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Abstract
System architecting is concerned with exploring the tradespace of early, high-level, system design
decisions with a holistic, value-centric view. In the last few years, several tools and methods have been

developed to support the system architecting process, focusing on the representation of an architecture as
a set of interrelated decisions. These tools are best suited for applications that focus on breadth - i.e.,

enumerating a large and representative part of the architectural tradespace -as opposed to depth -
modeling fidelity.

However, some problems in system architecting require good modeling depth in order to provide useful
results. In some cases, a very large body of expert knowledge is required. Current tools are not designed
to handle such large bodies of knowledge because they lack scalability and traceability. As the size of the

knowledge base increases, it becomes harder: a) to modify existing knowledge or add new knowledge; b)
to trace the results of the tool to the model assumptions or knowledge base.

This thesis proposes a holistic framework for architecture tradespace exploration of large complex
systems that require a large body of expert knowledge. It physically separates the different bodies of
knowledge required to solve a system architecting problem (i.e., knowledge about the domain, knowledge
about the class of optimization or search problem, knowledge about the particular instance of problem) by
using a rule-based expert system.

It provides a generic population-based heuristic algorithm for search, which can be augmented with rules
that encode knowledge about the domain, or about the optimization problem or class of problems. It
identifies five major classes of system architecting problems from the perspective of optimization and
search, and provides rules to enumerate architectures and search through the architectural tradespace of
each class. A methodology is also defined to assess the value of an architecture using a rule-based
approach. This methodology is based on a decomposition of stakeholder needs into requirements and a
systematic comparison between system requirements and system capabilities using the rules engine.

The framework is applied to the domain of Earth observing satellite systems (EOSS). Three EOSS are
studied in depth: the NASA Earth Observing System, the NRC Earth Science Decadal Survey, and the
Iridium GEOscan program. The ability of the framework to produce useful results is shown, and specific
insights and recommendations are drawn.

Thesis Supervisor: Edward F. Crawley

Title: Ford Professor of Engineering
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1 Introduction

1.1 Overview

Recent research in the field of system architecture studied the use of meta-languages (H.-yung B. Koo,

2005) and architecture decision graphs (Simmons, 2008) for decision support to system architects. This

thesis explores a new class of decision support tools for system architecting based on the incorporation of

a rule-based engine with two main purposes: to improve the scalability of the tool, i.e. the ease to add

new knowledge or modify existing knowledge; and to increase the transparency of the tool, i.e. the

traceability of the results to the modeling assumptions and the knowledge base. This new framework is

called rule-based system architecting, in order to differentiate it from decision-based system

architecting, and meta-language-based system architecting.

Scalability and transparency make rule-based system architecting particularly suitable for knowledge-

intensive problems in system architecting. A knowledge-intensive problem requires a model containing a

large body of expert knowledge in order to produce useful results. As the size of the body of knowledge

included in the model grows, it becomes harder to add new knowledge or modify existing knowledge.

Furthermore, as the model grows, it also becomes harder to understand the reasoning behind the results.

Typically, a system architecting problem is knowledge-intensive when there is complexity in the formal

decomposition of the system (i.e., the system consists of a large number of interconnected elements),

and/or in the functional decomposition of the system (i.e., there are many stakeholders with different sets

of needs that result in long lists of competing system requirements). Furthermore, the knowledge-

intensive nature of these problems is intensified when the link between requirements and capabilities is

non-trivial and exhibits high degrees of emergent behavior and coupling.

Better scalability is obtained in rule-based system architecting through the physical separation of the

different bodies of knowledge required to solve a complex system architecting problem. A system

architecting problem or SAP can be formulated as a constrained, multi-objective combinatorial

optimization problem. For example, many SAPs can be formulated as generalized assignment problems,

or set partitioning problems. Thus, solving an SAP requires knowledge in optimization, search, and

decision analysis on one side (domain-independent knowledge), and knowledge about the domain of

application on the other side (domain-specific knowledge).
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Moreover, part of the domain-specific knowledge will be common to all systems in the domain (e.g. L-

band maximizes sensitivity to soil moisture retrievals), whereas part of the domain-specific knowledge

will also depend on the instance of problem being considered (e.g. specific requirements for the NASA

Earth Observing System). A similar argument applies to domain-independent knowledge: part of this

knowledge is common to all SAPs (e.g., how to search a generic tradespace, or find a Pareto frontier);

part of it is common to all instances of the same class of SAP (e.g., how to efficiently enumerate set

partitioning architectures); and finally part of this knowledge is really dependent on the specific instance

of SAP at hand (e.g., what is the relative importance of the different metrics to the stakeholders).

Separating these bodies of knowledge involves physically putting them on separate files in the decision

support tool. This naturally results in increased scalability, and enables the system architect to focus on

the domain knowledge only, leaving domain-independent knowledge to software and modeling

engineers.

Enhanced transparency is obtained in rule-based system architecting through the construction of an

explanation facility. Every result produced by the tool is accompanied by a description of the important

highlights of the value delivery loop. This is an important feature, as it increases the confidence of the

user on the tool and improves the man-machine interaction, which can potentially lead to better results.

The structure of rule-based expert systems is a convenient framework around which to build an

explanation facility, as the trace of the rules fired during execution is a very good approximation of

the value delivery loop. Furthermore, explanation facilities tend to be knowledge-intensive applications

by themselves, and thus a knowledge-based approach such as a rule-based system is appropriate.

One of the findings of this thesis is that rule-based system architecting is also naturally suited to

model emergent system behavior. This is very important because the value of a system architecture

usually arises from interactions between elements of the architecture, rather than by simple superposition

of independent behaviors. As in agent-based modeling, the behavior of several functional and formal

elements of the system architecture as well as their interactions can be modeled through simple rules that,

once they are simultaneously executed, lead to emergent behavior.

The methodology and tools developed in this thesis are applied to the domain of Earth Observing

Satellite Systems (EOSS). An EOSS can be defined as a collection of Earth observing satellite missions

that together satisfy a set of measurement requirements. EOSS architecting involves three classes of

architectural decisions that affect value delivery the most: selecting the instruments for taking these

mesurements, allocating these instruments into satellites, and scheduling the launch of the resulting

missions.
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EOSS turn out to be a very good domain of application for rule-based system architecting for several

reasons. First, they are undoubtedly complex systems-of-systems with a large number of relevant system

components (namely missions and instruments). Second, they have complexity in the functional domain

as well, because requirements come from all the disciplines of the Earth sciences and all possible remote

sensing technologies is required in order to produce useful results. Third, their value delivery loop is often

driven by emergent behavior. Indeed, in many cases, several aspects of the architecture of EOSS are

driven by factors such as synergies between measurements and data products, or interferences between

instruments on a certain spacecraft.

The architecture of three different EOSS is analyzed in this thesis. The NASA Earth Observing System,

the NRC Earth science decadal survey, and the GEOscan program for the Iridium NEXT hosted

payload opportunity. These EOSS are very different and stretch the tool and methodologies in different

ways. The NASA EOS retrospective case study is used as a benchmark in order to assess the ability of the

tool to produce useful results. Replicating the decisions made in the architecting process of such a

complex system requires high fidelity modeling capabilities. The Decadal Survey is similar in scope and

characteristics to the NASA EOS, but the uncertainty on the instrument characteristics is much higher, as

some of these instruments are still in the early stages of development. The main challenge of the Decadal

case study resides in demonstrating the ability of the tool to capture the main trade-offs between different

mission concepts and bring them up to the program level. Finally, the GEOscan case study concerns an

extremely different architecture.

Comparing traditional architectures based on a few medium or large satellites need to this hosted-payload

based architecture is challenging for many reasons. In particular, the model needs to have enough

modeling fidelity to capture subtle differences between the capabilities of large instruments and Cubesat-

class instruments.

While this thesis is only the first exploratory step towards this new class of architecting tools, it

demonstrates the feasibility of the separation of bodies of knowledge, and the ability of the

framework to handle complex, knowledge-intensive system architecting problems and produce

useful results.
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1.2 System Architecture and System Architecting

In the late 80's, researchers started to realize that some of the concepts used in building architecting and

civil engineering were being used by engineers in charge of designing and building unprecedented, large,

complex systems (Maier & Rechtin, 2000). These concepts included the creation of a separate position for

a lead systems engineer - or system architect - at the interface between the client and the design team, a

more direct engagement of the client in the high-level design of the system, and a holistic, value-centered,

lifecycle view of the system. Rechtin was arguably the first to formalize this concept, and he coined the

term "systems architecting" (Rechtin, 1991). His book with Maier is still considered by many experts the

best introduction to the field (Maier & Rechtin, 2000).

While there are many definitions for system architecture, the architecture of a system essentially is its

highest level design. However, it takes a holistic view that goes beyond traditional design. More

precisely: 1) it takes into account technical and non-technical factors; 2) it is centered in delivering value

to stakeholders as opposed to optimizing performance or cost; 3) it takes into account all the phases of the

lifecycle including manufacturing, testing, operations and disposal.

System architecture is concerned with the earliest decisions for the design of a complex system, and these

decisions are particular, for several reasons: 1) they have to be done in a highly ambiguous context; 2)

they commit the largest part of the lifecycle cost of the system; 3) they have the largest impact on

subsequent design decisions; 4) they have the largest impact on performance, risk, flexibility and other

figures of merit. Once the main architectural decisions are made, the concept or essence of the system is

fixed.

More formally, Crawley et al define architecture as "an abstract description of the entities of a system and

the relationships between those entities" (E. Crawley et al., 2004). Two broad categories of entities are

distinguished: elements of function or processes, i.e., "what the system does" in order to provide value to

the stakeholders; and elements of form, or objects, i.e., "what the system is", or the set of tangible

elements that the system is composed of. The mapping between the main elements of function and the

main elements of form constitutes the concept. The definition of function, form, and concept, allows a

more precise definition of system architecture, also by Crawley: "system architecture is the embodiment

of concept: the allocation of physical/informational function to elements of form, and the definition of

interfaces among the elements and with the surrounding context" (E. F. Crawley, 2011).
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System architecting is the process of creating a system architecture. The typical process is similar to that

of a trade study, and consists of three steps: 1) the system architect(s) select a handful of candidate

architectures; 2) each architecture is assessed, typically in terms of cost and performance; 3) one or two

architectures are selected for further studies. This process is far from being ideal for several reasons,

mostly related to the bias that the human system architect(s) and their organization bring from their

previous experience and expertise. This motivates the use of decision support tools in system architecting,

in order to bring rigor and consistency into the process.

1.3 System architecting, decision analysis, and combinatorial optimization

1.3.1 System Architecting Problems

Simmons showed in his dissertation that the system architecting process can essentially be seen as a

decision making process where the decisions to make concern the description of the entities of the

system, as well as the relationships between them (Simmons, 2008). Therefore, system architecting can

benefit from the literature on decision analysis.

Since the goal of the system architects is to find the best possible system architecture, the process can also

be seen as an optimization problem, where the variables are the architectural decisions to be made, and

the objective function capture value delivery to stakeholders. Constraints can also be added that capture

for example logical interrelationships between the decisions. In particular, optimization problems that

appear in system architecting are typically very hard to solve because: 1) they are non-convex, i.e.,

they have multiple optima; 2) they are integer, mixed-integer, or most often combinatorial, because

variables are integers or Booleans and the set of allowed values for each variable is usually discrete; 3)

they are large-scale, because the domain is usually a combinatorial space; 4) they are non-linear, both in

the objective functions and in the constraints. Consequently, system architecting can also benefit from the

literature on large-scale combinatorial optimization.

Finally, any optimization problem can be reformulated as a search or constraint satisfaction problem by

adequately defining a goal state. Thus, the literature on search and constraint satisfaction from artificial

intelligence is also relevant.

For the rest of this thesis, the term System Architecting Problem (SAP) will be used to designate the

formulation of a real system architecting problem as either: 1) a decision making problem; 2) a

combinatorial optimization problem; 3) or a search problem.
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Note that this definition does not imply a one-to-one mapping between real system architecting problems

and their formulations as SAPs. Indeed, the same real problem can be formulated in as many different

ways as there are mathematical models to represent the same reality. In fact, multiple SAPs can often be

used to gain insight into different aspects of a real life system architecting process.

1.3.2 System Architecting Tools

Today, it is widely accepted that computational tools can help improve the system design and architecting

processes by providing: 1) a rigorous framework for objective and consistent evaluation of a large number

of architectures under a variety of scenarios; 2) several figures of merit derived directly from stakeholder

needs; 3) guidance for the search and selection processes (Shim et al., 2002).

In the context of this thesis, we introduce the term "System Architecting Tool" (SAT) to designate any

computational tool that is used with the purpose of solving an SAP. SATs include in particular

decision support tools (DSTs), combinatorial optimization algorithms (COAs), and search and constraint

satisfaction algorithms (SAs).

Simmons used the term "architectural decision support system" to refer to SATs. In his dissertation, he

defines four desirable aspects of an architectural decision support system: the representational aspect,

which focuses on the process of formulating the SAP with its decision variables, constraints, and metrics;

the structural reasoning aspect, which analyzes the interconnectivity between the decision variables; the

simulation aspect, which concerns the enumeration and evaluation of feasible architectures; and the

viewing aspect, which is related to the graphical representation of architectures, metrics, or more

generally any data coming from structural reasoning and simulation. While Simmons focused on DSTs,

these four aspects remain applicable to all SATs, and they will be used in the rest of this chapter. The

state-of-the-art of DSTs, COAs, and SAs is briefly reviewed in the following sections, using Simmon's

four desirable aspects of an SAT as a descriptive framework.

1.3.2.1 Decision Support Tools

Decision support tools (DST) can be used to solve SAPs formulated as decision making problems.

Simmons classified DSTs in four groups: table and matrix-based DSTs, tree and directed graph-based

DSTs, constraint graph-based DSTs, and meta-language-based DSTs.
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Table and matrix-based DSTs, such as Design Structure Matrices (DSM) and morphological matrices,

provide a means to represent and analyze the structure of the information needed to make a decision.

Morphological matrices were invented by Zwicky (Zwicky, 1969) as a general strategy for problem

solving by enumerating the possible solutions. In morphological matrices, each row represents one

decision, and the options for each decision appear in successive columns. Thus, an architecture is

obtained by choosing one option (column) for each decision (row). Design Structure Matrices are

adjacency matrices that are used to study bilateral dependences between decisions, or more generally

between the elements in a system.

Tree and directed-graph-based DSTs are used to represent sequential decisions, often under

uncertainty. The simplest tool is perhaps the decision tree. In a decision tree, there are three types of

nodes: decision nodes, where a decision is made amongst a discrete set of alternatives; chance nodes,

where a state of nature is randomly chosen between a discrete set of possible states; and an outcome node,

a terminal node where the outcome of a path within the decision tree is made explicit. The "atomic

element" of a decision tree is a decision node connected to as many chance nodes as there are options for

the decision. Hence for example, if a decision has three possible alternatives, the atomic element would

have a chance node for each of the three alternatives. A decision tree typically consists of a number of

these "atomic elements", terminated by as many outcome nodes as needed. Note that the number of

branches in a decision tree grows exponentially with the number of decisions. Other tools such as

influence diagrams and sequential decision diagrams are used to tackle this so called "curse of

dimensionality by exploiting dependences between the decisions. All these methods are used in

combination with the criterion of maximizing the expected outcome over all possible paths in the tree.

This is a limitation, since it implies linearity of the objective functions.

Simmons included Markov decision processes in this category of directed-graph based DSTs. Let

X = {xi} be a set of states, Ai = {aij} be the set of alternatives for each state xi, Ri; = {ri;} be the

rewards for taking alternative j at state i, and Pi1 (xi, xj) the probabilities of transitioning between states i

andj.

Then, the tuple (X, A, R, P) is called a Markov decision process if and only if the probability of

transitioning to a certain state only depends in the current state, and not on the history of states:

P; 1= xj|X = xi,{X ) = Pij(Xt+1 = xj1Xt = xi)-
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This property is called the Markov property. MDPs typically use dynamic programming approaches that

exploit the Markov property by solving the problem recursively, which results in computationally

efficient algorithms (Puterman, 1994). However, the use of MDPs and dynamic programming requires

formulating the problem with a structure that allows this divide-and-conquer approach. Finding such

structure can be non-trivial in some cases, unless the problem is simplified to neglect dependences

between system entities.

Any attempt to overcome the limitations of the Markov property by including the history of states in the

current states, as it is done in time-expanded decision networks (Silver & de Weck, 2007), will result in

exponential computational complexity, thus eliminating much of the original interest in MDP

formulations.

Constraint graph-based DSTs include the tools used to solve constraint satisfaction problems (CSPs)

and constraint optimization problems (COPs). CSPs consist of a set of decisions, each with a discrete

set of alternatives, plus a set of hard constraints that need to be satisfied in order for a solution to be

feasible. The emphasis in original CSPs is to find a feasible architecture as opposed to finding the best

architecture. This is accomplished through backtracking, which essentially is a way of keeping track of

the last successful decision nodes visited in a tree, so that one can go back to a "safe node" in case of

reaching a region of the tree that is infeasible. Backtracking is sometimes augmented with several variants

of constraint propagation, in order to improve efficiency.

Constraint optimization problems (COPs) are an augmented version of CSPs in which a set of metrics

is added in the form of soft constraints that are combined in a weighted average. The output of the COP is

a solution that satisfies all the hard constraints and minimizes the weighted average of the soft constraints.

Variants exist for COPs and CSPs that relax the hard constraints by including some kind of penalty

scheme, as it is done in Lagrangian relaxation (Fisher, 2004).

CSPs in which all constraints are Boolean in nature are called Boolean satisfiability or simply SAT

problems. Although SAT problems are NP-complete, heuristics can be incorporated into the classical

backtracking approach to improve efficiency. Examples of these heuristics include conflict-driven

strategies and look ahead strategies (Williams & Ragno, 2007).

Efficient algorithms also exist that transform any COP into a set of SAT problems. Recently, Rayside et

al combined these algorithms with an efficient SAT solver to create a general purpose multi-objective

optimization tool especially tailored for system architecting called the Guided Improvement Algorithm

(Rayside, Estler, & Jackson, 2009).
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Meta-language-based DSTs is the term Simmons and Koo coined to describe the latter's Object-Process

Network (OPN) language. While Simmon's assessment of the needs of the system architect included four

aspects (representation, structural reasoning, simulation, and viewing), Koo identified three main tasks of

the system architect: encoding, enumeration and evaluation. Encoding fits well in Simmon's

representation aspect, while enumeration and simulation belong to Simmon's simulation aspect. The

representational part of Koo's OPN allows the formulation of any SAP using a simplified version of

Dori's Object Process Methodology with objects, processes, and relationships. The simulation part

utilizes Petri Nets to enumerate and evaluate all feasible paths through the OPM graph that represents the

architecture. While OPN is theoretically Turing complete, Simmons and Koo found that in practice it can

be quite hard to formulate a generic system architecting problems in the OPN language (see (Simmons,

2008), page 45).

1.3.2.2 Combinatorial optimization algorithms

Optimization algorithms can be used to solve system architecting problems formulated as combinatorial

optimization problems. The resulting optimization problem is almost always extremely hard to solve,

more precisely NP-completel. Indeed, SAPs are usually non-linear, non-convex, combinatorial, multi-

objective optimization problems. A thorough introduction to the topic of combinatorial optimization can

be found in (Ehrgott & Gandibleux, 2000). There are several approaches to deal with these problems: the

integer optimization approach, the stochastic optimization approach, the dynamic programming approach,

and the metaheuristics approach.

In operations research, the most common approach by far is the use of integer optimization techniques.

These techniques require a linearization of the objective functions and constraints in order to exploit the

nice properties of linear optimization, using simplex-based methods such as branch and bound (Lawler &

Wood, 1966), cutting planes (Kelley, 1960), lagrangian relaxation (Fisher, 2004), and approximation

algorithms (Hochba, 1997).

When linearization is not possible, but the objective functions are still convex, semidefinite programming

(Vandenberghe & Boyd, 1996), and sequential quadratic programming (Boggs & Tolle, 1995), are

amongst the most common approaches currently used. More advanced techniques include the use of

matroids and submodular functions amongst others (Schrijver, 2003).

P is the class of problems for which we can find a solution in polynomial time. NP is the class of problems for which

we can check a solution in polynomial time. NP-hard problems are at least as hard as the hardest problems in NP, i.e., any NP
problem can be reduced to any NP-hard problem in polynomial time, but they do not necessarily belong to NP. NP-complete

problems are simultaneously NP and NP-hard. This assumes that PfNP.
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Dynamic programming (DP) approaches are also very popular as they provide polynomial time solutions

to problems that have the required structure [31]. However, as explained earlier in the section describing

Markov Decision Processes, DP approaches often suffer from exponential space complexity.

Approximate dynamic programming (ADP) techniques such as Q-learning are used for large-scale

problems in which the number of states is too large. ADP techniques sample both the state space and the

control space, and also across disturbances in the case of stochastic DP (Bertsekas, 1996).

For general, non-convex optimization, i.e., problems that may have multiple local optima, there currently

exists no general efficient algorithm, especially when dealing with large-scale problems, which is very

often the case due to combinatorial explosion. The common trade-off made to tackle this problem is to

sacrifice exactness of the solution to gain in computational time. In other words, the architectural

tradespace is not exhaustively explored anymore, losing the ability to guarantee that the solution found

when the algorithm stops actually is the global optimum.

A common approach to solve large, non-convex optimization problems is the use of metaheuristic

algorithms, such as genetic algorithms, or simulated annealing, which incorporate both functions. In

addition to a mechanism of "hill climbing", metaheuristic algorithms feature some degree of randomness

to avoid being trapped in local minima (e.g., mutation in genetic algorithms). Amongst the most popular

metaheuristic algorithms are genetic algorithms, developed by Holland in the 70's [37]. In genetic

algorithms, the architectural information is stored in genes and chromosomes, and good individuals are

"crossed", meaning that their genes are combined to produce new individuals, with the hope that some of

the children will outperform their parents. Furthermore, some individuals are randomly mutated to

increase diversity. Thus, the rules of natural selection are imitated to mime evolution. Although still

today, there is controversy about the theoretical foundations that make genetic algorithms work [38], they

have certainly been applied with success to a variety of optimization problems. In particular, genetic

algorithms have been successfully applied to large set partitioning problems, which are of interest in this

thesis (see, for example, [39]).

Another popular metaheuristic algorithm is simulated annealing [40]. In simulated annealing, the

process of controlled cooling of hot metals is mimed: a "temperature annealing schedule" is used to vary

the probability of choosing a solution that is far away from the current solution.

This temperature schedule typically starts from a relatively high temperature and strictly decreases until

reaching zero at convergence. Hence, the temperature schedule plays the role of the probability of

mutation function in genetic algorithms.

28



A third metaheuristic algorithm is particle swarm optimization (PSO) [41]. PSO, like GAs, uses a

population-based approach. This means that, at each iteration, the algorithm has a family of good

solutions as opposed to a single optimal solution. In PSO, the phenomenon that is being mimed from

nature is the movement of swarms of birds. For a given individual in the population, the next solution in

the search is obtained from: 1) the last solution visited by the individual; 2) the best solution visited by the

individual; 3) the best solution visited by the group; 4) some degree of randomness.

Finally, we cite tabu search as another meta-heuristic algorithm (Nonobe, 1998). In tabu search, on top

of the local search procedure, the heuristic used is a tabu list, a list of previously visited and this forbidden

solutions, and optionally a list of forbidden attributes. A recent survey of metaheuristics for combinatorial

optimization can be found in (Bianchi, Dorigo, Gambardella, & Gutjahr, 2008).

1.3.2.3 Search and constraint satisfaction tools

The duality between optimization and search problems was highlighted before. Indeed, search algorithms

can be utilized to solve SAPs that are formulated as search problems.

In parallel to the developments in the operations research community, the artificial intelligence

community made a lot of progress in developing efficient search algorithms. In search problems, the

goal is to iteratively find a point that satisfies a certain number of properties. It is obvious that an

optimization problem is an instance of a search problem, in which, for example, constrains are

dynamically added to find a new solution that is better than the former.

Search algorithms are also called graph algorithms, and are divided in two large classes: uninformed and

informed methods. Uninformed search algorithms are those in which the search process is blind: the

algorithm can only distinguish a solution from something that is not a solution. Typical uninformed

methods are: breadth-first, uniform cost, and depth-first. Sometimes, a heuristic function can be defined

that guides the search, and under certain conditions, improves efficiency, leading to informed or

heuristic search algorithms (not to be confused with meta-heuristic algorithms previously defined). One

of the most popular heuristic search algorithms is A*. For an efficient implementation of A*, see Brian

William's paper on conflict-directed A* (Williams & Ragno, 2007).

A discussion on search algorithms can be found in (Russell, Stuart; Norvig, 1995). Despite the clear

correspondence between optimization and search problems, these two communities have taken a long

time to collaborate and produce promising hybrid techniques. An example of a hybrid technique that

combines genetic algorithms with search algorithms can be found in (Glover, Kelly, & Laguna, 1995).
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1.4 Needs of the system architects vis-a-vis SATs

In this section, we are interested in the tasks of the system architect that can be supported by a

formulation as an SAP. We start by retrieving Crawley's definition of system architecture: "the

embodiment of concept, and the allocation of physical/informational function (process) to elements of

form (objects) and definition of structural interfaces among the objects." SAPs appear at different steps or

tasks of the system architecting process, most of which are explicitly mentioned in this definition of

system architecture. These tasks are listed below, in rough order from general to specific:

Function-to-form mapping: The allocation of physical or informational elements of function into

elements of form is one of the earliest and most important architectural decisions that have to be

made. In this case the goal of the SAP is to find the optimal assignment of elements of function to

elements of form. Note that in many cases systems have integrated concepts, i.e., the overall

concept can be decomposed into a set of function-to-form mapping decisions.

Figure 1: The function-to-form mapping task in the system architecting process

* Decomposition/aggregation (of function and form): Usually, the task of decomposition or

aggregation of function and form is a rather qualitative task and the system architects do not

require the support of computational tools to conduct it. However, occasionally, system architects

must make important decisions concerning the decomposition or, more often, the aggregation of

both objects and processes.
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Let us consider for instance a resource exploration system with a certain number of reservoirs,

studied by Golkar and Crawley (Aliakbargolkar & Crawley, 2012). The architectural decision of

choosing the number of platforms to build can be seen as a form aggregation problem. Another

instance of the decomposition/aggregation problem is the decision of the number of modules in

the architecture of a large software system. Note that in both cases there is a set of elements

(objects or processes) that are given, and we are concerned about how to decompose or aggregate

these elements in groups.
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Figure 2: The function/form decomposition/aggregation task in the system architecting process

e Specialization of function and form: During the system architecting process, the system architect

must go from solution neutral objects and processes to solution-specific objects and processes.

This specialization process consists of many architectural decisions in which for every solution

neutral or object or process, the system architect has to choose between several possible solution-

specific objects or processes. For instance, let us consider the simple solution-neutral function of

"food preserving". Food preserving is accomplished by chilling in a refrigerator, but it can also be

accomplished by freezing, salting, or even irradiating with X-rays. The choice between these

solution-specific functions is an instance of the function/form specialization task.
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Figure 3: The specialization task in the system architecting process (OPM)

e Architectural attributes selection: Architectural attributes play a key role in the definition of the

system architecture. Examples or architectural decisions at the attribute level for a launch vehicle

are the number of boosters (an attribute whose possible values can be for example {0, 1, 2, 41),

and the type of propellant (an attribute whose possible values could for instance be {LH2, RP1,

CH4}).
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Figure 4: The architectural attribute selection task in the system architecting process (OPM)

* Structural relationships and interfaces definition: In almost any imaginable definition of system

architecting, some notion of connectivity between elements, interfaces, or more generally

structural relationships between elements must be mentioned. This task typically occurs in the

form domain, and these relationships are often, but not always, physical connections between

elements. Continuing with the example of the resource exploration system, an important

architectural decision to make the connectivity between platforms and reservoirs, as well as

between platforms.
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Another example can be found in the architecture of Guidance, Navigation and Control (GN&C)

systems for space vehicles. Given an architecture defined by a number of sensors, computers, and

actuators, the decisions of which elements to connect will affect both cost and other emergent

system properties such as its reliability (Dominguez-Garcia, Hanuscahk, Hall, & Crawley, 2007).

Figure 5: The structural relationships and interfaces definition task in the system architecting process

In addition to these tasks, two higher level tasks appear that are linked to the topic of commonality in

product families. Commonality is defined by Cameron as the reuse and sharing of assets such as

components, processes, technologies, interfaces or infrastructure across a product family. We identified

two different classes of architectural decisions in commonality in which SAPs are useful:

0 Reactive commonality: In this task, a set of elements or building blocks is given, and the goal is

to define the optimal family of systems using these building blocks. An example of this task

would be to create a family of launch vehicles using a generic booster, a generic first stage

cryogenic engine, and a generic upper stage cryogenic engine. A family of launch vehicles that

span the range of performance required in the market can be architected by combining different

numbers of boosters, cryogenic engines in the first stage, and incorporating or not the upper stage.

This situation is illustrated in Figure 6.
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Figure 6: The reactive commonality task in the system architecting process

e Proactive commonality: In this task, a target family of systems is known, and the goal is to find

the optimal set of elements building blocks to create this family of systems. Continuing with the

example of the family of launch vehicles, in this case the goal would be to architect a booster,

first stage, and upper stage, in order to optimize a family with a small launcher to put Imt

satellites in LEO, a medium launcher to put 5mt satellites in GTO, and a heavy lift launcher to

bring 20mt of payload to escape. This situation is illustrated in Figure 7. We note that the

boundary between reactive and proactive commonality in real-world commonality problems may

be somewhat fuzzy. In most problems though, there will be a set of components that are to be

reused (reactive commonality), and a set of new components that are to be designed in order to be

used in more than one system (proactive commonality).

Portfolio *
of

Systems

Optimal
Building Hu/
blocks

Figure 7: The proactive commonality task in the system architecting process

* Scope selection: In this task, a subset of requirements or capabilities is selected for a certain

funding level. Scope selection typically occurs in the form domain. Instead of selecting the scope

in terms of requirements, it is more common to select the scope in terms of the corresponding

elements of form, as it is elements of form which actually carry the cost. This situation is

illustrated in Figure 8.
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Figure 8: The scope selection task in the system architecting process

The previous list is not an exhaustive list of the tasks of the system architect. However, it intends to be a

list of the most common tasks of the system architect that can benefit from a rigorous formulation as an

SAP. Therefore, it follows that most SAPs fall into either of the previous categories of tasks. This

observation is central because it allows focusing on the thorough description and solution of these tasks

and corresponding SAPs. This requires the formulation of these problems as combinatorial optimization

problems. This step is explicitly done in Chapter 2.

1.5 General problem statement

1.5.1 Knowledge-intensive SAPs

The Webster's Revised Unabridged Dictionary defines the adjective "knowledge-intensive" as "requiring

access to and manipulation of large quantities of knowledge". In the context of this thesis, we define a

knowledge-intensive SAP as one that requires a large body of domain-specific and domain-

independent knowledge in order to be solved efficiently, i.e., in order to find good architectures in a

limited amount of time.

In this definition, domain-specific knowledge refers to the domain of application of the SAP (e.g.,

launch vehicles, Earth observing satellites), whereas domain-independent knowledge refers to the tasks

being conducted by the SAT regardless of the domain of application (e.g., enumeration, evaluation,

search, down-selection).

Since this is a qualitative and deliberately ambiguous definition, one might think that any SAP could fit

this definition. In reality, certain SAPs require a more limited amount of knowledge in order to be

efficiently solved than other SAPs. These SAPs are much easier to plug into any commercially available

optimization toolkit such as CPLEX or the Matlab genetic algorithm tool. If the rule-based approach

proposed in this thesis is used for this class of systems, a few rules suffice to model system behavior.
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For instance, let us consider the architecture of a constellation of GEO communication satellites. In one

particular SAP, the system architect may be interested in optimizing design parameters such as the

number of transponders, the number of planes, and the number of satellites per plane in a Walker

constellation (in which all other orbital parameters are fixed), in order to maximize profit for a certain

lifetime. In this SAP, we have a set of architectures that is small enough to be fully enumerated. The

objective function is profit, i.e. revenue minus cost, and it can be readily computed from the design

variables: revenue is proportional to total number of channels, and in a first approximation cost is

proportional to launch cost + satellite cost + operations cost. Cost estimating relationships exist for

communication satellites that relate cost to number or mass of transponders. In short, this SAP can be

readily expressed as an optimization or search problem and solved in a matter of minutes. The SAP can

be made more complicated by using more involved cost models, or by incorporating complex satellite

reliability calculations into the analysis. However, if the two formulations of the problem lead to similar

results, then one could argue that there is no need for the more complex formulation of the problem.

The problem becomes more subtle if lifetime becomes a design variable, since both revenue and cost

depend on design lifetime in a convoluted way: the longer the lifetime, the larger the revenue, but since

now different architectures have different time scales, net present value analysis becomes necessary to

conduct a fair comparison of the alternatives. At the same time, if design lifetime is increased, it will be

needed to increase component reliability or to add redundancy in order to maintain overall system

reliability. This will result in an increase in the mass and power consumption of the electronics, which

will require in turn an increase in the mass of the electrical power subsystem, all of which will require a

heavier structure. A more massive structure will require more propellant to maintain its orbit and attitude,

which implies heavier tanks and feeds back again into a heavier satellite. It is easy to see that much more

knowledge about spacecraft design is required in order to solve this version of the same problem. And

more importantly, this knowledge is essential in order to get results that make sense. If we were to ignore

the aforementioned issues in a simpler version of the model, we would be missing important pieces of the

trade-off, and thus presumably the results obtained would be of poor quality.

A real system architecting problem is knowledge-intensive if its simplest formulation as an SAP that

leads to useful results requires the handling of large body of expert knowledge, (e.g., a very high number

of rules if a rule-based engine is used). The following question that arises naturally from this observation

is, "what makes a system be knowledge-intensive?" The answer to this question involves two factors:

complexity and emergence.
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First, knowledge-intensive SAPs typically arise when the system at hand is complex in the form and/or

function domain. In other words, in knowledge-intensive SAPs, either the decomposition of stakeholder

needs down to the level of system requirements, or the decomposition of the system architecture down to

the level of components that perform relevant functions, is very complex.

Second, knowledge-intensive SAPs are typically characterized by intense couplings between system

elements and emergent behavior in the value delivery loop.

Note that a problem can be extremely computationally intensive and yet not knowledge-intensive. For

example, solving a linear system Ax=b simply requires matrix inversion and multiplication, but if A, X,

and b are very large, the problem can become very computationally expensive.

As a final note, the knowledge-intensive nature of an SAP may be intensified if one wants to incorporate

an explanation facility to have better traceability of the value delivery loop. Indeed, explaining the

reasoning behind a fact used by an SAT may sometimes require more knowledge than just using the fact.

1.5.2 Identification of Research Gaps and General Research Goals

Careful analysis of the state-of-the-art in system architecting tools reveals several limitations that are

enumerated below, classified according to Simmon's aspects of a decision support tool: representing,

structural reasoning, simulating, and viewing. Many but not all of these limitations are particularly

applicable to knowledge-intensive SAPs.

* Limitations of current SATs related to the "Representing" aspect:

- Most tools do not offer support to deal with fuzzy knowledge (e.g. "high" spectral

resolution, 1-3 days revisit time)

- Most tools are tailored for problems that can be easily formulated as a set of decisions,

where each decision has a set of options (i.e., ADG framework (Simmons, 2008)). In

reality, there are SAPs for which the ADG formulation is not natural or not trivial.

For instance, the function decomposition problem illustrated in Figure 2 is hard to

express using this formulation. The system architect has little or no support to

formulate such SAPs.

- Most tools do not offer any kind of support to model emergent behavior. Modeling even

relatively simple emergent behavior can be cumbersome.
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For instance, in a radar altimetry satellite, modeling the fact that if an atmospheric

humidity measurement is cross-registered with an altimetry measurement, then the

accuracy of the altimetry measurement improves, requires the incorporation of an

additional logical rule testing for this case.

Furthermore, this logical rule uses knowledge about the instruments characteristics

(technology, accuracy), as well as knowledge about the interface between these

instruments (cross-registered or not).

Therefore, all this information needs to be available. It is easy to see that as we scale the

model to include several other cases of emergent behavior, scalability issues may appear.

Emergent behavior is best modeled when it is possible to model individual agent

behavior in the form of simple rules that can then be automatically combined, without the

user having to handle or even predict the result of the simultaneous execution of the

individual behaviors.

* Limitations of current SATs related to the "Structural Reasoning" aspect:

- Again, most tools are tailored for problems formulated in an ADG-like fashion. Simmons

for example created a set of tools to analyze bilateral dependence of decisions (Simmons,

2008). However, as mentioned before, not all architectural decisions are easy to encode

using an ADG formulation.

e Limitations of current SATs related to the "Simulating" aspect:

- Most tools are limited in the fidelity of the metrics. While some of them allow including

pieces of external code (e.g. Python in OPN), there is no explicit support to the system

architect to simulate complex behavior in the objective functions of the model.

- It is hard to modify existing knowledge or incorporate new knowledge into the simulation

model, in particular in the case of knowledge-intensive SAPs.

* Limitations of current SATs related to the "Viewing" aspect

- While many tools have some graphing capability, most tools have no traceability of the

value delivery loop. This is especially problematic in knowledge-intensive problems,

because their value delivery loop is often particularly long and complex.
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In addition to these limitations, a few more general limitations, not related to any single one of Simmon's

aspects, are identified:

e Reusability: Current tools do not offer any capability to reuse models between domains. If a new

SAP appears that is identical in form to an SAP previously solved but requires changing some of

the domain-specific knowledge only, it is necessary to restart the model. SATs are often

developed ad-hoc for a specific project, and with tight time constraints. As a consequence,

knowledge about how to solve specific SAPs is potentially lost from project to project.

Yet, the procedure to solve an SAP always contains the same functions, and only some of the

knowledge is problem specific. Furthermore, there are clear patterns that appear when working on

different SAPs

e Computational complexity: SAPs are usually very "nasty" optimization problems that can be

very hard to solve. Many tools lack the capability explore large tradespaces efficiently.

While this thesis does not address all of these problems completely, it is shown how the methodology that

it proposed can help at least partially alleviate many of them.

1.6 Rule-based Expert systems

1.6.1 Definitions

An expert system is "a computer program designed to model the problem-solving ability of a human

expert" (Durkin, 1994). In order to do that, an expert system uses large bodies of heuristic - expert -

knowledge. In a rule-based expert system (RBES), expert knowledge is encapsulated in the form of

logical rules. In the words of Feigenbaum, considered the major creator of the first expert system, these

rules map the knowledge "over from its general form (first principles) to efficient special forms

(cookbook recipes)" (Feigenbaum, Buchanan, & Lederberg, 1971). This is in opposition to other kinds of

expert systems that primarily use different data structures to store expert knowledge, such as frames in

frame-based expert systems (FBES), which are very similar to objects in object-oriented programming

(Minsky, 1974).

In RBES, a logical rule is composed of a set of conditions in its left-hand side (LHS), and a set of actions

in its right-hand side (RHS). The actions in the RHS are to be executed if the conditions in the LHS are

all satisfied. An example of a logical rule is the following: LHS:="if the car won't start", RHS := "then

check the electrical engine".
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An RBES infers information from rules in one of two ways: forward-chaining, when logical rules are

used from the data to the goal in a deductive process; backward-chaining, when the rules are applied

working backwards from a target goal (Buchanan & Shortliffe, 1984).

It has been noted that many expert systems, and ours is not an exception, are actual mixtures of RBES and

FBES, as they use both rules and frames to represent the knowledge. We consider our expert system for

assessing scientific value of EOSS an RBES, since the primary means - not the only means - of

knowledge representation is that of logical rules.

For an excellent introduction to rule-based expert systems, see (Giarratano & Riley, 2004).

1.6.2 A short history of rule-based systems

The first experiments with expert systems and RBES in particular were DENDRAL and MYCIN, both

conducted at Stanford in the late sixties and early seventies in Buchanan and Feigenbaum's research

group (Buchanan & Shortliffe, 1984), (Lindsay, Buchanan, & Feigenbaum, 1993). The DENDRAL

experiment was a project in organic chemistry. DENDRAL was capable of inferring the molecular

structure of a substance from its mass spectra and other experimental data. The MYCIN experiment

leveraged from the early experience of DENDRAL, and focused on the diagnostic of the type of bacteria

causing an infection in a patient, and the subsequent prescription of the right antibiotic, using fuzzy rules,

i.e. rules with certainty factors. With 450 rules, MYCIN was able to perform better than senior doctors,

and considerably better than junior doctors.

After DENDRAL and MYCIN, the development of RBES spread around the world, to many disciplines

of the sciences and engineering. Duda et al developed the PROSPECTOR system, which was capable of

identifying ore deposits (Duda, Gaschnig, & Hart, 1979). Woods et al developed the LUNAR systems, an

RBES that answered geology questions about rock samples brought back from the Apollo missions (W.

A. Woods, 1973). The early success of RBES allowed for their commercialization, starting with the R1

(later called XCON) system developed by McDermott at CMU to assist in the configuration of DEC's

VAX systems using 2500 rules (McDermott, 1982). Clancey adapted the MYCIN program for teaching

and tutoring and created NEOMYCIN and GUIDON (William J. Clancey, 1987), (W.J. Clancey,

Letsinger, & Dept, 1984). Marsh and Healey developed several RBES for the NASA Johnson Space

Center in the 1980's (NAVEX, RPMS, MCCSSES, MRDB) including applications to on-board

navigation, electric power management, planning, requirements management, and monitoring radar data

from the Space Shuttle in real time and estimate its position and velocity amongst others (Healey, 1986).

Dincbas developed an RBES to design digital circuits (Dincbas, 1980).
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The field of architecture also embraced RBES as a means for automatic form synthesis using shape

grammars, first developed at MIT by Stiny in the early seventies (Stiny & Gips, 1972).

The success of early systems such as MYCIN and DENDRAL made some experts think that Al and

RBES had no limits. Then, the promises of life-changing technology of the late sixties and early seventies

were wiped out by Lighthill in his infamous paper known as the Lighthill report. The Lighthill report

gave a very pessimistic view of Al in general and RBES in particular, which led to funding cuts in many

research labs in the UK and around the world (Lighthill, 1973). As a matter of fact, as Russell and Norvig

point out that "to save embarrassment, a new field called IKBS (Intelligent Knowledge-Based Systems)

was defined because Artificial Intelligence had been officially cancelled" (Russell, Stuart; Norvig, 1995).

Thus, expert systems became knowledge-based systems (KBS), and the term knowledge engineering was

coined to designate the process of developing a KBS.

It wasn't until the late 80's and early 90's, that KBS and RBES in particular started being used in decision

making, as a decision support tool (Zimmermann, 1987). The number and types of RBES has grown

continuously during the last 40 years, and RBES are present today in almost all science and engineering

disciplines, education, finance, and architecture (Stiny, 1980).

We end this section by noting that the role of NASA, in particular of JSC, in the history of RBES is far

from being negligible: DENDRAL, NAVEX, and LUNAR were both NASA-funded projects, and CLIPS

was entirely developed at JSC.

1.6.3 Structure of RBES

RBES consist of three major elements: a fact database, a rule database, and an inference engine. The fact

database contains relevant pieces of information about the specific problem at hand called facts.

Information in facts is organized according to predetermined data structures similar to C structures and

Java Beans, with properties and values (e.g. a fact of type car may contain a property make, a property

model, and a property price, amongst others). These data structures are called templates in many RBES

development tools. Facts can be asserted, modified, and retrieved from the database anytime. The rule

database contains a set of logical rules that contain the domain knowledge. The LHS of these rules may

match one or more facts in the working memory. The RHS of these rules define the actions to be executed

for each of these matches, which typically include asserting new facts, modifying the matching facts,

performing calculations, or showing some information to the user.
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The inference engine performs three tasks in an infinite loop: a) pattern matching between the facts and

the LHS of the rules in the working memory and creation of activation records (also known as the conflict

set); b) while there remain activation records, select the next rule to execute, or fire (conflict resolution);

c) execute the selected rules' RHS (deduction).

Most current rule engines are based on the Rete algorithm, developed by Forgy in 1982 (Forgy, 1982).

The Rete algorithm is faster than other algorithms because it "remembers" prior activation records in a

network in memory called the Rete network. The Rete network is very efficient in speeding up the search

process because most of the time, the network does not change much between iterations. Note that the

improvement in computational time comes at the price of increased use of memory.

1.6.4 Critique of RBES

Reasons for criticism toward RBES can be grouped in four categories: a) problems in knowledge

elicitation; b) problems in knowledge representation; c) problems in computational efficiency; d)

problems in overall performance.

Each of these groups is succinctly developed in the next paragraphs. During the development of the early

MYCIN and DENDRAL systems, it became obvious that a bottleneck in the development of RBES was

the process of eliciting the knowledge from experts. One of the major challenges is the large quantity of

tacit knowledge, which the expert is not aware that he or she has. Hence, the primitive view of KBS as a

knowledge transfer process was challenged. Today, there is wide agreement that the process of building a

KBS is a modeling process rather than a knowledge transfer process (Studer, 1998). A review of modern

knowledge engineering techniques can be found in (Schreiber et al., 2000). While much progress has been

made since then, the problem of eliciting expert knowledge is still a major challenge for the RBES

developer.

In terms of knowledge representation, Newell and Simon postulated in their classic text "Human Problem

Solving" that most human expert knowledge can be expressed in the form of logical rules (Newell &

Simon, 1972). Earth science is not an exception to this. However, some knowledge is more naturally

expressed using other more generic types of data structures such as frames (see for example Minsky's

work (Minsky, 1974)). Related to this problem is the difficulty to guarantee the completeness and

consistency of the rule base (Suwa, Scott, & Shortliffe, 1984).
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In terms of computational efficiency, we mentioned before that the Rete algorithm is the most efficient

inference algorithm for rule engines, and it generally improves the naive approach of comparing all facts

with all rules in working memory, which yields a time complexity of O(RFP), R being the number of

rules, F the number of facts, and P the average number of clauses in the LHS of the rules. Indeed, the Rete

algorithm achieves a time complexity of O(R'F'P'), where R', F', and P' are less than or equal to R, F,

and P (Forgy, 1982). However, in the worst case, this still an exponential problem, which can lead to

combinatorial explosion very fast in real-time applications.

Finally, in terms of overall performance, RBES have been successful when applied to relatively narrow

domains, but have often failed in much larger applications (Studer, 1998). Also, expert systems in general

are sometimes called weak methods in the Al community because they use "weak" (uncertain)

information about the domain. Paraphrasing Russell and Norvig, "one might say that to solve a hard

problem, you almost have to know the answer already" (Russell, Stuart; Norvig, 1995).

Our choice of RBES over other KBS architectures for this work, despite all the aforementioned

limitations, was driven by superior characteristics in terms of scalability thanks to the separation between

the knowledge (the rules) and the flow control (the inference engine), as well as their transparency

achieved through their built-in explanation facilities, two attributes that we consider of outmost

importance, and often overlooked by DST developers in system architecting.

1.6.5 The CLIPS language for developing rule-based systems

CLIPS (C-language integration production system) is a public language to write expert systems developed

in 1985 at NASA Johnson Space Center as an alternative to the proprietary ART*inference (Riley,

Culbert, Savely, & Lopez, 1987). Ten years later in 1995, Dr Friedman-Hill at Sandia National Labs

developed an expert system shell in Java based on CLIPS, especially tailored for RBES (E. J. Friedman-

Hill, 2000). As any other RBES, Jess deals with rules and facts, and its inference engine is based on the

Rete algorithm. CLIPS/Jess syntax is very similar to common LISP, one of the earliest programming

languages in artificial intelligence (Steele, 1990). In CLIPS/Jess, the properties in templates are defined

using the deftemplate command and properties are listed using the keywords slot (single element

attributes) or multislot (multiple element attributes). Rules are defined using the def rule command. A

fact is added into working memory, modified, or removed from working memory using the assert,

modify, and retract commands respectively. Whenever the working memory is modified (e.g. a new

fact is added or modified), the Rete network is recalculated. Matching rules are fired in the order

determined by the Rete algorithm once the run command is sent. The general structure of the definitions

of a template, a fact, and a rule are provided in Code 1.
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For further information on the Jess language, a good overview can be found in (E. Friedman-Hill, 2003).

(deftemplate my-template "Description of the template"
(slot sloti-name) (slot slot2-name) (multislot multislot1-name) (multislot

multislot2-name)
)

(assert (my-template (sloti-name 1.34) (slot2-name high)
(multislot1-name 1 2 5 12) (multislot2-name red green blue)))

(defrule my-rule "Description of the rule"
<- (my-template (sloti-name ) (slot2-name ))

(test (< x 10))

(bind (+ 1.0))
(modify (sloti-name
(printout t "fact modified" crlf)

Code 1: Definition of a template, assertion of a fact, and definition of a rule in the CLIPS and Jess languages

Our RBES was developed in Jess rather than in other more common progamming languages for artificial

intelligence such as LISP or PROLOG. The main reason for that is that RBES development tools such as

CLIPS and Jess allow the user to focus on the application and forget about having to "reinvent the wheel"

since much code that is needed to create an RBES is already available. Furthermore, Jess is written in

Java, which facilitates the integration with the Matlab environment, very popular amongst both scientists

and engineers.

1.7 Thesis Statement

Once RBES have been introduced, it is possible to provide solution-specific research goals that are

consistent with the research gaps identified in the previous sections:

To develop a knowledge-intensive framework that provides support to the system architect in all

aspects related to solving their most common system architecting problems, namely representing,

reasoning, simulating, and viewing, by:

1. Characterizing the classes of SAP;

2. Separating domain-independent knowledge from domain-specific knowledge;

3. Solving the domain-independent part of the problem for several classes of SAPs;

4. Developing a flexible and transparent approach to incorporate the domain-specific

knowledge

5. Developing a methodology to assess architectural value in knowledge-intensive SAP with

acceptable fidelity in limited time

Using rule-based expert systems
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1.8 Structure of the thesis

The rest of this thesis is structured as follows.

Chapter 2 lays out the theoretical framework for rule-based system architecting, based on the idea of the

separation of different bodies of knowledge. The first section focuses on the domain-independent

knowledge that is common to all classes of SAPs. A generic tradespace search algorithm is implemented,

based on a metaheuristic population-based search strategy. Four different types of rules are introduced

that can be used to augment this generic algorithm with domain-specific and class-specific knowledge:

grammars or enumeration rules, approximate evaluation rules, search heuristic rules, and selection rules.

The rest of chapter 2 focuses on the domain-independent, SAP class-specific knowledge. Several classes

of SAPs are identified based on experience and a literature review. For each class of SAPs, a grammar

(i.e., an encoding scheme and a set of enumeration rules) is proposed that can be used for full or partial

enumeration of the architectural tradespace. Search heuristic rules are also suggested to perform the actual

search through each tradespace in an efficient manner.

Chapter 3 introduces a general methodology to handle approximate evaluation rules. The methodology is

called Value Assessment of System Architecting Using Rules, or VASSAR. This framework analyzes a

generic value delivery loop of a system architecture and models it using different sets of rules: attribute

inheritance rules, capability rules, emergence rules, requirement satisfaction rules, value aggregation

rules, and explanation rules. Each of these sets of rules is described in detail.

Chapter 4 introduces the domain of application of the theory developed in this thesis, namely Earth

Observing Satellite Systems (EOSS). First, the main architectural decisions in EOSS are identified.

Second, domain-specific knowledge required to architect and EOSS is presented in the form of rules (e.g.,

orbit selection, mass and power budgets). Third, the VASSAR methodology introduced in Chapter 2 is

applied to EOSS. All the relevant templates and rules are described. Finally, the figures of merit used to

evaluate different EOSS architectures are introduced. The chapter closes with a succinct introduction of

the three case studies.

Chapters 5, 6, and 7 present the results of the three case studies, namely the NASA EOS case study, the

Decadal Survey case study, and the Iridium GEOscan case study.

Finally, Chapter 8 summarizes the findings and contributions of the thesis, both on the methodology side

and the applications, discusses the main limitations of the analysis, and highlights opportunities for future

work.
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2 Rule-based system architecting

Chapter 1 introduced the central problem of this thesis, which concerns the adaptation of current system

architecting tools (SAT) to handle large quantities of expert knowledge. The main approach to solve this

problem consists in separating the different bodies of knowledge required to solve a knowledge-intensive

(KI) system architecting problem (SAP): domain-independent knowledge, domain-specific knowledge,

and instance-specific knowledge.

The idea of knowledge separation is illustrated in Figure 9 for the particular case of EOSS.

Domain scope
K1 K2 K3

All domains

All EOSS

Instance of
EOSS

Enumerating Searching a generic
architectures tradespace
Searching a particular Finding a Pareto front
tradespace

K4 K5 Science synergies K6
Metrics Generic instrument
Constraints capabilitiesKChoosing Satellite engineering
architectures in PF

K7 K8 K9
Particular feasibility Science requirements
constraints, search Particular instrument
heuristics, and capabilities
weights for metrics

Instance of SAP Class of SAPs All SAPs SAP
scope

Figure 9: Knowledge separation in rule-based system architecting of EOSS

Knowledge is categorized in Figure 9 according to its scope in both the domain of application (e.g.

EOSS) and the realm of search and optimization (labeled SAP). In terms of domain scope, knowledge

may be completely independent of the domain, or common to all instances of problem in a particular

domain, or really specific to a given instance of problem. In terms of SAP scope, knowledge can be

common to all classes of SAPs, or common to a specific class of SAPs, or really specific of an instance of

SAP.

These two categorizations are almost independent, but not completely, as indicated by the red crosses.

Hence for example, a certain piece of knowledge can be common to all domains of application, but

specific to a class of SAPs (K2); this is the case of the knowledge required to efficiently enumerate

architectures over a set of permutations.
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Conversely, another piece of knowledge may be specific to architecting EOSS, but common to all EOSS,

and independent of the class of SAP; the radar equation, or how to do a power budget in a satellite, are

examples of this case (K6). Finally, there will always be part of the knowledge that will be completely

specific to the instance of EOSS, but some of it may be independent of the SAP (K9). For instance, the

scientific requirements of the Decadal Survey belong to this category, as they are specific to the Decadal

Survey, and at least part of them may be common to all SAPs considered (e.g., instrument selection,

instrument packaging, mission scheduling).

The tool that enables the knowledge separation is the use of rule-based expert systems (RBES). The rest

of this chapter describes in detail how the incorporation of an RBES brings about this knowledge

separation.

2.1 Overview of the framework

In this section we introduce a framework that can be used to solve a KI SAP using RBES. The framework

consists of the following main components:

e A generic population-based heuristic algorithm for searching the architectural tradespace. This

tool takes care of the domain-independent knowledge that is also common to all classes of

optimization problems. This algorithm is architected to trade some computational efficiency

against an improvement in flexibility, scalability, and traceability. The algorithm utilizes four

kinds of heuristic rules: grammars, approximate evaluation rules, search heuristics, and selection

criteria.

* A library of classes of SAPs that contains efficient grammars, approximate evaluation rules,

search heuristics, and selection criteria for several different classes of SAPs, which span the range

of problems that appear more often in system architecting, and can benefit from a formulation as

optimization or search problems. These classes of SAPs are directly deduced from the

characterization of system architecting tasks done in Chapter 1.

e A general methodology to assess architectural value using approximate evaluation rules

(VASSAR). This framework takes advantage of the performance of the pattern matching

algorithm inside an RBES to perform a systematic comparison of system capabilities (facts) and

system requirements (rules). Several other rules are defined to complete the framework, including

emergence rules, which allow the description of emergent behavior in the system.

The general methodology to solve a KI SAP is illustrated in Figure 10. Figure 10 shows a hypothetical

situation in which the initial problem is decomposed into three sub-problems, but in reality any number of

sub-problems is possible. Each step of the methodology is described in more detail below.
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Figure 10: Methodology for solving knowledge-intensive problems in system architecting

Step 1: Incorporate domain-specific knowledge (K6): Before starting the actual architecting process, it

will be necessary to have an initial database with domain-specific knowledge that is likely to be

applicable to all SAPs. For example, in the case of EOSS, knowledge about generic instrument

capabilities, data processing schemes, and satellite engineering may be relevant. Although this database

will of course evolve with the state-of-the-art of science and technology, the speed of evolution may be

relatively small in some domains of application. Moreover, part of the knowledge will encode physical or

mathematical laws that are not subject to change. For example, in EOSS, a rule that computes the ground

spatial resolution of an imager given its orbit and characteristics will remain valid. Ideally, this

knowledge database would be maintained across different projects, so that knowledge can be reused from

project to project.
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Step 2: Decompose the problem into sub-problems. The step of the problem formulation is unchanged

from the typical system architecting process. The initial problem is generally decomposed into a set of

sub-problems. These sub-problems are sometimes called architectural views. An architectural view can

be defined as a partial representation of a system architecture in which only a subset of its objects,

processes, and relationships between them, are shown. For example, in the problem of architecting a

resource exploration system, an architectural view may be concerned with the problem of platform

allocation, a second view may look at the connectivity between platforms, and a third view may look at

the production scheduling of the system. Each of these three views provides a partial description of the

architecture of the system, i.e. it zeros in on a subset of architectural decisions to be made. A complete

representation of the architecture is obtained when these multiple views are combined. Note that this

decomposition, that is necessary due the inability of current tools to tackle to large tradespaces, will result

in general in the loss of optimality in the search process. As a consequence, iteration will be required.

Step 3: Incorporate SAP class-specific knowledge (K2, K5). In step 3, the system architects will

classify each sub-problem using the library of classes of SAPs described in this thesis. This classification

describes several classes of SAPs that appear very often in the tasks of a system architect, and it will be

described in detail later in this chapter. In this step, the system architect will recognize that the sub-

problem at hand is an instance of one (or more) of the classes of problems defined in the library of SAPs,

and will be able to reuse the rules provided in the library that capture knowledge relevant to that specific

class of SAPs. For example, if a particular instance of problem is categorized as a set partitioning

problem, the library provides a rule database that can perform automatic enumeration (full factorial and

heuristic) of architectures. Note that this classification is not free of ambiguity. The same sub-problem

can perhaps be formulated using several of the flagship problems because classes of SAPs are not

mutually exclusive. In fact, it is well known in computer science that many classical combinatorial

optimization problems can be reduced to instances of other classical combinatorial optimization

problems. For instance, many scheduling problems can be reduced to instances of the traveling salesman

problem, or any generalized assignment problem can be reduced to an instance of a transportation

problem. In other words, it is impossible to define a hierarchy of complexity in the classes of SAPs in the

library because they are all NP-hard problems.

Step 4: Incorporate instance-specific knowledge (K7, K9). In this step, the system architects can add

the knowledge that is specific to the instance at hand. This knowledge can be common to all SAPs (K9),

such as the capabilities of the instruments in an EOSS, or specific to a particular SAP (K7), such as

particular constraints that apply to the NASA EOS packaging problem.
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Step 5 Explore tradespace using generic search algorithm and tailored heuristics (K3). Once the

SAP class-specific heuristics have been fed into the generic search algorithm (K3), the tradespace search

process can start. This process is iterative in itself: the system architect runs a few generations of the

algorithm, refines the model by adding or modifying rules as necessary (K7), and iterates until the quality

of the results is satisfactory.

Step 6: Combine results. Once results are available for all the subproblems, it is necessary to combine

the results to generate the complete architecture, since each subproblem only concerns part of the overall

system architecture.

Step 6: Check termination criteria and iterate if required: As mentioned earlier, this is an iterative

process. Therefore, at this stage, termination criteria must be checked. These termination criteria may

include amongst others: a) a maximum number of generations; b) a maximum execution time; c) a

minimum change in the best architecture or on the spread of the Pareto front in the case of several

objectives; d) a minimum change in the metric or metrics of the best architecture or non-dominated

architectures. If none of these criteria are satisfied, it is required to iterate by going back to Step 3 (or

earlier if required). Revised, instance-specific heuristics can be utilized to further increase the

performance of the search algorithm.

In the rest of this chapter, we describe in more detail the elements of this framework, namely the

classification of SAPs, the KI heuristic search algorithm, and the process by which SAP class-specific

heuristics are incorporated into the algorithm.

2.2 Classes of System Architecting Problems

2.2.1 Overview

In Chapter 1, we identified and described recurring tasks in the system architecting process that are

susceptible of being formulated as SAPs. In this section, we take the next step by formulating these tasks

as SAPs. A few classes of SAPs emerge from the analysis. For each class, we provide a formal definition

and a few examples.

We start by recalling the recurring tasks of system architecting identified in Chapter 1: function to form

mapping, decomposition or aggregation of either function or form, specialization of function or form,

attribute selection, structural connectivity (typically between objects), scope selection, and the two types

of commonality tasks: reactive and proactive.
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It is also useful to list a few of the most common classical problems in combinatorial optimization. The

following list is adapted from Gandibleux's classification of combinatorial optimization problems

according to their combinatorial structure (Ehrgott & Gandibleux, 2000). For each problem, a reference is

provided. Many of these problems have several hundred years, and were first introduced in mathematical

contests or challenges of the time (e.g., Sir Hamilton's Icosian game introducing the traveling salesman

problem in the early 1800's). Thus, the reference provided is always representative of the foundational

work on methods to solve the problem, but not necessarily the first time the problem was introduced.

Assignment and generalized assignment problem (Ross, G. T.; Soland, 1975): In the original

assignment problem, there are a number of agents and a number of tasks, and each agent has a

different cost to realize each task. The goal of the problem is to assign each task to exactly one

agent, in such a way that all tasks are performed, and the total cost is minimized. In a generalized

version of the assignment problem, agents can perform more than one task, and they have a given

budget that cannot be exceeded. Furthermore, when performing a task, each agent produces a

certain profit, and the goal of the problem is thus to maximize profit subject to not exceeding any

agent budget.

e Travelling salesman problem (Dantzig & Fulkerson, 1954): In the traveling salesman problem,

there is a list of cities and a matrix containing their pairwise distances. The goal of the problem is

to find the shortest path that passes through each city exactly once and returns to the city of

origin.

* 0/1 knapsack problem (Drexl, 1988): In the original knapsack problem, there is a list of items,

each with a certain value and a certain weight. The goal of the problem is to determine the

optimal number of items of each type to choose in order to maximize value for a certain

maximum cost. In the 0/1 version of the same problem, the number of each item can only take the

values {0,11.

* Set partitioning /set covering problem (Garfinkel & Nemhauser, 1969): In the original set

covering problem, there is a list of elements referred to as the universe, and a number of

predetermined sets of elements, whose union is the universe. The goal of the set covering

problem is to identify the minimum number of these predetermined subsets for which the union is

still the universe. The set partitioning problem is a constrained version of the set covering

problem where the selected subsets need to be disjoint or mutually exclusive. In other words,

each element can only appear in one set in the set partitioning problem, while it may appear in

more than one set in the set covering problem.
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* Job-shop scheduling (Manne, 1960): In the simplest version of the job-shop scheduling problem,

there is a list of jobs that needs to be assigned to a set of available resources (e.g., machines).

Each job has a certain duration on each machine. The goal of the problem is to find the sequence

of assignments of jobs to machines that minimizes the combined duration of the tasks.

Variations of the problem include for example constraints between tasks (e.g., a task needs to

occur before another task), costs for running the machines, or interactions between the machines

(e.g., two machines cannot be running simultaneously).

* Shortest path problem (Dreyfus, 1969): In a shortest path problem, there is a graph defined by a

list of nodes and a list of edges, and each edge has a distance associated to it. The goal of the

problem is to find the path between two given nodes that minimizes the total distance.

" Network flow problem (Edmonds, 1972): In the most generic formulation of a network flow

problem, there is a graph defined by a list of nodes and a list of edges. Nodes can be sources or

sinks. Sources have a positive flow (supply) while sinks have a negative flow (demand). Each

edge has a capacity associated to it, so that the flow through that edge cannot exceed that

capacity. Each edge also has a cost associated to it. The goal of the network flow problem is to

transport all the flow from the supply nodes to the demand nodes at minimum cost.

" Minimum spanning tree (Graham, 1985): In the minimum spanning tree problem, there is a

graph defined by a list of nodes and a list of edges. Each edge has a cost associated to it. A

spanning tree is defined as a subset of the edges that form a tree that contains all nodes. The goal

of the problem is to find the spanning tree of minimum cost.

* Maximum satisfiability (MAX-SAT) problem (Hansen & Jaumard, 1990): In the maximum

satisfiability problem, there is a set of Boolean variables, and a list of logical clauses that use that

set of variables. The goal of the problem is to find the assignment to that set of Boolean variables

that maximizes the number of clauses that are satisfied.

Most of the previous problems arise from graph theory and network analysis, and all of them are NP-

complete problems 2 . Although this is by no means an exhaustive list of combinatorial optimization

problems, it contains most of the relevant problems to system architects. Gandibleux also provided other

classifications according to other criteria such as the "type of problem" (e.g., find the exact or

approximate Pareto frontier, optimizing a utility function, finding a compromise solution).

2 P is the class of problems for which we can find a solution in polynomial time. NP is the class of
problems for which we can check a solution in polynomial time. NP-hard problems are at least as hard as the hardest
problems in NP, i.e., any NP problem can be reduced to any NP-hard problem in polynomial time, but they do not
necessarily belong to NP. NP-complete problems are simultaneously NP and NP-hard. This assumes that P#NP.
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See his paper (Ehrgott & Gandibleux, 2000) for more details on combinatorial optimization problems, and

methods to solve them.

From this list of combinatorial optimization problems, and the list of tasks discussed in the previous

chapter, we identified five abstract problems that we names classes of SAP. A class of SAP is an

abstraction of one or more of the aforementioned combinatorial optimization problems, formulated in a

form that is relevant to the system architect.

In all these classes of SAPs, the variables are architectural decisions, and the goal of the problem is to

find a set of good system architectures, where a good architecture is one that maximizes value delivery to

stakeholders.

In particular, five classes of SAP were identified: down-selecting problems, covering and partitioning

problems (considered as the same class), permuting problems, connecting problems, and assigning

problems. In the down-selecting class of SAPs, there is a set of elements and the system architect must

select a subset of these elements to constitute a system architecture. Down-selecting problems are

motivated by the scope selection task, and they are similar in nature to the 0/1 knapsack problem.

In the set partitioning and covering class of SAPs, there is a set of elements and an architecture is

characterized by a number of subsets of elements that define a set partition or a set covering of these

elements. The class of set partitioning and covering SAPs is naturally motivated by the corresponding

combinatorial optimization problems, and by the observation that several tasks of the system architect,

such as the function to form mapping and the function or form aggregation, are naturally formulated using

these problems.

In the permuting class of SAPs, the architectural decision to be made concerns the sequence or ordering

in a set of elements. The permuting class of problems arises as a generalization of problems in which

architectural decisions have a strong sequential component. This class includes in particular scheduling

problems.

In the connecting class of SAPs, the system architecture is represented by a graph, where the elements

are nodes, and the edges can be any type of interface between these elements. The goal of connecting

problems is to find the set of edges or interfaces that maximizes value delivery to stakeholders. This class

of SAPs is motivated by the structural connectivity task of the system architect, and it is closest in nature

to the network flow problem.
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Finally, the assigning class of SAPs is motivated by Simmon's representation of a system architecture as

a set of decisions, where each decision has set of available options. This class of SAPs is closest to the

generalized assignment problem.

All of these classes of SAPs are described in more detail in the rest of this chapter.

tasks of the system architect and classes of SAPs is presented in Table 1.

The mapping between

Down- Covering/ Permuting Connecting Assigning
selecting Partitioning problems problems Problems
Problems problems

Scope selecting Preferred Possible
Function to Possible Possible Preferred
form mapping
Decomposition Preferred Possible Possible
/aggregation
Specialization Possible Preferred
Attribute Possible Preferred
selection
Structural Possible Possible Preferred Possible
connectivity
Reactive Possible Possible
commonality
Proactive Possible Possible
commonality

Table 1: Correspondence between system architecting tasks and classes of SAPs

Note that this is not a bijective (i.e., one-to-one) mapping, as: a) the same task can be formulated as

different combinatorial optimization problems; b) some combinatorial optimization problems can be

reduced to others (see discussion about NP completeness above).

For instance, the problem of mapping function to form can be formulated in a number of ways. If a

certain group of objects and processes is fixed a priori, then each process simply needs to be assigned to

one object. This formulation is similar to the assignment problem in operations research. In another

formulation, there may not be a predefined set of objects, and elements of form may be implicitly defined

by groups of processes performed by the same abstract element of form. This alternative formulation is

much closer to a set partitioning problem.

Furthermore, as mentioned earlier, some classes of SAP are variations or generalizations of one or more

combinatorial optimization problems. For instance, down-selecting problems are similar to the 0/1

knapsack problem; permuting problems are similar to the traveling salesman problem and to the job

scheduling problem.

55



The similarities and differences between the classes of SAP and their corresponding combinatorial

optimization problems are discussed in the following sections. Generally speaking, the classes of SAPs

are broader in scope than the corresponding optimization problems, more constrained, and they try

to capture better interactions between elements, because these interactions are the origin of

emergent behavior, which is important in system architecting.

In the rest of this section, each class of SAPs is described in detail. For each class of SAP, we provide a

formal definition, a few examples, and a discussion of the differences between the class of SAP and the

corresponding combinatorial optimization problems. Class-specific rules are provided in an appendix.

2.2.2 Assigning Problems

2.2.2.1 Definition

The assigning problem is a very general class of SAPs given in the form of a set of decisions that need to

be made. Each decision has a set of options, and the goal of the problem is to assign an option to each

decision in an optimal way.

Definition (Assigning Problem): Given a set of n generic decisions D = [d], d2, ... , d,}, where each

decision d, has a discrete set of options O = {di;};, the goal of the Assigning Problem (AsP) is to find the

assignment of options to decisions A = {di <- dij}; that maximizes value delivery to stakeholders:

A* = arg max V({d i <- di;}
{di<-dij~i

where V() is a generic value property function that may have more than one dimension (e.g. benefit and

cost). An architecture in the AsP is represented by an assignment A = fdi <- di;};. Note that, in general,

the solution to the AsP is not unique, but rather a set of non-dominated architectures, due to its multi-

objective nature. Furthermore, note that the set of options for each decision is a discrete set, and therefore

if a certain decision can be defined in a continuous domain, it is necessary to provide either a finite set of

acceptable values, or the boundaries and a discretizing step to construct this set. For example, if a decision

has to be made concerning the length of a certain element, since this length could in principle take any

real value from 0 to infinity, it is required to provide either a set of acceptable values (e.g., 11.2, 2.4,

3.6 1), or a minimum and maximum length and a discretizing step (e.g., I to 5, in steps of 0.5).

A pictorial representation of a generic AsP is provided in Figure II where three different decisions are

shown with three, two, and four options respectively.
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Figure 11: The assigning class of architectural problems

Size of the tradespace: The size of the tradespace of a generic AsP is simply given by the product of the

dimensionalities of the option sets of each decision:

n n

IfAk}| = 11Il = {jvdi;}|
i=1 i=1

Hence in the example of Figure 11, there are 3*2*4=24 different architectures. Note that if we introduce

the geometric average of the dimensionalities of the option sets |OtL = f=1Oil, then the size of the

tradespace becomes a simple exponential:

n

|{AkJI |7JO = Iin

Thus, the size of the tradespace of the AsP grows very quickly with the number of decisions, especially

when the average number of options is large. This is typically the case when continuous variables are

discretized with a small quantum.

2.2.2.2 Examples

Previous work by Simmons has demonstrated that the system architecting process can be modeled as a set

of interrelated decision making problems (Simmons, 2008).
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In other words, architecting a system is equivalent to making architectural decisions. As a consequence,

almost any SAP can be put in the form of an AsP.

e Example 1 (adapted from (Aliakbargolkar, Wicht, Battat, Calandrelli, & Crawley, 2011)): When

architecting a 2 /2 stage launch vehicle, the major architectural decisions are: the number of

boosters, the propellant type of each stage, the diameter, and the length of each stage. Each of

these decisions has a set of options: for instance, the number of boosters can be 1, 2, or 4; the

propellant type can be "solid", "LH2", "RP-1", or "CH4" (it can be different for each stage); the

common diameter can range from 3m to 8m in steps of 1m; and the lengths of each stage can

range from Im to 50m in steps of Im.

Note that there are eight decisions to make, with 3, 4, 4, 4, 6, 50, 50, and 50 options respectively.

With these decisions and options, there are 3*4*4*4*6*50*50*50=144 millions of possible

architectures. Note that not all of these architectures are feasible or even make sense. For

instance, solid propellant will probably only be chosen for the boosters. Also, geometrical

constraints such as minimum and maximum aspect ratios will reduce the size of the tradespace.

e Example 2: Let us consider the architecture of an altimetry satellite mission. We can model the

system architecting process as a decision making problem with three decisions: composition of

the payload, orbit, and number of satellites. For example, the payload can be any combination of

the following instruments: a next-generation wide-swath radar altimeter, a classical nadir

altimeter, a microwave radiometer, a GPS receiver, a DORIS receiver, and a passive optical

imager, i.e. a total of 26-1 = 63 options if we don't count the empty set as a valid combination; the

orbit can be a classical oceanography orbit (non SSO, 1300km, 65 deg inclination), or an 800km

dawn-dusk SSO that would ease the requirements on the power subsystem, improve illuminating

conditions, but suffer from aliasing due to poor sampling of the diurnal cycle; finally, we may

want to compare a single-satellite mission with a tandem (two satellite) mission, and a

constellation with 4 satellites evenly spaced in a single plane. In this example, we have three

decisions with 63, 2, and 3 options respectively. Thus, the size of the tradespace is 63*2*3 = 378

architectures.

2.2.2.3 Discussion

The AsP is particular for several reasons. First, all the other classes of SAPs can be reduced to an AsP as

it will be shown later. Perhaps due to this, the AsP formulation was chosen both by Koo and Simmons for

their SATs (B. H. Y. Koo, Simmons, & Crawley, 2009), (Simmons, 2008).
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Although it is true that it is an extremely generic and powerful class of problems and many problems in

system architecture can be formulated as an AsP, we claim in this thesis that there are other classes of

SAP that appear often in system architecting that are not naturally represented using an AsP formulation.

The AsP is similar in nature to the class of assignment problems, where there is a set of tasks that needs to

be assigned to a set of agents. However, there are several particularities of the AsP that make it different

from typical assignment problems. In the standard assignment problem in operations research, the goal is

to find the optimal bijection between the task and agent sets, i.e it is a one-to-one assignment. In the AsP,

the sizes of the two sets can be different. This modified version of the assignment problem is sometimes

called the weapon target assignment problem. Furthermore, the objective functions are non-linear and

potentially knowledge-intensive functions of the assignment. This precludes the direct utilization of linear

programming techniques.

2.2.3 Partitioning and Covering Problems

2.2.3.1 Definition

Definition (Set Partition): Given a set of m generic elements of function or form U = [el, e2, ... , em], a

partition P, = [S;} of a set U is a division of U into a number of non-overlapping subsets Si that are

mutually exclusive and exhaustive. In other words, we call [S;} a set partition if:

1. The union of all elements in [S;J is equal to U: U1 Si = U [Constraint PaP-1]

2. The intersection of all elements in{S;} is empty: fl1 Si = 0 [Constraint PaP-2]

Definition (Partitioning Problem): Given a set of m generic elements of function or form U = [ej, e2 ,

... , em], the goal of the Set Partitioning Problem (PaP) is to find the set partition P, = [S;] that maximizes

value delivery to stakeholders:

{Si}* = arg max V({Si})
Pi = {Si}

where V(-) is a generic value property function that may have more than one dimension (e.g. benefit and

cost). An architecture in the PaP is represented by a partition P, = {S].

Note that, in general, the solution to the SSP is not unique but rather a set of non-dominated architectures.

A pictorial representation of a generic PaP is provided in Figure 12, where two different set partitions are

provided. The partition on the left side divides the eight elements into four subsets, while the partition on

the right side divides the eight elements into two subsets.
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Figure 12: The partitioning class of architectural problems

Size of the tradespace: The number of partitions in a set of m elements with exactly k subsets is given by

the Stirling numbers of the second kind, which can be computed using the following explicit formula:

k

tMI j(-1~ ) (k - i)m
i=0

The total number of set partitions is equal to the sum of all the Stirling numbers of the second kind for all

possible values of k.

B(m) =>L{~j
k=0

These numbers are called by Bell numbers, and can be computed for example using the following

recurrence:

m

B(0) = 1; B(1) = 1; B(m + 1) = B(k) Vm > 2

k=0

The first Bell numbers are thus

http://oeis.org/A000110.

1, 1, 2, 5, 15, 52, 203, 877... The first 500 Bell numbers may be found on

Definition (Covering Problem): A variant of the PaP is obtained if Constraint PaP-2 is relaxed,

allowing for certain elements to be assigned to more than one subset. For example, if elements are

functions, we can allow for a certain function to be fulfilled by more than one element of form (i.e. we

can relax Constraint PaP-2), but every function still needs to be fulfilled by at least one element of form

(i.e., Constraint PaP-1 cannot be relaxed). This variant is called the set covering problem (CvP).
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Both PaPs and CvPs are well known NP-hard problems that appear very often in computer science,

operations research, and other disciplines. For instance, the vertex cover problem, the map coloring

problem, and the airline crew scheduling problem can all be formulated as instances of PaPs or CvPs

(Levine, 1994).

2.2.3.2 Examples

In system architecting PaPs and CvPs, there are different situations where the way in which elements are

partitioned affects architectural value. The following are examples of PaPs and CvPs in system

architecting:

e Example 1: Fractionated spacecraft are alternative spacecraft architectures in which the different

functions of a spacecraft are performed by elements that are physically separated from each other,

as opposed to a classical monolithic architecture where the bus consist in a single physical

element.

Functions such as communications, payload, or even electrical power generation and distribution,

can be performed by smaller independent spacecraft flying in close formation. Fractionated

spacecraft promise better emergent system properties (e.g., flexibility, survivability, scalability)

than monolithic architectures, albeit at a higher cost and technical risk given the current state-of-

the-art of spacecraft technology 3. The problem of exploring different fractionated spacecraft

architectures can be modeled as a PaP in which each architecture is a different partition of

functions into subsets that are independent units.

" Example 2: When architecting Earth observing programs, program managers often face the

question whether to distribute a given set of instruments in a single satellite or on several smaller

satellites. More generally, given a set of N instruments or payloads, they can be flown on any

number of satellites between 1 and N.

The problem of finding the best allocation of instruments into satellites can also be modeled as a

PaP.

Note that in this case the elements being partitioned are elements of form (instruments), whereas

in Example 1, the elements being partitioned where functions (power generation,

communications). If multiple copies of an instrument can be flown on different spacecraft, then

the problem becomes a CvP.

3 See for example (0. C. Brown, Eremenko, & Collopy, 2009; 0. Brown & Eremenko, 2008) for a good

discussion of fractionated spacecraft.
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* Example 3: In the context of a space exploration mission, different architectures may use a

different number of habitable volumes to satisfy the same overall set of functional requirements.

For instance, in Apollo a lunar module was developed to bring the astronauts from Moon orbit to

the Moon's surface and back. Another architecture could have reused the orbiting spacecraft as

lunar capsule, thus putting the two sets of requirements on a single capsule. This architectural

decision affects value in many ways. For instance, the cost of developing two capsules will be

different than the cost of developing one larger capsule. Moreover, competing requirements in the

two sets may lead to necessity to reach compromise solutions.

2.2.3.3 Discussion

Set partitioning and set covering problems are classical problems in combinatorial optimization. In the

original formulation, the goal of the PaP/CvP was to draw from a predetermined list of subsets of

elements so that the PaP/CvP becomes a knapsack problem where the cost function is simply the number

of subsets. Our PaP is a more general version of this problem in which the metrics are complex functions

of the set partitioning. These metrics may include for instance cost models, and fine modeling of the

interactions between elements.

Interactions between elements (both positive and negative interactions) play a very important role in the

PaP/CvP. In this aspect, it is closer to the class of clustering problems rather than the classical PaP/CvP

formulation in operations research. These issues will be discussed in more detail in Section 9.1.2.

2.2.4 Down-selecting Problems

2.2.4.1 Definition

Definition (Down-selecting problem): Given a set of m generic elements of function or form U = [ej, e2,

... , em], the goal of the down-selecting problem or DsP is to find the subset Si or subsets of elements [Si]

that maximizes value delivery to stakeholders, or more precisely, that optimizes the trade-off between

benefit and cost.

Sj* = argmax [B(Si) C(Si)]
Si

where B(-) and C(-) are benefit and cost property functions respectively. An architecture in the DsP is

represented by a subset Si. Note that, in general, the solution to the DsP is not unique but rather a set of

non-dominated architectures.

The pictorial representation of a DsP is provided in Figure 13.
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Figure 13: The down-selecting class of architectural problems

Size of the tradespace: The size of the unconstrained architectural tradespace of a DsP is exponential with

m.

ISi}| = 2'

Mathematically, the DsP is similar to the classical 0/1 knapsack problem, with the following exceptions:

1. Values of elements are not additive. The value of an element depends on the other elements in the

subset. There are positive interactions between elements leading to emergent positive value, and

negative interactions between elements leading to emergent negative value.

2. In general, there are multiple constraints in element selection. For example, a constraint may say

that if element e, is chosen, then element ej must also be chosen; another constraint may say that if

element e, is chosen, then element ej it cannot be chosen.

It is important to note that exception 1 precludes in particular a classical dynamic programming

formulation with recurrent independent decisions because the Bellman equation is not met due to

dependence of present reward on both past and future choices of elements. For example, the last element

selected may change the value of an element that was previously selected. Concerning exception 2, there

has been some work on multi-constrained versions of the knapsack problem (Drexl, 1988), in particular

with neighboring constraints (Borradaile, Heeringa, & Wilfong, 2009), but surprisingly we found no

previous work concerning a version of the knapsack problem where both exceptions 1 and 2 are

considered.

2.2.4.2 Examples

DSPs appear naturally in any real life situation where one has a limited budget to choose between a set of

candidate assets with costs and rewards.
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For instance, the chief technologist at NASA has a given budget and a list of proposals for technology

investments, and he or she has to choose a subset of these proposals that maximizes return for the given

budget. This is an instance of a DSP, and note the importance of exceptions 1 and 2 in this example,

which make the formulation of this problem as a classical knapsack problem a bad idea. For instance, in

the context of human exploration, investing on a technology for boil-off control will affect the value of

investing on different types of propellant (e.g., CH 4 versus LH2).

In Earth observing programs, there is sometimes a phase of instrument selection, where a list of candidate

instruments is available as well as a fix budget for instrument and mission development. The goal in this

case is to maximize science and societal return by selecting the best and most complementary and

synergistic set of instruments to be flown in the program. Again, exceptions 1 and 2 are very important.

Particularly, it is possible that one has to choose between several instruments for a specific measurement

(e.g. choose between two lidars where one is a more advanced version of the other, or between two

equivalent instruments where one is developed nationally and the other one internationally.

2.2.4.3 Discussion

The DSP is similar in nature to knapsack problems. In a general knapsack problem, we are given a set of

items, each of them with a given cost and benefit. The goal is to find the number of items of each type

that maximizes value at a given cost.

In the 0/1 knapsack problem, it is not allowed to have multiple copies of the same item. In both these

formulations, the benefit and cost of the items are independent of the other items selected. In other words,

there are no interactions between the elements. In reality, the value of selecting a certain item will depend

on the other items selected because there are synergies, redundancies, and incompatibilities between

elements. Let us consider a trivial example of a rucksack, and a set of available items that contains,

amongst others, three tubes of toothpaste of different brands with benefits B1, B2, B3, a toothbrush (B4), a

sandwich (B5), a bottle of water (B), a towel (B7), and soap (B8 ). In a classical formulation, all the B

would be constant, and thus the benefit of choosing the three tubes of toothpaste would be B1 + B2 + B3.

In reality, the benefit of having the three tubes of toothpaste will arguably be much smaller than B, + B 2 +

B3, due to redundancy between the items. Similarly, in the classical formulation, the value of having the

toothpaste will not depend on whether the toothbrush is selected or not.

In reality, the value of having toothpaste without a toothbrush is much smaller. This is the effect of

emergence, or synergies, which as mentioned before is very important to capture. This discussion is

continued in more detail in Section 9.1.3.
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2.2.5 Permuting Problems

2.2.5.1 Definition

Definition (set permutation): Given a set of m generic elements of function or form

U = {ei, e2, -. , em}, a permutation 0; is any bijection of U onto itself:

Oi: U -+ U

Informally, Oi is any arrangement of the elements in U into a particular order. For example, if we

consider a set of four generic elements U = fei, e 2, e3 , e4 }, one possible permutation is 01 =

{ei, e3 , e4 , e 2}, and another possible permutation is 01 = {ei, e3 , e4 , e2}-

Definition (Permuting problem): Given a set of m generic elements of function or form U =

{el, e2 , ... , em), the goal of the permuting problem or PeP is to find the permutation or ordering of U that

maximizes value delivery to stakeholders.

Oj* = argmax V(Oi)

where V() is a generic value property function that can have one or more dimensions. An architecture in

the PeP is thus represented by a permutation Oi. Note that, in general, the solution to the PeP is not unique

but rather a set of non-dominated architectures. The pictorial representation of a PeP is provided in Figure

14.
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Figure 14: The permuting class of architectural problems

Tradespace size: The size of the tradespace of a PeP is given by the size the set of all possible

permutations of a set of m elements:
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2.2.5.2 Examples

PePs appear often in systems architecting, both with function and form elements. When PePs concern the

sequence of a set of processes or events, they are typically instances of classical scheduling or planning

problems. Examples of these include:

e To find the optimal strategy for the staged deployment of a flexible system architecture

e To find the optimal sequence of destinations in a human space exploration program

e To find the optimal scheduling of a set of Earth observing missions given a certain annual budget,

mission costs, and mission societal and scientific benefits.

