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Abstract Plant pathogens deploy an array of virulence

factors to suppress host defense and promote pathogenicity.

Numerous strains of Pseudomonas syringae produce the

phytotoxin coronatine (COR). A major aspect of COR

function is its ability to mimic a bioactive jasmonic acid

(JA) conjugate and thus target the JA-receptor COR-

insensitive 1 (COI1). Biological activities of COR include

stimulation of JA-signaling and consequent suppression of

SA-dependent defense through antagonistic crosstalk,

antagonism of stomatal closure to allow bacterial entry into

the interior of plant leaves, contribution to chlorotic

symptoms in infected plants, and suppression of plant cell

wall defense through perturbation of secondary metabo-

lism. Here, we review the virulence function of COR,

including updates on these established activities as well as

more recent findings revealing COI1-independent activity

of COR and shedding light on cooperative or redundant

defense suppression between COR and type III effector

proteins.

Keywords Phytotoxin � Coronatine � Plant hormones �
Hormone crosstalk � Plant defense � Type III effectors

Introduction

Phytotoxins are microbe-produced secondary metabolites

that interfere with and sometimes kill plant cells. They are

either directly active or are produced as prototoxins that

become activated by plant enzymes (Duke and Dayan

2011; Pruess et al. 1973; Uchytil and Durbin 1980).

Pseudomonas syringae pathovars produce a repertoire of

virulence effectors that are active inside plant cells,

including numerous phytotoxins (Hogenhout et al. 2009).

One class of effects mediated by phytotoxins is disruption

of amino acid metabolism. For example, phaseolotoxin

blocks the production of arginine by inhibiting ornithine

transcarboxylase (Ferguson and Johnston 1980). Tabtoxin

gets converted in planta to a glutamate analog that inhibits

glutamine synthetase thus causing a buildup of ammonia

and glutamine deficiency (Turner 1981; Uchytil and Dur-

bin 1980). Other effects of phytotoxins are quite diverse

and include perturbation of metabolism of lipids, sugars,

and cell walls, synthesis of proteins and nucleic acids,

membrane integrity and mitosis (Duke and Dayan 2011;

Ferguson and Johnston 1980; Goudet et al. 1999; Pruess

et al. 1973; Hoffman 1995; King and Calhoun 2009;

Strobel et al. 1996; Thuleau et al. 1988; Walton 2006;

Daub et al. 2005; Tanaka 1996). Another effect of phyto-

toxins is perturbation of hormone signaling. Phytohor-

mones play key roles in a variety of physiologic and

cellular processes, including numerous processes related to

plant defense that have been extensively reviewed else-

where (Bari and Jones 2009; Howe and Jander 2008; Ka-

tagiri and Tsuda 2010; Pieterse et al. 2009). While some
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phytotoxins likely perturb hormone signaling indirectly,

COR directly engages JA-signal transduction proteins to

co-opt hormone signaling.

COR is a polyketide phytotoxin produced by pathovars

of P. syringae, including alisalensis, atropurpurea, glyci-

nea, maculicola, morsprunorum, porri, and tomato (Bender

et al. 1999; Gross and Loper 2009; Mitchell 1982; Mitchell

et al. 1983; Preston 2000; Ullrich et al. 1993; Wiebe and

Campbell 1993; Zhao et al. 2000; Cintas 2002) (for these

and other bacterial strains discussed, refer to Table 1).

Additionally, COR-analogs are produced by Xanthomonas

campestris pv. phormiicolai (Tamura et al. 1992; Mitchell

1991). Consistent with infection of a diverse set of host

plants by these pathovars and species, COR is a non-host

specific toxin that causes diffuse chlorosis in a wide variety

of plant species (Rohde et al. 1998; Brooks et al. 2004).

COR biosynthesis and structure

COR is composed of two moieties, the polyketide coro-

nafacic acid (CFA) and coronamic acid (CMA) (Bender

et al. 1999; Ichihara et al. 1977; Mitchell 1985; Parry et al.

1993). CMA is derived from L-alloisoleucine, a

diastereomer of L-isoleucine activated by the nonribosomal

peptide synthetase adenylation domain of CmaA (Rohde

et al. 1998; Buell et al. 2003; Worley et al. 2013). CFA is

synthesized from a cyclopentenone compound with sub-

sequent modification carried out by genes of the cfa operon

(Gross and Loper 2009). Coronafacate ligase, one of nine

open reading frames within cfa operon, joins CFA and

CMA with an amide linkage to form COR (Bender et al.

1993; Liyanage et al. 1995) (Fig. 1).

CFA and CMA are synthesized independently and the

operons encoding the COR biosynthetic genes differ

between P. syringae pv. tomato (Pto) strain DC3000 and P.

syringae pv. glycinea (Pgl) strain 4180 (Worley et al. 2013;

Sreedharan et al. 2006). The COR biosynthesis operons are

encoded on a 90-kb plasmid in Pgl 4180 (Bender et al.

