers, M. Hechler, M. Khan, P. Rathsman,
G. Andersson, K. Anflo, S. Berge, P. Bodin, A. Edfors, A. Hussain, J. Kugel-
berg, N. Larsson, B. Ljung, L. Meijer, A. Mörtsell, T. Nordebäck, S. Persson,
and F. Sjöberg, “Smart-1 mission description and development status,” Plan-
etary and Space Science, vol. 50, no. 14-15, pp. 1323–1337, 2002.

[29] J. Andersson, J. Gaisler, and R. Weigand, “Next generation multipurpose mi-
croprocessors,” in Proceedings of the DASIA 2010 “DAta Systems In Aerospace”
Conference. Budapest, Hungary: EUROSPACE, Jun 2010.

[30] “Avionics Architectures, ULC - Avionics Overview,” Dec 2008, Spacebel,
University of Liege.

[31] IEC, “IEC 60027-2: Letter symbols to be used in electrical technology - Part
2: telecommunications and electronics,” aug 2005, International Electrotech-
nical Commission (IEC).

http://genesismission.jpl.nasa.gov/gm2/spacecraft/index.html
http://genesismission.jpl.nasa.gov/gm2/spacecraft/index.html
http://www.jpl.nasa.gov/mobile/news/index.cfm?release=2010-151
http://www.jpl.nasa.gov/mobile/news/index.cfm?release=2010-151
http://www.cpushack.com/space-craft-cpu.html
http://www.cpushack.com/space-craft-cpu.html

62 BIBLIOGRAPHY

[32] H. Silva, A. Constantino, M. Coutinho, D. Freitas, S. Faustino, M. Mota,
P. Colaço, J. Sousa, L. Dias, B. Damjanovic, M. Zulianello, and J. Rufino,
“RTEMS CENTRE - Support and Maintenance CENTRE to RTEMS Operat-
ing System,” in Proc. DASIA 2009 “DAta Systems In Aerospace” Conf. Istan-
bul, Turkey: EUROSPACE, May 2009.

[33] H. Malcom and H. K. Utterback, “Flight software in the space department:
A look at the past and a view toward the future,” Johns Hopkins APL Technical
Digest, vol. 20, no. 4, pp. 522–532, 1999.

[34] M. Pignol, “Cots-based applications in space avionics,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE ’10. European
Design and Automation Association, 2010, pp. 1213–1219.

[35] “Apollo 14 mission report,” NASA, Manned Spacecraft Center, Houston,
Texas, Tech. Rep. NASA MSC-04112, May 1971.

[36] N. G. Leveson, “The role of software in spacecraft accidents,” AIAA Journal
of Spacecraft and Rockets, vol. 41, pp. 564–575, 2004.

[37] A. Ellery, J. Kreisel, and B. Sommer, “The case for robotic on-orbit servicing
of spacecraft: Spacecraft reliability is a myth,” Acta Astronautica, vol. 63, no.
5-6, pp. 632–648, 2008.

[38] A. T. Bahill and S. J. Henderson, “Requirements development, verification,
and validation exhibited in famous failures,” Systems Engineering, vol. 8,
no. 1, pp. 1–14, 2005.

[39] A. J. Kornecki and J. Zalewski, “Certification of software for real-time safety-
critical systems: state of the art,” ISSE, vol. 5, no. 2, pp. 149–161, 2009.

[40] G. C. Necula and P. Lee, “Safe kernel extensions without run-time checking,”
in Proc. USENIX 2nd Symposium on Operating Systems Design and Implementa-
tion, 1996, pp. 28–31.

[41] M. Neukirchner, S. Stein, H. Schrom, and R. Ernst, “A software update ser-
vice with self-protection capabilities,” in DATE, 2010, pp. 903–908.

[42] MIRA Limited, MISRA-C: 2004 Guidelines for the use of the C language in critical
systems, 2004th ed. Watling Street, Nuneaton, Warwickshire CV100TU, UK:
MIRA Limited.

[43] S. Montenegro, S. Jähnichen, and O. Maibaum, “Simulation-based testing of
embedded software in space applications,” in Workshop: Embedded Systems

Bibliography 63

- Modeling , Technology and Applications 2006, I. 1-4020-4932-3 Springer, Ed.,
2006.

[44] C. Engel, A. Roth, P. H. Schmitt, R. Coutinho, and T. Schoofs, “Enhanced dis-
patchability of aircrafts using multi-static configurations,” in Proceedings of
the Embedded Real Time Software and Systems (ERTS2 2010), Toulouse, France,
2010.

[45] J. Montgomery, “A model for updating real-time applications,” Real-Time
Syst., vol. 27, no. 2, pp. 169–189, 2004.

[46] L. Sha, “Dependable system upgrade,” in RTSS ’98: Proceedings of the IEEE
Real-Time Systems Symposium. Washington, DC, USA: IEEE Computer So-
ciety, 1998, p. 440.

[47] K.-F. Ssu and H. Jiau, “Online non-stop software update using replicated
execution blocks,” in Computer Software and Applications Conference, 2000.
COMPSAC 2000. The 24th Annual International, 2000, pp. 319 –324.

[48] H. Seifzadeh, A. Kazem, M. Kargahi, and A. Movaghar, “A method for
dynamic software updating in real-time systems,” in Proceedings of the
8th IEEE/ACIS International Conference on Computer and Information Science,
Shanghai, PR China, Jun. 2009.

[49] S. M. Ellis, “Dynamic software reconfiguration for fault-tolerant real-time
avionic systems,” Microprocessors and Microsystems, vol. 21, pp. 29–39, 1997.