One may also encounter a few instances of PeP that deal with objects instead of processes. In these cases,

the problem is usually about structural connectivity and interfaces between objects.

2.2.5.3 Discussion

While our definition of the PeP may look similar in some aspects to the traveling salesman problem

(TSP), algorithms used to solve the TSP will rarely be applicable to PePs in general. In the TSP, we are

given a list of cities and pairwise distances between them, and the goal is to find the optimal permutation

of visits that minimizes overall distance.

In the PePs, these pairwise distance between cities i and j could represent the value of selecting j as the

next element given that our last choice was i. However, in this formulation, it is implicitly assumed that

the value of selecting an element only depends on the last element selected. In reality, the value of

selecting an element depends on all the elements selected before.

More generally, the PeP can be defined as the problem of optimizing over a permutation set. Some work

has been done on this topic. Silvio Turrini studied a strategy based on transformation of the permutation

into a transformed domain in which a notion of distance between elements can be defined. Efficient hill

climbing algorithms can then be applied in the transformed domain, using a Lagrangian formulation with

penalties in the objective function to handle infeasibility constraints (Turrini, 1996). This and other

possible strategies to tackle PePs are discussed in Section 9.1.4.
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2.2.6 Connecting Problems

2.2.6.1 Definition

Definition (Graph): Given a set of m generic elements of function or form U = {ei, e2, -. , em), a graph

Gi is a representation of the interrelationships between the elements in the set in which the elements are

represented by nodes or vertices, and their links are represented by arcs or edges. A graph is thus fully

defined by a 2-tuple:

G = (V,E)

where V is a set of vertices, E is a set of edges, and each edge is represented by a pair of vertices.

Definition (Connecting problem): Given a set of m generic elements or nodes U = fei, e2 , ... , em}, the

goal of the connecting problem or CnP is to find the graph that has U as its set of vertices and maximizes

value delivery to stakeholders.

Gj* = argmax V(Gi)
Gi

where V(-) is a generic value property function that can have one or more dimensions. An architecture in

the CnP is thus represented by a graph Gi. Since all graphs considered in the CnP have the same set of

vertices G = (U, E), a more succinct definition of the problem is to optimize over the set of edges:

E= argmax V(Ei)
Ei

Note that, in general, the solution to the CnP is not unique but rather a set of non-dominated architectures.

The pictorial representation of the CnP is provided in Figure 15.
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Figure 15: The connecting class of architectural problems
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Given a graph G = (U, E), the adjacency matrix is a data structure that represents the connectivity

between the nodes in the graph. In other words, it is a matrix representation of the information contained

in E. More precisely, the adjacency matrix A of a graph G is an n x n matrix where A(i,j) = 1 if node i is

adjacent (i.e., directly connected by an edge) to node j, and A(i,j) = 0 otherwise. Note that in undirected

graphs, i.e., graphs in which edges have no orientation, A(i,j) = 1 implies A(j, i) = 1, and therefore the

adjacency matrix of undirected graphs is symmetric. This is not the case of directed graphs.

Tradespace size: The size of the tradespace of a CnP is given by the size the set of all possible adjacency

matrices of a set of m elements. The number of different adjacency matrices depends on whether the

graphs being considered are undirected or directed, and whether the nodes are allowed to be connected to

themselves. This leaves four different cases that are summarized in Table 2:

Directed graph (non- Undirected graph (symmetric)
symmetric)

Self-connections allowed |{Gi}| = 2 M{ m(m+)

(diagonal meaningful) 2

Self-connections not allowed |{Gi}| = 2m2-m = 2m(m-1) {G m(m-1)
(diagonal not meaningful)

Table 2: Size of the tradespace for the CnP in four different cases

The formulae above assume that there can be a maximum of one connection between two any given

nodes or between a node and itself. In other words, it assumes the adjacency matrix is a Boolean matrix.

2.2.6.2 Examples

CnPs are amongst the most prevalent problems in system architecture. Examples of CnPs include:

* To architect a resource exploration system with several reservoirs and platforms (Aliakbargolkar

& Crawley, 2012).

* To architect the power network of a small country.

* To architect a Guidance, Navigation, and Control (GN&C) subsystem for the International Space

Station using a set of sensors, computers, and actuators that can be connected between them

(Dominguez-Garcia et al., 2007).

More generally, many systems-of-systems can be modeled as a graph where the vertices are the individual

systems and the edges represent inter-system interfaces.

All the aforementioned examples essentially deal with the structural arrangement of elements of form in

the system, i.e., the definition of physical interfaces between system elements. CnPs can also be used to

model non-physical interfaces, such as a sequence of decisions over time.
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2.2.6.3 Discussion

The CnP is more closely related to the body of network optimization. There is a broad variety of

optimization problems in network analysis including for example maximum flow problems, shortest path

problems, minimum spanning three problems, transportation problems, routing problems. The most

general network optimization problem is the minimum cost network flow problem. In the minimum cost

network flow problem, we consider a network with n nodes, where each node has a net flow that can be

either positive (supply), negative (demand), or zero (transshipment). We also have a predefined set of

edges between the nodes, where each edge has an associated cost. The goal of this problem is to minimize

the cost of sending the supply through the network to satisfy demand.

All of these classical network optimization problems are of particular interest because they can be solved

much faster than linear programs. However, the most general expression of our CnP does not have this

problem structure because both cost and value may emerge from interactions between nodes. For

instance, reliability is a system property that emerges from overall network connectivity. As a

consequence, efficient network algorithms will generally not apply.

2.2.7 Summary and discussion

In this section we have introduced five classes of SAP, namely assigning problems, partitioning and

covering problems, down-selecting problems, permuting problems, and connecting problems, which can

be used to formulate the recurring tasks of the system architect identified in Chapter 1.

The reader may be surprised by the absence of a satisfiability class of problems. While it is true that many

SAPs can be reduced to a satisfiability problem, and that their formulation as satisfiability problems may

be beneficial from the computational standpoint, it is often not convenient from the representational and

viewing standpoints.

Hence, instead of having a class of problems about satisfiability problems, it is more desirable to have a

set of rules that solve a certain class of SAPs by transforming them into satisfiability problems. This is

similar to the work by Rayside, Estler and Jackson (Rayside et al., 2009), in which an ADG-like interface

is provided to the user, but the actual SAP is internally solved by transforming the original problem into a

MAX-SAT problem and using efficient tools for solving SAT problems.

As in any other classification scheme, one may question the completeness and degradedness of this

classification. In other words: a) given any SAP, does it always belong to at least one class of SAP? b)

given any SAP, does it always belong to at most one class of SAP?

69



Related to this idea is the fact that the process of classifying an SAP is human and therefore implicitly

subjective. How hard is it to classify an instance of a problem? How do we choose the appropriate

formulation in the case where two classes are clearly possible? While these are valid concerns, we argue

that having this "library" of classes of SAPs will only help the system architects make this classification

that they would have done in their minds anyway, since solving the problem requires formulating it as a

combinatorial optimization problem. Furthermore, we have tried to support the system architects in their

choice by providing pictorial representations of each class of problems, as well as several real-life

examples that they can use to compare to their own instance.

2.3 A knowledge-intensive heuristic algorithm for searching the architectural

tradespace

2.3.1 Overview

This section focuses on the domain-independent knowledge that is also independent of the class of SAP,

as illustrated in Figure 16.

Up to this point, we have identified the tasks that the system architect recurrently performs, and we have

shown that when formulating these tasks as SAPs, there are patterns that appear.We defined five classes

of SAPs from these patterns in the previous section, and provided examples for each class.

When solving these SAPs, a variety of combinatorial optimization algorithms or strategies can be applied,

and the success or failure of these strategies will in general be dependent on the specific problem at hand

(Ehrgott & Gandibleux, 2000). In other words, we cannot design a strategy that will solve all classes of

SAPs at maximum efficiency. This is sometimes known as the no free lunch theorem in search and

optimization (Wolpert, 1997). Rather, the goal of this research is to develop a framework in which the

parts of the problem that are always the same are solved, while providing flexibility to accommodate

domain-independent and domain-specific knowledge easily.

Indeed, there are a certain number of tasks that are always the same, namely: encoding, i.e. the creation of

an enumerable model of the system architecture, enumeration of architectures using this model,

evaluation of architectures using a set of metrics, search, i.e. the iterative process of choosing a

"direction" in the tradespace to look for new and potentially better architectures, and down-selection of a

subset of preferred architectures.
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Figure 16: Situation of the generic search algorithm in the knowledge separation chart

In this section, we introduce a generic search algorithm based on the incorporation of an RBES, which

performs all these functions iteratively while allowing the introduction of a large body of knowledge in

the form of rules.

More precisely, we selected a generic population-based tradespace search strategy for the framework.

The reasons that led to the selection of a population-based algorithm, as well as the steps of this

algorithm, are described in more detail in the next subsection.

The customization of this generic search algorithm is accomplished through the incorporation of domain-

independent and domain-specific knowledge in the form of rules. These rules make the search process for

each class or instance of an SAP much more efficient. Hence, the knowledge that goes into the

implementation of the different modules of this algorithm is different for each class of SAP, but the

overall strategy is not. Note in particular that this precludes the utilization of other search strategies or

optimization algorithms such as branch and bound, cutting planes, dynamic programming, or tree-based

Al search algorithms.

As a consequence, there might be a loss in computational efficiency in the solution of certain instances of

SAPs. For example, if we consider a simplified version of the down-selecting problem in which the value

of elements is independent of elements already chosen in the subset, a very efficient dynamic

programming formulation is well-known that solves the problem in polynomial time. The upside of this

approach is a flexible framework that allows the system architect to focus on domain-specific knowledge,

since a generic search algorithm and a library of heuristics for each class of SAP are provided.
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2.3.2 Description of the generic search algorithm

The generic search algorithm is described in this subsection. The algorithm is population-based or multi-

point, as opposed to point-to-point. Point-to-point algorithms start with a guess solution and then

iteratively update the solution hopefully improving it. Multi-point or population-based algorithms follow

the same procedure except the search is performed around multiple points simultaneously4 . The choice of

a population-based algorithm over a point-by-point or multi-point approach was driven by the following

considerations: a) evolutionary algorithms (e.g. genetic algorithms, particle swarm optimization), which

have been successfully applied to a variety of large-scale combinatorial optimization problems, are all

population-based; b) it is very easy to apply parallel computing techniques on population-based

algorithms in order to improve computational efficiency, since for example the evaluation of each

individual in the population can be parallelized; c) dealing with a population of architectures is more
"natural" than dealing with a single architecture since the output of the process is to be a set of preferred

architectures as opposed to "the best" architecture.

The generic algorithm is shown in Figure 17. The steps of this generic algorithm are described below. In a

way, these are just the meta-steps of any population-based algorithm. For a detailed discussion of a

similar population-based optimization algorithm, see (Deb, 2004).

Step 1: Create an initial population. The first step of any population-based algorithms is to generate an

initial population. There are three basic sources of architectures for an initial population, and in general

any initial population will have architectures coming from these three sources: a) an initial population

may be partially or fully supplied by the system architect, containing architectures of interest that the

system architect would like to look around; b) it may also be partially or fully randomly generated using a

random architecture enumerator; c) finally, results from previous simulations may also be used (this is

sometimes called "warm starting").

Step 2: Evaluate architectures in population. In this step the architectures in the population are

evaluated using the metrics of choice. These metrics will be specific to the problem at hand, but will

typically include some assessment of the benefit or performance of the system, and some assessment of

its lifecycle cost.

4 Here, the word simultaneously is used with some liberty as it does not necessarily require the use of
parallel computing techniques.
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Figure 17: Generic population-based search algorithm developed for the framework

Step 3: Select architectures for new population. Typically, in order to hold the size of the population

constant, the next population will be created based on a subset of the population as opposed to the whole

population, and therefore a selection step is required. This subset of the population is called the selection

set. A simple approach would be to select the top X% of architectures in the case of a single metric, or the

X-fuzzy Pareto front in the case of multiple metrics.

This kind of approach is called a greedy approach or a truncation selection operator. Most selection

operators also include a few less fit or dominated individuals in the selection set, because it has been

empirically proven that doing so leads to better performance (see for example (Miller & Goldberg,

1995)). This will be discussed in more detail in Section 2.3.5.
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Step 4: Generate new population. The goal of this step is to generate new architectures from the

architectures in the selection set. This step can be further divided into two substeps: a) generation of

architectures based on this subset of architectures; b) elimination of infeasible architectures. Concerning

the generation of new architectures from the selection set, we consider again several sources of new

architectures: a) architectures randomly obtained from small variations around one selected architecture

(e.g. mutation operators in genetic algorithms); b) architectures obtained from recombination of two or

more architectures from the selection set (e.g. crossover operator in genetic algorithms); c) architectures

directly taken from the selection set. The fraction of new architectures that come from each source can be

adjusted, but it is desirable that the size of the population is maintained constant throughout the search

process.

Termination criteria: The algorithm stops iterating whenever any of these conditions are met: a) a

maximum number of iterations set by the user a priori is reached; b1) the best individual in the population

has not changed in the last N iterations, N being a user-defined parameter (this applies to single objective

problems only); b2) the value of the best architecture has not changed by more than a certain tolerance in

the last N iterations (this also applies to single objective problems only); c) the average Pareto spread has

not changed by more than a certain tolerance in the last N iterations (this also applies to multi-objective

problems only).

Step 5: Down-select preferred architectures. Finally, once termination criteria are met, a subset of

preferred architectures are selected for recommendation to the system architect. For single-objective

SAPs, these can be done by selecting the top X% of the architectures. For multi-objective problems, it can

be accomplished in two steps: first, dominated architectures, or more generally architectures with a Pareto

ranking higher than a threshold are discarded; second, a few architectures are selected within the fuzzy

Pareto frontier by adding several inequality and equality constraints concerning individual metrics (e.g.,

cost < $100M) or combinations of metrics (e.g., utility/cost > 0.5 utils/$M).

Throughout these five steps, there are several places where the algorithm can be customized by

incorporating both domain-independent and domain-specific knowledge in the form of rules. In the rest of

this section 2.2, we focus on the description of the different classes of rules used in the generic algorithm,

namely: grammars, approximate evaluation rules, search heuristics, and selection rules.
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We called "grammars" the set rules that concern the encoding and enumerating processes, which are

closely related. These rules are used in Step 1 and Step 4 in the algorithm. Approximate evaluation

rules are "rules-of-thumb" that replace expensive computations in the evaluation step (Step 2). Search

heuristics are rules that make the search process more efficient, including selection, mutation, and

crossover operators amongst others. Finally, down-selection rules are the set of rules used to select a

small subset of preferred architectures.

Note that only a general discussion about each type of rule is provided in this section, as the

implementation details depend on the class of the SAP at hand. Heuristics for the different classes of

SAPs are provided in Appendix 9.1.

2.3.3 Grammars: rules for synthesis of feasible architectures

The notion of grammars in computer science was first introduced to designate automatic transformations

on strings. In this context, (language) grammars are defined as a set of production rules for successive

synthesis of strings, typically starting from an initial string. In addition to language grammars, shape

grammars also became very popular in the 70's (Stiny & Gips, 1972).

In this thesis we extend the concept of grammar to the system architecting discipline - with some liberty -

to designate both the encoding scheme and the set of rules that can be used for automatic synthesis of

architectures. A more formal definition follows.

Definition (encoding scheme E): An encoding scheme E is a mapping (i.e., a function) that assigns an

enumerable representation model M to a given system architecture A:

E:A -+ M

Definition (grammar G): A grammar G is defined as a tuple (E, C, R) where E is an encoding scheme; C

is a set of feasibility constraints that an architecture must satisfy; and R is a set of rules used in

combination with C to generate feasible architectures.

2.3.3.1 Encoding schemes

The first step to define a grammar is to select an encoding scheme E, i.e. a data structure in which

synthesis rules can be expressed. The fields of this data structure must coincide with the architecturally

distinguishing pieces of information that characterize a system, that we call architectural attributes or,

following Simmon's nomenclature, decision variables (Simmons, 2008).
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In a particular architectural trade study, a system architecture differs from the others in at least one

architectural attribute or decision. For example, in the case of a launch vehicle, an architecture may be

defined by five architectural attributes or decisions: a) number of stages; b) propellant type for each stage;

c) length of each stage; d) diameter; e) number of boosters. For each of these attributes, there exists a set

of allowed values (e.g. number of stages can go from I to 3, propellant type can be "LH2", "RP1", or

"CH4"). Assigning one value to each of the decisions yields one architecture.

We defined an encoding scheme as a mapping between a set of possible architectures and a set of

enumerable architecture representations or models. In other words, an encoding scheme is a procedure to

represent a real system architecture as an instance of an enumerable data structure whose fields represent

architectural attributes. In the example of the launch vehicle, one architecture can be represented by an

array of variables [d, d2, d3, d4, d5] where di is an integer between 1 and 3 that represents the number of

stages, d 2 is a 1xdi array of integers representing the propellant type (e.g. 1 means LH2, 2 means RPl, 3

means CH4), and so forth. Note that in this definition, "enumerable" is in the sense of Koo's Algebra of

Systems (B. H. Y. Koo et al., 2009), i.e. which allows the explicit listing of all possible combinations of

values for the properties of the data structures.

We can define several properties of an encoding scheme: a) information density, i.e., how big is the data

structure representing the architecture; b) type of variables (continuous, discrete, Boolean, mixed); c)

bijectivity (i.e., is there a one-to-one correspondence between real architectures and models); d) non-

degradedness, or the question of whether small changes in the model domain translate into small changes

in the real architecture domain.

These properties affect the process of exploring the architectural tradespace in several ways. First, they

have an impact on the inherent complexity of the corresponding optimization problem. Indeed, some

optimization problems are much harder to solve than others. Generally speaking, most problems

involving only continuous variables will be solved more efficiently than problems involving integer or

Boolean variables, thanks for example to the use of gradient information.

Second, they impact the size of the architectural tradespace in the model domain. One could reason that

the size of the architectural tradespace is given by the number of architectural decisions and their options

being considered, and therefore should be independent of the encoding scheme. However, some

constraints may be hard to express as synthesis rules in a particular model domain, and the system

architect may decide to relax these constraints, or to express them as penalties in the objective functions

instead of hard constraints affecting the enumeration process. By doing this, the system architect is

trading efficiency in the search against size of the tradespace.
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Bijectivity in an encoding scheme implies a perfect one-to-one correspondence between real architectures

and their representations. Bijectivity of an encoding scheme is a desirable property because once the

model has been applied in the algebra of choice, the selected architectures in the model domain need to be

transformed back into the real domain. If several real architectures have the same representation in that

algebra, the problem is ill-posed. Consider the generic example of assigning five functions [f1, f2 , f3 , f4 , fs]

to a number of elements of form. A possible encoding scheme uses an array of five integers where the ith

entry represents the subset to which element i is assigned. For example, [1,2,3,4,5] represents an

architecture where the five functions are performed by different elements of form, while [1,1,1,1,1]

represents an architecture where all the functions are performed by a single element of form. We note that

this encoding scheme, without any further constraints, does not satisfy the bijectivity property. Indeed, the

following two different architectural arrays: [1,1,1,2,2] and [2,2,2,1,1] represent the same real

architecture { FA + [f1, f2 , f3 ]; FB 4 [f 4 , f 5]}. One can change from one representation to the other by

changing the names of the elements of form. As it was pointed out before, in this example the elements of

form {Fj} do not have any kind of physical meaning, they are rather just subsets of functions, which

explains why the two representations are equivalent.

Another desirable property for an encoding scheme is that similarity in the model domain under a certain

definition of distance (e.g. Euclidean distance between two arrays) translates into similarity in the real

domain. In other words, if the representations of two architectures are similar (e.g. [1,1,1,2,2] and

[1,1,1,1, 2] only differ in one variable), then these two architectures are also similar ({ FA + [f1, f2 , f3 ]; FB

+ [f 4 , f5] } vs IFA + [f1, f2, f3, f4]; FB + [ 5 ) }which only differ in one function), and viceversa. Note that

this is a strong property that is not satisfied in many cases. For example, [1,3,2,3,2] and [1,2,3,2,4] are

very different in the model domain but very similar in the real domain. Transfer of similarity between the

model and real domains is desirable because many optimization and search techniques utilize an iterative

approach where solutions are progressively refined through small changes in the model domain (e.g. hill

climbing algorithms). If small changes in the model domain produce big changes in the real domain, the

performance of such techniques is reduced.

Finally, it is also desirable that encoding schemes have relatively simple interpretations and meaningful

graphical representations. For example, binary representations of architectures where integer options are

codified using a certain number of bits are sometimes used for formulation using genetic algorithms.

However, these formulations are intuitively very far from the architecture. Just by looking at any

graphical representation of the architectural array [0 0 1 1 0 1 0 1 0 1 0 1 0 1], it is very hard to visualize

the architecture it is representing.
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Hence, one should take the aforementioned issues into account when selecting an encoding scheme, and

be aware that their choice may influence not only the ability of the user to intuitively make the connection

between the physical world and the modeled world, but also the performance of the optimization or

search algorithms used to explore the architectural tradespace.

2.3.3.2 Enumeration rules

Enumeration rules are the procedures or algorithms utilized to enumerate all possible - or some -

architecture representations using the selected encoding scheme. For instance, for an encoding scheme of

the form [di, d2, d3, d4, d5], where di can take values in a set of size ni a possible enumeration rule would

be the following:

(define-rule example-of-enumeration-rule
"This rule recursively enumerates all valid architectures for an SAP with 5

decision variables and several possible values for each decision variable"

IF there is a fact <- (of type architecture (with assignments
AND (length$ of $? ) < 5

=> (THEN)

RETRACT
COMPUTE

=(1 2 3))
= (yes no))

( = (Moon Mars NEO L1))
( = (none 1 2))

= (5 10 15))
(?n = (length$ $

( =ist= (str-cat "?d" ( + 1) "-opt"))
(for ( = 1) (? <= (length$ t)) (++ )

(?was = (insert$ ?ass (+ n 1) (nth$
ASSERT (new fact of type architecture (with assignments : , as)))

Code 2: Example of enumeration rule for an SAP with 5 decision variables

This enumeration rule would effectively enumerate all L; ni possible architectures (216 in this case).

2.3.3.3 Enumeration constraints

Enumeration constraints are logical constraints that determine an architecture's feasibility. Enumeration

constraints are hard constraints, i.e., an architecture that does not meet all enumerations constraints is

immediately discarded. This is in contrast to soft constraints, which are feasibility constraints that are

included in the objective functions in the form of penalties. Soft constraints are used to improve the

performance of the search process, and therefore they are discussed in the subsection concerning search

heuristics.
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Furthermore, not all hard constraints are enumeration constraints. There might also be search heuristics

that take the form of hard constraints in order for example to reduce the size of the tradespace. While both

types of constraints are hard constraints as opposed to soft constraints, enumeration hard constraints are

very different in nature from search hard constraints. Enumeration constraints are intimately linked to the

encoding scheme and the enumeration rules. Eliminating enumeration constraints would lead to the

existence of mathematically non-sensical architectures, i.e. architectural models or representations

without corresponding real architectures.

Let us consider an example in which architectures are partitions of a set of 4 elements { A, B, C, D} into 2

disjoint subsets. For instance, an architecture can be A1 = {{A, B}, f C, D}}, and a different architecture

can be A2 = f{A}, fB, C, D}}. There are seven possible different architectures in this sapce'. In this

example, the grammar of choice will have to ensure that: a) each element gets assigned to no less and no

more than one subset; b) that the number of subsets is exactly equal to 2. These constraints can be

implemented by choosing a smart encoding scheme and trivial sets of enumeration rules and constraints,

or a smart set of enumeration rules and trivial encoding scheme and enumeration constraints, or by having

a simple encoding scheme and set of enumeration rules, and then applying enumeration constraints a

posteriori. Let us assume that our encoding scheme consists in a 4 x 2 matrix of Booleans, where entry (i,

j) is equal to I if element i is assigned to subset j, and it is set to 0 otherwise. In this case, enumeration

constraints need to be added to ensure a) that each element gets assigned to exactly one subset. If we do

not add this enumeration constraint, non-sensical architectures such as zeros(4,2) or ones(4,2) could be

enumerated. Conversely, we can consider an alternative grammar consisting in an array of 4 integers from

the binary algebra {1, 21, so that architecture Al's representation would be [1 1 2 2] and architecture

A2's representation would be [1 2 2 2]. This second grammar clearly ensures all of the constraints without

the need of explicit enumeration constraints.

2.3.4 Approximate evaluation rules

From all the tasks in the SAT, architecture evaluation is the one that depends the most on the problem at

hand, and therefore the hardest to discuss in general terms. Most tools develop ad-hoc metrics for each

specific SAP. Sometimes, dedicated simulation tools are used to obtain some of these metrics (e.g., AGI's

Satellite Toolkit for coverage metrics in mission analysis). Although these metrics and the objective

functions used to compute them can be very different in nature from one SAP to another, there are still

certain similarities across all metrics utilized in systems architecting.

5 This number can be computed using Stirling numbers of the second kind: S{4,2} = 7. See for example

(Grimaldi, 2003) for a discussion on combinatorics in general and Stirling numbers in particular.
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For example, all metrics are derived or should be derived from stakeholder needs, in a process of logical

decomposition in the function domain, from stakeholder needs, to functional and performance

requirements. Concerning objective functions, in the most general sense they all relate the architecture

(decision variables) to these metrics. Another way of seeing this is that objective functions relate elements

of form (e.g., instruments) to capabilities (e.g., measurements) and requirement satisfaction. Note that

both capabilities and requirements are expressed in the form of functions + performance. An architecture

scores high in a certain metric when capabilities meet or exceed requirements concerning this metric, i.e.,

when all required functions are executed with at least the required level of performance. Hence, in the

most general case, objective functions essentially do four things: a) a logical decomposition of the

architecture in the form domain; b) crossing the boundary between form and function; c) propagating

performance attributes throughout the architecture hierarchy; d) comparing performance of capabilities to

required performance.

These few observations motivated the development of a general framework for value assessment in

system architecting based on: a) a systematic development of functional and performance requirements

from stakeholder needs; b) a systematic computation of architectural capabilities (function and

performance); c) a systematic comparison between requirements and capabilities. The whole framework

uses an RBES to allow the system architect to focus on the domain knowledge and the problem-specific

knowledge. The rest of the problem (property propagation in the hierarchy, decomposition and

aggregation, pattern matching) is left to the inference engine inside the RBES.

This framework is called VASSAR (Value ASsessment for System Architecting using Rules). VASSAR

is described in detail in the next chapter.

2.3.5 Search heuristics: rules to constrain and guide tradespace search

Most state-of-the-art algorithms for large multi-objective combinatorial optimization problems utilize

some kind of heuristic to make the search process more efficient (Ehrgott & Gandibleux, 2000). Such

search heuristics typically include at least some strategy for local search, and some strategy for avoiding

getting stuck in a local optimum, i.e., a strategy for global search. Other possible heuristics are

tradespace size reduction strategies, decomposition strategies, and repair operators. Each of these types of

search heuristics is discussed below.

2.3.5.1 Tradespace size reduction heuristics

When SAPs are very large, it may become necessary to apply heuristics to reduce the size (i.e., number of

architectures) and/or the dimensionality (dimension of the data structure representing the architecture) of

the tradespace, i.e., reduce the number of solutions and/or the number of metrics.
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In the continuous domain, tradespace size reduction strategies are typically based on a decomposition of

the initial space in a set of uncorrelated orthogonal components, and subsequent truncation of the usually

infinite series of terms into the terms accounting for most of the variance. This techniques are sometimes

called model order reduction techniques, and they can be applied both to reduce the number of metrics

and the number of design variables. However, they are mostly applied to continuous variables.

If model order reduction strategies are not applicable, or if they fail to produce a problem of tractable size,

it is common to decompose the problem into smaller tractable sub-problems that contain only a subset of

the architectural variables and can be more efficiently solved. Formal decomposition strategies are based

on clustering algorithms, ranging from the simple k-means algorithm, to more involved statistical

methods such as neural networks. A survey of clustering algorithms can be found in (Xu & Wunsch II,

2005).

Finally, as noted earlier in Section 2.3.3, hard constraints can also be used as a means to reduce the size of

the tradespace. However, in this case they are different from enumeration hard constraints because

eliminating them would still lead to architectures that "make sense", or more formally, to architecture

representations that have an image in the real architecture domain once the encoding scheme is applied.

2.3.5.2 Local search heuristics

Local search heuristics perform small variations around a given solution with the goal of finding similar

feasible and hopefully better solutions. We distinguish between two types of local search rules: non-

informed and informed. Non-informed heuristics apply essentially random variations. This is the case

for instance of mutation operators in genetic algorithms. Informed heuristics typically compute a

direction in the tradespace where "better" solutions are likely to be. In continuous domains, one such

direction is the gradient. In combinatorial spaces, since gradients cannot be readily defined, one relies on

heuristics to compute these directions. An example of informed heuristics is crossover operators in

genetic algorithms. Crossover operators combine characteristics from two "good" solutions called the

parents to create a hybrid of the two called the child, which is expected to be "better" than both parents.

Note that there is no guarantee that this will be so, since this is only a heuristic.

Other informed heuristic rules include for example the use of tabu lists (Glover, 1990a, 1990b). In tabu

lists, a list of recently visited poor solutions is maintained with the goal of not revisiting them again in the

future. This avoids losing time in regions of the tradespace that have proven not to be very promising.
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2.3.5.3 Global search heuristics

In non-convex optimization, i.e., in problems in which there are several local optima, hill-climbing

strategies are not enough to guarantee convergence to the global optima, and it becomes necessary to

implement a strategy to avoid getting stuck in local optima. This is accomplished in part by mutation

operators in genetic algorithms, although mutations tend to be small variations and therefore may not be

as effective as other methods in avoiding local optima. Other algorithms incorporate a random component

in the decision of "where to go next". In these strategies there is a non-zero probability of following a

suboptimal path during the search. Another strategy consists in the parallelization of the search process,

so that multiple local searches are conducted simultaneously 6. An example of this in population-based

algorithms is the division of the population in sub-populations, with the possibility of individuals

migrating from one population to another. This is done for example in Deb's non-dominated sorting

genetic algorithm, NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002), which is implemented in

Matlab's optimization toolbox.

2.3.5.4 Repair search heuristics

It is well known in meta-heuristic optimization that keeping infeasible solutions in the population during

the search process can lead to faster convergence, because the best solutions may be obtained by

searching around an infeasible solution (Fisher, 2004), (Chu & Beasley, 1998). Therefore, some search

algorithms also include a strategy to project an infeasible solution onto the space of feasible solutions, i.e.,

finding the feasible solution that is "closest" to the original solution given some distance metric (e.g.

Euclidean distance for real vectors, or Hamming distance for binary vectors). We call these rules repair

search heuristics.

2.3.6 Selection rules: rules for architecture down-selection

The down-selection task consists in the selection of a small subset of preferred architectures from a larger

set of architectures, based on several criteria. We distinguish between two types of criteria: objective

criteria, whose goal is to find the set of non-dominated architectures or Pareto frontier; and subjective

criteria, whose goal is to select a few architectures within the Pareto frontier.

2.3.6.1 Objective down-selection rules

In single-objective optimization problems, the goal is to find the solution that maximizes (or minimizes) a

given metric such as performance or cost, and this solution is generally unique under certain conditions,

namely convexity of the objective function.

6 Note that in this context, the terms "simultaneous" and "parallel" are taken with some liberty, and in
particular they do not have the same meaning as in the field of parallel algorithms in computer science. Hence, these
searches need not occur truly simultaneously in different processors.
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Conversely, in multi-objective optimization, because of different objectives are conflicting, it is

impossible to define a single optimal solution. Instead, the concepts of dominance and Pareto optimality

are used. A feasible solution is called efficient or non-dominated if and only if there exists no other

feasible solution that: 1) is better than or equal to the former in all metrics simultaneously; 2) is strictly

better than the former in at least one metric. Strong dominance requires strict inequalities in all metrics.

The set of all non-dominated solutions is called the Pareto frontier, or trade-off curve. The utopia point,

or shadow minimum, is a fictitious point that simultaneously optimizes all metrics. Assuming that an

optimal solution exists for each metric when considered in isolation, the utopia point would only exist in

the rare case where a single solution minimizes all metrics. These individual minima are often called

anchor points. In general, we can define a convex hull of individual minima as the set of all convex

combinations of anchor points. In 2D, this special line is called the utopia line.

Methods that do not combine the multiple objectives in a single objective try instead to find the set of

non-dominated points. Several algorithms can be applied for this purpose. The most elementary algorithm

arguably is the weighted sum approach by Zadeh (L. Zadeh, 1963). The weighted sum approach

consists of the following steps: 1) normalize all metrics between 0-1 and transform them into Larger-Is-

Better (LIB, or Smaller-Is-Better, SIB) metrics 7; 2) create a weighted average of the normalized LIB/SIB

metrics; 3) solve the single-objective optimization problem to find one point on the Pareto frontier; 4)

change the weights, and iterate to find more points on the Pareto front. The limitations of this approach

are: 1) it only finds the convex portion of the Pareto front, i.e., in general it does not find all the efficient

solutions; 2) the points that it finds are not necessarily well spaced on the Pareto front, and therefore

interesting parts of the tradespace may be poorly explored.

These two problems are partially overcome by De Weck's Adaptive Weighted Sum (AWS) algorithm

for biobjective problems (0. D. Weck, 2004), in which the weights are intelligently adapted in real time

from iteration to iteration, as opposed to a priori, in order to focus on non-explored and non-convex

regions.

Several methods also exist that are based on lines perpendicular to the utopia line. Das and Dennis

proposed the Normal Boundary Intersection method (I. Das & Dennis, 1998). In NBI, the Pareto

frontier is found by solving a series of single-objective optimization problems in directions that are

normal to the convex hull of individual minima.

7 Larger-Is-Better and Smaller-Is-Better are terms coined by Messac in (A. Messac & Ismail-Yahaya, 2002)
to increasing or respectively, decreasing, utility functions with respect to a certain metric. For example, cost is
clearly an SIB metric, while performance is an LIB metric. Messac also defines Center-Is-Better (CIB) metrics in his
paper, in an effort to characterize the uncertainty that exists in decision maker preferences.
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It is usually cited as a disadvantage of NBI that it may find non-efficient solutions in non-convex regions

(this is not the case for WS or AWS). NBI's main advantage is that it produces evenly distributed Pareto

frontiers, like AWS.

Messac's normalized Normal Constraint (NC) method ( a. Messac, Ismail-Yahaya, & Mattson, 2003) is

similar to NBI in both strategy and limitations. NC finds an evenly distributed set of points on the utopia

line. Given a point on the utopia line PO, a point on the Pareto frontier P is obtained using the following

procedure: 1) define the line that is perpendicular to the utopia line and passes through PO; 2) move on

that line, from PO towards the infeasible region, and find the furthest point on the line that is feasible. The

NC method may also find non-Pareto efficient points, for the same reasons as NBI. Therefore, NC

features a Pareto filter that eliminates non Pareto-optimal points at the end. Also similar to the NBI and

NC approaches, is the recursive knee algorithm (Lin, 2010), a specialization of the more general

sandwich method to approximate convex functions (Rote, 1992). See (Ehrgott & Gandibleux, 2000) for a

comprehensive review of multi-objective constrained optimization problems, and algorithms to solve

them. Any of these algorithms can be used as objective selection rule, as shown in Code 3.

(define-rule DOWN-SELECTION::delete-archs-not-enough-pareto-ranking
"Delete all archs with a pareto ranking that does not meet min pareto ranking

requirements"
IF there is a fact <- (of type ARCHITECTURE (with pareto-ranking ))
AND there is a fact (of type DOWN-SELECTION::MIN-PARETO-RANK (with min-pareto-rank

niepartoork&(<))
=> (THEN)

(RETRACT
)

Code 3: A down-selection rule for deleting fuzzy-dominated architectures

We close this subsection by defining the concept of fuzzy Pareto frontier, introduced by Smaling and De

Weck [6]. In a fuzzy Pareto frontier, designs that are "close" to the real Pareto frontier are also retained

even though they are dominated. This is justified for at least two reasons: 1) there is modeling uncertainty

that makes it difficult to discriminate similar designs; 2) there is uncertainty in all the other processes of

the system development process, and designs on the real Pareto frontier are usually the least robust to

these uncertainties [6].

Several approaches exist to compute a fuzzy Pareto frontier. One approach is based on a search algorithm

that tries to find architectures in an inward direction perpendicular from the Pareto frontier, at a given

maximum distance (Lin, 2010). Another approach, that we use in this thesis, is to recursively apply a

simple Pareto filter to a set of architectures obtained by removing from the previous set the non-

dominated architectures.
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Whatever method is used, the objective selection rule can always take the form of a minimum required

Pareto ranking, so that architectures that are not in the first few Pareto frontiers are automatically

eliminated.

Note that by considering fuzzy Pareto frontiers instead of standard Pareto frontiers, dominated

architectures are kept in the analysis, and therefore one could argue that this rule actually belongs to the

category of subjective down-selection criteria. We classified this rule as an objective down-selection rule

because its goal is to find the (fuzzy) Pareto frontier, as opposed to choosing architectures within the

Pareto frontier.

2.3.6.2 Subjective down-selection criteria

Computation of the Pareto frontier or fuzzy Pareto frontier is typically not enough to reduce the number

of architectures to a manageable number. Therefore, additional rules need to be taken into consideration

to select a few architectures within the Pareto frontier.

One possibility to further reduce the number of architectures is to add hard inequality or equality

constraints for one or more metrics or combinations of metrics that take the form of hyperplanes and half-

spaces in the property variable space. Trivial examples are maximum cost rules, minimum performance

rules, or maximum risk rules. More involved hyperplanes can use weighted sums of different metrics:

for instance, one could define an "overall system engineering performance" as a weighted sum of cost,

risk, and performance, and then add a constraint on minimum overall systems engineering performance.

De Weck's isoperformance set (0. L. de Weck & Jones, 2006) would fall under this category of rules.

Note that adding these constraints is equivalent to intersecting the Pareto frontier with one or more half-

spaces defined by the constraint hyperplanes, as illustrated in Figure 18. Blue crosses in Figure 18

represent feasible architectures in the performance-cost space. Red circles indicate architectures that are

fuzzy non-dominated (in this example, the minimum Pareto ranking was set to three). Thus, all

architectures that are not circled will be discarded. The red dashed line marks the boundary of a minimum

performance hyperplane constraint. All the architectures to the left of this line will be discarded. The

black dashed line marks the boundary of a maximum cost hyperplane constraint. All the architectures

above this line will be discarded.

Finally, the blue dashed line marks the boundary of a minimum utility hyperplane constraint. All the

architectures to the left or above this line will also be discarded. Note that this set of down-selection rules

yields seven architectures.
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Figure 18: Effect of different types of down-selection rules on Pareto front

The general code for such rules is provided in Code 4.

(define-rule DOWN-SELECTION::delete-archs-outside-of-half-space
"Delete all architectures that do not satisfy half-space constraint"

IF there is a fact arch <- (of type ARCHITECTURE (with metric1 m))
AND there is a fact (of type DOWN-SELECTION::HYPERPLANE-CONSTRAINT (with metrici

=> (THEN)

(RETRACT
)

Code 4: A down-selection rule in the form of a hyperplane constraint

Another typical way of choosing within architectures of a Pareto front is to define a single objective

problem in the space of remaining architectures by combining the different metrics in one of two ways:

e using a weighted average

* using a 1-norm, 2-norm (Euclidean), or infinity-norm (i.e., the maximum) distance to, either the

utopia point, or the target point (i.e., the desired level of performance for each objective).
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A popular example of this is goal programming (Steuer, 1986), which minimizes the square sum

of the differences between the metrics and the targets. The compromise programming approach

proposed by Chen in (Chen, Wiecek, & Zhang, 1999) is a generalization of goal programming, in

that it suggests the use of any norm, as opposed to the Euclidean distance.

Using one of these definitions, a possible subjective down-selection rule consists in retaining only the

architectures that are top X% under the combined criteria.

(define-rule DOWN-SELECTION::delete-archs-too-little-utility
"Delete all archs with a utility that does not meet min utility requirements"

IF there is a fact - (of type ARCHITECTURE (with utility
AND there is a fact (of type DOWN-SELECTION::MIN-UTILITY (with min-utility

&(> n))
=> (THEN)

(RETRACT )

Code 5: A down-selection rule that keeps only architectures with utility higher than a certain threshold

Finally, another possibility for selection rules is to incorporate the notion of robustness into the selection.

In this case, a Monte Carlo analysis is run where the architectures are evaluated under a broad variety of

scenarios that take into account different sources of uncertainty such as technical uncertainty (e.g.,

uncertainty in performance parameters of the system components) or market uncertainty (e.g. uncertainty

on demand for the system). Robustness selection rules retain only the architectures that meet any of the

above criteria (e.g., min performance, max cost, min utility) under all or most of the plausible scenarios.

For example, instead of enforcing a deterministic rule that the lifecycle cost of the system needs to be

below a certain threshold, a robust implementation of the same rule would enforce that the architecture

stays below that threshold for 80% of the scenarios considered.

2.3.7 Summary and discussion

In this section, we have described the generic search algorithm that can be used to solve a KI SAP from

any of the classes of SAP introduced earlier. This generic search algorithm is a population-based

optimization algorithm. We justified this choice over point-to-point algorithms using both empirical

evidence that these algorithms have been successful in the past in tackling large-scale combinatorial

optimization problems, and a strategic choice to trade exactness and computational efficiency against

expressive power.
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In other words, we prioritized being able to find a few good solutions to a broad variety of SAPs, than

being able to find the exact best solution to a very restricted set of SAPs, or to rough versions of the

original problems where important modeling detail has been abstracted out in order to allow for the

application of known efficient techniques.

Furthermore, we introduced the four types of heuristic rules that are used to tailor the algorithm to the

particular SAP and domain of application: grammars, search heuristics, evaluation rules, and selection

rules. This algorithm is intended to be flexible in the sense that it can easily accommodate a large body of

class-specific and domain-specific knowledge in order to improve efficiency in the problem-solving

process.

A discussion point arose in the differentiation between hard constraints in enumeration and search. We

acknowledge that the difference between the actual implementation of these rules may be very small or

even non-existent in some cases. In practice, the classification of a certain rule as one or the other will

depend mostly on the intent of applying that rule: the intent of enumeration constraints is to permantently

eliminate non-sensical architectures from the tradespace, whereas the intent of introducing hard

constraints in tradespace size reduction rules is to guide the search towards more promising regions of the

tradespace by temporarily eliminating a family of architectures from the tradespace.

While grammars, search heuristics, evaluation rules, and selection rules have been described in this

section, their function and implementation will become clearer when we provide specific examples of

these rules for each class of SAP.

2.4 A library with heuristics for the different classes of SAPs

Different classes of SAP were introduced in Section 2.2. After that, a generic search algorithm was

presented that can be used to solve any class of SAPs. This algorithm was described as knowledge-

intensive, because it is designed so that incorporating SAP-specific and domain-specific knowledge into

the algorithm can be done easily. This expert knowledge is incorporated in the form of four types of rules:

grammars, search heuristics, approximate evaluation rules, and down-selection criteria. In this section, we

provide efficient grammars and search heuristics for these classes of SAPs. Note that approximate

evaluation rules are discussed in Chapter 3, and down-selection criteria are essentially independent of the

class of SAP, and therefore they are out of the scope of this section.

These heuristics are only provided for four out of five classes of SAPs. Suggesting efficient heuristics for

a class of SAP requires substantial experience solving that class of SAPs.
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Thus, we restricted this section to the four classes of SAPs with which we have had substantial experience

in the last four years: assigning problems, selecting problems, partitioning and covering problems, and

permuting problems. The class of connecting problems is left for future work.

2.4.1 Assigning Problems

2.4.1.1 Grammars

Encoding scheme: Let us consider a generic AsP in system architecture, with a fix set of n decisions D =

[di, d2, ... , dn}, where each decision di is associated with a discrete set of options Oi = fdi;}. One possible

encoding scheme for this example is to map each assignment to an array of symbols (e.g. strings, integers,

reals) containing the option selected for each decision:

E1: Ak -> [s1, s 2 ,..., sn]

where si E 0;. Another possibility is to map the assignment to an array of integers, where each integer

uniquely represent a valid option for a certain decision. More precisely:

E2 : Ak -> [z1, Zz, -.. , zn]

where zi E [ 1,|0 ;|].

A function f that returns the position of each option in the list of options f(d 1 ) = j, is needed to

transform back and forth between E1 and E2 . While E2 is better suited for integration in optimization

packages, E1 is much simpler to interpret. These two encoding schemes are combined to create a template

in CLIPS, as shown in Code 34 in the Appendix.

Enumeration rules: The next step is to create a rule that will enumerate all possible architectures once the

template has been created. A simple rule that accomplishes that is provided in Code 35 in the Appendix.

Since the size of the tradespace is exponential with the number of decisions, an alternative partial

enumeration rule is required that only enumerates a fraction of the tradespace. Such enumeration rule is

provided in Code 36 in the Appendix. This rule utilizes a parameter to tune the fraction of architectures in

the tradespace that need to be enumerated. When this parameter is set to 1, this rule will enumerate all

architectures, as the previous rule did.
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Enumeration constraints: Different types of constraints can be defined in AsPs. Particularly, there may be

non-sensical or prohibited combinations of decisions and options. For example, in our Apollo architecture

example, there was one decision for the Earth Orbit RDV (EOR yes or no) and one decision for the Earth

Launch Type (EL direct or orbit). Clearly, it doesn't make sense to have EOR=no and EL=orbit because it

only makes sense to launch to Earth orbit in the EOR mission mode. An example of rule encoding a

logical constraint of this type is provided in Code 6.

(define-rule HARD-CONSTRAINTS::consistency-mission-mode-and-launch-type-EOR
"This rule eliminates all architectures in which the mission mode
is EOR and the type of Earth launch is inconsistent"

IF there is an (APOLLO-ARCHITECTURE (with EOR yes) (and EL direct))

=> (THEN)

(RETRACT )
)

Code 6: Example of enumeration constraint in the AsP

2.4.1.2 Search heuristics

Tradespace size reduction rules: As mentioned earlier, logical hard constraints can also be used to reduce

the size of the tradespace. For instance, one can decide to look around the region of the tradespace that

has a particular assignment for a decision. The second strategy to reduce the size of the tradespace is to

decompose it or divide it in regions. In the case of assignment problems, clustering needs to take into

account the connectivity between decisions.

In other words, decisions that are coupled need to be kept in the same cluster, while decisions that are

decoupled can be studied independently. Simmons proposed a way of measuring the degree to which

decisions are coupled that he called the property sensitivity metric (Simmons, 2008). However, this

method requires the computation of the average of the metrics of interest in several regions of the

tradespace, and thus it can only be used a posteriori. A clustering algorithm can only rely on information

that is available before the clustering occurs, such as the equations and algorithms inside the objective

functions. Hence, a clustering algorithm for the AsP could scrutinize the different value functions for the

use of decision variables, and construct a dependence matrix that contains the decisions that go into the

calculation of each metric. Then, an adjacency matrix can be constructed where element (i,j) is set to 1 if

there exists a metric that utilizes both decision variables i and j, and it is set to 0 otherwise.

Local search: In terms of non-informed local search rules, a mutation operator that changes the value of a

random decision to a new random value is provided in Code 37 in the Appendix.
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A single point crossover operator is also included that combines decisions from the "father" with

decisions from the "mother" in order to produce new and hopefully better "children" architectures. The

code of such crossover operator is given in Code 38 in the Appendix.

Repair operators: Since the search rules proposed do not check for feasibility of the new architectures

generated, it is appropriate to define a repair operator. A repair operator can be defined for the AsP that

will project an infeasible architecture into the set of feasible architectures by changing the value of a

random attribute in an infeasible combination of decisions into a random feasible combination. A trivial

implementation of these repair operators is to have as many rules as logical constraints, and have each

rule be of the following type:

(define-rule HARD-CONSTRAINTS: :repair-consistency-mission-mode-and-launch-type-EOR
"This rule modifies all infeasile architectures in which the mission mode
is EOR and the type of Earth launch is direct by modifying either one of these

two attributes randomly"

IF there is an (APOLLO-ARCHITECTURE (EOR yes) (EL direct))

=> (THEN)

IF (random-number > 0.5) then (modify architecture with(EL orbit))
ELSE (modify architecture with (EOR no)))

)
Code 7: Example of a repair rule for the AsP

An alternative efficient is to combine several cases in the same rule by using variables for the values of

the decisions and then checking several logical constraints on the variables. However, this alternative

approach may be computationally less efficient depending on the number of architectures, as

computational complexity is proportional to RFP where R is the number of rules, F is the number of facts,

and P is the number of patterns in the fact.

2.4.2 Partitioning and Covering Problems

2.4.2.1 Grammars

Encoding scheme: Let us consider a generic set partitioning problem in system architecture, in which a fix

set U = {e,, e2, ... , e. of m elements needs to be partitioned into subsets. One possible encoding scheme

for this example is an array of integers:

E1: Pi -+ [di, d2, d3, -- dm]

1 di 5 1 + maxd-
j<i I
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where di is the number of the subset that contains ei, for example d1=2 means that el is assigned to subset

S2. Note that the constraint added ensures that no subsets are left empty.

Particularly, let m = 5. One architecture (i.e., one partition P,) may consist of a unique subset containing

the five elements, i.e. P = {S, = [ej, e2, e3, e4, es]]. Another architecture or partition P2 may distribute the

five elements in two subsets: P2 = (S; = Jel, e2, e3, S2 =e 4, es}].

We propose an alternative scheme that consists in a binary array where each variable represents a possible

subset, from a library of NS precomputed subsets.

E2: Pi ~+ [b1 b2 --. bNS1

where bj is the Boolean architectural variable that contains the information about whether subset j from

the subset database is selected (bj = 1) or not (bj = 0). In a valid architecture, b E {O,1}Vj = 1 ... NS.

Ideally, NS would be equal to all possible 2 N subsets. However, if a maximum number of elements per

subset NmAs is imposed as a heuristic, NS will only grow as the sum of all possible combinations up to

NMAX:

N S = - + N M

The two architectures from the example encoded using the alternative scheme look as follows:

A 1 = [0 0 0 0....0 1]

A2 = [0 0... 01 0 1...010... 010 ... 0]

A, contains exactly one '1' and 31 '0', the '1' corresponding to the subset containing all the elements. A 2

contains exactly 3 '1' and 29 '0', the 3 'l's corresponding to the three subsets.

The major trade-off between these two representations is whether we want to enforce the set partitioning

constraint during the process of generating a valid architecture, or rather in a posterior search for feasible

architectures. Classical set partitioning formulations typically use the latter: they precompute all possible

subsets of elements (i.e. all possible satellites) and their metrics, and then represent a set partition (an

architecture) as a combination of these subsets, (Chu & Beasley, 1998; Garfinkel & Nemhauser, 1969;

Levine, 1994; R. Marsten, 1981; R. E. Marsten, 1974). Thus, the instrument packaging problem is

effectively transformed into a subset selection problem from a library of pre-evaluated satellites, with an

additional equality constraint (the set partitioning constraint).
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However, some optimization algorithms (e.g. genetic algorithms) have difficulty handling the set

partitioning constraint under this form, as well as other non-linear equality constraints, in the case of large

tradespaces. Although some relaxation or penalty schemes exist that might help overcome this problem

(Chu & Beasley, 1998), the grammar that we selected is capable of completely bypassing the problem by

construction. Indeed, the set partitioning constraint is implicitly enforced at the time of architecture

enumeration as opposed to being an ulterior search for feasible architectures, which is a desirable

property.

On the other hand, when applicable (i.e. relatively small trasdespaces), the second formulation is much

more computationally efficient in the evaluation phase, since most of the computation is done off-line in a

pre-processing step.

In addition, the previous example illustrated how in the worst case, E2 contains exponentially more

architectural variables than EI , since NS = + +s---+ (NN) 2Nfor NMAX - N. Finally,

assuming a certain number of elements per subset on average (e.g., 3), N/3 subsets would be required for

a feasible set partitioning. This means that E2 will be very sparse, since only N/3 out of NS variables will

be non-zero, which may lead to computational inefficiencies in some cases.

Enumeration rules: Under the E1 encoding scheme, an efficient full factorial enumeration rule that

leverages from the recursivity of the CLIPS language is provided in Code 39 in the Appendix. Let R1 be

this enumeration rule defined, and let unconstrained grammar A = (E, #, R1 ). While this rule is very

efficient in enumerating all possible set partitions, full enumeration becomes impossible for numbers of

elements between 10 and 13 for current computing technology, because Bell numbers grow faster than

exponentially. Thus a different grammar is required that allows for non-exhaustive exploration.

Such rule is provided in Code 39 in the Appendix. In these cases, the number of architectures generated is

exponential with the number of elements, as opposed to faster than exponential in the original case. The

base of this exponential will be equal to the average number of architectures generated by iteration, which

for a uniform random function will be close to 0.5 (N + 1), N being the number of architectures

tentatively asserted by iteration of the algorithm (See Code 40 in the Appendix for details of

implementation).

Let R 2 be this enumeration rule, and let unconstrained grammar B = (E,P, R2 ). For small number of

elements, both grammar A and Grammar B will produce the same number of architectures if N is allowed

to increase sufficiently.
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The number of architectures is given by Bell numbers (e.g. Bell(S) = 52 in the example with five

elements). Grammar B is much less efficient for small number of elements due to the random behavior,

but since it is not exhaustive, it can explore much larger number of elements.

For reference, Table 3 shows the difference in computational complexity between the two grammars for

numbers of elements ranging from 5 to 13. All values for Grammar B are averages and standard

deviations over 20 trials with N = 4. Simulations were run and on an Intel Core 2 Duo CPU P9400

@2.4GHz with 4GB of RAM running Matlab 7.13.0.564 (R201 1b) 32 bits on Windows 7 32-bits. More

trials did not change the means nor reduce variance further. Asterisks indicate trials where algorithm did

not terminate after the maximum allotted simulation time, fixed to 10 minutes.

# elements Bell(m) Run time Run time for % of architectures
(M) for Grammar A Grammar B (s) found by Grammar

(s) B
5 52 0.009 ±0.002 0.009 ± 0.002 45.2% ±11.3%
6 203 0.024 ±0.007 0.019 ±0.005 28.7% 7.7%
7 877 0.065 ± 0.017 0.042 ± 0.008 20.4% ± 5.2%
8 4,140 0.198 ±0.012 0.074 ±0.021 10.8% 3.8%
9 21,147 0.988 ±0.033 0.171 ± 0.036 6.7%± 1.7%
10 115,975 5.200 ±0.060 0.427 ±0.133 3.2% ±1.1%
11 678,570 32.168 ± 1.740 1.394 ± 0.352 1.9% ± 0.5%
12 4,213,597 > 600.000 (*) 3.602 ± 1.263 0.8% ± 0.3%
13 27,644,437 >600.000 (*) 11.095 ± 3.387 0.4% ±0.1%

Table 3: Comparison of computational efficiency of Grammars A and B.

We note that for m = 12 and beyond, the exhaustive enumeration algorithm fails to terminate in less

than 600s. Moreover, we note an expected correlation between run time and %architectures found in

Grammar B. Both run time and %architectures found in Grammar B are variable, but their variances are

almost perfectly correlated.

Note that % of architectures found by Grammar B could have been improved at the price of increased

running time by increasing N, i.e., the number of architectures tentatively asserted by iteration of the

algorithm.

Grammar A and Grammar B are only applicable to PaPs and not CvPs, as Constraint PaP-2 is implicitly

included in the encoding scheme (each element is only assigned to one subset by construction). A third

grammar, Grammar C, can be constructed that can be used to solve both PaPs and CvPs. Grammar C

assumes the existence a priori of a finite list of subsets. For example, in the previous example with

m = 5, a list would be available containing the 2s - 1 = 31 non empty subsets of I to 5 elements and

their corresponding numerical benefits as values.
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With this hashmap available, the PaP can be transformed into a 0-1 optimization problem where Boolean

variable i is set to 1 if Si is chosen for the partition, and it is set to 0 otherwise. Constraints PaP-1 and

PaP-2 are then enforced a posteriori if required. Note that in this case, the PaP becomes an instance of the

0-1 knapsack problem where the cost function to minimize, or one of the cost functions to minimize, is

simply the number of subsets. Grammars for knapsack problems are discussed in section 9.1.3.

Grammar C has always been the preferred grammar for PaPs and CvPs by the operations research

community (Garfinkel & Nemhauser, 1969) because efficient methods have been developed to solve 0-1

integer optimization problems. However, in order to apply it to PaPs it requires the utilization of equality

constraints to ensure that each element gets assigned to exactly one subset. This kind of equality

constraints is hard to handle in large-scale problems for some optimization algorithms, including very

popular ones such as genetic algorithms (Chu & Beasley, 1998). Furthermore, Grammar C results in a

tradespace of much larger size than Grammars A and B for PaPs, since there are 2 2 m 1 possible

architectures under this grammar, whereas there are only Bell(m) feasible architectures. In order to

partially alleviate this problem, the list of subsets available a priori is typically not exhaustive, and

approximation algorithms are used to solve the 0-1 integer optimization problem.

Grammars A, B, and C can all be utilized to solve PaPs. However, in instances of the PaP where it is very

unfavorable to break Constraint PaP-2, I have found Grammars A and B to be more efficient than

Grammar C, which spends most of the computational time trying to reduce redundancy in the partitions.

Enumeration constraints: None of the grammars proposed for PaP require the use of any enumeration

constraints.

2.4.2.2 Search heuristics

As explained in the previous section, our generic search algorithm utilizes four main types of operators:

decomposition heuristics, tradespace size reduction rules, local search rules (informed and non-informed),

global convergence rules, and repair rules. We discuss each of these operators individually in the next

paragraphs.

Tradespace size reduction rules: Since large PaPs and CvPs are usually extremely hard problems to solve,

it is necessary to keep the size of the tradespace as small as possible. With this goal in mind, we define

several search heuristic rules for PaPs that are intended to apply as hard-constraints, i.e., any architecture

not meeting these rules is immediately eliminated.
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- A rule on the maximum number of subsets that a partition can have (Code 41 in the Appendix).

- A rule on the maximum number of elements that any subset in a partition can have. This avoids

the exploration of architectures that would include subsets that are non-sensical for being too

large. For example, if the elements are instruments and the subsets are satellites, this avoids

looking at architectures that have satellites that cannot be launched by any current launch vehicle

(Code 42 in the Appendix).

- One or more rules to force that an element is assigned to a subset of size k (typically, k = 1).

This dramatically reduces the size of the tradespace. For k = 1 for example, this is equivalent to

considering a PaP with m- 1 elements (Code 43 in the Appendix)

- One or more rules to enforce that two or more elements are grouped in the same subset (Code

44 in the Appendix).

- One or more rules to enforce that two or more elements are assigned to different subsets (Code

45 in the Appendix).

In addition to these rules, decomposition of PaPs can be accomplished using any clustering algorithm. In

order to use a clustering algorithm it is necessary to provide a metric for the distance between two

elements: two elements that are "close" together using this distance tend to be assigned to the same

cluster, and they tend to be assigned to different clusters if this distance is "large". Typically this distance

is the Euclidean distance between the vectors representing the element on a certain space. Such space

could be forever a space of architectural attributes of the elements. However, in some PaPs, this may

result in poor heuristics, since there is little correlation in general between similarity in the space of

architectural attributes and synergies between elements.

We propose another definition of distance between two elements in PaPs, based on the difference between

the positive and negative interactions amongst them. For example, the sign and strength of bilateral

interactions can be directly assessed by experts in a semi-quantitative form, following a semi-quantiative

scheme such as the one laid out in Saaty's Analytic Hierarchy Process (Saaty, 2008). Alternatively,

interactions can be computed as a difference in expected architectural value. This leads to the definition

of a new matrix called V-DSM or value design structure matrix. The V-DSM is formally defined below.

Definition (V-DSM): The value design structure matrix or V-DSM is an m x m symmetrical matrix where

element (ij) of the matrix contains a numerical value representing the strength of the positive or negative

interactions between elements i andj. V-DSM(ij) is computed as follows:

VDSM(i,j) = VDSM(J, i) = V({ej, ej}) - V ({te},{ ej]}) = V({eg, ej) - V({e1}) - V(tel)
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where V(P,) is the value of an architecture represented by partition Pi. V(P;) can be computed using any

evaluation rules, and in particular for example using the VASSAR framework described in the previous

section. Note that VDSM(i,j) > 0 indicates that elements ej, ejare synergistic, whereas VDSM(i,j) < 0

indicates that ei, ejinterfere with each other in a negative way.

We note that value is defined at benefit at cost, and therefore both benefit and cost considerations are

included in the definition of V-DSM. In some situations it will be useful to decompose the V-DSM in two

matrices, the benefit DSM or B-DSM and the cost DSM or C-DSM. These two matrices are defined

below.

Definition (B-DSM): The benefit design structure matrix or B-DSM is an m x m symmetrical matrix

where element (ij) of the matrix contains a numerical value representing the strength of the positive or

negative interactions between elements i and j in terms of benefit. In other words, B-DSM(ij) is the extra

benefit obtained from putting elements i andj in the same subset:

BDSM(i,j) = BDSM(J, i) = B({e, e;}) - B (ttej, {ej)}) = B({ei, ej) - B({ei}) - B(tej})

where B(P;) is the benefit of an architecture represented by partition Pi. B(Pi) can be computed using any

evaluation rules, and in particular it can also be computed using the VASSAR framework described in the

previous section. Note that BDSM(i,j) > 0 indicates that elements eg, ejhave positive synergies,

BDSM(i,j) = 0 indicates that there is essentially an additive behavior in terms of benefit, and in some

cases we can even have BDSM(i,j) < 0, where the benefit goes down because of the proximity between

the two elements.

Definition (C-DSM): The cost design structure matrix or C-DSM is an m x m symmetrical matrix where

element (ij) of the matrix contains the difference in between a partition with two single-element subsets,

and a partition with a single two-element subset:

CDSM(i,j) = CDSM(J, i) = C({e, e;}) - C (tei}, {ej}j) = C(tei, ej}) - C(fej}) - C(te;})

where C(P;) is the cost of an architecture represented by partition P;. C(P;) can be computed using any

adequate cost model.

Using for example the V-DSM as a measure of distance, the k-means or any other clustering algorithm

can be applied to the initial PaP to decompose into smaller sub-problems.
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Local search rules: Six different local search rules are defined, growing in level of information from

completely uninformed random mutation operators to informed specialized operators that utilize the V-

DSM. These six rules are described below:

- A mutation operator that changes the position of one random element into a random subset

different from its original subset (Code 46 in the Appendix)

- A mutation operator that swaps the positions of two random elements taken from different

random subsets (Code 47 in the Appendix).

- A mutation operator that combines two random "small" subsets to create a larger subset

(Code 49 in the Appendix).

- A rule that improves an architecture by adding a synergy: This heuristic rule identifies the

missing synergies in an architecture, selects one of these missing synergies randomly, and swaps

the position of two elements in order to capture that synergy (Code 50 in the Appendix).

- A rule that improves an architecture by eliminating an interference: This heuristic rule

identifies a current interference in an architecture, and swaps the position of two elements in

order to break that interference (Code 51 in the Appendix).

- A crossover operator that combines characteristics of two architectures to create a new and

hopefully better architecture. It does so by taking some subsets from one of the parents and then

assigning the remaining elemets in a manner that ressembles the most the subsets of the other

parent (Code 52 in the Appendix).

Repair operators: A repair operator is provided that projects a non-sensical architecture representation

into the set of sensical architecture representations. Here the word "non-sensical" indicates an architecture

representation that does not correspond to any real architecture because it does not meet enumeration

constraints. In the case of PaP that use PaP-grammar A, an example of a non-sensical architecture is given

by vector [1,3,4,4,4,5], since this architecture representation leaves subset 2 empty, which is not allowed.

This non-sensical architecture can be turned into a sensical architecture by relabeling subsets 3,4,5 to

2,3,4 respectively so that the new architecture representation is [1,2,3,3,3,4]. The code for a generic repair

operator for PaPs is provided in Code 53 in the Appendix.

2.4.3 Down-selecting Problems

2.4.3.1 Grammars

Encoding scheme: Given a set U = [el, e2 . -- , em of m elements, an architecture in an DsP consists in any

subset Si 9 U. The most straightforward encoding scheme for such a subset is an array of Booleans of

size m:
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El: Si -+ [bi, b2,b 3, -, bm]

where bm = 1 indicates that element I belongs to the subset, and bm = 0 indicates that element ei does

not belong to the subset:

= if ei E Si
0 if ei 0 Si

We identified at least two alternative encoding schemes for DsPs:

* a single non-negative integer d E [0, 2 m - 1] obtained from transforming the previous Boolean

array to decima, i.e. :

E2: Si -+ d =EN bi -2'-1

* an array of s non-negative integers directly representing the id of the instruments selected for the

program, e.g.

E3 : Si -> [idi, id 2 , id3, ... , idNI], with NI _; N, and id i E [1, N] Vi E [1, NI].

The size of the tradespace is independent of the representation. However, there are differences between

them. For example, the length of E2 is always equal to 1, which is generally less than the length of the

two others. This may lead to some advantages in terms of memory expenses. E2 is also of constant

length, whereas the length of E3 varies across architectures. This is also an advantage since some

optimization packages do not accept inputs of variable length. However, E2 does not satisfy the desired

property of "conserved vicinity", i.e. that "similar" architectures should have "similar" representations in

that encoding scheme. Furthermore, it is not intuitive, and one has trouble imagining what the architecture

looks like by just looking at its representation.

E3 has the nice property that it is extremely intuitive. Its representation directly contains the list of

selected instruments. However, E3 is of variable length, which may cause problems for some

optimization and representation packages. It is intuitively good in terms of the conserved vicinity

property, although it poses some mathematical problems when trying to define a distance metric between

two architectures, due again to its variable length

E1 is both intuitive and convenient for optimization packages. For E1 , the Hamming distance between

two architectures is exactly equal to the number of different instruments between two programs.

Furthermore, a grammar based on Boolean values allows the application of classical binary programming

techniques to search the architectural tradespace, as well as some metaheuristic algorithms.
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In particular, genetic algorithms are naturally suited for optimization over bit vectors, because of the

straightforward mapping between bits and genes. This will be discussed further in this chapter, when I

introduce heuristics for searching the tradespace. All these advantages come to the expense of a larger

number of variables, but this disadvantage is not critical for reasonable number of instruments (N< 100).

Enumeration rules: Given this encoding scheme E1 , a simple set of enumeration rules R for the

unconstrained DsP is provided in Code 54 in the Appendix.

The performance of this grammar to enumerate architectures was tested as in the other classes of

problems, using the same configuration. As a reminder, all simulations were run and on an Intel Core 2

Duo CPU P9400 @2.4GHz with 4GB of RAM running Matlab 7.13.0.564 (R201 1b) 32 bits on Windows

7 32-bits. The results are shown in Figure 19. Using this grammar on this machine, it is possible to do

full factorial enumeration up to m = 27 in about lhour, and m = 30 in about 1 day. Beyond 30

elements, full factorial enumeration becomes impossible and an alternative grammar that enumerates only

a fraction of the tradespace becomes necessary.
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Figure 19: Performance of the grammnar proposed for DsPs

Such grammar is provided in Code 55 in the Appendix. It has a few differences with respect to the full

enumeration one. The relative performance of the full factorial enumeration and the partial enumeration

grammars for the DsP is provided in Figure 20. All values for the partial enumeration are averages over

20 iterations. Note in particular the parameter P which allows the control of the percentage of

architectures enumerated.
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Empirically, we found that the value of P = 5000 is a satisfactory trade-off between computational

complexity and % architectures enumerated for the range of elements between 18 and 20.
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Figure 20: Performance of the two grammars proposed for the DsP for two different values of P

Enumeration constraints: We now consider four types of generic enumeration constraints for the DsP,

divided in two opposite pairs:

* OR({et}) enumeration constraints: this enumeration rule eliminates all subsets in which none of

elements in {eg} are selected. One possible natural language equivalent of this rule is "AT LEAST

ONE FROM". In logic, this is called a disjunction. It is useful to define a situation in which

elements belong to groups, and at least one element of each group is required.

* NANDtei} enumeration constraints: this enumeration rule eliminates all subsets in which all of

elements in {eg} are selected. Note that: NAND = -0R. One possible natural language

equivalent of this rule is "NOT ALL OF'. In logic, this is called an alternative denial. It is useful

to define a situation in which two elements are redundant.
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* XOR(fei}) enumeration constraints: this enumeration rule eliminates all subsets in which either

more or less than one elements in {ei} are selected. Note that for m = 2 only: XOR = OR A

NAND. One possible natural language equivalent of this rule is "EXACTLY ONE FROM". This

is useful to define a situation in which elements belong to groups, and at least one element of

each group is required, but it makes no sense to take more than 1 element from each group.

* XNOR({ei}) enumeration constraints: this enumeration rule eliminates all subsets except those in

which either all or none of elements in {ei} are selected. Note that for m = 2 only: XNOR =

-,XOR. One possible natural language equivalent of this rule is "EITHER ALL OR NONE OF".

This is useful to define a situation in which it really only makes sense to select certain elements as

a group, so that the decision to make is whether to select the group or not. Note that this

constraint reduces the size of the problem.

The 2-element truth tables of these four enumeration constraints are provided in the table below.

Si OR(S) NAND(SJ) XOR(Si) XNOR(S;)
00 infeasible feasible infeasible feasible
01 feasible feasible feasible infeasible
10; feasible feasible feasible infeasible
11 feasible infeasible infeasible feasible

Table 4: Truth tables for the enumeration constraints in the DsP

The implementation of these constraints in CLIPS is provided in Code 56 in the Appendix. Note that this

list of enumeration constraints is not exhaustive. One could consider for instance an "EXACTLY N OUT

OF K" constraint in which exactly N elements from a subset of K elements need to be selected. For K = 2

and N = I this is equivalent to the XOR rule. Another useful rule could be "AT LEAST N OUT OF K".

The implementation of such constraints from combinations or variations of the others is trivial and shown

in the Appendix.

2.4.3.2 Search heuristics

Local search rules: A mutation operator that swaps the value of a bit randomly is provided in Code 58 in

the Appendix. A parameter in thus rule allows the definition of the number of new architectures that are

generated each time this mutation function is executed. This enables focusing the search on particularly

interesting regions of the tradespace.
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In addition to this non-informed mutation operator, we provide two informed local search rules that utilize

the B-DSM defined in section 9.1.2.2: the first one attempts to improve the subset by completing it with

an element that has high synergies with the elements already in the subset; the second one attempts to

improve it by removing a redundant element from the subset. Both are provided in Code 59 in the

Appendix.

Repair operators: Repair operators can be defined for the DsP so that infeasible architectures that do not

satisfy enumeration constraints are projected onto the set of feasible architectures. The LHS of repair

rules are almost identical to the LHS of enumeration rules, but the RHS of repair rules perform the

projection instead of simply removing the architecture.

The projections are done according to the enumeration constraint that is not satisfied, as shown in Table

5. Table 5 assumes that the constraints refer to a generic set Si of size K: |S I = K

Type of enumeration Reason why constraint is not Action taken in RHS of
constraint that is not satisfied corresponding repair rule
satisfied

OR() Architecture does not contain any Add a random element from Si to the
element from Si architecture

NAND(S) Architecture contains all elements Remove a random element from Si
from Si from the architecture

XOR(S,) Architecture contains 0 (case A) or Case Add a random element from
N> 1 (case B) elements from Si Si to the architecture

Case B: Remove N-1 random elements
from Si from the architecture

XNOR(Sg) Architecture does not contain Case A (it contains N<K/2 elements
either none or all elements from Si from Sg): Remove all N elements from

architecture
Case B (otherwise): Add K-N missing
elements from Si to the architecture

EXACTLYNINK(S) Architecture does not contain Case A (it contains L>N elements from
exactly N elements from Si Si): Remove L-N random elements

from architecture
Case B (otherwise): Add N-L random
missing, elements from Si to the
architecture

ATLEAST_N_INK(Sg) Architecture contains L<N Add N-L random missing elements
elements from Si from Si to the architecture

Table 5: Repair rules for the DsP
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2.4.4 Permuting Problems

2.4.4.1 Grammars

Encoding scheme: A straightforward encoding scheme for the PeP is an array of m integers between I

and m:

E: 0; -> [I, P2, ---, pml.

pj E [1, m]

Two different encoding schemes can be defined depending on the meaning of the pj:

* E1 : pj = k means that element ejis assigned to position k in 0;

* E2 : pj = k means that element ekis assigned to positionj in O

Both encoding schemes are used in this thesis, since some rules are easier to implement under E1 , while

others are easier to implement under E2 . Hence, there is a need for an operator that changes from Elto

E2 . The code for such operator is given in Code 60 in the Appendix, together with the template that uses

the two different encodings. E1 was arbitrarily named the sequence, and E2 the ordering.

In order to differentiate between these two different encoding schemes, we will arbitrarily use O to

indicate the representation of a permutation in E1 , while Oi' will indicate the representation of the same

permutation in E2 . For instance, if 0; = [2,4,5,1,3] then 0j' = [4,1,5,2,3]. In this permutation, the

sequence is element 2 - element 4 - element 5 - element I - element 3. If we want to know the position

of ej in the sequence we can also look at the jth entry in 0k'.

Enumeration rules: Given E1 and E2 , the enumeration rule given in Code 61 in the Appendix can be used

to enumerate all possible permutations of m elements.

Since factorial(m) grows very fast with m, it is required to define an alternative grammar that only

enumerates part of the tradespace. This alternative grammar is presented in Code 62 in the Appendix.

The performance of these two grammars was analyzed following the same procedure as with the other

classes of problems, using the same configuration. As a reminder, all simulations were run and on an Intel

Core 2 Duo CPU P9400 @2.4GHz with 4GB of RAM running Matlab 7.13.0.564 (R201 Ib) 32 bits on

Windows 7 32-bits. The results are shown on Figure 21.
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The fraction of architectures can be controlled by adjusting the value of the parameter P. We expected a

#archs enumeratedvalue of P to produce a fraction of architectures approximately equal to senaeace = Pm.
size tradespace

Empirically, we found good correlation with this relationship: P=0.9 yields #archs enumerated
size tradespace

46%, 43%, 38% for m=7,8,9 (theoretical values are 48%, 43%, 39%), and P=0.8 yields 22%, 16%, 13%

(theoretical values are 21%, 16%, 13%).

The full factorial grammar takes 3.3h to enumerate all possible partitions for m = 12, and 43.2h for

m = 13, on the same laptop configuration.

Enumeration constraints: In the planning instances of PePs in which, in addition to sequence, dates are

assigned to tasks or events, other constraints may appear that make explicit reference to dates instead of

relative positions. These rules require an operator that transforms a sequence of tasks with costs into

a sequence of dates, given a certain budget profile. Such operator is provided in Code 63 in the

Appendix. This function assumes that readiness date for element i + 1 is equal to readiness date for

element i plus the cost of the element i divided by the budget at time t.
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We provide seven possible hard enumeration constraints in generic PePs: BEFORE, AFTER,

BETWEEN, NOT-BETWEEN, CONTIGUOUS, NON-CONTIGUOUS, and SUBSEQUENCE

constraints. All of these utilize a few generic functions to check precedence between elements in a

sequence or ordering. These functions are provided in Code 64 in the Appendix. Note that these hard

constraints can also be used as search rules with the purpose of reducing the size of the tradespace.

Furthermore, equivalent rules can be defined that look at relative dates of elements instead of looking at

positions. The code of these rules is almost identical to the rules shown below and therefore it is not

included. The seven types of hard constraints for tradespace size are discussed below.

* BEFORE(e, {ej}) constraints (Code 65 in the Appendix): this enumeration rule eliminates all

permutations in which eidoes not precede all the elements in {e}. It is useful to define pre-

conditions between tasks or events.

* AFTER(eg,{ej}) constraints (Code 66 in the Appendix): this enumeration rule eliminates all

permutations in which eidoes not succeed all the elements in tej}. This is the opposite rule of

BEFORE(ei, {ej}). It is useful to define post-conditions between tasks or events.

* BETWEEN(ei, tej, ek}) constraints (Code 67 in the Appendix): this enumeration rule eliminates

all permutations in which eidoes not appear between ej and ek. Note that this constraint does

NOT enforce the subsequence ej, ej, ek since: a) the order between ej and ek can be reversed;

there may be other elements inside the interval ej, ek. Hence for example, 01 = [ej, ej, em, ek]

and 01 = [ek, el, ei, em, ej] would both satisfy the constraint BETWEEN(eg, tej, ek}). It is useful

to define simultaneous pre- and post-conditions between tasks or events.

e NOTBETWEEN(eg,{e;,ek)) constraints (Code 68 in the Appendix): this enumeration rule

eliminates all permutations in which ei appears between ej and ek. This is the opposite rule of

BET WEEN (er, { ej, ek).

* CONTIGUOUS({ej}) constraints (Code 69 in the Appendix): this enumeration rule eliminates all

permutations in which te;} are not contiguous. Note that there are several possible orderings that

satisfy contiguity of a subset of elements.

" NONCONTIGUOUS({ej) constraints (Code 70 in the Appendix): this enumeration rule

eliminates all permutations in which {e;} are contiguous. This is the opposite rule of

CONTIGUOUS({e- ).
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* SUBSEQUENCE(0 1 ) constraints (Code 71 in the Appendix): this enumeration rule eliminates all

permutations which do not contain 0; as a subsequence, i.e. all permutations Og such that

0; Z O.

2.4.4.2 Search heuristics

Tradespace size reduction rules: First, we note that, as mentioned earlier, it is possible to use the seven

enumeration rules as search hard constraints. In addition to these seven rules, we propose one rule to fix

the position of a certain element FIX-POSITION:

* FIXPOSITION(e1 ,j) constraints (Code 72 in the Appendix): this tradespace size reduction rule

eliminates all permutations in which element i does not appear in position j.

Instead of deterministic rules, a few "fuzzy" constraints can also be applicable to some instances of the

PeP. These fuzzy constraints are softer in nature because instead of enforcing a certain position for an

element, they enforce a range of positions.

* BYBEGINNING(fej}) constraints (Code 73 in the Appendix): this enumeration rule eliminates

all permutations in which {ej} do not appear in "the beginning" of the sequence. Note that there

are several possible orderings that satisfy contiguity of a subset of elements.

" BYMIDDLE({ej}) constraints (Code 74 in the Appendix): this enumeration rule eliminates all

permutations in which tej} do not appear in "the beginning" of the sequence. Note that there are

several possible orderings that satisfy contiguity of a subset of elements.

" BYEND(tej}) constraints (Code 75 in the Appendix): this enumeration rule eliminates all

permutations in which {ej} do not appear in "the beginning" of the sequence. Note that there are

several possible orderings that satisfy contiguity of a subset of elements.

Local search rules: Amongst the non-informed local search rules, we define a mutation operator that

swaps the positions of two elements. Its CLIPS code is given in Code 76 in the Appendix. Concerning

informed local search rules, we define a crossover operator, given in Code 77 in the Appendix.

Repair rules: Finally, we consider the need for repair rules for the PeP. Since the grammar we proposed

for PePs avoids the generation of infeasible architectures, the only possibility left is that infeasible

architectures are created by crossover and mutation operators. However, the mutation and crossover

operators that we introduced generate feasible architectures by construction. Consequently, contrary to

what happened with PaPs, it is not necessary to have repair rules for PePs.
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2.5 Summary and discussion

In this chapter, we have presented a framework to solve any KI SAP. The main idea behind the

framework is that of there are different bodies of knowledge required to solve an SAP, and these can be

physically separated by using a RBES. In particular, there is domain-independent knowledge on one

hand, which is related to the search, optimization, and decision making. On the other hand, there is

domain-specific knowledge, which concerns the domain of application (e.g., EOSS). Furthermore, part of

the domain-independent knowledge is common to all SAPS, part is common to a certain class of SAPs,

and part is specific to each instance of SAP. Similarly, part of the domain-specific knowledge is the same

for all SAPs in a given domain, and part of it is really instance-specific.

Based on this observation, the framework: 1) develops a generic search algorithm that implements the

domain-independent tasks that are always the same for any class and instance of SAP; 2) identifies five

classes of SAPs, and provides heuristic rules for each class that are incorporated into the algorithm in

order to solve the tasks that are class-dependent; 3) is flexible enough to allow easy accommodation of

domain-specific rules.

This process is illustrated in Figure 22, in which we can also see how the different components of this

framework are interconnected. Note that the VASSAR framework to assess architectural value using

approximate evaluation rules is described in more detail in the next chapter.

The framework exploits the properties of RBES to ensure traceability and to provide a more natural

environment to model emergent behavior than classical procedural languages. This last point will become

more apparent in the next chapter as we describe emergence rules in the VASSAR framework. The

importance of emergent behavior has also been emphasized throughout this chapter as the different

classes of SAPs (and the corresponding rules defined in the appendix) were introduced. In particular, we

introduced the concepts of B-DSM and C-DSM to capture bilateral interferences between elements. The

B-DSM and the C-DSM are used by several heuristic rules to capture element interactions.

One of the main discussion points concerns the scope and applicability of the framework. The framework

has been introduced as a general problem solving framework for system architecting and as such it can be

used to solve any SAP. In particular, note that it contains the assignment class of architectural problems,

and therefore it is at least as broad in scope as its predecessors ADG and OPN. Moreover, several other

classes of SAPs have been defined, and therefore it should exceed their scope as they model more classes

of SAPs. However, the framework was categorized as a knowledge-intensive (KI) framework.
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Hence, the framework is most useful for problems that require handling a large body of knowledge. This

does not mean that the framework will not work for non-KI problems; it just means that trading

computational efficiency or exactness against flexibility and transparency is probably not worth in those

cases.
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Figure 22: Overview of the framework for solving knowledge-intensive SAPs using rule-based systems
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3 VASSAR: A methodology for Value Assessment in System Architecting

using Rules

3.1 Introduction

One of the key components of the framework for solving KI SAPs is the use of approximate evaluation

rules that replace expensive simulations in the assessment of architectural value. For example, instead of

running an expensive simulation on dedicated mission analysis software, one can compute the average

revisit time of a constellation of sufficiently wide-swath instruments flying in LEO as 12h divided by the

number of satellites. A polynomial can also be easily found that provides the worst case revisit time in the

same circumstances of wide-swath, as a function of the number of planes, and the number of satellites per

plane. These simple rules are powerful because they contain most of the knowledge of the expensive

simulations and can be executed in a fraction of a second.

Approximate evaluation rules assess the value of a system architecture by linking architectural variables

to metrics. Approximate evaluation rules can be developed ad hoc for any system. However, this chapter

section introduces a general methodology that can be used to assess value - benefit AND cost - to any KI

SAP.

VASSAR is a methodology that aims to provide a quantitative or semi-quantitative assessment of the

value that a system architecture provides to stakeholders. The main assumptions behind VASSAR are

listed below:

* Value is defined as satisfaction of stakeholder needs. This is a common assumption in system

architecture.

* "Fuzzy" stakeholder needs elicited from stakeholders are used as an input to the methodology.

The methodology assumes that a list of stakeholders and their (fuzzy) needs is readily

available. An example of a fuzzy need may be "to reduce the uncertainty in the amount of water

that is in the lands". This thesis does not provide support for the elicitation of stakeholder needs.

" A list of fuzzy system requirements, inferred from the set of fuzzy stakeholder needs, is

readily available. An example of a fuzzy requirement that follows from the previous need is that

"the system shall be able to measure soil moisture with an accuracy of 4% or better, a spatial

resolution of 10km or better, and a temporal resolution of 2-3 days or better". This thesis does not

provide support for this process of logical decomposition either.
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e The body of knowledge required to infer fuzzy system capabilities from the system

architecture is available. Fuzzy system capabilities concern the functions and related

performance that the system architecture is capable to perform. For example, an L-band

radiometer can measure soil moisture with high accuracy and low spatial resolution, whereas an

L-band radar can measure soil moisture with lower accuracy but better spatial resolution. The

numerical values of accuracy, temporal, and spatial resolution can be computed once architectural

variables such as orbital parameters have been set. The methodology assumes that this body of

knowledge can be elicited from a group of experts. As stated earlier, this thesis does not provide

explicit support as to how to conduct this knowledge elicitation process.

" Requirements and capabilities can be expressed in the form logical rules and facts

respectively, using a common "language" (i.e., a common set of data structures or templates).

Although this statement is always true because RBES are Turing complete, the process of

expressing requirements and capabilities in the form of rules and facts can be more or less

burdensome depending on the characteristics of the system at hand. We note however that, as

explained in the section describing the history of RBES, Newell and Simon discovered in the late

sixties that expert knowledge is stored in the brain in the form of chunks of information that fit

very well the structure of a logical rule (Newell & Simon, 1972).

* The final and perhaps most important assumption of the methodology is that value of a system

architecture can be assessed by systematically comparing fuzzy system requirements to

fuzzy system capabilities. Given this assumption, the value assessment process becomes a

pattern matching process between what stakeholders need (requirements) and what the system

architecture can do (capabilities). While this assumption can seem innocuous, it has profound

implications in the outcome of the value assessment process. For example, the methodology will

be unable to discern between two architectures that differ only in capabilities that are not captured

in the set of requirements. If one architecture can provide a 4% accuracy soil moisture product,

and another architecture can provide a 2% soil moisture product, but the requirement only

specifies a need for a 4% accuracy requirement, then the two architectures will have the same

score for this particular requirement.