1993). On the other hand, the COR biosynthetic genes of

Pto DC3000 exist within two distinct chromosomal clus-

ters; the CFA operon is separated by *26 kb of inter-

vening DNA from the CMA biosynthesis genes and the

adjacent genes regulating COR expression (Brooks et al.

2004). Biosynthesis of COR, as well as CFA and CMA, is

thermo-regulated in Pgl 4180 and several other pathovars

of P. syringae (Rohde et al. 1998). Consistent with the

symptom development in infected plants, COR production

is negligible at 30 �C and reaches maximal level at 18 �C

(Bender 1999; Rohde et al. 1998). On the other hand, COR

production is not thermo-regulated in Pto DC3000 and the

production is much less in vitro (Braun et al. 2008;

Weingart et al. 2004). This is due to the difference of a

histidine protein kinase CorS between two strains (Braun

et al. 2008; Smirnova et al. 2008; Weingart et al. 2004;

Ullrich et al. 1995), although the specific mechanism is not

yet clear.

COR both structurally and functionally mimics the most

active isoleucine conjugate of JA (?)-7-iso-JA-Ile (JA-Ile)

(Wasternack and Xie 2010; Fonseca et al. 2009b) (Fig. 1).

The functional resemblance between COR and JA-Ile has

been widely noted (Chini et al. 2007; Thines et al. 2007;

Sheard et al. 2010; Glazebrook 2005; Gimenez-Ibanez and

Solano 2013; Haider et al. 2000; Weiler et al. 1994) and is

now demonstrated experimentally by solved crystal struc-

tures of each molecule in association with a COI1 (COR-

insensitive 1) receptor complex (Sheard et al. 2010).

In addition to the proven ability of COR to mimic JA-

Ile, similarity between the CMA moiety of COR and

1-aminocyclopropane-1-carboxylic acid (ACC) has been

noted (Brooks et al. 2004) (Fig. 1). ACC, the rate-limiting

precursor of ethylene (ET) biosynthesis in higher plants,

and CMA each contain a cyclopropane ring. Although the

individual moieties of COR (CMA and CFA) show very

limited activity in plant tissues (Uppalapati et al. 2005),

intact COR perturbs ET homeostasis or known outputs of

ET-signaling (Kenyon and Turner 1992; Ferguson and

Table 1 Strains discussed in this review

Strain name COR

production

References

P. syringae pv.

tomato

Yes Bender et al. (1999), Cintas et al.

(2002), Gross and Loper

(2009), Mitchell (1982),

Mitchell et al. (1983), Ullrich

et al. (1993), Wiebe and

Campbell (1993), Zhao et al.

(2000)

P. syringae pv.

alisalensis

Yes

P. syringae pv.

atropurpurea

Yes

P. syringae pv.

glycinea

Yes

P. syringae pv.

maculicola

Yes

P. syringae pv.

morsprunorum

Yes

P. syringae pv.

porri

Yes

Xanthomonas

campestris pv.

phormiicolai

COR-

analogs

Mitchell (1991), Tamura et al.

(1992)

P. syringae pv.

tomato (Pto)

DC3000

Yes Buell et al. (2003), Preston

(2000)

Pto DC3000 mutant strains

Pto cor- No Brooks et al. (2004)

PtoDCEL Yes Alfano et al. (2000)

PtoDCEL cor- No Geng et al. (2012)

Pto cor- hrpS No Thilmony et al. (2006)
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Fig. 1 Roles of coronatine and type III effectors in modulating defense-

related hormone signaling. (1) Roles of coronatine. Coronatine (COR) is

composed of two moieties: coronafacic acid (CFA) and coronamic acid

(CMA) (Bender et al. 1999). Once COR moves into the plant cell

(presumably through diffusion), it activates JA-signaling through mim-

icking JA-amino acid conjugates such as (?)-7-JA-isoleucine (JA-Ile)

shown in the model. COR is able to interact with SCFCOI1 receptor

complex with modestly higher affinity than JA-Ile (Sheard et al. 2010;

Katsir et al. 2008; Fonseca et al. 2009b). Like JA-Ile, COR serves as

‘molecular glue’ between the receptor complex SCFCOI1 and the negative

regulator JAZ protein (Sheard et al. 2010), and triggers the degradation of

JAZ through 26S proteosomal-mediated pathway (Chini et al. 2007;

Thines et al. 2007). Upon JAZ degradation, positive regulator TFs (e.g.

MYC2, bHLH, and MYBs) are released from suppression, and activate

JA-responsive genes (Wasternack and Hause 2013). MYC2 also regulates

several NAC TFs that suppress SA accumulation through regulating SA-

biosynthesis gene ICS1 and SA modifying gene BSMT1. These NAC TFs

were also found to be required for stomatal reopening induced by COR

(Zheng et al. 2012). In return, SA-activated, cytosolic NPR1 monomers

suppress the JA-signaling pathway. COR’s ability to contribute to

chlorotic disease symptoms is also mediated through COI1 (Mecey et al.

