526 research outputs found

    Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night.

    Get PDF
    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface

    Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses

    Get PDF
    The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions

    The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae

    Get PDF
    Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins

    Investigating the initial signalling mechanisms underpinning gene-for-gene mediated Systemic Acquired Resistance in Arabidopsis thaliana

    Get PDF
    National Overseas Scholarship Scheme to study abroad.Plants deploy two key active defensive strategies to combat microbial pathogens; (i) Recognition of Pathogen-Associated Molecular Patterns (PAMPs) by extracellular surface receptors leading to the activation of PAMP-Triggered Immunity (PTI); (ii) Recognition of pathogen effector activity, usually intracellularly, by host Resistance (R) proteins leading to Effector-Triggered Immunity (ETI). ETI is characterised by a rapid localised Hypersensitive Response (HR). HR induces Systemic Acquired Resistance (SAR) through the production of an inducible immune signal(s), leading to broad spectrum systemic resistance. I investigated the earliest events associated with SAR signalling using plant electrophysiology, SAR mutants and a unique promoter-luciferase fusion that captures early systemic transcriptional events associated with ETI. We describe the transcriptional dynamics of A70 (At5g56980), a gene of unknown function (Truman et al. 2007), in local and systemic tissue following challenge with different elicitors and virulent or avirulent pathogen challenges. We provide evidence that A70 responds to a jasmonate (JA) related signal that is rapidly generated following ETI recognition. We further evaluate A70::LUC reporter activity in response to JA stimulus and correlate activity with histological expression of a JA repressor reporter (JAZ10::GUS) and A70::GFP reporter in systemically responding leaves following avirulent pathogen challenges. Finally, we examine changes in electrophysiological signals following ETI in local and systemic leaves. Focussing on events underpinning initiation, propagation and perception of SAR-inducing signals within the first 6-8 h of pathogen challenge we provide new insight into the integrated signalling mechanisms, dynamics and connectivity underpinning systemic immune responses. We conclude that there are multicomponent signals that link ETI induced transcriptional and electrical signals, with a COI1 receptor dependent propagative transcriptional wave the leads to rapid temporal spatial activation of jasmonate responsive genes in systemic responding leaves.Ministry of Social Justice and Empowerment, Indi

    A Role for Nonsense-Mediated mRNA Decay in Plants: Pathogen Responses Are Induced in Arabidopsis thaliana NMD Mutants

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a conserved mechanism that targets aberrant mRNAs for destruction. NMD has also been found to regulate the expression of large numbers of genes in diverse organisms, although the biological role for this is unclear and few evolutionarily conserved targets have been identified. Expression analyses of three Arabidopsis thaliana lines deficient in NMD reveal that the vast majority of NMD-targeted transcripts are associated with response to pathogens. Congruently, NMD mutants, in which these transcripts are elevated, confer partial resistance to Pseudomonas syringae. These findings suggest a biological rationale for the regulation of gene expression by NMD in plants and suggest that manipulation of NMD could offer a new approach for crop protection. Amongst the few non-pathogen responsive NMD-targeted genes, one potential NMD targeted signal, the evolutionarily conserved upstream open reading frame (CuORF), was found to be hugely over-represented, raising the possibility that this feature could be used to target specific physiological mRNAs for control by NMD

    In planta multi-omic profiling of pathogenic and commensal bacteria

    Get PDF
    Plant pathogens can cause serious diseases that impact global agriculture. Molecular mechanisms of the plant immune system have been intensively studied in the past decades, revealing mechanisms for pathogen recognition and immune signaling in plant cells. However, we still lack a fundamental knowledge of how plant immunity affects pathogen metabolisms to inhibit their growth in plants. In the case of bacterial pathogens, a major bottleneck is the difficulty in profiling bacterial responses in planta. Here, I established a method to isolate bacterial cells from Arabidopsis thaliana leaves to enrich bacterial information. I profiled the transcriptomes and proteomes of the foliar bacterial pathogen Pseudomonas syringae by using various combinations of host and bacterial genotypes and pretreatments. This unveiled that bacterial transcriptome changes affected by plant immunity explain bacterial growth suppression in the plant apoplast and identified that a bacterial iron acquisition pathway is a major plant immune target. Bacterial transcriptomes and proteomes were well correlated in general, but I also found that plant immunity affects the abundance of specific components of the bacterial type III secretion system, an essential component for bacterial virulence, only at the protein level. Together, these analyses provided insights into the long-standing question of how biological processes of bacterial pathogens are influenced by plant immunity. I also applied the in planta bacterial transcriptomics method to address an important open question in plant microbiota research: how does plant immunity influence the responses of microbiota members to affect the shape and functions of the plant microbiota? I profiled the co-transcriptomes of plants and bacteria in the monoassociation condition and revealed conserved and specific plant and bacterial responses during interaction events. This approach will help us understand how plants winnow different microbiota members and control the microbiota function, and transform the current plant microbiota research from descriptive studies to mechanistic studies. Taken together, this study sets the foundation for the comprehensive understanding of molecular events on both plant and bacterial sides during their interactions

    A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000

    Get PDF
    Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection

    Toward a systems understanding of plant–microbe interactions

    Get PDF
    Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant–microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial perturbations is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant–microbe interactions, with a special emphasis on reconstruction strategies
    • …
    corecore