Based on these assumptions, the VASSAR methodology utilizes different types of rules and facts to

assess architectural value, as illustrated in Figure 23. To a given system architecture in the top right

corner of Figure 23, corresponds a fuzzy value metric in the top left corner. This fuzzy value metric and

the corresponding explanations are computed in several steps.
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Figure 23: The VASSAR methodology for value assessment of system architectures using rules

We will use the computing needs of a family as a toy example to illustrate the methodology. In the

VASSAR methodology, we labeled "system", "subsystems", and "components" the elements of form at

levels 1, 2, and 3 following the recommendations in the INCOSE systems engineering handbook

(Haskins, 2006). In this toy example:

e the system will designate the set of computing assets (e.g., one desktop and one laptop, or three

laptops);

e the subsystems will be each of the assets;

e the components will include the processor, the RAM, the hard disk amongst others.

Hence the "architecture" of the system in this toy example will be the given by the characteristics (i.e.,

number and type of processors, memory, storage options, and network cards) of each of the computing

assets.
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For example, one particular computer architecture ARCH1 could consist of a desktop featuring a quad-

core processor at 3.5GHz with 8M cache, 16GB of RAM, 1.5TB of hard-risk at 7200rpm, a 3GB

dedicated graphics card, and an advanced WiFi card, and a laptop featuring a dual-core processor at

2.4GHz with 6M cache, 160GB of solid-state memory, no dedicated graphics card, and a standard WiFi

card.

The framework also requires the definition of capabilities. In the case of computers, possible capabilities

include "running expensive Matlab simulations", "playing graphics-intensive games", or "performing

good-quality video-calls". Each of these capabilities allows the definition of several performance

attributes. For example, in the case of the Matlab simulations, one can define performance metrics related

to the time that it takes to solve a given problem.

Different users or stakeholders can define different requirements in terms of these capabilities. For

instance, let us consider that the computer is going to have three different users in a family: a father who

is a mechanical engineer, his daughter who is a grad student in science, and his son who is in high school.

The father may have special requirements for the computer because he needs to run a CAD software on it.

The daughter may have special requirements because she needs to run expensive Matlab simulations, and

videochat with her boyfriend in another continent. Finally, the son may have special requirements because

he wants to play on-line graphic-intensive games.

The steps of the methodology as applied to this toy example are briefly described below. The legend on

Figure 23 shows how to interpret the diagram. The circle with a cross inside represents a point in the

procedure where the rules engine is run, i.e., where the inference engine performs the pattern matching

between all rules and facts in working memory and executes the right hand sides of all the rules that are

activated.

1) Subsystem facts are asserted from the system architecture and a set of rules called the

attribute inheritance rules. In the ARCHI example, two facts will be asserted, one for the

desktop and one for the laptop, and their characteristics will be inherited from the system

architecture, and/or possibly from a database of computers.

2) Component facts are asserted from: a) the subsystem facts; b) a database containing

information about available components amongst other data; c) more attribute inheritance

rules. In the ARCHI example, a fact will be asserted for each component of each

computer. Attributes of the components can be inherited from the computers, or from the

component database.
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3) Capability facts are asserted from component facts and capability rules. In the ARCH]

example, capability rules link computer components to capabilities. For instance, the

dedicated graphics card enables the gaming capabilities, and the presence of at least 8GB

of RAM enables the execution of the expensive Matlab simulations. This first set of

capability facts Co contains very little information about the performance with which

each function is realized.

4) The attributes of these capabilities are inherited from the subsystem attributes and the

component attributes through attribute inheritance rules, possibly using information from

the database. For example, the time that it takes to execute a given Matlab simulation can

be estimated from the CPU speed. This yields a second set of capability facts C1.

5) A new set of capability facts C2 is created through the emergence rules, which

modify and generate new capabilities from combinations of existing capabilities.

Capability rules that link components to capabilities alone often fail to capture an

important part of the value provided by the system that comes from interactions between

capabilities, i.e., emergent behavior. For example, the performance related to the gaming

capabilities of a computer will emerge from a combination of factors including the RAM,

the memory of the graphics card, and the screen resolution amongst others.

6) Fuzzy attribute rules transform back and forth between numerical and fuzzy

attributes. This step is necessary because some requirements are expressed numerically

(e.g., execution time < 20s), while others use fuzzy values (e.g., "good quality"

videoconference). Thus, fuzzy attribute rules make the translation between fuzzy

statements and numerical statements when necessary, using interval analysis.

7) Subobjective satisfaction facts are asserted through the application of requirement

satisfaction rules. These facts store information that can later be used to trace the

numerical value to the reasons behind it. More precisely, it contains information about

which combination of components is at the origin of this activation, or in case of partial

satisfaction, the attribute or attributes that are missing from the achieved capabilities.

8) For example, a subobjective concerning the gaming capability may be partially satisfied

by the laptop because although the RAM and screen resolution are good enough, the

quality of the graphics card is not sufficient to provide 3D gaming experience. At this

point, a list of facts is available that assesses how well each of the subobjectives is

satisfied by the current system architecture.
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9) Value aggregation rules aggregate individual subobjective satisfaction facts into a

single metric, which represents the value of the system architecture. While in some

cases the information about individual subjective satisfaction could be enough, in many

others it will be necessary to condense this information into a handful of numerical values

that can be plugged in in any search of optimization algorithm, or more generally any

decision making process. This step is accomplished by using value aggregation rules,

which compute one or a handful of value metrics from the initial subobjective satisfaction

facts. These rules may capture for example the relative importance of the different

requirements of the father, daughter, and son, as well as the relative importance of the

father, the daughter, and the son to the family.

10) Explanations behind these value metrics are created by applying the explanation

rules to the subobjective, objective, and stakeholder group satisfaction facts. These

explanations are then provided to the user as a complement to the metric. This ability to

provide the explanation of the results to the user is a key capability of this methodology

and is enabled by the use of rule-based expert systems, which have built-in explanation

facilities as explained in Chapter 1.

In the rest of this chapter, each of these steps is described in more detail. The toy example with the

computer assets is used to support the explanations all throughout the chapter.

3.2 Requirement satisfaction rules

Description: Requirement satisfaction rules link capabilities to stakeholder subobjective satisfaction.

Their general structure and two examples are shown in Code 8.

The framework distinguishes between nominal requirement satisfaction rules and degraded requirement

satisfaction rules. Nominal requirement satisfaction rules express the fuzzy requirements needed for a

given subobjective to be fully satisfied. If the capabilities described in a nominal requirement satisfaction

rule are fulfilled by the architecture with the required attributes, then the rule asserts a fact that traces the

full satisfaction of this subobjective. This fact contains information that will be used later by both the

value aggregation rules, and the explanation rules.

Typically, only one nominal requirement satisfaction rule exists for each subobjective. However,

additional nominal requirement satisfaction rules can be added to account for alternative capabilities that

stakeholders consider as full satisfaction of the same subobjective.
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General structure (in natural language):
(Define-rule full-satisfaction-of-subobjective-X
"Description of the rule: conditions for full satisfaction of subobjective X"

IF there is a Capability (of type T) (performed by a certain combination of
components ) (with performance attribute Al = x1) (with performance
attribute A2 = ) (+ requirements concerning other attributes)
AND (Performance is vall or better))
AND (Performance is val2 or better))

=>(THEN)

ASSERT a fact indicating full satisfaction of subobjective X (taken by ))

Example (in the CLIPS language):
(defrule REQUIREMENTS::subobjective-dadl-3-nominal

"Conditions for full satisfaction of subobjective daughterl-3"

(Matlab-simulations (max-memory-GB x1) (running-time-sec ?)
(thanks-to
(test (>= 1 4))
(test (<= 10))

(assert (REASONING::fully-satisfied (subobjective daughter1-3)
(objective "Matlab simulations") (thanks-to

Code 8: General structure and examples of requirement satisfaction rules

For example, a user may tolerate a longer execution time if more memory is available to handle larger

problems. In the case of EOSS, a subobjective concerning the measurement of atmospheric CO may be

fully satisfied by a gas filter correlation radiometer (e.g. EOS MOPITT) or by a Fourier transform

spectrometer (e.g. EOS TES), and atmospheric chemists may accept both options as full satisfaction of

their requirements in terms of this subobjective (Luo et al., 2007).

Degraded cases in which a subobjective is somewhat but not completely satisfied are captured in

degraded requirement satisfaction rules. The number of possible degraded cases that lead to partial

satisfaction can be very large. However, at least in the case of Earth observing systems, a handful of

degraded cases is enough to cover most realistic situations in practice.

Discussion: The scores that are assigned to partial satisfaction rules are very important, especially when

the tool is used to assess the value of system architectures in cardinal scales as opposed to ordinal scales.

These scores are elicited from experts through an interview process, and therefore they are subject to the

known limitations of interviews.
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For example, it is not impossible that experts disagree on their assessment of a particular set of

capabilities. In theory, a formal process from social sciences such as the Delphi method could be used to

foster stakeholder consensus or compromise (Dalkey & Helmer, 1963).

However, because of time constraints, no formal method from the social sciences was applied to obtain

these scores in the context of this thesis. Furthermore, this points out a limitation of the methodology: if

the problem at hand uses several hundreds of degraded requirement satisfaction rules, it means that it will

have several hundreds of parameters that are, in theory, also degrees of freedom of the tool, as one could

in principle assign any value to these scores. In order to alleviate this problem, Likert-like scales

(Jamieson, 2004)can be used that only allow a few cardinal values of subobjective satisfaction (e.g., all

value, most, some, marginal, none)

Another question may arise from the small number of degraded requirement satisfaction rules. Because of

the RBES essentially is a pattern matcher, if a set of capabilities does not match any of the degraded

requirement satisfaction rules, the system will not assert any partial satisfaction facts concerning that

particular subobjective, and thus the score of the architecture with respect to that subobjective will be

zero. The situation is thus similar to having a response surface where only the values of a function on a

few points on a surface are known, and the rest are interpolated. An opportunity for future work would

thus be to add a statistical machine learning layer on top of the RBES, so that some sort of interpolation

could be applied to account for degraded cases that are not described using for example neural networks.

3.3 Value aggregation rules

Description: Thus far, we have explained how to assess the level of satisfaction of a particular

subobjective using requirement satisfaction rules. In theory, each subobjective could be used as an

independent metric. However, in most real life situations, the number of subobjectives is too large, and a

scheme for aggregating the values of different subobjectives becomes necessary.

Value aggregation rules are used to reduce the dimensionality of the objective satisfaction space, from

potentially hundreds of subobjectives to a handful of stakeholder group satisfaction metrics, or even a

single metric that captures overall architecture value. Typically, this handful of metrics will contain at

least one metric for lifecycle cost and one or several metrics for performance or benefit.

The general structure of a value aggregation rule is provided in Code 9. Different implementations of the

generic combinator shown in Code 9 can be used. The most straightforward implementation is perhaps a

simple weighted average of several subobjectives.

118



General structure (in natural language)
(Define-rule aggregation-of-objective-X
"Description of the rule: aggregation of all subobjectives in objective X"

IF there is a (subobjective satisfaction fact (of subobjobjective X1)
(of objective X) (with score 71) (taken by whol))
AND there is a (subobjective satisfaction fact (of subobjobjective X2)
(of objective X) (with score s2) (taken by who))
AND there is a (subobjective satisfaction fact (of subobjobjective X)
(of objective x) (with score s,) (taken by who3))

=>(THEN)

ASSERT a fact indicating satisfaction of objective X (with score (generic
combinator of scores )) (taken by " and and v 3")
)

Example (in the CLIPS language):

(defrule REQUIREMENTS::aggregation-objective-EC06

"Aggregates satisfaction of all subobjectives in objective EC06"

(REASONING::subobj-satisfied (subobjective EC06-1) (objective EC06) (from
w ) (score

(REASONING::subobj-satisfied (subobjective EC06-2) (objective EC06) (from
) (score )))

(REASONING::subobj-satisfied (subobjective EC06-3) (objective EC06) (from
) (score

(assert (REASONING: :obj-satisfied (objective EC06) (from (str-cat and
and " )) (score (weighted-average ?s1 ?s2 ?s3)

)
Code 9: General structure and example of a value aggregation rule

More sophisticated operators such as the ordered weighted averaging aggregation operator developed by

Yager can also be used (Yager, 1988). More generally, any arithmetic and logical operation on one or

several subobjective satisfaction facts is allowed.

Discussion: The problem of value aggregation essentially is a multiple criteria decision making problem,

for which several methodologies are well known. A multi-objective optimization approach based on the

approximation of the Pareto front will fail to reduce the tradespace to a manageable number of

architectures, due to the large dimensionality of the objective space. A goal programming approach

(Ignizio, 1983) based on the minimization of some distance to a target vector in the objective space can

also be utilized, but the problem lies then on the a priori selection of the target vector.
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An isoperformance approach (0. L. de Weck & Jones, 2006) has the same problem, on top of the

unknown and potentially large dimensionality of the isoperformance set. Other similar methods are based

on distance to the utopia point, see for example TOPSIS (Lai, Liu, & Hwang, 1994). A multi-attribute

utility theory approach (Keeney & Raiffa, 1993) will come to the price of subjectivity as it is hard - and

cumbersome - to elicit relative weights between competing objectives from decision makers.

Another class of these formal approaches is based on the systematic use of pairwise comparisons between

the different options. Weights are then deduced from the results of all the pairwise comparisons using

some kind of formal mathematical algorithm. See for example Saaty's Analytic Hierarchy Process, in

which relative weights are the eigenvalues of the pairwise comparison matrix (Saaty, 2008). Despite their

subjectivity, decision making processes based on weighted average operators continue to be widely used

in industry and academia, perhaps due to their simplicity and transparency.

3.4 Capability rules

Description: Capability rules are at the core of the methodology and contain an important part of the

expert knowledge, as they link components to capabilities. Their general structure and an example are

provided in Code 10.

General structure (in natural language):
(Define-rule capabilitites-of-component-X
"Description of the rule: defines capabilities of component X"
IF there is a (manifested component (of type T) (named X) (with attributel x1)

(with attribute2 x2))
AND (Attributel x1 is vall or better))
AND (Attribute2 x2 is val2))

=>(THEN)

ASSERT a (Capability fact (of type Ti) (from X) (with)) (taken by " and

who2 and who3"))
Example (in the CLIPS language):

(defrule CAPABILITIES::high-end-gaming
"Asserts the capabilities of high end gaming"

(COMPONENTS::RAM (total-memory-GB# x) (memory-speed-MHz# y))

(COMPONENTS: :graphics-card (dedicated-memory-GB# :))
(COMPONENTS: :monitor (screen-size-in u) (screen-resolution
(test (>= x 16))
(test (>= y
(test (>= Z 3

(test (>= u 19))

(assert (CAPABILITIES: :Gaming (ThreeD yes) (graphic-quality High-end))))
Code 10: General structure and example of a capability rule
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Capability rules may, but do not necessarily have to, take care of all the capability attributes. Instead,

attribute inheritance rules can be used to inform capability attributes from subsystem and component

attributes. Furthermore, capabilities that emerge from combinations of existing capabilities are captured

by emergence rules.

Discussion: At a first glance, the structure of capability rules may seem to restrict the scope of

applicability of the whole framework, since for many systems, the mapping between components and

capabilities is very complex. However, the framework remains general because capability rules can

contain more than one component and be arbitrarily complex, as shown in the example.

Another point worth mentioning concerns the difference between capability rules and emergence rules. It

is clear that part of the actual system emergence is captures in the capability rules. For example, the rule

showed in Code 10 encapsulates the emergent behavior between RAM, a monitor and a graphics card to

yield a high end gaming capability. Emergence rules will capture the part of the emergent behavior that

results from combinations of capabilities, as opposed to combinations of components. The balance

between the number of capability rules and the number of emergence rules may differ widely across

systems, but the general methodology will remain valid.

3.5 Attribute inheritance rules

Description: Attribute inheritance rules encapsulate the "downward" dependences between subsystem,

component, and capability attributes ("downward" because they descend in the form hierarchy from the

system to components). Subsystem attributes can be inherited from the system architecture, or from a

database. Component attributes can be inherited from a subsystem, or from a database. Capability

attributes can be inherited from a component, or from a combination of component and subsystem

attributes. The general structure of an attribute inheritance rule and an example are shown in Code 11.

More involved attribute inheritance rules are also possible. For example, the temporal resolution of a

measurement will depend on both the orbit and the instrument angular resolution. The level of

sophistication of this dependence can be customized. For instance, it can be modeled using simple

geometric considerations, spherical trigonometry, or even a dedicated simulation tool like AGI's STK.

Discussion: At this point, the boundary between capability rules, emergence rules, and attribute

inheritance rules that regulate inheritance of attributes from components to capabilities may seem a little

fuzzy. Capability rules are intended to assert capability facts from components, but they only take care of

a few attributes. Attribute inheritance rules do not assert any facts, they only modify them to inform the

value of certain capability attributes.
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General structure (in natural language):
(Define-rule inherit-component-attribute-X-from-database
"Description of the rule: inherits component attribute X from parent database"

IF there is a Component in the SYSTEM (of type T) (with attributel )
(with attribute2 )
AND there is a Component in the DATABASE (of type T) (with attributel )
(with attribute2 att2)

=>(THEN)

MODIFY the fact concerning the SYSTEM component (with attributel )
(with attribute2 )
)

Example (in the CLIPS language):
(defrule CAPABILITIES::inherit-CPU-from-database
"Inherits CPU data from database of CPUs"

x <-(COMPONENT::Processor (Make -) (Model ) (CPU-speed-GHz# nil))
(DATABASE::Processor (Make ) (Model ) (CPU-speed-GHz# &~nil))

(modify ? (CPU-speed-GHz#
Code 11: General structure and example of an attribute inheritance rule

Beyond the logical rationale, this classification allows an easier automation of both types of rules from

spreadsheets. As for emergence rules, they typically modify or assert facts from combinations of existing

capabilities as opposed to asserting facts from existing components.

Another question that may arise concerns the possible existence of upward inheritance of attributes, i.e.

the bottom-up inheritance of attributes from components to the system. In the framework, this kind of

behavior does not exist, because attributes that are susceptible of being inherited upwards are relevant to

the calculation of the value metric and therefore they are declared as capabilities rather than being simple

attributes. A typical example is system cost, which to a first approximation is a sum of the costs of the

subsystems and therefore could be considered an attribute inherited upward. Instead of having cost as a

system attribute that is inherited upwards from components and subsystems, we define capabilities and

requirements concerning system lifecycle cost. Capability rules can then estimate system lifecycle cost

from components.

For example, a cost estimating relationship for a certain subsystem or component as a function of one or

more of its attributes will be encoded as a capability rule. Emergence rules may also be used to model

non-linear multi-component cost penalties.
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This way of treating cost in the same way as other capabilities is a more elegant solution, and allows the

definition of related objectives and subobjectives if required (e.g. stakeholders are satisfied if system cost

is kept below a certain threshold).

3.6 Emergence rules

Emergence rules are a double-edged sword in the framework. On one hand, they capture fundamental

emergent behavior without which it is not possible to adequately model a system, and in some cases they

are actually extremely powerful in generating emerging capabilities. On the other hand, precisely because

they are very powerful in the generation of new capability facts, they may lead to computational

complexity issues, and they also render the code development process a bit more unpredictable and hard

to debug.

Description: Emergence rules modify existing capabilities and create new capabilities from interactions

between existing capabilities. Their general structure and examples are shown in Code 12.

General structure (in natural language):
(Define-rule emergence-of-new-capability
"Description of the rule: emergence of a new capability of type T3 from two
capabilities of types T1 and T2"
IF there is a Capability (of type T1) (performed by a certain combination of
components w ) (with performance attribute Al = x)

AND (Performance x1 is vall or better))
AND there is a Capability (of type T2) (performed by a certain combination of
components w ) (with performance attribute A2 = x2)
AND (Performance x2 is val2 or better))
=>(THEN)
ASSERT a new Capability (of type T3) (with performance attribute Al = x1)
(with performance attribute A2 = x2) (performed by " and
)

Example (in the CLIPS language):
(defrule EMERGENCE::parallel-computing

"If we have computing capabilities on two different assets, plus an internet
connection, we can parallelize computations"

(CAPABILITIES: :Matlab-simulations (max-memory-GB ?x1) (running-time-sec ?
(thanks-to
(CAPABILITIES: :Matlab-simulations (max-memory-GB ?x2) (running-time-sec ?t2)
(thanks-to
(CAPABILITIES: :Network-connection (between ?computers)
(test (str-contain , (create$ ?wihoml ?whom2)))

(assert (CAPABILITIES:: Matlab-simulations (running-time-sec
(I 1 (+ (/ 1 ?tl) (/ 1 ?t2))))) (thanks-to (str-cat ?whoml "and" >o)))))

Code 12: General structure and examples of emergence rules
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This is so because very complex behavior can arise from a handful of capability facts and a couple of very

simple rule such as the ones shown in Code 8.

The power of rules to simulate emergent behavior is not a new discovery, and in fact cellular automata are

based on rules. Amongst its proponents, Stephen Wolfram, the creator of MathematicaTM, wrote a 1500

page book titled "A new kind of science", in which he states that cellular automata would become the

new simulation paradigm for physical and biological systems in the 2l" century. Rules are arguably a

better way of modeling systems emergence than traditional imperative programming, in part due to the

natural recursivity of functional and declarative programming languages in general.

However, this powerful recursivity also brings forth several disadvantages. First, computational

complexity issues may appear if inadequate rules are created. Computational complexity for RBES is on

the order of RFP where R is the number of rules, F is the number of facts in working memory, and P is

the average number of premises per fact. Although the Rete algorithm is very efficient in this pattern

matching process, for very large systems computational complexity may be an issue. This risk can be

partially mitigated if limits are set for the maximum level of recursion in order to prevent exponential

explosion. For example, one may allow for a certain emergence rule to fire a certain number of times.

This kind of approach results in a loss of creativity, but it may be required for some large systems.

Second, it may be harder to predict system behavior when a rule is added or modified in large systems. If

one is not careful enough during development, it is not hard to create a rule that will result in an endless

loop. The explanation facility will play a key role during the tool development process as well as during

the production phase.

Third, it may be harder to program and debug just because most programmers are used to imperative

languages in which flow of execution is fully controlled by the developer. The use of debugging

interfaces such as the ones provided in open-source Eclipse can be of some help.

3.7 Fuzzy Attribute rules

Description: The need for fuzzy attribute rules comes primarily from the requirement to be able to use

inexact reasoning in the creation of requirement satisfaction and capability rules and facts. More often

than not, experts and stakeholders use imprecise attributes when describing the capabilities of a

component, or the requirements for a system. For example, an L-band radiometer can measure soil

moisture with "high accuracy" and "30 to 50 km spatial resolution".
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A particular community of hydrologists may require for instance a soil moisture data product with a

revisit time "on the order of 2 or 3 days", and they may state that they would lose "some utility" if the

revisit time falls to "3-7 days", "most of the utility" if it falls to 7-14 days, and "virtually all utility" if it

falls beyond two weeks. The precise numerical values of these variables are not known early in the

system architecting process because of a variety of sources of uncertainty and ambiguity. Some of them

will resolve as the system development process goes forward, while some may stay unresolved well into

system operation (e.g. uncertainty related to the scientific value of a data product).

Hence, precise numerical values (e.g. radiometric accuracy of 5%) and imprecise fuzzy values (e.g. "high

radiometric accuracy") have to coexist in the framework, so that requirement and capability rules can be

created using both precise and imprecise statements.

Fuzzy attribute rules are the dictionary that translates back and forth from the precise world to the

imprecise world. Note that the names of numerical attributes are required to end with the character '#',

while the names of string and fuzzy attributes can end in any character except for '#'.

The general structure and an example of a fuzzy attribute rule are given in Code 13.

General structure (in natural language):

(Define-rule numerical-to-fuzzy-attributeX
"Description of the rule: "Transforms a numerical value into a fuzzy value"

IF there is a Capability (of type TI) (with numerical performance attribute A1#

xl) (and fuzzy performance attribute Al unknown)

=>(THEN)
COMPUTE ?val = (transform-numerical-to-fuzzy attribute Al value x1)
MODIFY Capability (fuzzy performance attribute Al ?val)

)

Example (in the CLIPS language):

(defrule FUZZY: :numerical-to-fuzzy-running-time
"Transforms a numerical running time value into a fuzzy value"
<- (CAPABILITIES::Matlab-simulation (running-time nil)

(running-time# ? L&-nil))

(if (<? 1) then (bind va) Less-than-1s) elif (< ?t 10) then (bind ?val
Between-is-and-10s) else (bind More-than-10s))

(modify (running-time (numerical-to-fuzzy ?val))))
Code 13: General structure and example of a fuzzy attribute rule
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Note that in addition to fuzzy attribute rules, it is also needed to define a number of fuzzy operations in

order to operate with fuzzy numbers. General algebraic operations such as "+", -, >, "<", and "=

are augmented in order to be able to handle fuzzy numbers. These fuzzy operations were implemented in

CLIPS/Jess from interval arithmetic. Hence for example:

[a, b] + [c, d]= [min (a + c, a + d, b + c, b + d), max (a + c, a + d, b + c, b + d)] = [a + c, b + d]

[a, b] - [c, d]= [min (a - c, a - d, b - c, b - d), max (a - c, a - d, b - c, b - d)] = [a - d, b - c]

[a, b] x [c, d]= [min (a x c, a x d, b x c, b x d), max (a x c, a x d, b x c, b x d)]

[a, b] + [c, d]= [min (a + c, a + d, b + c, b + d), max (a + c, a + d, b + c, b + d)] when 0 is not in [c, d].

Discussion: In the beginning of this subsection, we motivated the use of fuzzy attribute rules by a

requirement to handle inexact reasoning. This is thus a matter of ambiguity in language, rather than

uncertainty. Indeed, while inexact reasoning is purely deterministic and deals with intervals of numbers

and membership functions, the classical interpretation of uncertainty is necessarily probabilistic.

However, it is apparent that ambiguity and uncertainty in requirements and capabilities may have

common sources, and that they can be treated in similar ways. In particular, scientists and engineers often

use fuzzy terms when expressing requirements and capabilities precisely because there is uncertainty in

their assessments. Therefore the use of fuzzy numbers allows for the incorporation of some of the

uncertainty into requirements and capabilities in a deterministic way. In a sense, this is a conservative

approach because it does not try to provide probability density functions for every uncertain variable. The

addition of probability density functions and other statistical methods to the framework could be

considered as an opportunity for future work.

Another question may concern the choice of simple interval theory over other more involved theories.

The framework could very well be augmented with Zadeh's fuzzy sets (L. A. Zadeh, 1965), assuming

triangular membership functions and Zadeh's extension principle. Even more recent frameworks could be

used, such as Buckley's fuzzy numbers (Buckley, 1985), or Fortin's gradual numbers (Fortin, Dubois, &

Fargier, 2008). The latter were recently applied in particular to inversion problems by Boukezzoula with

success (Boukezzoula, Foulloy, & Galichet, 2011). All these methods are more powerful than simple

interval arithmetic, but they are also more or less cumbersome to implement. Their study is left for future

work.
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3.8 Explanation rules

The inclusion of explanation rules in the framework responds to the primary requirement of transparency

and traceability of results, and was an important factor in the decision to implement the framework using

a rule-based language as opposed to more traditional imperative languages.

Description: We have seen earlier that both nominal and degraded requirement satisfaction rules assert

explanation facts as they fire. These facts trace the combination of capabilities that satisfied the

requirement, and the components and subsystems that generated that capability. Note in particular that a

capability satisfying a requirement may not result directly from a capability rule; it may also have been

created by a synergistic combination of capabilities after the execution of several capability and

emergence rules. Thus, traceability becomes even more important.

Explanation rules detect when these facts are asserted and send them to an explanation facility that

processes them. This explanation facility could be arbitrarily complex and include amongst other things

the use of graphical user interfaces to show the information to the user.

The code for the explanation facility is obviated for now because it is highly domain-specific, and thus

will be discussed in Chapter 4.

Discussion: Explanation facilities have been utilized in expert systems since the very beginning with

MYCIN (W.J. Clancey et al., 1984). Moreover, research has shown that the use of an explanation facility

increases the acceptance by decision makers of results from DSS tools (Ye & Johnson, 1995). The

features expected from an explanation facility range include graphical interfaces and explanation queries.

Since MYCIN, a variety of techniques have been used in explanation facilities including amongst others

automatic programming.

As future work, we propose to develop a simple, elegant, and scalable strategy based on the idea of

wrapping every numerical value inside an object that contains, in addition to the numerical value itself, an

expression of the uncertainty around that value if required, and a string containing the explanation that led

to that particular value.

3.9 Summary

In this section we described the VASSAR framework for assessing the value of a system architecture

using rules. Figure 23, which illustrates the overall framework, is repeated here for convenience.
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The framework provides both a fuzzy or numerical value assessment and an explanation for this

assessment for a certain system architecture. Subsystem and component facts are asserted from the system

architecture. An initial set of capability facts is then asserted through the capability rules. Attributes are

inherited from subsystems to components to capabilities as expressed in the attribute inheritance rules. An

augmented set of capabilities is then created by the application of the emergence rules to the initial set of

capabilities.

Requirement satisfaction rules assert subobjective satisfaction facts according to this augmented

capability set. Fuzzy attribute rules are simply used as a dictionary between numerical values and fuzzy

values. Instead of having one metric for each subobjective, it is more practical to aggregate subobjectives

and objectives into a handful of metrics, which is handled by value aggregation rules. Finally, explanation

rules process the information in satisfaction facts and show it to the user in different formats.

In addition to these different types of facts and rules, Figure 23 shows the presence of a database that is

used in the attribute inheritance process. The use of specialized databases complements such as mission

analysis databases or component databases facilitates the integration of knowledge into the RBES.

128

IN

Ex1pIa n ations



At different points in the discussion we mentioned the possibility to develop Excel user interfaces to

facilitate the input of rules. Indeed, many rules of the same type may be almost identical in structure for

many systems, and therefore the automation of this process is possible.

Interesting aspects of the framework and its major limitations were addressed during the individual

discussion sections for each type of rules. We discussed the scope and applicability of the framework,

which even though may seem restricted at first glance, is maintained general through the appropriate use

of capability and emergence rules.

We mentioned in particular the treatment of cost metrics in the framework as capabilities and

requirements. In other words, the framework makes no distinctions between benefit and cost other than

the specificity of each kind of rules.
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4 Rule-based system architecting of Earth Observation Satellite Systems
The rule-based system architecting methodology and the theory behind it have been introduced in

Chapters 2 and 3. These chapters have focused on domain-independent knowledge. In this chapter, the

methodology is applied to Earth Observation Satellite Systems (EOSS). Thus, the chapter focuses on

domain-specific knowledge, as illustrated below.

All do
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All EOSS

Instance of
EOSS
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K1 K2 K3

Enumerating Searching a generic
architectures tradespace
Searching a particular Finding a Pareto front
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K7 K8 K9
Particular feasibility Science requirements
constraints, search Slnerqieet

Particular instrument
heuristics, and
weights for metrics

Instance of SAP Class of SAPs All SAPs SAP
scope

Figure 24: Situation of the content of chapter 4 in the knowledge separation chart

The chapter starts with a discussion about what constitutes the architecture of an EOSS. The main

architectural decisions for EOSS are identified and discussed. Second, domain-specific rules that are only

relevant for the high level design of EOSS, but independent of the EOSS at hand, are introduced. Third,

the VASSAR methodology for assessing value, presented earlier in Chapter 3, is applied to EOSS.

Fourth, the figures of merit (FOM) used to evaluate EOSS are presented. These FOMs build on the

domain-specific rules presented earlier in this chapter. Finally, the methodology used for the three case

studies is described, and the three case studies are briefly introduced.

4.1 Architecture of Earth Observation Satellite Systems (EOSS)

4.1.1 Overview of the architectural framework

Basic system architecture theory teaches us that, when trying to identify the architecture of a system, it is

appropriate to start by asking ourselves who the main stakeholders of the system are, and how the system

provides value to the stakeholders.
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At first sight, it seems intuitive to say that the main stakeholders of EOSS are scientists, since the primary

objective of Earth science missions is to take valuable datasets that are then fed to algorithms to produce

new knowledge and information. However, in reality, there are a variety of stakeholders that are

beneficiaries of, or put their assets at stake with, EOSS. Atmospheric temperature and humidity profiles

can be assimilated into numerical weather prediction models to increase the performance of weather

forecasting. Global maps of the concentration of several pollutants in the atmosphere are also used to

produce air quality forecasts that are routinely read by millions of users. High resolution passive optical

imagery of the land and oceans is used to support disaster monitoring activities, assess changes in land

use, and provide intelligence, surveillance, and reconnaissance to military units amongst others. Sea level

height and ice sheet thickness measurements are used as primary markers for melting of ice caps in

climate change. SAR images can be used to track storms and even predict earthquakes. In short, EOSS

provide value to a broad variety of stakeholders that goes well beyond the realms of science. For a

thorough stakeholder analysis of EOSS, the reader is redirected toward Tim Sutherland's thesis

(Sutherland, 2009).

Although there is a broad variety of stakeholders and stakeholder needs, we propose that primarily, EOSS

provide value to their stakeholders because they take valuable measurements (data products) that are

then transformed into information and knowledge, which actually bear the value. Therefore, most

stakeholder needs and goals can be projected into a set of measurement requirements. Using words from

the system architecting jargon, measurements are the fundamental elements of function of EOSS. This is

not to say that all exchanges in the value network of an EOSS are exchanges of measurements and data

products (and money on the cost side). Other sources of benefit that are not directly traceable to

measurement requirements are for example partnerships with international organizations, or sustaining an

industrial base. However, measurement requirements undeniably constitute a majority of the requirements

in any EOSS, or at least the majority of requirements that vary across system architectures (i.e., that are

architecturally distinguishing).

In the form domain, an EOSS can be defined as a collection of Earth observing satellite missions. A

mission consists of one or more spacecraft, and each spacecraft carries a number of instruments.

Measurements are taken by instruments, which in our model are the fundamental elements of form of

EOSS.
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An instrument-centric view of an EOSS, as opposed to a mission-centric view, provides the right

level of abstraction for architectural studies: going one level deeper in detail would imply delving into

instrument subsystem design, which is not needed at this early stages of mission development; on the

other hand, staying at the mission level would preclude the study of important architectural trade-offs,

such as deciding whether two instruments should share a common bus, or rather fly on dedicated buses

(Selva & Crawley, 2010).

A pictorial summary of our architectural model for EOSS is provided in Figure 25.

Sta Architecture of an Earth
observation satellite system

Attributes Attributes

Figure 25: Architectural model for an EOSS.

On the left hand side of Figure 25, stakeholder needs are decomposed into general system objectives,

specific system objectives, and finally a set of measurement requirements. On the right hand side, we find

another set of measurements that are taken by the instruments flown on a collection of missions that

constitutes the EOSS. The fundamental idea behind the methodology is that the value of an EOSS can be

assessed by performing a comparison of the measurement requirements and the measurement capabilities

at the attribute level (e.g., spatial resolution, temporal resolution). The discussion in Section 4.3 further

develops this idea.

4.1.2 Architectural decisions and architectural views for EOSS

The previous section defined what we understand by the value of an EOSS. This section goes on to

define what we understand by the architecture of an EOSS. The major architectural decisions for an

EOSS can be inferred from the framework presented in Figure 25. Essentially, the architecture of an

EOSS is given by the following decisions:
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" Instrument selection: which payloads do we choose to perform the required measurements? For

example, in order to satisfy topography requirements, we may choose to develop a laser altimeter,

a synthetic aperture radar, or both.

* Instrument packaging: which mission architectures do we choose to fly these payloads on?

More precisely, the major mission-level architectural parameters are the mission mode (e.g.,

single satellite, tandem, constellation, train), the number of planes and the number of satellites per

plane in the case of a constellation, and the orbital parameters (mostly altitude, inclination, and

RAAN for SSO).

" Mission scheduling: how do individual missions coordinate with each other as a program?

Missions cannot be considered in isolation since they are linked through a programmatic

environment including common resources such as a common budget.

Hence, in the context of this thesis, an EOSS architecture is fully defined once: a set of instruments has

been selected; these instruments have been assigned into spacecraft; the order in which the spacecraft

need to be launched has been established. Note that the process of making these decisions requires at least

an approximate idea of the main design parameters of each mission, such as the constellation design, and

a sense of the size of the spacecraft (mass, dimensions, launch vehicle).

Hence, the problem of architecting an EOSS is effectively decomposed into three sub-problems

(instrument selection, packaging, and mission scheduling). In the rest of this section, each of these

problems is briefly described. For each sub-problem, we proceed as follows: 1) we state the goal of the

sub-problem (i.e., describe the output); b) we discuss qualitatively the main trade-offs of the sub-problem;

c) we designate architectural variables; d) we classify the problem as one or more of the classes of SAP

described earlier; e) we discuss the relevance of the encoding scheme that the library of classes of SAPs

suggests for this particular class; f) we provide one or more examples of an architecture; g) we reason

about the size of the tradespace.

The section ends with a discussion about the degree to which these three sub-problems are coupled.

4.1.2.1 Instrument selection

Goal: The goal of the instrument selection problem is to find the best possible set of instruments to be

flown in a program given scientific and societal objectives, as well as programmatic constraints (e.g.

budget).
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Qualitative discussion: When selecting a set of instruments, the major trade-off is obviously the classical

benefit-cost trade-off. The more instruments one decides to fly, the greater the benefit, with typically

diminishing returns as the number of selected instruments increases. In other words, the highest

performance requirements are usually much more expensive to achieve than the basic functionality.

A key point that was mentioned in the description of down-selecting problems is that the benefit of a

certain instrument is not independent of the other instruments in the subset. Hence, it will be

necessary in the instrument selection problem to evaluate each subset of instruments as a whole, rather

than as the sum of the benefits of each instrument. The issue of scientific synergies between instruments

will be described in greater detail in the next section, as it is a first-order effect for the instrument

packaging problem while being a second-order effect for the instrument selection problem.

Furthermore, if we allow selecting multiple copies of the same instrument, it becomes essential to be able

to quantify the scientific and societal benefit as a function of number of copies. Indeed, the benefit of

getting N copies of an instrument is arguably less than N times the benefit of one instrument.

Architectural decisions: The major architectural decisions for the instrument selection problem are the

suite of instruments to be flown in the program.

SAP class: The instrument selection problem is most naturally formulated as a down-selecting problem. A

possible alternative formulation is the assigning problem with m decisions and two options for each

decision (instrument selected, "yes" or "'no").

Encoding scheme: We assume, without loss of generality, that there are N candidate instruments for the

program, and that a one-to-one mapping exists that assigns a unique identification number id to each

candidate instrument. The selected encoding scheme for this down-selecting problem is E, suggested in

9.1.3, i.e., an array of Boolean variables of length equal to the number of instruments being considered.

Variable i in this array is set to I if instrument i is selected for the program. It is set to 0 otherwise.

AIS(N) : [b 1 b2 --- bN]

where AIs represents an architecture for the instrument selection problem; bj is the architectural variable

that contains the information about whether instrument j is selected (b; = 1) or not (b; = 0). In a valid

architecture, bj E {0,1}Vj = 1 ... N.
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Example of valid architecture: For a program in which we consider 8 candidate instruments, the following

architecture chooses to fly 5 instruments, namely instruments 1, 2, 3, 6, and 8. Instruments 4, 5, and 7 are

not selected for the program.

AIs(B) = [1 1 1 0 0 1 0 1]

Tradespace size: The length of the architectural vector is exactly equal to the number of instruments being

considered (N), and the size of the tradespace grows exponentially with N.

I{AIS(N)dI N

Note that IAIs(N)I is larger than 106 for N > 20. In other words, if there are 20 or more candidate

instruments, there are more than a million possible architectures.

4.1.2.2 Instrument packaging

Goal: The goal of the instrument packaging problem is to find the best possible assignment of instruments

into satellites given positive and negative interactions between instruments.

Qualitative discussion: The instrument packaging problem can be viewed as a clustering problem, as the

goal is to group the instruments in clusters. Therefore, as in any clustering problem, there are two main

classes of forces that drive the instrument packaging architecture: positive interactions between

instruments (i.e. attractive forces that tend to create large satellites), and negative interactions between

instruments (i.e. repulsive forces that tend to create small satellites). In the case of EOSS, these forces lie

on three different domains: the science domain, engineering domain, and the programmatic domain.

In the science domain, there are positive synergies between the instruments, or between the measurements

taken by these instruments. More precisely, in the context of the instrument packaging problem, we say

that two instruments are synergistic if the value of the data products that can be produced from a

spacecraft flying the two instruments together is greater than the value of the data products that can be

produced from two dedicated spacecraft. This situation arises when the datasets taken by the two

measurements are combined in some way to produce new or enhanced data sets. For example, in an

altimetry mission, the accuracy of the altimetry measurement is improved if a microwave radiometer is

flown together with the altimeter because the wet tropospheric contribution in the error budget of the

altimetry measurement is decreased.
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While not all interactions in the science domain are positive, it is generally true that negative interactions

in the science domain appear through the engineering domain. More precisely, negative interactions in the

science domain arise due to design compromises between competing instrument requirements. The most

straightforward example is orbit selection.

Let us consider for example an oceanography mission carrying an altimetry payload (radar altimeter,

microwave radiometer, GPS receiver), and an ocean color instrument. Ideally, the altimetry payload

wants to fly in a high (1000-1300 km) non sun-synchronous orbit to maximize coverage and avoid tidal

aliasing by having a diurnal sampling.

On the other hand, the ocean color instrument would much rather be on a lower (600-800km) SSO in

order to get rid of lighting variations through the day and obtain a good trade-off between coverage and

spatial resolution. These two orbits are obviously not compatible, and no matter which orbit we choose

for the spacecraft, the performance of one of the payloads will be affected. Competing requirements for

orbit selection can be driving factors in a packaging problem.

Other examples of negative interactions that affect the science output are the limited resources aboard the

spacecraft. Resources such as power, data rate, or simply space on the nadir surface of the spacecraft are

shared between all the components of the spacecraft, and limited by the state-of-the-art of subsystem

technology and other external constraints, such as a mandate to launch on a certain launch vehicle, or to

fit on a certain standard bus. Hence, combining two instruments on the same platform may lead to

situations in which one or more of the instruments are not used to their full capacity. For instance, in

ESA's Envisat spacecraft, the SAR was only used with a duty cycle of about 1%, due to the extremely

high data rates of this instrument, and the presence of nine other instruments on the spacecraft.

In the engineering domain, most interactions are negative interferences between instruments. Generally

speaking, from the engineering perspective, it is more desirable to have dedicated spacecraft for each

instrument, since that softens several requirements on the subsystem, and allows for a design of the bus

tailored to each specific spacecraft. Note that cost issues are arbitrarily not considered as engineering

issues but rather as programmatic issues.

Finally, in the programmatic domain, including cost issues, we have positive and negative interactions in

all the aspects of one of the multiple descriptions of the iron triangle in program management (cost,

schedule, and risk).
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From the cost perspective, the cost of a packaging architecture is not proportional to the number of

satellites. In some cases, very distributed architectures may indeed be very costly due to the cost of the

different buses and launches, but monolithic architectures with very few satellites may also be very

expensive because they may require for example the use of much larger spacecraft or launch vehicles.

The optimum point will in general be somewhere between a completely monolithic architecture and a

completely distributed architecture, with the key factors being: a) the packaging efficiency of instruments

on the bus; b) the packaging efficiency of spacecraft in the launch vehicle; c) whether the buses are ad-

hoc dedicated buses that have to be developed from scratch or rather commercial buses are used; d) the

specific buses and launch vehicles that are available to choose from; e) the aforementioned engineering

issues, which will obviously also have an impact on the cost of developing individual spacecraft.

From the schedule perspective, distributed architectures are more desirable in order to minimize the risk

of late instrument delivery. Indeed, in multi-instrument missions, a single instrument may delay a whole

mission that would otherwise be ready to be launched. Other considerations are related to the data

continuity issues, which pertain to the scheduling problem. Indeed, one may want to include an

instrument on a particular spacecraft that is going to be launched first, just because that instrument covers

a particular data gap.

Similarly, one may argue that distributed architectures are also more desirable from the launch risk

perspective. Intuitively, and without considering the relative reliability of launch vehicles of different

sizes, one may not want to "put all their eggs in the same basket".

It is interesting to do the exercise of computing the probability mass function of the number of

instruments successfully put into orbit in different packaging architectures. This can be simply done by

considering each launch as a Bernoulli trial, and then using a binomial distribution to compute the

probability of having k out of n successful launches. For example, in a completely monolithic

architecture with 4 instruments, the probability mass function of the number of instruments successfully

put into orbit Nsonly has two possible values: Prob(Ns = 0) = 1 - RLv and Prob(Ns = 4) = RLV. In

an architecture with 4 satellites, the probability mass function takes four different values.

It is easy to show that the average number of instruments successfully put into orbit is independent of the

packaging architecture when all launch vehicles are assumed to have the same reliability, and is equal to

the total number of instruments times the reliability of the launch vehicles, assumed the same.
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However, the shape of the probability mass function will depend on the packaging architecture. More

monolithic architectures will have a smaller entropy from the information theory perspective than more

distributed architectures. Thus, risk-averse decision makers will generally prefer more distributed

architectures, where the risk is more spread. Note however that in reality, at each moment in time there

may be a finite number of launches available with different reliabilities, and this would also be an

important factor.

In summary, a good packaging architecture maximizes positive synergies while minimizing negative

interferences. Interactions occur in the science, engineering, and programmatic domains and the sign of

these interactions (positive or negative) is non-trivial. A thorough discussion of packaging EOSS

architectures can be found in (Selva & Crawley, 2010).

Figure 26 is a good summary of this discussion, and illustrates the advantages of the two main classes of

packaging architectures: larger, multi-instrument missions, versus smaller dedicated missions.

O Scientific advantages

a Engineeringadvantages
Programmaticadvantages

instfruentss-

CQ Ctof datecros.
I rmstration

Figure 26: Advantages of the two main components of packaging architectures: multi-instrument missions and dedicated

missions

The box labeled as design optimality includes the issues related to design compromises regarding orbit

selection, as well as the issues related to the finite resources available in the spacecraft.

Finally, note that the packaging problem is more knowledge-intensive than the selection problem.

Obtaining useful results for the packaging problem requires handling a much larger body of domain-

specific knowledge that includes satellite sizing, launch vehicle selection, orbit selection, and scientific

synergies between instruments and measurements of all the disciplines of the Earth sciences.
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Architectural decisions: The major architectural decisions for the instrument packaging problem are the

satellites to which we assign each instrument in the set.

Encoding scheme: For the instrument packaging problem, we assume again without loss of generality that

there are N selected instruments in the program that need to be assigned to a number of satellites Nsat E

[1, N]. Note that this number N in the instrument packaging problem is generally smaller than the number

of candidate instruments considered in the instrument selection problem, since several instruments may

not have been selected. Furthermore, we assume again a one-to-one mapping exists that assigns a unique

identification number ids to each candidate satellite.

An additional assumption is that each instrument shall fly on exactly one satellite, which precludes two

cases: a) an instrument flying on more than one satellite; b) an instrument not flying on any satellite.

This might seem like a very constraining assumption, but in reality it is not, for two reasons: a) the case of

the same kind of instrument flying on multiple satellites can be easily modeled by having multiple copies

of the same instrument in the input set of instruments; b) the case of instruments not flying on any

satellite has already been taken into account in the instrument selection problem.

Under these assumptions, the packaging problem fits the structure of the set partitioning problem

described in Section 2.2.3. Therefore, we can retrieve the encoding scheme proposed for partitioning

problems, which is an array of non-negative integers of size N, where element j of the array is the ids of

the satellite to which instrumentj is assigned, as suggested in Section 9.1.2.

AIP(N) = [i1 i2 ... iN]

where AI, represents an architecture for the instrument packaging problem; i; is the architectural variable

that contains the identification of the satellite to which instrument j is assigned. In a valid architecture, the

ii verify that: i; E {1, Nsat} Vj = 1 ... N.

Example: For a program with 5 selected instruments, two examples of architectures are shown below: one

consisting of a single satellite carrying the five instruments, and one consisting of 3 satellites carrying 2,

2, and I instrument respectively:

Ap( 5),1 = [1 1 1 1 1]

AIP(),2= [1 1 2 2 3]
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Note in particular that in the second case, instruments with id I and 2 are on the same satellite (satellite

1), instruments 3 and 4 share another platform (satellite 2), and instrument 5 flies alone.

Tradespace size: The length of the grammar is again exactly equal to the number of instruments being

considered (N), and the size of the tradespace grows worse than exponentially with N, as predicted by the

Bell Numbers:

IAIP(N)I = Bn

Bn = 1,n = {0,1};

n

Bn+ = X B, n > 1
k=0

where B, is the Bell number of n, as defined in Section 2.2.3.

4.1.2.3 Mission scheduling

Goal: The goal of the mission scheduling problem is to find the optimal sequence of missions given a

certain budget.

Qualitative discussion: There are six key issues in the mission scheduling problem, all related of course to

time, which is the key parameter in any scheduling problem:

e Cost/budget: the spending profile given by the mission costs needs to be consistent with the

yearly budget. Given a certain mission cost, mission development time strongly depends on

yearly budget.

e Technology readiness: in addition to investing on the mission itself (e.g., bus development,

integration and testing, launch, operations), it is necessary to invest in the technologies used by

the instruments in the program. In particular, a mission cannot be launched until all the

technologies have reached the required maturity level. This needs to be taken into account by the

scheduling algorithm.

* Data continuity: a key constraint driving the launch date of many missions in real life is data

continuity. More than fifty years of Earth observation satellites have provided long uninterrupted

series of measurements for some parameters of interest such as sea level height, ocean color,

vegetation indexes, Earth's radiation budget, or aerosol optical depth. The continuity of such data

records is essential in order for them to be a useful input to climate models.
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A multi-year gap in one of these series can for example have important consequences in the

utility of the data records for policy advising.

* Calibration: another important constraint for launch dates is inter-mission calibration in order to

ensure the consistency of two data sets. These constraints usually take the form of a mandatory

period of overlap between two missions. For example, the altimetry mission Jason-2, a.k.a.

OSTM, was required to be launched before the end of life of Jason-1, so that the two altimetry

measurements could be inter-calibrated in order to eliminate relative biases.

* Fairness: Colson identified in his thesis a fifth important element in the mission scheduling

problem that he coined "fairness" (Colson, 2008). Fairness in this context means equality across

panels or stakeholder groups. A fair campaign of missions is one in which the sequence of

missions provides value to the different stakeholder groups in such a way that deviations between

the different curves of panel satisfaction over time are minimized. For example, a campaign that

flies all the climate missions first and leaves all the solid earth missions for the end of the decade

is not fair for the solid earth community.

* Opportunity cost: Finally, also in Colson's thesis, the idea of opportunity cost is introduced in

the metric of discounted value. When investing on a certain mission, there is an implicit decision

to delay investment in other missions, which has a cost, or more precisely a lack of benefit, that is

usually called opportunity cost in business and project management. This suggests that scientific

and societal benefit could be time-discounted, in a similar way to which cash flows are

discounted in project management to compute the net present value of a project. The question

arises then of how to choose the discount rates. There is suggestive evidence that different

stakeholder groups may have different discount rates. Indeed, in some situations, it could be

urgent to obtain a certain data set in order to make an important policy decision, whereas for

some other disciplines, it may be less important to get the data fast, due to the slow varying nature

of the observable (this is the case perhaps of some disciplines in solid Earth). This will be

discussed in more detail in Section 4.4.

Architectural decisions: The major architectural decisions for the mission scheduling problem are the

sequence in which the missions are to be launched, and the corresponding launch dates.

Encoding scheme: For the mission scheduling problem, we chose the encoding schemes suggested in

9.1.4.1, i.e., an array of m integers between I and m, where m is the number of missions:

E: Oi -4 [pi, P2, ... , Pm

Pj E [1, m]
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Two different encoding schemes can be defined depending on the meaning of the pj:

* E1 : pj = k means that element ejis assigned to position k in Oi

* E2 : pj = k means that element ekis assigned to positionj in O

Both encoding schemes are used in this thesis, since some rules are easier to implement under E1 , while

others are easier to implement under E2 .

Example: For a program with 5 missions, we show below two examples of architectures expressed in E1

and E 2 :

A1(E1 ) = [1 2 3 4 5]; A1(E2 ) = [1 2 3 4 5]

A 2 (E1 ) = [3 5 2 1 4]; A 2 (E2) = [4 3 1 5 2]

The first architecture starts with mission I and flies the missions according to the sequence of their ids:

mission 2 flies in second position, mission 3 in third position, and so forth. The second architecture starts

with mission 3 and ends with mission 4. Mission 1 flies in 4 th position.

Tradespace size: The size of the tradespace is given by the factorial of the number of missions:

IAs(m)JI = Oil = M!

4.1.2.4 Coupling between architectural views

So far we have described the three architectural views or SAPs as a sequence of completely uncoupled

problems that starts with instrument selection, continues with instrument packaging, and ends with

mission scheduling. This sequence makes sense because it is absolutely essential to know the instruments

selected in order to think about the packaging architecture, and it is absolutely essential to know what the

missions are before starting to schedule them.

In reality though, the three sub-problems are coupled: one cannot, for example, make an optimal decision

in the instrument selection problem without thinking about the packaging of the selected instruments.

This could lead for example to inefficiencies in the packaging factor of a certain bus or launch vehicle.

Similarly, it is hard to make an optimal packaging decision without thinking about the scheduling of the

missions, since one may want to fly an instrument that closes an important data gap in the spacecraft that

is to be launched first. This is illustrated in the N2 diagram below.
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Figure 27: N2 diagram showing coupling between selection, packaging, and scheduling problems

As a consequence of this coupling, simply solving the individual sub-problems and combining the results

will in general lead to suboptimal solutions, just as designing the aerodynamics of an airplane without

coupling it to the structures dynamics leads to suboptimal designs. This problem can be treated in three

different ways:

" Solve the global problem without decomposition. This would imply having a single SAP with

an architectural vector containing the three types of decisions: instrument selection, instrument

packaging, and mission scheduling. This approach would ideally lead to the true global Pareto

front. However, in reality, this problem is intractable for very small number of instruments

because the size of its corresponding tradespace is to the first approximation on the order of

(although smaller than) the product of the size of the three individual tradespaces, since for every

instrument selection, all instrument packaging architectures need to be considered, and for every

packaging architecture, every scheduling needs to be considered.

" Iterate. The classical approach to solve complex system of coupled equations is iteration.

Similarly, when optimization sub-problems are coupled, a simple and usually effective approach

is to solve them individually and then iterate until a set of termination criteria are met. The

problem with this approach is that there is no guarantee of convergence in general, and

termination may occur before convergence (e.g., on a criterion of maximum simulation time

exceeded). Furthermore, iteration can also be extremely time-, and resource-consuming.
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* Model the coupling using more rules. A third strategy to take into account the coupling between

the problems is to incorporate knowledge about an SAP in the other SAPs in the form of search

heuristic rules, down-selection rules, and metrics. For example, in the instrument selection

problem, a rule can be used to improve a selection architecture by adding an instrument that

covers an important data gap. These rules will guide the search process to favor architectures that

are likely to be good when the other SAPs are solved. This strategy can be combined with

iteration in order to reduce the number of iterations needed for convergence.

In the context of the case studies, the first strategy is infeasible due to the computational reasons, and the

chosen strategy will be a hybrid of the second and the third, where iteration will be used, and rules

capturing the couplings between the problems will be incorporated with the goal of reducing the number

of iterations needed.

4.2 Domain-specific rules for architecting EOSS

4.2.1 Overview

The three architectural views and their corresponding SAPs were introduced in the previous section. SAP-

class specific knowledge is available for the three problems through the use of the library of classes of

system architecting problems presented in chapter 2. This section is concerned with the domain-specific

knowledge as opposed to the SAP-class specific knowledge. Thus, the rules that are described in this

chapter are only applicable to the architecting of EOSS.

Most domain-specific rules for architecting EOSS belong to the categories of search heuristics or of

approximate evaluation rules. The generic rules from the VASSAR framework (namely attribute

inheritance rules, instrument capability rules, synergy rules, requirement rules, aggregation rules, fuzzy

attribute rules, and explanation rules) are described in next Section 4.3. In this section, search heuristics

rules that are specific for EOSS selection, packaging, and scheduling problems are presented. After that,

the rules used to do preliminary mission analysis (orbit selection, mass, power and volume budgets, and

launch vehicle selection) are described.

4.2.2 Approximate evaluation rules for Earth Observing Mission Analysis

In order to assess the value (both benefit and cost) of an EOSS, it is necessary to have the means to

conduct a rough mission analysis for a given mission. The inputs to this mission analysis process include

at least the instruments characteristics (e.g., mass, power, data rate, dimensions).
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The outputs of this simplified mission analysis process are: 1) the main mission orbital parameters,

namely altitude, eccentricity, inclination, RAAN, and argument of perigee; 2) a preliminary power

budget; 3) a preliminary mass budget; 4) an estimate of the dimensions of the satellite; 5) the launch

vehicle "class" selected for the mission. Furthermore, from this preliminary sizing process it is also

possible, if required, to assign the most appropriate between a set of standard buses.

In the following paragraphs, the rules needed to obtain these outputs from payload characteristics are

described in detail.

4.2.2.1 Rules for orbit selection

Orbit selection is a necessary and critical step in early mission feasibility studies, because orbit

parameters dictate the time evolution of ground tracks, and illumination conditions, which in turn affect

both scientific performance and engineering considerations (and thus ultimately, affordability).

Science is affected for several reasons: a) some applications require a sun-synchronous orbit to ensure

similar illumination conditions across observations, while some applications require not sun-synchronous

orbits to avoid aliasing of lower frequency events (e.g. tides); b) some applications prefer observations at

specific times of the day which maximize sensitivity to events of interest (e.g. the sensitivity of passive

radiance measurements to some vegetation parameters peaks early PM).

Engineering is affected because illumination conditions affect the design of both the electrical power

subsystem and the thermal control subsystem. The electrical power subsystem is affected because the

frequency and duration of eclipses, both of which depend very much on the orbit, will drive the design of

the batteries. The thermal control subsystem is affected because, in addition to eclipses, the evolution over

time of the angle between the sun and the spacecraft, which is determined by the orbit, will affect the heat

budget.

Following these considerations, different instruments may have different preferred orbits. For example,

high energy instruments such as lidars or synthetic aperture radars are typically placed in lower orbits in

order to minimize power requirements, while passive optical imaging instruments are placed in higher

orbits to maximize coverage.

In general, the optimal orbit for a multi-instrument mission will result from a compromise between all

these individual considerations, with some consideration to relative importance of instruments, i.e.

typically weighted toward primary mission payloads.
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For example, in an atmospheric chemistry mission with a lidar and a passive optical imager, the

preference of the lidar to fly on a lower orbit for power considerations is likely to be prevalent over the

preference of the imager to fly higher for coverage considerations.

High-fidelity mission analysis tools will typically include commercially available or custom-made orbit

propagators to predict ground tracks over time and perform accurate coverage and illumination

calculations. These expensive calculations are made for each architecture, which results in a decrease in

search breadth, as explained before.

On the other side of the spectrum, low-fidelity architectural models will typically abstract out orbital

parameters and make assumptions such as: "we assume that all missions have SSO at 600km", or simply

consider that the optimal orbit has been selected for all instruments.

We now show how a small set of rules can assign an optimal orbit to satellites in a similar way an expert

would do it, with reasonable success and in a very efficient way. For this purpose, a set of allowed orbits

considered by the model is provided in Table 6. Note that only LEO circular orbits are considered. The

eccentricity and argument of the perigee are thus irrelevant. The mean anomaly is only used in the

definition of constellations with more than one satellite per plane.

Orbit parameter Allowed values
Altitude Altitude={250km, 400km, 600km, 800km, 1300km}
Inclination Inclination={ SSO, polar, near-polar, near-tropical, equatorial)
Local time of LTAN (for SSO) {Dawn-dusk, AM, Noon, PM)
ascending node

Table 6: Templates for the rule-based orbit selection

Coverage and illumination data was computed for each of these orbits and put into a database. For a given

instance of SAP, any subset of these orbits can be considered. If orbits that are not in Table 3 were to be

added, their coverage and illumination data would need to be computed and introduced in the database.

The orbit selection strategy works as follows. The RBES is initialized, and all possible instruments and

orbits are asserted, i.e. added into working memory. A mission fact is asserted carrying a certain number

of instruments, without any orbit assigned. A rule is added that from this initial fact, will assert all

possible orbit assignments to all allowed orbits, i.e. all possible combinations of altitude, inclination, and

LTAN (circular orbits are assumed). This rule is shown in the appendix, Code 77.

147



Different instruments have different orbit requirements depending on their type and the mission orbit will

be a trade-off between the preferred instrument orbits. An instrument flying in an orbit slightly different

than its preferred orbit will still work in most cases but its performance can be severely affected. Hence,

this is an instrument-centric orbit selection model, and the orbits in which each instrument is flown need

to be deduced from the mission orbits. All these assignments of instruments to orbits are initialized to a

goodness of zero.

Then, a number of orbit-selection approximate evaluation rules are added into working memory. The

structure of these rules is shown in Code 14. These rules will increase or decrease the goodness slot of

orbit assignments, so that at the end, the assignment with the highest goodness will be retained as optimal

orbit for the mission.

(define-rule ORBIT-SELECTION::rule-name
"Justification for this rule"

IF there is an (orbit-assignment (of-instrument ins) (in-mission ) (to-
orbit ?orb) (goodnesss ?g))
AND the (Instrument (with Name ?ins) (has Intent ?) (and Concept ) (and
Power ?p))
AND the (Orbit (orb-name ) (altitude ?h) (inclination ?i) (LTAN ?Itan))

AND ;; conditions on intent (e.g. if it is an atmospheric sounder)
conditions on concept (e.g. if it is a vegetation instrument)
conditions on power (e.g. if P > 1000W)
conditions on illum source (e.g. if active instrument)

=> (THEN)

(modify (goodness (- X)); where X is some penalty that
comes from expert knowledge

)
Code 14: Pattern for the orbit selection rules

Depending on the nature of the approximate evaluation rule, we will choose to penalize a certain orbit

assignment (i.e. with a positive penalty), or to favor it with respect to all other orbits by assigning a

negative penalty. For example, a rule may penalize low orbits for high energy instruments due to power

budget considerations, while another rule may favor higher orbits for passive imagers in order to optimize

coverage.

Note that the numerical values of the penalties will play a key role in the selection process, and therefore

it is important that they be carefully selected. In this respect, this kind of tool is convenient for two

reasons: a) they allow for rapid what-if analysis; b) RBES naturally have the ability to explain the

reasoning behind a decision by simply pointing out which rules were fired.
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This methodology would benefit from the application of a formal process leading to a rigorous derivation

of these penalties. Several methodologies exist for that purpose, based on pairwise comparisons (e.g. AHP

(Saaty, 2008)), or on iterative negotiation process (e.g. Delphi method (Dalkey & Helmer, 1963)). In this

context, this step was not necessary: as it will be empirically shown, the system is capable of correctly

predicting the orbits of most Earth observing satellites.

The 19 orbit selection rules are described in the Appendix, classified according to the orbital parameter

they concern. These rules were applied to several different existing multi-instrument missions, and the

RBES was capable of predicting their correct orbit in most cases, as shown in Table 7.

Mission Actual orbit class8  Best orbit class payload

according to RBES
ACRIMSAT SSO-600-SSO-AM LEO-600-polar-NA radiation budget wants true polar
AQUA SSO-800-SSO-PM SSO-800-SSO-PM OK
AURA SSO-800-SSO-PM SSO-800-SSO-PM OK
ICESAT LEO-600-polar-NA LEO-400-polar-NA lidar wants to fly low
JASON-1 LEO-1300-near-polar-NA LEO-1300-near-polar-NA OK
SEAWIFS SSO-800-SSO-AM SSO-800-SSO-AM OK
QUIKSCAT SSO-800-SSO-DD SSO-800-SSO-DD OK
SORCE LEO-600-equat-NA LEO-800-equat-NA passive wants to fly high
TERRA SSO-800-SSO-AM SSO-800-SSO-AM OK
LANDSAT-7 SSO-800-SSO-AM SSO-800-SSO-AM OK
SMAP SSO-600-SSO-DD SSO-800-SSO-DD passive imager wants to fly high
ICESAT-2 LEO-400-polar-NA LEO-400-polar-NA OK
DESDYNI-LID SSO-400-SSO-DD SSO-400-SSO-DD OK
DESDYNI- SSO-800-SSO-DD SSO-800-SSO-DD OK
SAR
ASCENDS SSO-400-SSO-AM SSO-400-SSO-AM OK
ACE SSO-400-SSO-PM SSO-400-SSO-DD to minimize cost
HYSPIRI SSO-800-SSO-AM SSO-800-SSO-AM OK
GRACE LEO-500-polar-NA LEO-275-polar-NA max sensitivity to gravity
GPSRO LEO-800-polar-NA LEO-800-polar-NA OK
LIST SSO-400-SSO-DD SSO-400-SSO-DD OK
SCLP LEO-800-polar-NA LEO-800-polar-NA OK
XOVWM SSO-800-SSO-DD SSO-800-SSO-DD OK
3DWINDS SSO-400-SSO-DD SSO400-SSO-DD OK
GACM SSO-800-SSO-AM SSO-800-SSO-AM OK

Table 7: Validation of orbit selection rules with a set of real multi-instrument missions

In particular, the RBES was capable of predicting 94% of the orbital parameters correctly for the list of

satellites shown in Table 7. 83% of the orbits were exactly classified, and for 13% of the orbits, one

parameter was not correctly classified. In one case out of 24, two parameters (type of orbit and

inclination) were misclassified. In addition to these orbit selection rules, the RBES can also select the

optimal orbit, where optimality is defined as maximization of the trade-off between science and

cost.

8 The true orbit class is the orbit from the set of available orbits that is closest to the true orbit
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4.2.2.2 Rules for simplified power budgets

The second output of a mission analysis is a power budget. The rules for computing the power budget are

provided in the appendix Code 89. Most of the relationships utilized are taken from (Reeves, 1999). Note

that the sizing of the power subsystem depends on orbit selection and on payload power requirements, as

well as on mission lifetime. The average fraction of time with sunlight, worst Sun angle, and maximum

duration of eclipse, were precomputed for each orbit using AGI's Satellite ToolKitTM and the results were

put in the mission analysis database.The assumptions for the power budget, based on (Reeves, 1999), are

as follows:

Parameter
Energy efficiency from solar arrays to equipment

Energy efficiency from solar arrays to equipment through
batteries
Power output from solar array for perpendicular direction
(assumes GaAs technology)
Theoretical solar array efficiency (for GaAs)

Solar array performance degradation per year (for GaAs)

Specific power of solar arrays

Efficiency of battery to load

Specific energy density for batteries (assumes Ni-H2
technoloav)

Value
80%

Justification
(Reeves, 1999)
412

65% (Reeves,
412

253W/rn2  (Reeves,
412

77% (Reeves,
412,414

2.75% (Reeves,
412

25W/kg (Reeves,
412

90% (Reeves,
422

40Whr/kg (Reeves,
420

page

1999) page

1999) page

1999) page

1999)

1999)

page

page

1999) page

1999) page

Duty cycle x% (power requirements are computed as x 20% Average over several

Pmax + (1 -X) - Pavg ) real instruments

Depth of discharge for batteries for GEO, LEO (DD), LEO 80%, (Reeves, 1999) page
(not DD) 60%, 422

40%
Table 8: Assumptions for power budget calculations

The power budget is computed for each satellite using the assumptions in Table 8. Once the preliminary

mass of the electrical power subsystem is computed, the complexity penalties provided in Table 9 are

applied for the very high power cases. The final mass of the power subsystem is computed as the product

of the initial mass and the penalties from Table 9.

While these complexity penalties arguably capture real life effects, their goal is to penalize architectures

that have too many high energy instruments.
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Satellite BOL power interval Mass penalty
P < 7.5kW 1.0 (none)

7.5kW < P < 10kW 2.0
1OkW < P < 15kW 3.0

P > 15kW 4.0
Table 9: Complexity penalties for power budget

4.2.2.3 Rules for complexity-corrected mass budgets

Mass budgets, i.e. the masses allocated to each spacecraft subsystem, are extremely important in satellite

missions because lifecycle cost strongly depends on mass for space systems.

There are two approaches to do mass budgets: the high-fidelity approach is a bottom-up approach where

the formal decomposition of each subsystem is known and the mass of each component is simply added

(e.g. the mass of the attitude determination and control subsystem is equal to the mass of 4 reaction

wheels, plus the mass of three sun sensors, plus the mass of 2 3-axis magnetometers, plus the mass of 4

magnetic torquers, plus the mass of electrical connections, etc. This approach however requires a very

detailed knowledge of the system that may not be available at the early stages of the mission that are

relevant to system architecting.

The lower-fidelity approach is to use simple linear relationships between subsystem masses and payload

mass (Reeves, 1999). This top-down approach is based on the assumption that most of the variance of

subsystem mass is due to payload mass, and that that is true for most subsystems (with the exception

perhaps of the electrical power subsystem that depends strongly on payload power rather than mass).

This approach is generally adequate for system architecting purposes, but for some applications it may not

be enough to produce architecturally distinguishing results. This is the case for example of the problem of

allocating instruments into satellites, a.k.a. instrument packaging problem.

Since the set of instruments is fixed, and in general two packaging architectures only differ in how

instruments are divided in satellites, such a linear approach would lead to a total mass (sum of all

spacecraft masses) that would be identical for all architectures.

In reality, this is obviously not the case, due essentially to three effects that appear mostly in multi-

instrument missions: a) non-linearities in subsystem-to-payload mass dependences; b) penalties due to

overdesign of the whole spacecraft due to requirements by a single instrument; c) penalties due to

interference between instruments.
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An example of non-linearities in subsystem-to-payload mass dependences is that of thresholds due to

changes in technology. Let us consider for example the design of the communications subsystem. Let

alone the fact that payload mass and data rate are not necessarily well correlated, there exist some payload

masses and data rates for which the mass of the communications subsystem will increase considerably,

due to a change in technology, from S-band to a more performing X-band. Hence, as payload data rate

goes beyond a certain threshold value around a few hundreds of Mbps, the rate at which subsystem mass

increases with data rate will increase. This can be modeled as a varying subsystem-to-payload mass ratio,

depending on the characteristics of the payload.

Penalties due to requirements by a single instrument appear when the design of a subsystem is driven by

the requirements of one instrument, and as a result the subsystem is overdesigned from the point of view

of the other instruments due to non-linearities in subsystem-to-payload mass dependences as described in

the previous paragraph.

An example can be found in the design of the ADCS subsystem of a multi-instrument mission carrying an

instrument with very high pointing requirements, such as a limb sounder. The design of the ADCS for a

spacecraft carrying this and other less sensitive instruments will be driven by the high pointing

requirements of that specific instrument, but will still have to be designed for a payload mass including all

the instruments. This design will probably be more expensive than the design of the ADCS subsystems

for several single-instrument satellites, from which only one has high requirements.

A trivial example of interactions between instruments can be found in electromagnetic compatibility

issues: if an active and a passive microwave instrument share a platform and that they operate on the same

spectral region, it might be necessary to add some structural mass in the form for example of a long boom

in order to protect the passive instrument from the emissions of the active instrument.

If those instruments were flown on separate satellites, this extra mass would not appear in either of the

two satellites, it is an emergent property. Even if some extra mass in the form of a structural appendix is

not needed, it will at least be required to think carefully about the spacecraft configuration, so that the

instruments are not too close to each other. Whichever option is taken, the fact that these two instruments

are sharing the same platform will have a true penalty in terms of development cost, whether it is in the

form of a real mass penalty, or just an addendum to the number of work hours for bus development.
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Rules-of-thumb can be effectively used to modify mass budgets with payload-dependent subsystem-to-

payload mass ratios, complexity penalties due single instrument requirements, and interference between

instruments (Selva & Crawley, 2010). In this example, we considered two penalties due to interference

between instruments (electromagnetic compatibility issues and vibration issues), and four subsystems had

payload-dependent subsystem-to-payload mass ratios: a) thermal control; b) ADCS; c) structures; d)

communications.

The mass budgets are calculated in a 3-step process: first, penalties are calculated from the characteristics

of the instruments in the spacecraft; second, the mass of each subsystem is calculated using information

from these penalties to decide which subsystem-to-payload mass ratios are appropriate; third, complexity

penalties are applied in the appropriate cases. Rules are used in each of these three steps. These rules are

briefly described in the following paragraphs, and the code is provided in the Appendix.

Mechanical interactions: Instruments affect each other from the mechanical point of view in many ways:

Moving parts of spacecraft such as scanning instruments create vibrations that can excite the

natural frequencies of the structure. This needs to be taken into account in the dynamic behavior

study of the satellite in order to avoid harm to the platform or to the instruments.

For example, the Aqua's AMSR-E is a 300kg scanning parabolic antenna; one can imagine that

such a massive device with a diameter of 1.6m in continuous rotation at 40rpm induces heavy

perturbations on its co-passengers. This can be modeled as a mass complexity penalty, as shown

in the rule in Code 15. Note that a single scanning instrument activates this penalty for the whole

spacecraft in which it is flown, regardless of the other instruments.

(define-rule MASS-BUDGET: :check-scanning-penalty
This rule finds out whether there is any instrument in the mission

with a scanning requirement and updates the scanning-penalty boolean flag"

IF there is a satellite whose (scanning-penalty nil) has not been computed yet
AND There is a scanning instrument in the payload of that satellite
AND There is an instrument with precise pointing requirements in the payload

=> (THEN)

MODIFY (satellite fact (scanning-penalty 1)))
Code 15: Rule computing the scanning complexity penalty in satellite mass budgets

e Mechanisms: mechanisms are very often used in satellites to deploy very large solar arrays or

antennae. This way some of the problems pointed out in the section concerning limited resources

on the spacecraft can be overcome.
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An example of a relatively simple mechanism is NASA's Aquarius mission with its complex

instrument featuring one scatterometers and 3 microwave radiometers. An animation of the

deployment of the instrument in orbit can be found in the NASA's Aquarius website. The

deployment consists of four independent movement or steps and each of the steps needs to be

successful in order for the satellite to work correctly.

Figure 28: NASA's Aquarius spacecraft featuring one scatterometer and 3 radiometers (Image credit: NASA)

Probably one of the most complex mechanisms never to be deployed is NASA's James Webb

Space Telescope. An astonishing animation of the deployment of the James Webb Space

telescope can be found in the project's websitel'. It is intuitive to understand that such complex

mechanisms involving a large number of steps can substantially lower the reliability of the

mission. As a numerical example let us assume that the probability of each individual step being

successful is 95%. Then the reliability of the mechanism is 95% A30 steps = 21%. While the hope

is that the value of 95% is highly pessimistic, this calculation illustrates the danger of

mechanisms. A rule computing a complexity penalty related to the presence of mechanisms is

provided in Code 91 in the appendix. The structure is identical to that of the scanning penalty.

* The same moving parts perturb instruments with high pointing accuracy requirements or high

integration times. An example of this is the case of IASI, an infrared sounder on the Metop

platform.

9 http://www.esr.org/aguarius sat/AQU Animation 050624 081 .mpg

10 http://iwst.gsfc.nasa.gov/videos/09jwsta depedit 720p 4mbps
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During the testing phase of Metop, the IA&T team noticed that the performance of the instrument

was much lower than expected because the instrument was highly sensitive to the micro-

vibrations induced by the other instruments on the platform. Eventually it was necessary to add

dampers to the instrument to improve its performance. This was obviously not without cost. This

kind of problem is modeled through the rule shown in Code 92 in the Appendix.

Thermal interactions: In Earth observation, thermal control is usually integrated in the instrument. Some

sensors require to be cooled down to extremely low temperatures in order to achieve functional SNRs.

This is typically the case of short wave infrared sensors like ADEOS/GLI, MIPAS and AATSR from

Envisat and ASTER, MOPITT, AIRS and HIRDLS from EOS. Temperatures of up to 180K can be

achieved by thermoelectric coolers, but to achieve lower temperatures it is necessary to use mechanical

coolers such as Stirling coolers, which induce vibrations on the platform. Cryocoolers are usually part of

the instruments, so that the spacecraft's thermal subsystem does not have to provide that much cold.

However, the design of the thermal subsystem may be more complicated in the presence of cryocoolers

because extremely low temperatures can harm other spacecraft components, typically batteries, for which

the lowest functional temperature is around -40 deg C. Hence, heaters and radiators may be needed in

order to assure that the temperature of the batteries is maintained over -40deg C. A rule capturing this

effect is provided in Code 93 in the Appendix.

Even in the case of purely passive thermal control using radiators, another problem of thermal origin

appears: all the instruments "fight" to get a good view of cold space which makes the configuration

design process much more complicated. For example in the case of Envisat the cold face was the top of

the satellite, which explains the accumulation of instruments in that zone. In addition to that, instruments

are sources of heat. If two instruments are put next to each other on a platform, there will generally be an

interchange of heat with between the instruments and the platform and between the instruments. This

needs to be taken into account by the thermal specialist.

Electromagnetic interactions: Virtually all remote sensing sensors emit and/or receive electromagnetic

radiation in a certain part of the spectrum. Consequently a number of problems appear:

e Active instruments may jam passive instruments or tracking, telemetry and command equipment

working on the same frequency band, and even those that are in different bands because of

harmonics and inter-modulation products.

e High RF power instruments can induce currents in nearby electronic devices. This is solved by

adequate shielding of all electrical wires.
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The consequence of these problems is that the architect needs to think carefully about the configuration of

the satellite in order to avoid interferences between instruments. In some cases, it is enough with setting

the instruments in opposite sides of the satellite for example, but when this is not possible, structures such

as long booms are necessary to protect passive sensitive instruments from the electromagnetic

environment in the platform. This is the case of many satellites using precise magnetometers to sense the

Earth's magnetic field, such as Swarm, or the GOES 3rd generation. Sometimes booms are also used to

isolate TT&C equipment from the rest of the spacecraft like in the case of Landsast-4 or EOS/Terra.

In addition, EMC issues are extremely hard to model and thus to predict. Consequently, extensive EMC

testing is required to ensure that instruments will not interfere with each other during flight. Naturally, the

number and cost of the tests that are necessary in the case of multi-instrument platforms is much higher

than in the case of dedicated satellites.

Accomodation de la Charge Utile

ACC

ASM'. VFM

" VFM (Vector Field Magnetometer)
" ASM (Absolute Scalar Magnetometer)
" EFI (Electric Field Instrument)
" ACC (Accelerometer)

Figure 29: Examples of long booms in the EESwarm (left) and Landsat-4 (right) satellites

A rule capturing the EMC interaction between instruments is provided in Code 94 in the appendix.

Optical interactions: The purpose of most instruments on Earth observation satellites is by definition to

observe the Earth. This implies that they all require a view of the Earth which means that in most multi-

instrument platforms most instruments will be in the nadir looking face. As a consequence, the available

surface for instruments on the satellite is far from being the whole satellite surface. Furthermore,

instruments have very different viewing concepts and the configuration needs to be so that none of them

interfere with each other.
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Finally, a last complexity penalty is applied to spacecraft for which the total data rate requirement is

large. Indeed, although one can sometimes trade complexity amongst subsystems, there are limitations

that prevail due to the state of technology for certain components. Data rate is a good example. State-of-

the-art downlink data rates are in X-band (8-12 GHz) which provides around 400-600Mbps in LEO with a

reasonable ground station using an antenna on the satellite of reasonable size and emitting a reasonably

small power. In order to achieve higher data rates, complex Ka-band or even optical links are being

studied. This penalty is captured in the rule shown in Code 95 in the Appendix.

Once these penalties have been computed, rules are used to decide which subsystem-to-payload mass

ratios to use depending on these penalties, and mass penalties are applied depending on the penalties.

Most of the penalties are applied to the structures subsystem. This is so because it is assumed that all the

work related to the spacecraft configuration is assigned to the structures team.

(define-rule MASS-BUDGET::design-structure-subsystem
"Computes structure subsystem mass using rules of thumb"

IF there is a Mission fact whose (structure-mass# nil) is not computed and whose
penalties are computed

=> (THEN)

COMPUTE initial structure mass as 0.5462 times the payload mass
ADD 5% mass penalty if m
ADD 5% mass penalty if
ADD 5% mass penalty if
ADD 5% mass penalty if c ty
MODIFY fact with (structure-mass# mass th

Code 16: Rule to predict the structure mass in complexity-corrected mass budgets

The payload-to-subsystem-mass fractions are taken from the appendix of (Larson & Wertz, 1999b), and

are summarized in Table 10. The averages and standard deviations are over a very small sample of 4

remote sensing satellites provided in this reference.

Subsystem Subsystem mass/ Subsystem mass/ Subsystem mass/
Payload mass Payload mass Payload mass

avg Avg-1std Avg+1std
Structure 0.5462 0.4653 0:627&
Power 0.7023 0.5780 0.8266
ADCS 0.1301 0.0809 0.792
TT&C 0.0983 0.0578 0.1387
Thermal 0.0607 0.0289 0.0925
Propulsion 0.1763 0.0954 0.2572

Table 10: Subsystem-to-payload mass ratios used in the RBES

The numbers in Table 10 are used in the rules as follows:
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* For the structure subsystem, the average subsystem to payload mass fraction is taken, and

penalties are added on top of this initial mass as shown in Code 16.

* For the power subsystem, the numbers in Table 10 are not used at all as the sizing is done

independently using the power budget rules previously presented.

* For the TT&C, ADCS, and thermal subsystems, the high and low values (average plus and minus

one standard deviation) are used. The high values are used when the corresponding complexity

penalties are active, and the low values are used when they are inactive.

* A complexity factor of 2.0 is applied to the TT&C subsystem for missions for which the data rate

is so high that the data produced in one orbit cannot be downloaded to the NASA ground stations.

" A complexity factor of 3.0 is applied to the ADCS subsystem for missions flying at 400km in

order to take into account that the drag force is 10 times stronger than at 600km.

* For the propulsion subsystem, the average value is taken, and a propellant mass calculated with a

very rough deltaV budget is added. This deltaV budget is simply computed as a function of orbit

altitude, estimated satellite dry mass, and lifetime. The rule that computes this deltaV budget is

provided in the Appendix, Code 101.

The rules that compute the subsystem masses follow these assumptions. An example for the

communications subsystem, which takes into account the data rate penalty, is shown in Code 17.

(define-rule design-comm-subsystem
"Computes comm subsystem mass using rules of thumb"
IF there is a Mission fact whose(comm-OBDH-mass# nil) has not been computed, and the

payload mass, and datarate penalty are both available
=> (THEN)

IF (datarate-penalty 1) THEN ASSIGN subsystem-to-payload mass
ELSE ASSIGN subsystem-to-payload mass ?co-a c .578

MODIFY mission fact (comm-OBDH-mass# (payload-mass
Code 17: Rule to predict the communications subsystem mass in complexity-corrected mass budgets

The rules for the others subsystems are very similar and are provided in the Appendix. The complete

complexity-corrected satellite mass budget is thus given by the sum of all the subsystem masses.

The performance of the mass model from the statistical point of view is provided below. Plotting true

spacecraft mass versus model spacecraft mass leads to an R2 = 0.92.
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Figure 30: Statistical performance of the mass budget model

4.2.2.4 Rules for standard bus selection

Many Earth observing satellites use commercially available standard buses instead of dedicated buses in

order to reduce development and fabrication costs. For example, Thales-Alcatel's Proteus bus has been

used for several CNES and ESA missions, including Jason, PICASSO-CENA, SMOS, and MEGHA-

TROPIQUES, as well as several NASA missions, including for example CALIPSO (Dechezelles &
Huttin, 2001).

The selection of a standard bus is done by choosing the lowest cost compatible standard bus available.

Compatibility between the payload and the standard bus includes constraints on payload mass, power,

data rate, dimensions, data storage, attitude determination and control accuracy, and viewing geometry

amongst others.

Using a standard bus will very likely yield cost savings, if there is a good match between the payload and

the standard bus. However, in most cases, some adaptation of the standard bus to the payload is required.

Depending on the magnitude of this adaptation, the cost savings will be more or less important.
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The RBES has incorporated an option to choose a standard bus from a database based on payload

requirements. The current database only contains three buses: the EOS T-330 (Frazier & Engineer, 1998),

the BCP-2000 (A. A. Barnes, 1998), and the Pegastar (Lindberg, Lyon, Meurer, & Coxon, 1992). For

each standard bus, the rules encoding the maximum payload mass, power, and data rate supported are

provided in the Appendix 9.2.5. These values are taken from (Matossian, 1995).

The database as it is today only allows classification of a payload into three classes of standard buses.

This may lead to results that are too sensitive to the costs of these buses, for which there is much

uncertainty. Therefore, in order for this database to be truly useful, it would need to be augmented with

several other standard buses that ensure a smoother transition between payload requirements. One natural

example for the database is to use the RSDO-3 catalog (http://rsdo.gsfc.nasa.gov/catalog.html).

4.2.2.5 Rules for launch vehicle selection

An important fraction of mission lifecycle cost for most Earth observing missions is taken by launch cost.

Moreover, differences in packaging architectures are sometimes driven by differences

Therefore, obtaining a reliable estimate of the launch vehicle of a spacecraft is important.

Table 11 presents the characteristics of a few commercially available launch vehicles.

in launch cost.