[50] M. Wahler, S. Ritcher, and M. Oriol, “Dynamic software updates for real-
time systems,” in Proceedings of the HotSWUp’09, Orlando, Florida, USA, Oct.
2009.

[51] M. Hicks, “Dynamic software updating,” ACM Transactions on Programming
Languages and Systems, vol. 27, no. 6, pp. 1049–1096, Nov. 2005.

[52] AEEC (Airlines Electronic Engineering Committee), “Avionics application
software standard interface, part 1 - required services,” Aeronautical Radio,
Inc., ARINC Spec. 653P1-2, Mar. 2006.

[53] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A portable AR-
INC 653 standard interface,” in Proc. 27th Digital Avionics Systems Conf., St.
Paul, MN, USA, Oct. 2008.

[54] AEEC (Airlines Electronic Engineering Committee), “Avionics application
software standard interface, part 2 - extended services,” Aeronautical Radio,
Inc., ARINC Spec. 653P2-1, Dec. 2008.

64 BIBLIOGRAPHY

[55] J. Craveiro and J. Rufino, “Schedulability analysis in partitioned systems for
aerospace avionics,” in Proc. 15th IEEE Int. Conf. on Emerging Technologies and
Factory Automation (ETFA 2010), Bilbao, Spain, Sep. 2010.

[56] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real time
scheduling framework,” Ada Lett., vol. XXIV, no. 4, 2004.

[57] D. W. Lewis, Fundamentals of Embedded Software: Where C and Assembly Meet,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002.

[58] P. Pushner and C. Koza, “Calculating the maximum execution time of real-
time programs,” Journal of Real-Time Systems, vol. 1, pp. 160–176, Sep. 1989.

[59] A. Colin and I. Puaut, “Worst-case execution time analysis of the rtems real-
time operating system,” in Proceedings of the 13th Euromicro Conference on
Real-Time Systems, ser. ECRTS ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 191–.

[60] “Hard real-time system development,” in Embedded Systems Design, ser.
LNCS, B. Bouyssounouse and J. Sifakis, Eds., vol. 3436. Berlin Heidelberg:
Springer-Verlag, 2005, pp. 10–14.

[61] J. Craveiro and J. Rufino, “Adaptability support in time- and space-
partitioned aerospace systems,” in Proceedings of the Second International Con-
ference on Adaptive and Self-adaptive Systems and Applications (ADAPTIVE
2010), Lisboa, Portugal, Nov. 2010, pp. 152–157.

[62] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A SLOC counting stan-
dard,” in The 22nd Int. Ann. Forum on COCOMO and Systems/Software Cost
Modelling, Los Angeles, USA, 2007.

[63] RTEMS C User’s Guide. On-Line Applications Research Corporation, 2006,
4.8.0.

[64] M. Coutinho, C. Almeida, and J. Rufino, “VITRAL - a text mode window
manager for real-time embedded kernels,” in Proc. of the ETFA 2006, Prague,
Czech Republic, Sep. 2006, pp. 1254–1260.

[65] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings of
the annual conference on USENIX Annual Technical Conference, ser. ATEC ’05.
Berkeley, CA, USA: USENIX Association, 2005.

[66] G. Industries, “Galileo software standards (GSWS),” 24/05/2004.

Bibliography 65

[67] T. Schoofs, S. Santos, C. Tatibana, J. Anjos, J. Rufino, and J. Windsor, “An
Integrated Modular Avionics development environment,” in Proceedings of
the DASIA 2009 “DAta Systems In Aerospace” Conference. Istanbul, Turkey:
EUROSPACE, May 2009.

[68] K. Makris and K. D. Ryu, “Dynamic and adaptive updates of nonquiescent
subsystems in commodity operating system kernels,” in In EuroSys’07 Conf,
Lisboa, Portugal, Mar. 2007.

[69] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel up-
dates,” in In EuroSys’09, 2009.

[70] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “Opus: Online patches
and updates for security,” in In 14th USENIX Security Symposium, 2005, pp.
287–302.

[71] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live updating op-
erating systems using virtualization,” in Proceedings of the 2nd international
conference on Virtual execution environments, ser. VEE ’06. New York, NY,
USA: ACM, 2006, pp. 35–44.

	Acknowledgements
	Abstract
	Resumo
	Resumo alargado
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Introduction
	Motivation
	Goals and contributions
	Institutional context
	Publications
	Document outline

	Background
	Spacecraft systems overview
	Onboard computers
	Common faults in spacecraft
	Verification and validation process
	Software update
	Summary

	AIR Technology design
	System architecture
	Portable Application Executive (APEX) interface
	AIR Health Monitor
	Interpartition communication

	Schedulability
	Composability
	Build and integration process
	Partition build process
	System integration
	Impact on the software development lifecycle

	Summary

	Problem definition
	Computational model
	Defining requirements and components
	Integration on spacecraft onboard platform

	Open challenges in onboard software update
	Problem definition
	Proposed methodology

	Summary

	Updating partition schedules
	Scheduling partitions
	Safe update of partition schedules
	The XAPEX_PSTUPDATE service
	Onboard update of PSTs
	Achieving reconfigurability

	PSTs update algorithm analysis
	Code complexity
	Computational complexity

	Proof-of-concept prototype and evaluation
	Prototyping
	Evaluation

	Summary

	Updating partition software components
	Safe update of partitions
	The XAPEX_PUPDATE service
	Onboard update of partitions in the idle mode
	Achieving adaptability
	Impact of the update methodology

	Proof-of-concept prototype and evaluation
	Prototyping
	Evaluation

	Summary

	Conclusion
	Future work

	Bibliography