Launch LEO_POL_400 SSO_400 SSO_600 SSO_800 GTO diameter(m) length(m) cost
vehicle ($M)

Atlas-5 20000 20000 15000 10000 10000 4.57 7.63 110
Delta-7920 3642 3600 3400 3200 500 2.69 7.53 65

Delta-7420 2269 2257 2123 1989 300 2.69 7.16 55
Delta-7320 1982 1860 1740 1620 250 2.51 6.82 45

Minotaur-IV 1225 1180 1110 1050 0 2 5.44 35

Taurus XL 1015 1053 961.5 870 0 1.98 5.71 30

Taurus 1015 1053 961.5 870 0 1.4 2.67 20

Pegasus XL 300 280 240 190 0 1.18 2.13 15
Table 11: Cost, performance, and dimensions of a few launch vehicles

This set of launch vehicles is not complete, but it provides a continuous enough

performance and cost, so that the sensitivity to launch costs is reasonable.

progression of

A much smaller set of launch vehicles would result in a situation where adding a few more kg of payload

could make a satellite switch between a small and a large launch vehicle, with differences in cost greater

than any other effect, which is undesirable. The data from Table 11 is taken from user guides of the

corresponding launch vehicles. Some cost data was also adapted from (Weigel & Hastings, 2004a).
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Given the data in Table 11, and the mass and dimensions of the spacecraft, and the desired orbit, the

RBES computes which launch vehicles are compatible with the mission, and assign the less costly option.

The following assumptions are used to check whether a launch vehicle is compatible with a spacecraft:

* A performance margin of 10% over spacecraft wet mass is required

e 80% of the maximum dimension of the spacecraft needs to fit in the fairing height.

o This value of 80% represents the ability of the spacecraft to be folded in launch

configuration.

e The nadir area of the spacecraft needs to fit in the launch vehicle are computed as fairing height

times diameter

e The maximum dimension of the spacecraft is driven by the maximum dimension of the

instrument

e The nadir area of the spacecraft is computed as the sum of the instrument areas

The code for the launch vehicle selection rules can be found in the Appendix 9.2.4.

4.3 Application of the VASSAR methodology to EOSS

The most important metric utilized to evaluate any EOSS is its scientific and societal benefit, and in fact

many performance requirements should be traceable to an increase in societal or scientific benefit. The

VASSAR methodology to assess architectural value for system architectures using rules was presented in

detail in Chapter 3. In this section, the methodology is applied to EOSS.

The section starts with a succinct literature review about alternative ways of assessing scientific value is

provided for reference. Second, an overview of the VASSAR framework as applied to EOSS is provided.

Third, the implementation of the different groups of rules used in VASSAR is described. Finally, the

methodology is summarized and discussed.

4.3.1 A language for architecting EOSS

In RBES, rules match patterns on facts in working memory. Therefore, rules and facts need to be

specified in a common "language", namely a set of templates or data structures with slots or attributes.

In order to be able to express requirements for all the disciplines of the Earth Sciences, it is necessary to

define a set of templates that has enough modeling breadth and depth. The goal is to maximize the

expressivity of the language by adding as many attributes as needed, keeping in mind that the number of

slots in the templates do affect the amount of memory required by the algorithm to work.
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The major fact types and corresponding templates used in the RBES are: measurements, instruments

(considered instruments and manifested instruments), missions, orbits (for a mission analysis database),

subobjective satisfaction and objective satisfaction. A few slots of the templates for missions,

instruments, and measurements, are provided in Table 12. Overall, 86 different slots or attributes are

defined in the measurement template, 116 attributes are defined in the instrument template, and 52

attributes are defined in the mission template. The complete templates for missions, instruments, and

measurements, can be found on http://web.mit.edu/dselva/www/RBES/EOS/. These numbers and Table

12 give an idea of the richness and complexity of the rules that can be expressed with such abstractions.

Some of these attributes are only relevant to a particular scientific discipline (e.g. sensitivity-in-low-

troposphere-and-PBL for atmospheric chemistry), or to a particular technology (e.g. number-of-looks# for

radar). Sometimes, as a result of an expert interview, a new slot was added to a template. This process can

be done in a matter of seconds without affecting the rest of the code.

Template Examples of slots

Mission launch-vehicle, lifetime, mechanisms-penalty, mission-architecture, mission-cost#,
Name, num-of-planes#, num-of-sats-per-plane#, operations-cost#, orbit-altitude#,
orbit-anomnaly#, orbit-inclination.

Instrument Concept, Illumination source, num-of-SWIR-channels, num-of-TIR-channels, num-of-

UV-channels, num-of-VNIR-channels, Penetration, Pointing-capability, Radiometric-

accuracy#, scanning, sensitivity-in-cirrus, sensitivity-in-low-troposphere-PBL

Measurement avg-revisit-time-cold-regions#, avg-revisit-time-global#, avg-revisit-time-US#,
Data Product Horizontal-Spatial-Resolutio-n-Along-track#, Horizontal-Spatial-Resolution-Cross-

track, signal-to-noise-ratio#, Spectral-resolution, Vertical-Spatial-Resolution#,
Radietic-accuracy#, sensitivity-in-cirrus, sensitivity-in-low-troposphere-PBL, NEP-
NET

Table 12: Templates for the 3 main types of facts used in the RBES

4.3.2 Attribute Inheritance Rules

Mission, instrument, and measurement attributes, are populated at different moments in the evaluation

processes, and have different origins: the user, other evaluation models (rule-based or not), an

optimization algorithm, a database (e.g. a mission coverage attributes are retrieved from a mission

analysis database), a parent system element (e.g. an instrument attribute may be inherited from its

mission), or a combination of attributes from parent system elements (e.g. a measurement attribute may

be computed from a mission attribute and an instrument attribute).

Attribute inheritance rules describe all these relationships between system attributes. A closer look at

Table 12 will show that instruments and measurements share a few attributes such as radiometric

accuracy.
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An attribute inheritance rule exists for each of these cases that dictates that the measurement attributes be

inherited from the parent instrument. These rules are trivial and are automatically created from a

spreadsheet containing the attributes of each template. More sophisticated attribute inheritance rule

combine information from two different hierarchical levels in the architecture to populate a low-level

attribute.

The structure and a generic example for attribute inheritance rules were provided in the previous chapter

in Code 11. An example of non-trivial attribute inheritance rule as applied to EOSS is illustrated in Code

18. This rule computes the horizontal spatial resolution of a nadir-looking instrument from orbit

characteristics (mission attribute) and angular resolution (instrument attribute).

(Define-rule compute-horizontal-spatial-resolution-cross-scanner
"Compute horizontal spatial resolution from instrument angular
resolution and orbit altitude for a nadir-looking, cross-scanning
instrument"

IF there is an Instrument (with Geometry ) (with angular-
resolution# ) (flying at an orbit-altitude# )
(with Horizontal-Spatial-Resolution-Cross-track# )

=>(THEN)

COMPUTE
MODIFY the fact concerning the Instrument (with Horizontal-Spatial-
Resolution-Cross-track# )
)

Code 18: Attribute inheritance rule that computes horizontal spatial resolution from orbit altitude and instrument
angular resolution

The rest of non-trivial attribute inheritance rules is provided in the Appendix. Note that some control over

the flow of rule execution is required, since mission->instrument inheritance needs to occur before

instrument->measurement inheritance, and inheritance from database needs to occur before both of them.

Therefore, attribute inheritance rules are divided in a three groups with different rule priority (salience

property in Jess (E. Friedman-Hill, 2003)).

4.3.3 Instrument capability rules

The main relationships between functional elements (measurements) and formal elements (instruments)

are encoded in instrument capability rules.
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In the actual RBES, in order to increase flexibility and usability, instrument-specific instrument capability

rules are automatically generated in a pre-processing step from a spreadsheet containing the user-input

measurements - and their attributes that are independent of the mission attributes - that each instrument

can take.

The structure of generic capability rules was presented in the previous chapter in Code 10. When a new

instrument is asserted, the corresponding measurement facts are asserted.

With an ideal knowledge of the state-of-the-art of every discipline of remote sensing, instrument

capability rules could be completely independent of the EOSS at hand. Just by providing the full set of

characteristics of the instrument, we should be capable of retrieving its capabilities. However, this would

require an extremely large body of knowledge, for a potentially modest return in terms of fidelity and

traceability. Thus, the framework is flexible enough to allow by-passing this feature for cases where

knowledge is incomplete, or simply the user wants to increase computational speed. An example of

instrument-specific capability rule is shown in Code 19 for the AIRS instrument.

General structure (in natural language)
(Define-rule capabilitites-of-instrument-X
"Description of the rule: defines capabilities of instrument X"

IF there is a (manifested instrument (of type T) (named X) (with attributel x1)

(with attribute2 x2))
AND (Attributel xi is vall or better))
AND (Attribute2 x2 is val2))

=>(THEN)

ASSERT a (Measurement fact (of parameter X1) (with "high" accuracy)) (taken by X))
ASSERT a (Measurement fact (of parameter X2) (with "medium" accuracy)) (taken by X))

)

Example (in the CLIPS language):

(defrule AIRS-measurements
"Define measurement capabilities of AIRS instrument

(Manifested-instrument (Name AIRS))

(assert (Measurement (Parameter "2.5.1 Surface temperature -land-") (Accuracy
High) (flies-in ) (Id AIRS1) (Instrument AIRS)))

(assert (Measurement (Parameter "1.2.1 Atmospheric temperature fields) (Accuracy
High) (flies-in ?miss) (Id AIRS2) (Instrument AIRS)))

)
Code 19: Structure and example of instrument capability rules
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The alternative to defining this rule would be to infer its capabilities from its characteristics, but that

would probably require hundreds if not thousands of additional rules, just to find that AIRS can indeed

perform the measurements given in Code 1911.

In addition to the rules that assert the measurements corresponding to each instrument, there are other

capability rules that affect the science output of instruments based on: a) orbit selection; b) limitations of

resources aboard the spacecraft.

Several rules were presented in Section 4.2.2.1 that assign an orbit to a multi-instrument spacecraft based

on how each orbit would affect the science output of each instrument, as well as the cost of the spacecraft.

However, these rules do not explicitly affect the science and cost metrics. Instead, the satellite sizing rules

(power budget rules, mass budget rule, and cost estimation rules) affect the cost metric, and a

combination of requirement rules and capability rules affect the science output.

Requirement rules link the science output of an instrument to its orbit by expressing explicit orbit

requirements for the measurements taken by the instrument. For example, the requirement rules related to

soil moisture objectives can require that the measurements be taken from a dawn-dusk SSO. Furthermore,

degraded requirement rules can explicitly express the fraction of the value that is lost if the local time is

AM/PM instead of dawn-dusk.

Several capability rules also link orbit to science output. They are essentially rules adapted from the set of

orbit selection rules, which set the output of a certain instrument to zero in case that instrument is put in

an orbit in which it cannot function. Since these rules are very important in packaging problems, they are

described below one by one:

e Passive optical instruments cannot take their measurements in dawn-dusk (DD) orbits:

Passive optical instruments require the presence of sunlight to work. Thus, they cannot function

correctly in dawn-dusk orbits. If an instrument of this type is flown on a DD orbit, its science

output is set to zero.

* Passive VNIR land imagers have very low effective duty cycles on PM orbits: Passive

imagers in the visible or NIR require the absence of clouds in order to take images of the land. In

many regions, especially in the tropics, cloudiness increases in the early afternoon.

" The set of measurements for the AIRS instrument presented in Code 19 contains only a sample of the

measurements. The complete instrument capabilities for AIRS and all the other instruments can be found on

http://web.imnit.edu/dselva/www/RBES/EOS/EOS Instrument Capability Rules.xlsx
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For this reason, most of these instruments fly on AM orbits. Hence, if such instrument is flown

on a PM orbit, its science output is also set to zero.

* Side-looking imagers suffer from image distortion at low altitudes: Microwave imagers are

typically side-looking in order for example to resolve right-left ambiguities. This off-nadir angle

increases coverage, but also results in image distortion in the edge of the image due to 1/cos(6)

factor. Furthermore, given an off-nadir angle, the incidence angle on ground will increase with

decreasing altitude. Larger angles result in larger image distortions. Hence, in practice, side-

looking microwave imagers do not fly at low altitudes to limit image distortion.

* Two lidars on the same platform working at the same wavelength may interfere with each

other: If two lidars that work at the same wavelength are put on the same platform, the returns

from one lidar may interfere with the other one. In order to avoid this problem, in such situation,

the model sets the science output of the two instruments to zero.

In addition to being affected by the orbit, science output of instruments can also be limited by availability

of resources (namely power and data rate) aboard the spacecraft. The following rules were added in order

to take into account these effects:

* The effective duty cycle of an instrument may be limited by the power available on the bus:

In large satellites carrying multiple high-energy instruments, it is very typical to decrease the

duty cycle of the instruments in order to keep the average power below reasonable limits. This

obviously affects the science output of these instruments, which could be ON for longer if the

instrument was flown on a dedicated spacecraft. In order to model this situation, the RBES

computes a max duty cycle due to power limitations as 10kW divided by the satellite BOL

power. If this duty cycle is less than 100%, the science output of all instruments aboard this

spacecraft is multiplied by this duty cycle. The value of 10kW was chosen because it is

representative of the state-of-the-art in satellite power subsystems.

* The effective duty cycle of an instrument may be limited by the data downlink capability of

the bus and the ground stations: If a large satellite carries multiple high data rate instruments,

it can happen that the data produced by the instruments in one orbit at 100% duty cycle cannot

all be downloaded to the ground stations. Thus, it may be required to decrease the duty cycle of

these instruments.
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In order to model this situation, the RBES assumes that each satellite can have one 7-minute

access to a ground station per orbit, at an effective data rate of 500Mbps, which results in

25.6GB/orbit. It computes a duty cycle due to downlink limitations as 25.6GB/orbit divided by

the total GB of data produced by the payload in one orbit, and if the duty cycle is less than 100%,

the science output of all instruments aboard this spacecraft is multiplied by this duty cycle. Note

that this rule is conservative in the sense that 500Mbps is much higher than what most current

NASA satellites have available in their downlinks.

Minimum duty cycle: Two different max duty cycles are computed due to power and downlink

limitations. In practice, the most constraining (i.e. the minimum) of these two duty cycles will be

used to scale the science output of all instruments in the spacecraft.

The CLIPS implementation of these rules is provided in the Appendix.

4.3.4 Synergy rules

The emergence rules presented in the previous chapter for the generic framework specialize into synergy

rules in the case of EOSS. Indeed, instrument capability and attribute inheritance rules are not enough to

describe some emergent behavior that appears at the level of measurements and data products.

For example, when solving the inverse problems, i.e. the retrieval of some property of interest from the

magnitude measured by the instrument, scientists can sometimes apply data processing algorithms such as

assimilation algorithms, or disaggregation schemes, which will produce new data products with properties

that none of the initial data products had (N. N. Das, Entekhabi, & Njoku, 2011). Since these emergent

data products can satisfy requirements that the initial data products cannot, it is very important to be able

to model them. This is the role of the synergy rules.

An example of a synergy rule is provided in Code 20. This particular rule inspired by the SMAP mission

will apply a disaggregation scheme that will combine a high resolution, low accuracy soil moisture

product with a low resolution, high accuracy product to yield a medium resolution high accuracy product.

Similar disaggregation schemes exist that for example, combine frequent low resolution datasets with

sparser, higher resolution datasets.

The rest of synergy rules is provided in the Appendix 9.2.6. Note that even though there are only 64

synergy rules, some of them, especially the ones that apply to all parameters, are extremely powerful in

generating new measurement facts.
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(define-rule SMAP-spatial-disaggregation
"A high accuracy coarse spatial resolution measurement can be combined with a lower
accuracy high spatial resolution measurement to produce a high accuracy medium
spatial resolution measurement"

IF there is a (Measurement (of Parameter "2.3.2 soil moisture") (with Horizontal-
Spatial-Resolution# ) (and Accuracy# P) (Id ?id1))
AND another (Measurement (of Parameter "2.3.2 soil moisture") (with Horizontal-
Spatial-Resolution# &:(> ?hs)) (and Accuracy# ?a2&:(< )) (Id

AND there is a fact indicating that the 2 measurements are (cross-registered
(measurements

=> (THEN)

ASSERT another (Measurement (of Parameter "2.3.2 soil moisture") (with Horizontal-
Spatial-Resolution# (given by the geometric-average of ))) (and Accuracy#
(the max of and

Code 20: A synergy rule modeling a generic spatial disaggregation scheme such as the one proposed in (N. N. Das et al.,
2011)

For example, a rule exists that allows trading temporal resolution against variable measurement error for

any measurement by simply averaging out in time. Synergy rules are effectively the way the RBES

framework models systems emergence. Synergy rules are EOSS-independent, i.e. they do not depend on

the EOSS being considered, but they may be measurement dependent, i.e. some rules modeling particular

data processing algorithms may only apply to a certain measurement (e.g. soil moisture).

4.3.5 Requirement rules

Requirement satisfaction rules express stakeholder needs and goals in the form of measurement

requirements. Thus, when the requirement rules are executed, the RBES performs the attribute-level

comparison between the measurements performed by the EOSS (the instrument capability, attribute

inheritance, and synergy rules have all already been applied), and the measurement requirements. There

are two types of requirement satisfaction rules: full satisfaction rules, and partial satisfaction rules.

Full satisfaction rules express the level of data quality and quantity (i.e. measurement attributes) required

for full satisfaction of a particular stakeholder objective. Partial satisfaction rules cover many degraded

cases in which one or more attributes are not at the required level for full satisfaction, resulting in a partial

loss of benefit. The general structure and an example of a requirement rule are provided in Code 21.
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Note that most requirement satisfaction rules have the same structure: they make reference to a specific

measurement parameter, and have a set of requirements of the form attribute-required value. Thus, as it

was the case for instrument capability rules, requirement satisfaction rules are imported from a

spreadsheet containing the numerical data for each subobjective. Requirement satisfaction rules are

obviously EOSS-specific.

General structure (in natural language)
(Define-rule full-satisfaction-of-subobjective-X
"Description of the rule: conditions for full satisfaction of subobjective

IF there is a Measurement (of a certain parameter) (taken by a certain
combination of instruments 401) (with a spatial resolution hsr.) (a
temporal resolution ) (+ requirements concerning other attributes)
AND (Spatial resolution -01 is Medium-100m-lkm or better))
AND (Temporal resolution h 1 is Medium-1day-3days or better))

=>(THEN)

ASSERT a fact indicating full satisfaction of subobjective X (taken by :)
)

(assert (REASONING::fully-satisfied (subobjective WAE8-3) (objective
"Vegetation") (parameter "2.4.2 vegetation state") (taken-by ?who))))

Code 21: Structure and example of requirement satisfaction rules for EOSS

4.3.6 Value aggregation rules

Value aggregation rules in the general framework were presented in Code 9.
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Example (in the CLIPS language) for the case of EOSS
(defrule REQUIREMENTS::subobjective-WAE8-3-nominal

"Conditions for full satisfaction of subjective WAE8-3"

(Measurement (Parameter "2.4.2 vegetation state") (Region-of-interest
&~nil) (Coverage-of-region-of-interest Global) (Horizontal-Spatial-

Resolution x4&-nil) (Spectral-sampling x)&-nil) (taken-by <-) (Temporal-
resolution "&~-nil))
(test (ContainsRegion Global))
(test (>= (SameOrBetter Temporal-resolution Medium-1day-3days) 0))
(test (>= (SameOrBetter Spectral-sampling Multispectral-10-100-

channels) 0))
(test (>= (SameOrBetter Horizontal-Spatial-Resolution ?- Medium-100m-1km)

0))



The current implementation of the RBES for EOSS allows for four different hierarchical levels of value

decomposition: 1) overall EOSS value: a single number representing the aggregated scientific and societal

benefit of the EOSS architecture; 2) panel value: a set of numbers representing the scientific and societal

benefit of the EOSS architecture to the major stakeholder groups; 3) objective satisfaction: a set of

numbers representing the degree of satisfaction of individual stakeholder objectives; 4) subobjective

satisfaction: a set of numbers representing the degree of satisfaction of the different subobjectives of

which an objective consists.

The comparison between the achieved and required measurement sets is done at the subobjective level,

i.e. three levels below the overall EOSS value in the hierarchy. We propose that this removes some of the

subjectivity in the knowledge elicitation process, since experts are less reluctant to make an assessment at

this higher level of fidelity, and they will probably do it more accurately.

Value aggregation rules combine individual subobjective requirement satisfaction into objective

satisfaction, objective satisfaction into panel satisfaction, and panel satisfaction into EOSS value. Value

aggregation rules are also EOSS-specific.

As explained in Section 3.3, value aggregation rules can for example use weighted averages of

subobjective satisfaction to infer objective satisfaction, weighted averages of objective satisfaction to

infer panel satisfaction, and a weighted average of panel satisfaction as metric for overall EOSS value.

More sophisticated value aggregation rules, in addition to the ones presented in Section 3.3, may include

non-linear terms such as Boolean expressions (and, or, not), maximum and minimum values for certain

metrics, or non-linear utility functions (e.g. a logarithmic utility curve to account for risk aversion)

amongst others.

4.3.7 Fuzzy attribute rules

Traditionally, RBES have been capable of dealing with inexact reasoning and uncertain statements

(Giarratano & Riley, 2004). While our RBES does not have a full fuzzy reasoning capability in the sense

of Zadeh's fuzzy sets, some rules were created in order to deal with the simultaneous presence of both

quantitative and semi-quantitative information.

For example, a scientist may express a requirement for horizontal spatial resolution using a numerical

value (e.g. 250m), an interval (e.g. anything between 100 and 400m), or a fuzzy or ambiguous value (e.g.

very high). Therefore, the RBES needs to be able of going back and forth from the quantitative and semi-

quantitative world.
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In order to do that, fuzzy attribute rules are defined so that a mapping can be specified by the user to make

the link between fuzzy attributes and numerical attributes.

An example of fuzzy attribute rule is provided in Code 22. The rest of fuzzy attribute rules are provided in

the Appendix. Note that these mappings can be in some cases completely dependent on the application.

For example, high spatial resolution can be 100m for hydrology, or Im for disaster monitoring.

(Define-rule numerical-to-fuzzy-Horizontal-Spatial-Resolution
"Description of the rule: "Transforms numerical horizontal spatial resolution
value into a fuzzy value"

IF there is a Measurement (with fuzzy Horizontal-Spatial-Resolution unknown)
(and numerical Horizontal-Spatial-Resolution#

=>(THEN)

IF THEN ASSIGN ?val = "Highest-im-orless"
ELSE IF THEN ASSIGN ?val = "Very-high-1-lm"
ELSE IF THEN ASSIGN ?val = "High-10-100m"
ELSE IF 1 THEN ASSIGN ?val = "Medium-100m-1km"
ELSE IF THEN ASSIGN ?val = "Low-lkm-10km"
ELSE IF ; m THEN ASSIGN ?val = "Very-low-10-100km"
ELSE ASSIGN ?val = "Lowest-100km-or-greater"
MODIFY Measurement (with a fuzzy Horizontal-Spatial-Resolution ?val)
)

Code 22: General structure and example of a fuzzy attribute rule

4.3.8 Fact databases

In addition to all the rule sets presented in this section, there are two fact databases that are added into

working memory at the initialization of the RBES: a) mission analysis database; b) instrument

characteristics database. The mission analysis database is used by the attribute inheritance rules in order

to compute the temporal resolution of a satellite or constellation. It contains coverage figures of merit,

calculated off-line with dedicated simulation software (AGI's Satellite Tool Kit @ a.k.a. STK) for the

most common orbits for satellites and constellations in EOSS. This includes sun-synchronous orbits, true

polar orbits, and low inclination orbits between 265km and 1000km of altitude, all of them circular. For

each orbit, revisit time was computed using STK for several different coverage grids (global, US, tropical

regions, cold regions), and then then the average over time, and worst-case on latitude-longitude is

reported on the database.

During execution of the attribute inheritance rules in the RBES, the revisit time information

corresponding to the relevant satellite or constellation is retrieved. If the information is not available in

the database, an STK session can be opened to calculate the necessary data and save it in the database for

later execution.
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The instrument characteristics database is also used by the attribute inheritance rules that copy attribute

values from the instrument database to the actual manifested instrument facts. When an instrument is

manifested, its characteristics are copied from the database. Note that the instrument characteristics

database may be specific to a given case study, or it can also be used as a way to store information about

past, present, and future instruments from several agencies and organizations.

4.3.9 Explanation rules

Explanation rules for the VASSAR framework were described in Section 3.8. The explanation facility

developed for EOSS includes several high level functions that build on these explanation rules and

provide more sophisticated explanations about science and cost metrics. These functions include amongst

others a function to compare two instruments or missions. This function evaluates both missions and

provides detailed explanations for both science and cost. In terms of science, it explains: a) which

combination of datasets and data processing algorithms enables satisfaction of subobjectives that are

partially or fully satisfied; b) the reason or reasons why the mission misses partially satisfied

subobjectives, and subobjectives that could potentially be satisfied but are completely missed.

Subobjectives that could potentially be satisfied are identified whenever there is a subobjective that is

completely missed, and there is a measurement fact whose parameter corresponds to that subobjective. In

terms of cost, the function provides a detailed mass budget showing which engineering penalties are

active, a detailed cost budget, the launch vehicle selected for each mission, and the standard bus selected

for each mission if appropriate.

Another useful function in the explanation facility provides a comparison of two selection, packaging, or

scheduling architectures. This function shows the differences between the two architectures both in the

objective space and the space of architectural variables. For packaging architectures, it also shows which

synergies are captured and lost in one particular architecture, and which interferences penalize that

particular architecture, so that the user may get an idea of how to improve it.

Many functions in the explanation facility are text-based, and work by querying the working memory of

the RBES. Other tools are available that support graphical reasoning about the trade space, for example

by providing the information about one particular architecture on a plot on demand, or highlighting

architectures on the plot that share one particular characteristic in the architectural variable domain.

The explanation facility plays an extremely important role in the framework, as it ensures the traceability

of the results to the model assumptions and underlying knowledge base. Furthermore, it improves the

efficiency of the tradespace exploration process by providing the means to the human operator of

designing better heuristics for the next iteration.
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4.3.10 Summary

Figure 31 shows the flow of execution of the RBES. From the EOSS architecture, the corresponding

mission and instrument facts are asserted. Instrument capability rules assert the measurement facts

associated to each of the manifested instruments. Attribute inheritance rules regulate how attributes are

inherited between missions, instruments, and measurements: instrument attributes are inherited either

from their mission or from the corresponding instrument in the database; measurement attributes are

inherited from their instrument, their mission, or they are derived from combinations of other mission and

instrument attributes. The initial set of measurement capabilities is completed with new and modified

measurements through the synergy rules. This new set of measurement capabilities is compared against

measurement requirements defined in the requirement rules, which assert subobjective satisfaction facts

(full or partial satisfaction). Subobjective satisfaction facts are logically combined to produce objective

satisfaction facts, and objective satisfaction facts are combined to produce panel satisfaction metrics.

These two steps occur through the value aggregation rules. Finally, panel satisfaction metrics are

weighted to produce an overall EOSS score.

OUT IN
Value

massessmenta e

Requirement Fuzzy
satisfaction attribute rgy

rules rules

Figure 31: Flow of execution in the Rule-based Expert System for assessing the scientific value of EOSS
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4.4 Figures of Merit for EOSS

Before going into the description of the figures of merit developed for this tool, we briefly discuss the two

main methodologies used for identifying figures of merit: the first one is the preferred one for system

architecting, and it is based on an exhaustive decomposition of all stakeholder needs, whereas the second

one is a more classical program management approach, focusing on programmatic success.

The goal of the system architecting process is to create a system architecture that ensures sustained value

delivery to stakeholders. Hence, a good approach for identifying figures of merit is to do a stakeholder

analysis, and to perform a top-down decomposition of stakeholder needs into objectives. A thorough

NASA/NOAA-centered stakeholder analysis was conducted by Timothy Sutherland for the US Earth

observation program (Sutherland, 2009), and there is no need to replicate this effort in the context of this

thesis. Sutherland created a stakeholder network with 13 major stakeholders, and identified the most

important stakeholders and value flows in the network. Some of the qualitative arguments and

quantitative parameters of my tool are based on the finding of this thesis.

For example, for the Decadal Survey case study, the relative weights of the six scientific panels (Climate,

Weather, Land, Water, Health, and Solid Earth) come from value flow calculations in Sutherland's

stakeholder network. This approach leads to a more holistic view of the system.

A more classical approach to identifying figures of merit, is to start off from the "augmented" iron

triangle. The "classical" iron triangle in project management graphically illustrates the tension that exists

between cost or resources, time or schedule, and performance or scope. It is typically said that from these

three, at the very best one can optimize one, and control a second one (as in hold it under an interval), but

necessarily let the other free. Other versions of the same principle are less optimistic and observe that you

can control two, and let the third free (no optimization possible). Thus, one can achieve the desired

performance for a fix schedule, but then cost overruns may occur (e.g. Apollo program); or one can meet

cost and schedule goals, but that may require descoping or performance degradation in general (e.g. many

"successful" current space programs). Note that this is an upper bound of what can be done, and systems

exist that fail to achieve cost, schedule, and performance goals simultaneously. More recently, the

"classical" iron triangle has been "augmented" with a fourth aspect, namely risk, to acknowledge that in

some cases, the tension between the three elements can be partially resolved by increasing risk. For

example, in the NASA Faster-Better-Cheaper approach, cost, schedule, and realistic performance targets

were sometimes simultaneously met, but that was at the expense of increased risk.

174



performance

RISK

schedule cost

Figure 32: Augmented iron triangle

In this second approach for identifying figures of merit, these four categories (cost, schedule, risk,

performance) are decomposed instead of stakeholder needs, leading to a set an alternative set of figures of

merit. This alternative set is typically biased towards programmatic stakeholders, because from the four

main categories, three deal with programmatic aspects and only one with performance.

The two approaches should yield the same results, as both of them should include in principle cost,

schedule, risk, and performance considerations. However, the first approach tends to lead to more detailed

decomposition of performance metrics, while the second approach tends to lead to more detailed

decomposition of programmatic metrics. Therefore, in the context of this thesis, we used both approaches

with the purpose of obtaining a well-balanced set of figures of merit for Earth observing programs.

The metrics used to solve the different SAP about EOSS are described in the rest of this section. These

metrics build upon the domain- specific rules presented in Section 4.2, as well as on the rules resulting

from the application of the VASSAR framework as described in Section 4.3.

4.4.1 Scientific and societal benefit

The primary objective of an EOSS is to take exhaustive high-quality measurement sets of the Earth's

land, oceans, and atmosphere, from space, in such a way that user (scientists, government agencies)

requirements in terms of spatial, temporal, and spectral resolution amongst others are met.

As discussed in the previous chapter, there are a few different ways of estimating the scientific and

societal value of satellite measurements, which range from very expensive Observing System Simulation

Experiments (OSSEs) to simple Science Value Matrices (SVMs). In this thesis, we use a rule-based

approach to assess scientific and societal benefit, as described in Section 4.3.
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We note that the scientific benefit metric is used both in the instrument selection and instrument

packaging problems. However, the range of variation of the metric across architectures is much wider in

the instrument selection problem than in the instrument packaging problem, because in the packaging

problem the instrument set is fixed.

Variations in scientific benefit in the packaging problem essentially come from: a) synergies between

instruments that are captured or lost in the decision of putting instruments together on the same platform

or not; b) orbit selection compromises in multi-instrument missions that affect the science output of all

instruments; c) finite resources on multi-instrument spacecraft that limit the scientific output of

instruments. These three sources of variation of value make the dependence of science value with number

of satellites not trivial at all. Fully distributed architectures may lose some synergies between instruments,

but some of these synergies can still be captured by flying instruments on train configurations.

Furthermore, in fully distributed architectures, each satellite is tailored to a specific payload and therefore

loss of science value due to competing instrument orbit requirements or finite resources aboard the

spacecraft completely disappear. On the other hand, an architecture based on fewer larger satellites may

be able to capture a few more synergies, but there may also be some loss due to competing instrument

orbit requirements and finite resources aboard the spacecraft.

Thus, scientific benefit ranges from 0% to 100% by definition in any instrument selection problem, while

in the packaging problem for NASA's EOS (our first case study), scientific benefit ranged from -60% to

80%. Note that when a packaging architecture is defined, the maximum scientific score may be less than

one due to insuperable competing requirements.

Scientific benefit is obviously not directly used in the mission scheduling problem, as all scheduling

architectures have the same scientific benefit when we integrate over the entire campaign. Instead, time

discounted benefit is used, where the benefit of a mission in the campaign decreases as it is pushed

toward the end of the campaign. This metric will be formally defined in Section 4.4.5.
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While it is clear that scientific benefit metrics will utilize the VASSAR framework, there are still

questions about how to apply the framework. For example, how do we compute the value of an

instrument for the selection problem? One possibility is to compute the value of a single mission carrying

that instrument. Scores calculated using this approach are called scores in isolation, because the

instrument is considered in the absence of the other instruments in and outside the program. However, this

approach does not capture interactions between instruments. More precisely, let Vi be the individual

instrument score of instrument i, and let V(i;; be the score of a mission consisting of the two instruments i

and j. Then, it is clear that Vti,j} = Vi + V - Rgjj} + St, # Vi + V. This concept is illustrated in Figure

33.

Figure 33: Pictorial representation of the concept of synergies and redundancies between instruments

The blue and red rectangles on Figure 33 represent the notional sets of subobjectives satisfied by two

generic instruments I and 2. Their relative positions in the vertical axis with some overlap indicate that

part of the measurements taken by 1 are also taken by 2, which leads to the definition of the mutual

redundancy between instruments 1 and 2 (R1 2 ). The purple rectangle represents the capabilities of the

combination of the two instruments. This rectangle is positioned in the vertical axis in such a way that it

illustrates how synergies between instruments 1 and 2 are capable of satisfying more subobjectives than

their simple superposition. The actual value of the synergistic combination is thus the sum of the

individual values, minus their mutual redundancies, plus their synergies:

Vfi,;} = Vi + V - Ri,) + Sti,;}:

Hence, another type of score can be defined that considers the interactions between the instruments and a

predefined reference architecture. This leads to two definitions:

marginal descoping scores Vi = V{refI - Vtref\il;
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* marginal upgrading scores: Vi = Vfrefui) - V{rejI-

In other words, this approach considers that the value of an instrument is equal to: a) the value that is lost

when the instrument is deleted from a reference architecture; b) the value that is gained when the

instrument is added to a reference architecture. Both of these definitions capture all synergies between

this instrument and the reference.

The problem in general with this approach of marginal scores is that the definition of a reference

architecture may not be trivial, and it is in any case "static in nature", as this reference may change over

time. If the instrument selection problem was to be formulated in a recursive way (instruments are chosen

one after the other), then the reference architecture could be defined as the cumulative subset of

instruments selected at each stage in the recursion. Note that this recursive scheme would require

exponential space to be formulated using dynamic programming, as there are N instruments, and each

instrument can have 2 N-1 scores corresponding to the number of subsets that can be constructed without

that instrument. Such formulation could then be solved using any discrete-event approach such as Markov

Decision Processes or Time-expanded Decision Networks (Silver & de Weck, 2007).

4.4.2 Lifecycle cost

Lifecycle cost, or affordability, is an extremely important figure of merit for EOSS and almost any other

system. The metric we use in this framework is an assessment of the entire lifecycle cost of the system, as

opposed to just a measurement of its development or fabrication cost. This is consistent with the major

principle of system architecture of having a holistic, lifecycle approach to architecting.

Cost estimation methodologies are classically divided in three types: 1) top-down estimations, a.k.a.

parametric cost models, or Cost Estimating Relationships (CERs); 2) bottom-up estimations; 3) analogy-

based estimations (Apgar, Bearden, & Wong, 1999; Cost Analysis Division - NASA Headquarters, 2008;

Shishko, 2004). These methodologies are often used in combination.

In order to develop a lifecycle cost metric for EOSS, we started with a bottom-up decomposition of total

lifecycle cost into several tasks that loosely match mission lifecycle phases: 1) instrument development

and fabrication; 2) bus development and fabrication; 3) integration, assembly and testing; 4) launch; 5)

program overhead; 6) operations.

For each of these contributions, a top-down model is used typically based on mass. We tried to limit as

much as possible the number of different sources for these CERs, since cost estimates from different

CERs may produce inconsistent results.

178



Also, we had access to very limited publicly available cost data due to nationality issues. Most CERs we

used are directly taken from chapter 20 in the Space Mission Analysis and Design book (Apgar et al.,

1999). The accuracy of the cost model could be increased if more modem CERs such as the ones in the

NASA/Air Force Cost Model (NAFCOM) were used (NASA & US Air Force, 2002).

Finally, it is important to note that the goal of cost models for early system architecture tools is not to

provide accurate absolute cost estimates, but rather to provide accurate relative cost assessments while

showing enough sensitivity in cost to the major architectural trade-offs. In other words, we want figures

of merit to be architecturally distinguishing, even at the expense of absolute accuracy. Hence for example,

for the instrument packaging problem, complexity penalties were added that potentially exaggerate the

mass and cost of complex spacecraft, in order to emphasize the trade-off between small satellites and

large satellites.

The rules utilized for the different contributions to the overall lifecycle cost metric are discussed in the

following paragraphs.

Instrument cost: The cost of developing and fabricating a remote sensing instrument depends on many

parameters including mass, power, data rate, dimensions, number of channels, spectral resolution, and

spatial resolution amongst others. Furthermore, the parameters that capture most of the variance in cost

depend much on the type of technology. In fact, actual analyses of variance have shown a large

dependence on instrument type for the optimal choice of these attributes (Agahi, Ball, & Fox, 2009).

That being said, when all instrument types are included, the three attributes best correlated to

development and fabrication cost are mass, power, and data rate, in this order. The publicly available

online version of the NASA Instrument Cost Model consists of a single CER that provides instrument

cost as a function of these three parameters (Agahi et al., 2009):

m(kg 0."26 P(W) Rkbs 32
cost(FYO4$k) = 25,600 - .2 (6. ( 0.)

This CER has an R2 = 0.77 and is based on a database containing 37 instruments. Since this rule

provides total instrument cost (recurring and non-recurring), it is assumed that 80% of the cost is non-

recurring, and 20% recurring. In other words, the assumption implies that building a second copy of the

same instrument would only cost 25% of the cost of developing and building the first unit of the

instrument.
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Note that the rule only computes the cost of the instrument if it has been developed domestically.

International instruments receive a cost of zero in order to enable basic trade-offs in terms of international

cooperation.

Bus cost: A bottom-up decomposition of both development and implementation cost of the bus is done in

terms of subsystems: structure; electrical power; attitude determination and control; on-board data

handing, tracking, telemetry and communications; propulsion; thermal control. For each subsystem, a

different mass-based CER is used to estimate subsystem development/implementation cost as a function

of mass, except for the electrical power subsystem, for which a simple power budget is computed. Hence,

the power budget and mass budget rules presented earlier are required to produce the inputs of cost

estimation rules. The different cost estimation rules are described below. These CERs are all taken from

(Apgar et al., 1999). Note that different CERs are applied for recurring and non-recurring cost.

Subsystem Recurring/ Cost Estimating Relationship Range of Standard
Non- costsubR/NR($FY00k) applicability Error

recurring = a (on msub(kg))

-m 5 u(kg)b

Structure Non-recurring a = 157; b = 0.83 54-392 38%
Power Non-recurring a = 62.7; b = 1.00 31-491 57%

Thermal Non-recurring a 394; b = 0.635 3-48 45%
Communications Non-recurring a = 545; b = 0.761 12-65 57%

ADCS Non-recurring a = 464; b = 0.867 20-160 48%
Propulsion Non-recurring a = 17.8; b = 0.75 81-966 N/A
Structure Recurring a = 13.1; b = 1.00 54-560 39%

Power Recurring a = 112; b = 0.763 31-573 44%
Thermal Recurring a 50.6; b = 0.707 3-87 61%

Communications Recurring a = 635; b = 0.568 13-79 41%
ADCS Recurring a 293; b = 0.777 20-192 34%

Propulsion Recurring a = 4.97; b = 0.823 81-966 20%
Table 13: Cost Estimating Relationships for spacecraft subsystem costs, taken from [120], pp. 795-796

Launch cost: The launch cost model is based on the assumption that each spacecraft is launched

individually, and that it falls into one of the launch vehicle categories defined in Table 11. The

assignment of each spacecraft to one of these categories is done using some rules-of-thumb based on

spacecraft mass and dimensions, orbit requirements, and cost.

These rules have been described in subsection 4.2.2.4.

Integration, assembly and testing cost (IA&T): Integration, assembly and testing non-recurring cost is

assumed to be a function of total spacecraft development cost (i.e., non-recurring bus + payload cost), as

suggested in (Apgar et al., 1999). The specific CER used for non-recurring IA&T cost is provided below.
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COStIA&T,NR($FY00k) = 989 + 0.215 -costsat,NR($FY00k)

SE = 46% COStsatNR($FY00k) E [2,703; 395,529]

In terms of recurring cost, (Apgar et al., 1999) provides a CER as a function of spacecraft total mass

including payload:

COStIA&T,R ($FY00k) = 10.4 - msat (kg);

SE = 44%, msat(kg) E [155; 1390]

Operations cost: Operations cost is far from being negligible when compared to the total lifecycle cost of

most Earth observing missions. Rasmussen argues that approximately 8% of lifecycle cost is due to

operations in "small missions", which is approximately equivalent to 20% of the bus cost (Rasmussen &

Sun-synchronous, 1998). According to Rasmussen the same operations for a large spacecraft are only

about 25% more expensive, which relative to the large bus cost represents a mere 7% as opposed to 20%.

Hence the cost of operating a BCP-2000 class satellite is approximately 20% of $40M = $8M while the

cost of operating a T-330 class satellite is 25% more i.e. $IOM. In this example, it the relative operations

cost per instrument is much lower in the case of a large platform.

For the purpose of this model, we used the NASA NOCM as a baseline for operations cost. Such model is

publicly available in the following NASA website: http://cost.isc.nasa.gov/MOCM.html. Other models

exist such as the NASA Spacecraft Operations Cost Model (SOCM), which is also available on-line".

The NASA MOCM provides a rough order of magnitude (ROM) estimate of the yearly cost of orbital

operations for a spacecraft of a certain type and development cost. The CER used in this model for Earth

observation satellites is provided below:

costops(FY00$) = 0.035308 - (costs/c(FY00$)). 9 2 8 - lifetime(yrs)

The standard error and range of applicability of this CER are unknown.

Program/overhead cost: Management cost, overhead cost, government oversight cost or program cost are

all different names to refer to the cost of a program that is not directly associated to activities of design,

engineering, fabrication, testing or operations. The CERs used for overhead cost are the ones provided in

(Apgar et al., 1999). Program overhead non-recurring cost is a function of non-recurring spacecraft cost

(including payload) as suggested by the following CER:

1 http://cost.jsc.nasa.gov/SOCM/SOCM.html
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cost pro,NR ($FY 00k) = 1.963 - COStsat,NR ($FY00k) 0.84

This CER has a standard error of 36% over the range CoStsat,NR($FY00k) E [4,607; 523,757].

As for the recurring cost, it is a function of spacecraft recurring cost (also including payload):

costpro,R($FY00k) = 0.341 CoStsat,R($FY00k)

This CER has a standard error of 39% over the range CoStsat,R($FY00k) E [15,929; 1,148,084].

One of the advantages claimed by supporters of small satellites is that they allow the application of

streamlined management techniques which can severely reduce program management cost (see references

(Sarsfield, 1998) and (Committee on Earth Studies, Space Studies Board, 2000)). Several arguments can

be provided that intuitively explain why this is so:

* Meetings with a larger number of people are less effective

* Logistics in larger missions are more difficult than in smaller missions. Mathematically, if there

are N instruments in a mission, the number of logistical problems that can appear is not

proportional to N, but rather to all the possible combinations of N elements taken by pairs which

is N*(N-1)/2).

Overhead cost is extremely difficult to measure and even more to estimate. In (Rasmussen & Sun-

synchronous, 1998), Rasmussen estimates that management cost is about 8.9% of bus cost for small

missions and 9.3% of bus cost for large missions. Although these figures are not conclusive, they tend to

support the idea that overhead cost tends to be growing worse than linearly for larger missions. This

suggests that the overhead cost model presented above could be modified to add an organizational penalty

that takes into account these facts. Another potential feature to be added to the model would be an

organizational penalty that would take into account whether different organizations are involved in a

given mission. Multi-organizational missions may incur larger overhead costs due for example to

duplication of some positions, and more resource-consuming meetings between organizations. The study

of this and other penalties is left for future work.

Cost overrun: An expected cost overrun is added to the total initial lifecycle cost because it is noted that

the probability of schedule slippage and cost overrun is larger in larger missions. Some studies have

suggested that the probability of schedule slippage is correlated with the maturity of the technology used

in the mission, as described by the initial mission TRL (Dubos, Saleh, & Braun, 2008). The expected cost

overrun is computed in two steps:
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1. Given the initial TRLs of all the instruments in a given spacecraft, the expected schedule slippage

in % of total development time is computed as a function of the lowest instrument TRL in the

spacecraft, using the findings in [126]:

RSS (%) = 829 -e -0 .5 6 -minTRL

2. This expected schedule slippage is transformed into a cost overrun by applying the relationship

found in (Weigel & Hastings, 2004b):

cost overrun (%) = 0.24 -RSS(%) + 1.7

While some recent articles have discussed the validity of using TRL as a quantitative metric for this

purpose (Conrow, 2011), the idea behind the study, namely that less mature technologies are more likely

to suffer from schedule slippage, remains a fair assumption.

Summary: The lifecycle cost model is summarized in the table below, that lists all the contributions to the

metric, and a short explanation of how they are quantified. Since contributions come from different

sources, all contributions are corrected for inflation and translated into $FYOOM.As noted earlier, the

model allows sharing part of these costs with international partners. Total lifecycle cost is thus the

addition of all these costs, with an expected cost overrun.

Concerning the possibility of having international partners, this option is taken into account through the

use of the partnership mission attribute. The value of this attribute acts as a mask for the different

contributions to the lifecycle cost, so that some of the contributions to the total lifecycle cost can be made

zero depending on the type of agreement.

Hence for example, if a domestic instrument is flown on an international spacecraft launched by the

international partner, the user may choose to not count for the bus and launch cost, and possibly other

parts of the lifecycle cost (e.g., operations).

Similarly, if an international instrument is flown on a domestic mission, the cost of developing and

building this instrument will not be taken into account for the overall lifecycle cost. This allows for a

more realistic estimation of the costs incurred from the point of view of a particular agency.
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Lifecycle cost contribution Major models and assumptions
Instrument development 80 % NICM cost (Agahi et al., 2009)
Instrument TFU 20 % NICM cost (Agahi et al., 2009)
Bus development SMAD CERs (Apgar et al., 1999)
Bus TFU SMAD CERs (Apgar et al., 1999)
Integration, Assembly & Testing SMAD CERs (Apgar et al., 1999)
Launch 7 launch vehicle classes: Atlas-5, Delta-7920, 7420, 7320, Minotaur-

IV, Taurus XL, Taurus, Pegasus XL. Costs given in Table 11.
Program overhead SMAD CERS (Apgar et al., 1999)
Operations NOCM"
Cost overrun Schedule slippage as a function of minimum instrument TRL [126]

Cost overrun directly proportional to schedule slippage(Weigel &
Hastings, 2004b)

Table 14: Summary of main assumptions in lifecycle cost model

4.4.3 Programmatic risk

In the context of this thesis, programmatic risk refers to risk of schedule slippage and cost overrun. More

precisely, we are interested in the components of this programmatic risk that are architecturally

distinguishing. Hence, causes of programmatic risk that do not vary across architectures are not

considered.

The programmatic risk metric is used both in the instrument selection and instrument packaging

problems, but not in the mission scheduling problem. The formulation of the programmatic risk metric in

the instrument selection is different from the formulation in the instrument packaging problem, in order

for the metrics to be architecturally distinguishing in each SAP.

In the instrument selection problem, an architecture with high programmatic risk is one in which several

"high risk" instruments are selected. A "high risk" instrument is defined as an instrument for which

substantial investment still needs to be made in order for the instrument to be ready to be flown. While the

amount of investment that needs to be done on an instrument in order to achieve flight qualification is

hard to predict, it seems intuitive that the initial TRL of the instrument will be somewhat correlated.

However, as mentioned before, attempts to use TRL as a cardinal metric have been rather unsuccessful. In

order to avoid this issue, we define the programmatic risk metric in the instrument selection problem as

the fraction of instruments that have initial TRL < 5.

riskprog,SEL =SUi(A)

t 1 if TRLi < 5
0 otherwise

"3 http://cost.jsc.nasa.gov/MOCM.html
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A TRL of 5 implies the validation of the system at the component level in a relevant environment as

opposed to a laboratory environment. Many senior systems engineers agree that the step from TRL 4 to

TRL 5 is the hardest to achieve and the one that requires the most significant investment.

In the instrument packaging problem, the previous definition of programmatic risk is not architecturally

distinguishing, as all packaging architectures would have the same score under this metric. Instead, the

following definition of the programmatic risk metric for the instrument packaging problem is

architecturally distinguishing:

riskprog,PACK avgs( avg TRL - min TRLi)
iEsat,s iEsat,s

The idea behind the packaging programmatic risk metric is to avoid situations in which a high risk

instrument could delay the deployment of important mature instruments. A high value of riskprog,PACK

indicates that there is a general imbalance in the TRLs of the instruments, that could be improved if

instruments with similar levels of maturity were binned together.

4.4.4 Launch risk

During the qualitative discussion of the instrument packaging problem in section 4.1.2.2, the issue of

launch risk was raised. Distributed architectures are perceived as more desirable than monolithic

architectures in terms of launch risk, because they are more robust to a single launch failure. Although

real launch risk measured as the average number of instruments successfully put into orbit is independent

of the packaging architecture assuming identical launch vehicle reliabilities, perceived launch risk varies

across architectures due to risk aversion.

In order to model this risk aversion, I explored two possibilities: 1) incorporating a concave risk aversion

curve to the number of instruments successfully put into orbit and computing the average after applying

risk aversion; 2) using the concept of entropy from information theory.

In the first approach, the risk metric is simply computed as the average utility of the number of

instruments successfully put into orbit, where this utility function is for example a logarithmic curve. Let

NI be the number of instruments in a program, and N be a random variable representing the number of

instruments successfully put into orbit by an architecture. Then, the launch risk metric is defined as:

NI NJ

riskaunch = ProbtN = n}u(n) = ProbfN = n og(1+n)
I IO log(1 + NI)n=0 n=0
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Considering a launch as a Bernoulli trial with probability of success equal to the reliability of the launch

vehicle RLV, Prob{N = n} is related to the probability of having NL successful launches, which can be

computed using a binomial distribution:

Prob{NL = nl =(NL R L(1 - R LV)NL-nl

The risk metric can thus naively be calculated for each architecture by computing the probability

Prob{NL = nl} and the utility of the corresponding number of instruments successfully put into orbit for

each of the 2 NS cases (each of the NS launches can either be a success or a failure, which explains the

2 NS.

In the second approach, the launch risk metric is computed as follows. Let p be an array containing the

number of instruments in each satellite, and p be the convex normalization of p (i.e. p ' = ). pij can be

interpreted as the probability of a random instrument to belong to satellite i. The risk metric can now be

defined as one minus the entropy of this probability distribution:

NS

risk'Ilaunch = 1 - h(p') =1 + log2 (pt)
i=O

The entropy of a probability distribution of length NS is a real value between 0 and log 2 NS. The value of

0 is achieved by a delta probability distribution with all its weight in a single value. This is the equivalent

of the monolithic architecture with only one satellite in the instrument packaging problem. The value of

log 2 NS is achieved by the uniform probability distribution that assigns identical weight to all possible

values. This is the equivalent of a completely distributed architecture with as many instruments as

satellites. Note that in this case log 2 NS = log 2 NI.

4.4.5 Discounted benefit

As mentioned before, (undiscounted) scientific benefit cannot be used as a metric of the mission

scheduling problem because all scheduling architectures have the same undiscounted scientific benefit.

An architecturally distinguishing version of scientific benefit for the mission scheduling problem is

discounted scientific benefit, or simply discounted benefit.
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The main idea behind discounted benefit is that science today is better than science tomorrow. For

example, reducing the uncertainty about climate change tomorrow rather than in ten years has a certain

value, which can be computed for example using a value of information approach (Nordhaus, 1998).

Therefore, it makes sense to discount scientific benefit in a similar way to what is done with cash flows in

finance.

In finance and project management, the net present value of a project can be computed as the sum of the

yearly profits (revenues minus costs) discounted in time in order to capture the opportunity cost of

investing money on the project at hand instead of on an alternative project.

NPV= Rt - Ct
(1 + r)t

t

The rate r at which cash flows are discounted is chosen to reflect the interest rate that the investment

could bring on an alternative project, and it typically ranges from 0% to 20%, with lower values for public

endeavors (usually between 3% and 10%).

In the context of this thesis, different discount rates are allowed for different panels, and therefore

scientific benefit is defined as the sum over the panels of the total discounted benefit to each panel:

DB(A) = >j Bp,t(A)

p t (1 + rp)t

where Bp,t(A) is the benefit provided by architecture A to panel p at time period t, and r, is the discount

rate for panel p. The discount rate for each panel intuitively reflects the opportunity cost of investing on a

mission that benefits a certain panel instead of another one.

where Bp,t(A) is the benefit provided by architecture A to panel p at time period t, and r, is the discount

rate for panel p. The discount rate for each panel intuitively reflects the opportunity cost of investing on a

mission that benefits a certain panel instead of another one.

In finance, discounting makes cash flows in the present or near future more important than cash flows in

the far future. The same is true for discounted benefit, since for reasonable discount rates, it depends on

the benefits of the first few missions.
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The discounted benefit metrics has been successfully applied in the past in the context of three master

thesis (Colson, 2008; Seher, 2009; Suarez, 2011).

4.4.6 Fairness

The notion of fairness across panels or scientific disciplines appears for the mission scheduling problem

in the three aforementioned thesis (Colson, 2008; Seher, 2009; Suarez, 2011).

In Colson's OPN formulation, the scheduling problem is a recursive process where a decision about the

next mission to fly is made at each time period. In this context, the notion of fairness was introduced

through a constraint that restricted the set of missions available to choose to the subset of available

missions that provided value to the two least satisfied panels. Hence, if at time the two least satisfied

panels are panel 1 and panel 2, any mission not giving any value to at least one of these panels cannot be

chosen in the next stage.

Seher and Suarez captured fairness as an a posteriori soft constraint based on the separation between the

Bp,t curves. Intuitively, architectures that lead to large deviations between the Bp,t curves got lower

fairness scores.

In addition to the mission scheduling problem, the notion of fairness is also applicable to the instrument

selection problem, as a certain subset of instruments may be biased towards a given discipline. In this

case, this notion can be simply captured as a hard constraint on the minimum over the panels of the

benefit of the architecture to any panel:

f(A) = min Bi,,(A) > fm in

4.4.7 Data continuity

Finally, an extremely important metric in EOSS is the ability of a certain architecture to cover potential

data gaps in the time series of measurements with long records such as ocean color (CZCS, SEAWIFS,

MODIS/MERIS), ocean altimetry (TOPEX-POSEIDON, Jason, OSTM), or aerosol optical depth

(AVHRR, MODIS).

Let us consider a 2D observations matrix 0 where the columns indicate time and the rows indicate

measurements that require continuity. Each element of this matrix contains the number of satellites that

perform measurement m at time t. Hence, 0(m, t) = 0 if no satellites perform measurement m at time t

(yielding a data gap), and O(m, t) > 0 otherwise.
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Under this scenario, a data continuity metric can be computed by computing the delta in the observations

matrix with and without the architecture, and summing the resulting delta matrix

D(ij) = (owithA(i)n-WOA(Q)) with certain weights that represent: 1) the relative importance of the
Qw/0 A (Q)

potential data gaps; 2) the relative importance of gaps in the future with respect to gaps now. Let W(ij)

be the separable matrix containing such weights, W(ij) = wm(i) - wt(j). Then, the data continuity

metric can be computed as:

(Owith A (i, j) - Owto A G, j)DC D(ij) -W(ij) = O Aow G(i, j) - (wm(i) - Wt ()

However, the more positive Ow/o A(I) is, the lower the marginal value of an additional observation of

that measurement should be. This effect can be taken into account by slightly changing the definition of

D (i, j):

(Owith A(j) - Ow/o AG(Q))

D(i, j) OwoAGj
k=1 Ow/oAi) + k

Hence for example, if Ow)oA(iI) = 1 and OwitAij) = 2, = ()) 1
Ow/o A(i,j)+k 2

and if Owlo A(,j) = 5 and Owith A(,j) = 8, then -Owth A(L~j)OWloA(Q))+ +
Ow/a A(i,j)+k 6 7 8

4.4.8 Discussion

In this section, the FOMs that are used in the three EOSS SAPs have been described. A list of these

metrics with a succinct description and a mapping to the SAPs that utilize them is provided in Table 15.

In addition to these metrics, and according to what has been described when down-selection rules were

introduced in section 2.3.6, the three SAPs utilize Pareto ranking to discard "highly dominated"

architectures, and multi-attribute utility to discard "unbalanced" architectures. Pareto rankings only

include lifecycle cost and science, or data continuity and discounted benefit in the case of mission

scheduling. The other metrics are typically less architecturally distinguishing, i.e., the number of different

values in the image domain is smaller, and therefore they are used as hard constraints to discard poor

architectures, rather than using them for computing Pareto rankings.
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Metric Description Selection Packaging Scheduling
Science Uses VASSAR (capability, emergence, X X

requirement rules)
Lifecycle cost Uses VASSAR (orbit selection, power, X X

mass, volume budgets, LV selection, sat
sizing with p/i interferences, NICM, CERs)

Programmatic % of instruments in program that require X
risk (vi) significant development (TRL <4)
Programmatic Penalizes architectures where high risk X
risk (v2) instruments may delay more mature

instruments

(avgsat i(TRL) - minsat i (TRL))

Launch risk Fewer sats 4 higher perceived risk. Metric X
is an average of the probability distribution
of putting N=#instr put into orbit given
#launches and reliabilities weighted by risk
aversion

Fairness (vi) Min panel score is a soft indicator of X
fairness

Fairness (v2) A more precise indicator is the deviation X
between curves of value delivery to panels
over time

Data continuity Favor architectures which close important X
potential data gaps

Discounted value Favor sequences which fly valuable X
missions first

Table 15: Summary of the metrics utilized to architect EOSS

4.5 Case studies and methodology applied to the case studies

Three case studies are analyzed in this thesis: 1) The NASA Earth Observing System; 2) The NRC

Decadal Survey; 3) The Iridium GEOScan program.

The NASA Earth Observing System (EOS) was a multi-billion Earth Science program started at NASA in

the 80's. Originally intended to consist of two extra-large polar platforms carrying about 40 different

instruments, EOS ended up consisting of several medium and small satellites carrying a subset of the

original instruments. The NASA EOS case study was chosen as a retrospective case study with the aim of

providing partial validation of the methodology and tool.

The second case study concerns the Earth Science Decadal Survey (DS). The DS is a current multi-billion

program that intends to fulfill the requirements of all the disciplines of the Earth sciences for the next

decade.
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A reference architecture exists for the DS that was laid out by an NRC committee of experts. This

reference architecture consists of 17 missions, from which only two are past conceptual studies (namely

SMAP and ICESAT-II, with launch dates in 2015). The goal of this case study is to assess the reference

architecture, and potentially to identify interesting alternative architectures.

The third and final case study concerns the Iridium Next Generation Hosted Payload program, and more

particularly, APL/Draper's GEOScan program. Iridium LLC is developing their new generation

constellation of communication satellites in LEO, and they are offering a hosted payload of about 50kg

and 50W for Earth observation in each of their 66 satellites (plus spares). APL with the collaboration of

Draper Laboratory has created the GEOScan program, in which the instruments to be put in this hosted

payload opportunities are analyzed from a global perspective. The GEOScan architecture is now almost

defined, with a system sensors suite of six instruments that will be flown on each of the 66 spacecraft,

plus some slots on each spacecraft for other hosted payloads from universities or other organizations. The

goal of this case study is to identify the set of optimal system sensors to be flown, as well as the optimal

number of each type of sensor.

These three case studies are different in nature, and thus stretch the capabilities of the tools and methods

in different ways. The NASA EOS case study is better than the two others in terms of data availability,

because being a past program there is a huge literature available both on scientific requirements and

instrument capabilities. On the other hand, it is extraordinarily complex from the systems engineering

perspective due to the four consecutive descoping processes it suffered in the late 80's and early 90's. It is

rich in budget pressure, international cooperation, and other policy elements that are hard to include in the

model. The DS case study is hard because there is a lot of uncertainty in the capabilities of the

instruments (which for the most part do not yet exist), and also some ambiguity in terms of the scientific

priorities. Furthermore, computationally it is a harder problem because there is a larger number of

missions and instruments to consider. Finally, the difficulty of the GEOScan case study is two-fold: first,

it is very important to be able to model the differences between typical remote sensing instruments and

Cubesat-class instruments; second, it is also important to quantify the effect of increasing the number of

satellites on the scientific value of provided to different stakeholder groups.

The methodology applied to the three case studies is illustrated in Figure 34.
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Figure 34: Methodology used to solve the three EOSS case studies

Domain-specific knowledge that is common to the three case studies, such as orbit selection rules, and

complexity-corrected mass budgets, is available in the RBES(K6). Each case study is decomposed into

three sub-problems: the instrument selection problem, the instrument packaging problem, and the mission

scheduling problem.

The instrument selection problem is formulated as a selecting problem. The class-specific rules

corresponding to the DsP are used (K2, K5). Case study specific rules including requirement rules,

aggregation rules, and capability rules are then incorporated (K7, K9). The RBES is then used to explore

the architectural tradespace corresponding to this particular view.
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The same procedure is applied to the instrument packaging problem, which is formulated as a partitioning

problem. The mission scheduling problem is formulated as a permuting problem. Once the three SAPs

have been individually solved, their results are combined to produce a subset of preferred complete

architectures. At this point, it may be necessary to refine the model by adding or removing rules, and

iterate.

The results for the three case studies are presented in the next three chapters. The structure of these

chapters is the following:

* First, the historical context and goals of the case study are discussed.

e Second, the EOSS-specific knowledge that is common to the three problems is introduced:

aggregation rules, requirement rules, and capability rules.

e Third, a few intermediate results are given that are used as inputs in the three problems:

instruments and mission scores (marginal scores and scores in isolation), S-DSM and E-DSM,

and data continuity.

* Fourth, the results concerning the instrument selection problem are introduced and discussed.

e Fifth, the results concerning the instrument packaging problem are introduced and discussed.

* Sixth, the results concerning the mission scheduling problem are introduced and discussed.

e Finally, the chapter is concluded with a discussion about the results of these problems.

193



194



5 Case Study 1: The NASA Earth Observing System (EOS)

5.1 Context and goals for the case study

In the early 1980's, a growing effort appeared at NASA to create a large-scale Earth Observing program.

Eventually, in 1990, Congress authorized $132 million in new appropriations for NASA to begin the

development of its Earth Observing System (EOS) (Leshner, 2007).

At that time, EOS was a $17B program over ten years, planning to launch six Shuttle-class satellites over

a 15-year period. Five years later, after going through four major restructuring and descoping processes,

the planned budget for EOS fell below $8B. Fifteen instruments initially preselected were cancelled. The

use of international cooperation as a means to share costs was also intensified in order to share costs. The

sequence of descoping processes from the initial EOS presented to the Office of Management Budget in

1989 to the finally implemented EOS is illustrated in Figure 35. Red ovals in Figure 35 represent the

descoping processes, and blue rectangles represent the architectures before and after each descoping

process.

)

12 instruments deselected
$17B Focus on climate

37 instruments with Identify replicated efforts
2 XL polar platforms

~$7B
CHEM mission split in 2

24 instruments in 10 satellites

$118
25 instr in 6 sats

EOS AM, PM, CHEM
ALT, AERO, COLOR

enqIai

3 instruments cancelled
+2 International instruments
Reduce contingency margins

Common bus

implerented

Note: Size of blue boxes Is proportional to budget

Figure 35: Summary of descoping processes for the NASA EOS between 1989 and 1995
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During these descoping processes, the architecture of EOS went from being based on two extra-large

Shuttle-class platforms to a more diverse architecture with three mid-size satellites (Terra, Aqua, Aura)

and several smaller satellites. This evolution is illustrated in Figure 36. In Figure 36, rectangles represent

spacecraft, and text inside rectangles specifies spacecraft name, mass, and launch vehicles in black text on

top followed by instruments on red (cancelled), green (added), or white (maintained). Instruments on

cursive come from international partners.
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MOP/TT

MISR
MODIS
CERES

CERES-B

ACRIM 1I1I

SEAWINDS

AIRS
AMSU-A
AMSR-E
CERES-C
MODIS

HSB/AMSU-B

GLA S

U I
TES

MLS

SAGE III
SEA

WINDS
ALT/RA+TMR

+GLAS

SOLSTICE

MODIS-N

ITIR ASTER
MISR

CERES
AIRS

AMSU -A/-B

AMSR-E
MOPIT T

H IRDLS

AC RIM

Figure 36: Overall changes in selection and packaging architectures for the EOS program between 1989 and 1995

This case study is retrospective in nature. Substantial documentation exists concerning the scientific

requirements of the EOS program (Asrar & Dozier, 1994; Butler et al., 1984; King & Greenstone, 1999;

Tuyahov, 1986), the capabilities of the different instruments considered for the EOS program (Abshire,

Smith, & Schutz, 1998; Aumann & Miller, 1995; R. A. Barnes & Holmes, 1993; Fu et al., 1994; Gille et

al., 2003; Goetz & Herring, 1989; Levelt et al., 2006; Long, Freilich, & Leotta, 1990; Schoeberl et al.,

2006; Waters et al., 2006; Wielicki, Barkstrom, & Harrison, 1996; Willson, 2001), and the details of the

different restructuring processes (Leshner, 2007), (Moore III et al., 1991), (Scolese & Bordi, 1990). Many

of the scientists and engineers in charge of making those decisions are also available to provide testimony

on the rationale behind their decisions.

The goal of this first case study is to take advantage of its retrospective nature, and of the quantity and

quality of the available information, in order to assess the validity of the tool.
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This is done by applying the methodology presented in the previous chapters to the information available

at the time of the development of the EOS program, and attempting to replicate the decisions that were

made. While this does not formally validate the tool, it does give us some confidence before applying it to

the two other case studies, which are predictive in nature.

5.2 Case study specific rules

5.2.1 Aggregation rules

5.2.1.1 1st level of decomposition of stakeholder needs: panels

Measurement requirements were categorized in seven panels for the EOS case study, according to the

EOS science plan (King, 1990): water and energy cycles (WAE), ocean circulation and productivity

(OCE), tropospheric chemistry and greenhouse gases (GHG), land ecosystems and hydrology (ECO),

cryospheric systems, ozone and stratospheric chemistry (ICE), and volcanoes and climate effects of

aerosols (SOL).

These seven panels were all equally weighted in importance except for the ozone panel, which was given

a weight half of the other panels' 4 , as shown in Table 16.

Panel
Clouds and
radiation
Oceans

Greenhouse
Gases
Land &

Ecosystems
Glaciers and

Polar Ice Sheets
Ozone and

Stratospheric
Chemistry
Solid Earth

Id Description
WAE Cloud formation, dissipation, and radiative properties, which

influence response of the atmosphere to greenhouse forcing
OCE Exchange of energy, water, and chemicals between the ocean

and atmosphere, and between the upper layers of the ocean
and deep ocean

GHG Chemistry of the troposphere and lower stratosphere

ECO

ICE

OZO

SOL

Land hydrology and ecosystem processes

Glaciers, Sea Ice, and Ice Sheets

Ozone and Chemistry of the upper stratosphere

Volcanoes and Climate Effects of Aerosols

Weight
2/13=15.4%

2/13=15.4%

2/13=15.4%

2/13=15.4%

2/13=15.4%

1/13=7.7%

2/13=15.4%
100%

Table 16: 1st level of decomposition of stakeholder needs for the EOS case study

1 Personal conversation with Dr Christopher Scolese, director of NASA GSFC
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The lower weight for the ozone panel is justified by the existence of a large mission outside of the EOS

program, entirely devoted to ozone and stratospheric chemistry, namely the UARS mission (Upper

Atmosphere Research Satellite) (Reber, Trevathan, & McNeal, 1993). UARS was launched in 1991 and

successfully carried out its scientific mission for more than 14 years until its operation was ceased in 2005

due to budget cuts. UARS carried several instruments that took valuable stratospheric measurements,

including a microwave limb sounder, several other chemistry instruments, and copies of the SOLSTICE

and ACRIM instruments for radiation budget studies.

5.2.1.2 2nd level of decomposition of stakeholder needs: panel objectives

Scientific objectives were identified and ranked in importance for each of the seven panels, based on the

information available in (Asrar & Dozier, 1994; Butler et al., 1984; King & Greenstone, 1999; Tuyahov,

1986), and (King, 1990) amongst others. This information was contrasted with several experts that were

involved in the early development of the EOS program. For example, eight objectives were identified for

the WAE panel. They are listed in Table 17.

Objective Id Description Weight

1 WAE1 Atmospheric circulation 13%
2 WAE2 Cloud radiative feedback 19%
3 WAE3 Precipitation patterns 13%
4 WAE4 Water vapor 13%

5 WAE5 Aerosols 13%
6 WAE6 Radiation budget 19%
7 WAE7 Ice and snow 6%
8 WAE8 Land Surface Water 6%

100%
Table 17: 1st level of decomposition of stakeholder needs for the EOS case study: WAE panel objectives

These eight objectives were ranked in three groups of importance. Cloud radiative feedback and radiation

budget were assigned higher priority (3/16) because of their very close relationship to key climate

variables. Ice and snow and land surface water were assigned the lowest priority (1/16) because these

objectives are primary objectives of other panels, namely the cryosphere and ecosystem panels. The other

objectives were assigned medium priority (2/16).

Details about the 2nd level of decomposition of stakeholder needs for the other six panels are provided in

the Appendix 9.3.1. A total of 43 objectives were identified.
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5.2.1.3 3rd level of decomposition of stakeholder needs: "subobjectives"

In the second and last level of decomposition of stakeholder needs, each of the 43 objectives was

decomposed into as many subobjectives as required in order that one subobjective corresponds to exactly

one measurement. 121 subobjectives were thus identified. An example of this decomposition is shown in

Table 18 for the radiation budget objective of the WAE panel.

Objective 6 WAE6 Radiation budget

Subobjective Id Description Weight
1 WAE6-1 Total solar irradiance 15%

2 WAE6-2 Short-wave radiation (solar reflected) 35%
3 WAE6-3 Long-wave radiation (thermal 35%

emission)
4 WAE6-4 Albedo and reflectance 15%

100%
Table 18: 2nd level of decomposition of stakeholder needs for the EOS case study: subobjectives for radiation budget

In this case, short-wave and long-wave radiation measurements are assigned a higher priority than the

total solar irradiance and albedo measurements (35% to 15%) because they contain more information.

Indeed, total solar irradiance can be inferred from the SW+LW outgoing flux assuming equilibrium, but

the opposite is not true, SW and LW outgoing fluxes cannot be inferred from total solar irradiance.

More information about the 3rd level decomposition of the rest of EOS objectives is available in the

Appendix 9.3.1.

5.2.2 Requirement satisfaction rules

The scientific and societal objectives of the EOS program necessarily changed during the descoping and

restructuring processes. A good description of the initial requirements can be found in the final report of

the science and mission requirements working group (SMRWG), released by NASA in 1984 (Butler et

al., 1984). Table 19 was taken from this report, and summarizes some of the major measurement

requirements for EOS at that time. Note for example that the approach proposed to cover several of the

measurement requirements is the use of SAR, but this instrument was subsequently deleted.

For each of the 121 subobjectives, rules were created that express the measurement requirements for full

satisfaction, and several cases of degraded satisfaction. A sample of such rules is provided in Table 19 for

the case of subobjective WAEI -I concerning atmospheric temperature fields.
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Table 19: Some initial measurement requirement for the EOS program from the SMRWG report

rule
nominal

degraded-1
degraded-2
degraded-3
degraded-4
degraded-S
degraded-6
degraded-7

value
100%
50%
50%
75%
66%
50%
50%
66%

description Measurement Attribute-valuel Attribute-value2
"Conditions for full satisf1Atmospheric temperature fie SameOrBetter Temporal-resolution High-12h-24h All-weatheryes
"Insufficient temporal rei Atmospheric temperature fi SameOrBetterTemporal-resolutionMedium-daVyAll-weather yes
"Insufficient vertical spat Atmospheric temperature fb SameOrBetter Temporal-resolution High-12h-24h All-weatheryes
"no hyperspectral (but g1 Atmospheric temperature fieSameOrsetter Temporal-resolution High-12h-24h All-weatheryes
"sno all weather capabilits Atmospheric temperature fl SameOrBetter Temporal-resolution High-12h-24h All-weather no
"insufficient accuracy" 1Atmospheric temperature f SameOrBetter Temporal-resolution High-12h-24h All-weatheryes
"insufficient sensitivity id Atmospheric temperature fh Same~retter Temporal-resolution High-12h-24h All-weatheryes
"missing coud mask" 1 Atmospheric temperature fi SameOrBetter Temporal-resolution High-12h-24h All-weatheryes

Table 20: Requirement satisfaction rule for atmospheric temperature fields for the EOS case study (partial view)

Table 20 shows the full satisfaction rule for subobjective WAEi-1, as well as several partial satisfaction

rules. Note that this table only includes a subset of the attributes used in the rule. The actual rules include

additional requirements in terms of cloud mask, spectral sampling, and accuracy amongst others.

Additional information about the EOS requirements rules is provided in the Appendix 9.3.2. The

complete set of requirement satisfaction rules for the EOS case study can be found in

http://web.mit.edu/dselva/www/RBES/EOS/.
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5.2.3 Instrument capability rules

After describing stakeholder needs, the second important group of case study specific rules concerns

instrument capabilities. 43 instruments were considered in this case study, and several characteristics

necessary to assess requirement satisfaction and to perform lifecycle cost estimations were identified for

each instrument.

Table 21 provides a snapshot of a few characteristics for a subset of the EOS instruments.

Instrument Attribute-valuel

ACRIM All weather no

AIRS All-weather no

ALT SSALT All-weather yes

AMSR-E All-weather yes

Attribute- Attribute- Attribute- Attribute-
value2 value3 value4 valueS

Angular-
resolution-
azimuth# nil

Angular-
resolution-
azimuth# 1.1

Angular-
esolution-

azimuth# nil

Angular-
resolution-
azimuth# nil

Angular-
resolution-
elevation# nil

Angular-
resolution-
elevation# 1.1

average-data- average-
rate# 0.001 power# 10

average-data- average-
rate# 1.27 power# 180

Angular- average-data-
resolution rate#01
elevation# nil rt#0

Angular-
resolution- average-data-
elevation# nil rate# 0.125

Attribute-
Attrlbute-value6 value7

Concept "A sun-looking self-calibrating active
cavity radiometer for direct measurement of total Day-Night
solar irradiance" Day-only
Concept "A high spectral resolution grating
spectrometer containing 2378 infrared Day-Night
channels for obtaining atmospheric Day-and-night
temperature profiles -sounding-"

average- Concept "A dual-frequency radar altimeter for
power# 214 oceanography"

Concept "A 12-channel microwave radiometer
designed to monitor a broad range of

average- hydrologic variables, including precipitation,
power#$ 350 cloud water, water vapor, sea

surface winds, sea surface temperature,
sea ice, snow, and soil moisture."

Day-Night
Day-and-night

Day-Night
Day-and-night

Table 21: Snapshot of the table containing EOS instrument characteristics

Furthermore, for each instrument, a rule was created that asserts the measurements that the instrument can

take. An example of such rule for the TES instrument is provided in Code 23.

(define-rule CAPABILITIES::TES-measurements
"Define measurement capabilities of instrument TES"

IF there is a (Manifested-instrument (with Id .) (and Name TES))

ASSERT Measurement (Parameter "1.8.2 03") (Id TESI))
ASSERT Measurement (Parameter "1.8.1 H20") (Id TES2)))
ASSERT Measurement (Parameter "1.8.4 CH4") (Id TES3)))
ASSERT Measurement (Parameter "1.8.5 CO") (Id TES4)))
ASSERT Measurement (Parameter "2.5.1 Surface temperature -land-") (Id TES5)))
ASSERT Measurement (Parameter "1.2.1 Atmospheric temperature fields") (Id TES6)))
ASSERT Measurement (Parameter "1.8.7 NOx-NO, N02-, N205, HNO3") (Id TES7)))
ASSERT cross-registration of all measurements taken by the instrument
(degree-of-cross-registration instrument) (platform ?id)))

)
Code 23: Instrument capability rule for the EOS TES instrument
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This rule asserts the seven measurements TES can take when it detects that a copy of this instrument has

been manifested. The measurements are assigned ID#s from TES I to TES7. These ID#s play a role in the

explanation facility. In addition to asserting these seven measurements, this rule also asserts that these

seven measurements are cross-registered because they are taken by the same instrument. This is also

important, as some synergy rules only apply to cross-registered measurements. Finally, note that this rule

simply asserts the measurement facts without filling in measurement attributes (e.g., spatial resolution).

Indeed, attribute inheritance from instruments and missions to measurements is carried out by the

attribute inheritance rules, which are executed a step later in the VASSAR methodology.

Additional information concerning the EOS instrument capability rules is provided in the appendix. The

complete set of requirement satisfaction rules for the EOS case study can be found in

http://web.mit.edu/dselva/www/RBES/EOS/. This information comes from individual instrument or

mission publications (Abshire et al., 1998; Aumann et al., 2003; Aumann & Miller, 1995; R. A. Barnes &

Holmes, 1993; Beer, Glavich, & Rider, 2001; Bianchini, Cortesi, Palchetti, & Pascale, 2004; Cheney,

Miller, Agreen, Doyle, & Lillibridge, 1994; Diner et al., 1989; Franz, Werdell, & Meister, 2005; Gille et

al., 2003; Hughes Space Communications, 1990; Imhof et al., 1995; Kerr, 1991; B. H. Lambrigtsen &

Calheiros, 2003; Levelt et al., 2006; Long et al., 1990; McCormick, Chu, Zawodny, Mauldin III, &

McMaster, 1991; Monaldo, Thompson, Pichel, & Clemente-Col6n, 2004; Njoku, Jackson, & Lakshmi,

2003; Rider & McCleese, 1991; Rottman, 2000; Ruf, Keihm, & Janssen, 1995; Schoeberl et al., 2006;

Schutz & Suite, 2001; Travis, 1747; Tsai, Spencer, Wu, Winn, & Kellogg, 2000; Way & Smith, 1991;

Wielicki et al., 1996; Willson, 2001; T. N. Woods, 2000; Yamaguchi, Kahle, Tsu, Kawakami, & Pniel,

1998), and was partially verified by a pool of experts.

5.3 Results

5.3.1 Preliminaries

Before presenting the results of the three sub-problems (i.e., instrument selection, instrument packaging,

and mission scheduling), intermediate results that are used in the three sub-problems are presented and

discussed. In particular, single instrument scientific scores, and bilateral interactions between instruments

both at the science and engineering levels (i.e. S-DSM and E-DSM) are introduced, as well as mission

scores and the data continuity metric for the mission scheduling problem.

5.3.1.1 Instrument scores

The importance of instrument benefit and instrument cost for the instrument selection and packaging

problems is obvious.
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As explained in Section 4.4.1, there are two ways of computing individual instrument scores: a) consider

the instruments in isolation; b) consider the instruments with respect to a non-empty reference

architecture. The simplest approach is to consider single instrument missions and evaluate their cost and

benefit using VASSAR. Instrument scientific scores computed this way for the EOS case study are

provided in Figure 37. Figure 37 would suggest that the SAR, MODIS, MODIS-T, MLS, and OMI, are

the highest scoring instruments in terms of scientific benefit. However, this approach does not capture

interactions between instruments. For example, the altimeter (ALT-SSALT) and the radiation budget

instruments (CERES) achieve very small scores because they require additional instruments in order to

fully satisfy several subobjectives.

-6 0.25

0.2

o4is0 0.15

S0.1

E 0.05

Z 0

Figure 37: EOS instruments benefit scores in isolation

More precisely, the altimeter requires the TMR and at either GGI or DORIS for full satisfaction of the

subobjectives concerning sea level height measurements. As for the CERES, several CERES with

different scanning concepts on different orbits, and a cloud imager such as MODIS are required to fully

satisfy Earth and cloud radiation subobjectives.

In this isolated approach, instrument costs are obtained by costing the single instrument missions. Note

that thsis a better option than just applying an instrument cost model, since: a) the cost of selecting an

instrument is not only the cost of developing the instrument, but also the cost of developing the

corresponding bus, integration, testing, launching, and operating the spacecraft; b) some instruments are

international and therefore their development cost is zero; however, the cost of putting that instrument on

a spacecraft is obviously non-zero.

Instrument cost-effectiveness in isolation can be computed by dividing the benefit scores provided in

Figure 37 by the single instrument mission scores.
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The results of this calculation are shown in Figure 38. In a greedy approach to solve the instrument

selection problem, one could start choosing instruments from Figure 38 in decreasing order of cost-

effectiveness until there is no more money left.
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Figure 38: EOS instruments cost-effectiveness when considered in isolation

The second approach consists in the computation of marginal scores with respect to a reference

architecture. In the EOS case study, a natural reference is the actual subset of instruments selected after

all the descoping processes. This subset consists of 25 instruments. The marginal scores of these

instruments with respect to the EOS reference architecture are provided on Figure 39.
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Figure 39: Marginal descoping scores for the EOS instruments w.r.t. the reference EOS architecture

5.3.1.2 S-DSM and E-DSM

After individual instrument scores, the second most important parameter for both the instrument selection

and packaging problems are the bilateral interactions between the instruments. These interactions are

captured by the B-DSM and the C-DSM defined in Section 9.1.2, which were relabeled as S-DSM and E-

DSM for the case of EOSS.
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A partial view of the S-DSM for the EOS instruments is shown in Table 22. In Table 22, each cell was

computed as the difference of the score of a two-instrument mission minus the score obtained when the

two single-instrument subobjectives are superimposed, i.e.:

S-DSM iJ" = Vli,7 - Vi U V

where the operator U computes a score by aggregating the maxima of the individual instrument

subobjective satisfaction scores, and thus takes into account redundancies between instruments.

AIRS AMSR-E AMSU-A ASTER CERES CERES-8 CERES-C HIRDLS HSB MISR MILS MODIS MODIS-B MOPITT OMI TES

AIRS 0.000 0.0 0 0.000 0.000 0.000 0.000 0.000
AMSR-E 0.000 0.000 0.000 0.000 0.000 0.000. 0.000 0.000 0.000 0.000

ASER 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

ASTER 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 .
CERES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CERES-B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CERES-C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HIRDLS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HSB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MISR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000.000

MILS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MODIS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MODIS-B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MOPITT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OIMI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 22: S-DSM for the EOS case study

Therefore, positive values of S-DSM (green cells in Table 22) indicate positive synergies between

instruments, and negative values (red cells in Table 22) indicate negative scientific synergies. Negative

scientific synergies are possible due to design compromises in the presence of multiple instruments that

lead to suboptimal science performance by one of the instruments. For example, instruments taking

measurements in which diurnal sampling plays an important role in the error budget (e.g., altimeters) may

be affected by being put together with other instruments because that a compromise in design may lead to

selecting a suboptimal orbit (namely, an SSO).

The pictorial representation of this adjacency matrix is shown in Figure 40. Only the instruments

considered for the packaging problem were included in Figure 40. We observe that the two MODIS,

MISR, and the chemistry instruments are the most synergistic instruments when only bilateral interactions

are considered. The major clusters in Figure 40 are fairly good indicators of potential missions: we have

the sounders in the top (AIRS, AMSU-A, and HSB on the top), and a chemistry cluster on the bottom

with HIRDLS, MOPITT, MLS, TES, MODIS, with ASTER and MISR in the middle.
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Figure 40: Pictorial representation of the S-DSM for the EOS case study

On the engineering side, a partial view of the E-DSM is shown in Table 23. In this case, each element of

this matrix is computed as the difference between the cost of the two-instrument missions minus the sum

of the costs of the two single-instrument missions (values are in FYOO$M).

AIRS AMSR-E AMSU-A ASTER CERES CERES-B CERES-C HIRDLS HSB MISR MILS MODIS MODIS-B MOPITT OMI TES
AIRS 0
AMSR-E 0 0
AMSU-A 0 0 0
ASTER 0 0 0 0
CERES 0 0 0 0 0
CERES-B 0 0 0 0 0 0
CERES-C 0 0 0 0 0 0 0
HIRDLS 0 0 0 0 0 0 0
HSB 0 0 0 0 0 0 0 0 0
MISR 0 0 0 0 0 0 0 0 0 0
MLS 0 0 0 0 0 0 0 0 0 0 0

MODIS 0 0 0 0 0 0 0 0 0 0 0
MODIS-B 0 0 0 0 0 0 0 0 0 0 0 0
MOPITT 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OMI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23: E-DSM for the EOS case study (partial view)

Hence, positive entries of this matrix represent negative interactions between instruments, while positive

entries of this matrix represent potential savings by putting the instruments on a shared platform. Again,

this matrix only captures bilateral interactions. The graphical representation of this adjacency matrix is

provided in Figure 41.
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Figure 41: Pictorial representation of the E-DSM in the EOS case study (partial view).

It is noticeable from Figure 41 that most cost interactions between EOS instruments are positive. This

means most of these instruments are good candidates to share a common bus. This makes sense because:

a) they are all passive instruments with similar orbit requirements; b) most of them are relatively big

instruments, which precludes the use of Pegastar-class buses and calls for the use of a larger multi-

instrument platform.

5.3.1.3 Data continuity matrix

If bilateral interactions between instruments both in benefit and cost play major roles in the instrument

selection and packaging problems, the data continuity matrix plays a role of equivalent importance in the

mission scheduling problem.
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Introduced in Section 4.4.7, the data continuity matrix DCM is a multi-domain matrix where DCM(m, t)

represents the number of instruments that take measurement m during time interval t. The data continuity

matrix for the EOS case study was computed by considering all domestic and ESA missions (obviously

except for EOS missions) between the years 1997 and 2014. Only a reduced subset of measurements

considered critical in terms of data continuity were considered. The matrix is shown in Figure 42. The

color of each cell is proportional to the number of instruments taking that measurement at that moment in

time (white = 0 instruments, black = 20 instruments).

1.5.3 Cloud amount/distributlo

1.8.203

1.9.1 Spectrally reohed sola

1.9.2 Spectrally resohed IR r -

1.9.3 Spectrally reohed SW r -

3.1.1 Ocean color - 410-680nnm -

3.2.1 Sea awl height [

3.4.2 Ocean surface wind direc -

3.5.1 Surface temperature -oce1-

4.3.2 Sea Ice co r

1998 1989 2 2014 2015

20

18

18

14

12

10

Figure 42: Data continuity matrix for the EOS case study

As shown in Figure 42, the major potential data gaps that EOS had to face were the following:

* Earth radiation budget (measurements 1.9.1 to 1.9.3 on Figure 42)

" Altimetry (measurement 3.2.1 on Figure 42)

" Scatterometry (measurement 3.4.2 on Figure 42)

* Ocean color (measurement 3. 1.1 on Figure 42)
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Hence, the data continuity metric from the mission scheduling problem will favor architectures covering

at least partially these data gaps. It may also be considered to add hard constraints concerning the launch

dates of certain missions in order to close some of these data gaps. This will be discussed in more detail in

section 5.3.4.

5.3.1.4 Mission scores and costs

In the scheduling problem, individual mission scores and costs are precomputed; they do not need to be

recalculated at every architecture evaluation, because mission scores don't change, as nor the selection

neither the packaging of the instruments change. An important assumption implicit in this statement is

that the scheduling mode does not consider synergies across missions, or in other words, it considers that

synergies across missions are negligible compared to synergies within missions. This is clearly an area for

potential future improvement: the mission scheduling problem should take into account synergies across

missions.

The missions considered for the EOS scheduling problem are described in Table 24.

Mission Lifetime (yrs) Payload Cost $M

ACRIMSAT 8 ACRIM 44
AQUA 6 AIRS AMSR-E AMSU-A CERES-C HSB MODIS 1,114

AURA 6 HIRDLS MLS OMI TES 968

ICESAT 3 GLAS 358

JASON-1 6 ALT-SSALT TMR GGI DORIS 264

METEOR-3M 4 SAGE-Ill 125

ORBVIEW 6 SEAWIFS 192
QUIKSCAT 8 SEAWINDS 285

SORCE 6 SOLSTICE 86
TERRA 6 ASTER CERES CERES-B MISR MODIS-B MOPITT 1,252

Table 24: Lifetimes, payloads, and cost estimates for the missions in the EOS scheduling problem

The cost estimates shown in Table 24 were computed using the model and do not represent actual mission

costs. These costs take into account the particularities of the partners with international organization in

each case, such as instruments developed, buses bought or spacecraft launched by international partners.

Table 24 shows that TERRA, AQUA, and AURA are the most costly missions, which is no surprise.

These missions were evaluated in a preprocessing step and the mission scores shown in Figure 43 were

obtained. Figure 43 ranks the missions in terms of scientific return, while Figure 44 ranks the mission in

terms of cost-effectiveness.
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Figure 44: EOS missions for scheduling problems ranked by cost-effectiveness

The three top missions in science score coincide with the three top missions in cost, although AQUA

achieves a higher score and a lower cost than TERRA. Concerning the cost-effectiveness ranking, AQUA

is still the top mission, but the next two missions are SEAWIFS and SAGE-Ill, which are partnerships in

which NASA provided the instrument and the partner provided the spacecraft, launch, and operations.

This type of partnership is very advantageous for NASA from the perspective of the model because it gets

most of the value of the data products without having to pay for the full cost of the spacecraft

development, fabrication, launch, and operations. Furthermore, in both cases, the instruments were

actually continuity instruments that were very high TRL, and therefore the cost of the instrument was

essentially fabrication cost.
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5.3.2 Instrument selection

5.3.2.1 Configuration management: summary of rules used

The EOS instrument selection problem considers the 43 instruments shown in Figure 37. Therefore the

size of the tradespace is 8.8 - 1012 architectures. The reference architecture consists of the 25 instruments

shown in Figure 39.

Before presenting and discussing the results of the EOS instrument selection case study, the different

types of rules that were used to obtain these results are summarized. As explained in the theory chapters,

domain-independent and SAP class-independent rules are provided with the generic algorithm. SAP

class-specific rules are taken from the library of classes of SAPs, in particular from down-selecting

problems. Domain-specific rules are added as needed. Some of the domain-specific rules are common to

all EOSS (e.g., attribute inheritance rules and some emergence rules) and therefore are available in the

expert system, some are specific to EOS, but used by the three SAPs, while some are specific to the EOS

instrument selection problem. The results presented in this section were obtained with the set of rules

provided in Table 25.

In addition to these rules, the enumeration constraints shown in Table 26 were added to the EOS

instrument selection case study. XOR rules require that exactly one of the instruments is selected.

GROUP constraints require that either none or all of the instruments are selected. These rules are not

strictly necessary, as the algorithm is intelligent enough to locate these conflicts. However, they do

accelerate the convergence of the search process.

Class of rule Type of knowledge Source of rule
Grammar and enumeration rules Doma-independent, common to all down- Library-DsPs

selecting problems
Search heuristics Domain-independent, common to all down- Library-DsPs

selecting problems

VASSAR-aggregation rules EOS-specific, common to selection, packaging, See Section 5.2
and scheduling

VASSAR-requirement EOS-specific, common to selection, packaging, See Section 5.2

satisfaction rules and scheduling
VASSAR-instrument capability EOS-specific, common to selection, packaging, See Section 5.2

rules and scheduling
VASSAR-attribute inheritance Domain-specific, common to all EOSS, all SAPs VASSAR

rules
VASSAR-synergy rules Domain-specific, common to all EOSS, all SAPs VASSAR

VASSAR-explanation rules Multiple types VASSAR

Table 25: Summary of rules utilized in the instrument selection case study
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Type of Instruments concerned Justification
constraint

XOR SCANSCAT- These two instruments were essentially redundant and
SEAWIDS competing for selection

XOR MLS-SAFIRE These two instruments were essentially redundant and
competing for selection

XOR GLAS-GLRS These two instrnments were essentially redundant and
competing for selection

GROUP ALT-SSALT TMR It doesn't make sense to consider the altimeter without the
microwave radiometer and vice versa.

Table 26: Additional enumeration constraints added to the EOS instrument selection case study

5.3.2.2 Results from the architectural tradespace exploration

The generic search algorithm complemented with the rules enumerated in Table 25 was initialized with a

random generation containing the reference architecture, and the algorithm was run for 30 generations.

The last generation obtained before down-selection is plotted in Figure 45. In Figure 45, each diamond

represents one EOS selection architecture (i.e., a subset of instruments) in the cost-science space. Keep in

mind that these are only two of the four dimensions of the architectural objective space in instrument

selection problems, as programmatic risk and fairness are also relevant metrics. The color of this diamond

indicates the reason -if any- why this architecture was eliminated in the down-selection process.
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Figure 45: Population of EOS selection architectures after 30 generations in the science-cost space.

212

* Selected alternative architectures
t Reference architecture -----

* delete-archs-not-enough-pareto-ranking
* delete-archs-too-expensive - - --

* delete-archs-too-little-science
* delete-archs-too-much-programmatic-rsk - -

-- - ------ - -- - -- - - --- --

- - I4i4

2 r



The down-selection rules that originated the elimination of the architectures as shown in Figure 45 are the

following:

e Normalized Science (computed as described in Section 4.4.1) > 0.67

* Lifecycle cost (computed as described in Section 4.4.2) < 4 FYOO$B

* Normalized programmatic risk (computed as described in Section 4.4.3) <0.1

* Utility (computed as described in Section 2.3.6.2 with weights 40% science, 40% cost, 20% risk,

0% fairness) > 0.5

* Pareto ranking (computed as described in Section 2.3.6.1) < 4

Note that some architectures are eliminated because they have too high cost or too low science, a handful

because of too high programmatic risk, and most architectures are eliminated because they are highly

dominated (i.e., they have a high Pareto ranking, where higher ranking is worse). The remaining

architectures after application of these down-selection rules are shown in Figure 46, together with the

reference architecture and the utopia point. Four architectures are highlighted on the fuzzy Pareto frontier,

and described in more detail in Table 27.
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Figure 46: Fuzzy Pareto frontier of EOS selection architecture after 30 generations
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Arch. Instruments Instruments
id# added w.r.t. ref deletedw.r.t. ref

1 W +EO$LAWS + LIS + SEAWIFS + MOPITT + $AGE-II + AMSR-ESWIRLS+ mIS

2 MIMR + EOSP+ LIS + SEAWIFS + MOPITT + SAGE-IfI + AMSR-E+
LAWS + SWIRLS 2 x CERES

3 MIMR+ EOSPLIS + SEAWIFS + MOPITT + SAGE-II+ AMSR-E+3 MMR OSP
2 x CERE + ASTER + MISR +OMI
LIS + SEAWIFS + MOPITT + SAGE-IfI + AMSR-E+

4 MIMR 2 x CERES + ASTER + MISR + OMI+ CERES -C + HIRDLS +
SOLSTICE + TES

Table 27: Difference between the EOS reference selection architecture and the top alternative architectures

While the reference architecture is close to the Pareto frontier, it is dominated, and several architectures

obtain the same science for lower cost, or higher science at the same cost. Table 27 shows that none of

the selected alternative architectures carry the SAR. A simple query of the expert system shows that

architectures carrying the SAR were eliminated due to multiple reasons, but the root cause is an

unfavorable cost-effectiveness at high risk. Hence, the model correctly deletes the SAR. The model also

correctly selects MLS over SAFIRE, SEAWINDS over SCANSCAT, and GLAS over GLRS on most of

the top architectures. However, there are some differences between the reference architecture and the top

architectures on Table 27. In particular:

e LIS is deleted because no objectives were associated to lightning. This problem was solved by
15incorporating a new objective in the weather panel that requires lightning

* MOPITT is deleted because it is considered redundant with TES. Both instruments measure CO

and CH4 and have good sensitivity in the lower troposphere, although they are very different

instruments: MOPITT is a gas filter correlation radiometer and thus it has better coverage than

TES but only looks at a very narrow band around the spectral features of interest, while TES is a

Fourier transform spectrometer and therefore captures a much broader spectral region around the

features of interest. In reality, other factors may have played an important role in the decision to

select MOPITT, such as the fact that it was required to have a collaboration with the Canadian

Space Agency.

* SEAWIFS is also deleted because, in this "static view" of the instrument selection problem, the

instrument is considered redundant and inferior to MODIS. In reality, it will become clear when

the scheduling problem is introduced that a second ocean color instrument was needed to be

launched immediately in order to cover a potential data gap before the arrival of MODIS.

1 The charts on Section 5.3.1.1 already take this objective into account, as it can be seen from the positive

score obtained by LIS.
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* SAGE-III is also deleted, in this case because it is considered redundant with HIRDLS and MLS.

This is a similar case to SEAWIFS, although not identical. SAGE-HI was selected due to

couplings with the scheduling problem as well, but not only related to covering a potential data

gap in aerosol data products. In this case, there was a requirement for the known heritage SAGE

instrument to overlap with the new aerosol instrument (namely MODIS) in order to provide

cross-calibration. This constraint appears explicitly in the scheduling problem.

* As a consequence of these instruments being deleted, the model has some money left with respect

to the reference architecture that it chooses to invest primarily on the EOS polarimeter, and to a

lesser degree also on other higher risk instruments such as the Doppler wind lidar LAWS and the

other wind instrument SWIRLS.

* MIMR is selected over AMSR-E, because the two instruments offer comparable capabilities

while MIMR appears to be less massive than AMSR-E. The model suggests that, again, factors

that go beyond purely technical reasons may have affected this decision.

The results that have been presented are the "unconstrained" version of the results, where the model is left

free to find a set of preferred architectures given the inputs. The differences between the reference

architecture and these preferred architectures have been discussed. However, since the purpose of this

case study is to validate that the tool is capable to produce useful results, a second set of results was

obtained with a few additional rules that try to capture the factors mentioned in the discussion

above. These rules are given in Table 28. FIX constraints require that the instruments are all selected.

Type of Instruments Justification
constraint concerned

FIX ASTER HSB MOPITT The selection of international instruments was driven by
AMSR-E policy considerations and therefore needs to be forced as an

externality. This rule was needed for AMSR-E and
MOPITT, but ASTER and HSB were added for consistency.

FIX SEAWIFS SAGE-III These two instruments are continuity instruments required to
cover potential data gaps and to provide cross-calibration
with other similar instruments in the set.

Table 28: Additional rules added to the EOS instrument selection case study in order to model non-technical factors
discussed above

With these rules incorporated, the model was run for 70 more generations. The results after these 70 extra

generations are shown in Figure 47, and the remaining architectures after application of down-selection

rules are shown in Figure 48, together with the reference architecture and the utopia point.
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Figure 47: Population of EOS selection architectures after 100 generations in the science-cost space.
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Figure 48: Fuzzy Pareto frontier of EOS selection architecture after 100 generations
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It is apparent on Figure 48 that the reference architecture not only lays on the fuzzy Pareto front, but

it is also very close to the knee of the curve, i.e., the point where there is a pronounced change in the

marginal returns of investment. Alternative architecture #1 flies five more instruments than the reference

architecture and flies the laser altimeter mission with the ranging option, but at a cost about 50% higher.

Architecture #2 flies four more instruments than the reference architecture that enable it to satisfy

valuable measurement requirements concerning atmospheric winds, cloud and aerosol properties, and

ocean color, for a gain of about 3% in total science at a price of about 1.2$B.Four architectures are

highlighted on the fuzzy Pareto frontier, and described in more detail Table 29.

Arch. Instruments Instruments
id# added w.r.t. ref deletedw.r.t. ref
1 EOSP GLRS LAWS MIMR GLAS

MODIS-T SWIRLS
2 EOSP GLRS MIMR MODIS- GLAS

T SWIRLS
3 EOSP 2 x CERES

4 EOSP ACRIM AMSU-A CERES HIRDLS LIS MISR
SOLSTICE TES

Table 29: Difference between the EOS reference selection architecture and the top alternative architectures, with the
additional rules defined in Table 28

Note that alternative architecture #3 on Table 29 is almost identical to the reference architecture.

However, while Table 29 shows much fewer differences with respect to the reference architecture than

the previous Table 27, there are still some differences that persist.

In particular, it is important to note that EOSP continues to appear on most non-dominated architectures.

As a matter of fact, as budget is decreased from the $7B, architectures that delete other instruments while

keeping EOSP tend to score better than architectures that delete EOSP. This is so because EOSP was a

small, high performance instrument that was unique in its capabilities due to the multiple polarization

measurements, which are very valuable to the cloud and aerosol communities, beyond the multi-angular

measurements of MISR.

5.3.2.3 Discussion

At this point, it is necessary to remind that the goal of the EOS case study was to demonstrate the validity

of the tool by trying to replicate the results of the real EOS case study. Overall, the results replicate what

happened in reality in the EOS program, but only when the following rules were added into the analysis:
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* Force the selection of MOPITT: MOPITF is a Canadian gas filter correlation radiometer,

essentially redundant with TES in its capabilities of measuring CO and CH4 with sensitivity in the

lower troposphere. The motivations to fly MOPITT were driven by external needs (satisfaction of

the needs of international partners). Hence, the selection of MOPITT was forced in this

simulation in order to capture these policy considerations 6 .

" Force the selection of AMSR-E instead of MIMR: AMSR-E and MIMR were multi-spectral

MW imaging radiometers developed by the Japanese and ESA respectively, and essentially

competing for the same spot in EOS. Interestingly, the algorithm systematically choses MIMR

over AMSR-E, because they are essentially equivalent in terms of science and MIMR was,

according to the reference available at the time, smaller and less massive and therefore considered

as a less costly option. AMSR-E was selected instead of MIMR again because of non-technical

considerations.

* Force the selection of SAGE-III: The algorithm detects that SAGE-III and other chemistry

instruments are essentially redundant, with SAGE-III even being inferior in some aspects, mostly

due to poor coverage because of the occultation measurement technique. SAGE-III was in reality

a continuity instrument, whose goal was to provide cross-calibration to subsequent aerosol

instruments. Thus, the selection of SAGE-III was forced as a hard constraint for this reason.

* Force the selection of SEAWIFS: SEAWIFS is an ocean color instrument that is redundant

with, and inferior to MODIS in that respect. Again, the selection of SEAWIFS in the actual EOS

obeyed data continuity considerations. This cannot be captured with soft constraints, and

therefore the selection of SEAWIEFS was forced in this simulation.

In summary, it is apparent that the tool successfully modeled the major trade-offs in the EOS instrument

selection problem, once needs related to international partners, and couplings with the scheduling

problem, were taken into account.

5.3.3 Instrument packaging

5.3.3.1 Configuration management: summary of rules used

The EOS packaging case study considers the 16 instruments that flew on the EOS/Terra, Aqua, and Aura

spacecraft:

* TERRA: ASTER, CERES, MISR, MODIS, CERES-B, MOPITT

* AQUA: AIRS, AMSU-A, HSB, AMSR-E, MODIS-B, CERES-C

16 Private conversation with Dr Christopher Scolese (NASA HQ)
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0 AURA: HIRDLS, MLS, OMI, TES

This implies a total of Bell(16) = 10.4 - 109 architectures. The reference architecture is thus a 3-satellite

architecture. This set of instruments is particularly challenging for several reasons:

e Many instruments are similar in characteristics (passive imagers) and orbit requirements (SSO,

high altitude, AM or PM orbits)

e They are very synergistic instruments

For this case study, the following launch vehicles were considered.

* Atlas 5 (EOS/Terra flew on an Atlas-5)

e Delta-7920 (EOS/Aqua flew on a Delta-7920)

e Delta-7420 (EOS/Calipso and EOS/Cloudsat flew on a Delta-7420)

e Delta-7320 (EOS/Icesat flew on a Delta-7320)

e Taurus-3 110 or Taurus-XL (available in 2004, EOS/OCO flew on a Taurus-3 110)

e Taurus 2110 or Taurus (EOS/QUIKTOMS flew on aTaurus 2110)

The Minotaur-IV is not considered because it did not start service until 2010. European launchers were

also discarded.

In terms of orbits, an initial run of the model for a few generations showed that only the SSO-800km-AM

and SSO-800km-PM orbits need to be considered, as the model never assigned a different orbit to any

spacecraft.

As it was done in the instrument selection case, before presenting and discussing the results of the EOS

instrument packaging problem, the different types of rules used in the EOS instrument packaging problem

that are not specific to this instance of SAP are reminded in Table 30.

In addition to these rules, the a few enumeration constraints were added to the EOS instrument packaging

case study. Note that none of these rules are strictly necessary, as the algorithm is intelligent enough to

locate these conflicts. The goal of these rules is rather to focus on the interesting regions of the

tradespace, and thus accelerate the convergence of the search process. These additional enumeration

constraints are shown in Table 31.
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Class of rule Type of knowledge Source of rule
Grammar and enumeration rules Domain-independent, common to all set Library-PaPs

partitioning problems
Search heuristics Domain-independent, common to all set Library-PaPs

partitioning problems
VASSAR-aggregation rules EOS-specific, common to selection, See Section 5.2

packaging, and scheduling
VASSAR-requirement satisfaction rules EOS-specific, common to selection, See Section 5.2

packaging, and scheduling
VASSAR-instrument capability rules EOS-specific, common to selection, See Section 5.2

packaging, and scheduling
VASSAR-attribute inheritance rules Domain-specific, common to all EOSS, VASSAR

all SAPs
VASSAR-synergy rules Common to all SAPs VASSAR
VASSAR-explanation rules Multiple types VASSAR
Down-selecting rules Domain-independent, common to all Library-PaPs

partitioning problems
Table 30: Summary of rules utilized in the EOS instrument packaging case study

Type of Instruments Justification
constraint concerned

APART' CERES It was a requirement of the radiation budget group that at least
CERES$-C CERES flew in different orbits in order to obtain a better diurn

sampling (Wielicki et al., 1996).
APART MODIS To achieve 12h temporal resolution in several key data product

MODIS-B
TOGETHER AIRS AMSU-A The three sounders need to be together as opposed to in a train

HSB configuration in order to ensure high accuracy retrievals.
Table 31: Additional enumeration constraints added to the EOS instrument packaging case study

2
al

S.

Also with the idea of steering the algorithm towards interesting regions of the tradespace, architectures

with more than six satellites, or more than ten instruments per satellite, were not considered.

5.3.3.2 Results from the architectural tradespace exploration

The generic search algorithm complemented with the rules enumerated in Table 30 and Table 31 was

initialized with a random generation containing the reference architecture, and the algorithm was run for

30 iterations. The last generation obtained before down-selection is plotted in Figure 49. In Figure 49,

each diamond represents one EOS packaging architecture (i.e., a partition of instruments) in the cost-

science space. The red square represents the reference architecture, and the yellow star represents the

utopia point.
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Results for generation 30
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Figure 49: Population of EOS packaging architectures after 30 generations in the science-cost space

The color of this diamond indicates the reason -if any- why this architecture was eliminated in the down-

selection process. The following down-selection rules were applied:

* Normalized Science > 0.78

* Lifecycle cost < 4 FYOO$B

* Normalized programmatic risk <0.4

e Normalized launch risk < 0.65

* Utility >0.6

* Pareto ranking <6

The remaining architectures after down-selection rules are applied are shown in Figure 50, together with

the reference architecture and the utopia point. The first thing that we notice from Figure 50 is the

appearance of vertical "clusters" of architectures. This structure appears in tradespace exploration when

metrics have discrete codomains' . In this case, the codomain of the science metric is discrete mostly

because: a) there is a finite number of synergies between instruments to be captured, and each synergy

can either be captured or not; b) the function science(orbit) for each instrument typically only takes 2-4

values in the science codomain.

17 The codomain of a function is the image of its domain, i.e. given f: X -> Y, X is the domain of f, and Y

is its codomain.
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Figure 50: Fuzzy Pareto frontier of EOS packaging architecture after 30 generations

The first reason is in part a result of a modeling assumption that makes it possible for trains of spacecraft

to retain all of the scientific synergies. Hence for example, the model considers that in the reference

architecture, all of the instruments from the AQUA and AURA spacecraft can be cross-registered to the

level desired in to exploit synergies. Conversely, under this configuration, satellites flying on different

orbits (e.g. AM vs PM orbit) do not allow cross-registration to a level that is enough to ensure all

synergies.

The second cause is related to the fact that all architectures on the Pareto front consist of two types of

orbits, both SSO at 800km: AM orbits, and PM orbits. As mentioned before, the model finds no

motivation to fly any instruments at any orbit different than these two. This is really a particularity of this

instrument set, and it is not a generality, as it will become clear for example in the Decadal survey case

study. A broader variety of preferred instrument orbits would also potentially lead to the disappearance of

the vertical clusters.

One could argue that there is a third reason why this codomain is discrete, concerning the fact that there is

a finite number of subobjectives that can be satisfied at a finite number of levels (full satisfaction, most

value, some value, none). However, in practice, this fact does not justify the clusters because the number

of subobjectives and options is too large for this effect to be visible.

Three alternative architectures were identified on Figure 50 at different points on the fuzzy Pareto

frontier, and described in more detail in Table 32.
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Arch #sats #instruments Allocation
per satellite

1 5 6-5-1-2-2 1 (PM): AIRS AMSR-E AMSU-A CERES-C HSB MODIS
2 (AM): ASTER CERES CERES-B MISR MODIS-B
3 (PM): OMI MOPITT
4 (PM): MLS TES
5 (PM): HIRDLS

2 4 7-5-2-2 1 (PM): AIRS AMSR-E AMSU-A CERES-C HSB MODIS OMI
2 (AM): ASTER CERES CERES-B MISR MODIS-B
3 (PM): HIRDLS MOPITT
4 (PM): MLS TES

3 5 6-6-2-2 1 (PM): AIRS AMSR-E AMSU-A HSB MODIS MOPITT
2 (AM): ASTER CERES CERES-B MISR MODIS-B OMI
4 (PM): MLS CERES-C
5 (PM): HIRDLS TES

ref 3 6-6-4 1 (PM): AIRS AMSR-E AMSU-A CERES-C HSB MODIS
2 (AM): ASTER CERES CERES-B MISR MODIS-B MOPITT
3 (PM): HIRDLS MLS OMI TES

Table 32: Difference between the EOS reference packaging architecture and the top alternative architectures

While the reference architecture is not on the science-cost Pareto front, Figure 49 and Figure 50 show that

the reference architecture is close to the utopia point, since it achieves the maximum scientific score and

its cost is only about $65M (i.e., 2.0%) higher than the lowest cost.

Note that this is only a projection of a 4D space on 2D, since launch and programmatic risk are other

metrics of interest for packaging architectures. In fact, the reference architecture being a 3-satellite

architecture, it scores poorly on these categories compared to more distributed architectures with four or

five satellites, as it will be shown later in this section.

First of all, we use the explanation facility to understand why the reference architecture does not achieve

the best score in terms of affordability. Explanation rules show that this is due to launch cost. This is

better illustrated in Figure 51, which provides a pictorial representation of the reference architecture and

the three alternative architectures.

For each satellite, mass, orbit, lifecycle cost, and launch vehicle class are shown, in addition to the

complexity penalties defined in 0. The legend for the complexity penalties is as follows: Green means

inactive penalty, red means active penalty; M stands for mechanisms penalty, T stands for Thermal

penalty, D stands for data rate penalty, A stands for ADCS penalty, S stands for scanning penalty, and E

stands for EMC penalty.
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Figure 51 clearly shows how the reference architecture requires an Atlas-5 to launch Terra, while no

Atlas-5 launches are needed in any of the alternative architectures. Launch costs for the reference

architecture (1 Atlas-5 + 2 Delta-7920) are $240M. Launch costs for the alternative architectures are

$215M (architecture 1), $220M (arch 2) and $205M (arch 3).

The second most important cost difference resides in expected cost overrun. The model computes an

expected cost overrun as a function of the expected schedule slippage, which in turn is a function of how

instruments of different maturities are grouped together. All other components of the cost budget are very

similar between all the architectures shown in Table 32, as it can be seen on Table 33.
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Arch Science Payload Bus Launch Program IA&T Ops Expected Total
cost cost cost cost cost cost overrun cost

1 0.80878 484.8 739.0 215.0 362.7 280.8 252.6 208:2 2,543
2 0.80878 484.8 744.2 220.0 359.6 282.1 251.2 215.4 2,557
3 0.808348 484.8 748.8 205.0 359.3 283.1 251.5 2107 2,543

ref 0.80878 484.8 757.8 240.0 353.5 286.6 249.0 237.3 2,608
Table 33: Cost comparison between EOS reference and alternative packaging architectures

It was mentioned earlier that the reference architecture is a 3-satellite architecture while alternative

architectures have four or five satellites, which leads to improved cost, launch risk, and programmatic risk

metrics. Distributing the 16 instruments over a larger number of satellites is more desirable for any risk-

averse decision maker that wants to maximize the utility associated to the number of instruments

successfully put into orbit. An interesting follow-up question is thus, how do more distributed

architectures compare in terms of science and cost to the reference architecture? In order to answer this

question, Figure 49 was redrawn with the colors of the diamonds now representing the number of

satellites in the architecture. The resulting chart is provided in Figure 52.
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Figure 52: Packaging architectures in the cost-science space, colored according to number of satellites

Several comments can be drawn from Figure 52:

e Architectures with 2, 3, 4, 4, and 6 satellites are capable of achieving the highest science

score. They do that by distributing the satellites in two trains: an AM train, and a PM train.
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* The least costly architectures are 4-, and 5- satellite architectures. This is so because more

distributed architectures can use the Taurus launch vehicle which is considerably cheaper than the

Delta-2. This result is of course sensitive to the assumptions made in terms of launch vehicles and

standard/dedicated buses.

e The most costly architectures are generally 2-satellite architectures. 2-satellite architectures

absolutely require the presence of at least one Atlas-5.

* The reference architecture is the least costly 3-satellite architecture. Other 3 satellite

architectures are not so compensated and achieve worse launch packaging factors.

The clustered structure of the trade space observed on Figure 49 suggests an isoperformance approach (0.

L. de Weck & Jones, 2006), where all the architectures that achieve the maximum science score are

identified, and then the cost-risk Pareto front is plot. This computation was done and the results are shown

on Figure 53, where lifecycle cost and an average risk metric constructed as the average of programmatic

risk and launch risk are shown, only for the subset of architectures that achieve the maximum science

score.
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Figure 53: Cost-risk tradespace and Pareto frontier for architectures achieving the maximum science score

The best architecture on Figure 53 is also the best architecture on the science-cost space (alternative

architecture #1 on Table 32). The other architectures on the fuzzy Pareto frontier of the cost-risk space are

also 5-satellite architectures, where the instruments in the AURA spacecraft are distributed into several

satellites.
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All these results were obtained by assuming that a dedicated bus was developed for each satellite. As

explained in Section 4.2.2.4, the RBES has the capability to allow for the use of standard buses instead of

dedicated buses. Table 34 shows the difference in cost for the reference and alternative architectures when

standard buses and dedicated buses are considered. This table only considers the T-330, the BCP-2000

and the Pegastar buses.

Arch# Lifecycle cost Lifecycle cost
(dedicated bus) (standard bus)

1 2,543 2,285
2 2,557 2,285
3 2,543 2,019
ref 2,608 2,003

Table 34: Difference in lifecycle cost for reference and alternative EOS packaging architectures with standard buses vs
dedicated buses

It is very interesting to see that when standard buses are included, the reference architecture does

not only achieve the highest science score, but it is also the most cost-effective way of doing so. This

is so because the bus packaging factors for the reference architecture are better than for the alternative

architectures. The follow-up question is then whether there are other architectures that also obtain the

same science and cost scores than the reference.

In order to answer this question, the tradespace search algorithm was run again, this time forcing the

selection of standard buses for all spacecraft. The results of this new simulation are shown on Figure 54.
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Figure 54: Population in last generation for the EOS packaging problem when standard buses are used
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The set of down-selected architectures is shown on Figure 55. It is thus apparent that the reference

architecture is the best possible architecture on the science-cost space. Other architectures achieve the

same science and cost. These architectures are variations of the reference architecture where MOPITT is

on one of the PM spacecraft.

Results for generation 30
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M 05 0.81 0.815

Figure 55: Down-selected architectures in the EOS packaging problem when standard buses are used

Note that when standard buses are used the AURA spacecraft is not broken into smaller spacecraft

because the MLS instrument by itself is 400kg and therefore requires a T-330 bus (the assumption is that

the BCP-2000 can fit up to 300kg of payload). Hence, if this T-330 bus is necessary for MLS in any case,

it is more interesting to fill it to its capacity (1300kg of payload) by adding the other instruments.

While science and cost are only 2 out of the 4 metrics considered (there are also launch and programmatic

risk), and as explained before the reference architecture scores poorly in risk due to the lower number of

satellites, any rational decision maker would agree to put science and cost as more important than launch

and programmatic risk, given the definitions of these metrics described in Section 4.4.

5.3.3.3 Discussion

It is apparent from the analysis that the instrument packaging problem is harder to solve than the

instrument selection problem.
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This is so not only due to a larger tradespace size as shown in Section 2.2, but also because the level of

modeling fidelity that is required is higher. In other words, it is a more knowledge-intensive problem than

the instrument selection problem. Variations in scientific benefit across the whole spectrum of packaging

architectures is one order of magnitude lower than the variation across the spectrum of selection

architectures, because the "bulk" of the benefit is set with the instrument selection, and variations in the

packaging problem come from synergies between instruments, and design compromises that affect

scientific output (e.g., orbit selection). Therefore, a higher fidelity is required in order for the model to

successfully capture the main architectural trade-offs.

The structure of the cost-science tradespace is also different to the one for the instrument selection

problem. While the instrument selection trade space clearly showed a convex frontier on a wide range of

science scores and costs, the trade space for the packaging problem is structured in clusters, where

architectures within one cluster have the same science scores because they capture the same synergies.

This suggests several things: a) that the packaging problem is more a search problem than it is an

optimization problem, in the classical meaning of the terms "search" and "optimization", the difference

being on the difficulty of finding an acceptable architecture (as opposed to a good architecture), which is

far greater in the packaging problem; b) that science and cost may not be competing metrics in the

packaging problem. Indeed, it is not straightforward that architectures with high science are more costly,

since science essentially is a matter of capturing all the right science synergies, and number of satellites

cost is a poor indicator of lifecycle cost due to quantized launch and standard bus costs; c) that an iso-

performance strategy can be utilized, where first all architectures that satisfy the maximum scientific

score are identified, and then the optimization occurs in the cost-risk space.

In terms of validation, overall, the results of the EOS instrument packaging problem replicate what

happened in reality in the EOS program, if:

e The launch vehicles available and considered at the time are taken into account: Since

differences in cost across good packaging architectures are relatively small, quantized items such

as launch cost play an important role. Launch cost is "quantized" because it can only take values

from a small discrete set of possibilities. Hence, a small change in an architecture, such as

moving an instrument from one satellite to another one, may lead to a big change in cost due to a

change in launch vehicle.
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" The standard buses available and considered at the time are taken into account. As

described in Chapter 4, the tool allows two different approaches to satellite sizing: the design

from scratch of a dedicated bus, tailored to the needs of its payload; b) the reuse of an available

"standard" bus. The latter option is less costly in general whenever good packaging factors can be

achieved, as development costs are very much reduced. A review of the literature and

conversations with experts revealed that there were essentially three standard buses considered at

the time of EOS: the T-330, a.k.a. as the EOS PM common spacecraft, for payloads about lmt;

the BCP-2000, for payloads around 300kg; and the Pegastar, for payloads below 70kg. Again, the

choice of these standard buses is important and another quantized item in lifecycle cost, and thus

adding other options would have led to different results. This is seen for example with MLS,

which is too constraining to be flown on a BCP-2000, and thus requires a T-330. If an

intermediate bus between the BCP-2000 and the T-330 was added, this result would certainly

change.

* Cross-registration between instruments in a train configuration is considered sufficient to

capture all relevant synergies. This assumption implies that a two-instrument satellite and a

train of two single-instrument satellites are essentially identical from the science perspective. This

assumption neglects the costs of cross-registering the data sets of the instruments, which could be

comparably higher in the case of trains. This assumption is extremely important in determining

scientific scores of most architectures, and in fact, results radically change if synergies between

trains are not allowed. Simulations without intra-train synergies led to architecture classes driven

by the placement of MODIS with either AQUA or AURA: architectures with a copy of MODIS

in AQUA lose some synergies between MODIS and the chemistry instruments (e.g., aerosol and

cloud properties), while architectures carrying that same copy on AURA instead miss important

synergies between MODIS and the weather instruments (essentially cloud mask, cloud type, and

aerosols).

While the reference architecture is the best architecture under these assumptions if only science and cost

are considered, other good architectures identified by the model do not fly MOPITT on the AM

satellite, but on the PM train, with the other chemistry instruments. The reason why MOPITT was

flown in TERRA is a coupling between the scheduling and the packaging problems. There was a

requirement by the Canadians to fly MOPITT on the first EOS satellite regardless of the rest of the

payload, and that was the AM satellite.
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As a final note, the model also identified a class of alternative architectures that are potentially of interest.

In this class of architectures a PM spacecraft is broken down into 2 or 3 smaller spacecraft, all flying in a

PM train. The chemistry instruments appear to be better options for distribution over several satellites

than the AQUA suite. It is important to note that this class of architectures is only enabled if dedicated

buses are used, or if a mid-size bus between the BCP-2000 and the T-330 is available. If this is not

the case, the sounders on one side, and the MLS instrument on the other side, already require two T-330

buses, which then can be filled out to capacity by adding the rest of the AQUA/AURA instruments.

5.3.4 Mission scheduling

5.3.4.1 Configuration management: summary of rules used

The missions considered for the EOS scheduling problem are the ones presented in Figure 43. The data

continuity matrix is the one shown in Figure 42. As it was done in the instrument selection and packaging

cases, before presenting and discussing the results of the EOS mission scheduling problem, we remind the

different types of rules that were used to obtain these results. All the results presented in this section were

obtained with the following set of rules:

Class of rule Type of knowledge Source of rule
Grammar and enumeration rules Domain-independent, common to all set Library-PePs

permuting problems
Search heuristics Domain-independent, common to all set Library-PePs

permuting problems
VASSAR-aggregation rules EOS-specific, common to selection, See Section 5.2

packaging, and scheduling
VASSAR-requirement satisfaction rules EOS-specific, common to selection, See Section 5.2

packaging, and scheduling
VASSAR-instrument capability rules EOS-specific, common to selection, See Section 5.2

packaging, and scheduling
VASSAR-attribute inheritance rules Domain-specific, common to all EOSS, VASSAR

all SAPs
VASSAR-synergy rules Common to all SAPs VASSAR
VASSAR-explanation rules Multiple types VASSAR
Down-selecting rules Domain-independent, common to all set Library-PePs

permuting problems
Table 35: Summary of rules utilized in the EOS mission scheduling case study

In addition to these rules, a few enumeration constraints were added to the EOS instrument selection case

study. These enumeration constraints are provided in Table 36. Note that most of these rules are not are

strictly necessary, as the algorithm is intelligent enough to locate these conflicts. The goal of these rules is

rather to focus on the interesting regions of the tradespace, and thus accelerate the convergence of the

search process.

231



Missions Type of Dates Justification
concerned constraint concerned
JASON-1 between-dates 1997-2002 to close gap frot TOPEX-POSEIDON
TERRA Before-date 2002 To overlap with Landsat-7 ETM+
AQUA after-date 2001 for overlap with A train
AURA between-dates 2002-2008 for overlap with A train

METEOR between-dates 1999-2003 constrained by international partner
ORBVIEW before-date 2000 constrained by international partner

SOiRCB after-date 2000 Bec ause of 'TRL considerations
ACRIMSAT before-date 2001 to close gap in radiation budget

Table 36: Additional enumeration constraints added to the EOS mission scheduling case study

While this may seem like a very restraining set of constraints, in reality there are thousands of

architectures that satisfy them. Finally, in terms of budget, an annual budget of $500MIyear was assumed

for every year between 1997 and 2007.

5.3.4.2 Results from the architectural tradespace exploration

The generic search algorithm complemented with the rules enumerated in Table 46 was initialized with a

random population containing the reference architecture, and the algorithm was run for 50 iterations. The

last generation obtained before down-selection is plotted in Figure 56.
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Figure 56: Population of EOS scheduling architectures after 100 generations in the discounted benefit-data continuity
space.
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In Figure 56, each diamond represents one EOS scheduling architecture (i.e., a permutation of missions)

in the discounted benefit - data continuity space. Again, the color of this diamond indicates the reason -if

any- why this architecture was eliminated in the down-selection process. The following down-selection

rules were applied:

e Normalized data continuity > 0.95 (normalized w.r.t. the reference architecture)

e Normalized discounted benefit > 0.99 (normalized w.r.t. the reference architecture)

* Utility > 0.65

* Pareto ranking < 4

Figure 56 reveals the structure of the discounted value-data continuity tradespace. The last generation

appears as a cloud of points that loosely ressembles an ellipse whose semimajor axis forms an angle of

about 45degress with the horizontal axis. This suggests that the two metrics are positively correlated as

opposed to being antagonist. Indeed, in the case of the NASA EOS, it appears that launching the most

valuable missions first also tends to cover the most data gaps. This is not the case in general, as less

valuable missions could cover very important data gaps.

The most important data gaps for the EOS case study were presented in Figure 42, and they are listed

again here as a reminder: Earth radiation budget (incoming solar irradiance, outgoing SW and LW

radiance), ocean color, sea level height, and sea surface winds. The ocean color gap can be covered by

SEAWIFS or any of the two MODIS (AQUA, TERRA). The radiation budget gaps are covered by

ACRIMSAT (solar irradiance) and the CERES instruments (AQUA, TERRA). The sea level height can

only be covered by the altimetry mission, and the sea surface wind gap can only be covered by the

scatterometer.

Mission scores and cost-effectiveness were shown in Figure 43 and Figure 44 respectively. TERRA,

AQUA, and AURA were the top three missions in scientific score. The most cost-effective missions were

AQUA, SAGE-III, and SEAWIFS, the latter providing relatively high value at very reduced cost through

reflight of a very mature instrument in a partnership with external partners taking care of part of the costs.

The remaining architectures after down-selection are shown in Figure 57, together with the reference

architecture and the utopia point.
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Figure 57: Fuzzy Pareto frontier of EOS scheduling architecture after 100 generations

Figure 57 shows the structure of the discounted value-data continuity tradespace. In this case, we observe

four clouds of points that may potentially identify different classes of architectures. The launch dates of

the architectures in each of these four clusters are shown in Figure 58 in order to analyze the differences

between these four clusters in the architectural domain - as opposed to the metrics domain.

The boxplots Figure 58 show several differences between the four clusters. Launch dates in cluster 4

(bottom right), to which the reference architecture belongs, are naturally the closest to the reference

architecture launch dates. AQUA is systematically launched earlier in cluster 2 (top right) and 3 (bottom

left) than in clusters I (top left) and 4, which leads to a net gain in discounted value, since AQUA is the

highest value mission. A similar argument applies to AURA: all clusters except cluster 4 launch AURA

earlier, leading to benefits both in discounted value and data continuity. Launching AURA earlier leads to

a delay in ICESAT. Note that no continuity requirement is identified for ice sheet topography

measurements in the EOS case study. The requirement appeared after ICESAT, as a strong desire to

continue the laser-based measurements started by ICESAT with ICESAT-II. Clusters 2 and 3 fly SAGE-

III earlier, and QUIKSCAT later, which leads to higher discounted value at the price of some data

continuity, as it takes longer to cover the scatterometry data gap. Finally, SORCE is launched much

earlier in cluster 1 in order to cover the important data gap for Earth radiation budget.
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Figure 58: EOS scheduling tradespace exploration: launch dates statistics for four clusters of architectures shown in
Figure 57

5.3.4.3 Discussion

The analysis of the EOS mission scheduling problem shows that the scheduling model at its current

version is the one that is least capable to replicate results. The major differences are the following:

* AQUA and AURA are launched earlier for an increased discounted value

* ACRIMSAT and SORCE are launched earlier to cover the solar irradiance data gap

* In exchange, ICESAT, SEAWIFS, and QUIKSCAT are launched later

These differences are due to several simplifying assumptions in the model that affect the quality of the

results:
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* Mission investment over time: The model assumes that the budget for Earth science missions is

entirely put on one mission at a time. This is particularly not true for the EOS case study. In fact,

NASA budgets for Earth science between 1997 and 2004 are available on-line, and show that

investments were systematically made on several missions at a time. A consequence of this is that

the model does not allow for very close launches, since once a mission is launched, the

development of the next mission has to start from the beginning. In reality though, up to four

EOS missions were launched in 1999, not counting Landsat-7, which was technically also part of

the EOS program, but was not included in the analysis because most of the money came from a

different budget (USGS).

* Choice of precursor missions for data continuity: The list of precursor missions that included

in the data continuity matrix plays a major role in the determination of the data continuity scores.

For this EOS case study, all NASA, NOAA, ESA, CNES, and METEOSAT missions except EOS

missions were included. Future analysis could include different sets of precursor missions.

5.4 Conclusion of the EOS case study

While internal verification of different components of the framework has been the object of earlier

chapters, this chapter has dealt with overall model validation. The chapter has applied the framework

presented in chapters 2 to 4 to a retrospective case study in order to show that it is capable of reproducing

decisions made in the past, which is used as a proxy for modeling quality. While this is not a perfect

measurement of performance, the ability of the model to replicate results is a necessary condition for it to

be useful.

The framework has been applied to three SAPs: EOS instrument selection, EOS instrument packaging,

and EOS mission scheduling. Results for the EOS instrument selection problem almost perfectly replicate

the decisions made in the real program, with a few caveats that were identified and explained, mostly

related to the EOSP polarimeter, needs of international partners, and couplings with the scheduling

problem.

The EOS instrument packaging problem appeared as a harder problem to solve, but once the correct

assumptions in terms of launch vehicles and standard buses were introduced into the model, the results

were found to be in very good accordance with reality.
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The results for the EOS mission scheduling problem were the least satisfactory. Model assumptions

concerning the investment profile over time that have been used in previous work were deemed

inappropriate for the EOS case study, which led to a few clear differences between the reference

architecture and the best architectures identified by the model.Overall, the results obtained are satisfactory

enough to give us confidence to apply the framework to other case studies. In the next chapters, two case

studies are studied in detail. After that, a cross-case analysis is conducted in Chapter 8.
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6 Case Study 2: NASA Decadal Survey

6.1 Context and goals for the case study

In 2004, the NASA Office of Earth Science, the National Oceanic and Atmospheric Administration

(NOAA) National Environmental Satellite Data and Information Service (NESDIS), and the U.S.

Geological Survey (USGS) Geography Division asked the National Research Council (NRC) Space

Studies Board (SSB) to "conduct a decadal survey to generate consensus recommendations from the Earth

and environmental science and applications communities regarding a systems approach to space-based

and ancillary observations that encompasses the research programs of NASA; the related operational

programs of NOAA; and associated programs such as Landsat, a joint initiative of USGS and NASA."

(NRC Committee on Earth Science and Applications from Space, 2007)

In response to this request, an ad-hoc NRC committee consisting of experts from different disciplines of

the Earth sciences produced a report known as the "Decadal Survey". The DS lays out a reference

architecture for an integrated EOSS for the next decade that will fulfill the needs of all the scientific

communities in terms of space-based measurements, while also providing essential societal benefits

(NRC Committee on Earth Science and Applications from Space, 2007).

This reference architecture consists of 15 missions for NASA and 2 missions for NOAA. A total of 39

instruments were assigned to these 17 missions on the basis of a variety of technical, scientific, and

programmatic factors, including synergies between instruments, data continuity, orbit compatibility,

different instrument maturity levels, and expected yearly budget. For each mission, the report provides a

description of the scientific objectives fulfilled by the mission, the physical parameters measured, the

instruments used, the orbit required, a rough estimation of the lifecycle mission cost, and the expected

mission launch date.

This reference architecture was created based on a series of assumptions that were deemed reasonable at

the time, such as mission cost estimates, yearly budget, and precursor missions outside the scope of the

Decadal Survey study that were expected to be flying by this decade. However, some of these

assumptions are no longer true.

First, mission cost estimates according to NASA have increased by 70% on average (Seher, 2009); note

that this number accounts for the missions that have not yet started development and therefore have not

yet had the opportunity to suffer any development-related cost overrun.
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Second, yearly budget has decreased by about 50% with respect to the $750M/yr that can be inferred from

the Decadal Survey' 8 . And finally, some of the precursor missions have failed, or have been severely

delayed (e.g. the Orbiting Carbon Observatory mission or OCO was lost at launch; the National Polar-

orbiting Operational Environmental Satellite System, or NPOESS, was delayed, reorganized, and

descoped; and the Glory mission was also lost at launch.) Therefore, the question arises whether this is

still the best architecture possible given the current assumptions.

The purpose of this case study is thus to apply the methodology described in the thesis in order to provide

recommendations for NASA, NOAA, and the USGS, in the form of alternative architectures that are

potentially better than the reference architecture under the current set of assumptions.

6.2 Case study specific rules

6.2.1 Aggregation rules

6.2.1.1 1st level of decomposition of stakeholder needs: panels

Measurement requirements were categorized in six panels for the Decadal case study, according to the

Decadal Survey report (NRC Committee on Earth Science and Applications from Space, 2007): climate

(CLI), weather (WEA), water (WAT), land and ecosystems (ECO), human health (HEA), and solid Earth

(SOL). These six panels were weighted in importance according to the findings of Tim Sutherland's

thorough stakeholder analysis (Sutherland, 2009):

Panel Id Description Weight
Weather WEA Weather (including space weather and chemical weather) 21%
Climate CLI Climate variability and change 21%

Land ECO Land-use change, ecosystems dynamics, and biodiversity 21%
Water WAT Water resources and the global hydrological cycle 16%
Health HEA Human health and security 11%

Solid Earth SOL Solid Earth hazards, resources, and dynamics 11%
100%

Table 37: 1st level of decomposition of stakeholder needs for the Decadal case study

We note that in the actual Decadal Survey report there is a seventh panel named "Earth science

applications and societal benefits".

18 This value of 750$M/year is not explicit in the Decadal Survey report, but it can be inferred from adding

their own mission cost estimates and dividing the total cost by the 10 years they assumed it would take to launch

them.
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In reality, this panel acted as a cross-disciplinary panel and worked together with the six other panels in

order to identify societal benefits that could stem from the missions proposed. This seventh panel was

left out of the analysis, as its objectives appear in the individual panel's reports.

6.2.1.2 2nd level of decomposition of stakeholder needs: panel objectives

Scientific objectives were identified and ranked in importance for each of the six panels, based on the

information available in the Decadal Survey report, and leveraging from previous work in the group by

Theo Seher (Seher, 2009). This information was also contrasted with several experts that were involved in

the Decadal survey committees. For example, seven objectives were identified for the weather panel:

Objective Id Description Weight
1 WEAl Atmospheric winds 19%
2 WEA2 High temporal resolution air pollution 15%
3 WEA3 All-weather temperature and humidity profiles 12%
4 WEA4 Comprehensive global tropospheric aerosol characterization 8%
5 WEA5 Radio Occultation 19%
6 WEA6 Comprehensive global tropospheric 03 measurements 15%
7 WEA7 Aerosol-cloud discovery 12%

100%
Table 38: 1st level of decomposition of stakeholder needs for the Decadal case study: WEA panel objectives

These seven objectives were ranked in four groups of importance and assigned scores according to

Seher's findings (Seher, 2009). Atmospheric winds and GPS radio occultation were top priorities of the

panel, followed by air pollution and tropospheric ozone measurements. All-weather atmospheric sounding

and aerosol-cloud properties are tied third in importance, leaving tropospheric aerosols as the least

important objective for the panel. For the details of how these scores were calculated, the reader is

referred to (Seher, 2009) or (Suarez, 2011).

Details about the l' level of decomposition of stakeholder needs for the other six panels are provided in

the Appendix 9.3.4. A total of 35 objectives were identified.

6.2.1.3 3rd level of decomposition of stakeholder needs: "subobjectives"

In the second and last level of decomposition of stakeholder needs, each of the 35 objectives was

decomposed into as many subobjectives as required in order that a subobjective only makes reference to

one measurement. 188 subobjectives were thus identified.

An example of this decomposition is shown in Table 39 for the radiation budget objective of the WEA

panel. In this case, the capability to perform direct measurements of 3D atmospheric wind fields is given

a higher priority than simpler indirect measurements of winds based for example on water vapor

transport.
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Details about the 2 "d level decomposition of the rest of Decadal objectives are provided in the Appendix.

Subobjective Id Description Weight
I WEA1-I Atmospheric wind speed 20%
2 WEA1-2 Atmospheric wind direction 20%

3 WEAl-3 Ocean surface wind speed 30%
4 WEA1-4 Ocean surface wind direction 20%

5 WEAl-5 Water vapor transport winds 10%
Table 39: 2nd level of decomposition of stakeholder needs for the Decadal case study: atmospheric winds subobjectives

6.2.2 Requirement satisfaction rules

For each of the 188 subobjectives, rules were created that express the measurement requirements for full

satisfaction, and several cases of degraded satisfaction. An example of such rules is provided in Code 24

for the case of subobjective WAT4-1 concerning atmospheric humidity profiles.

(define-rule full-satisfaction-of-subobjective-WAT4-1
"Conditions for full satisfaction of subobjective 1 of objective 4 of water panel"

IF there is a (Measurement (of Parameter "1.3.1 Atmospheric humidity -indirect-")
(that is cloud-cleared yes) (with global coverage of a Region-of-interest ) (and
Horizontal-Spatial-Resolution ?x2) (and sensitivity-in-low-troposphere-PBL High)
(that is taken-by 'ho) (and has Temporal-resolution x) (and Vertical-Spatial-
Resolution ?x4)
AND (?x1 ContainsRegion Global) ;; i.e. global coverage
AND (Horizontal-Spatial-Resolution ?x2 is at least Low-lkm-10km)
AND (Temporal-resolution ?x3 is at least High-12h-24h)
AND (Vertical-Spatial-Resolution ?x4 is at least High-200m-orless)

=> (THEN)

ASSERT fact indicating (full-satisfaction (of subobjective WAT4-1) (from objective
"Water vapor transport") (related to parameter "1.3.1 Atmospheric humidity -indirect-
") (taken-by ?h))
Code 24: Full satisfaction requirement rule for subobjective WAT4-1 from the Decadal case study

Additional information about the requirement satisfaction rules for the Decadal case study is provided in

the Appendix 9.3.5. The complete set of rules is available on-line at:

http://web.mit.edu/dselva/www/RBES/Decadal/.

6.2.3 Instrument capability rules

After describing stakeholder needs, the second important group of case study specific rules concerns

instrument capabilities. 39 instruments were considered in this case study, and several characteristics

necessary to assess requirement satisfaction and to perform lifecycle cost estimations were identified for

each instrument (e.g., mass, power, data rate, dimensions).
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The table containing instrument characteristics for the Decadal survey is provided in the Appendix 9.3.6.

Furthermore, for each instrument, a rule was created that asserts the measurements that the instrument can

take. An example of such rule for the ACE-ORCA instrument is provided in Code 25.

(define-rule CAPABILITIES: :ACE-ORCA-measurements
"Define measurement capabilities of instrument ORCA from mission ACE"

IF there is a (Manifested-instrument (Id ) (Name ACE-ORCA))

=> (THEN)

ASSERT Measurement (Parameter "3.1.1 Ocean color - 410-680nm -Chlorophyll absorption
and fluorescence, pigments, phytoplankton, CDOM-") (Id ACE-ORCAl)))
ASSERT Measurement (Parameter "3.1.2 Extended ocean color - UV -enhanced DOC, CDOM-")
(Id ACE-ORCA2)))
ASSERT Measurement (Parameter "3.1.3 Extended ocean color - NIR -atmospheric
correction-") (Id ACE-ORCA3)))
ASSERT Measurement (Parameter "1.1.1 aerosol height/optical depth") (Id ACE-ORCA4)))
ASSERT cross-registered (measurements ACE-ORCA1 ACE-ORCA2 ACE-ORCA3 ACE-ORCA4 )

(degree-of-cross-registration instrument) (platform

)
Code 25: Instrument capability rule for the Decadal ACE-ORCA instrument

This rule asserts the four measurements ACE-ORCA can take when it detects that a copy of this

instrument has been manifested. The measurements are assigned ID#s from ACE-ORCA1 to ACE-

ORCA4. These ID#s play a role in the explanation facility. In addition to asserting these four

measurements, this rule also asserts that these four measurements are cross-registered because they are

taken by the same instrument. This is also important, as some synergy rules only apply to cross-registered

measurements. Finally, note that this rule simply asserts the measurement facts without filling in the

measurement attributes such as spatial resolution. Indeed, attribute inheritance from instruments and

missions to measurements is carried out by the attribute inheritance rules, which are executed a step later

in the VASSAR methodology.

Detailed information concerning the Decadal instrument capability rules is provided in the Appendix.

This information comes from the Decadal Survey report and individual instrument or mission

publications (e.g., (Cline, Davis, & Yueh, 2005; Freeman, Donnellan, & Rosen, 2008; Gaier et al., 2010;

Jet Propulsion Laboratory, 2007; B. Lambrigtsen, Brown, Gaier, Kangaslahti, & Tanner, 2008; NASA

Earth Science and Technology Office, 2009)), and was partially verified by experts.
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6.3 Results

6.3.1 Preliminaries

Before presenting the results of the three sub-problems (i.e., instrument selection, instrument packaging,

and mission scheduling), intermediate results that are used in the three sub-problems are presented and

discussed. In particular, mission scores, single instrument scores (both marginal and in isolation), and

bilateral interactions between instruments both at the science and engineering levels (i.e. S-DSM and E-

DSM) are introduced.

6.3.1.1 Mission scores

Mission scores and a short discussion about each mission are provided in this subsection with the goal of

introducing the missions architected in the Decadal survey report, and assessing their relative importance

to the stakeholders of the project. Mission scores are shown in Figure 59.
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Figure 59: Decadal Survey reference mission scores by panel

These missions are commented one by one in the following paragraphs.

From the two instruments in the SMAP mission (a radar and a radiometer), we observe that the radar gets

a score of 4.03% whereas the radiometer gets a score of 1.76%. These scores are explained as follows: a)

the radar by itself cannot measure soil moisture with the accuracy of 4% required by the water panel; b)

the radiometer by itself cannot measure freeze-thaw at all and therefore completely misses that objective;

c) the radiometer by itself has the required accuracy to measure soil moisture, but it does not meet the

requirements in terms of spatial resolution of 10km or better to satisfy the hydro-meteorology community.
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The synergistic combination of the radar and the radiometer achieve the required accuracy and spatial

resolution thanks to a disaggregation scheme, and thus get a score of 5.5%. All this is captured in the

explanation facility, including the data processing.

The ICESAT-II lidar can potentially provide useful observations of sea ice, ice sheets, and vegetation

structure. However, several concepts are currently being studied, and depending on which concept is

finally selected, the objectives related to one or more of these disciplines can be affected. In particular,

three concepts are currently being considered: a) a dual-wavelength full waveform lidar with multiple

lasers similar to the ICESAT/GLAS instrument; b) a single-wavelength (1064-nm) quad-beam full

waveform lidar with some cross-track capability and reduced FOV; c) a single-wavelength micro-pulse

photon-counting lidar with multiple (16) beams.

As of March 2012, the single-wavelength photon counting lidar has been selected as primary concept for

the ICESAT-II mission. This affects vegetation structure measurements, which are best done with full

waveform lidars, because the returned waveform contains several features that correspond to different

types of vegetation. In any case, the score of the ICESAT-II lidar, assuming the photon counting laser is

finally chosen, is 6.2%. This score is obtained through full satisfaction of the ice sheet and sea ice

objectives, plus partial satisfaction of the vegetation structure objectives (only measurements of

vegetation height can be taken). Some benefit is also obtained from partially satisfied aerosol and cloud

properties objectives, as well as land topography.

The CLARREO mission carries three instruments: a hyperspectral Fourier transform spectrometer (FTS)

in the SWIR and TIR for characterization of Earth's emitted radiation, a suite of three hyperspectral

spectrometers in the VNIR and SWIR for characterization of solar reflected radiation, and a GPS RO for

atmospheric sounding. As of March 2012, the number of spacecraft of the mission is still unclear.

The CLARREO mission as envisioned today gets a score of 5.3%, through full satisfaction of the Earth

radiation budget objectives from the climate panel, as well as the GPS RO reference objectives of the

climate panel. It is therefore seen essentially as a climate mission. The infrared FTS by itself gets a score

of 0.8%, whereas the suite of three VNIR+SWIR spectrometers gets a score of 0.6%. There are no pure

synergies between these two instruments, since the model assumes that the VNIR and TIR capabilities are

essentially additive, and that they can be cross-registered from different platforms.
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Thus, an important fraction of the value of the CLARREO mission actually comes from the GPS part of

the mission. The reason for this is that although the radiation budget objectives are clearly very important,

they only provide value to the climate community. Other missions provide some value to several

disciplines, which results in this model in higher scores. While the instruments on the CLARREO mission

could potentially be capable of providing value to several other communities due to the potential of

hyperspectral measurements in the SWIR and LWIR, this has not been taken into account in the model, as

it does not appear in the mission proposal.

DESDYNI's instruments are a multi-beam infrared lidar and an L-band repeat pass interferometric SAR

with multiple polarizations. The primary application of the SAR is to measure surface deformation in

order to predict the likelihood of earthquakes, volcanic eruptions, and landslides (Dubayah et al., 2008;

Freeman et al., 2008), (Johnson, Rosen, Hensley, & Freeman, 2009). It also has a polarimetric mode that

enables measurements of 3D vegetation structure, biomass, and thus carbon. The primary application of

the lidar is to measure vegetation structure, but it can also measure ice thickness. Together, the two

instruments provide useful measurements for the solid Earth, cryosphere, and ecosystem communities.

The DESDYNI mission as envisioned today gets a score of 10.6%. This value comes essentially from

satisfaction of objectives related to surface deformation, ice sheet thickness and velocity, and vegetation

height. The SAR by itself gets a score of 8.0%, missing the vegetation height objectives. The lidar by

itself gets a score of 4.8%, missing several objectives in terms of surface deformation, vegetation

structure, and other subobjectives that are partially satisfied by the DESDYNI SAR, such as soil moisture,

or snow cover. The synergistic behavior between the SAR and the lidar stems from the fact that the SAR

provides the global coverage and the 3D structure, while the lidar provides less frequent, high accuracy

measurements of forest height and size distribution of the vegetation. However, it the Decadal survey

report explicitly mentions that the time scale of cross-registration required to capture these synergies is on

the order of one or more weeks. As a consequence, the synergy score between these two instruments is

zero, because the synergy is also captured when the instruments are flown on different spacecraft.

The SWOT mission carries a wide-swath Ku-band interferometer radar altimeter as main payload. This

instrument is expected to increase the value of satellite altimetry measurements by providing better

coverage, spatial, and temporal resolution through the use of a wide-swath instead of the classical narrow-

swath nadir-looking altimeter.
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However, the inclusion of this swath capability introduces a variable error that varies across cross-track

distance. In order to keep the error budget below 4-5 cm, it is necessary to fly several other instruments,

including a dual-frequency nadir-looking altimetry for precise ionospheric correction, a GPS receiver for

precise orbitography and additional measurements of total electron content, and a three-channel

microwave radiometer for wet tropospheric correction.

This complete payload achieves a score of 7.8% through satisfaction of objectives from the climate,

water, and solid Earth panels related to ocean circulation, river and lake elevation, hydrocarbon reservoir

monitoring, and ocean bathymetry. Furthermore, some objectives in the weather panel are satisfied by the

supporting instruments (in particular the MWR, and the GPS receiver if it is used for atmospheric

sounding). The value of the mission is affected if any of the supporting instruments is missing: if the GPS

is not selected, the POD contribution to error budget increases; if the MWR is not selected, the wet and

dry tropospheric contributions to the error budget increase; if the dual-frequency nadir altimeter is not

selected, the error budget is also slightly perturbed through the ionospheric contribution.

The GEO-CAPE mission as proposed in the Decadal Survey consists of: a) a UV and VNIR wide area

spectrometer capable of mapping North America every hour with a spatial resolution of 7km at nadir; b) a

steerable 250-m spatial resolution hyperspectral spectrometer with a 300km swath; c) a gas filter

correlation radiometer to continue the CO measurements of MOPITT. These instruments together can

measure ocean color with emphasis on coastal zones, aerosol optical depth, and vertical profiles of NOx,

formaldehyde, and ozone precursors, with limited sensitivity in the troposphere. Under these assumptions,

the GEO-CAPE mission gets a score of 7.9% from satisfaction of coastal ecosystems objectives. The

UV/VNIR spectrometer by itself gets a score of 4.3%, whereas the steerable imager gets a score of 3.8%.

The combination of these two instruments can provide cloud-cleared high spatial resolution ocean color

and atmospheric chemistry products. The gas correlation radiometer by itself provides negligible value

because it lacks a cloud mask, sensitivity in the troposphere, and vertical spatial resolution (its value is

about 0.2% if we assume that a cloud mask ancillary product is available). Note that the GEO-CAPE

mission by itself does not have enough sensitivity in the lower troposphere and vertical spatial resolution

to satisfy many of the atmospheric chemistry objectives. These objectives are fully satisfied by the

synergistic combination of GACM and GEO-CAPE.

The HYSPIRI mission carries two high spatial resolution hyperspectral sensors: one in the 8-12um

region, similar to TERRA/ASTER, and one in the VNIR/SWIR region, similar to EO/HYPERION. The

combination of high spatial resolution, hyperspectral capability, and steering capability, makes this

mission attractive to virtually all disciplines of the Earth sciences.
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This is apparent in the model, as HYSPIRI provides some value to all panels. The main applications of

HYSPIRI are in solid Earth (volcanoes, surface composition), and ecosystems (vegetation state, land use

and landcover status, coral reef health and extent, fire monitoring), and human health (land and ocean

surface temperature, land use, land cover, vegetation), but some value is also provided to the weather,

climate, and water panels through surface temperature measurements, cloud information, land use,

vegetation, and land cover status. Moreover, many of these applications also have very high societal value

(e.g., disaster monitoring). As a consequence of all this, HYSPIRI gets a score of 13.1%. The TIR part of

HYSPIRI scores 10.0% and the VIS part gets a score of 10.7%.

The ASCENDS mission features a dual wavelength C02-02 laser sounder with an integrated laser

altimeter to measure total column length, together with an infrared radiometer for atmospheric correction

and cloud mask, and a gas filter correlation radiometer for CO measurements. The mission as proposed

today gets a score of 5.3%, which is on the average of most Decadal missions. It is interesting to note that

an important fraction of this score comes from measurements that are meant to support the main C02

measurement, namely the total column length and vertical profiles of thin clouds and aerosols taken by

the altimeter. The lidar by itself achieves a score of 1.6% (most of this loss is due to a missed synergy

with the IR sounder), and the gas filter correlation radiometer achieves a score of 0.8% by itself. If the 02

channel is removed from the sounder, the resulting single-wavelength lidar has a score of 1.6%.

The ACE mission carries a payload consisting of four instruments: a) a multi-beam dual-wavelength lidar

for precise cloud and aerosol height measurements; b) a dual-frequency (94GHz and 34GHz) cloud radar

for cloud properties (mostly droplet size, liquid water, and ice/liquid phase transition); c) a multi-angle,

multi-wavelength polarimeter for cloud and aerosol properties (mostly particle micro-physical and

radiative properties); d) a UV/VIS imaging spectrometer that would provide continuation of all MODIS,

VIIRS, and OMI aerosol and ocean color bands.

Most of the aerosol products are generated from a combination of the lidar and the polarimeter, the lidar

providing the vertical spatial resolution, and the night capability, while the polarimeter provides improved

information of particle shape and scattering properties, in particular in the presence of optically thick

clouds.

The ACE program is currently considering several different packaging architectures including one

monolithic spacecraft, and 4 two-spacecraft architectures. They are also considering the inclusion of

several other instruments in the suite. The mission as planned today (one spacecraft, no other instruments)

gets a score of 15.3%.
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This high score is explained because the mission satisfies many high priority objectives of the climate,

weather, and ecosystems panels (clouds, aerosols, and ocean color). Some value is provided as well to

the health panel mainly through the aerosol measurements. The value of the ocean color instrument by

itself is 3.7%. The value of the cloud radar by itself is of 5.1%, satisfying objectives from the weather,

climate, and to a lesser extent of the health panel through indirect precipitation measurements. The value

of the lidar and the polarimeter are harder to separate because they are highly synergistic in the

production of the aerosol data products. As a group, their value is 8.1%.

GPSRO is a constellation of satellites in LEO carrying GPS receivers in radio occultation mode.

Assuming that the constellation is populated enough to guarantee the desired number of soundings per

day (namely 2500 or more), the score of the GPSRO constellation is 5.9%. As we decrease the number of

satellites in the constellation, the value decreases (5.0% for 5 satellites or 2250 soundings per day, 4.0%

for 4 satellites of 2250 soundings per day, and so forth).

XOVWM is a mission for measuring ocean surface wind speed and directions in all-weather and all-wind

conditions, as well as near the coasts, which calls for a higher spatial resolution. The concept proposed in

the Decadal Survey for this mission features a dual-frequency Ku and C-band scatterometers with SAR

capability in C-band, and an X-band radiometer for atmospheric correction. This payload on a single

spacecraft, in isolation of the rest of the global EOSS, gets a score of 2.5%, due to the lack of temporal

resolution. Losing cross-registration with the X-band radiometer results in a loss of 0.6% due to

atmospheric correction. Losing cross-registration with the C-band scatterometers results in a loss of 0.6%

of the score, due to the complementary nature of the two measurements (sensitivity in rain and sensitivity

in high winds versus horizontal spatial resolution). In reality, the possibility of adding more spacecraft

into a constellation is being studied, and data is also available from European scatterometers (e.g.,

ASCAT). If this data is available and the temporal resolution requirement is achieved, then the score

becomes 3.5%.

The GACM mission consists of a UV/VIS spectrometer for ozone measurements and precursors, a SWIR

spectrometer for CO, CH4, and other GHGs, a microwave limb sounder, and a differential absorption

lidar to achieve the high vertical spatial resolution. Together, these four instruments achieve a score of

12.1 %, satisfying objectives from all panels except the water and solid Earth panels.

GACM is a highly synergistic set of instruments, as they are sensitive in different layers of the

atmosphere. For this reason, some individual instrument scores in isolation are relatively low, such as the

1.4% for the MW limb sounder, which has sensitivity in the upper troposphere and stratosphere, and the

0.5% for the SWIR instrument, which only provides total column measurements.
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The UV/VNIR instrument gets a score of 8.8% mainly due to its vertical resolution and sensitivity in the

lower troposphere and planetary boundary layer, as these are two of the priorities of the Decadal survey

committee.

The PATH mission intends to put a microwave sounder such as the AMSU on the EOS spacecraft on a

GEO orbit. The goal is to provide high temporal resolution, all-weather temperature and humidity. In

order to achieve the required spatial resolution from a GEO orbit, the instrument uses 2-D interferometry,

similarly to what the European SMOS mission does. The current baseline for the PATH mission is to fly

the GEOSTAR sensor as an opportunity payload on one of the GOES spacecraft (B. Lambrigtsen et al.,

2008). The science score of the GEOSTAR instrument is 2.8%.

The LIST mission intends to put into orbit the first imaging lidar for high resolution land topography. The

concept for the instrument is still uncertain. Three major concepts are competing: a single-beam laser with

a scanning mechanism (LVIS), a single-beam laser with an optical device that splits the beam into several

beams (LRO), and a push-broom lidar (LL). For any of the three instrument concepts, we assume a

horizontal spatial resolution of 5m with 10-cm accuracy in the altimetry measurement. Such instrument

achieves a score of 4.7%, mainly through satisfaction of the high resolution surface topography objective,

as well as partial satisfaction of vegetation height and ice sheet topography.

The SCLP mission is the first satellite mission capable of measuring fresh water in snow on land and ice

sheets. It features a dual-frequency X-/Ku band SAR for high spatial resolution measurement, and a

passive radiometer for cross-calibration with heritage measurements. The two instruments together

achieve a score of 3.4% that come essentially from snow objectives.

The 3D-WINDS mission is the first mission to measure tropospheric winds directly from space using

Doppler lidar. This is a measurement of the outmost importance for numerical weather prediction.

However, since this mission is very focused on the satisfaction of just one objective, it gets a relatively

low score (1.9%). The mission consists of two Doppler wind lidars, a non-coherent UV lidar, and a

coherent 2.06pm lidar. They have complementary sensitivities: while the UV lidar has good sensitivity in

the presence of high concentration of aerosols, the C02 lidar has better sensitivity in clean air. Together,

they provide sensitivity in the lower and upper troposphere.

This subsection discussed mission scores, and presented the reader with the main aspects and trade-offs of

each mission. In the following section, individual instrument scores (marginal, and in isolation) are

discussed. These scores are important for the instrument selection and packaging problems.
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Before ending this section, mission cost estimates as provided by the model are given in Figure 60. These

cost estimates are used in the scheduling problem, and they will also be used in the GEOscan case study

in order to compare their relative cost-effectiveness.
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Figure 60: Decadal mission cost estimates (original estimates by NRC, latest estimates by NASA, model estimates)

6.3.1.2 Instrument scores

Instrument scientific scores in isolation for the Decadal survey case study are presented in Figure 61.
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Figure 61: Decadal instruments benefit scores in isolation

The top four instruments in Figure 61 are well correlated with the top missions in Figure 59, except for

the ACE instruments, which get lower individual scores. Two explanations are possible: a) instruments of

the ACE mission have low redundancies between them; b) instruments of the ACE mission have high

pure synergies between them. Reality is a combination of these two reasons. The ACE CPR and ocean

color instruments have zero redundancy between them, so their capabilities are essentially superimposed.
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On the other hand, the ACE lidar and polarimeter have very high synergies in the generation of aerosol

data products. As a consequence, the synergistic combination of these two instruments gets a higher score

than their plain superposition. Furthermore, there are several instruments with very low or null scores.

Most of these instruments are supporting primary instruments, such as the infrared radiometer for

ASCENDS, the microwave radiometer for SWOT, XOVWM and SCLP, and the GPS receiver for

SWOT. The real value of these instruments is thus the synergy with their corresponding primary

instruments. Furthermore, in the case of the scatterometry mission, the SAR instrument without the rest of

the payload (C-band real aperture scatterometer, microwave radiometer, GPS) is unable to meet the

mission requirements and results in a null score.

Figure 62 shows the cost-effectiveness of these instruments, computed by dividing the individual

instruments scores in isolation by the individual costs. These costs represent an estimation of the lifecycle

cost of a single-instrument mission carrying that instrument.
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Figure 62: Decadal instruments cost-effectiveness when considered in isolation

It is interesting to see that the most cost-effective instrument by almost a factor of two is the UV/VNIR

spectrometer in GACM. This is so because this instrument satisfies many important objectives of the

weather, climate, and health panels with a relatively mature technology. The GPS receivers in radio

occultation mode also appear in the front of the list, due to their extremely low cost and relatively high

return for the weather and climate panels.

Marginal descoping scores V; = Vtref} - Vtref\i} are now considered, as these capture synergies between

instruments. The reference selection architecture for the Decadal case study is as described in the previous

subsection, and therefore it consists of 39 instruments. This architecture is consistent with the report as it

was released in 2007, and it does not reflect some of the latest changes.
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For example, in the ACE mission, other instruments in addition to the polarimeter, the lidar, the cloud

radar, and the spectrometer are currently being considered 9, but these are left out of this preliminary

analysis, as not enough information is available at the moment. The marginal scores of these instruments

with respect to the Decadal reference architecture are provided in Figure 63.
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Figure 63: Marginal scores for the Decadal instruments w.r.t. the reference Decadal architecture

It is interesting to note that the DESDYNI SAR, which was virtually cancelled (i.e., out of the NASA

budget) during the last fiscal year, is actually the instrument with the highest marginal score20 . The SAKs

generally achieve high scores (both marginal and in isolation), as they have unique imaging all-

weather high resolution imaging capabilities. Another interesting point is the fact that most lidars

generally obtain high scores in isolation but low marginal scores. In this case, the reason is that the

model detects several lidars as mostly redundant in their capabilities. Part of this is due to insufficient

modeling fidelity of the current tools at the instrument level.

An analysis of the differences between the 8 lidars in the Decadal survey shows that that there are four

main attributes that set the concept of a lidar: a) the spectral content, which can include one or more of the

following bands: UV (03) band, 532nm band (vegetation), 760nm band (02), 1064nm band (clouds and

aerosols), 1 270m, (02) 1 570nm (CO2), 2060 nm (CO2); b) the number of beams (single beam for

sounding versus multi-beam for imaging); c) the property being measured, which typically is backscatter

intensity for aerosol and cloud properties, difference in intensity between two bands for laser sounding,

time delay in altimetry, and Doppler shift in wind applications; d) technology of the receiver: full

waveform versus photon-counting.

19 See http://dSm.gSfC.naSa.gov/ace/documents/ACEReportl13_Missionv9.pdf

DESDYNI appeared again in the NASA budget in the presidential request for FY12
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The eight lidars in the Decadal survey differ on one or more of these characteristics. However, there have

been proposals to join several lidar missions into a single instrument (e.g. the Decadal Survey report

mentions that the DESDYNI lidar could be replaced by an ICESAT-II lidar augmented with multi-beam

capability).

There are several other particular examples of instruments that obtain low marginal scores. For example,

the X-band passive microwave radiometer for XOVWM gets a very low marginal score because it is

essentially a cross-calibration instrument.

6.3.1.3 S-DSM and E-DSM

Bilateral interactions between the instruments are captured by the B-DSM and the C-DSM defined in

Section 9.1.2, which were relabeled as S-DSM and E-DSM for the case of EOSS.

The S-DSM for the Decadal instruments considered in the packaging problem is shown in Table 40. In

Table 40, each cell was computed as the difference of the score of a two-instrument mission minus the

score obtained when the two single-instrument subobjectives are superimposed, i.e.: S-DSMi,} = -

Vi U Vj where the operator U computes a score by aggregating the maxima of the individual instrument

subobjective satisfaction scores, and thus takes into account redundancies between instruments.

Therefore, positive values of S-DSM (green cells in Table 40) indicate positive synergies between

instruments, and negative values (red/orange cells in Table 40) indicate negative scientific synergies.

Negative scientific synergies are possible due to design compromises in the presence of multiple

instruments that lead to suboptimal science performance by one of the instruments. For example,

instruments taking measurements in which diurnal sampling plays an important role in the error budget

(e.g., altimeters) may be affected by being put together with other instruments because that a compromise

in design may lead to selecting a suboptimal orbit (namely, an SSO).

ASC_UD ASCGCR ASC IRR CLARTIR CLARVNI CLARGPS DESDSAP DESDUD HYSPTIR HYSPVIS ICELID SMAPRA SMAPMV

ASCGD 0.000 0.000 0.000 0.000 0.0

ASC_GCR 0.000 0.000 0.000 0.000

ASCRR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CLARTIR 0.000 0.000 0.000 0.000, 0.000 0.

CLARVNI 0.000 0.000 0.000 0.000
CLAR_GPS 0.000 0.000 0.000 0.000 0. 0000 000.

DESDSA 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DESDID 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYSPTIR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HYSPIS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ICEAD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SMAPRA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 00SMAP_MVJ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 40: S-DSM for the Decadal case study
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The pictorial representation of this adjacency matrix is shown in Figure 64. We note that there are very

few truly synergistic pairs of instruments, due to competing orbit requirements between spacecraft. The

only positive interactions on Figure 64 concern the ASCENDS instruments between them, and the SMAP

instruments between them. Since there are many other synergies between instruments, this suggests that

the loss due to competing orbit requirements and limited resources on the spacecraft is greater than the

gain from pure synergies. However, note that this S-DSM only captures bilateral interactions, and

therefore it misses synergies that require more than two instruments.

Figure 64: Pictorial representation of the S-DSM for the Decadal case study

On the engineering side, the E-DSM is shown in Figure 65.

ASCLID /
ASCLID 0
ASCGCR 0
ASCIRR 0
CLARTIR 0
CLAR_VNI 0
CLARGPS 0
DESDSAP 0
DESDLID 0
HYSPTIR 0
HYSP_VIS 0
ICELID 0
SMAPRA 0
SMAP_MV 0

Figure 65: E-DSM for the Decadal case study

In this case, each element of this matrix is computed as the difference between the costs of the two-

instrument missions minus the sum of the costs of the two single-instrument missions.
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Hence, positive entries of this matrix represent negative interactions between instruments, while positive

entries of this matrix represent potential savings by putting the instruments on a shared platform.

The graphical representation of this adjacency matrix is provided in Figure 66. It is interesting to see for

example that some instruments such as the GPS have green connections with most other instruments,

which means that they are good candidates for opportunity payloads, while others have red connections

with most instruments, which suggests that they are good candidates for flying on dedicated spacecraft.

Again, however, this matrix only captures bilateral interactions.

The complete S-DSM and E-DSM containing all instruments, as opposed to only the instruments

considered in the packaging problem, are available on http://web.mit.edu/-dselva/www/RBES/Decadal/.

A~rLU~

Figure 66: Pictorial representation of the E-DSM in the Decadal case study (partial view).

256



6.3.1.4 Data continuity matrix

Introduced in Section 4.4.7, the data continuity matrix DCM is a multi-domain matrix where DCM(i,j)

represents the number of instruments that take measurement i during time interval j.

The data continuity matrix for the Decadal case study was computed by considering only domestic

missions (i.e., no international missions), obviously except for the planned Decadal missions, between the

years 2010 and 2025. Only a reduced subset of measurements deemed critical in terms of data continuity

were considered. The matrix is shown in Figure 67.

1. 1. 1 aerosol height/optical d

1.2.1 Atmospheric temperature

1.3.1 Atmospheric humidity -In

1.3.2 Water %apor transport -
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Figure 67: Data continuity matrix for the Decadal Survey case study

As shown in Figure 67, the major potential data gaps that are likely to appear in this decade

missions are considered are the following:

e Water vapor transport

* GPS RO

* Scatterometry

And to a lesser extent:

e Atmospheric chemistry

if only NASA
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e Altimetry

* Ice sheet topography

e Ocean color

e Gravity field

Hence, the data continuity metric from the mission scheduling problem will favor architectures covering

at least partially these data gaps. It may also be considered to add hard constraints concerning the launch

dates of certain missions in order to close some of these data gaps. This will be discussed in more detail in

section 5.3.4.

6.3.2 Instrument selection

6.3.2.1 Configuration management: summary of rules used

The Decadal instrument selection problem considers the 39 instruments listed on Figure 61. Before

presenting and discussing the results of the Decadal instrument selection case study, we remind the

different types of rules that were used to obtain these results. According to the thesis objectives, some of

these results are taken from the library of classes of SAPs, some are domain-specific but common to all

case studies, some are domain-independent and SAP class-independent, and some are specific to the

Decadal instrument selection problem.

The results presented in this section were obtained with the following set of rules:

Class of rule Type of knowledge Source of rule
Grammar and enumeration rules Domain-independent, common to all Library-DsPs

down-selecting problems
Search heuristics Domain-independent, common to all Library-DsPs

down-selecting problems
VASSAR-aggregation rules Decadal-specific, common to selection, See Section 6.2

packaging, and scheduling
VASSAR-requirement satisfaction rules Decadal -specific, common to selection, See Section 6.2

packaging, and scheduling
VASSAR-instrument capability rules Decadal -specific, common to selection, See Section 6.2

packaging, and scheduling
VASSAR-attribute inheritance rules Domain-specific, common to all EOSS, VASSAR

all SAPs
VASSAR-synergy rules Common to all SAPs VASSAR
VASSAR-explanation rules Multiple types VASSAR
Down-selecting rules Domain-independent, common to all See section

down-selecting problems 2.3.6
Table 41: Summary of rules utilized in the Decadal instrument selection case study
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In addition to these rules, the following enumeration constraints were added to the Decadal instrument

selection case study. Note that none of these rules are strictly necessary, as the algorithm is intelligent

enough to locate these conflicts. The goal of these rules is rather to focus on the interesting regions of the

tradespace, and thus accelerate the convergence of the search process.

Type of Instruments concerned Justification
constraint

GROUP SWOTSAR SWOT_MWR It doesn't make sense-toselect the MWR or
SWOT GPS the GPS, without the SAR

Table 42: Additional enumeration constraints added to the Decadal instrument selection case study

6.3.2.2 Results from the architectural tradespace exploration

The generic search algorithm complemented with the rules enumerated in Section 6.3.2.1 was initialized

with a random population containing the reference architecture, and the algorithm was run for 10

iterations. The sixth generation obtained before down-selection is plotted in Figure 68 (not much variation

was obtained after this iteration). In Figure 68, each diamond represents one Decadal selection

architecture (i.e., a subset of instruments) in the cost-science space. The color of this diamond indicates

the reason -if any- why this architecture was eliminated in the down-selection process. The following

down-selection rules were applied:

0 Normalized Science (computed as described in Section 4.4.1)> 0.67

* Lifecycle cost (computed as described in Section 4.4.2) < 4 FYOO$B

* Normalized programmatic risk (computed as described in Section 4.4.3) <0.1

* Utility (computed as described in Section 2.3.6.2 with weights 40% science, 40% cost, 20% risk,

0% fairness) > 0.5

* Pareto ranking (computed as described in Section 2.3.6.1) <4

Results for geriation 6

- dIete v rch te nugar to ar k* d elte-a ot rch hpoo- tl-sci nce

41*

06, O 07 0? 09 1
Norrtnazed Science

Figure 68: Population of Decadal selection architectures after 6 generations in the science-cost space

259



Most architectures that are not eliminated by the science cap are eliminated because of their poor Pareto

rankings. Only a few architectures are eliminated due to programmatic risk considerations. The remaining

architectures after down-selection are shown in Figure 69, together with the reference architecture and the

utopia point.

x 14 Results for generation 6
1.6 1

* Selected alternative arc hitectures
0 Reference architecture 2

142

*(3)
1.2 --- -- -

5)0 .6 -......... .. -- ---... -

0.4 -
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Science

Figure 69: Fuzzy Pareto frontier of Decadal selection architecture after 6 generations

It is interesting to see that the upper part of this fuzzy Pareto frontier disappears as we introduce a more

stringent down-selection rule in terms of the minimum utility compared to what is shown on Figure 69.

This is so because for a utility that is computed as 40% cost, 40% science, and 2% risk, optimal utility is

achieved in the region of the science-cost space where science ~ 0.7. As the ratio between the weights

for science and cost is increased, the position of this optimal point naturally approaches the region of

science ~ 1.0. This can be seen on Figure 70.

On Figure 70, the figures are obtained with different weights for the utility functions, as follows: upper

left: science = cost = 2*risk; upper right: science = 2*cost=2*risk; lower left: science = 3*cost = 2*risk;

lower right: science = 4*cost = 2*risk. Note how the position of the optimal point in the science-utility

space moves from 0.7 to almost 1.0.
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Figure 69 shows that the reference architecture is dominated by two architectures that also achieve the

highest possible science score at a slightly lower cost. These two architectures together with a few other

ones are shown in Table 43.
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Figure 70: Science versus overall utility for Decadal selection architectures for various relative weights

Table 43 raises an issue that was discussed previously: that there might be some redundancy in the eight

lidars proposed in the Decadal survey. In order to delve a little deeper in this piece of analysis, a full

factorial enumeration of the architectures composed of all the possible subsets of these eight lidars was

performed. The science and cost scores of these 255 architectures are shown in Figure 71.

Arch. % science % cost gain Instruments
id# loss w.r.t. ref w.r.t. ref deleted

(ref science = (ref cost = w.r.t. ref
0.984) $15.4B)

1 0.0% 3.6% ICE.LID
2 0.0% 4.3% ICELID + ASCGCR
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3 1.0% 18.4% ASC.GCR+ GACMDIAL+ LIST-LID
4 1.6% 22.4% GACMMWSP + GACMDIAL + LISTLID
5 18.2% 57.6% ACEORCA ACELID + CLARREO + DESD..LID +

GACM (exc. VNIR) + GEQWAIS + HYSPTIR (not
VNIR) + LIST + SMAP_MWR + SWOT + XOV-SAR
(not real aperture)+ 3DNCLID (not coherent)

Table 43: Difference between the Decadal reference selection architecture and the top alternative architectures
highlighted in Figure 69
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Figure 71: Science vs cost for all 256 combinations of lidars in the Decadal Survey (from 1 lidars to all 8 of them)

The least costly combination of lidars achieving the maximum science score is highlighted in Figure 71.

This combination uses only six out of the eight initial lidars: the lidars on ICESAT-II and GACM are

canceled. The maximum science score is still achieved through DESDYNI (for ice) and ACE (for ozone).

Another interesting piece of analysis is to look at the percentage of the instruments that are most

frequently selected in the top architectures in Figure 69. The results of this piece of analysis are shown in

Figure 72. Top instruments according to Figure 72 are the GPS radio occultation instruments, the VNIR

spectrometer on GACM, the GRACE gravity instrument, the DESDYNI L-band SAR, the steerable

imaging spectrometer on GEO-CAPE, the CO2/0 2 DIAL on ASCENDS, and the VNIR part of the

HYSPIRI mission. These instruments are present on 90% or more of the top architectures. Conversely,

the lidar on GACM, the real aperture radiometer on SWOT, the lidar on ICESAT, and the gas correlation

radiometer on ASCENDS are present on less than 30% of the top architectures. This would suggest that

the former are the core of the Decadal survey instrument set, while the latter are candidates to constitute

optimal descoping paths.
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Figure 72: Percentage of top Decadal selection architectures carrying each instrument

These results are discussed in more depth in the next section.

6.3.2.3 Discussion

Overall, the results for the Decadal instrument selection case study are consistent with the trends

identified in the EOS case study: instruments that satisfy many objectives from different stakeholders

(e.g., multi-purpose high resolution VNIR imagers, or weather instruments) achieve higher scores in the

model than more sophisticated instruments that focus on a few specific objectives.

The model identified some potential redundancies in the eight lidars proposed by the NRC committee.

Out of these eight lidars, two could potentially be deleted without noticeably affecting the science case,

namely ICESAT-II and GACM. However, this conclusion is prematurely drawn by looking only at the

instrument selection portion of the SAP. While the instrument packaging problem is unlikely to favor the

inclusion of these two extra lidars, the scheduling problem might justify this potential redundancy in

order to have a continuous lidar capability over a longer period of time.

In the case of ICESAT-II, it is particularly true that there is a desire to launch as soon as possible in order

to close a potential gap left by the precursor GLAS instrument. One may think that this might in turn

reverse the situation in make the lidar on DESDYNI appear somewhat redundant. However, the model

identifies that this is not so, as the capabilities of the multi-beam DESDYNI lidar exceed the capabilities

of ICESAT-II in particular for vegetation studies. Hence, adding the constraint of including the ICESAT-

II lidar as a gap filler and cross-calibration instrument between ICESAT and DESDYNI results in an

architecture that contains one more lidar than the optimal unconstrained one. A similar argument can be

made with GACM and ACE.
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While the DIAL portions of the two lidars for ozone sounding may be redundant, spacing the two lidars in

time may provide a longer data series.

Another potential redundancy identified by the model is in the manifest of two gas filter correlation

radiometers for CO and CH4 monitoring. While one is in GEO and the other one in LEO and therefore

somewhat complementary in terms of coverage and temporal resolution, there are other instruments in the

suite that are capable of measuring these molecules with similar performance (e.g., the SWIR portion of

GACM).

Similarly, the model identifies the partial redundancy between the SAR and the real aperture portions of

SWOT. In this case, the main motivation to fly the real aperture altimeter is to provide a cross-calibration

with the new wide swath altimeter technology.

Final recommendations about selection architecture for the Decadal case study are made later in this

chapter, once the couplings with packaging and scheduling have been identified and understood.

6.3.3 Instrument packaging

The instrument packaging problem for the Decadal Survey looks at the Tier I missions and Tier II

missions for which more information is available about the instruments. More precisely, all instruments

of the following missions are considered: SMAP, ICESAT-II, CLARREO, and DESDYNI (all Tier I

missions), and ASCENDS, HYSPIRI (Tier-II missions). This represents a total of 13 instruments, or 27

million architectures. Other Tier-II missions were left out of the analysis for several reasons:

e GEO-CAPE is a GEO mission and therefore not susceptible to merging with any LEO mission

e SWOT and XOVWM are altimetry/scatterometry missions with potentially very particular orbital

requirements. While it would be interesting to look at packaging architectures within these two

missions, it is far less interesting to look at combinations of these two missions with any of the

other missions

" ACE is a late Tier-I mission. Packaging trade-offs between ACE instruments and the other Tier-I

and Tier-IT missions are very relevant. The ACE instruments were left out of the analysis in order

to limit the size of the tradespace, because it was the Tier-IT mission with the latest expected

launch date. However, some preliminary results of including the ACE mission in the set are

available and will be discussed.
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6.3.3.1 Configuration management: summary of rules used

Before presenting and discussing the results of the Decadal instrument packaging problem, we remind the

different types of rules that were used to obtain these results. All the results presented in this section were

obtained with the set of rules on Table 44.

Class of rule
Grammar and enumeration rules

Search heuristics

VASSAR-aggregation rules

Domain-independent, common to all set Library-PaPs
nartitioning nroblems

VASSAR-requi

VASSAR-instru

VASSAR-attrib

VASSAR-syner
VASSAR-expla
Down-selecting

j, WLa% g XJ
5

, L"%4 O%'A% %U~LIAJJLL

rement satisfaction rules Decadal -specific, common to selection, S
packaging, and scheduling

ment capability rules Decadal -specific, conmnon to selection, S
packaging, and scheduling

ute inheritance rules Domain-specific, common to all EOSS, V
all SAPs

gy rules Common to all SAPs V
nation rules Multiple types V
rules Domain-independent, common to all Li

partitioning problems
Table 44: Summary of rules utilized in the Decadal instrument packaging case study

ee Section 6.2

ee Section 6.2

ASSAR

ASSAR
ASSAR
ibrary-PaPs

After a few generations, it also became clear that architectures with more than ten satellites, or more than

eight instruments per satellite, are too costly and therefore do not need to be considered. Hence, rules

were added to limit the maximum number of subsets in the partitions, and maximum number of elements

in the subsets, as described when the class of partitioning problems was introduced in Section 9.1.2.1. No

additional hard constraints were added for the Decadal packaging problem.

6.3.3.2 Results from the architectural tradespace exploration

The generic search algorithm complemented with the rules enumerated in Section 6.3.3.1 was initialized

with a random population containing the reference architecture, and the algorithm was run for 30

iterations. The last generation obtained before down-selection is plotted in Figure 73.

In Figure 73, each diamond represents one Decadal packaging architecture (i.e., a partition of

instruments) in the cost-science space. Again, the color of this diamond indicates the reason -if any- why

this architecture was eliminated in the down-selection process. The following down-selection rules were

applied:

e

S

Normalized Science (computed as described in Section 4.4.1) > 0.30

Lifecycle cost (computed as described in Section 4.4.2) < 10 FYOO$B
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* Normalized programmatic risk (computed as described in Section 4.4.3) < 0.5

* Normalized launch risk (computed as described in Section 4.4.4) <0.5

* Utility (50% science, 35%cost, 7.5% programmatic risk, 7.5% launch risk) > 0.6

* Pareto ranking (computed as described in Section 2.3.6.1) < 4

3
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Figure 73: Population of Decadal packaging architectures after 30 generations in the science-cost space

The remaining architectures after down-selection are shown in Figure 74.
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Figure 74: Fuzzy Pareto frontier of Decadal packaging architecture after 30 generations
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Three alternative architectures were identified on Figure 74 that also achieve the highest scientific score,

and have costs that are indistinguishable from the reference cost once the uncertainty in modeling

parameters is taken into account. These architectures are highlighted on the fuzzy Pareto frontier, and

described in more detail in Table 45.

Arch #sats instruments Allocationper satellite
ASC.LID ASC- CR ASCJRU-
CLARTIRCLARVNIR CLAROGPS
DESID_-SAR

1 7 3 3 1 1 2 1 2 DESDLID
HYSP_-TIR HYSP_-VIS
ICELID
SMAPRAD SMAPMWR
ASCLID ASCGCR ASCIRR CLARTIR
CLARVNIR ICELID

2 6 4 2 2 1 2 2 CLARGPS DESDSAR
DESDLID
HYSPTIR HYSP_VIS
SMAPRAD SMAPMWR
ASC_LID ASCGCR ASCIRR CLARGPS
CLARTIR HYSP-TIR HYSPVIS

3 6 4 3 2 1 1 2 CLAR-VNIR DESDSAR
DESD LID
ICE LID
SMAP-RAD SMAPMWR
ASCLID ASCGCR ASCIRR
CLARTIR CLAR_VNIR CLARGPS
DESDSAR DESDLID

ref 6 332212 HYSPTIR HYSPVIS
ICELID
SMAPRAD SMAPMWR

Table 45: Difference between the Decadal reference packaging architecture and the top alternative architectures

Several interesting comments can be made by analyzing Table 45. First, there are architectures that

achieve both lower cost and higher science than the reference architecture. We now try to use the

explanation facility to understand why the reference architecture does not achieve the best scores. Figure

75 provides a pictorial representation of the reference architecture and the three alternative architectures.

For each satellite, mass, orbit, lifecycle cost, and launch vehicle class are shown, in addition to the

complexity penalties defined in 0. The legend for the complexity penalties is as follows: Green means

inactive penalty, red means active penalty; M stands for mechanisms penalty, T stands for Thermal

penalty, D stands for data rate penalty, A stands for ADCS penalty, S stands for scanning penalty, and E

stands for EMC penalty.
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Figure 75: Detailed comparison between reference architecture (bottom right) and three alternative packaging
architectures for the Decadal case study

In terms of science, Alternative architecture 1 (top left on Figure 75) achieves a higher science score than

the reference architecture because by separating the SAR and lidar portions of DESDYNI, the science

output of both instruments increases. In the reference architecture, the SAR and the lidar fly together in a

compromise dawn-dusk SSO at 600km. In Alternative Architecture 1, the SAR improves coverage by

flying at a higher altitude (800km), and the lidar improves spatial sampling by flying at a lower orbit. The

explanation facility shows that the improvement in coverage of the SAR provides benefits in terms of

snow cover, hydrocarbon monitoring, and surface deformation data products. Flying the lidar lower has

benefits in terms of vegetation data products.

The other alternative architectures achieve lower science than the reference because the CLARREO

instruments fly as opportunity payloads on other spacecraft that do not meet their orbital requirements. In

particular, requirement rules for Earth radiation budget require a true polar, non SSO orbit for the

CLARREO instruments in order to have true global coverage. When this requirement is not met, the

science output of the CLARREO instruments decreases, which may or may not be compensated by the

cost savings corresponding to flying the CLARREO instruments as opportunity payloads.

In terms of cost, differences between the architectures on Figure 75 are driven by:

* Whether the DESDYNI lidar is flown at 600km or 400km. Flying the lidar at 600km requires

is much more costly due to the increase in power requirements to maintain SNR.

268



* Whether an Atlas-5 launch is required. The reference architecture is the only one using the

Atlas-5 launch vehicle, which results in higher launch costs than the alternative architectures by

7.5% ($20-$25M).

* Whether large satellites are used at low orbits. Satellites flying at 400km suffer from high

atmospheric drag that may drive the -design of the ADCS. The larger and more massive the

satellite is, the more stringent the requirements on the ADCS. The model identifies that this

situation can be avoided by using smaller satellites at 400km.

* Whether the current NASA ground stations are capable of dealing with the required

spacecraft data rate. The model penalizes spacecraft that require downlink speeds higher than

500Mbps because that is beyond the capabilities of the current NASA ground station.

It is interesting to note that alternative architectures on Figure 75 have either 6 or 7 satellites. The

question arises whether this is a generalizable statement. In order to answer this question, Figure 73 was

redrawn with the colors of the diamonds now representing the number of satellites in the architecture.

The resulting chart is provided in Figure 76.

Results for generation
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Figure 76: Packaging architectures in the cost-science space by number of satellites
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Several consequences can be drawn from Figure 76:

* All architectures with 2, 3, and 4 satellites were eliminated by the tool during the process of

searching through the tradespace because they were heavily dominated

e Architectures with 5, 6, and 7 satellites are capable of achieving the highest science scores.

No architectures with less than 5 satellites are capable of achieving the highest science scores.

* The less costly architectures are 5-8 satellite architectures.
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Another interesting insight of Figure 74 is the vertical stratification of architectures that was already seen

on the EOS case study. This stratification appears because there are many different ways of achieving a

given level of synergy. The stratification is more noticeable when cross-registration of instruments on

different spacecraft on the same orbit is allowed, simulating a train configuration. This stratification

suggests that an isoperformance (iso-science) approach that shows the architectures achieving the

maximum science score in the cost-risk space may bring additional insight. Such figure is shown on

Figure 77. The positions of the three architectures from Figure 75 on the first cost-risk iso-science Pareto

frontier are shown.

One can conclude that at this stage, alternative architecture #1 seems to be the most promising one, as it

achieves the highest science score in the most efficient way, and it is also non-dominated in the cost-risk

space.

Results for generation 30
0.5 -- -- -------- - -----

W 0 .3 5 .......- ------ ------------

o.25 4 3P -----: ----10 ..... ---- -- -

0 .2 --- ---- - ------- ----- Fuzzy Pareto front
Dominated architectures

N Reference architecture

5500 6000 6500 7000 7500 8000 8500 9000
Lifecycle cost (FYO$M)

Figure 77: Iso-science, cost-risk space in the Decadal packaging problem

6.3.3.3 Discussion

The main consistent findings of the Decadal packaging case study concern the DESDYNI mission.

Results show that it is neither necessary nor desirable that the radar and lidar portions of DESDYNI

share a common platform. From the science perspective, while the cross-registration of lidar and radar

data is potentially harder if the two instruments do not share a platform, the loss in performance due to

very different orbital requirements more than compensates for these facts. From the engineering

perspective, the two instruments are large and very resource consuming, and therefore putting them on the

same spacecraft results in large, expensive satellites.
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Second, the option to fly the instruments in the CLARREO mission as opportunity payloads instead of as

a stand-alone mission should be considered. These instruments don't have strong orbital requirements,

and are good "companions" for other payloads, as they are unlikely to induce any problems on the bus, or

drive the design of the bus (relatively high TRL, low mass and low power instruments, albeit high data

rate for the VNIR portion). In particular, the ICESAT-II mission - or any other cryospheric mission with

a true polar orbit - could be a host spacecraft for one of the instruments. While this option is desirable

from the cost perspective, it potentially has negative consequences on the science output of the

CLARREO instruments. It also has implications in terms of launch risk, as more assets are put at risk per

launch. The best alternative architecture identified at this stage appears to be very similar to the

reference architecture, with the DESDYNI mission split in its SAR and lidar portions.

6.3.4 Mission scheduling

The mission scheduling problem for the Decadal Survey considers all 17 missions proposed in the report.

The yearly budget is assumed to be $500M from 2010 up to 2050 if necessary. Mission cost estimates are

the ones shown on Figure 60.

6.3.4.1 Configuration management: summary of rules used

As it was done in the instrument selection and packaging cases, before presenting and discussing the

results of the Decadal mission scheduling problem, the different types of rules that were used to obtain

these results are reminded. All the results presented in this section were obtained with the set of rules

provided in Table 46.

Class of rule
Grammar and en

Search heuristics

VASSAR-aggreg

VASSAR-require

VASSAR-instru

VASSAR-attribu

VASSAR-synerg
VASSAR-explan
Down-selecting r

Type of knowledge
meration rules Domain-independent, common to all set

permuting problems
Domain-independent, common to all set
permuting problems

ation rules Decadal-specific, common to selection,
packaging, and scheduling

ment satisfaction rules Decadal-specific, common to selection,
packaging, and scheduling

aent capability rules Decadespecific, common to selection,
packaging. and scheduling

te inheritance rules Domain-specific, common to all EOSS,
all SAPs

y rules Common to, al SAPs:
ation rules Multiple types
ules Domain-independent, common to all

permuting problems
Table 46: Summary of rules utilized in the Decadal mission scheduling case study

Source of rule
Library-PePs

Library-PePs

See Section 6.2

See Section 6.2

See Section 6.2

VASSAR

VASSAR
VASSAR
Library-PePs
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Since, unlike the EOS case study, the purpose of the Decadal survey case study is not to validate but to

provide recommendations, no additional rules were added. This means that the Decadal mission

scheduling case study was run with the configuration by default for any mission scheduling problem

(except for the down-selection rules which were naturally tailored as the search through the tradespace

advanced).

6.3.4.2 Results from the architectural tradespace exploration

The generic search algorithm complemented with the rules enumerated in Section 6.3.4.1 was initialized

with a random population containing the reference architecture, and the algorithm was run for ten

iterations.

The last generation obtained before down-selection is plotted in Figure 78. In Figure 78, each diamond

represents one Decadal scheduling architecture (i.e., a sequence of missions) in the discounted value-data

continuity space.

Results for generation 10
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Figure 78: Population of Decadal mission scheduling architectures after 10 generations in the science-cost space

Again, the color of this diamond indicates the reason -if any- why this architecture was eliminated in the

down-selection process. The following down-selection rules were applied:

-Normalized Data continuity score (computed as described in Section 4.4.7) > 0.97

D Normalized discounted value score (computed as described in Section 4.4.5) > 0.97
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" No down-selection constraint was added using fairness, as it is considered a non-critical metric

* Utility (70% data continuity + 15% discounted value + 15% fairness) > 0.6

" Pareto ranking (computed as described in Section 2.3.6.1) < 4

The remaining architectures after down-selection are shown in Figure 79, together with the reference

architecture and the utopia point.
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Figure 79: Fuzzy Pareto frontier of Decadal scheduling architecture tradespace after 10 generations

The first thing that we notice from Figure 79 is that there a many architectures that dominate the reference

architecture, i.e., they achieve a higher discounted benefit while covering more and more important data

gaps. In particular, five alternative architectures were identified on Figure 79. These architectures are

highlighted on the fuzzy Pareto frontier, and described in more detail in Table 47.

The statistics of the launch dates of the top Decadal scheduling architectures are shown in Figure 80, in

order to analyze the differences between alternative architectures and the reference architecture in the

architectural domain - as opposed to the metrics domain.
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Arch Sequence of missions

1 3DWI S SMAP ASCENDS GPSRO CLARREO SWOT XOVWM GEO-CAPE PATH
HYSPIRI GACM DESDYNI SCLP LIST ACE ICESAT-II GRACE-I1

2 GPSRO SCLP HYSPIRI CLARREO GRACE-II GEO-CAPE SWOT PATH XOVWM
GACM ACE ICESAT-II ASCENDS SMAP LIST DESDYNI 3DWINDS

3 LIST CLARREO HYSPIRI XOVWM ASCENDS GACM GRACE-IISWOT ICESAT-II
ACE GPSRO GEO-CAPE SCLP SMAP PATH DESDYNI 3DWINDS

4 LIST SMAP HYSPIRI CLARREO GPSRO XOVWM GACM PATH SWOT GRACE-II
SCLP GEO-CAPE DESDYNI ASCENDS ACE 3DWINDS ICESAT-I

5 HYSPIRI LIST GRACEI SMAP SWOT SCLP ICESAT II GPSRO GACM DESDYNI
ASCENDS XOVWM 3DWINDS CLARREO PATH GEO CAPE ACE

ref SMAP ICESAT-I DESDYNI CLARREO GPSRO ASCENDS ACE GEO-CAPE SWOT
HYSPIRI XOVWM GACM GRACE-II LIST PATH SCLP 3D WINDS

Table 47: Difference between the Decadal reference scheduling architecture and the top alternative architectures

The reference architecture is shown with black diamonds. Figure 80 reveals a "lack of signal" in this

particular view. All missions have a median launch date between 2020 and 2027 and a 25t - 75th

percentile range on the order of a decade. Since these are the statistics over the entire fuzzy Pareto

frontier, this might indicate a bi-modal tradespace where architectures that are good in data continuity are

different from architectures that are good in terms of discounted value, but the differences average out

when one considers the entire tradespace.

ACE ASC CLA DES GAC GEO GPS GRA HYS ICE LIS PAT SCL SMA SWO XOV 3DW

Figure 80: Statistics of launch dates for top Decadal scheduling architectures
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In order to check whether this is the case, the

continuity and top architectures in discounted

10% architectures on discounted value, and the

shown on Figure 81. Figure 81 provides more

compare the statistics of the launch dates across

Top 10 % architectures in data continuities

statistics are plot separately for top architectures in data

value. The top 10% architectures in data continuity, top

statistics of launch dates for each of these two groups are

insight than the previous figure because it is possible to

the two groups.

Top 10 % architectures in discounted values
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Figure 81: Launch dates for top 10% architectures in data continuity and discounted value
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For example, the DESDYNI mission is launched later in the alternative architectures than in the reference

architecture, and more so when data continuity is considered. GACM and HYSPIRI tend to be launched

in the first tier rather than in tier I or II as it is in the current plan. The signal is stronger when looking at

discounted value. Virtually all the architectures in the top 10% architectures in discounted value -

except for outliers - have HYSPIRI launched before 2015.

GRACE-II and SMAP are launched noticeably earlier is emphasis is put on discounted value rather than

data continuity. On the other hand, if data continuity is favored, XOVWM, GEO-CAPE, ASCENDS, and

to a lesser extent SCLP are launched earlier to close potential data gaps in scatterometry, atmospheric

chemistry (especially C02), and snow cover.

6.3.4.3 Discussion

As seen in the EOS case study, the Decadal mission scheduling problem has proved to be harder to solve

than the instrument selection problem but simpler than the instrument packaging problem.

This scheduling problem has shown that GPSRO, GACM and HYSPIRI should be top priorities to be

launched in the next years, regardless of the relative preferences of decision makers between data

continuity and discounted value.

Decision makers who give a higher weight to data continuity should then prioritize the scatterometry and

atmospheric chemistry missions (namely XOVWM, ASCENDS, and GEO-CAPE) as well as the snow

and cold regions SAR (SCLP).

On the other hand, decision makers who give a higher weight to discounted value (i.e., launch cost-

effective missions first), should prioritize GRACE-II and SMAP.

This version of the mission scheduling problem is a completely unconstrained one. This means that

technology readiness was not taken into consideration. The lines of funding for missions and basic

technology are currently separate in the NASA Earth science budget, and the model currently lacks the

capability of simulating these two processes and their interactions. This is one of the top priorities for

future work.

6.4 Conclusion

This case study has provided insight into the architecture of the Decadal Survey, which is summarized

below in the form of three key recommendations:

276



" The NRC committee recommended the development of 8 lidars for the next decade. While most

of them are very different in technology and application, some potential redundancies have

been identified by the model in two areas: laser altimeters for clouds and aerosol properties,

and differential absorption lidars for ozone sounding. These redundancies are identified with

the static instrument selection model. Some of these redundancies partially disappear when time

is taken into account in the scheduling problem.

" The DESDYNI reference mission flies a large SAR and a lidar on a common platform at a

compromise altitude of 600km, as per the reference architecture. The model identifies that it is

not desirable to fly the radar and the lidar on the same platform, not only because of cost

considerations, but also for scientific issues. The science of the SAR improves at 800km

because of improved coverage, and the cost and science and of the lidar both improve at 400km

because of reduced power requirements and better spatial sampling at this lower altitude.

" The launch of GPSRO, HYSPIRI, and GACM should be prioritized because these three

missions are all highly cost-effective and have high potential to cover data gaps.
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7 Case Study 3: Iridium Next

7.1 Context and goals for the case study

On June 2 2010, Iridium LLC announced a comprehensive plan for their next generation constellation of

communication satellites in LEO called Iridium NEXT (Castro, Knowles, & Goodman, 2010). This plan

included the development, fabrication, and deployment of 66 new satellites plus spares to replace the

current aging constellation in their 800km near-polar orbits. As part of the agreement signed with the

prime contractor Thales, Iridium announced the largest hosted payload opportunity ever proposed by a

commercial operator. Iridium and Thales offered a nanosatellite class slot (50kg, 50W, 50 x 50 x 70 cm,

100kbps) on each of the 66+ satellites. The ICD for the potential hosted payloads is available on-line.

Payloads that are capable of meeting these interface requirements by the time of the CDR of Iridium

NEXT (i.e., 1Q 2013) will be eligible to be launched in the first launch in 2015.

Ram

Nadir

Figure 82: An Iridium NEXT satellite showing the full hosted payload (image credit: http://geoscan.jhuapl.edu/)

Immediately after this press release, several companies and research laboratories started studying the

potential of this unprecedented opportunity for Earth observation. Indeed, a massive constellation of

satellites in LEO promised to break one of the traditional trade-offs in satellite-based Earth observation:

that of coverage vs temporal resolution vs spatial resolution.

Traditional Earth observing systems are single-satellite missions in either GEO or LEO orbits. GEO

satellites guarantee very good temporal resolutions on the order of 15min or less, but they cannot

guarantee global coverage, and they suffer from poor spatial resolution due to the high altitude. On the

other hand, LEO satellites in polar or SSO have global coverage and good spatial resolution, at the price

of a very much reduced temporal resolution ranging from 12h to several days or even weeks.

21 www.iridium.com/DownloadAttachment.aspx?attachmentID=1224
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The Iridium NEXT hosted payload program can overcome this trade-off with a constellation of satellites

in LEO, thus offering global coverage, GEO-class temporal resolution, and LEO-class spatial resolution,

at a fraction of the price of traditional architectures. This represents a once-in-a-lifetime opportunity that

can lead to new scientific discoveries. It is for many the "new and better way" of doing satellite-based

Earth observation.

The first agreement between Iridium and a third party concerning the hosted payload program was

announced by both Iridium LLC and Orbital sciences on February 3, 2011 (Castro & Rhodes, 2011). By

this agreement, Orbital sciences committed to acquire 20% of the hosted payload capacity for up to

$IOOM, although it was unclear at that time whether that implied 20% each slot on the 66+ satellites, or

the complete slot on 20% of the satellites. Orbital Sciences was also selected by the prime contractor

Thales to be the satellite and hosted payload integrator. SpaceX was selected as primary launch provider.

In parallel, the Applied Physics Lab at the John Hopkins University started conversations with Iridium

and the NSF in order to study a concept for an optimal allocation of these slots. Their concept is based on

the fractionation of each individual satellite slot into smaller units that can then be assigned to two

different types of sensors: system sensors, and hosted sensors.

System sensors are the same across all 66+ satellites and are meant to be mature instruments (TRL>6)

that respond to key scientific and societal needs that require global coverage. On the other hand, hosted

sensors are PI-led, high-risk, high-return instruments that can be different across satellites and that are

meant to activate a broader variety of stakeholders including universities. The goal of GEOscan is to

achieve a risk balanced program with this mix of system and hosted sensors.

A workshop was organized by APL on March 2011 under NSF sponsorship to gather instrument

recommendations from universities and organizations for GeoSCAN. Several dozens of instruments were

proposed during the workshop. After months of analysis by APL and their collaborators, including Draper

Laboratory for the systems engineering effort, the preliminary instrument selection was revealed. Six

instruments were preselected to be system sensors:

* A GNSS receiver in occultation mode, for atmospheric temperature and humidity sounding, as

well as ionospheric measurements of total electron content.

" A microbolometer to measure outgoing SW and LW radiation, for radiation budget studies.

" A set of accelerometers, for precise mapping of the Earth's gravity field.

" A UV, VNIR and SWIR spectrometer, potentially for atmospheric chemistry, biology, and

vegetation measurements.
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* A VNIR imager for multi-purpose land and ocean imagery, as well as cloud mask input to other

instruments.

" A dosimeter, for space weather measurements of different types of radiation.

This synergistic set of instruments will provide data sets that will satisfy several needs of many

disciplines of the Earth sciences, at a fraction of the price of a traditional Earth observing mission. Hence

the inevitable question of the comparison in terms of cost-effectiveness of GeoSCAN with the traditional

architecture, namely the missions proposed in the Decadal Survey.

More precisely, the goals of this case study are listed below:

* To analyze the performance of the GeoSCAN instrument suite, both as individual instruments and

as a synergistic payload.

* To compare its cost-effectiveness with that of the Decadal Survey

* To study the system sensor selection problem and either confirm or disagree with the set of pre-

selected instruments.

* To generate recommendations for hosted sensors based on instrument selection, packaging and

scheduling considerations.

7.2 Case study specific rules

7.2.1 Aggregation and requirement satisfaction rules

The GeoSCAN program is an opportunity payload program and therefore it does not have a predefined set

of precise scientific objectives. Instead, the GeoSCAN program has broad focus areas of interest such as

climate change, disaster monitoring, or weather prediction. In order to conduct a quantitative case study,

precise objectives and measurement requirements are required. Thus, after conversations with the main

protagonists of the GEOscan instrument selection, it was decided to take the set of objectives and

measurement requirements from the Decadal Survey.

This is indeed the most recent exhaustive set of measurement requirements available in the literature that

covers the whole spectrum of disciplines of the Earth sciences, with the exception of space weather.

Moreover, taking the Decadal set of objectives provides a common frame of reference to compare the

Decadal architecture with GeoSCAN in terms of cost-effectiveness. It would be unfair to compare them

using different sets of requirements.

Therefore, value aggregation rules and requirement satisfaction rules for the GeoSCAN case study are the

ones described in Sections 6.2.1 and 6.2.2.
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Note that this set of requirements may not be the best to distinguish between different GeoSCAN

architectures, because the differences across architectures are likely to be in terms of coverage, temporal

resolution, and variable measurement error, three variables that were almost constant across Decadal

architectures - compared to the GEOscan case study-, and thus for which there were few scientific

requirements. This suggests that this set of scientific requirements would not be useful to select how

many instruments of each kind are necessary to achieve a certain level of science. That said, this is not

one of the goals of the case study, as it has already been set that the 66 satellites will carry all the system

sensors.

7.2.2 Instrument Capabilities

Since there are only a handful of instruments, instrument capability rules can be seen in detail. The

summary of the instrument characteristics (i.e., mass, power, data rate, dimensions) is provided in Table

48.

Instrument Mass Power Data rate Dimensions Cost Dev
(kg) (avg/peak, W) (kbps) (cm x cm x cm) per cost

s/c ($k)
($k)

Microbolometer 0.6 0.3/5.0 1.0 10 x 9.0 x 10 110 1000
GPS RO 0.2 1.5/1.7 2.0 8.0 x 13 x 1.3 85 0
Accelerometer 0.2 1.3/1.3 0.7 3.8 x 3.8 x 3.8 100 8000
Imager 0.3 0.6/0.6 4.2 4.0 x 4.0 x 4.023 100 1000
Spectrometer 0.3 0.9/1.3 3.3 3.9 x 9.8 x 10.6 60 0
Dosimeter 0.02 0.3/0.4 0.1 3.6 x 3.6 x 0.1 6 0

Table 48: Summary of instrument characteristics for the GeoSCAN case study

The measurement capabilities of these instruments are reviewed one by one in the next paragraphs. The

first system sensor is the microbolometer. It is primarily a radiation budget instrument. The

microbolometer can measure both total radiation (SW+LW, 0.2 - 2 00mm) and SW radiation

(0.2 to 5pim) with an accuracy better than 0.5W/m2. It has a wide field-of-view of 124deg, which leads to

a revisit time < 1.5min for all latitudes except the poles, and it has an on-orbit calibration capability. This

very good temporal resolution provides a large population of samples that can be averaged 'out in order to

reduce measurement variability due to noise.

The following rule asserts the corresponding measurements when a microbolometer is manifested in the

GeoSCAN case study:

22 The data rate for the microbolometer was unknown and a value of 1.0kbps was assumed based on the
other instruments in the set

23 The dimensions of the imager were unknown and it was assumed that it measures 4cm x 4cm x 4cm
based on the dimensions of the other instruments and on Figure 92.
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(define-rule CAPABILITIES::BOLOMETER-measurements
"Define measurement capabilities of the GeoSCAN microbolometer"

IF there is a Manifested-instrument (with Id .id) and (Name LORENTZERB)
=> (THEN)

ASSERT Measurement (Parameter "1.9.3 Spectrally resolved SW radiance -0.3-2um-") (Id
LORENTZERB1)))
ASSERT Measurement (Parameter "1.9.2 Spectrally resolved IR radiance -200-2000cm-1-")
(Id LORENTZERB2)))

ASSERT cross-registered (measurements LORENTZERB1 LORENTZERB2) (with degree-of-
cross-registration instrument) (on platform ?i)))

Code 26: Capability rule for the GeoSCAN microbolometer (a.k.a. LORENTZ ERB)

The second system sensor is the GNSS radio occultation receiver, or GPSRO. The GPSRO measures the

difference in Doppler shift between two GPS signals: one received from a reference, non-occulting GPS

satellite, and one received from an occulting GPS satellite. This difference in Doppler shift comes from

the difference in path length of the atmosphere that the two waves traverse. Knowing the real positions of

the two GPS satellites and the GPS receiver, it is possible to infer a bending angle of the signal coming

from the occulting GPS, and therefore the refractivity of the atmosphere. From refractivity, one can infer

several atmospheric parameters, namely total electron content in the ionosphere, temperature or pressure,

and humidity. It is expected that a GPSRO on an Iridium NEXT satellite provides around 300

occultations per day, which for a five year lifetime mission, results in a total number of occultations that

exceeds the number provided by current missions such as COSMIC, GRACE, CHAMP, or TerraSAR-X.

The following rule asserts the corresponding measurements when a GPSRO is manifested in the

GeoSCAN case study:

(define-rule CAPABILITIES::GPSRO-measurements
"Define measurement capabilities of the GeoSCAN microbolometer"

IF there is a Manifested-instrument (with Id ) and (Name CTECS)
=> (THEN)

ASSERT Measurement (Parameter "1.3.1 Atmospheric humidity -indirect-") (Id CTECS1)))
ASSERT Measurement (Parameter "1.2.1 Atmospheric temperature fields") (Id CTECS2)))
ASSERT Measurement (Parameter "1.3.3 GPS radio occultation") (Id CTECS3)))
ASSERT Measurement (Parameter "A8.Total electron content in ionosphere") (Id
CTECS4)))
ASSERT Measurement (Parameter "1.8.1 H20") (Id CTECS5)))
ASSERT Measurement (Parameter "1.3.4 Atmospheric pressure") (Id CTECS6)))
ASSERT cross-registered (measurements CTECS1 CTECS2 CTECS3 CTECS4 CTECS5 CTECS6)
(with degree-of-cross-registration instrument) (on platform ?id)))

Code 27: Capability rule for the GeoSCAN GPSRO (a.k.a. CTECS)

The third system sensor is the gravity sensor. The gravity sensor is a 3-axis accelerometer that will

provide non-gravitational accelerations (i.e., the result of forces such as drag) with a sensitivity of

100 ng/v(Hz) or better in the 0.0001-0.001Hz band.
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In combination with GPS information providing precise relative position and velocity of the spacecraft,

one can infer the accelerations purely due to gravity and thus the Earth's gravity field. The synergistic

combination of the GPS receiver and the accelerometers is capable of providing information about the

Earth's gravity field, from which information concerning glacier mass balance and ocean mass

distributions can be obtained. These facts are captured in the following rule:

(define-rule CAPABILITIES: :GRAVITY-measurements
"Define measurement capabilities of the GeoSCAN accelerometer"

IF there is a Manifested-instrument (with Id ?id) and (Name GRAVITY)
=> (THEN)

ASSERT Measurement (Parameter "5.1.1 Geoid and gravity field variations") (Id
GRAVITY1)))
ASSERT Measurement (Parameter "3.2.6 Ocean mass distribution") (Id GRAVITY2)))
ASSERT Measurement (Parameter "4.1.3 glacier mass balance") (Id GRAVITY3)))
ASSERT Measurement (Parameter "2.7.3 groundwater storage") (Id GRAVITY4)))
ASSERT Measurement (Parameter "3.2.2 seafloor topography") (Id GRAVITY5)))
ASSERT cross-registered (measurements GRAVITY1 GRAVITY2 GRAVITY3 GRAVITY4 GRAVITY5)
(with degree-of-cross-registration instrument) (on platform ?id)))

Code 28: Capability rule for the GeoSCAN accelerometer

The fourth system sensor is the visible imager. The visible imager is a 1024 x 1024 pixel CMOS camera

with configurable with different filters in the 400nm-1000nm spectral range. The main goal of the visible

imager is to provide multi-purpose 4km-resolution land and ocean imagery for real-time applications such

as disaster management. A 100deg FOV provides an 8-minute revisit time. The measurement capabilities

of the visible imager are summarized in Code 29.

(define-rule CAPABILITIES: :IMAGER-measurements
"Define measurement capabilities of the GeoSCAN visible imager"
IF there is a Manifested-instrument (with Id ?id) and (Name IMAGER)
=> (THEN)

ASSERT Measurement (Parameter "2.6.3 disaster monitoring") (Id IMAGERI)))
ASSERT Measurement (Parameter "2.7. Fire detection and monitoring") (Id IMAGER2)))
ASSERT Measurement (Parameter "2.6.1 land use") (Id IMAGER3)))
ASSERT Measurement (Parameter "2.6.2 landcover status") (Id IMAGER4)))
ASSERT Measurement (Parameter "1.5.4 cloud mask") (Id IMAGER5)))
ASSERT Measurement (Parameter "1.5.2 Cloud type") (Id IMAGER6)))
ASSERT Measurement (Parameter "1.5.3 Cloud amount/distribution -horizontal and
vertical-") (Id IMAGER7)))
ASSERT Measurement (Parameter "2.4.2 vegetation state") (Id IMAGER8)))
ASSERT cross-registered (measurements IMAGER1 IMAGER2 IMAGER3 IMAGER4 IMAGER5 IMAGER6
IMAGER7 IMAGER8) (degree-of-cross-registration instrument) (platform ?id)))

Code 29: Capability rule for the GeoSCAN visible imager

This imager is synergistic with other sensors, providing for example a cloud mask product. Furthermore,

disaggregation schemes could potentially be used to combine the coarse spatial resolution but frequent

measurements of the imager with finer resolution, less frequent measurements of other instruments.
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The fifth system sensor is the spectrometer. The spectrometer covers the spectral range between 200nm-

2000nm with a spectral resolution of 0.5nm (although this does not necessarily mean full sampling at this

resolution). Its 50deg FOV results in a 37min revisit time. Two main potential limitations of the

spectrometer are its signal-to-noise ratio and the trade-off between imaging capability and spectral

sampling. Should the signal-to-noise ratio be sufficient, such an instrument would be able to make

extremely important measurements in the UV (e.g., 03, NO, SO2) and NIR (e.g., CO, CO 2, CH 4,

aerosols). Furthermore, if the instrument had enough imaging capability, the 0.7im water vapor spectral

feature could be used to produce water vapor and water vapor transport images. These optimistic

capabilities are summarized in Code 30. The spectrometer is one of the most promising instruments in the

set, but its real capabilities of the spectrometer are still uncertain at this stage of development. Note that,

while the capabilities outlined in Code 30 assume an instrument optimized for atmospheric chemistry, its

spectral range is also compatible of other applications, such as ocean color, and vegetation measurements.

(define-rule CAPABILITIES::SPECTROMETER-measurements
"Define measurement capabilities of the GeoSCAN spectrometer configured for

atmospheric chemistry"
IF there is a Manifested-instrument (with Id d) and (Name SPECTROMETER)

=> (THEN)

ASSERT Measurement (Parameter
ASSERT Measurement (Parameter
ASSERT Measurement (Parameter
ASSERT Measurement (Parameter
ASSERT Measurement (Parameter
ASSERT Measurement (Parameter
ASSERT Measurement (Parameter
(Id SPECTROMETER7)))

ASSERT Measurement (Parameter
SPECTROMETER8)))

ASSERT Measurement (Parameter
SPECTROMETER9)))

ASSERT Measurement (Parameter

"1.8.1 H20") (Id SPECTROMETER1)))
"1.8.2 03") (Id SPECTROMETER2)))
"1.8.3 C02") (Id SPECTROMETER3)))
"1.8.4 CH4") (Id SPECTROMETER4)))
"1.8.5 CO") (Id SPECTROMETER5)))
"1.8.11 502") (Id SPECTROMETER6)))
"1.8.12 Vulcanic S02, OCS and other vulcanic aerosols")

"1.8.13 Black carbon and other polluting aerosols") (Id

"1.1.1 aerosol height/optical depth") (Id

"1.3.2 Water vapor transport - Winds") (Id
SPECTROMETER10)))

ASSERT cross-registered (measurements SPECTROMETER1 SPECTROMETER2 SPECTROMETER3
SPECTROMETER4 SPECTROMETER5 SPECTROMETER6 SPECTROMETER7 SPECTROMETER8 SPECTROMETER9
SPECTROMETER10) (degree-of-cross-registration instrument) (platform ?id)))

Code 30: Capability rule for the GeoSCAN spectrometer

The last system sensor is the dosimeter. The dosimeter is capable of measuring total ionizing dose with a

sensitivity of 14 [tRad. While the dosimeter provides valuable measurements to the space weather

community as expressed in the 2003 space weather decadal survey, it does not satisfy any of the

objectives expressed in the Earth science decadal survey, which is used as a reference in this case study as

mentioned earlier. As a consequence, the dosimeter was left out of the analysis.
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In addition to the instruments preselected to be the GeoSCAN system sensors, which were just presented,

three more instruments are described in the following paragraphs: a millimeter-wave atmospheric sounder

based on (Blackwell et al., 2011), a GNSS receiver configured in reflectometry mode, as per PAU's

(Camps et al., 2008) and PARIS' designs (Acevo et al., 2010), and a common DORIS receiver (Dorrer,

Laborde, & Deschamps, 1991). These or similar instruments were candidates in the selection process but

they were finally not selected.

The mm-wave sounder can measure profiles of atmospheric temperature and pressure through

hyperspectral sampling of 02's rotational line at 118GHz, and it can measure profiles of atmospheric

water vapor, humidity, cloud liquid water, and precipitation, through hyperspectral sampling of H20's

rotational line at 183GHz. Similar technology using larger apertures has been successful in measuring

ozone, ClO, and other trace gases using near-by rotational lines, such as the 184GHz 03 line. However it

is unclear that a radiometer of this size would be capable of achieving enough signal-to-noise ratio to

perform these atmospheric chemistry measurements. Thus, we will consider two versions of this

instrument: a) a basic version (MWAS-BAS) measuring only temperature, humidity, liquid water and

precipitation through the 118GHz and 183GHz channels; b) an advanced version (MWAS-ADV) that will

have a few atmospheric chemistry channels instead of the oxygen (temperature) channels. The

characteristics of the advanced version of the instrument are shown in Code 31.

(define-rule CAPABILITIES::MWAS-ADV-measurements
"Define measurement capabilities of the advanced version of the MWAS instrument"

IF there is a Manifested-instrument (with Id ?id) and (Name MWAS-ADV)

=> (THEN)

ASSERT Measurement
BAS1)))
ASSERT Measurement
MWAS-BAS2)))
ASSERT Measurement
ASSERT Measurement
ASSERT Measurement
ASSERT Measurement
ASSERT Measurement
ASSERT Measurement
MWAS-BAS8)))
ASSERT Measurement
(Id MWAS-BAS9)))
ASSERT Measurement

(Parameter "1.3.1 Atmospheric humidity -indirect-") (Id MWAS-

(Parameter "1.7.1 Cloud liquid water and precipitation rate") (Id

(Parameter
(Parameter
(Parameter
(Parameter
(Parameter
(Parameter

"1.8.1 H20") (Id MWAS-BAS3)))
"1.8.2 03") (Id MWAS-BAS4)))
"1.8.5 CO") (Id MWAS-BAS5)))
"1.8.7 NOx-NO, N02-, N205, HNO3") (Id MWAS-BAS6)))
"1.8.9 CFCs/HFCs") (Id MWAS-BAS7)))

"1.8.10 H202, OH, HO2 and isotopes -HDO, H2180-") (Id

(Parameter "1.8.12 Vulcanic S02, OCS and other vulcanic aerosols")

(Parameter
ASSERT Measurement (Parameter

"1.8.14 ClO, BrO, halogen compounds") (Id MWAS-BAS10)))
"2.6.3 disaster monitoring") (Id MWAS-BAS11)))

ASSERT cross-registered (measurements MWAS-BAS1 MWAS-BAS2 MWAS-BAS3 MWAS-BAS4 MWAS-
BAS5 MWAS-BAS6 MWAS-BAS7 MWAS-BAS8 MWAS-BAS9 MWAS-BAS10 MWAS-BAS11) (degree-of-cross-

registration instrument) (platform ?id)))
Code 31: Instrument capabilities of the advanced version of the MWAS instrument
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The capabilities of the basic version are restrained to the atmospheric temperature, humidity, water vapor

and disaster monitoring measurements.

There is evidence that a GPS receiver in reflectometry mode could measure at least sea surface height and

sea surface wind speed (Martin-Neira, Caparrini, Font-Rossello, Lannelongue, & Vallmitjana, 2001), with

sufficient accuracy to provide useful data products. Other uses have also been studied both theoretically

and experimentally, such as soil moisture (Rodriguez-Alvarez et al., 2008), land topography and

vegetation height (Rodriguez-Alvarez et al., 2011), sea ice, land snow/ice thickness (Gleason, Adjrad, &

Unwin, 2005). A recent (2010) survey of the capabilities of GNSS reflectometry confirmed these

measurements (Jin & Komjathy, 2010). The instrument capabilities considered in this thesis are consistent

with these findings and are shown in Code 32.

(define-rule CAPABILITIES::REFLECTOM-measurements
"Define measurement capabilities of the advanced version of the MWAS instrument"

IF there is a Manifested-instrument (with Id ) and (Name REFLECTOM)

=> (THEN)

ASSERT Measurement (Parameter "3.2.1 Sea level height") (Id REFLECTOM1)))
ASSERT Measurement (Parameter "3.4.1 Ocean surface wind speed") (Id REFLECTOM2)))
ASSERT Measurement (Parameter "3.6.1 Ocean wave height and spectrum") (Id
REFLECTOM3)))
ASSERT Measurement (Parameter "2.2.2 Hi-res topography") (Id REFLECTOM4)))
ASSERT Measurement (Parameter "2.4.3 vegetation height") (Id REFLECTOM5)))
ASSERT Measurement (Parameter "2.3.2 soil moisture") (Id REFLECTOM6)))
ASSERT Measurement (Parameter "4.2.2 snow depth") (Id REFLECTOM7)))
ASSERT Measurement (Parameter "4.3.2 Sea ice cover") (Id REFLECTOM8)))
ASSERT Measurement (Parameter "4.3.1 Sea ice thickness") (Id REFLECTQM9)))

ASSERT cross-registered (measurements REFLECTOM1 REFLECTOM2 REFLECTOM3 REFLECTOM4
REFLECTOM5 REFLECTOM6 REFLECTOM7 REFLECTOM8 REFLECTOM9) (degree-of-cross-registration
instrument) (platform d)))

Code 32: Capabilities of the GNSS reflectometer

Finally, the DORIS receiver is capable of providing total electron content measurements and precise

orbitography, as shown in Code 33.

(defrule CAPABILITIES::DORIS-measurements
"Define measurement capabilities of the DORIS receiver"

? <- (Manifested-instrument (Id ?id) (Name DORIS) (flies-in ?miss)

ASSERT Measurement (Parameter "A8.Total electron content in ionosphere") (Id
DORIS1)))
ASSERT Measurement (Parameter "A9.Precise Orbit Determination") (Id DORIS2)))
ASSERT cross-registered (measurements DORIS1 DORIS2) (degree-of-cross-registration
instrument) (platform )))

Code 33: Capabilities of the DORIS receiver
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7.3 Results

7.3.1 Preliminaries

Before presenting the results of the main questions at hand (i.e., instrument selection, comparison with

Decadal architecture), intermediate results are presented and discussed. In particular, single instrument

scientific scores, and bilateral interactions between instruments both at the science and engineering levels

(i.e. S-DSM and E-DSM) are introduced, as well as the data continuity matrix that applies for the Iridium

case study.

7.3.1.1 Instrument scores

Instrument scores in isolation computed using the Decadal objectives are shown in Figure 83, and

explained below in more detail instrument by instrument.
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Figure 83: GeoSCAN instrument scores in isolation, including total score of the whole GEOSCAN mission

Imager: The imager gets a score of 2.6% distributed between the weather, climate, ecosystems, solid

Earth, and human health panels. This value comes entirely from disaster management, cloud type, and

vegetation state measurements. The human health measurement requirements in terms of cloud type and

vegetation state measurements are fully satisfied, but the climate and weather measurement requirements

are only partially satisfied due to the 4-km horizontal spatial resolution of the instrument, which is not

sufficient according to Decadal survey requirements. Cloud amount and distribution measurement

requirements are missed due to the lack of vertical spatial resolution of the imager. Concerning the

disaster management objectives, they are all partially satisfied due to the combination of low horizontal

spatial resolution and poor spectral sampling.
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The landcover status measurements are not judged to provide measurable value based on the same

combination of horizontal spatial resolution and spectral sampling.

Microbolometer: The microbolometer gets a score of 1.7% that comes from satisfaction of radiation

budget measurement requirements by the climate and health panels. All these objectives are fully

satisfied.

GPSRO: The GPSRO instrument gets a score of 6.3% that comes from satisfaction of weather, climate,

water, and health objectives. The Decadal weather and climate panels made an explicit requirement to

have a constellation of GPSRO receivers in LEO, which is fully satisfied. The measurement requirements

for atmospheric temperature and humidity measurements are fully satisfied for the climate panel, but only

partially satisfied for the weather panel, which desires a higher vertical spatial resolution with sensitivity

in the lower troposphere to input into the numerical weather prediction assimilation algorithms. The same

explanation applies to the water panel.

Accelerometers: The gravity payload (i.e. the combination of the accelerometers and the GPS receiver)

gets a score of 5.9% that comes from satisfaction of objectives of the solid Earth, water, and climate

panels. All the solid earth and water objectives for gravity fields, glacier mass balance, ocean mass

distribution, and groundwater storage are fully satisfied by the constellation. The glacier mass balance

requirements by the climate panel are not fully satisfied because they require a higher spatial resolution

that can only be achieved through a laser measurement (e.g. Icesat-II).

Spectrometer: The spectrometer in its "optimistic version" (i.e., where it has enough signal-to-noise ratio

to measure all greenhouse gases of interest) gets a score of 3.7% through satisfaction of climate, health,

weather, and water objectives related to greenhouse gases, aerosols, and water vapor. All these

measurement requirements are only partially satisfied due to a combination of poor imaging capability

and lower accuracy with respect to larger instruments.

Millimeter-wave sounder: As explained in the section describing instrument capabilities, two versions of

the MWAS instrument are considered: MWAS-BAS which has the 118GHz 02 channels for temperature

plus the 183GHz water vapor channels for humidity and liquid water, and MWAS-ADV, which instead of

the temperature channels, features chemistry channels, namely the ozone at 184Ghz and ClO at 204GHz.

MWAS-BAS can measure atmospheric humidity, atmospheric temperature, cloud liquid water and

precipitation with good accuracy and vertical resolution.
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All these measurements are extremely important to the weather and climate panel, and humidity and

precipitation measurements are also relevant to the water and human health panels, which results in an

overall instrument score of 5.0%. This score assumes that a cloud mask product is available, for example

from the imager. Moreover, this score does not take into account that the temporal resolution and diurnal

sampling of this architecture exceeds the capabilities required by the Decadal objectives. MWAS-ADV

achieves a higher score (9.1%) thanks to the additional chemistry instruments that satisfy several

measurement requirements from the health and weather panels.

Reflectometer: The GPS receiver in reflectometry mode gets an overall score of 8.6% through partial

satisfaction of several objectives of the climate, health, and solid earth panels that are otherwise not

achievable by any other GeoSCAN sensor. Scientific objectives related to sea level height, sea surface

wind, sea ice cover and thickness, vegetation height, and land topography are partially satisfied. We note

that these measurements are still to be fully demonstrated. Even if they were demonstrated, the accuracy

and horizontal spatial resolution of such measurements would likely be insufficient to be comparable to

larger instruments and in particular, KaRIN (the Decadal survey wide-swath altimeter), and LIST (the

imaging laser altimeter). We note that about 3 percentage points from the original 8.6% value (i.e. 35%)

depends on the performance of the reflectometer concerning soil moisture, which is deemed a critical

measurement for the water panel.

7.3.1.2 Bilateral instrument synergies

The model identifies two synergies between the GeoSCAN system sensors, as illustrated in Figure 84.

BIOMASS CTEC'S

SPECTRUM CRA TY

Figure 84: Bilateral synergies between GeoSCAN system sensors

The imager and the spectrometer have synergies because the cloud mask product of the imager is used to

improve the quality of the atmospheric chemistry products of the spectrometer. This synergy has a

strength of +2.2%. The GPSRO and the accelerometers are also synergistic (+2.3%), because all useful

gravity products are obtained through the combination of non-gravitational accelerations from the

accelerometer and precise orbit determination from the GPS receiver.

If we introduce the reflectometer and the hyperspectral millimeter wave sounder, the new diagram is

shown in Figure 85.
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Figure 85: Bilateral synergies between GeoSCAN candidate sensors

Again, this only reflects bilateral synergies that have an impact in score according to Decadal objectives.

In reality, there are synergies that are not captured by this graph because either they are of higher order, or

they do not have an impact on the Decadal objectives. For instance, the reflectometer is synergistic with:

" both the MMW sounder and the GPS RO because the atmospheric humidity measurement

reduces the wet tropospheric component of the altimetry error budget

* both the DORIS receiver and the GPS RO because the total electron content measurement

reduces the ionospheric component of the altimetry error budget.

All these synergies are captured by the model, .i.e., the new and modified data products are created by the

rules engine, but if they do not satisfy any additional objective, this "real synergy" does not translate into

a positive score in the corresponding entry of the S-DSM.

7.3.1.3 Marginal instrument scores

As explained in Section 5.3.1.1, scores in isolation are not an ideal way of representing instrument value

because they neglect synergies between instruments.

A better way of representing instrument value with respect to a certain subset of instruments considered

as the "reference", is to compute the marginal scores, as the difference between the score of the reference

and the score of the reference without the instrument at hand: Vi' = Vfref) - Vref\i}. The marginal

instrument scores for the GeoSCAN selected system sensors are shown below.
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Figure 86: Marginal scores for the GeoSCAN selected system sensors

It is apparent from Figure 86 that the value of the imager is much greater when the synergies with the

other instruments are considered. The bolometer on the other hand is the lowest marginal score, as it has

little synergies with the other instruments, even though its measurements have high relative value.

Another interesting analysis is to compute the upward marginal scores for the three non-selected

instruments, namely the reflectometer, the DORIS, and the two versions of the mmw sounder (MWAS).

These computations are shown in Figure 87.
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Figure 87: Marginal scores of potential GeoSCAN hosted payloads w.r.t. system sensors

It is clear from Figure 87 that it is not interesting to choose DORIS given the current set of system sensors

because it is essentially redundant with the GPS receivers in both their measurements of total electron

content and precise orbit determination. From the three others, the reflectometer gets the higher marginal

score, followed by the two versions of the MMW sounder. This ranking coincides roughly with the

ranking of uncertainty in the capabilities of these instruments and therefore should not be used as the sole

basis for instrument selection.
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7.3.1.4 Data Continuity Matrix

The data continuity matrix for the GeoSCAN case study was computed by considering all domestic and

ESA missions (obviously except for GeoSCAN) between the years 2010 and 2025. Only a reduced subset

of measurements considered critical in terms of data continuity were considered. The matrix is shown in

Figure 88.
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Figure 88: Data continuity matrix for the GeoSCAN case study

As shown in Figure 88, the major potential data gaps for the next decade, when the Decadal missions are

taken into account, are the following:

* Earth radiation budget

* Altimetry

" Scatterometry

e Aerosols

Hence, the instrument that is most likely to cover an important data gaps is the microbolometer. The

spectrometer can also play a key role if its capabilities to provide useful aerosol data products are

confirmed.
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7.3.2 Cost-effectiveness comparison

One of the goals of this case study is to compare the performance and more importantly the cost-

effectiveness of the GEOscan program with those of the Decadal Survey set of missions. The comparison

is done using the tier I and tier II reference Decadal missions, on the basis of Decadal objectives. The

result of such comparison is shown on Figure 89 and Figure 90. Weighted scores use panel weights from

(Sutherland, 2009); unweighted scores use uniform panel weights.
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Figure 890: Comparison of GEOScan vs Decadal Survey missions in terms of scientific/societal benefit.
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Figure 89 shows the ranking of GEOscan and the Decadal missions in terms of science (both unweighted

and weighted using the panel weights defined in Section 6.2.1.1). The main result is obvious from the

chart: GEOscan as a whole (i.e., the 66 satellites carrying the suite of system sensors) has a higher

scientific and societal value than any one Decadal mission, regardless of whether the panel weights are

or are not taken into account. Furthermore, the ranking of individual GEOscan missions (i.e., the 66

satellites carrying for example the GPSRO) is comparable to that of Decadal missions.

These conclusions are accentuated when cost-effectiveness is taken into account. Four out of the top five

missions in cost effectiveness are GEOscan missions. Note that the cost effectiveness calculations assume

that the cost of both individual and the complete GEOscan mission is $200M, and the costs of the

Decadal missions are the ones provided in Figure 60. Figure 90 shows that GEOscan as a whole is several

times more cost-effective than any Decadal mission. Moreover, the cost-effectiveness of any one Decadal

mission is comparable to a GEOscan individual mission assuming a cost of $200M for the latter.

7.3.3 System sensor selection problem

The GeoSCAN system sensor selection problem takes as an input a set of candidate instruments and

outputs several subsets of instruments that are optimal. The term "optimal" here refers to cost-

effectiveness, i.e., maximization of science for a certain cost, or equivalently, minimization of cost for a

certain science level.

The candidate instruments considered for GeoSCAN system sensors are all the instruments described in

Section 7.2.2, including the instruments discarded by GeoSCAN, namely MWAS, the GPS receiver in

reflectometry mode, and the DORIS receiver. Space weather instruments are not considered here, as no

scientific objectives concerning space weather were laid out in the Earth science decadal survey.

Before presenting and discussing the results of the EOS instrument selection case study, we remind the

different types of rules that were used to obtain these results. According to the thesis objectives, some of

these results are taken from the library of classes of SAPs, some are domain-specific but common to all

case studies, some are domain-independent and SAP class-independent, and some are specific to the EOS

instrument selection problem.

The results presented in this section were obtained with the following set of rules:
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Class of rule Type of knowledge Source of rule
Grammar and enumeration rules Domain-independent, common to all Library-DsPs

down-selecting problems.
Search heuristics Domain-independent, common to all Library-DsPs

down-selecting problems
VASSAR-aggregation rules Decadal/GeoSCAN-specific See Section 7.2
VASSAR-requirement satisfaction rules Decadal/GeoSCAN-specific See Section 7.2
VASSAR-instrument capability rules GeoSCAN-specific See Section 7.2
VASSAR-attribute inheritance rules Domain-specific, common to all EOSS, VASSAR

all SAPs
VASSAR-synergy rules Common to all SAPs VASSAR
VASSAR-explanation rules Multiple types VASSAR
Down-selecting rules Domain-independent, common to all See section

down-selecting problems 2.3.6
Table 49: Summary of rules utilized in the GeoSCAN instrument selection case study

No additional enumeration constraints were taken into account as given the small size of the tradespace,

full factorial enumeration of all instrument sets is possible. The results of this full factorial enumeration of

255 architectures in the cost-science space are shown in Figure 91. In Figure 91, each diamond represents

one GeoSCAN selection architecture (i.e., a subset of instruments) in the cost-science space. The color of

this diamond indicates the reason -if any- why this architecture was eliminated in the down-selection

process. The following down-selection rules were applied:

* Lifecycle cost < $50M (cost of instruments only)

e Normalized Science > 0.15

* Utility > 0.55

* Pareto ranking < 3

" Normalized programmatic risk < 0.15

* Fairness> 0.01

In addition to these rules, an ad-hoc down-selection rule was incorporated in this Iridium case study to

take into account geometrical constraints. This heuristic rule deletes architectures that are unlikely to fit in

the GeoSCAN allotted space, shown in Figure 91. More precisely, a this rule enforces that a maximum of

two instruments are chosen out of a set of "large instruments", which contains the two versions of the

MMW sounder, the imager, and the accelerometers. These instruments are much bigger than the rest and

thus are assumed to drive the geometrical constraints of the architecture (see Figure 92).
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Results for generation 1
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Figure 91: Science cost tradespace for all GeoSCAN selection architectures

Figure 92: Preliminary allocation of system sensors and hosted payload on GeoSCAN

The remaining architectures after down-selection are shown in Figure 93, together with the reference

architecture and the utopia point. Figure 93 shows two different fuzzy Pareto fronts that are obtained

when the down-selection rules previously described are applied, with the only difference of the maximum

value of programmatic risk allowed, which is 15% in one case, and 30% in the other. As a reminder,

programmatic risk in the instrument selection problem is estimated by counting the fraction of the

instruments selected that have an initial TRL < 5.
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Results for generation 1
r5n

* Selected altem
0 Reference arch
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Itecture

------ 4

4
0.16 0.18 0.2 0.22 0.24 0.26 0.16 0.18 0.2 0.22 0.24 0.26

Normalized Science Normalized Science

Figure 93: Fuzzy Pareto frontier of GeoSCAN selection architectures for two max levels of progranunatic risk: 15% (left)
and 30% (right)

In the case of GeoSCAN, it was considered that only the advanced version of the MMW sounder and the

reflectometer had an initial TRL less than five. Although functional versions of these instruments have

been developed and in at least partially tested, they would have to be slightly modified (number of

channels, dimensions) for GeoSCAN, which explains the decision to assign them a relatively lower TRL

than the other instruments.

-4

A few architectures were highlighted on the Fuzzy

described in Table 50.

Pareto front of Figure 93. These architectures are

Arch. Instruments Instruments
id# added w.r.t. ref deleted w.r.t. ref
1 REFLECTOM GRAVITY
2 REFLECTOM LORENTZERB

GRAVITY
3 REFLECTOM LORENT7.-ERB

BIOMASS
4 MWAS- GRAVITY

ADVANCED BIOMASS
Table 50: Detail of GEOSCAN selection architectures on fuzzy Pareto front for max progrannatic risk = 30%

Figure 93 shows that for low maximum allowed levels of programmatic risk (15%), the set of

instruments selected as system sensors lies on the Pareto front of the science-cost trade space.

However, in a scenario where a higher programmatic risk is tolerated (30% of instruments with TRL<5),

non-dominated architectures systematically include one of the high risk instruments (i.e., the

reflectometer or the advanced version of the mmw sounder) instead of one or more of the low risk

instruments (e.g., accelerometers, microbolometer), as can be seen on Table 50. Furthermore, the choice

to delete these instruments and not others is consistent with the marginal scores discussed in 7.3.1.3.
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7.4 Conclusion

In the third and last case study, the framework was applied to the Iridium GEOscan program. The three

main goals of the case study were: a) to study the system sensor selection problem; b) to compare the

cost-effectiveness of GEOscan with that of the Decadal Survey; c) to suggest candidate instruments for

hosted payloads.

The system sensors selection problem was studied in detail. The study largely agrees with the system

sensors selected by GEOscan, with the caveat of the uncertainty in the capabilities of the spectrometer.

A comparison of the science value and cost-effectiveness of the GEOscan program with the Decadal Tier

I and Tier II missions has shown that GEOscan as a whole is several times more cost effective than any

Decadal mission if the cost of $200M for the GEOscan program is confirmed. GEOscan also provides

more scientific and societal value than any single Decadal mission. Individual GEOscan missions are

usually not comparable to Decadal missions in terms of absolute science value (with the exception of

GPSRO and the gravity mission), but they are definitely comparable in terms of cost-effectiveness.

Finally, the millimeter-wave atmospheric sounder and the GPS in reflectometry mode were identified as

top priorities for the hosted payloads.
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8 Conclusions

8.1 Thesis Summary

This thesis has introduced a new class of decision support tools for system architecting called rule-based

system architecting that incorporates a rule-based engine for improved scalability and traceability when

dealing with knowledge-intensive system architecting problems.

The thesis started by recognizing that there are three different bodies of knowledge required to solve an

SAP: knowledge that is independent of both the domain and the class of SAP, knowledge that is domain-

independent, but SAP-class specific; and knowledge that is domain-specific and SAP-class independent.

One of the major points of the thesis is that the utilization of a rule-based system enables the physical

separation of the three bodies of knowledge, which brings about the desired scalability.

Most of the theory of rule-based system architecting was developed in Chapter 2. First, the idea of the

existence of "classes" of SAP was introduced. Five classes of SAP were identified and formally defined:

assigning problems, which are the closest to Simmon's ADG formulation of SAPs; set partitioning and

covering problems, where the optimization is done over the set of all possible partitions of a set; down-

selecting problems, in which the optimization occurs over the set of all the possible subsets of a set;

permuting problems, where the optimization occurs over the set of all possible permutations of a set of

elements; and connecting problems where the optimization occurs over the set of all possible graphs

based on a given set of nodes.

For each class of SAPs, SAP class-specific knowledge was given in the form of three types of rules that

can be reused from problem to problem: grammars for enumerating feasible architectures, search heuristic

rules for searching through the architectural tradespace effectively, and selection rules for down-selecting

a subset of preferred architectures.

Furthermore, a generic tradespace search algorithm was presented that can be used to solve any SAP.

More precisely, it is a population-based algorithm designed to be augmented with heuristics that contain

both domain-specific and SAP-class specific knowledge in the form of rules.

Chapter 3 focused on approximate evaluation rules, and introduced a generic methodology that can be

used to assess the value of an architecture using rules. This methodology (VASSAR) consists of the

following types of rules: attribute inheritance rules, capability rules, emergence rules, requirement

satisfaction rules, value aggregation rules, and explanation rules.
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The methodology has 11 steps: 1) assert subsystem facts according to architecture decomposition; 2)

inherit subsystem properties from system properties using attribute inheritance rules; 3) assert component

facts according to subsystem decomposition; 4) inherit component properties from subsystem and system

properties, or from a component database, using attribute inheritance rules; 5) assert capability facts

through matching of subsystem facts and capability rules; 6) inherit capability properties from

component, subsystem, and system properties; 7) assert new and modify existing capabilities by running

the emergence rules module; 8) transform back and forth from the numerical world to the fuzzy world

using fuzzy attribute rules; 9) assert full and partial subobjective satisfaction facts from matching

capability facts to requirement satisfaction rules; 10) obtain the value of the architecture from applying

the value aggregation rules to the subobjective satisfaction facts; 11) obtain the explanations behind the

value of the architecture by using explanation rules to show the value delivery loop.

Chapter 4 focused on domain-specific knowledge, and introduced the domain of application of this thesis,

namely Earth Observing Satellite systems (EOSS). A precise definition of what it is understood by

architecture of an EOSS was provided, that identified three main categories of architectural decisions:

instrument selection, instrument packaging, and mission scheduling. Next, the domain specific knowledge

was provided in the form of sets of rules that can be used in the evaluation process: orbit selection rules,

power budget rules, complexity-corrected mass budget rules, launch vehicle selection rules, and standard

bus selection rules. It was shown how the generic VASSAR methodology introduced in Chapter 3 was

tailored for EOSS. Finally, several metrics appropriate for architecting EOSS were introduced and

described, namely scientific and societal benefit, lifecycle cost, programmatic risk, launch risk, fairness,

and data continuity.

The methodology was then applied to three case studies, namely the NASA Earth Observing System, the

NASA Decadal Survey, and the GEOscan Iridium case study. The NASA EOS case study was used as a

benchmark for the tool. The goal of this case study was to show that the tool can provide useful results by

attempting to replicate the decisions that were made in real life for EOS. Instrument selection decisions

were successfully replicated overall, except for externalities such as needs from international partners.

Instrument packaging decisions were also replicated once the assumptions in terms available buses and

launch vehicles were taken into account. Replicating mission scheduling decisions was more challenging

and required detailed yearly budget and mission cost data.
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The NASA Decadal Survey case study provided several insights into the instrument selection, instrument

packaging and mission scheduling problem. For example, a potential redundancy amongst the 8 lidars

proposed by the committee was identified: there are opportunities for fusion of the ICESAT-II lidar and

the DESDYNI lidar, and the GACM and ACE lidars. Furthermore, the model proposes an alternative

class of architectures based on intensive use of trains at key orbits (400 km dawn-dusk SSO for lidars and

high energy instruments, 600 km dawn-dusk SSO for imaging SARs, 700km PM orbit atmospheric

chemistry studies and continuity with EOS and the A-train, 800km AM SSO for radiation, passive optical

imaging, and continuity with weather satellites.

Finally, the GEOscan Iridium case study generally confirmed the optimal selection of the system sensors

for the GEOScan program under a tight schedule and assuming a certain degree of risk-aversion. It was

also shown that under a more aggressive risk-aversion profile the optimal solution would include higher

risk-high reward technologies such as the GPS in reflectometry mode and the advanced millimeter-wave

sounder. These two instruments in particular, together with other imagers with some spectral sampling in

certain spectral regions of interest (e.g. ocean color, vegetation), were proposed as hosted payloads for the

constellation.

8.2 Main Contributions

8.2.1 Methodological contributions

This thesis sets the theoretical foundations for a holistic architecting framework based on a rule-based

system. More precisely, the methodological contributions of the thesis are the following:

* It introduces the notion of classes of system architecting problems. More precisely, it defines

five classes of SAP: assigning problems, set partitioning and covering problems, set permuting

problems, down-selecting problems, and connecting problems. This classification is useful

because it helps the system architect formulate a system architecting problem as a combinatorial

optimization problem.

* It demonstrates how to separate the three bodies of knowledge needed to solve an SAP

(domain- and SAP class-independent, domain-specific, SAP class-independent, and SAP-class-

specific) using a rule-based expert system, in such a way that the scalability of the tool is

improved. In other words, it becomes easier to modify existing knowledge and to add new

knowledge.
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* It provides a library of classes of SAP, in which SAP class-specific knowledge for each of the

five classes is given in the form of rules that can be directly reused in another application. In

particular, the following knowledge is made available for each class: rules and encoding schemes

for efficient enumeration of architectures; rules for efficient search through the architectural

tradespace; rules for down-selection of architectures. This library is useful because it helps the

system architect explore the architectural tradespace efficiently.

* It proposes a methodology (VASSAR) to assess the value of an architecture using rules. This

methodology enables modeling of emergent behavior through emergence rules and ensures

traceability of the value delivery loop through explanation rules. This methodology is useful

because it helps system architects make the most of the rule-based system architecting

framework by implementing their architecture evaluation functions using rules.

* It applies the whole framework to the domain of Earth Observation Satellite Systems

architecting, and in doing so, the first expert system entirely devoted to architecting Earth

observing missions and programs is created. The value of this resides mostly in the fact that

thousands of rules containing expert knowledge about how to architect an EOSS is made

publicly available in a format that is compatible with leading rule-based engines. Therefore, this

large body of knowledge can be reused.

Rule-based system architecting is also inherently more transparent than other tools, since the trace of rules

executed provides a framework around which an explanation facility can be built. Moreover, this

explanation facility can also be physically separated from the rest of the code provided that the right data

structures are created.

8.2.2 Main findings from the case studies

The major findings from the three case studies are summarized below:

1. NASA EOS case study

* The EOSS RBES was generally capable of replicating the decisions made by EOS

management, with a few exceptions that were identified and understood. The most

flagrant ones were explained once needs from international partners were taken into

account (e.g., selection of MOPITT from Canada, and selection of Japanese AMSR-E

instead of European MIMR)

* Most of the preferred architectures for NASA EOS included the EOSP polarimeter,

which was deleted. EOSP was a relatively small and low cost instrument that had really

unique capabilities in terms of remote sensing of aerosol properties.
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e The model identified an alternative class of packaging architectures which is similar in

science and cost to the reference packaging architecture, but is more distributed.

Scientific synergies are captured by placing the satellites on train configurations, and

lifecycle cost is decreased by using the BCP-2000 standard bus for smaller payloads. This

more distributed architecture also decreases programmatic and launch risk.

e The initial mission scheduling model that assumed that all the budget for Earth science

missions goes for one mission at a time was proved to be inadequate. In this model, a

mission takes a number of years to develop that is equal to its cost estimate divided by

the yearly budget. When the cost has been covered by the budget, this mission is

launched and investment in the next mission starts. This model was not capable of

replicating the results of the EOS case study. The main reason was that in reality,

investments on several missions occur simultaneously, leading to situations in which two

or more missions are launched in a very small time interval. A second scheduling model

had to be developed that allows for multi-mission investment.

2. NRC Decadal Survey case study

e The EOSS RBES identified a potential redundancy between some of the eight lidars

proposed by the NRC committee. In particular, the altimeter in ICESAT-II could be

combined with the DESDYNI altimeter, and the GACM DIAL could potentially be

combined with the ACE DIAL.

* Both the ACE and DESDYNI missions fly large radars and lidars on common platforms

as per the reference architecture. The model identifies that it is not desirable to fly the

radar and the lidar on the same platform, not only because of cost considerations, but also

for scientific issues.

" The launch of GPSRO, HYSPIRI, and GACM should be prioritized because these three

missions are all highly cost-effective and have high potential to cover data gaps.

3. GEOscan Iridium case study

* The tool confirmed the set of system sensors selected for GEOSCAN, even though the

uncertainty in the capabilities of the spectrometer could render it less valuable than a

millimeter wave atmospheric sounder.

" A comparison of the science value and cost-effectiveness of the GEOscan program with

the Decadal Tier I and Tier II missions has shown that GEOscan as a whole is several

times more cost effective than any Decadal mission if the cost of $200M for the

GEOscan program is confirmed.
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GEOscan also provides more scientific and societal value than any single Decadal

mission. Individual GEOscan missions are usually not comparable to Decadal missions in

terms of absolute science value (with the exception of GPSRO and the gravity mission),

but they are definitely comparable in terms of cost-effectiveness.

* Candidates were identified for hosted payloads. The millimeter-wave atmospheric

sounder and the GPS in reflectometry mode are particularly promising, although there is

some uncertainty into whether they would fit in the GEOscan allotted space for hosted

payloads.

In addition to these findings that are specific to each case study, a cross-case study analysis revealed a

few additional insights that are general to all EOSS:

e While the decomposition of the problem of EOSS architecting in instrument selection, instrument

packaging, and mission scheduling, was adequate for modeling purposes and largely reflects the

reality of how EOSS are actually architected, these three problems are far from being uncoupled.

* Couplings from the scheduling problem to the selection and packaging problems are particularly

important and tend to be perceived by decision makers as hard constraints for the selection and

packaging problems: a certain instrument must be selected, or must be flown on whichever

satellite flies first, because it is a heritage instrument, or because it can close a data gap.

e Couplings between the selection and packaging problems are more relevant when standard buses

are used than when dedicated buses are developed. When standard buses are used, instruments

may be selected or deselected based on the resources available on the bus after placement of the

primary payloads. This "opportunity payloads" strategy may bring forth cost savings and increase

the technology readiness of certain instruments to be flown in future missions, by increasing bus

and launch vehicle packaging efficiency factors.

* Packaging architectural tradespaces (science vs cost) show clusters of iso-science architectures

that represent all architectures capturing the same synergies and with the same orbital conflicts.

These architectures are different ways of arranging the same instruments on the same orbits (i.e.,

monolithic spacecraft vs trains). This suggests that once theses synergies have been identified

through some preliminary exploration (some of them may not be obvious at the beginning), a

simpler science metric can be constructed that counts the number of synergies captured.

e The packaging problem is driven by a few aspects: science synergies, orbit selection, satellite

sizing or standard bus selection, and launch vehicle selection. The quality of the results of the

packaging problem strongly depends on the fidelity of the models used to size a satellite, select a

launch vehicle, and select an orbit for the spacecraft. In particular:
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o Having a set of "generic" launch vehicles (large, medium, small) is not good enough to

achieve useful results. Since the differences in packaging architectures are often driven

by differences in launch cost, it is important to consider a realistic pool of launch vehicles

for each case study.

o A similar reasoning applies to standard buses.

o Producing useful results in the packaging problem requires modeling the dependence of

scientific performance - not only lifecycle cost - on orbit selection. Orbital parameters

affect scientific performance through sensitivity or signal-to-noise ratio, spatial

resolution, temporal resolution, and coverage amongst others. This needs to be taken into

account because in addition of the effects of orbit selection on cost.

* The mission scheduling problem is coupled to the technology investment problem. While the

budget for mission development and the budget for instrument development are separate in most

space agencies, both processes are obviously coupled because payloads need to be integrated into

spacecraft before launch. Thus, decisions about investments on particular technologies and

decisions about investments on particular missions need to be made consistently.

8.3 Discussion

8.3.1 Features of Rule-based System Architecting

The framework, methodology and tools presented in this thesis, referred to with the term "Rule-based

system architecting", have a number of features that help improve the system architecting process:

" Scalability: The rule-based system architecture framework is architected to be scalable, i.e., to

be able to handle larger, knowledge-intensive problems. This means that it is easier to add new

knowledge or modify existing knowledge in the database.

" Transparency and traceability. The rule-based expert system has a built-in capability to trace

the rules that are executed. This can be augmented with domain-specific knowledge to create

powerful explanation facilities that support the system architects as they search through the

architectural tradespace. Enhanced interaction with the user may potentially result in higher

problem-solving performance.

* Better modeling of interactions and emergence: The rule-based system architecture

framework provides a powerful environment to model interactions between architectural

elements and emergent behavior.

* Fuzzy requirements and capabilities: The rule-based system architecture framework allows

expression of mixed "fuzzy" and numerical requirements and capabilities
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" Supports a broader variety of system architecting problem classes: The rule-based system

architecture framework supports the system architect in the enumeration, evaluation, search, and

down-selection phases of the architecting process in a broader variety of system architecting

problem classes than state-of-the-art tools

* Reusability and knowledge "vault": The rule-based system architecture framework is

architected to facilitate storage and sharing of domain-specific and domain-independent

knowledge between problems. As a corollary, it can also be used as a knowledge repository to

prevent loss of expertise through time.

" Fully integrated: The rule-based system architecture framework fully integrates the Jess rules

engine, with: a) a full-scope object-oriented programming language such as JavaTM; b) the

modeling and graphical representation power of MatlabTM, c) the simple spreadsheet-based

interfaces of ExcelTM ; d) The STK mission analysis simulation tool, and potentially any other

tool that can communicate with Matlab or Java (e.g., any tool that supports .COM).

8.3.2 Inherent Limitations of the Rule-based System Architecting Framework

While the rule-based system architecting framework has several advantages over state-of-the-art tools,

there are also certainly some drawbacks, some of which stem from design tradeoff choices:

* Knowledge elicitation: The rule-based system architecting framework is based on the use of

large quantities of expert knowledge. This knowledge needs to be elicited from a pool of experts

unless the user of the tool is also the expert. This process of knowledge elicitation can in some

cases be burdensome and become the bottleneck of the project.

* Computational performance: The framework achieves higher scalability and traceability than

other tools by trading them against some computational performance. Thus, it is not better or

worse than state-of-the-art tools, it is just on a different region of the design space that is better

suited for large knowledge-intensive problems. As a corollary, it is probably neither necessary

nor recommended using the rule-based system architecting framework to solve a relatively small

SAP.

* No control over flow of execution: Rules engines control most of the flow of execution of the

program and only allow the user to partially interact with it, for example, by setting the priority of

certain rules. While this is an advantage from the perspective that the user does not need to create

new code each time to control the flow of execution, it can also be a disadvantage because adding

a new rule in a large rule base may not result in the expected behavior. This risk is partially

mitigated by the creation of a good explanation facility that helps the user understand the

outcomes of the model.
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" Emergence is a double-edged sword: While the ability to model emergent behavior is certainly

a positive aspect in the context of system architecting, it also brings about additional challenges.

In particular, one needs to be careful in the definition of emergence rules, as rules that are "too

powerful" in the creation of new facts may excessively increase execution time. This risk can be

partially mitigated by setting boundaries on the "amount of emergence allowed". A simple

implementation of such boundary utilizes the concept of emergence depth. The level of

emergence depth is a property of a fact that is set to zero for all facts present in the beginning of

the execution. Every time a new fact is created from application of an emergence rule to a set of

facts, the emergence depth of the newly created fact is computed as one plus the maximum

emergence depth of the facts in the left hand side of the rule. Thus, constraints can be set on the

maximum level of emergence depth allowed on the facts of the left hand side of a rule in order for

that rule to fire.

" Unfamiliar programming language for many systems engineers: Rules engines are typically

functional, declarative languages that resemble CLIPS or PROLOG. These languages are

different from the procedural languages with which most engineers are familiar. As a

consequence, there might be a learning curve for users that are unfamiliar with such languages.

This problem could be mitigating by extending the user interface to allow the user to enter rules

and facts in "almost -natural" language (several parts of such interface have already been

developed).

8.3.3 Modeling Limitations of the current EOSS Expert System

An expert system for architecting EOSS was created as a result of applying the rule-based system

architecting framework to the EOSS domain. Significant effort has been put in the development of this

expert system, and the mere knowledge base gathered deserves mention as a valuable contribution.

However, the method and tool remain the result of one doctoral thesis, and thus can be improved in many

ways. The following is a list of limitations and aspects that could be improved. Note in particular that all

the typical limitations of rule-based expert systems discussed in Section 1.6.4 apply.

* Consistency and completeness of the database: A traditional critique of RBES consists in the

inability in general to guarantee the completeness or even the consistency of the knowledge

database. It is indeed possible that the rules in the knowledge base are not a good sampling of the

actual body of knowledge. While this problem is also relatively easy to detect provided that a

good explanation facility was developed, solving it remains a challenge in the field (Suwa et al.,

1984).
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* Sources of uncertainty: There are several potential sources of uncertainty in the results

presented in this thesis: a) the list of measurement capabilities in each instrument's capability

rules may be wrong or incomplete; b) the attributes of the same list may be wrong or incomplete;

c) the values in the partial satisfaction requirement rules may be wrong or incomplete; d) the

relative weights determined in the value aggregation rules may be inaccurate. As explained in the

body of the paper, the numerical values used in the case study come from a variety of sources

including the Decadal Survey report, interviews with senior scientists at MIT and NASA, and

several other publications. While standard interview guidelines and rubrics were used, and

significant effort was put into obtaining reasonable values, no formal social science method was

utilized to elicit the information from the interviewees.

* Needs unrelated to measurement requirements and data products: An underlying assumption

of the VASSAR methodology is that the vast majority of scientific and societal needs for EOSS

can be expressed in terms of measurement requirements using the attributes defined in the

measurement templates. While this is arguably the case for most system requirements that appear

on formal mission documents, it is also true that there might be unwritten needs and objectives

that are only marginally related to measurement requirements, such as those coming from

international partners or other policy elements.

" Mass budget models: The rules that compute the mass budget of a spacecraft are based on

empirical ratios between payload mass and subsystem mass, which are then completed with

complexity penalties. Both ratios and complexity penalties are based on the data provided in the

appendices of (Larson & Wertz, 1999b), which concerns a very small number of Earth observing

satellites. These ratios and complexity penalties should be updated to reflect a larger number of

Earth observing satellites.

" Cost models: In a similar note, the cost estimating relationships used in the cost estimation rules

are based on data provided in (Apgar et al., 1999) and should be updated to include a larger set of

Earth observing satellites.

* Satellite configuration models: In addition to computing the satellite mass, selecting a launch

vehicle requires estimating the dimensions and a rough configuration of the spacecraft. The rules-

of-thumb used to predict the size of the spacecraft are very basic and could be improved to

contain a preliminary configuration model that places the instruments, the batteries, and the solar

panels in the spacecraft.
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* Mission analysis database: The mission analysis database contains detailed information about a

few orbits in LEO, and the GEO orbit. While most useful inclinations and local times of the

ascending nodes are captured, the database could be augmented with orbits at 500km and 700km.

Furthermore, information concerning ground track repeat rates for LEO orbits should be

incorporated, as the requirement for exact repeat rates appears often in the orbit design of Earth

observing missions.

" Technology investment model: One of the issues identified in the mission scheduling problem is

that this problem is heavily coupled to the technology investment problem. Having a model of the

technology investment process that can simulate the increase in maturity of different technologies

with time and money would add a lot of value.

* Better coupling between problems: This thesis found that there are important couplings

between the instrument selection, packaging, and scheduling problems. Since these three

problems were solved sequentially, this results in suboptimal algorithm performance. In order to

alleviate this problem, iteration was performed manually. In particular, information was shared

between problems in the form of additional rules (usually hard constraints). Although this

approach was satisfactory for the purpose of this thesis, there might be a better approach to

solving the global problem.

8.4 Opportunities for Further Research

This thesis is a first step towards a framework for architecting systems that incorporates a rule-based

engine. Substantial progress has been made in demonstrating the utility of this approach. For example, it

was shown that it is possible to separate the different bodies of knowledge required to solve a complex

knowledge-intensive system architecting problem. This is very likely to result in an increased scalability

and transparency of the tool, which was verified in the three case studies conducted in this thesis.

However, no statistical proofs of the superiority of such framework in terms of scalability and

transparency were presented. Such proofs would require designing and conducting experiments with

groups of people that would use this framework and other frameworks and assess their relative

performance. These experiments were left out of the scope of this thesis, and therefore this thesis does not

claim the corresponding hypotheses are proved.

In addition to this, several other potential areas of further research are highlighted below.
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* Robust expert knowledge elicitation: One of the main limitations identified for the framework

was in the process of knowledge elicitation. The methodology would potentially benefit from the

incorporation of a formal social science method such as the Delphi method (Dalkey & Helmer,

1963) to elicit the information from stakeholders. However, the corresponding increase in rigor

would have an additional price in consumption of resources, which would make the problem of

the knowledge elicitation bottleneck worse.

e Enhanced RBES with fuzzy set theory: Furthermore, while our system provides a basic

capability to deal with fuzzy attributes through a set of rules that transform back and forth from

semi-quantitative to quantitative values, a more formal application of fuzzy set theory as first

proposed by Zadeh (L. A. Zadeh, 1965) would certainly be beneficial to treat stakeholder

satisfaction.

" Augmenting the RBES with a machine learning layer: The development of a machine learning

layer on top of the fuzzy rule-based system would significantly improve its performance. This

machine learning layer could be used for example to perform multi-attribute regression analysis

on the mission analysis database to infer simple relationships that allow for fast prediction of the

revisit times of a certain constellation on different regions of the Earth.

* Modeling emergence in systems architecting using rules: This thesis suggested that one of the

potential advantages of using RBES would be a more natural way of modeling emergence. While

this was illustrated for the case of EOSS, it would be interesting to further develop the theory of

modeling emergence in systems architecting using rules. In particular, this approach could be

compared to alternative ways of modeling emergence such as agent-based models, or cellular

automata.

" Incorporation of policy effects into system architecting using "Policy rules": It was suggested

by some of the interviewees that a policy set of rules be added to the current RBES in order to

take into account important rules that might be driving EOSS architecture while being almost

independent of science performance. While the VASSAR framework is general enough to

accommodate such rules, this could potentially require the definition of new templates.

In addition to the previous points, the performance of any RBES is determined by the quantity and quality

of rules in the rule database. Therefore, a major effort going forward will be in the continuous

improvement of the different rule bases.

This thesis has opened new avenues of research in the utilization of rule engines to support system

architecting. Many opportunities arise that span several engineering disciplines as well as computer

science, engineering management, and social science.
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9 Appendix: Knowledge database

This thesis separated domain-independent, domain-specific, and instance-specific knowledge as

suggested in the diagram below, taken from the discussion Chapter 2.

Domain scope
K1 KZ K3

Enumerating Searching a generic
architectures tradespace

All domains Searching a particular Finding a Pareto front
tradespace

K4 K5 Science synergies K6
Metrsis Generic instrument

All EOSS Constraints cpblte
Choosing Satellite engineering
architectures in PF

.. ............. ........................ .....e s. ... .... ...
K7 K8 K9

Instance of Particular feasibility Science requirements
EOSS constraints, search Particular instrument

heuristics, and capabilities
weights for metrics

Instance of SAP Class of SAPs All SAPs SAP
scope

The following additional materials are provided in this appendix:

1. Domain-independent, SAP class-specific knowledge (K2)

a. Assigning problems

b. Partitioning and covering problems

c. Down-selecting problems

d. Permuting problems

2. Domain-specific, EOSS-independent SAP-independent knowledge (K6)

a. Orbit selection rules

b. Power budget rules

c. Complexity-corrected mass budget rules

d. Launch vehicle selection rules

e. Standard bus selection rules

3. EOSS-specific knowledge (K9)

a. EOS case study value aggregation rules

b. Decadal/GEOscan case study value aggregation rules

Requirement satisfaction rules and instrument capability rules for the EOS, Decadal, and GEOscan case

studies are not provided in this Appendix, but they can be downloaded in xls format from:

http://web.mit.edu/dselva/www/RBES/
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9.1 Domain-independent, SAP class-specific knowledge

9.1.1 Assigning Problems

9.1.1.1 Grammars

Encoding scheme:

(deftemplate DECISION (slot name) (multislot options))

(defrule create-architecture-template
"This rule creates an architecture template that contains slots for each

decision"

- (accumulate (bind ?list (create$ ))
(bind ?list (insert$ list (+ 1 (length$

(DECISION (name ?n))) ;; CE

ist)) ?n
;;result

initializer
action

(bind ?str "(deftemplate DECISION-ARCH (slot num-decisions) (multislot decision-
names) (multislot sequence) (multislot str)")

(foreach ?dec ?c
(bind ?str (str-cat ?str "(slot ")

(bind ?str (str-cat ?str ")"))
(eval ?t)

Example of utilization:
(reset)
(assert (DECISION (name num-boosters) (options (create$ 1 2 4))))
(assert (DECISION (name propellanti) (options (create$ LH2 CH4 RP1))))
(assert (DECISION (name propellant2) (options (create$ LH2 CH4 RP1))))
(run)

'- "(deftemplate DECISION-ARCH

(slot num-decisions)
(multislot decision-names)
(multislot sequence)
(multislot str)
(slot num-boosters)
(slot propellant1)
(slot propellant2))"

Code 34: Automatic generation of architecture templates in the AsP from decisions and options

Note that the user only needs to assert what the decisions and are, as well as the options for each decision,

and this simple rule will automatically generate a template that contains a slot for each architectural

decision. In this template, the slot "sequence" contains the representation of the architecture in E2 while

the slot "str" contains the representation of the architecture in E1 .
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Enumeration rules:

(defrule enumerate-all-architectures
"This rule enumerates all possible assignments of options to decisions"

<- (DECISION-ARCH (decision-names $'ist) (num-decisions ?n) (sequence
) (str t) )

(DECISION (name ) (options $
(test (< (length$ .,r) n))
(test (eq (nth$ (+ 1 (length$ ))

(retract )
(bind 1)
(foreach

(bind (insert$ (+ 1 (le
(bind (insert$ (+ 1 (le

(printout t crlf)
(printout t crlf)
(assert (DECISION-ARCH (num-decisions

)
(str ))

(++ )

(defquery get-decisions (DECISION (name w

ngth$
ngth$

) (decision-names ? ) (sequence

(deffunction
(bind
(bind
(while (
(bind

get-decision-names ()
(run-query* get-decisions))

(create$ ))
next)

(insert$ (+ 1 (length$ )) (P re .tgetString name)))

)
(return (map eval )
)

Example of utilization:

(assert (DECISION-ARCH (num-decisions (count-query-results get-decisions)) (decision-
names (get-decision-names)) (sequence (create$ )) (str (create$ ))))
(run)

Code 35: Full factorial enumeration rule for the AsP and example of utilization

Since the size of the tradespace is exponential with the number of decisions, an alternative partial

enumeration rule is required that only enumerates a fraction of the tradespace. Such enumeration rule is

provided in Code 36. Note that only one command changes, namely the assert command inside the loop.

In this enumeration rule, only a fraction of random options are used to populate the architectural tree. This

fraction of architectures is controlled through the parameter of the function rare-randb. Hence in the

example shown in Code 36, this fraction is 50%. For a value of this parameter equal to 100%, this

enumeration rule is identical in behavior to the full factorial enumeration rule.
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(deffunction rare-randb (?p)
(return (< (random) (*p 65536)))
)

(defrule HARD-CONSTRAINTS::enumerate-some-architectures
"This rule enumerates a number of random AsP architectures. The number of

architectures can be controlled by changing the value of the parameter of the rare-
randb function."

?arch <- (HARD-CONSTRAINTS: :DECISION-ARCH (decision-names $711st) (num-decisions
?n) (sequence $?seq) (str $?st) )

(HARD-CONSTRAINTS::DECISION (name ?name) (options $?opt))
(test (< (length$ ?seq) ?n))
(test (eq (nth$ (+ 1 (length$ ?se4)) 4))

(retract ?arch)
(bind ?i 1)
(foreach ? < K K-

(bind ?new-seq (insert$ (+ 1 (length$ )) ?))
(bind (insert$ Pstr (+ 1 (length$ ))

(printout t ?nw-e crlf)
(printout t ?new - st r crlf)
(if (rare-randb 0.5) then (assert (HARD-CONSTRAINTS::DECISION-ARCH (num-

decisions ?rn) (decision-names ist) (sequence n )
(str ?-new-str))

(++ ?i)))
Code 36: Partial enumeration rule for the AsP

9.1.1.2 Search heuristics

Local search: In terms of non-informed local search rules, we provide a mutation operator that changes

the value of a random decision to a new random value. The code is provided in Code 37.

(defquery HARD-CONSTRAINTS::get-options
(declare (variables ?m
(HARD-CONSTRAINTS::DECISION (name ) (options - )

(deffunction get-option-values ( ?dec -name)
(bind ?result (run-query* HARD-CONSTRAINTS: :get-options))
(while (?result next)

(bind ?lis (?rsul getSymbol options))
)

(return )
)

(defrule mutation-change-one-assignment
"This mutation function swaps the value of a single bit"
?arch <- (HARD-CONSTRAINTS: :DECISION-ARCH (decisions - ) (num-decisions n

(bind ?doc -name (nth$ (rand-int-1-to-N n) (get-decision-names)))
(bind ?o (get-option-values -)
(bind ?neva (nth$ (rand-int-1-to-N (length$ ))
(eval (str-cat "(duplicate ?arch (' "?new-val))" )))

Code 37: A mutation operator for the AsP
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A single point crossover operator is also included that combines decisions from the "father" with

decisions from the "mother" in order to produce new and hopefully better "children" architectures. The

code of such crossover operator is given in Code 38.

(deffunction AsP-crossover ( )
"This function performs a single point crossover between
two AsP architectures"
(bind (round (/ (length$ ) 2)))
(return (create$ (subseq$ 1 ) (subseq$ (+ 1 ?)
)

(defrule AsP-single-point-crossover
"This crossover operator combined assignments from two good architectures
to create a new and hopefully better architecture by combining decisions
from the two parent architectures"

<- (HARD-CONSTRAINTS: :DECISION-ARCH (decisions

(sequence ) (improve yes))
<- (HARD-CONSTRAINTS::DECISION-ARCH (decisions

(sequence ) (improve yes))

(bind
(assert

)

(AsP-crossover
(HARD-CONSTRAINTS: :DECISION-ARCH (num-decisions

(sequence

) (num-decisions )

) (num-decisions )

) (decisions )

Code 38: A crossover operator for the AsP

9.1.2 Partitioning and Covering Problems

9.1.2.1 Grammars

Enumeration rules: Under the E1 encoding scheme, we can implement a full factorial enumeration rule

that leverages the recursivity provided by functional languages such as CLIPS:

(deftemplate
(deffunction

(bind
(bind
(for (bir

(bind
(if (>

partitioning-architecture (multislot assignments))
max$ ( t)

(length$

1) (<= e) (++ )
(nth$

) then (bind

)
(return
)

(defrule grammar-A-set-partitioning
"This enumeration rule generates all valid architectures for a generic set

partitioning problem with five elements"
<- (partitioning-architecture (assignments

(test (< (length$ xss) 5))
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(retract Parch)
(bind ?n (length$ ?ass))
(bind (max$ )) ; index of current last element of form
(for (bind ?i 1) (<= (+ 1)) (++ ?i)

(bind (insert$s (+ ?n 1) ?i))
(assert (partitioning-architecture (assignments

)
)

(reset)
(assert (partitioning-architecture (assignments (create$ 1))))
(run)

Code 39: Efficient full factorial enumeration rule for PaPs

Let R1 be the enumeration rule defined in Code 39, and let unconstrained grammar A = (E, p, R1 ). While

this rule is very efficient in enumerating all possible set partitions, full enumeration becomes impossible

for numbers of elements between 10 and 13 for current computing technology, because Bell numbers

grow faster than exponentially. Thus a different grammar is required that allows for non-exhaustive

exploration.

The following enumeration rule uses the same encoding scheme as, and is very similar to, the previous

one. However, in this enumeration rule, only a certain number of architectures are randomly generated.

The number of architectures generated is "controlled" in Code 40 through the variable ?N. Note that

"controlled" in this context means that the number of architectures generated will be exponential with the

number of elements, as opposed to faster than exponential in the original case. The base of this

exponential will be equal to the average number of architectures generated by iteration, which for a

uniform random function will be close to 0.5(N + 1).

;; Grammar B for a function partitioning architecture problem
(deftemplate TEST::partitioning-architecture (multislot assignments))
(deffunction max$ (.ist)

(bind ?size (length$ ))
(bind ?mx 0)
(for (bind ?i 1) (<= ?i ?size) (++ )

(bind ?eL (nth$ ?i ?list))
(if (> ?iix) then (bind

)
(return ?mx)
)

(deffunction randomint ( )
(bind ?rnd (* (/ (random) 65536) (- (+ 0.5 ?max) (- 0.5)))); random real

between 0 and max - min + 1
(bind ?x (+ (- 0.5) i)); random real between min - 0.5 and max + 0.5
(return (round 'x))

)
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(defrule TEST::grammar-B-set-partitioning
"This grammar generates only a random subset of architectures for a generic set

partitioning problem with 10 elements"

- (TEST::partitioning-architecture (assignments $ass))
(test (< (length$ ) 10))

(bind 4) this parameter controls the number of architectures enumerated
(retract )
(bind (length$
(bind (max$ )) ; index of current last element of form
(for (bind 1) (<= ) (++ ?i) ; only loop N times

(bind (insert$S (+ 1) (randomint 1 (+ ? 1)))); insert
random number between 1 and max + 1

(assert (TEST::partitioning-architecture (assignments
)

)
Code 40: Controlled partial exploration of the architectural tradespace of PaPs

9.1.2.2 Search heuristics

Tradespace size reduction rules:

- A rule on the maximum number of subsets that a partition can have.

(deftemplate TEST::PACK-ARCH (multislot assignments))

(defrule TEST::delete-archs-with-too-many-subsets
(TEST::MAX-SATS (max-sats# x&~nil))

<- (TEST::PACK-ARCH (assignments ?a))

(test (> (max$ ) m))

(retract
Code 41: Tradespace size reduction search heuristic rule for PaPs on max number of subsets in a partition

- A rule on the maximum number of elements that any subset in a partition can have. This avoids

the exploration of architectures that would include subsets that are non-sensical for being too

large. For example, if the elements are instruments and the subsets are satellites, this avoids

looking at architectures that have satellites that cannot be launched by any current launch vehicle.

Code 42 Tradespace size reduction search heuristic rule for PaPs on max number of subsets in a partition
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(defrule TEST::delete-archs-with-too-many-elements-in-one-subset
(TEST: :MAX-ELEMS-PER-SUBSET (max-elements-per-subset# ?mx&~nil))

<- (TEST::PACK-ARCH (assignments $?as))
(test (> (get_max_elemsper-subset $?s) ?mx))

(retract



- One or more rules to force that an instrument is assigned to a subset of size k (typically, k = 1).

This dramatically reduces the size of the tradespace. For k = 1 for example, this is equivalent to

considering a PaP with m-I elements.

(defrule TEST::delete-archs-breaking-alone-element-reqs
(TEST: :ALONE-ELEMENTS (elements

h <- (TEST::PACK-ARCH (assignments
(test (breakalonereq ?ins ?1ss))

(retract ?archi))
Code 43: Tradespace size reduction search heuristic rule for PaPs that requires an element to be assigned to a 1-element

subset.

- One or more rules to enforce that two or more elements are grouped in the same subset.

(defrule TEST: :delete-archs-breaking-together-elems-reqs
(TEST: :TOGETHER-ELEMENTS (elements $ns))
?arch <- (TEST::PACK-ARCH (assignments $?ass))
(test (breaktogetherreq ))

- (retract ?archi))
Code 44: Tradespace size reduction search heuristic rule for PaPs that requires two elements to be assigned to the same

subset.

- One or more rules to enforce that two or more instruments are assigned to different subsets.

(defrule TEST::delete-archs-breaking-apart-instrument-reqs
(TEST: :APART-INSTRUMENTS (instruments

<- (TEST::PACK-ARCH (assignments $ ))
(test (breakapartreq ))

(retract ?arch)

Code 45: Tradespace size reduction search heuristic rule for PaPs that requires two elements to be assigned to different
subsets.

In addition to these rules, decomposition of PaPs can be accomplished using any clustering algorithm. In

order to use a clustering algorithm it is necessary to provide a metric for the distance between two

elements: two elements that are "close" together using this distance tend to be assigned to the same

cluster, and they tend to be assigned to different clusters if this distance is "large". Typically, this distance

is the Euclidean distance between the vectors representing the element on a certain space. Such space

could be forever a space of architectural attributes of the elements. However, in some PaPs, this may

result in poor heuristics, since there is little correlation in general between similarity in the space of

architectural attributes and synergies between elements.

320



Local search rules: Six different local search rules are defined, growing in level of information from

completely uninformed random mutation operators to informed specialized operators that utilize the V-

DSM. These six rules are described below:

- A mutation operator that changes the position of one random element into a random subset

different from its original subset

(defrule TEST: :mutation-change-one-element
"This mutation function changes the position of one element"

- (TEST::PACK-ARCH (assignments

(bind h (mutateswap_oneelement
(duplicate (assignments
)

Code 46: Mutation operator for PaPs that changes the position of a random element into a new random subset.

- A mutation operator that swaps the positions of two random elements taken from different

random subsets.

(defrule TEST::mutation-swaps-two-elements
"This mutation function swaps the positions of two elements"

<- (TEST::PACK-ARCH (assignments

(bind ch (mutate swaptwoelements
(duplicate (assignments

)
Code 47: Mutation operator for PaPs that changes the position of two random elements from different subsets.

- A mutation operator that breaks a random big subset into two smaller subsets.

(defrule TEST::mutation-break-one-big-subset
"This mutation function breaks one big random subset"

- (TEST::PACK-ARCH (assignments ) (mutate yes))

(bind (mutatebreak bigsubset ?ass))
(duplicate (assignments

Code 48: Mutation operator for PaPs that breaks one random large subset in a partition into two smaller subsets.

- A mutation operator that combines two random "small" subsets to create a larger subset.

(defrule TEST::mutation-combine-two-small-subsets
"This mutation function combines two small random subsets"

<- (TEST::PACK-ARCH (assignments ?ass))

(bind (mutatecombinesmallsubsets ))
(duplicate (assignments
)

Code 49: Mutation operator for PaPs that combines two random small subsets to create a new larger subset.
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- Improve by adding synergies: This heuristic rule identifies the missing synergies in an

architecture, selects one of these missing synergies randomly, and swaps the position of two

elements in order to capture that synergy. This rule is the informed version of mutation-combine-

two-small-subsets.

(defrule TEST::improve-by-adding-synergy
"This heuristic search rule improves a packaging architecture by

identifying a synergy that is not captured and rearranging the
assignments so that the synergy is captured"

?arch <- (TEST::PACK-ARCH (assignments Zla))

(bind ?n: arch (matlabf improveaddsynergy ?ass))

(duplicate ?arch (assignments

Code 50: Informed local search operator for PaPs that changes the position of two elements from different subsets
intelligently in order to capture a missing synergy.

1. Improve by eliminating interference: This heuristic rule identifies a current interference in an

architecture, and swaps the position of two elements in order to break that interference. Note that

this rule is the informed version of mutation-break-one - big- subset.

(defrule TEST::improve-by-removing-interference
"This heuristic search rule improves a packaging architecture by

identifying an existing interference and removing it"

?arch <- (TEST::PACK-ARCH (assignments $?as))

(bind ?n-a rch (matlabf improve removeinterference
(bind ?new-str (matlabf get_strfromarch ?w c
(duplicate ?arch (assignments ?new-arch) (improve no) (str

)
Code 51: Informed local search operator for PaPs that changes the position of two elements from different subsets

intelligently in order to capture a missing synergy.

The last informed search heuristic that we provide for PaPs is a crossover operator. Crossover operators

combine characteristics of two architectures to create a new architecture. This crossover operator takes

some subsets from one of the parents and then assigns the rest of the elements to the other. Its CLIPS

code is provided below.

%%% Matlab PACKcrossover.m
function xoverKids =
PACKcrossover (parents, options, GenomeLength, FitnessFcn, unused, thisPopulation)
nKids = length(parents)/2;
linCon = options.LinearConstr;
constr = -isequal(linCon.type, 'unconstrained');
xoverKids = zeros(nKids,GenomeLength);
index = 1;
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for i=l:nKids
% get parents
papa = thisPopulation(parents (index),:);
index = index + 1;
mama = thisPopulation(parents(index),:);
index = index + 1;
%% Compute children from 2 parents in sats form

firsthalf = papa(1:ceil(GenomeLength/2));
firsthalfpapa = PACKarch2sats(firsthalf);%these are length

(first half papa) sats
nsat1 = length(firsthalfpapa);
secondhalf = mama(ceil(GenomeLength/2)+l:end);
secondhalfmama =

PACKarch2sats(PACKfix(secondhalf) ,ceil (GenomeLength/2));
secondhalf = PACKfix(secondhalf) + max(firsthalf);
existingsat = mama(ceil(GenomeLength/2)+l:end) <=

max(mama(1:ceil(GenomeLength/2))); %existing_sat(i) = 1 means that instrument

i is in a satellite that was created in the first half

nsat2 = length(secondhalfmama);
% Try to combine satellites of second half with satellite of first half

kidsat = [first-halfpapa;secondhalfmama];
for j = 1:nsat2 % foreach satellite from mum

sat = secondhalf_mama{j}; % satellite
for k = 1:length(sat) % loop through its instruments

instr = sat(k);% instr
if existingsat(instr-ceil(GenomeLength/2)) % if this instrument

in mum belongs to a satellite of the 1st half

% lump this satellite with a random satellite from first half

% (which comes from dad)

kid sat = mergesats(kidsat,randi(nsat1),j+nsat1);% merge
satellites random and this one

break;% go to next satellite in loop over j
end

end
end
xoverKids(i,:) = PACK fix(PACK sats2arch(kid sat));
% Make sure that offspring are feasible w.r.t. linear constraints

if constr
feasible =

isTrialFeasible (xoverKids (i,:)'1 linCon.Aineq, linCon.bineq, linCon.Aeq,
linCon.beq,linCon.lb,linCon.ub,sqrt(options.TolCon));

if -feasible % Kid is not feasible
% Children are arithmetic mean of two parents (feasible w.r.t

% linear constraints)

alpha = rand;
xoverKids(i,:) = round(alpha*thisPopulation(rl,:) + ...

(1-alpha)*thisPopulation(r2,:));
end

end
end

Code 52: A crossover operator for PaPs.
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Repair operators: A repair operator is provided that projects a non-sensical architecture representation

into the set of sensical architecture representations. The Matlab code for a generic repair operator for PaPs

is provided below.

function new = PACKfix(seq)
new = seq;

%% relabel subset indices in increasing order starting from 1

pivs = java.util.HashMap;
for i = 1:length(seq)

piv = seq(i);
if pivs.containsKey(piv)

new(i) = pivs.get(piv);
else

n = pivs.size;
pivs.put(piv,n + 1);
new(i) = n+1;

end
end

%% remove empty satellites

for i = 2:length(new)
if(new(i) > max(new(1:i-1)) + 1)

new(i) = max(new(1:i-1)) + 1;

end
end
end

Code 53: Matlab code for a generic repair operator for PaPs.

9.1.3 Down-selecting Problems

9.1.3.1 Grammars

Enumeration rules: Given this encoding scheme E1 , a simple set of enumeration rules R for the

unconstrained DsP is provided in Code 54.

(deftemplate TEST::SEL-ARCH (multislot sequence)); template for encoding scheme

(defrule TEST::enumerate-all-subsets
"This rule enumerates all possible subsets in a set of m elements"
?arch <- (TEST::SEL-ARCH (sequence s

(test (< (length$ $?seq) 5))

(retract ?arch)
(bind ?n (length$ $?sec))
(bind ?new- seq (insert$ ?seq (+ ?n 1) 0))
(assert (TEST::SEL-ARCH (sequence
(bind n s (insert$ ?se (+ ?n 1) 1))
(assert (TEST::SEL-ARCH (sequence ?esq)

)
Code 54: Enumeration rule for the unconstrained DsP
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Beyond 30 elements, full factorial enumeration becomes impossible and an alternative grammar that

enumerates only a fraction of the tradespace becomes necessary. Such grammar is provided in Code 55.

subsets in a set of m elements"
) (stop-tree FALSE))

(deffunction rare-randb ()
(bind 1000)
(return (< (random) )))

(defrule TEST::enumerate-some-subsets
"This rule enumerates all possible

<- (TEST: :SEL-ARCH (sequence
(test (< (length$ ) 15))

(retract
(bind (length$
(bind (insert$ (+
(assert (TEST::SEL-ARCH (sequence
(bind (insert$ (+ ?n
(assert (TEST::SEL-ARCH (sequence

(defrule TEST::remove-incomplete-arch
"This rule enumerates all possible
(declare (salience -10))

<- (TEST::SEL-ARCH (sequence
(test (< (length$ ) 15))

) (stop-tree (rare-randb))))

) (stop-tree (rare-randb)))))

subsets in a set of m elements"

) (stop-tree 1));

1) 0))

1) 1))

(retract

Enumeration constraints: We now consider four types of generic enumeration constraints for the DsP,

divided in two opposite pairs:

e OR({ei}) enumeration constraints: this enumeration rule eliminates all subsets in which none of

elements in fei} are selected. One possible natural language equivalent of this rule is "AT LEAST

ONE FROM". In logic, this is called a disjunction. It is useful to define a situation in which

elements belong to groups, and at least one element of each group is required.

* NANDteJ} enumeration constraints: this enumeration rule eliminates all subsets in which all of

elements in {ei} are selected. Note that: NAND = -,OR. One possible natural language

equivalent of this rule is "NOT ALL OF". In logic, this is called an alternative denial. It is useful

to define a situation in which two elements are redundant.

* XOR(feil) enumeration constraints: this enumeration rule eliminates all subsets in which either

more or less than one elements in feg} are selected. Note that for m = 2 only: XOR = OR A

NAND. One possible natural language equivalent of this rule is "EXACTLY ONE FROM". This

is useful to define a situation in which elements belong to groups, and at least one element of

each group is required, but it makes no sense to take more than 1 element from each group.
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e XNOR({eg}) enumeration constraints: this enumeration rule eliminates all subsets except those in

which either all or none of elements in {ei} are selected. Note that for m = 2 only: XNOR =

-,XOR. One possible natural language equivalent of this rule is "EITHER ALL OR NONE OF".

This is useful to define a situation in which it really only makes sense to select certain elements as

a group, so that the decision to make is whether to select the group or not. Note that this

constraint reduces the size of the problem n -

The implementation of these constraints in CLIPS is provided below. Note that a different template is

defined for each type of enumeration constraint. The code for a few supporting functions is also shown.

(deftemplate TEST::OR-CONSTRAINT (multislot elements))
(deftemplate TEST::NAND-CONSTRAINT (multislot elements))
(deftemplate TEST::XOR-CONSTRAINT (multislot elements))
(deftemplate TEST: :XNOR-CONSTRAINT (multislot elements))

(deffunction bit-and$ (?ist )
(bind ?i 0)
(bind ?res (create$ ))
(foreach ?bitl P1

(bind ?res (insert$ (++.?i) (bit-and (nth$
(return ?res)
)

(deffunction bit-or$ (.
(bind ?1 0)
(bind ?res (create$ ))
(foreach ?bitl

(bind Pres (insert$ res (++ ?i) (bit-or ?biti (nth$ ?iist2))
(return ?res)

)

(deffunction +$ (?list)
(if (eq (length$ ?list) 1) then (return (nth$ 1 Pwist))

else (return (+ (nth$ 1 ?list) (+$ (rest$

)

(deffunction get-mask (? )
(bind ?res (create$ ))
(for (bind ?i 1) (<= ?i ?N) (++

(if (numberp (member$ )) then
(bind ?res (insert$ ?res ?i 1))

else
(bind ?res (insert$ 0)))

)
(return )
)

(defrule TEST::enforce-OR-constraints
"If an architecture does not contain at least one of the elements in an or

constraint
then it should be deleted"
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- (TEST::SEL-ARCH (sequence $?sq))
(TEST: :OR-CONSTRAINT (elements $?eem)
(test (< (+$ (bit-and$ (get-mask $?lems 4))) 1))

(retract )
)

(defrule TEST::enforce-NAND-constraints
"If an architecture contains all of the elements in a NAND constraint
then it should be deleted"

<- (TEST::SEL-ARCH (sequence
(TEST::NAND-CONSTRAINT (elements
(test (eq (+$ (bit-and$ (get-mask 4))) (length$

(retract )
)

(defrule TEST::enforce-XOR-constraints
"If an architecture does not contain exactly one of the elements in a XOR

constraint
then it should be deleted"

<- (TEST::SEL-ARCH (sequence
(TEST: :XOR-CONSTRAINT (elements )
(test (neq (+$ (bit-and$ (get-mask 4))) 1))

(retract )
)

(defrule TEST::enforce-XNOR-constraints
"If an architecture contains a number of the elements in a XNOR constraint

that is > 0 and less than all of them, then it should be deleted"

<- (TEST::SEL-ARCH (sequence $e))
(TEST: :XNOR -CONSTRAINT (elements S ?
(test (> (+$ (bit-and$ (get-mask 4))) 0))
(test (< (+$ (bit-and$ (get-mask $? 4))) (length$ )))

(retract )
)

Code 56: Canonical enumeration constraints for DsPs
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Note that this list of enumeration constraints is not exhaustive. One could consider for instance an

"EXACTLY N OUT OF K" constraint in which exactly N elements from a subset of K elements need to

be selected. For K = 2 and N = 1 this is equivalent to the XOR rule. Another useful rule could be "AT

LEAST N OUT OF K". The implementation of such constraints from combinations or variations of the

others is trivial and shown below:

(deftemplate TEST::EXACTLY-N-OUT-OF-K-CONSTRAINT (multislot elements) (slot N))
(deftemplate TEST: :AT-LEAST-N-OUT-OF-K-CONSTRAINT (multislot elements) (slot N))

(defrule TEST::enforce-EXACTLY-N-OUT-OF-K-constraints
"If an architecture contains a number of the elements in an EXACTLY-N-OUT-OF-K

constraint
that is not equal to N, then it should be deleted"

?arch <- (TEST::SEL-ARCH (sequence S?seq))
(TEST::EXACTLY-N-OUT-OF-K-CONSTRAINT (elements $?ilm) (N ?N))
(test (neq (+$ (bit-and$ ?seq (get-mask ?elemt s 4))) ?N))

(retract ?arch))

(defrule TEST::enforce-AT-LEAST-N-OUT-OF-K-constraints
"If an architecture contains a number of the elements in an AT-LEAST-N-OUT-OF-K

constraint
that is less than N, then it should be deleted"

<- (TEST::SEL-ARCH (sequence $?seq))
(TEST::AT-LEAST-N-OUT-OF-K-CONSTRAINT (elements 7 s) (N ?N))
(test (< (+$ (bit-and$ ?seq (get-mask 4))) ?N))

(retract ?arch))
Code 57: Additional enumeration constraints for the DsP

9.1.3.2 Search heuristics

Local search rules: We propose one non-informed local search rule in the form of a mutation operator that

swaps the value of a bit randomly.

(defrule TEST::mutation-swap-one-bit
"This mutation function generates N new architectures from the original one by

swapping the value of a single random bit"
?arch <- (TEST::SEL-ARCH (sequence I)

(bind ?'N 5)
(for (bind 0) (< ?l ?N) (++ ?)

(bind ?new-seq (mutateonebit
(duplicate ?arch (sequence

)
Code 58: A non-informed mutation operator for the DsP
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Note that the variable N allows the definition of the number of new architectures that are generated each

time this mutation function is executed.

In addition to this non-informed mutation operator, we provide two informed local search rules that utilize

the B-DSM defined in section 9.1.2.2: the first one attempts to improve the subset by completing it with

an element that has high synergies with the elements already in the subset; the second one attempts to

improve it by removing a redundant element from the subset.

(defrule TEST::improve-by-completing-architecture
"This rule identifies the shortcomings of an architecture and
modifies it by adding an instrument that covers some of the gaps

<- (TEST::SEL-ARCH (sequence

(bind (matlabf complete-arch )) this is an ArrayList of objectives
(if (neq ) then (duplicate (sequence

)

(defrule TEST::improve-by-removing-redundancy
"This rule identifies the potential redundancies in an architecture and

eliminates
one of them"

h <- (TEST: :SEL-ARCH (sequence

(bind (matlabf removeredundancy fromarch )); this is an ArrayList
of objectives

(duplicate (sequence
)

Code 59: Two informed mutation operators for the DsP that utilize the B-DSM

9.1.4 Permuting Problems

9.1.4.1 Grammars

Encoding scheme: A straightforward encoding scheme for the PeP is an array of m integers between 1

and m:

E: Oi -+ [pi, P2, -- PM]

pj E [1, m]

Two different encoding schemes can be defined depending on the meaning of the p;:

* E1 : p; = k means that element ejis assigned to position k in 0 ;

* E2 : pj = k means that element ekis assigned to positionj in 0
L
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Both encoding schemes are used in this thesis, since some rules are easier to implement under E1 , while

others are easier to implement under E2 . Hence, there is a need for an operator that changes from Eito E2 .

The code for such operator is given below, together with the template that uses the two different

encodings. E1 was arbitrarily named the sequence, and E2 the ordering.

(deftemplate TEST::PERMUTING-ARCH (multislot sequence) (multislot ordering))

(deffunction sequence-to-ordering (?seq)
(bind ?r (create$ ))
(foreach ?x ?seq (bind ?ord (insert$ ?ord (+ (length$ ?Ord) 1) 0)))
(for (bind ?i 1) (<= ?i (length$ ?seq)) (++ ?i)

(bind ?j (nth$ ?i ?seq))
(bind ?ord (replace$ ?ord ?j? ?i))

)
(return ?ord)

)
Code 60: Template for a permuting architecture and operator to change between El (sequence of mission) and E2

(mission orders) in PeP

In order to differentiate between these two different encoding schemes, we will arbitrarily use 0 ; to

indicate the representation of a permutation in El, while Og' will indicate the representation of the same

permutation in E2 . For instance, if O = [2,4,5,1,3] then O' = [4,1,5,2,3]. In this permutation, the

sequence is element 2 - element 4 - element 5 - element I - element 3. If we want to know the position

of ej in the sequence we can also look at the jth entry in 0j'.

Enumeration rules: Given E1 and E2 , the enumeration rule given in Code 61 can be used to enumerate all

possible permutations of m elements.

Since factorial(m) grows very fast with m, it is required to define an alternative grammar that only

enumerates part of the tradespace. This alternative grammar is presented in Code 62.

(deftemplate TEST::PERMUTING-ARCH (multislot sequence))

(defrule TEST::enumerate-all-permutations
"This rule enumerates all possible permutations of a set of m elements"
?arch <- (TEST::PERMUTING-ARCH (sequence ? )
(test (< (length$ ?seq) 5))

(retract
(bind ?n (length$ ?seq))
(for (bind 1) (<= ?i 5) (++ ?i)

(if (eq (member$ ?i seq) FALSE) then
(bind (insert$ ? 1) ?J))

(assert (TEST::PERMUTING-ARCH (sequence :ne! eq)

Code 61: A grammar for full factorial enumeration of all permutations in the unconstrained PeP

330



(deffunction rare-randb ( )
(return (< (random) (* 65536)))
)

(defrule TEST::enumerate-some-permutations
"This rule enumerates some random permutations of a set of m elements"

<- (TEST::PERMUTING-ARCH (sequence ))
(test (< (length$ ) 8))

(retract )
(bind - (length$ ))
(for (bind 1) (<= 8) (++

(if (eq (member$ ) FALSE) then
(bind (insert$ (+ 1) ))

(if (rare-randb 0.9) then (assert (TEST::PERMUTING-ARCH (sequence

)
)

Code 62: A grammar for partial enumeration of some permutations in the unconstrained PeP

Enumeration constraints: In the planning instances of PePs in which, in addition to sequence, dates are

assigned to tasks or events, other constraints may appear that make explicit reference to dates instead of

relative positions. These rules require an operator that transforms a sequence of tasks with costs into a

sequence of dates, given a certain budget profile. Such operator is provided below.

(deftemplate TEST::BUDGET (multislot budgets) (multislot years))
(deftemplate TEST::COSTS (multislot elements) (multislot costs))

(defquery TEST: :search-budget
(TEST: :BUDGET (budgets ) (years year))

)

(defquery TEST::search-costs
(TEST::COSTS (elements ) (costs
)

(deffunction get-budgets ()
(bind (run-query* TEST::search-budget))
( )
(return ( getSymbol budgets))
)

(deffunction get-years ()
(bind (run-query* TEST::search-budget))

(return ( getSymbol years))

(deffunction get-costs ()
(bind (run-query* TEST::search-costs))

( )
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(return (? u getSymbol costs))
)

(deffunction sequence-launch-dates (?se)
(bind ?ug t  (get-budgets))
(bind ?years (get-years))
(bind ?costs (get-costs))
(bind ?dates (create$ ))
(bind ?start-date (nth$ 1 ?years))
(bind ?date ?start -date)
(for (bind ?i 1) (< ?i (length$ ?costs)) (++ ?i)

(bind ?date (+ ?date (/ (nth$ ?i ecosts) (nth$ (round (- ?date ?start-date))
?budetS)))

(bind a (insert$ ?datcs i ?date))
)

(return ?dates)

)
Code 63: Operator that computes dates from budget and cost data for the PeP problem

This function assumes that readiness date for element i + 1 is equal to readiness date for element i plus

the cost of the element i divided by the budget at time t.

We provide seven possible hard enumeration constraints in generic PePs: BEFORE, AFTER,

BETWEEN, NOT-BETWEEN, CONTIGUOUS, NON-CONTIGUOUS, and SUBSEQUENCE

constraints. All of these utilize a few generic functions to check precedence between elements in a

sequence or ordering. These functions are provided in Code 64. Note that these hard constraints can also

be used as search rules with the purpose of reducing the size of the tradespace. Furthermore, equivalent

rules can be defined that look at relative dates of elements instead of looking at positions. The code of

these rules is almost identical to the rules shown below and therefore it is not included.

(deffunction check-precedence-in-ordering-binary (?l L Pord)
"returns TRUE if ?ell goes before ?el2 and FALSE otherwise"
(return (< (nth$ :t >,r) (nth$ ?e2 ord))))

(deffunction check-precedence-in-sequence-binary ( ?el )
"returns TRUE if ?ell goes before ?el2 and FALSE otherwise"
(bind ?r (sequence-to-ordering ?seq))
(return (check-precedence-in-ordering-binary ?eli ? ord)))

(deffunction check-succession-in-ordering-binary (? ? or)
"returns TRUE if ?ell goes after ?el2 and FALSE otherwise"
(return (not (check-precedence-in-ordering-binary ?l el )

(deffunction check-succession-in-sequence-binary (l L ?
"returns TRUE if ?ell goes after ?el2 and FALSE otherwise"
(return (not (check-precedence-in-sequence-binary ? ?1 ,)

(deffunction check-precedence-in-ordering ( i rd)
"returns TRUE if ?ell goes before all elements in ?el2 and FALSE otherwise"
(if (eq (listp ) FALSE) then
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(return (check-precedence-in-ordering-binary ?11 ?list ?or)))
(if (eq (length$ ) 1) then

(bind . (nth$ 1 ?list) )
(return (check-precedence-in-ordering-binary ?eli 12 ?od))
else
(bind ? (nth$ 1 . ))
(bind (check-precedence-in-ordering-binary ?el1 ?e12 Pord))
(if (eq FALSE ) then (return FALSE) else

(return (check-precedence-in-ordering '-oh (rest$ ?list) ?ord)))

(deffunction check-precedence-in-sequence ( ?lis t ?seq)
"returns TRUE if ?ell goes before ?el2 and FALSE otherwise"
(bind (sequence-to-ordering
(return (check-precedence-in-ordering P P)))

(deffunction check-succession-in-ordering (? )
"returns TRUE if ?ell goes after all elements in ?el2 and FALSE otherwise"
(if (eq (listp ) FALSE) then

(return (check-succession-in-ordering-binary ? is r)))
(if (eq (length$ s) 1) then

(bind e2 (nth$ 1 ?s) )
(return (check-succession-in-ordering-binary ?e)
else
(bind (nth$ 1
(bind (check-succession-in-ordering-binary ell ?12 ?))

(if (eq FALSE ) then (return FALSE) else
(return (check-succession-in-ordering ?1 (rest$ ?1st) ?

(deffunction check-succession-in-sequence (
"returns TRUE if ?ell goes after ?el2 and FALSE otherwise"
(bind (sequence-to-ordering
(return (check-succession-in-ordering ?)))

Code 64: Operators to check precedency in the PeP

The seven types of hard constraints for tradespace size are discussed below.

* BEFORE(ei, {ej) constraints: this enumeration rule eliminates all permutations in which eidoes

not precede all the elements in tej}. It is useful to define pre-conditions between tasks or events.

(deftemplate TEST::BEFORE-CONSTRAINT (slot element) (multislot before))

(defrule TEST::enforce-BEFORE-constraints
"If an architecture does not does not satisfy a before constraint
then it should be deleted"

<- (TEST::PERMUTING-ARCH (sequence $?,eq))
(TEST: :BEFORE-CONSTRAINT (element ? (before $?elems))
(test (eq (check-precedence-in-sequence ?e ?elems ?seq) FALSE))

(retract
Code 65: The BEFORE constraint in the PeP
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e AFTER(ei, {ej}) constraints: this enumeration rule eliminates all permutations in which eidoes

not succeed all the elements in tej. This is the opposite rule of BEFORE(ez, tej}). It is useful to

define post-conditions between tasks or events.

(deftemplate TEST::AFTER-CONSTRAINT (slot element). (multislot after))
(defrule TEST::enforce-AFTER-constraints

"If an architecture does not does not satisfy an AFTER constraint
then it should be deleted"
?arch <- (TEST::PERMUTING-ARCH (sequence ?seq))
(TEST: :AFTER-CONSTRAINT (element ?el) (after $?elerms))
(test (eq (check-succession-in-sequence ?el ?elems ?seq) FALSE))

(retract ?arch))
Code 66: The AVER constraint in the PeP

* BETWEEN(e, tej, ek)) constraints: this enumeration rule eliminates all permutations in which

egdoes not appear between ej and ek. Note that this constraint does NOT enforce the subsequence

ej, eg, ek since: a) the order between ej and ek can be reversed; there may be other elements inside

the interval ej, ek. Hence for example, 01 = [ej, eg, em, ek] and 0, = [ek, el, ei, em,]ej would

both satisfy the constraint BETWEEN(eg,{ej,ek}). It is useful to define simultaneous pre- and

post-conditions between tasks or events.

(deftemplate TEST: :BETWEEN-CONSTRAINT (slot element) (multislot between))

(defrule TEST::enforce-BETWEEN-constraints
"If an architecture does not does not satisfy a BETWEEN constraint
then it should be deleted"

?arch <- (TEST::PERMUTING-ARCH (sequence $?seq))
(TEST::BETWEEN-CONSTRAINT (element ?el) (between $?elems))
(or (test (eq (check-succession-in-sequence PIel (first$ s) cj) FALSE))
(test (eq (check-precedence-in-sequence ?e] (rest$ ?elems) ?q) FALSE)) )

(retract ?arch)
)

Code 67: The BETWEEN constraint in the PeP

e NOTBETWEEN(eg, {ej, ek)) constraints: this enumeration rule eliminates all permutations in

which eg appears between ej and ek. This is the opposite rule of BETWEEN(e, {ej, ekl).

(deftemplate TEST: :NOT-BETWEEN-CONSTRAINT (slot element) (multislot not-between))

(defrule TEST: :enforce-BETWEEN-constraints
"If an architecture does not does not satisfy a BETWEEN constraint
then it should be deleted"
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<- (TEST::PERMUTING-ARCH (sequence ?e
(TEST::BETWEEN-CONSTRAINT (element ?el) (between $?eems))
(or (test (eq (check-succession-in-sequence ?el (first$ ) ?seq) FALSE))
(test (eq (check-precedence-in-sequence (rest$ - v ) ? ) FALSE)) )

(retract )

Code 68: The NOT-BETWEEN constraint in the PeP

e CONTIGUOUS({e;}) constraints: this enumeration rule eliminates all permutations in which {ej}

are not contiguous. Note that there are several possible orderings that satisfy contiguity of a

subset of elements.

(deffunction min$ ( )
(return (eval (str-cat "(min " (implode$
)

) ")" )))

(deffunction sort$ (
(if (eq (lengthl
(bind (min$

(bind
(bind
(return (createl

)

)
) 1) then (return (nth$ 1

(member$
(replace$
(sort$

(deffunction check-contiguity-in-sequence (
(if (eq (length$ ) 1) then (return TRUE))
(bind (sequence-to-ordering
(printout t ?ord crlf)

(bind (create$ ))
(for (bind 1) (<= (length$ )) (++

(bind (insert$ (nth$ (
)

(bind
(printout t
(for (bind

(if (neq
FALSE))) (return

)

(sort$
crlf)

1) (< : (length$
(- (nth$ (+ 1)
TRUE)

))(++ )
) (nth$ (+ ) -)) 1) then (return

(defrule TEST::enforce-CONTIGUITY-constraints
"If an architecture does not does not satisfy a CONTIGUITY constraint

then it should be deleted"

<- (TEST::PERMUTING-ARCH (sequence
(TEST: :CONTIGUITY-CONSTRAINT (elements $?em) )
(test (eq (check-contiguity-in-sequence ? ) FALSE))

(retract _))

Code 69: The CONTIGUITY constraint in the PeP
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e NONCONTIGUOUS({e;}) constraints: this enumeration rule eliminates all permutations in

which {ej} are contiguous. This is the opposite rule of CONTIGUOUS(fej}).

(defrule TEST::enforce-NON-CONTIGUITY-constraints
"If an architecture does not does not satisfy a NON CONTIGUITY constraint
then it should be deleted"
?arch <- (TEST::PERMUTING-ARCH (sequence $?seq))
(TEST::NON-CONTIGUITY-CONSTRAINT (elements $?elems) )
(test (eq (check-contiguity-in-sequence ?elems ?seq) TRUE))

(retract ?arch))
Code 70: NON-CONTIGUITY constraint in the PeP

* SUBSEQUENCE(Oy) constraints: this enumeration rule eliminates all permutations which do not

contain Of as a subsequence, i.e. all permutations 0 ; such that 0; ! Oi.

(deffunction is-subsequence (?subseq ?seq)
(return (numberp (str-index (implode$ ?Lbseq) (implode$ ? )))))

(defrule TEST::enforce-SUBSEQUENCE-constraints
"If an architecture does not does not satisfy a SUBSEQUENCE
then it should be deleted"

?arch <- (TEST::PERMUTING-ARCH (sequence $
(TEST: :SUBSEQUENCE-CONSTRAINT (subsequence $?elem) )
(test (eq (is-subsequence s eq) FALSE))

(retract Parch)

constraint

Code 71: SUBSEQUENCE constraint in the PeP

9.1.4.2 Search heuristics

Tradespace size reduction rules: First, we note that, as mentioned earlier, it is possible to use the seven

enumeration rules as search hard constraints. In addition to these seven rules, we propose one rule to fix

the position of a certain element FIX-POSITION:

* FIXPOSITION(eg,j) constraints: this tradespace size reduction rule eliminates all permutations

in which element i does not appear in position j.

(deffunction is-in-position (?elem ?pos ?seq)
(return (eq (nth$ ?elem (sequence-to-ordering e)) ?pos)))

(defrule TEST::enforce-fix-position-constraint
(TEST: :FIX-POSITION-CONSTRAINT (element ?elem) (position

i <- (TEST::PERMUTING-ARCH (sequence $?seq))
(test (eq (is-in-position ?l q) FALSE))

(retract
Code 72: FIX-POSITION constraint in the PeP
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Instead of deterministic rules, a few "fuzzy" constraints can also be applicable to some instances of the

PeP. These fuzzy constraints are softer in nature because instead of enforcing a certain position for an

element, they enforce a range of positions.

* BYBEGINNING({e;}) constraints: this enumeration rule eliminates all permutations in which

fej} do not appear in "the beginning" of the sequence. Note that there are several possible

orderings that satisfy contiguity of a subset of elements.

(deffunction by-beginning-binary (? m
(if (<= (nth$ (sequence-to-ordering

then (return TRUE) else (return FALSE))
)

)) (round (/ (length$

tion
(not
(eq

by-beginning
(listp

(length$ )

else
(if (eq (by-beginning

else (return (by-

then (return (by-beginning-binary
1) then (return (by-beginning-binary (nth$

-binary (nth$ 1 ) ) FALSE) then
beginning (rest$ )

1 )

(defrule TEST::enforce-by-beginning-constraint
(TEST::BY-BEGINNING-CONSTRAINT (elements

- (TEST::PERMUTING-ARCH (sequence
(test (eq (by-beginning ) FALSE))

(retract

)
)

Code 73: BY-BEGINNING constraint in the PeP

e BYMIDDLE({e}) constraints: this enumeration rule eliminates all permutations in which {ej}

do not appear in "the beginning" of the sequence. Note that there are several possible orderings

that satisfy contiguity of a subset of elements.

(deffunction by-middle-binary (e
(if (and

(> (nth$ (sequence-to-ordering ? )) (round (/ (length$ ) 3)))
(<= (nth$ (sequence-to-ordering ? )) (round (* 2 (/ (length$

) 3))))
)

then (return TRUE) else (return FALSE)))

(deffunction by-middle ( )
(if (not (listp )) then (return (by-middle-binary
(if (eq (length$ ) 1) then (return (by-middle-binary (nth$ 1 )

else
(if (eq (by-middle-binary (nth$ 1 ? m) ? ) FALSE) then (return FALSE)
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else (return (by-middle (rest$ )
)

(defrule TEST::enforce-by-middle-constraint
(TEST::BY-MIDDLE-CONSTRAINT (elements ?e

<- (TEST::PERMUTING-ARCH (sequence
(test (eq (by-middle ?elems ?se) FALSE))

(retract ?arch))
Code 74: BY-MIDDLE constraint in the PeP

e BYEND({ej) constraints: this enumeration rule eliminates all permutations in which {ej} do not

appear in "the beginning" of the sequence. Note that there are several possible orderings that

satisfy contiguity of a subset of elements.

(deffunction by-end-binary (?elm ?se)
(if (> (nth$ ?elem (sequence-to-ordering ?seq)) (round (* 2 (/ (length$

3))))
then (return TRUE) else (return FALSE))

)

)

(deffunction by-end (ls eq)
(if (not (listp le)) then (return (by-end-binary
(if (eq (length$ ?elems) 1) then (return (by-end-binary (nth$ 1

else
(if (eq (by-end-binary (nth$ 1 ? em) ) FALSE) then (r

else (return (by-end (rest$ )
)

q) L)

eturn FALSE)

(defrule TEST::enforce-by-end-constraint
(TEST: :BY-END-CONSTRAINT (elements $ ?el
a <- (TEST::PERMUTING-ARCH (sequence
(test (eq (by-end ?seq) FALSE))

(retract ?arch)
)

Local search rules: Amongst the non-informed local search rules, we define a mutation operator that

swaps the positions of two elements. Its CLIPS code is given below.

(deffunction rand-int-1-to-N (?N)
(bind ? (+ 1 (round (* (- 1) (/ (random) 65536)))))
)

(deffunction mutate-two-positions-in-sequence ( q)
(bind ? (length$S
(bind psi (rand-int-1-to-N ?N))
(bind ?ok FALSE)
(while (eq FALSE) (bind p (rand-int-1-to-N N)) (bind (neq

?pos 2)))
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(bind
(bind
(bind
(return

)

(nth$ p 1
(replace$
(replace$

q)

(nth$
na po2 ?tm))

(defrule SEARCH-HEURISTICS::mutation-swap-two-positions
"This mutation function swaps the value of a single bit"

<- (HARD-CONSTRAINTS::PERMUTING-ARCH (sequence ) (mutate yes))

(bind 5)
or (bind

(bind
(bind

(duplicate
(modify

0) ( < N ) (++ )
(mutate-two-positions-in-sequence ?
(explode$ (matlabf SCHEDarchtostr

(sequence n ) (mutate no) (str
(mutate no))))

Code 75: A mutation operator (non-informed local search rule) for the PeP

Concerning informed local search rules, we define a crossover operator, given in Code 76.

(deffunction
(bind
(bind
(bind
(for (bi
(bind

(if
(length$

(return

)

PeP-crossover (
(length$
(round (/ 2)))

(subseq$ 1
nd 1) (<= ) (+

(nth$
(not (subsetp (create$

) 1) ))))
)

c); e.g. dad = (1 4 5 2 3), mom = (2 4 5 1 3)

)); first half of sequence from dad: (1 4 5)
+ ); respect order from mom's second half: (2 3)

) .)) then (bind (insert$

(defrule TEST::PeP-crossover-operator
"This rule performs a crossover between two individuals of a PeP population"

<- (TEST::PERMUTING-ARCH (sequence
<- (TEST::PERMUTING-ARCH (sequence

(PeP-crossover
t (TEST::PERMUTING-ARCH (sequence ?n
y (improve no))
y (improve no))

) (improve yes))
) (improve yes))

e sq) (improve no)))

Code 76: A crossover operator (informed local search rule) for the PeP

(f

(bind
(asser
(modif
(modif
)
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9.2 Domain-specific, EOSS-independent knowledge

9.2.1 Orbit selection rules

The orbit selection strategy works as follows. The RBES is initialized, and all possible instruments and

orbits are asserted, i.e. added into working memory. A mission fact is asserted carrying a certain number

of instruments, without any orbit assigned. A rule is added that from this initial fact, will assert all

possible orbit assignments to all allowed orbits, i.e. all possible combinations of altitude, inclination, and

LTAN (circular orbits are assumed). This rule is shown below.

(defrule ORBIT-SELECTION: :assert-all-possible-mission-orbits
(declare (salience 20))
?rigj <- (MANIFEST: :Mission (Name ?n ) (select-orbit yes) (in-orbit

(orbit-altitude# nil) (orbit-type nil) (orbit-RAAN nil) (orbit-inclination nil)
(instruments $ va - ))

(foreach (create$ SSO LEO)
(foreach ?h (create$ 275 400 600 800 1300)

(foreach ?i (create$ polar SSO near-polar)
(foreach ?raan (create$ AM PM DD NA)

(if (valid-orbit ?typ ) then (duplicate (in-
orbit (str-cat "-" "-" "-" an)) (orbit-altitude# ?h) (orbit-type )
(orbit-RAAN ?raan) (orbit-inclination i) )))

(retract ?orig)

Code 77: Rule to assert all possible orbits for a mission.

The main orbit selection rules are described below, classified according to the orbital parameter they

concern. Only orbit altitude, inclination, and right ascension of the ascending node are considered, since

most LEO have circular orbits and therefore eccentricity and argument of the perigee are trivial.

Orbit altitude: Different instruments perform better when they fly at different altitudes. High

power active instruments such as lasers or SAR are preferably flown at low altitudes to minimize

power requirements. This is because the radar equation has a term in R4 which means that the

backscattered power received at the antenna decreases with the fourth power of the distance. This

is the case of ESA's future explorer ADM-Aeolus which carries a Doppler wind LIDAR and will

fly at 400km. A rule capturing this is shown in the Appendix, on Code 78. On the other hand,

passive optical imagers usually prefer to be in higher orbits that provide better swath, coverage

and revisit time. This is the case of the SPOT series for instance, which flew at 820km. This other

piece of knowledge is captured in Code 79. Hence, when a lidar or a SAR are combined with an

optical imager, whichever the altitude is the solution will be suboptimal from the point of view of

at least one instrument.
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This is the case of Envisat for example, in which the SAR (ASAR) and the radar altimeter (RA-2)

had to fly at 800km thus increasing their individual power requirements. Had the SAR flown at

400km for instance, it would have needed 12dB less of power (a factor of 16 less). On the other

hand in EE/EarthCare which flies at 400km there is a MSI with a swath of 150km and a spatial

resolution of 500m. The same instrument flying at 800km would have twice the swath and hence

twice better coverage although spatial resolution would also double from 500m to 1000m. Note

also that if there is a requirement for repeatability of ground traces or very stringent revisit time

requirements, only a few altitudes will be able to satisfy all these constraints.

(defrule ORBIT-SELECTION::no-lidars-beyond-500km-p20 "Beca'use of power
considerations"

<-(ORBIT-SELECTION::orbit (orb ) (of-instrument ) (in-mission
) (penalty-var ) (is-type vp) (h &:(> 500)))

(DATABASE::Instrument (Name ) (Intent
(or

(test (eq "Laser altimeters"))
(test (eq "Elastic lidar"))
(test (eq "Differential Absorption Lidars"))
(test (eq "Doppler Wind Lidars"))
)

(eval (str-cat "(bind " " (+ " " 20) )")))

(defrule ORBIT-SELECTION::no-radars-beyond-600km-except-oceanography-p7
"Because of power considerations"

<-(ORBIT-SELECTION::orbit (orb ) (of-instrument ) (in-mission
)(penalty-var ) (is-type ) (h ?h&:(> ?h 600)))
(DATABASE::Instrument (Name ) (Intent n)
(or

(test (eq nh "Imaging MW radars (SAR)"))
(test (eq "Cloud profile and rain radars"))
)

(eval (str-cat "(bind " " (+ " " 7) )")))
Code 78: Orbit selection rules that favor low orbits for spacecraft carrying high energy instruments

(defrule ORBIT-SELECTION::passive-imagers-want-to-fly-high-b6 "Because of
coverage considerations"

<-(ORBIT-SELECTION: :orbit (orb ) (of-instrument ,) (in-mission

) (penalty-var r)(is-type ')(h ?h&: (> ?h 600)))
(DATABASE::Instrument (Name ) (Intent Pit))
(or

(test (eq "Imaging multi-spectral radiometers -passive optical-

(test (eq "Imaging multi-spectral radiometers -passive MW-"))
(test (eq "High resolution optical imagers"))

)

(eval (str-cat "(bind " " (- " " 6) )")))

(defrule ORBIT-SELECTION::passive-imagers-want-to-fly-high-b3 "Because of
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coverage considerations"
<-(ORBIT-SELECTION: :orbit (orb miss) (of-instrument ) (in-mission

nm)(penalty-var ?var) (is-type ?typ) (h ?h&:(> Ph 400)))
(DATABASE::Instrument (Name ? ) (Intent it))
(or

(test (eq ?rit "Imaging multi-spectral radiometers -passive optical-

(test (eq ?int "Imaging multi-spectral radiometers -passive MW-"))
(test (eq ?int "High resolution optical imagers"))

)

(eval (str-cat "(bind " ?var " (- "?vr " 3) )")))
Code 79: Orbit selection rules that favor high orbits for spacecraft carrying passive imagers

Oceanography instruments have historically been flown in higher orbits around 1000km in order

to maximize coverage. This is captured through the following rule in Code 80.

(defrule ORBIT-SELECTION::oceanography-missions-want-10Okm-b20 "To get low
drag penalties in better orbit determination"

?o <-(ORBIT-SELECTION::orbit (orb ?miss) (of-instrument ) (in-mission
name)(penalty-var ?var) (is-type LEO) (h 1300) (i near-polar))
(DATABASE::Instrument (Name ?n) (Intent ?int) (Illumination

(average-power# ?p) (Concept ?c))
(test (neq (str-index "ocean" ) FALSE))

(or
(test (eq ?it "Imaging MW radars (SAR)"))
(test (eq ?int "Radar scatterometer"))
(test (eq ?int "Radar altimeter"))

)

(eval (str-cat "(bind " ?va" (- " " 20) )"))

Code 80: Orbit selection rules that favors higher 1000km orbits for oceanography missions

Finally, geodynamic sensors usually fly at low or very low altitudes to achieve better accuracies

in the measurement of the Earth's gravity or magnetic field. A modem example is the case of

ESA Earth Explorers GOCE (263km) and Swarm (400km). Such requirement is captured in the

following rule in Code 81.

(defrule ORBIT-SELECTION::no-grav-or-magn-instruments-beyond-400km-p9 "Because
need the Earth to be close"

<-(ORBIT-SELECTION::orbit (orb s. ) (of-instrument Pins) (in-mission
?mi e)(penalty-var ?var) (is-type ?typ) (h ?h&:(> Ph 600)))

(DATABASE::Instrument (Name ? ) (Intent ?int))
(or

(test (eq ?int "Magnetic field"))
(test (eq ?int "Gravity instruments"))
)

(eval (str-cat "(bind " vr" (+" v " 9) )")))
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Code 81: Orbit selection rules that favor very low orbits for spacecraft carrying geodynamic sensors and penalize those
orbits for all other sensors

Inclination: The choice of orbit inclination is typically set by two factors: 1) whether the users would

like to sample diurnal cycles of the phenomena of interest or they would rather avoid diurnal cycles;

2) whether the user requires global coverage or they would rather focus on lower inclinations. Most

remote sensing instruments require sun-synchronous orbits (SSO) in order to get rid of diurnal effects.

A notorious exception is oceanography. Oceanography missions are typically flown in non SSO in

order to capture diurnal sampling and thus avoid tidal aliasing. This is captured by the rule shown in

Code 82.

(defrule ORBIT-SELECTION::no-SSO-for-oceanography-instruments-p4 "Because SSO
bring tidal aliasing problems"

<-(ORBIT-SELECTION::orbit (orb ? s) (of-instrument ? ) (in-mission
)(penalty-var ) (is-type SSO))

(DATABASE::Instrument (Name ) (Intent ) )
(or

(test (eq "Radar scatterometer"))

(test (eq "Radar altimeter"))
)

(eval (str-cat "(bind " " (+ " " 4) )"))

)
(defrule ORBIT-SELECTION::passive-imagers-want-SSO-not-POL-p3 "To ensure
illumination characteristics that are as similar as possible every pass"

<- (ORBIT-SELECTION: :orbit (orb ?miss) (of-instrument ?ins) (in-mission
)(penalty-var ) (is-type type&:(neq y SSO)))
(DATABASE::Instrument (Name 'in ) (Concept ?))
(test (eq (str-index "cryosph" ) FALSE))
(test (eq (str-index "oceanograph" ?,) FALSE))
(test (eq (str-index "altimet" ?c) FALSE))

(eval (str-cat "(bind " " (+ " ? " 3) )"))

)
Code 82: Orbit selection rules that favor SSO for generic instruments and penalize SSO for oceanography missions

Finally, cryospheric missions prefer true polar inclinations in order to maximize coverage of the

polar regions. This is captured by the following rule given in Code 83.
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(defrule ORBIT-SELECTION::nothing-below-400-except-grav-magn-p9 "Because of
drag issues"

<- (ORBIT-SELECTION: :orbit (orb . . ,) (of-instrument ?ins) (in-mission
)(penalty-var ) (is-type ety) (h ?&:(< 400)))

(DATABASE: :Instrument (Name ? ) (Intent

(test (neq "Magnetic field"))
(test (neq "Gravity instruments"))

(eval (str-cat "(bind ?a r "(+ " ?vare " 9) ))



(defrule ORBIT-SELECTION::true-polar-preferred-for-cryospheric-instruments-b4
"Because better coverage of the poles"

?o <-(ORBIT-SELECTION::orbit (orb ) (of-instrument ?ins) (in-mission
)(penalty-var ?var) (is-type LEO) (i ?i&:(eq i polar)))
(DATABASE::Instrument (Name L) (Concept ) )
(or

(test (neq (str-index "cryospher" c) FALSE))
(test (neq (str-index "ice" ?c) FALSE))
(test (neq (str-index "snow" ?c) FALSE))

)

(eval (str-cat "(bind " ?var" (- " ?var " 4) )")) )
Code 83: Orbit selection rule that favors true polar orbits for cryospheric missions

Right ascension or local time of the ascending node for Sun-synchronous orbits: in the case of

SSO, the choice of the local time of the ascending node is extremely important because the local

time at which measurements are taken is a constant for a given latitude and almost the same for

all non-polar latitudes as shown in Figure 94.

02 '4 6 08 10 12 14

LMT crossing toe ho
1 6 18 0 2 2 .14

Figure 94: LTM crossing time vs latitude for 800km orbits with RAAN at 10:30, 13:30, 22:30,01:30

In practice the choice of RAAN is chosen as a compromise between various soft constraints:

o To obtain the best solar lighting conditions for the regions observed; this typically

implies the selection of an AM orbit, as captured by the rules on Code 84.

(defrule ORBIT-SELECTION::most-instruments-want-raan-AM-b2 "Better lighting
conditions in the morning than in the afternoon"

<-(ORBIT-SELECTION::orbit (orb ?miss) (of-instrument ?r) (in-
mission ) (penalty-var ?var) (is-type SSO) (raan AM))

(DATABASE::Instrument (Name ) (Intent ?n) (Concept ?C)
(Illumination Passive))

24 Image credit: Miguel Aguirre (ESA/ESTEC)
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(eval (str-cat "(bind "2))"))

(defrule ORBIT-SELECTION::passive-VNIR-instruments-want-raan-AMorPM-p7
"Because passive VIS/NIR instruments need a source of light"

<-(ORBIT-SELECTION::orbit (orb ?miss) (of-instrument Pins) (in-
mission )(penalty-var ?a) (is-type SSO) (raan > n&:(eq
DD)))

(DATABASE: :Instrument (Name s) (Intent t) (Spectral-region )
(Illumination Passive))

(or
(test (eq UV)) (test (eq VIS))
(test (eq NIR))(test (eq VNIR))
(test (eq UV+VNIR))

)

(eval (str-cat "(bind " " (+ 7) )")))
Code 84: Orbit selection rules favoring the selection of AM orbits to optimize lighting conditions

o To maximize sensitivity to a certain phenomenon that has a diurnal cycle. For example,

photosynthetic activity is known to be maximal in the early afternoon. Thus, it is

preferable to fly vegetation instruments on PM orbits. This is taken into account by the

following rule given in Code 85.

(defrule ORBIT-SELECTION::vegetation-instruments-want-raan-PM-b3 "Because
photosynthetic activity is maximal early PM"

<-(ORBIT-SELECTION::orbit (orb ) (of-instrument ) (in-
mission )(penalty-var ) (is-type SSO) (raan i,.> A:(eq

PM)))
(DATABASE::Instrument (Name ) (Intent ) (Concept )

(Illumination Passive))
(or

(test (neq (str-index "vegetation" ) FALSE))
(test (neq (str-index "photosynthe" ) FALSE))
)

(eval (str-cat "(bind " " (- " " 3) )"))
)

Code 85: Orbit selection rule that favors PM orbits for spacecraft carrying vegetation instruments

o To reduce the risk of antisolar or specular reflection that could blind the sensor: this

occurs when the position of the Earth, the satellite and the Sun are so that the sunlight

reflected by the Earth, which can be much more intense that the radiation coming from

the observed region goes directly into the sensor. This typically precludes the utilization

of SSO with RAAN around noon.

o To take regional meteorological factors into account: typically, avoid clouds that form in

the tropics around mid-afternoon, as captured by the rule provided in Code 86.
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(defrule ORBIT-SELECTION: :other-instruments-want-raan-AM-b2 "Because there
is less cloudiness in the morning than in the afternoon"

?o <-(ORBIT-SELECTION::orbit (orb ?miss) (of-instrument ?ins) (in-
mission ?name) (penalty-var ?var) (is-type SSO) (raan AM))

(DATABASE::Instrument (Name ?ins) (Intent ?int) (Concept :c)
(Illumination Passive))

(test (eq (str-index "vegetation" ?c) FALSE))

(eval (str-cat "(bind " vi " (-" ?var " 2) )"))

)
Code 86: Orbit selection rule that favors AM orbits for spacecraft carrying generic, passive instruments to avoid

cloudiness

Similarly, pollution is maximal early afternoon, as shown in Code 87.

(defrule ORBIT-SELECTION: :chemistry-instruments-want-raan-PM-b3 "Because
pollution is maximal in early PM"

?o <-(ORBIT-SELECTION::orbit (orb ) (of-instrument . ;) (in-
mission ?name)(penalty-var ?var) (is-type SSO) (raan
PM)))

(DATABASE::Instrument (Name ?Jin) (Intent ? (Concept )
(Illumination Passive))
(or

(test (neq (str-index "chemistry" ?c) FALSE))
(test (neq (str-index "pollut" ?c) FALSE))
)

(eval (str-cat "(bind " ?va" (- "?va " 3) )")) )
Code 87: Orbit selection rule that favors PM orbits for spacecraft carrying tropospheric chemistry instruments

o To take into account the crossing time of another SSO satellite or sets of satellites in

order to make data co-registration easier. For example, the local time of the post EPS

satellites will be 09:30 to maximize the synergy with the MetOp mission. This is

currently the main constraint when the instrument belongs to a series, such as the A-train.

o To limit periods of solar eclipse: Dawn-dusk orbits, with a local time around 6:00 or

18:00, have very few eclipses whereas AM or PM orbits have almost constant duration

eclipses of 35 min (approximately a third of the orbital period). Figure 95 illustrates these

effects.

346



Eclpse duration per orbit for SSO %ith different LTAN

45

40

35

30

25 - PM
- AM

2 dawn-dusli
20- noon

10

5

0
1/1/2009 2/20/2009 4/11/2009 5/31/2009 7/20/2009 9/8/2009 10/28/2009 12/17/2009

day

Figure 95: Eclipse duration time per orbit for SSO with different LTAN2

This is taken into account by the following rule, provided in Code 88:

(defrule ORBIT-SELECTION::high-energy-instruments-want-raan-DD-b8
DD orbits are more favorable in terms of energy"

<-(ORBIT-SELECTION::orbit (orb ) (of-instrument )
mission )(penalty-var v ) (is-type SSO) (raan 1&:(eq
DD)))

(DATABASE::Instrument (Name

(average-power#
(or

(test (eq
(test

(test (eq
(test (eq
(test (eq
(test (eq
(test (eq
(test (and

)

"Because

(in-

) (Intent ) (Illumination

. Active))
(eq ,n "Imaging MW radars (SAR)"))

"Cloud profile and rain radars"))
"Laser altimeters"))
"Elastic lidar"))

ni "Differential Absorption Lidars"))
n "Doppler Wind Lidars"))
(neq ?p nil) (> ?p 1000)))

(eval (str-cat "(bind "

)
f (- " ?var " 8) )"))

Code 88: Orbit selection rule that favors DD orbits for spacecraft carrying high energy instruments

25 The data for this plot was calculated using STK with the following satellites: Terra (AM), Aqua (PM),

QuikSCAT (dawn-dusk) and Orbview (noon)
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o To limit thermal variations during each revolution: In SSO, the angle between the

direction of the sunlight and the direction perpendicular to the solar panels varies

describing a cone. As we see in Figure 96, this cone is narrower for PM orbits than for

AM orbits, which simplifies the design of the power subsystem. This reinforces the rule

presented in Code 88.

(a) (b)

Figure 96: Solar cone for two satellites with different local times: a) AM b) dawn-dusk2'

Given these constraints, each kind of instrument has a "preferred" RAAN depending on the

application. As an example, Table 51 provides the RAAN of several Earth observation

satellites:

Four groups of satellites can be identified:

o Those flying in AM orbits (local time between 09:30/21:30 and 10:30/22:30): the vast

majority of Earth observation satellites are launched in AM orbits in order to optimize

sunlight conditions. Note from Figure 94 that a RAAN around 22:30 AM yields optimal

lighting conditions for latitudes in the Northern hemisphere, whereas a RAAN around

10:30 yields optimal conditions for observation of the Southern hemisphere. Therefore

most satellites are launched with RAAN = 22:30 and observe during the descending part

of their orbits.

26 Image credit: Miguel Aguirre (ESA/ESTEC)
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Landat-111:30

Landsat-2 I2110
Landat-3 21:30

Ladt1 2 :43
21:1 5

SAC-C 221s
SPOT-1 21:3 W
SPOT-2 2230
SPOT-3 2L 1
: POT-4 2230
SPOT-5 2a:30
HIlma-IA 13:1r7
HIhAk,-1B 13:16
P~L~4*de,,l 2t15

22 15

ERS 2 210Envant22 1

EarthCA RE210

MO I 2130
jR I I.30 I

ADEA -1 2230
ALOS 230

WINCAW-1 22,0
ERONA 1 215

Row vr4-c01 22:30
Reomro-02 3 L -1

Tt4-Sat-1B 2215
Fabas-2220

Sun-VnchrUMous satellite rA*4

IRS-IA 2225
lRLSIB 2±25
IRLS-ic 2230
IRS-ID 2t30
IRS-P2 22:40
IRS-P3 2230
IRS-PK 2230
TES 2230
Cat~tt-1 2I230
Carwtat- 2 22:30
CBERS t2230
CBERS-2 22:30
TMSaA 2220
OrbViw-3230
OrbView-1I 22:30
Qwckllird-2 2220
Ikonb2 22:30
FAhiVird-1 230
QuAkTOMS 22:30
BIRD 2230
Tera I EOS-A MI-1 22:30
Aqua (IX)S-PM-I1 13:30
C(oudSat 13:31
C-alipo 13:31
PA RASOL 13:33
Aura tEOS-Chbem- I 13:38
XCO 13::15

Rocat-2 21:15
Tan Suo-1 2310
Dianmant-1 23:30
Diamant-2 23:30
RapaiEye-I 12:00
NEJMO 10:30
SSR-1*, C:30

Table 51: Local Time of Ascending Node for various Earth observation satellites

o Those flying in PM orbits (local time around 01:30/13:30): some optical and microwave

passive instruments are launched in PM orbits that are symmetrical to the AM orbits

around noon. PM orbits may allow avoiding systematic cloud cover in certain regions of

the Earth during the afternoon. Furthermore, some instruments are put in two satellites,

one with an AM orbit and the other with a PM orbit so that revisit time is halved

assuming perfect data registration. This is the case of CERES and MODIS which are both

flown both in EOS/Terra (AM) and EOS/Aqua (PM). Note from Figure 94 that a RAAN

around 13:30 AM yields optimal lighting conditions for latitudes in the Northern

hemisphere, whereas a RAAN around 01:30 yields optimal conditions for observation of

the Southern hemisphere. An interesting example of satellites in PM orbits is the A-train,

which consists of five satellites with RAAN spaced by only a few minutes: EOS/Aqua

(13:30), CloudSat (13:31), Calipso (13:31), PARASOL (13:33) and EOS/Aura (13:38).
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o Those flying in dawn-dusk orbits: we find in this group high energy instruments such as

LIDARs, SARs and scatterometers which require short eclipse durations to avoid large

batteries. For example, Radarsat-1, a Canadian satellite launched in 1995 which carried a

SAR, flies in a SSO orbit with an ascending node at 18:00. Other missions flying in this

kind of orbit for similar reasons are QuikSCAT (NASA scatterometer, 1999), TerraSAR-

X1 and -Li or the aforementioned GOCE and ADM. Note that dawn-dusk orbits also

minimize the effects of the ionosphere.

o Those flying in noon-midnight orbits which are rare because of the aforementioned risk

of sunlight reflections. However, these orbits are perfectly suitable when the intention is

to measure the sunlight reflected by the observable. This is typically the case of ocean

color sensors like SeaWiFS in SeaStar (renamed Orbivew-2) which flew at 12:20

descending node, or OCS in Haiyan-1 (a.k.a. Ocean-1) which flies around 12:00.

9.2.2 Power budget rules

The rules that compute a simplified power budget are taken from Chapter 11 in Space Mission Analysis

and Design (Larson & Wertz, 1999a).

(deffunction get-dod (?orbit)
(bind ?type (matlabf getorbittype ?orbit))
(bind (matlabf get orbitraan
(if (eq ?type GEO) then (bind ?dod 0.8)

elif (and (eq 'type SSO) (eq DD)) then (bind 0.6)
else (bind ?Jod 0.4)
)

(return ?lod))

(defrule EPS-DESIGN::design-EPS
?miss<- (MANIFEST: :Mission (payload-power# p&~nil) (EPS-mass# nil) (in-orbit

?or'b)
(payload-mass# ?m) (satellite-BOL-power# nil)(lifetime ?ife))

(bind ?b-info (get-orbit-info ' ))
(bind (nth$ 1 it-info)
(bind ?argle (nth$ 2 ?orbit-info))
(bind ?T (nth$ 3
(bind ?dod (get-dod ?orb))
(bind ?epsm (matlabf mass_EPS ?pi
(bind (matlabf power_EPS ? iIf
(modify (EPS-mass# ) (satellite-BOL-power#

Code 89: Rule computing a simple satellite power budget
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9.2.3 Complexity-corrected mass budget rules

The mass budgets are calculated in a 3-step process: first, penalties are calculated from the characteristics

of the instruments in the spacecraft; second, the mass of each subsystem is calculated using information

from these penalties to decide which subsystem-to-payload mass ratios are appropriate; third, complexity

penalties are applied in the appropriate cases. Rules are used in each of these three steps. These rules are

described in the following paragraphs.

Mechanical interactions: Instruments affect each other from the mechanical point of view in many ways:

Moving parts of spacecraft such as scanning instruments create vibrations that can excite the

natural frequencies of the structure. This needs to be taken into account in the dynamic behavior

study of the satellite in order to avoid harm to the platform or to the instruments. For example, the

Aqua's AMSR-E is a 300kg scanning parabolic antenna; one can imagine that such a massive

device with a diameter of 1.6m in continuous rotation at 40rpm induces heavy perturbations on its

co-passengers. This can be modeled as a mass complexity penalty, as shown in the rule in Code

90. Note that a single scanning instrument activates this penalty for the whole spacecraft in which

it is flown, regardless of the other instruments.

(defrule MASS-BUDGET::scanning-penalty-check
"This rule finds out whether there is any instrument in the mission
with a scanning requirement and updates scanning-penalty boolean value"
(declare (salience 20))

<- (MANIFEST::Mission (scanning-penalty nil) (instruments

(bind 0)
(foreach

(bind (get-scanning
(if (and (neq "no-scanning") (neq nil) (neq 1)) then

(modify (scanning-penalty 1))
(bind 1)

)
)

(if (eq 0) then (modify r, (scanning-penalty 0))
elif (eq 1) then (modify (scanning-penalty 1)))

Code 90: Rule computing the scanning complexity penalty in satellite mass budgets

e Mechanisms: mechanisms are very often used in satellites to deploy very large solar arrays or

antennae. This way some of the problems pointed out in the section concerning limited resources

on the spacecraft can be overcome.
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An example of a relatively simple mechanism is NASA's Aquarius mission with its complex

instrument featuring one scatterometers and 3 microwave radiometers. An animation of the

deployment of the instrument in orbit can be found in the NASA's Aquarius website27 . The

deployment consists of four independent movement or steps and each of the steps needs to be

successful in order for the satellite to work correctly.

Probably one of the most complex mechanisms never to be deployed is NASA's James Webb

Space Telescope. An astonishing animation of the deployment of the James Webb Space

telescope can be found in the project's website28 . It is intuitive to understand that such complex

mechanisms involving a large number of steps can substantially lower the reliability of the

mission. As a numerical example let us assume that the probability of each individual step being

successful is 95%. Then the reliability of the mechanism is 95% A30 steps = 21%. While the hope

is that the value of 95% is highly pessimistic, this calculation illustrates the danger of

mechanisms. A rule computing a complexity penalty related to the presence of mechanisms is

shown below.

(defrule MASS-BUDGET: :mechanisms-penalty-check
"This rule finds out whether there is any instrument in the mission
with a deployment mechanism and updates mechanism-penalty boolean value"
(declare (salience 20))

Iss J <- (MANIFEST::Mission (mechanisms-penalty nil) (instruments

(bind ?penalty 0)
(foreach ?it pl

(bind ?e (get-deployment-mechanism -

(if (and (eq ?dep "yes") (neq p 1)) then
(modify ?miss (mechanisms-penalty 1))

(bind ?pena-y 1)

(if (eq ?peiLV 0) then (modify (mechanisms-penalty 0))))
Code 91: Rule computing the mechanism complexity penalty in satellite mass budgets

* The same moving parts perturb instruments with high pointing accuracy requirements or high

integration times. An example of this is the case of IASI, an infrared sounder on the Metop

platform.

27 http://www.esr.org/aquarius sat/AQU Animation 050624 081 1.mpg
28 http://iwst.gsfc.nasa.gov/videos/09iwsta depedit 720p 4mbps
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During the testing phase of Metop, the IA&T team noticed that the performance of the instrument

was much lower than expected because the instrument was highly sensitive to the micro-

vibrations induced by the other instruments on the platform. Eventually it was necessary to add

dampers to the instrument to improve its performance. This was obviously not without cost. This

kind of problem is modeled through the rule shown in Code 92.

(defrule MASS-BUDGET: :ADCS-penalty-check
"This rule finds out whether there is any instrument in the mission
with high pointing requirements and updates ADCS-penalty boolean value"
(declare (salience 20))

<- (MANIFEST::Mission (ADCS-penalty nil) (instruments

(bind 0)
(foreach

(bind (get-pointing-requirements
(if (and (eq ; "High") (neq 1)) then

(modify (ADCS-penalty 1))
(bind 1)

)
)

(if (eq 0) then (modify (ADCS-penalty 0)))
)

Code 92: Rule computing the pointing complexity penalty in satellite mass budgets

Thermal interactions: In Earth observation, thermal control is usually integrated in the instrument. Some

sensors require to be cooled down to extremely low temperatures in order to achieve functional SNRs.

This is typically the case of short wave infrared sensors like ADEOS/GLI, MIPAS and AATSR from

Envisat and ASTER, MOPITT, AIRS and HIRDLS from EOS. Temperatures of up to 180K can be

achieved by thermoelectric coolers, but to achieve lower temperatures it is necessary to use mechanical

coolers such as Stirling coolers, which induce vibrations on the platform. Cryocoolers are usually part of

the instruments, so that the spacecraft's thermal subsystem does not have to provide that much cold.

However, the design of the thermal subsystem may be more complicated in the presence of cryocoolers

because extremely low temperatures can harm other spacecraft components, typically batteries, for which

the lowest functional temperature is around -40 deg C. Hence, heaters and radiators may be needed in

order to assure that the temperature of the batteries is maintained over -40deg C. A rule capturing this

effect is provided in Code 93.

(defrule MASS-BUDGET: :thermal-penalty-check
"This rule finds out whether there is any instrument in the mission
requiring active cryo-cooling and updates thermal-penalty boolean value"
(declare (salience 20))

<- (MANIFEST::Mission (thermal-penalty nil) (instruments

(bind 0)
(foreach
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(bind ?e (get-thermal-control ?instr))
(if (and (eq ?pen "Active-cryocooler") (neq - a Jt; 1)) then

(modify ?miss (thermal-penalty 1))
(bind peialty 1)

)
)

(if (eq 0) then (modify (thermal-penalty 0)))
)

Code 93: Rule computing the thermal complexity penalty in satellite mass budgets

Even in the case of purely passive thermal control using radiators, another problem of thermal origin

appears: all the instruments "fight" to get a good view of cold space which makes the configuration

design process much more complicated. For example in the case of Envisat the cold face was the top of

the satellite, which explains the accumulation of instruments in that zone. In addition to that, instruments

are sources of heat. If two instruments are put next to each other on a platform, there will generally be an

interchange of heat with between the instruments and the platform and between the instruments. This

needs to be taken into account by the thermal specialist.

Electromagnetic interactions: Virtually all remote sensing sensors emit and/or receive electromagnetic

radiation in a certain part of the spectrum. Consequently a number of problems appear:

* Active instruments may jam passive instruments or tracking, telemetry and command equipment

working on the same frequency band, and even those that are in different bands because of

harmonics and inter-modulation products.

* High RF power instruments can induce currents in nearby electronic devices. This is solved by

adequate shielding of all electrical wires.

The consequence of these problems is that the architect needs to think carefully about the configuration of

the satellite in order to avoid interferences between instruments. In some cases, it is enough with setting

the instruments in opposite sides of the satellite for example, but when this is not possible, structures such

as long booms are necessary to protect passive sensitive instruments from the electromagnetic

environment in the platform. This is the case of many satellites using precise magnetometers to sense the

Earth's magnetic field, such as Swarm, or the GOES 3rd generation. Sometimes booms are also used to

isolate TT&C equipment from the rest of the spacecraft like in the case of Landsast-4 or EOS/Terra.

In addition, EMC issues are extremely hard to model and thus to predict. Consequently, extensive EMC

testing is required to ensure that instruments will not interfere with each other during flight. Naturally, the

number and cost of the tests that are necessary in the case of multi-instrument platforms is much higher

than in the case of dedicated satellites.
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A rule capturing the EMC interaction between instruments is presented below.

(defrule MASS-BUDGET::EMC-penalty-check
"This rule finds out whether there are any pair of instruments in the mission
in which one is active, the other passive, and both use the same MW band"
(declare (salience 20))

<- (MANIFEST: :Mission (EMC-penalty nil) (instruments $?paylid))
(test (> (length$ pya) 0))
(DATABASE::Instrument (Name : 1) (Illumination Active) (band ?band&~-nil))
(DATABASE::Instrument (Name ) (Illumination Passive) (band ?band&~nil))
(test (eq (sub-string 1 2 ) MW))
(test (integerp (member$ pVa
(test (integerp (member$

(modify (EMC-penalty 1)))
Code 94: Rule computing the EMC penalty in the satellite mass budget

Optical interactions: The purpose of most instruments on Earth observation satellites is by definition to

observe the Earth. This implies that they all require a view of the Earth which means that in most multi-

instrument platforms most instruments will be in the nadir looking face. As a consequence, the available

surface for instruments on the satellite is far from being the whole satellite surface. Furthermore,

instruments have very different viewing concepts and the configuration needs to be so that none of them

interfere with each other.

Finally, a last complexity penalty is applied to spacecraft for which the total data rate requirement is

large. Indeed, although one can sometimes trade complexity amongst subsystems, there are limitations

that prevail due to the state of technology for certain components. Data rate is a good example. State-of-

the-art downlink data rates are in X-band (8-12 GHz) which provides around 400-600Mbps in LEO with a

reasonable ground station using an antenna on the satellite of reasonable size and emitting a reasonably

small power. In order to achieve higher data rates, complex Ka-band or even optical links are being

studied. This penalty is captured in the rule shown in Code 95.

(defrule MASS-BUDGET::datarate-penalty-check
"This rule finds out whether there is any instrument in the mission
with a scanning requirement and updates scanning-penalty boolean value"
(declare (salience 20))

<- (MANIFEST: :Mission (datarate-penalty nil) (instruments ?p yJ>1oJ))

(bind ? a 0)
(foreach

(bind (get-data-rate ?
(if (and (> 100) (neq ?pnalty 1)) then

(modify (datarate-penalty 1))
(bind 1)))

(if (eq 0) then (modify ?miss (datarate-penalty 0))))
Code 95: Data rate penalty for satellite mass budgets
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Once these penalties have been computed, rules are used to decide which subsystem-to-payload mass

ratios to use depending on these penalties, and mass penalties are applied depending on the penalties.

Most of the penalties are applied to the structures subsystem, as shown in Code 16. This is so because it is

assumed that all the work related to the spacecraft configuration is assigned to the structures team.

(defrule MASS-BUDGET::design-structure-subsystem
"Computes structure subsystem mass using rules of thumb"
(declare (salience 10))
?miss <- (MANIFEST: :Mission (structure-mass# nil) (mechanisms-penalty ?mech-pen)

(payload-mass# ?m) (thermal-penalty ?th-per) (EMC-penalty ?emc-penl)
(scanning-penalty ?sc-pen))

(if (eq ?mech-pen nil) then (bind ?mech -pen 0))
(if (eq ?th-pen nil) then (bind ?th-pen 0))
(if (eq ?emc-pen nil) then (bind ?emc-pen 0))
(if (eq ?sc-pen nil) then (bind ?sc-pen 0))
(bind ?struct-mass (* 0.75 ?m))
(bind ?strct-mass (+ ?struct-mas (* ?mech-pen 0.10 ?t)))
(if (eq ?emc-pen nil) then (bind ?emc-pen 0))
(bind ?struct-mass (+ ?strict-mass n( ?emc-pen 0.05 ?r)))
(bind ?struct-mass (+ ?struct-mass (* ?sc-pen 0.10 ?m)))
(bind ?struct-mass (+ ?struct--mass (* ?th-pen 0.05 ?m)))
(modify ?miss (structure-mass# Pstruct-ma.ss))

Code 96: Rule to predict the structure mass in complexity-corrected mass budgets

The communications subsystem mass takes into account the data rate penalty, as shown in Code 97.

(defrule MASS-BUDGET::design-comm-subsystem
"Computes comm subsystem mass using rules of thumb"
(declare (salience 10))
?miss <- (MANIFEST: :Mission (comm-OBDH-mass# nil) (datarate-penalty ?pen)

(payload-mass# ?m))

(if (eq ?per nil) then (bind ?pen 0))
(if (eq ?pen 1) then (bind ?cormm-mass-coeff 0.44)

else (bind ?comm-mass-coeff 0.22))
(bind ?comm-mass (* ?mu ?comm-mass- coef))
(modify ?wiss (comm-OBDH-mass# ?comm-mss)))

Code 97: Rule to predict the communications subsystem mass in complexity-corrected mass budgets

As for the ADCS, its mass depends on the pointing requirements, which are set by the presence of the

pointing penalty. The implementation of such rule is shown in Code 98.

(defrule MASS-BUDGET::design-ADCS-subsystem
"Computes ADCS subsystem mass using rules of thumb"
(declare (salience 10))
Thu , <- (MANIFEST: :Mission (ADCS-mass# nil) (ADCS-penalty ?pen) (payload-mass#

(if (eq ?pen nil) then (bind ?pen 0))
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(if (eq 1) then (bind 0.44)
else (bind 0.22))

(bind (* ))

(modify (ADCS-mass# )
_____)______________________________________
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Code 98: Rule to predict the ADCS mass in complexity-corrected mass budgets

The mass of the thermal subsystem essentially depends on the presence of the thermal penalty as

illustrated in Code 99.

(defrule MASS-BUDGET::design-thermal-subsystem
"Computes thermal subsystem mass using rules of thumb"
(declare (salience 10))

<- (MANIFEST: :Mission (thermal-mass# nil) (thermal-penalty p) (payload-
mass# ))

(if (eq nil) then (bind 0))
(if (eq 1) then (bind 0.22)

else (bind 0.037)

)
(bind m (*
(modify (thermal-mass#

)
Code 99: Rule to predict the thermal subsystem mass in complexity-corrected mass budgets

Finally, the mass of the propulsion subsystem is assumed to be essentially dependent on payload mass as

shown in Code 100.

(defrule MASS-BUDGET::design-propulsion-subsystem
"Computes propulsion subsystem mass using rules of thumb"
(declare (salience 10))

<- (MANIFEST::Mission (propulsion-mass# nil) (payload-mass# ))

(bind (* 0.14))
(modify (propulsion-mass#
)

Code 100: Rules computing a complexity-corrected satellite mass budget

The complete complexity-corrected satellite mass budget is thus given by the sum of all the subsystem

masses, as shown in Code 101.

(defrule MASS-BUDGET::add-subsystem-masses
"Computes the sum of subsystem masses"

<- (MANIFEST: :Mission (propulsion-mass# &~nil) (structure-mass#
S&~nil)

(comm-OBDH-mass# &-nil) (ADCS-mass# &~nil) (EPS-mass#
s&~nil)
(thermal-mass# h&~nil) (payload-mass# ?p &~.nil) (satellite-

mass# nil))

(bind (+



?A ylIoad( ?ther a mass)
(modify ?miss (satellite-mass# ?-ms

Code 101: Rule computing total spacecraft mass in complexity-corrected mass budgets

9.2.4 Launch vehicle selection rules

The rules that take into account the knowledge from this section are described below. A function is

created to determine whether a certain launch vehicle class has enough performance to put a certain mass

in a certain orbit.

(deffunction sufficient-performance-Soyuz (?m ?type Ph ?i)
;; SSO
(if (eq ?type SSO) then

(bind ?perf (- 5260 (* 1.26667 (- ?h 400)))); SSO perf for Soyuz in kg
(if (> ?perf (* ?m 1.3)) then ; 30% margin

(return 1)
else (return 0))
;; LEO polar

elif ( eq ?type LEO ) then
(bind ?perf (+ 5232 (* 0.0869 ?h) (* ?h ?h -0.00024))); LEO polar perf for

Soyuz in kg from user manual page 2-12
(if (> ?perf (* ?m 1.3)) then ; 30% margin,

(return 1)
else (return 0))

GTO
elif (eq ?type GTO) then

(bind ?perf 3060); SSO perf for Soyuz in kg

(if (> ?perf (* ?m 1.3)) then ; 30% margin
(return 1)

else (return 0))
else (return 0))

)

(deffunction sufficient-performance-Ariane5 (?m ?type ? )h ?)
;; SSO
;;(printout t ?m ?type ?h ?i crlf)

(if (eq ?type SSO) then
(bind ?perf 10000); SSO perf for Ariane5 in kg

(if (> ?perf (* ?m 1.3)) then ; 30% margin
(return 1)

else (return 0))

; LEO polar

elif (eq Ptype LEO) then
(bind ?perf (- 20000 (* (/ 10000 400) (- ? 400)))); LEO polar perf for

Ariane5 in kg from user manual page 2-12

;;(printout t ?perf crlf)

(if (> ?pefot (* ?m 1.3)) then ; 30% margin
(return 1)

else (return 0))

;; GTO
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elif (eq ?t GTO) then
(bind 10000); GTO perf for Ariane in kg
(if (> (* 1.3)) then ; 30% margin

(return 1)
else (return 0))

else (return 0))

Code 102: Function that checks whether a certain launch vehicle class has enough performance to launch a certain
payload into a certain orbit

These functions are used by a rule that eliminates launcher options that do not have enough performance.

(deffunction sufficient-performance (? v ?m ?1ype v h
(if (eq Ariane5-class) then (return (sufficient-performance-Ariane5

elif (eq Soyuz-class) then (return (sufficient-performance-Soyuz

elif (eq Vega-class) then (return (sufficient-performance-Vega

elif (eq Pegasus-class) then (return (sufficient-performance-Pegasus

else (return 1)
)

)

(defrule LV-SELECTION::insufficient-performance
"Eliminate options for which performance is not sufficient with margin"

<- (MANIFEST::Mission (Name ) (launch-vehicle ?iv&~nil) (payload-mass#
&~-nil)

(orbit-type &~nil) (orbit-altitude# ?h&~nil) (orbit-inclination ?i&~nil))
(test (neq (sufficient-performance (* 4 ?) ?) 1)); assume payload-

to-bus mass ratio of 4

(retract )
)

Code 103: Rule eliminating launchers that do not have enough performance

The same principle is applied to height, and diameter.

(deffunction large-enough-height (?iv ?di); ?dim = (max-diam area height)
(bind (get-launch-fairing-dimensions )); (diam height)
(bind (nth$ 1 ))
(if (eq nil) then (return 0) else

(if (> (nth$ 2 ) (* 0.8 ?iam)) then
(return 1)
else (return 0)

(deffunction large-enough-area (?iv ); ?dim = (max-diam area height)
(bind (get-launch-fairing-dimensions ?Iv)); (diam height)

,(bind ?diam (rnth$ 1 ?dim))
(bind (nth$ 2 dim))
(if (eq nil) then (return 0))
(if (> (* (nth$ 1 ) (nth$ 2 ?fairgdimnsions)) (* 0.8
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?are)) then
(return 1)
else (return 0)

)
)

(defrule LV-SELECTION::insufficient-fairing-height
"Eliminate options for which fairing height is not sufficient with margin"
?f <- (MANIFEST: :Mission (Name ?iss) (launch-vehicle ?lv&-nil) (payload-

dimensions# $?dim))
(test (neq (large-enough-height ? dIm) 1))

;(printout t "Insufficient diameter of " ?lv " for mission " ?miss crlf)
(retract ?f)

)

(defrule LV-SELECTION::insufficient-fairing-area
"Eliminate options for which fairing area is not sufficient with margin"
?f <- (MANIFEST: :Mission (Name ) (launch-vehicle ?1v&-nil) (payload-

dimensions# $?dim))
(test (neq (large-enough-area ?v ?m ) 1))

(retract ?f)

Code 104: Rules eliminating launchers that do not have enough volume

Finally, when more than one launcher option is available, the most expensive options are discarded, as

shown below.

(defrule LV-SELECTION::eliminate-more-expensive-launchers
"From all feasible options, eliminate the most expensive ones"
(declare (salience -5))
?ml <- (MANIFEST: :Mission (Name ?name) (launch-vehicle Iv1&~nil) (launch-cost#

? c1&~nil) )
?m2 <- (MANIFEST: :Mission (Name ?name) (launch-vehicle Plv&~nil) (launch-cost#

?c2&~nil))
(test (neq Plvi ?1v2))

(if (< ?c1 ?c2) then (retract ?m)
else (retract ?m1) )

Code 105: Rules eliminating the most expensive launch vehicles

9.2.5 Standard bus selection rules

Standard bus selection rules were incorporated in order to allow for the acquisition of commercially

available buses instead of the development of new ad-hoc buses. This results in general in cost savings

due to reduced bus development cost. These rules were only utilized for the EOS case study. Three buses

were considered: TRW's T-330, Ball Aerospace's BCP-2000, and Orbital Science's Pegastar.

The rules that select the optimal standard bus for a given payload are provided below.

360



(deffunction get-bus-cost (?u)
(if (eq T330-class) then (return 140000)

elif (eq BCP2000-class) then (return 40000)
elif (eq Pegastar-class) then (return 15000)
else (return 1000000)))

(deffunction enough-mass ( )
(if (eq Pegastar-class) then (if (< ?m 70) then (return TRUE) else (return

FALSE)))
(if (eq BCP2000-class) then (if (< ?m 300) then (return TRUE) else (return

FALSE)))
(if (eq T330-class) then (if (< m 1300) then (return TRUE) else (return

FALSE)))
(if (eq dedicated-class) then (return TRUE)) (return FALSE))

(deffunction enough-power ( )
(if (eq Pegastar-class) then (if (< 70) then (return TRUE) else (return

FALSE)))
(if (eq BCP2000-class) then (if (< 300) then (return TRUE) else (return

FALSE)))
(if (eq T330-class) then (if (< ) 1300) then (return TRUE) else (return

FALSE)))
(if (eq dedicated-class) then (return TRUE)) (return FALSE))

(defrule BUS-SELECTION::standard-bus-not-enough-payload-mass
"Eliminate options for which performance is not sufficient with margin"

<- (MANIFEST::Mission (Name ) (standard-bus &~nil) (payload-mass#
&-nil)

(payload-power# :&~nil) (payload-data-rate# ?&'-nil) (payload-dimensions#

(test (neq (enough-mass ) TRUE));

(retract t))

(defrule BUS-SELECTION::standard-bus-not-enough-payload-power
."Eliminate options for which performance is not sufficient with margin"

<- (MANIFEST::Mission (Name ) (standard-bus ?bus&nil) (payload-mass#
&~nil)

(payload-power# p&~,nil) (payload-data-rate# &~nil) (payload-dimensions#

(test (neq (enough-power "us?) TRUE));

(retract ))
Code 106: Standard bus selection rules
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These rules are completed by a rule that eliminates the more expensive buses.

9.2.6 Synergy rules

Synergy rules create new measurments and data products from combinations of measurements and data

products. Synergy rules are at the core of this methodology because they model emergent behavior in the

value delivery loop, which is a key feature of a system architecting model.

The following synergy rules model the application of the most common data processing algorithms:

resampling in time and space, and disaggregation schemes in the space, time, and spectral domains.

(defrule SYNERGIES::spatial-disaggregation "A frequent coarse spatial resolution
measurement can be combined with a sparse high spatial resolution measurement to
produce a frequent high spatial resolution measurement with average accuracy"

?ml <- (REQUIREMENTS: :Measurement (Parameter ?p&-nil) (Temporal-resolution
?tr1&~nil) (Horizontal-Spatial-Resolution Phsr&~nil) (Accuracy ?l&~-nil) (Id i)
(taken-by ?ins1) (synergy-level# ?s1&:(< ?,1 1)))

?m2 <- (REQUIREMENTS: :Measurement (Parameter ?p&-nil) (Temporal-resolution
?tr2&~.nil) (Horizontal-Spatial-Resolution ?hsr2&-nil) (Accuracy P a2'&nil) (Id ld)
(taken-by ?ins2) (synergy-level# ?s2&:(< ?s2 1)))

(SYNERGIES::cross-registered (measurements $?n))
(test (member$ ?id1 $?m))
(test (member$ ?id2 $?m))
(test (neq ?id1 ?d2))

(duplicate ?mi (Parameter ?p) (Temporal-resolution (eval (fuzzy-max Temporal-
resolution ?tri ?tr2)))

(Horizontal -Spatial-Resolution (eval (fuzzy-max Horizontal -Spatial -
Resolution ?hIsr1 hsr2)))

(Accuracy (eval (fuzzy-avg ?l ?2))) (synergy-level# (+ (max 1 )
1))

(Id (str-cat ?id1 "-disaggregated" ?id))
(taken-by (str-cat ?in "-' ? "-disaggregated")))

(duplicate ?m2 (Parameter ?p) (Temporal-resolution (eval (fuzzy-max Temporal-
resolution ?tr1 ?tr2)))

(Horizontal-Spatial-Resolution (eval (fuzzy-max Horizontal-Spatial-
Resolution ?hsr1 ?hsr2)))

(Accuracy (eval (fuzzy-avg ?a1 >a2))) (synergy-level# (+ (max ? 2

1))
(Id (str-cat ?id2 "-disaggregated" )id1))
(taken-by (str-cat ?ins2 "-" . "-disaggregated"))))

(defrule SYNERGIES::spatial-disaggregation-hyperspectral "A hyperspectral coarse
spatial resolution measurement can be combined with a multispectral high spatial
resolution measurement to produce a high spatial resolution hyperspectral measurement
with lower accuracy"

<- (REQUIREMENTS: :Measurement (Parameter &~-nil) (Temporal-resolution
tIr&-nil) (Spectral-sampling Multispectral-10-100-channels) (Horizontal-Spatial-

Resolution ?h- r1&-nil) (Accuracy a&~'nil) (Id ?idi) (taken-by i-.) (synergy-level#
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1)))
<- (REQUIREMENTS: :Measurement (Parameter ?r&-nil) (Temporal-resolution

&~nil) (Spectral- sampling Hyperspectral-100- channels -or-more) (Horizontal-
Spatial-Resolution '! &~-nil) (Accuracy &~nil) (Id ) (taken-by )
(synergy-level# &:(< 1)))

(SYNERGIES::cross-registered (measurements >n))
(test (member$
(test (member$
(test (neq

(duplicate (Temporal-resolution (eval (fuzzy-max Temporal-resolution

(Horizontal-Spatial-Resolution (eval (fuzzy-max Horizontal-Spatial-
Resolution

(Accuracy (eval (fuzzy--avg ? ))) (synergy-level# (+ (max )
1))

(Spectral-sampling Hyperspectral-100-channels-or-more)
(Id (str-cat "-hyp-disaggregated-"
(taken-by (str-cat "-" "-hyp-disaggregated"))))

(defrule SYNERGIES::spatial-averaging "any image can be averaged out in space to
provide a new, better accuracy, coarser resolution image"

<- (REQUIREMENTS::Measurement (Parameter ?p&~nil) (Horizontal-Spatial-
Resolution &~nil) (Accuracy &'~nil) (Id ) (taken-by ) (synergy-level#

&:(< _1)))
(test (>= (SameOrBetter Horizontal-Spatial-Resolution Low-lkm-10km) 0))
(test (>= (SameOrBetter Accuracy High 2) 1))

(duplicate (Id (str-cat "-space-averaged")) (Horizontal-Spatial-
Resolution (eval (Worsen Horizontal-Spatial-Resolution ))) (Accuracy (eval
(Improve Accuracy ))) (taken-by (str-cat -space-averaged")) (synergy-level#

(+ 1))))

(defrule SYNERGIES::time-averaging "any image can be averaged out in time to provide
a new, better accuracy, sparser temporal resolution image"

<- (REQUIREMENTS::Measurement (Parameter &-nil) (Temporal-resolution#
&~nil)

(rms-variable-measurement# &:(> )) (Id -) (taken-by S )
(synergy-level# ?&:(< 1)))

(test (>= (SameOrBetter Temporal-resolution !rJ Low-3days-1-week) 0))
(test (>= (SameOrBetter Accuracy High M) 1))

(duplicate m (Id (str-cat ]( "-time-averaged")) (Temporal-resolution (eval
(Worsen Temporal-resolution ))) (Accuracy (eval (Improve Accuracy ))) (taken-
by (str-cat "-time-averaged")) (synergy-level# (+ ?si 1))))

Code 107: Synergy rules modeling major data processing and assimilation schemes

Other synergy rules capture algorithms concerning a specific discipline. The following rules concern solid

Earth measurements.

(defrule SYNERGIES::ocean-mass-distribution-from-gravity "Ocean mass distribution can
be inferred from precise gravity measurements"

<- (REQUIREMENTS::Measurement (Parameter "5.1.1 Geoid and gravity field
variations") (Horizontal-Spatial-Resolution & :(neq ?hsr nil)) (Id ?id1))
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(duplicate ? rav (Id (str-cat ? i "-syn")) (Parameter "3.2.6 Ocean mass
distribution")))

(defrule SYNERGIES::seafloor-topography
"Seafloor topography measurements can be inferred from sea level height and ocean

mass distribution measurements"
?slh <- (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height") (Id

?idi))

?grv <- (REQUIREMENTS::Measurement (Parameter "3.2.6 Ocean mass distribution")
(Id ?d2))

(SYNERGIES::cross-registered (measurements $?))
(test (member$ ?id1 $?m))

(test (member$ ?id2 $?;m))

(duplicate ?s1h (Id (str-cat ?id1 "-syn-" ?id2)) (Parameter "3.2.2 seafloor
topography")))

Code 108: Synergy rules from the solid Earth community

The following rules concern ocean altrimetry measurements.

(defrule altimetry-err-budget-POD
"If an instrument providing precise orbit determinations is sharing a platform

with an altimeter, then the POD contribution in the altimetry error budget is
decreased to 2 cm if the orbit is high enough to have low drag, and 4 cm if it is a
lower orbit, i.e. 800km or less"

(declare (no-loop TRUE))
?meas <- (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height")

(orbit-altitude# ?h) (rms-system-POD# 10.0) (taken-by ?r))
(REQUIREMENTS: :Measurement (Parameter "A9.Precise Orbit Determination") (taken-by

g) (Id ?id2))
(CAPABILITIES::Manifested-instrument (Intent "Orbitographers") (Name
(SYNERGIES: :cross-registered-instruments (instruments r) (degree-of-cross-

registration spacecraft))
(test (member$ ?gps $?1ins))

(test (member$ ?ra $?in))

(if (>= ?h 800) then (bind rms POD 2.0) else (bind ?ne 4.0))

(modify ?meas (rms-system-POD# ?new-rra-O) (taken-by (str-cat "-POD-"
?gps))))

(defrule altimetry-err-budget-tropo-wet-correction
"If an atmospheric humidity measurement is cross-correlated with an altimetry

measurement, the tropospheric correction contribution in the altimetry error budget
is decreased by a factor that is directly proportional to the accuracy of the
humidity measurement"

(declare (no-loop TRUE))
?meas <- (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height") (taken-

by ?ra) (rms-system-tropoH2O# r ;o&:(> r 1)) (Id 1))
(REQUIREMENTS::Measurement (Parameter "1.8.1 H20") (Id ?id2) (taken-by
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(rms - system-instrument# ? cm e &~nil));
(SYNERGIES: :cross-registered (measurements $m))
(test (member$
(test (member$

(bind (* 0.6)); 0.6cm per K of rms error in the MWR

(christensen et al 93)
(modify (rms-system-tropoH20# ?ropo) (taken-by (str-cat r"-wet-

)

(defrule altimetry-err-budget-ionospheric-correction
"If a measurement of inospheric total electron content is cross-correlated with

an altimetry measurement, the ionospheric correction contribution in the altimetry
error budget is decreased by a factor that is directly proportional to the accuracy
of the inospheric instrument"

(declare (no-loop TRUE))
<- (REQUIREMENTS::Measurement (Parameter

by ) (rms - system-ionosphere# n:
(REQUIREMENTS: :Measurement (Parameter "A8.Total e

(Accuracy ) (Id ) (taken-by
(SYNERGIES: :cross-registered (measurements
(test (member$
(test (member$

(if (eq High) then (bind (/
(/I

contribution to
(modify

iono-" ))))

3.2.1 Sea level
1)) (Id

lectron content

height") (taken-
It))
in ionosphere")

5)) else (bind
3))); assume for now that the effect of instrument is to divide

error by 3
(rms-system-ionosphere# n ) (taken-by (str-cat

(defrule SYNERGIES::altimetry-variable-error
"If several independent measurements are gathered for example in a constellation,
the variable ensemble measurement error decreases as 1/sqtr(2+N), assuming 2

altimeters are already being flown (conversation w/ Dr Sarah Gille, UCSD)"

(declare (no-loop TRUE))
<- (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height")
(rms-variable-measurement# &4.0) (num-of-planes# ?np&-nil) (taken-by

(num-of-sats-per-plane# &~nil))

(bind U( (sqrt (+ 2 (* ? ?n))))); assume that there are
2 other altimeters

(modify (rms-variable-measurement#

(defrule SYNERGIES::altimetry-variable-error-when-nil
"If several independent measurements are gathered for example in a constellation,
the variable ensemble measurement error decreases as 1/sqtr(2+N), assuming 2

altimeters are already being flown (conversation w/ Dr Sarah Gille, UCSD)"

(declare (no-loop TRUE))
<- (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height")
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(rms-variable-measurement# <i v&4.0) (num-of-planes# ?np&nil) (taken-by
) (num-of-sats-per-plane# ?n&nil))

(bind ?wrmsv (/ va (sqrt 3))); assume that there are 2 other
altimeters

(modify (rms-variable-measurement# ? . m .

(defrule altimetry-err-budget-tropo-dry-correction
"If an atmospheric pressure measurement is cross-correlated with an altimetry

measurement, the dry tropospheric correction contribution in the altimetry error
budget is decreased by a factor that is directly proportional to the accuracy of the
pressure measurement"

(declare (no-loop TRUE))
?meas <- (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height") (taken-

by Ira) (rms-system-tropo-dry# ?rms-tropo&:(>= ' - 0.5)) (Id -:))
(REQUIREMENTS: :Measurement (Parameter "1.3.4 Atmospheric pressure") (Id )

(taken-by ?dry) (rms-system-instrument# ?rm-mr &~nil))
(SYNERGIES::cross-registered (measurements $?m))
(test (member$ ? $?m))
(test (member$ ?id2 $i))

(bind ?newmtrpo (* ?mm 0.2)); 0.2cm per K of rms error in the MWR
(modify ?meas (rms-system-tropo-dry# ) (taken-by (str-cat

dry-" ?dry))))

(defrule SYNERGIES::altimetry-tidal-error
"If several independent measurements are gathered for example in a constellation,
the variable ensemble measurement error decreases as 1/sqtr(N)"

(declare (no-loop TRUE))
?meas <- (REQUIREMENTS: :Measurement (Parameter "3.2.1 Sea level height")

(rms-system-tides# 10.0) (orbit-type ?orb&-nil) (taken-by ?ra))

(if (eq ?b SSO) then (bind ?rmtid 4.0) else (bind 1.0))
(modify ?ma (rms-system-tides#

(defrule SYNERGIES::altimetry-err-total
"If an instrument providing precise orbit determinations is sharing a platform

with an altimeter, then the POD contribution in the altimetry error budget is
decreased from 10-15cm to 2-5 cm"

(declare (salience -30) (no-loop TRUE) )
< - (REQUIREMENTS::Measurement (Parameter "3.2.1 Sea level height")
(rms-system-POD# ? OD) (rms-system-tropoH20# - ) (rms-system-

ionosphere# ono)

(rms-system-instrument# in) (rms-variable-measurement# )
(rms-system-tides# ) (rms-system-tropo-dry# r) (rms-

total# 100.0))

(bind -tai (sqrt (+ (** P 2) (** 2) (** ? 2) (**
r-ins 2)
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2) (** rr 2) (** rmsvr 2))))
(modify (rms-total# ?m io a1)

Code 109: Synergy rules from the ocean altimetry community

The following rules concern scatterometry measurements.

(defrule SYNERGIES::sea-surface-winds-combining-SAR-and-scatterometer
"sea surface winds from sar and scatterometers can be combined to increase

sensitivity. See Monaldo et al, TGRS 2004 Vol 42, Iss 2"

(declare (no-loop TRUE))
<- (REQUIREMENTS::Measurement (Parameter "3.4.1 Ocean surface wind speed")

(taken-by ) (rms-variable-measurement# ?r&~nil))
<- (REQUIREMENTS::Measurement (Parameter "3.4.1 Ocean surface wind speed")

(taken-by &: (neq )) (rms -variable-measurement# &~nil))
(CAPABILITIES::Manifested-instrument (Intent "Imaging MW radars -SAR-") (Name

(CAPABILITIES::Manifested-instrument (Intent "Radar scatterometer") (Name
(SYNERGIES::cross-registered-instruments (instruments ) (degree-of-cross-

registration spacecraft))
(test (member$
(test (member$

(modify (rms-variable-measurement# (* 0.75 (min
)

(defrule SYNERGIES::sea-surface-winds-with-high-winds
"C-band scatterometry offers better sensitivity than Ka/Ku at high winds.
See Decadal Survey report on XOVWM mission"

(declare (no-loop TRUE))
<- (REQUIREMENTS::Measurement (Parameter "3.4.1 Ocean surface wind speed")

(taken-by ) (sensitivity-in-high-winds nil))
(CAPABILITIES: :Manifested-instrument (Intent "Radar scatterometer") (Name )

(Spectral-region

(if (eq MW-C) then (bind High) else (bind Low))
(modify (sensitivity-in-high-winds

(defrule SYNERGIES::ocean-wind-vector-sensitivity-high-winds
"If a Ku-band measurement of ocean winds is combined with a C-band measurement
then the sensitivity at high speed improves"

(declare (salience 10) (no-loop TRUE))
<- (REQUIREMENTS::Measurement (Id -1]) (taken-by ) (Parameter ?p)

(Horizontal-Spatial-Resolution Very-low-10-100km) (sensitivity-in-high-winds High))
<- (REQUIREMENTS: :Measurement (Id ?2) (taken-by ?n) (Parameter ?p)

(Horizontal-Spatial-Resolution Low-lkm-10km) (sensitivity-in-high-winds Low))
(test (meas-group p 3.4.0))
(SYNERGIES: :cross-registered (measurements $?m))
(test (member$ i))

(test (member$
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(duplicate ?u (sensitivity-in-high-winds High) (taken-by (str-cat ?ins1 "-syn-"
in2)(Id (str-cat ?id1 "syn-" .e))

(defrule SYNERGIES::ocean-wind-vector-complete
"If a Ku-band measurement of ocean winds is combined with a C-band measurement
and a passive measurement then this is the optimal wind measurement"

(declare (salience 10) (no-loop TRUE))
?C <- (REQUIREMENTS: :Measurement (Id ?id1) (taken-by ?ins1) (Parameter ?p)

(Horizontal-Spatial-Resolution Very-low-10-100km) (sensitivity-in-high-winds High))
?Ku <- (REQUIREMENTS::Measurement (Id ?id2) (taken-by ?ins2) (Parameter ?p)

(Horizontal-Spatial-Resolution Low-lkm-lokm) (sensitivity-in-high-winds Low))
?X <- (REQUIREMENTS::Measurement (Id ?idH) (taken-by ?Lns3) (Parameter ?p)

(Horizontal-Spatial-Resolution Very-low-10-100km) (sensitivity-in-rain High))
(test (meas-group ?p 3.4.0))
(SYNERGIES::cross-registered (measurements $?m))
(test (member$ ?id1 $?m)) (test (member$ ?id $)) (test (member$ ?2 i ))
(not (REQUIREMENTS: :Measurement (Parameter ?p) (Horizontal-Spatial-Resolution

Low-lkm-lokm) (sensitivity-in-high-winds High) (sensitivity-in-rain High) (rms-
system-tropoH20# Low)))

(duplicate ?Ku (sensitivity-in-high-winds High) (sensitivity-in-rain High) (rms-
system-tropoH20# Low) (taken-by (str-cat ?is1 "-syn-" "-syn-" )) (Id
(str-cat i"-syn-" ?id2 "-syn-" ))

(defrule SYNERGIES::ocean-wind-vector-sensitivity-in-rain
"If a Ku-band measurement of ocean winds is combined with a C-band measurement
then the sensitivity at high speed improves"
(declare (salience 10) (no-loop TRUE))
?x <- (REQUIREMENTS::Measurement (Id ?idl) (taken-by i - ) (Parameter p)

(Horizontal-Spatial-Resolution Very-low-10-100km) (sensitivity-in-rain High))
?Ku <- (REQUIREMENTS: :Measurement (Id ?d2) (taken-by '' ,) (Parameter ?p)

(Horizontal-Spatial-Resolution Low-lkm-lokm) (sensitivity-in-rain Low))
(test (meas-group ?p 3.4.0))
(SYNERGIES::cross-registered (measurements $?m))
(test (member$ ?id1 $?))
(test (member$ ?idi2 $?n))

(duplicate ?KU (sensitivity-in-rain High) (taken-by (str-cat "-syn-"
?ins2)) (Id (str-cat ?idl "-syn-" Id2 )))

)

(defrule SYNERGIES::ocean-wind-vector-atmospheric-correction
"If a Ku-band measurement of ocean winds is combined with a X-band passive

measurement then the accuracy of the retrieval improves"

(declare (salience 10) (no-loop TRUE))
?X <- (REQUIREMENTS: :Measurement (Id ) (taken-by ) (Parameter )

(Horizontal-Spatial-Resolution Very-low-10-100km) (rms-system-tropoH20# Low))
?Ku <- (REQUIREMENTS: :Measurement (Id ) (taken-by ?ins) (Parameter )
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(Horizontal-Spatial-Resolution Low-lkm-10km) (rms-system-tropoH20# High))
(test (meas-group 3.4.0))
(SYNERGIES::cross-registered (measurements $?m))
(test (member$
(test (member$

(duplicate (rms-system-tropoH20# Low) (taken-by (str-cat ?ins1 "-syn-"
)) (Id (str-cat -syn-"

Code 110: Synergy rules from the scatterometry community

The following rules concern ocean biology measurements.

(defrule SYNERGIES::river-plumes-from-ocean-color "River plumes and sediment fluxes
can be measured with an ocean color measurement of sufficient horizontal spatial
resolution"

<- (REQUIREMENTS::Measurement (Parameter "3.1.1 Ocean color - 410-680nm
(Chlorophyll absorption and fluorescence, pigments, phytoplankton, CDOM)")
(Horizontal-Spatial-Resolution & :(neq nil)) (Id ) (Temporal-resolution

(test (SameOrBetter Horizontal-Spatial-Resolution 6,r High-10-100m))
(test (SameOrBetter Temporal-resolution High-12h-24h))
(REQUIREMENTS::Measurement (Parameter "3.1.2 Extended ocean color - UV (enhanced

DOC, CDOM)") (Horizontal-Spatial-Resolution & :(neq ?hsr nil)) (Id i
(SYNERGIES::cross-registered (measurements
(test (member$
(test (member$

Code 111: Synergy rules from the ocean biology community

The following rules concern land topography measurements.

(defrule SYNERGIES::add-multi-angular-capability
"If a multi-angular radiometer is combined with another imager
then the common measurement combines the characteristics of the two"

(declare (no-loop TRUE) (salience 5))
n <- (REQUIREMENTS::Measurement (Parameter ?p) (taken-by

(ThreeD di &~ Full-3D) (synergy-level# ?s1&:(< ? 1)))
(REQUIREMENTS: :Measurement (Parameter ?p) (taken-by ) (Id

&~ No-3D &~ N-A &~ nil) (synergy-level# ?s2&:(< ?s2 1)))
(or (test (meas-group 1.0.0)) (test (meas-group ?p 2.0.0)))
(SYNERGIES::cross-registered (measurements $?m))
(test (member$ $
(test (member$
(test (> (SameOrBetter ThreeD d2 1) 0))

) (Id d )

?i12) (ThreeD t
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(duplicate ?no (ThreeD ?td2) (Id (str-cat ?d "-multiang-" ?i2)) (taken-by
(str-cat ?insl "-multiang-" ?ins2 )) (synergy-level# (+ 1 (max ?i

)

(defrule SYNERGIES::HSR-TR-ThreeD-combination-scheme
"Combination of a MODIS-like instrument with an ASTER like instrument with a MISR

like instrument"

(declare (no-loop TRUE) (salience 10))
?M~ODIS - (REQUIREMENTS::Measurement (Parameter ?p) (Accuracy High) (Horizontal-

Spatial-Resolution Medium-100m-lkm) (Temporal-resolution Medium-1day-3days) (taken-by
?in1) (Id ?idl) (ThreeD ?td1 &- Full-3D))

?ASTER <- (REQUIREMENTS: :Measurement (Parameter ?p) (Accuracy High) (Horizontal-
Spatial-Resolution High-10-100m) (Temporal-resolution Very-low-1-3-weeks) (taken-by
?ins2) (Id ?id2) (ThreeD ?td2 &- No-3D &- N-A &~ nil))

?MISR <- (REQUIREMENTS::Measurement (Parameter ?p) (Accuracy High) (Horizontal-
Spatial-Resolution Medium-100m-lkm) (Temporal-resolution Very-low-1-3-weeks) (taken-
by ?ins3) (Id ?d3) (ThreeD Full-3D))

(or (test (meas-group ?p 1.0.0)) (test (meas-group ?p 2.0.0)))
(SYNERGIES: :cross-registered (measurements $,?m))
(test (member$ ?idI $?m))
(test (member$ ?id2 $?m))
(test (member$ ?id3 1?))

(duplicate KODIS (ThreeD Full-3D) (Horizontal-Spatial-Resolution High-10-100m)
(Id (str-cat ?i "-disagg-" ?id2"-multiang-" i13)) (taken-by (str-cat 1
disaggr-" ?n2"-multiang-" ?-ins3))))

Code 112: Synergy rules from the land topography community

The following rules concern hydrology measurements.

(defrule SYNERGIES::groundwater-storage-from-gravity "Groundwater storage can be
inferred from precise gravity measurements"

?grav <- (REQUIREMENTS: :Measurement (Parameter "5.1.1 Geoid and gravity field
variations") (Horizontal-Spatial-Resolution & :(neq -h . nil)) (Id

Code 113: Synergy rules from the hydrology community

The following rules concern cryospheric measurements.

(defrule SYNERGIES: :glacier-mass-balance-from-gravity "Glacier mass balance
measurements can be inferred from precise gravity measurements using ice topography
measurements"

rav <- (REQUIREMENTS: :Measurement (Parameter "5. 1.1 Geoid and gravity field
variations") (Horizontal-Spatial-Resolution & :(neq nil)) (taken-by ?
(Id ?Ai))
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<- (REQUIREMENTS: :Measurement (Parameter "4.1.5 Ice Sheet topography")
(Id ) (taken-by

(SYNERGIES: :cross-registered (measurements ?m
(test (member$
(test (member$

(duplicate ?p (Id (str-cat - "-syn" )) (taken-by (str-cat syn"
)) (Parameter "4.1.3 glacier mass balance")))

(defrule SYNERGIES::cross-instrument-calibration-heritage-SCLP
"If the SCLP radiometer is flown together with the SAR, then the calibration of

the SAR is better"

- (REQUIREMENTS::Measurement (Parameter "4.2.1 snow-water equivalence")
(Illumination Active) (On-board-calibration &~High) (taken-by .) (Id

(REQUIREMENTS::Measurement (Parameter "4.2.1 snow-water equivalence")

(Illumination Passive) (taken-by ) (Id
(SYNERGIES::cross-registered (measurements
(test (member$
(test (member$

(modify (On-board-calibration High) (taken-by (str-cat "-syn-" n
(Id (str-cat "-syn-" i

Code 114: Synergy rules from the cryosphere community

The following rules concern atmospheric measurements.

(defrule SYNERGIES: :visible-atmospheric-plume-from-aerosols "Visible atmospheric
plumes can be measured from high temporal and spatial resolution multispectral
aerosol measurements"

<- (REQUIREMENTS::Measurement (Parameter "1.1.1 aerosol height/optical
depth") (Horizontal-Spatial-Resolution & :(neq nil)) (Temporal-resolution

) (Id
(test (SameOrBetter Horizontal-Spatial-Resolution hsz High-10-100m))
(test (SameOrBetter Temporal-resolution High-12h-24h))
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(Id (str-cat ?idl "-syn")) (Parameter "1.8.16 Visible atmospheric(duplicate
plumes")))

(defrule SYNERGIES::black-carbon-from-aerosols "Black carbon can be measured from
polarimetric aerosol measurements"

<- (REQUIREMENTS::Measurement (Parameter "1.1.2 aerosol shape,
composition, physical and chemical properties") (Polarimetry yes) (Id ?idd))

"-syn")) (Parameter "1.8.13 Black carbon and(duplicate :; (Id (str-cat
other polluting aerosols")))



(defrule SYNERGIES::surface-composition-in-all-spectrum
"Surface composition measurements in different regions of the spectrum can be

combined"

<- (REQUIREMENTS: :Measurement (Parameter ?p) (Spectral-region opt-
VNIR+SWIR) (Temporal-resolution ?tr1.&-nil) (Spectral-sampling ?ss&~'nil) (Id )
(taken-by ?ins))

?T:R <- (REQUIREMENTS: :Measurement (Parameter ?p) (Spectral-region opt-TIR)
(Temporal-resolution ?tr2&~nil) (Spectral-sampling ?ss2&~nil) (Id -JK2) (taken-by

(SYNERGIES: :cross-registered (measurements $ ?))
(test (member$ ?id1 $?m))
(test (member$ ?id $?m))
(or (test (meas-group ?p 2.0.0)) (test (meas-group ?p 3.7.0)))

(duplicate ?TIR (Spectral-region opt-VNIR+SWIR+TIR) (Temporal-resolution (fuzzy-
min Temporal-resolution ?trl tr2)) (Spectral-sampling (fuzzy-max Spectral-sampling

ss1 ?ss2)) (taken-by (str-cat i "-syn-" 2 )) (Id (str-cat "-syn-"

(defrule SYNERGIES::MW-and-IR-sounders-tropo-sensitivity
"A MW sounder increases the sensitivity in the troposphere of the IR sounder by

providing all weather capability. This rule comes from AIRS-AMSU in EOS"

?R <- (REQUIREMENTS: :Measurement (Parameter "1.2.1 Atmospheric temperature
fields")

(Spectral-region ,sr1) (sensitivity-in-low-troposphere-PBL )
(Id ?id1) (taken-by 1) (synergy-level# ?s1&:(< ?s1 1)))

MW. <- (REQUIREMENTS::Measurement (Parameter "1.2.1 Atmospheric temperature
fields")

(Spectral-region ?sr2) (Id ?id2) (taken-by ? ) (synergy-level# 32&:(<

1)))
(test (integerp (str-index MW ?r)
(test (integerp (str-index opt ?sr2)))
(test (neq ?senTR High))

(duplicate ?IR (sensitivity-in-low-troposphere-PBL High)
(Id (str-cat u l "-syn-" .))
(taken-by (str-cat - A "-syn-" ?
(synergy-level# (+ (max ?s1 ?s2) 1))

(defrule SYNERGIES::add-all-weather-capability
"If two measurements are of the same parameter and one has all weather capability
and the other does not, we assume that we can assimilate them and have an all
weather capability measurement"

(declare (no-loop TRUE) (salience -50))
- (REQUIREMENTS: :Measurement (Parameter p) (All-weather no) (Id )

(taken-by is) (synergy-level# :1&:(< P_ 3)))
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(REQUIREMENTS::Measurement (Parameter ?p) (All-weather yes) (Id ?id2) (taken-by
) (synergy-level# &:(< 1)))

(SYNERGIES::cross-registered (measurements $?m))
(test (member$
(test (member$

(duplicate (All-weather yes) (Id (str-cat i "-syn-" ))
(taken-by (str-cat "-syn-" )) (synergy-level# (+ (max

1))))
)

(defrule SYNERGIES::add-cloud-mask
"If an imager is cross-registered with another instrument that does not provide

cloud mask info, the imager can be used to obtain cloud-cleared images of the second
instrument"

(declare (no-loop TRUE) (salience 10))
<- (REQUIREMENTS::Measurement (Parameter ) (cloud-cleared

(taken-by ) (synergy-level# 1&:(< 2)))
(REQUIREMENTS::Measurement (Parameter "1.5.4 cloud mask") (Id
) (synergy-level# &:(< 1)))

(SYNERGIES::cross-registered (measurements
(test (member$
(test (member$

no) (Id )

) (taken-by

(modify (cloud-cleared yes) (Id (str-cat 1 "-mask-" i)) (taken-by (str-
cat "-mask-" )) (synergy-level# (+ 1 (max

(assert (SYNERGIES::cross-registered (measurements (insert$ ,?w (+ 1 (length$
)) (str-cat "-mask-" 2J )))
)

(defrule SYNERGIES::add-sensitivity-in-cirrus-from-mmw-measurement
"If two measurements are of the same parameter and one has all weather capability
and the other does not, we assume that we can assimilate them and have an all
weather capability measurement"
(declare (no-loop TRUE) (salience -50))

- (REQUIREMENTS::Measurement (Parameter ) (sensitivity-in-cirrus &~High)
(Id ) (taken-by ) (synergy-level# ? 1&:(< 2)))

(REQUIREMENTS: :Measurement (Parameter ?p) (sensitivity-in-cirrus High) (Id )
(taken-by J) (synergy-level# ?&:(< ?s2 1)))

(not (REASONING::stop-improving (Measurement

(duplicate (sensitivity-in-cirrus High) (Id (str-cat ?id "-syn-" ?id2))
(taken-by (str-cat "-syn-" )) (synergy-level# (+ 1 (max s'.

(defrule SYNERGIES::add-sensitivity-in-convective-clouds
"If two measurements are of the same parameter and one has high sensitivity over

convective clodus and the other does not, we assume that we can assimilate them and
have a better measurement with sensitivity in convective clouds"
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(declare (no-loop TRUE) (salience -50))
?no <- (REQUIREMENTS: :Measurement (Parameter ?p) (sensitivity-in-convective-

clouds ?s&-High) (Id ?iidl) (taken-by ?ins1) (synergy-level# ?s1&:(< ?s1 2)))
(REQUIREMENTS: :Measurement (Parameter ?p) (sensitivity-in-convective-clouds High)

(Id ?id2) (taken-by ?ins2) (synergy-level# ?s2&:(< 1)))
(not (REASONING::stop-improving (Measurement

(duplicate ?no (sensitivity-in-convective-clouds High) (Id (str-cat ?idl "-syn-"
?

(taken-by (str-cat ?ins1 "-syn-" Jrv )) (synergy-level# (+ 1 (max )si
?s2)))))

(defrule SYNERGIES::column-vs-profile-chemistry-measurements
"If we have a profile measurement in addition to a column measurement, both are

improved as a result because of two independents measurements of the total column."

?col <- (REQUIREMENTS: :Measurement (Parameter ?p) (Vertical-Spatial-Resolution
nil)

(Id ?idi) (taken-by ?i) (Accuracy ?acc&-nil) (synergy-level# ?s1&:(<
2)))

(REQUIREMENTS: :Measurement (Parameter -) (Vertical- Spatial- Resolution
(Id ?id2) (taken-by ?ins2) (Accuracy ) (synergy-level#

(SYNERGIES: :cross-registered (measurements
(test (member$ ?id1 ?m))
(test (member$ ?d2 $?m))

&-nil)
1)))

(duplicate .coA (Accuracy (eval (Improve Accuracy ?acc1))) (Id (str-cat
syn-" ?id2))

(taken-by (str-cat ?ins1 "-syn-" ? 2 )) (Vertical-Spatial-Resolution )
(synergy-level# (+ 1 (max ?s! ?s2)))))

(defrule SYNERGIES::tropo-vs-strato-chemistry-measurements
"If we have a chemistry measurement with high sensitivity in t
and another one with high sensitivity in the stratosphere, we
atmosphere."

he troposphere,
have the complete

(declare (no-loop TRUE) (salience -50))
?r <- (REQUIREMENTS: :Measurement (Parameter 'p) (sensitivity-in-low-

troposphere-PBL High) (synergy-level# ?sI&:(< ?s1 2))
(sensitivity-in-upper-troposphere-and-stratosphere ?sr-&~High) (Id ?idi

?ins1) (Accuracy ?acc1&-nil))
?r <- (REQUIREMENTS::Measurement (Parameter ?p) (sensitivity-in-low-

troposphere-PBL ?tr&~High) (synergy-level# ?s2&:(< ?s2 2))
(sensitivity-in-upper-troposphere-and-stratosphere High) (Id ?id2) (t

Is2 ) (Accuracy ?ac2))

(duplicate ?tr (Id (str-cat
troposphere-and-stratosphere High)

) (taken-by

aken-by

"-syn-" )) (sensitivity-in-upper-
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(taken-by (s

(duplicate
PBL High)

tr-cat "-syn-" ;2 )) (synergy-level# (+ 1 (max

(Id (str-cat "-syn-" )) (sensitivity-in-low-troposphere-

(taken-by (str-cat )) (synergy-level# (+ 1 (max

(defrule SYNERGIES::sensitivity-over-oceans
"If we have two measurements and one has good sensitivity over oceans we can

combine it with another one with lower sensitivity to create a new data product"

(Id
(REQ

(Id

<- (REQUIREMENTS::Measurement (Parameter ) (sensitivity-over-oceans
) (taken-by ) (Accuracy P &~nil) (synergy-level# ?&:(<

UIREMENTS::Measurement (Parameter ) (sensitivity-over-oceans High)
) (taken-by ) (Accuracy ) (synergy-level# &: (< 2

no)
3)))

1)))

(duplicate (Id (str-cat "-syn-" P )) (sensitivity-over-oceans High)
(taken-by (str-cat i -syn-" )) (synergy-level# (+ 1 (max

(defrule SYNERGIES::CO2-temperature-error
"If a laser C02 measurement error is accompanied by a passive temperature

measurement then the accuracy of the C02 retrieval improves"

<- (REQUIREMENTS::Measurement (Id ) (taken-by ?r) (Parameter "1.8.3
C02") (rms-system-tropoH20# High))

<- (REQUIREMENTS::Measurement (Id ,) (taken-by j (Parameter "1.2.1
Atmospheric temperature fields") (Spectral-region opt-SWIR))

(modify
(Id (str-cat

(rms-system-tropoH20# Low) (taken-by (str-cat
-syn- id2

(defrule SYNERGIES::CO2-pressure-error
"If a laser C02 measurement error is accompanied by a passive 02 measurement
then the accuracy of the C02 retrieval improves"

<- (REQUIREMENTS::Measurement (Id ?1) (taken-by 1) (Parameter "1.8.3

C02") (rms-system-tropo-dry# High))
<- (REQUIREMENTS: :Measurement (Id i 1) (taken-by ) (Parameter "1.8.6

02") (Spectral-region opt-SWIR))

(modify
(Id (str-cat

(rms-system-tropo-dry# Low) (taken-by (str-cat ?ins1 "-syn-" in

S "syn- ?d2 ) )
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Code 115: Synergy rules from the atmospheric chemistry and physics community

The following rules concern societal applications of remote sensing data products.

(defrule SYNERGIES::pointing-capability
?m<- (REQUIREMENTS: :Measurement (Parameter ?p) (Temporal-resolution ?tr1)

(Pointing-capability High) (orbit-altitude# ?h&:(> ?h 450)) (Id ?idl) (taken-by
?ins1) (synergy-level# 0))

(or (test (eq ?tr1 Low-3days-1-week)) (test (eq tr1 Very-low-1-3-weeks)))

(duplicate ?m (Temporal-resolution Medium-lday-3days) (synergy-level# 1)))

(defrule SYNERGIES::fire-monitoring-bands
?TIR <- (REQUIREMENTS: :Measurement (Id ?i) (taken-by In1) (Parameter "A2.Fire

Monitoring") (Temporal-resolution ?trl&-nil) (Spectral-sampling ?ss1&~nil) (Accuracy
((&-Low) (Spectral-region opt-TIR))

?SWIR <- (REQUIREMENTS::Measurement (Id ?id2) (taken-by -s2) (Parameter
"A2.Fire Monitoring") (Temporal-resolution ?tr2&-nil) (Spectral-sampling ss2&~nil)
(Accuracy acc2&-Low) (Spectral-region opt-VNIR+SWIR))

(test (neq ?ints ?ins2))

(duplicate ?TIR (Accuracy High) (Spectral-region opt-VNIR+SWIR+TIR) (Temporal-
resolution (fuzzy-min Temporal-resolution ?Ltrl tr2)) (Spectral-sampling (fuzzy-max
Spectral-sampling ?ss1 ?ss2))

(taken-by (str-cat ?ins1 "-syn-" r )) (Id (str-cat id "-syn-" I.

(defrule SYNERGIES: :hydrocarbon-reservoir-monitoring-from-surface-deformation
"Hydrocarbon reservoirs can be monitored by measuring surface deformation and surface
composition"

?sd <- (REQUIREMENTS::Measurement (Parameter "2.2.1 surface deformation")
(Horizontal-Spatial-Resolution ?h & :(neq ?hr nil)) (Id i

(test (SameOrBetter Horizontal-Spatial-Resolution High-10-100m))
(REQUIREMENTS: :Measurement (Parameter "2.6.5 surface composition") (Horizontal-

Spatial-Resolution ?hsr & :(neq ?hsr nil)) (Id !id2))
(SYNERGIES::cross-registered (measurements m
(test (member$ ?id1 $?m))
(test (member$ ?id2 $?m))

(duplicate -- (Id (str-cat PId1 "-syn-" )) (Parameter "2.6.4 hydrocarbon
reservoir monitoring")))

(defrule SYNERGIES::flood-monitoring-from-hires-topography "Hi res topography with 5m
horizontal spatial resolution and 10cm accuracy allows flood monitoring"

V p <- (REQUIREMENTS: :Measurement (Parameter "2.2.2 Hi-res topography")
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(Horizontal-Spatial-Resolution & :(neq nil)) (Id ?id1))
(test (SameOrBetter Horizontal-Spatial-Resolution Very-high-1-10m))

(duplicate p (Id (str-cat
reservoir monitoring")))

"-syn")) (Parameter "2.6.4 hydrocarbon

(defrule SYNERGIES::mmw-sounders-rain-rates-hurricanes
"If there is a cloud liquid water and precipitation measurement and the

instrument has H20 bands in the MMW then it can measure rain rate, hurricanes, etc"

<- (REQUIREMENTS::Measurement (Parameter "1.7.1 Cloud liquid water and
precipitation rate") (taken-by

(CAPABILITIES::Manifested-instrument (Name ) (Spectral-region MW-submm))
(not (REQUIREMENTS::Measurement (Parameter "1.7.3 Rain rate, tropical storms, and

hurricanes") (taken-by )))

(duplicate (Parameter "1.7.3 Rain rate, tropical storms, and hurricanes")))

(defrule SYNERGIES::fire-monitoring
"If there is a multispectral disaster monitoring measurement, then we can do fire

monitoring"

<- (REQUIREMENTS::Measurement (Id 11) (taken-by ins) (Parameter "2.6.3
disaster monitoring") (Spectral-sampling &~Multispectral-10-100-channels
&~Hyperspectral-100-channels-or-more))

(REQUIREMENTS: :Measurement (Id ) (taken-by ) (Parameter "1.8.3 C02")
(Spectral-sampling Multispectral-10-100-channels))

(duplicate (Paramete
)) (Accuracy Medium)

(taken-by (str-cat
10-100-channels)))

r "A2.Fire Monitoring") (Id (str-cat -syn-

)) (Spectral-sampling Multispectral-

Code 116: Synergy rules from the societal applications

The following rules concern measurements for numerical weather prediction.
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(defrule count-num-soundings-per-day
"Computes number of soundings per day from number of satellites carrying
GPS receivers, based on paper Research on the Number and Distribution of GPS

Occultation Events for Orbit Selection for Global/Regional Observation, RAST 2007"

<- (REQUIREMENTS::Measurement (Parameter "1.3.3 GPS radio occultation")
(taken-by )

(num-soundings-per-day# nil) (num-of-planes# ?np&~nil) (num-of-sats-per-
plane# &-nil) )



(bind ?ns (* 450 (* ?n n))); 450 soundings/day per satellite
(modify ?m (num-soundings-per-day# ?ns))

)

(defrule count-num-soundings-per-day-when-nil
"Computes number of soundings per day from number of satellites carrying
GPS receivers, based on paper Research on the Number and Distribution of GPS

Occultation Events for Orbit Selection for Global/Regional Observation, RAST 2007"

?m <- (REQUIREMENTS::Measurement (Parameter "1.3.3 GPS radio occultation")
(taken-by ?tk) (num-soundings-per-day# nil) (num-of-planes# nil) (num-of-sats-per-
plane# nil) )

(bind ?ns 450); 450 soundings/day per satellite
(modify ?m (num-soundings-per-day# ?ns))

)

(defrule num-soundings-per-day-add
"Computes number of soundings per day from number of satellites carrying
GPS receivers, based on paper Research on the Number and Distribution of GPS

Occultation Events for Orbit Selection for Global/Regional Observation, RAST 2007"

?m1 <- (REQUIREMENTS: :Measurement (Parameter "1.3.3 GPS radio occultation") (num-
soundings-per-day# ?'ns1&-nil) (taken-by ?1))

;2 <- (REQUIREMENTS: :Measurement (Parameter "1.3.3 GPS radio occultation") (num-
soundings-per-day# ?ns2&nil) (taken-by ?tk2))

(test (neq ?m ?m2))

(retract ?mi)
(modify ?m2 (num-soundings-per-day# (+ 'nsi )) (taken-by (str-cat

)
Code 117: Synergy rules from the numerical weather prediction community

The following rules concern Earth radiation budget measurements.

(defrule SYNERGIES::clouds-and-radiation2
"For EOS, it is convenient to express requirements in terms of number of CERES

flying"

(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget
radiometers") (Name ?n1&-ACRIM) )

(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget
radiometers") (Name ?n2&-?n&~ACRIM) )

(REQUIREMENTS: :Measurement (Parameter "1.9.3 Spectrally resolved SW radiance -
0.3-2um-") (Id ?id1) (taken-by ?ins1))

?cud <- (REQUIREMENTS: :Measurement (Parameter "1.5.3 Cloud amount/distribution
-horizontal and vertical-") (Id ) (taken-by ? 2))

(SYNERGIES::cross-registered (measurements $?m))
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(test (member$
(test (member$

(not (REQUIREMENTS::Measurement (Parameter "A4.Clouds and radiation") (num-of-
indep-samples# 2)))

(duplicate (Parameter "A4.Clouds and radiation") (num-of-indep-samples#
2)

(Id (str-cat -syn-" )) (taken-by (str-cat ?i "-syn-" ?

(defrule SYNERGIES::clouds-and-radiation3
"For EOS, it is convenient to express requirements in terms of number of CERES

flying"

(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget
radiometers") (Name &~ACRIM))

(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget
radiometers") (Name &~ ' &-~ACRIM))

(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget
radiometers") (Name &~ &~?n &~ACRIM))

(REQUIREMENTS::Measurement (Parameter "1.9.3 Spectrally resolved SW radiance -

0.3-2um-") (Id ) (taken-by
<- (REQUIREMENTS::Measurement (Parameter "1.5.3 Cloud amount/distribution

-horizontal and vertical-") (Id ) (taken-by
(SYNERGIES::cross-registered (measurements
(test (member$
(test (member$ i
(not (REQUIREMENTS::Measurement (Parameter "A4.Clouds and radiation") (num-of-

indep-samples# 3)))

(duplicate (Parameter "A4.Clouds and radiation") (num-of-indep-samples#
3)

(Id (str-cat -syn-" )) (taken-by (str-cat n "-syn-"
syn" "-syn" "-syn" )))

)

(defrule SYNERGIES::CERES-sampling-multiple-angles-SW
"For CERES, it is required to have one instrument in a cross-track scanning

configuration to get good spatial sampling and another one in azimuth scanning
configuration in order to sample all possible angles"

(declare (no-loop TRUE))
(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning cross-track) (Name in1))
(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning biaxial) (Name ?n'&:(neq ?nl ?n2)))
<- (REQUIREMENTS::Measurement (Parameter "1.9.3 Spectrally resolved SW

radiance -0.3-2um-") (rms-variable-angular-sampling#
(test (eq (numberp ) FALSE));; essentially nil
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(modify ?m (rms-variable-angular-sampling# 1.2)) ;; 1sigma, in W/m2 averaged over
30 days, Wielicki et al 1995

)

(defrule SYNERGIES::CERES-sampling-multiple-angles-LW
"For CERES, it is required to have one instrument in a cross-track scanning

configuration to get good spatial sampling and another one in azimuth scanning
configuration in order to sample all possible angles"

(declare (no-loop TRUE))
(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning cross-track) (Name ?n1))
(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning biaxial) (Name ?2&:(neq ?n )))
?m <- (REQUIREMENTS: :Measurement (Parameter "1.9.2 Spectrally resolved IR

radiance -200-2000cm-1-") (rms-variable-angular-sampling#
(test (eq (numberp ?ang) FALSE));; essentially nil

(modify ?i (rms-variable-angular-sampling# 1.2)) ;; isigma, in W/m2 averaged over
30 days, Wielicki et al 1995

)

(defrule SYNERGIES::CERES-sampling-single-angle-SW
"For CERES, it is required to have one instrument in a cross-track scanning

configuration to get good spatial sampling and another one in azimuth scanning
configuration in order to sample all possible angles"

(declare (no-loop TRUE))
(CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning cross-track) (Name ?n1))
(not (CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning biaxial) ))
?m <- (REQUIREMENTS: :Measurement (Parameter "1.9.3 Spectrally resolved SW

radiance -0.3-2um-") (rms-variable-angular-sampling# Iang))
(test (eq (numberp ?ang) FALSE));; essentially nil

(modify ?m (rms-variable-angular-sampling# 4.8)) ;; Isigma, in W/m2 averaged over
30 days, Wielicki et al 1995

)

(defrule SYNERGIES::CERES-sampling-single-angle-LW
"For CERES, it is required to have one instrument in a cross-track scanning

configuration to get good spatial sampling and another one in azimuth scanning
configuration in order to sample all possible angles"

(declare (no-loop TRUE))
(CAPABILITIES: :Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning cross-track) (Name n1))
(not (CAPABILITIES::Manifested-instrument (Intent "Earth radiation budget

radiometers") (scanning biaxial) ))
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<- (REQUIREMENTS::Measurement (Parameter "1.9.2 Spectrally resolved IR
radiance -200-2000cm-l-") (rms-variable-angular-sampling#

(test (eq (numberp ) FALSE));; essentially nil

(modify : (rms-variable-angular-sampling# 4.8)) ;; isigma, in W/m2 averaged over
30 days, Wielicki et al 1995

)

(defrule SYNERGIES::CERES-sampling-time-SW2
"For CERES, it is required to have one instrument in a cross-track scanning

configuration to get good spatial sampling and another one in azimuth scanning
configuration in order to sample all possible angles"

(declare (no-loop TRUE) (salience -3))
(REQUIREMENTS::Measurement (Parameter "A4.Clouds and radiation") (num-of-indep-

samples# &2))
<- (REQUIREMENTS::Measurement (Parameter "1.9.3 Spectrally resolved SW

radiance -0.3-2um-") (rms-variable-time-sampling#
(test (eq (numberp ) FALSE));; essentially nil

(if (eq 1) then (bind 10.45) elif (eq 2) then (bind 2.3) elif (eq
3) then (bind 0.47) else (bind 15.0))

(modify ,m (rms-variable-time-sampling# x)) ;; isigma, in W/m2 averaged over 30
days, Wielicki et al 1995

)

(defrule SYNERGIES: :CERES-sampling-time-LW2
"For CERES, error due to sampling time decreases with the number of independent

samples as described in Wielicki et al 1995"

(declare (no-loop TRUE) (salience -3))
(REQUIREMENTS::Measurement (Parameter "A4.Clouds and radiation") (num-of-indep-

samples# n&2))
<- (REQUIREMENTS::Measurement (Parameter "1.9.2 Spectrally resolved IR

radiance -200-2000cm-l-") (rms-variable-time-sampling#
(test (eq (numberp ) FALSE));; essentially nil

(if (eq 1) then (bind : 10.45) elif (eq 2) then (bind ?x 2.3) elif (eq
3) then (bind . 0.47) else (bind x 15.0))

(modify (rms-variable-time-sampling# ?x)) ;; 1sigma, in W/m2 averaged over 30
days, Wielicki et al 1995

)

(defrule SYNERGIES: :CERES-sampling-time-SW3
"For CERES, it is required to have one instrument in a cross-track scanning

configuration to get good spatial sampling and another one in azimuth scanning
configuration in order to sample all possible angles"

(declare (no-loop TRUE) (salience -3))
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(REQUIREMENTS: :Measurement (Parameter "A4.Clouds and radiation") (num-of-indep-
samples# ?n&3))

m <- (REQUIREMENTS: :Measurement (Parameter "1.9.3 Spectrally resolved SW
radiance -0.3-2um-") (rms-variable-time-sampling# ?tim))

(test (eq (numberp ?tim) FALSE));; essentially nil

(if (eq ?n 1) then (bind ?x 10.45) elif (eq ?n 2) then (bind ?x 2.3) elif (eq ?n
3) then (bind ?x 0.47) else (bind ?x 15.0))

(modify ?m (rms-variable-time-sampling# :x)) ;; 1signa, in W/m2 averaged over 30
days, Wielicki et al 1995

)

(defrule SYNERGIES::CERES-sampling-time-LW3
"For CERES, error due to sampling time decreases with the number of independent

samples as described in Wielicki et al 1995"

(declare (no-loop TRUE) (salience -3))
(REQUIREMENTS::Measurement (Parameter "A4.Clouds and radiation") (num-of-indep-

samples# ?n&3))
?mi <- (REQUIREMENTS: :Measurement (Parameter "1.9.2 Spectrally resolved IR

radiance -200-2000cm-l-") (rms-variable-time-sampling#
(test (eq (numberp ?tim) FALSE));; essentially nil

(if (eq ?n 1) then (bind ?x 10.45) elif (eq ?n 2) then (bind ?x 2.3) elif (eq
3) then (bind ?x 0.47) else (bind ? 15.0))

(modify ?m (rms-variable-time-sampling# ?x) ;; 1sigma, in W/rn2 averaged over 30
days, Wielicki et al 1995

)

(defrule SYNERGIES::radiation-budget-err-total-SW
"Computes total rms error for a radiation budget mission. Has 3 components,

instrument error, angular sampling error, and time sampling error. See Wielicki et al
95 about CERES for more info"

(declare (no-loop TRUE) (salience -5))
?meas <- (REQUIREMENTS::Measurement (Parameter "1.9.3 Spectrally resolved SW

radiance -0.3-2um-") (rms-variable-angular-sampling# ?a n)
(rms-variable-time-sampling# ') (rms-system-instrument# ) (rms-total#

100.0))

(if (eq nil) then (bind ?ins 0))
(if (eq ?ang nil) then (bind ? 0))
(if (eq ?tim nil) then (bind ?t 0))
(bind ?rms-total (sqrt (+ (** 2) (** 2) (** - 2) )))
(modify ?ma (rms-total# ? r-ol))
)

(defrule SYNERGIES::radiation-budget-err-total-LW
"Computes total rms error for a radiation budget mission. Has 3 components,
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instrument error, angular sampling error, and time sampling error. See Wielicki et al
95 about CERES for more info"

(declare (no-loop TRUE) (salience -5))
< - (REQUIREMENTS: :Measurement (Parameter "1.9. 2 Spectrally resolved IR

radiance -200-2000cm-l-") (rms-variable-angular-sampling# 5 ;)
(rms-variable-time-sampling# ?tim) (rms-system-instrument# ?iis) (rms-total#

100.0))

(if (eq nil) then (bind ? 0))
(if (eq ng nil) then (bind P 0))
(if (eq nil) then (bind im 0))
(bind (sqrt (+ (** a 2) (** Pins 2) (**?t 2) )))
(modify (rms-total# a

)
Code 118: Synergy rules from radiation budget community



9.3 EOSS-specific knowledge

9.3.1 EOS case study: value aggregation rules

1st LEVEL OF STAKEHOLDER NEEDS DECOMPOSITION -

Panel Id Description O Weight i
Clouds and radiation WAE
Oceans OCE
Greenhouse Gases GHG
Land & Ecosystems ECO
Glaciers and Polar Ice Shec ICE
Ozone and Stratospheric C OZO
Solid Earth 50L

Cloud formation, dissip
Exchange of energy, wa
Chemistry of the tropo
Land hydrology and ecc
Glaciers, Sea Ice, and Ic
Ozone and Chemistry o
Volcanoes and Climate

15%
15%
15%
15%

15%
8%

15%
100%

2nd LEVEL OF STAKEHOLDER NEEDS DECOMPOSITION -
Clouds and radiation panel

Objeca Id Z

1 WAE1
2 WAE2
3 WAE3
4 WAE4
5 WAE5
6 WAE6
7 WAE7
8 WAE8

Description

Atmospheric circulation
Cloud radiative feedback
Precipitation patterns
Water vapor
Aerosols
Radiation budget
ice and snow
Land Surface Water

13%
19%
13%
13%
13%
19%
6%
6%

100%.

3rd LEVEL OF STAKEHOLDER NEEDS DECOMPOSITION -

SUBOBJECTIVES)
Clouds and radiation panel

WAE1 Atmospheric circulation

1 WAE1-1

2 WAE1-2

3 WAE1-3

4 WAE1-4

Atmospheric temperature profiles
Atmospheric humidity profiles
Ocean surface winds
Atmospheric winds

25%

25%

25%

25%
100%

WAE2 Cloud radiative feedback

1 WAE2-1 Cloud amount, cover, type 17%
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Objective 2
Subobjective Id Description Weight



WAE2-2

WAE2-3

WAE2-4

WAE2-5

WAE2-6

Cloud top height
Cloud top temperature

Cloud liquid water
Cloud ice particles
Cloud albedo

17%

17%

17%

17%

17%

100%

WAE3 Precipitation patterns

WAE3-1

WAE3-2

WAE3-3

WAE4-1

WAE4-2

WAE4-3

Cloud liquid water and precipitation

Rain rates, tropical storms and hurricanes

Lightning

34%

33%

33%

100%

Atmospheric water vapor

Water vapor transport - winds

Atmospheric humidity profiles

33%

33%
33%

100%1

Subobjective Id Description Weight

1 WAE5-1 Aerosol height and optical depth 33%

2 WAE5-2 Aerosol scattering properties 33%
Aerosol extinction and vertical concentration

3 WAE5-3 profiles 33%
100%

WAE6 Radiation budget

WAE6-1

WAE6-2

WAE6-3

WAE6-4

WAE7

WAE7-1

WAE7-2

WAE7-3

Total solar irradiance
Short-wave radiation (solar reflected)

Long-wave radiation (thermal emission)

Albedo and reflectance

15%

35%

35%

15%

100%1

ice and snow

Sea ice cover
Snow cover

Snow water equivalent

33%

33%
33%
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2

3

4-

5

6

Objective 3
Sub e Id Description

1
2

3

Objective 4 WAE4 Water vapor

Subobjective Id Descrption Weight,

11
2-

3

Objective 5 WAE5 Aerosols

Objective 6
Subobjective d Description Weight

1-

2-

3
4

Objective 7

Subobjective Id Description Weight

1
2
3



Objective 7 WAE8 Land Surface Water

Subobjective Id Description Weight

1 WAE8-1 Leaf area index-
2 WAE8-2 Soil moisture

3 WAE8-3 Vegetation state

25%
50%
25%

100%

OCE1

Oceans panel
Carbon Sources and Sinks

1 OCE1-1 Phytoplankton
2 OCE1-2 Dissolved organic carbon

3 OCE1-3 Atmospheric C02
4 OCE1-4 Sea surface temperature

5 OCE1-5 Atmospheric correction: Ozone and Aerosols

6 OCE1-6 Atmospheric temperature

OCE2 Ocean Circulation, Heat Storage

1 OCE2-1 Sea surface wind speed

OCE2-2

OCE2-3

Sea surface wind direction

Sea surface temperature
4 OCE2-4 Atmospheric temperature

5 OCE2-5 Sea level height

OCE3 Sea ice dynamics

OCE3-1 Sea ice thickness
OCE3-2 Sea ice cover
OCE3-3 Sea level height

OCE4 Ocean productivity

1 OCE4-1 Ocean color

L 100%

Objective 1
Subobjective Id Description Weight

17%

17%

17%

Objective 2
Subobjective Id Description Weight

17%

17%

17%

100%

2

3

Objective 3
Subobjective Id Description Weight

20%

20%

20%

20%

20%

100%

1

2
3

Objective 4

Subobjective Id Description Weight

33%
33%
33%

100%

100%

_lO9%J
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Greenhouse Gases panel
Objective 1 GHG1 Tropospheric Ozone

Subb e Id Description Weight i

1 GHG1-1 Ozone profile 50%

2 GHG1-2 Ozone total column 50%

100%

Objective 2 GHG2 Water vapor

Subobjecti V d Description, weigh I

1 GHG2-1 Atmospheric humidity profiles 50%

2 GHG2-2 H20 total column 50%
100%

Objective 3 GHG3 C02

1 GHG3-1 Atmospheric C02 total column 100%

100%

Objective 4 GHG4 CH4

Subobjective ld Description Weight

1 GHG4-1 Total column methane 100%

Objective 5 GHG5 CFCs
Subobjective Jd Description Weight

1 GHG5-1 Total column CFCs 100%
100%

Objective 5 GHG6 Ozone precursors - CO, Nox, CH2OH

Aubobjective Id Description Weight

1 GHG6-1 Total column CO 50%

2 GHG6-2 Total column Nox 25%

3 GHG6-3 Total column CH2OH and non CH4 VOC 25%

100%j

Objective 5 GHG7 Hydroxyl and other radicals

Subobjective Id Description Weight

1 GHG7-1 Total column OH, and other Hox 100%

100%
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Subobjective Id Description Weight

Objective 5

1 GHG8-1 Atmospheric temperature
2 GHG8-2 Atmospheric humidity

3 GHG8-3 Atmospheric winds

GHG9

50%
25%

25%

100%,

clouds
Subobjective Id Description Weight

1 GHG9-1 Cloud optical depth
2 GHG9-2 Cloud cover
3 GHG9-3 Cloud particle size distribution

GHG10 aerosols

1 GHG10-1 Black carbon and other polluting aerosols
2 GHG10-2
3 GHG10-3

GHG11

aerosol optical depth
aerosol scattering properties

deforestation and biomass burning
Subobjective Id Description Weight

1 GHG11-1 Vegetation state

2 GHG11-2 Land cover_

3 GHG11-3 Fire monitoring

Land & Ecosystems panel
ECO1 Soil moisture

Subobjective Id Description Weight

1 EC01-1 Soil Moisture

2 EC01-2 Water vapor

- -3 EC01-3 Land surface temperature

ECO2 Land use: deforestation, biomass burning

Subobjective Id Description Weight

1 ECO2-1 Land cover
2 ECO2-2 Fire monitoring

3 ECO2-3 Vegetation state

Objective 5
Subobjective Id Description Weight

50%

25%
25%

100%

Objective 5

33%I

33%
33%

100%_1

Objective 1

33%

33%
33%

100%-

Objective 2

33%
33%
33%

100%

50%
25%

25%
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Objective 5 atmospheric state: T, humidity, windsGHG8



ECO3 Atmospheric carbon

Subobjective Id Description Weight

ECO3-1

EC03-2
EC03-3

Atmospheric total column C02

Atmospheric total column CH4

Atmospheric total column CO

ECO4 Snow cover and water equivalent

ISubobjective d Description Weght

EC04-1

EC04-2

Snow cover
Snow water equivalent

ECOS Vegetation state

Subobjective Id Description Weght

EC05-1

ECO5-2

EC05-3

Vegetation state

Leaf area index

Land cover

EC06 Water cycle
Subobjective Id Description Weight

EC06-1
EC06-2

EC06-3

Water vapor

Cloud liquid water and precipitation
Ocean mass distribution

EC07 Ocean color
Subobjective Id Description Weigh

1 EC07-1 Ocean color

ICE1

Glaciers and Polar Ice Sheets panel
Ice sheets thickness

Subobjective d Description Weight

Ice sheet thickness

Sea ice cover

Objective 3

100%

1-

2_

3

Objective 4

33%J

33%
33%

100%

1

2

Objective 5

50%

50%

100%

1,

2_

3

Objective 6

33%

33%

33%
100%

1
2

3

Objective 7

33%
33%
33%

100%

Objective 1

100%

100%

1 ICE1-1

Objective 2 ICE2

100%

100%
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Subobjective Id Descriptior Weight
1 ICE2-1

2 ICE2-2
3 ICE2-3

4 ICE2-4
5 ICE2-5

Objective 3 ICE3

Sea ice cover
Sea ice concentration
Sea ice temperature___
Albedo and reflectance
Snow depth on sea ice

Sea level height
Subobjective d Description Weght

1 ICE3-1

OZO1

Sea level height

Ozone and Stratospheric Chemistry panel
Stratospheric ozone

Subobjective Id Description Weight
1 OZO1-1 Stratospheric ozone profiles
2 OZ01-2 Stratospheric ozone total column

3 OZO1-3 Total UV radiation

OZO2 Tropospheric ozone
Subobjective Id Description Weght

Objective 3

1 OZ02-1 Tropospheric ozone profiles

2 OZ02-2 Tropospheric ozone total column

3 OZ02-3 Total UV radiation

OZO3 Stratospheric chemistry

Subobjective Id Description Weight

1 OZ03-1

2 OZO3-2

3 OZO3-3

4 OZ03-4

Nox

Water vapor

Halogen compounds CI0, BrO
CFCs

5 OZ03-5 Hox

Objective 4 OZO4 Vulcanic S02 and aerosols
Subobjective Id Description Weight

1 OZ04-1 Vulcanic S02 and aerosols

20%

20%
20%
20%

20%
100%

Objective 1

100%
100%

Objective 2

60%
20%

20%

100%

60%
20%
20%

100%

20%
20%d
20% 1
20%

20%
100%

100%

100%
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Subobjective Id Description Weightcod

oZ05-1
0Z05-2

0Z05-3

0Z05-4

OZ06

OZ06-1

OZ06-2

OZ06-3

Polar stratospheric clouds 25%

Cloud amount 25%

Cloud top height 25%

Cloud ice particles 25%

100%

Stratospheric state

Atmospheric temperature

Atmospheric humidity

Atmospheric winds

Solid Earth panel
SOL1 Vulcanic S02, gases and aerosols

Suobecv Id Decito Wegh

Vulcanic S02, OCS, and other aerosols

S02 in troposphere and stratosphere

C02 in troposphere and stratosphere

CH4 in troposphere and stratosphere

SOL2 Ground deformation - Tectonics

High resolution topography

Surface deformation

SOL3 Volcanic plumes and atmospheric temperature

Subobjective Id Description Weight

Thermal plumes
Visible plumes
Atmospheric temperature

33%

33%

33%
33%

SOL4 High resolution imaging of volcanoes

1 SOL4-1 Land surface (lava) temperature 100%

100%

1,

2

3

4

Objective 5
Subobjective Id Description Weght

1
2
3

Objective 1

33%
33%

33%
100%

SOL1-1

SOL1-2

SOL1-3

SOL1-4

1
2

3

4

Objective 2
euobecv Id Decito Weight

50%

17%

17%

17%

100%

SOL2-1

SOL2-2
1

2

Objective 3

50%

50%

100%

1
2-

3

SOL3-1

SOL3-2

SOL3-3

Objective 3
Subobjective Id Description Weight
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9.3.2 EOS case study: requirement satisfaction rules

EOS requirement satisfaction rules take too much space to be printed out on paper. The complete set of

requirement satisfaction rules for the EOS case study is available at:

http://web.mit.edu/-dselva/www/RBES/EOS/requirement rules.xlsx

9.3.3 EOS case study: instrument capability rules

EOS instrument capability rules take too much space to be printed out on paper. A sample is provided

below. The complete set of instrument capability rules for the EOS case study is available at:

http://web.mit.edu/-dselva/www/RBES/EOS/capability rules.xlsx
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9.3.4 Decadal case study: value aggregation rules

Weather WEA Weather 21%
Climate CLI Climate 21%
Land ECO Land and Ecosystems 21%
Water WAT Water 16%
Health HEA Human health 11%
Solid Earth SOL Solid Earth 11%

Weather pnel

1 WEA1 Atmospheric winds 19%
2 WEA2 High temporal resolution air pollution 15%
3 WEA3 All-weather temperature and humidity profiles 12%

Comprehensive global tropospheric aerosol
4 WEA4 characterization 8%

5 WEAS Radio Occultation 19%
6 WEA6 Comprehensive global tropospheric 03 measurements 15%
7 WEA7 Aerosol-cloud discovery 12%

100%

Clmate panel

1 CL11 Aerosol-Cloud Forcing 24%

2 CL12 Ice Sheet, Sea Ice Volume and Ice Dynamics 24%

3 CL13 Carbon Sources and Sinks 24%

4 CL14 Radiance Calibration and Time-Reference Observatory 18%
5 CLIS Ocean Circulation, Heat Storage, and Climate Forcing 12%

100%
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Land panel

1 ECO Ecosystem Function 28%
2 ECO2 Ecosystem Structure and Biomass 24%
3 ECO3 Carbon Budget 20%
4 EC04 Coastal Ecosystem Dynamics 16%
5 ECO5 Global Ocean Productivity 12%

100%

Water panel

1 WATI Soil moisture and freeze-thaw state 29%
2 WAT2 Surface water and ocean topography 24%
3 WAT3 Snow and cold land processes 19%
4 WAT4 Water vapor transport 10%

Sea Ice thickness, glacier surface elevation and glacier
5 WAT5 velocity 8%

Groundwater storage, ice sheet mass balance and ocean
6 WAT6 mass 6%
7 WAT7 inland and coastal water quality 5%

100%

Health panel

1 HEA1 Ozone Processes: Ultraviolet Radiation and Cancer 17%
2 HEA2 Heat Stress and Drought 17%
3 HEA3 Acute Toxic Pollution and Releases 17%
4 HEA4 Air Pollution and Respiratory and Cardiovascular Diseases 17%
5 HEA5 Algal Blooms and Waterborne Infectious Diseases 17%
6 HEA6 Vector-borne and Zoonotic Disease 17%

100%

Solid Earth panel

1 SOL Surface deformation 29%
2 SOL2 Surface composition 24%
3 SOL3 High resolution topography 19%
4 SOL4 Temporal variations in Earth gravity field 14%
5 SOLS Oceanic bathymetry 14%

100%
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3rd LEVEL OF STAKEHOLDER NEEDS DECOMPOSITION (SUBOBJECTIVES)

Weather panel

WEA1-1

WEA1-2

WEA1-3

WEA1-4

WEA1-5

WEA2

Atmospheric winds

Atmospheric wind speed

Atmospheric wind direction

Ocean surface wind speed
Ocean surface wind direction_

Water vapor transport winds

High temporal resolution air pollution

1 WEA2-1 Regional tropospheric ozone measurement

2 WEA2-2 Regional tropospheric ozone precursors - CO
Regional tropospheric ozone precursors - NOx and other N

3 WEA2-3 compounds
Regional tropospheric ozone precursors - Formaldehyde and non-

4 WEA2-4 CH4 VOC

5 WEA2-5 Regional tropospheric aerosols - S02
Regional tropospheric aerosols - black carbon and other polluting

6 WEA2-6 aerosols

All-weather temperature and humidity profiles

Subobjectiv Id Description Weight

1
2

3

4

Objective 4

WEA3-1

WEA3-2

WEA3-3

WEA3-4

WEA4

Regional all-weather atmospheric temperature measurement

Regional all-weather atmospheric humidity measurement
Regional all-weather precipitation measurement

Regional all-weather sea surface temperature measurement

Comprehensive global tropospheric aerosol characterization
Subobjective Id Description Weight

1

2

3-

4

5

WEA4-1

WEA4-2

WEA4-3

WEA4-4

WEA4-5

Global aerosol height/optical depth

Global aerosol shape and composition measurement

Global aerosol scattering properties

Global aerosol extinction profiles

Global aerosol size distribution

Objective 1 WEA1

Subobjective Id Description Weigh

1"

2

3

4

5

Objective 2

Subobjective Id Description Weig

20%

20%
30%
20%

10%

100%

Objective 3 WEA3

33%
11%

11%

11%

17%

17%

100%1

25%

25%

25%

25%

100%

20%
20%

20%

20%
20%

100%
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Subobjective Id Description Weight

Radio occultation 100%

100%

Objective 6 WEA6 Comprehensive global tropospheric 03 measurements
Subobjective Id Description Weight

1 WEA6-1 Tropospheric ozone
2 WEA6-2 Global tropospheric 03 precursors: CH4
3 WEA6-3 Global tropospheric 03 measurements: non-CH4 VOC
4 WEA6-4 Global tropospheric 03 precursors: N2 compounds

5 WEA6-5 Global tropospheric 03 precursors: CO

6 WEA6-6 Global tropospheric aerosols: S02

7 WEA6-7

Objective 7 WEA7

Global tropospheric aerosols: black carbon and other polluting
aerosols

Aerosol-cloud discovery

Subobjective Id Description Weight
1 WEA7-1 Cloud type
2 WEA7-2 Cloud amount and distribution

3 WEA7-3 Cloud height

4 WEA7-4 Cloud ice particles - size distribution
5 WEA7-5 Cloud particles - phase

6 WEA7-6 Cloud liquid water - precipitation

7 WEA7-7 Cloud droplet size
8 WEA7-8 Aerosol height

9 WEA7-9 Aerosol shape and composition
10 WEA7-10 Aerosol scattering properties
11 WEA7-11 Aerosol extinction profiles

12 WEA7-12 Aerosol size distribution

1 WEA5-1

14%

14%

14%

14%

14%

14%

14%

100%

8%

8%

8%

8%

8%

8%

8%

8%

8%
8%

8%
8%
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9.3.5 Decadal case study: requirement satisfaction rules

Decadal requirement satisfaction rules take too much space to be printed out on paper.

of requirement satisfaction rules for the Decadal case study is

httD://web.mit.edu/-dselva/www/RBES/Decadal/reauirement rules.xlsx

The complete set

available at:

9.3.6 Decadal case study: instrument capability rules

Decadal instrument capability rules take too much space to be printed out on paper. The complete set of

instrument capability rules for the Decadal case study is available at:

http://web.mit.edu/-dselva/www/RBES/Decadal/caabilitv rules.xlsx
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