2011). COR is able to suppress callose deposition through inhibiting an

ET-dependent indole glucosinolate pathway where the role of COI1 is

unknown (Geng et al. 2012; Millet et al. 2010). Perhaps the CMA moiety

of COR mimics the ET precursor ACC, and interferes with ET production.

Additionaly, COR perturbs auxin and ABA signaling which could

potentially offset the restriction of bacterial growth caused by flg22-

induced suppression of auxin signaling (Navarro et al. 2006) or ABA-

induced stomatal closure (Melotto et al. 2006), respectively. Whether

COI1 is engaged in auxin and/or ABA perturbation is unknown. 2) Roles

of type III effectors. AvrB or COR, cooperatively with other T3Es and

dependent on COI1, induce expression of an ET responsive factor—

RAP2.6 (He et al. 2004). HopZ1a acetylates JAZ proteins, causing them to

become destabilized dependent on COI1, and restores virulence to a cor-

mutant of Pto DC3000 (Jiang et al. 2013). HopX1 directly destabilizes

JAZ proteins without a requirement for COI1, likely via its cysteine

protease activity, and restores virulence to a cor- mutant of Pto DC3000.

HopX1 shares additional activities with COR, including reopening of

stomata, causing plant cells to lose chlorophyll, and induction of chlorosis

in susceptible plants (Gimenez-Ibanez et al. 2014). HopM1 affects SA-

dependent secretory pathway through interacting with and degrading an

ARF-GEF family protein involved in vesicle trafficking called AtMIN7

(Nomura et al. 2006). HopM1 is also functionally redundant with COR in

suppressing an SA-independent defense sector of which the mechanism is

unknown (Geng et al. 2012). Solid lines indicate established interactions.

Question marks indicate unknown mechanisms. Hormone/coronatine/

effector-specifc functions are color coded: bold orange lines coronatine-

related functions, yellow lines JA-related functions, green lines SA-related

functions, blue lines ET-related functions, black lines T3Es-related

functions. Hormones are color coded, and indicated by solid circles. Type

III effectors are color coded, and indicated by solid stars. Structural

similarities between compounds are indicated by same color shading of

the respective chemical structures
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Mitchell 1985; Geng et al. 2012; Millet et al. 2010) leading

to the hypothesis that COR, through its CMA moiety,

perturbs ET biosynthesis or signaling. However, since a

direct effect of COR on ET-signaling, for example via

mimicry of ACC by the CMA moiety, has not been dem-

onstrated, the possibility that COR modulates ET-signaling

indirectly cannot be ruled out.

Suppression of plant defense and promotion of disease

symptoms by COR

COR activates JA-signaling by mimicking JA-Ile

COR makes multiple contributions to bacterial virulence,

several of which are mediated via its ability to mimic

bioactive jasmonates (Fig. 1). Jasmonates (JAs) are lipid-

derived plant hormones that regulate a broad range of plant

cellular and physiological responses to control plant

growth and development, as well as responses to biotic and

abiotic stresses (Wasternack and Hause 2013). The final

step of converting JA to its active version is carried out by

JAR1 (for this and other plant genes discussed, refer to

Table 2). JAR1 is a jasmonate:amino acid synthetase that

conjugates JA to several amino acids, notably creating

bioactive JA-Ile (Staswick et al. 2002; Suza and Staswick

2008). Among biotic stress responses, JA-signaling typi-

cally is activated when plants are attacked by necrotrophic

pathogens or herbivores (Hopke et al. 1994; Norman et al.

1999; Schenk et al. 2000; Stotz et al. 2000; Karban and

Baldwin 1998; Pieterse et al. 2012).

Similar to signaling by other plant hormones such as

auxin (Dharmasiri et al. 2005) and gibberellic acid (Yam-

aguchi 2008; Schwechheimer and Willige 2009), JA-sig-

naling results from the proteasome-mediated removal of

transcriptional repressors. In the case of JA-signaling, these

repressors are called JAZ (containing Jasmonate ZIM

domain) proteins (Chini et al. 2007; Thines et al. 2007).

When levels of bioactive JA-Ile are low, JAZ proteins are

stable and function as transcriptional repressors by physi-

cally interacting with a variety of transcription factors

(TFs), including MYC2, a basic-helix loop helix TF that

activates a significant proportion of JA-induced responses

(Lorenzo et al. 2004; Dombrecht et al. 2007). Transcrip-

tional repression by JAZ proteins occurs through recruit-

ment of the general co-repressor TOPLESS (TPL), usually

via the adapter protein Novel Interactor of JAZ (NINJA)

(Pauwels et al. 2010; Pauwels and Goossens 2011; Shyu

et al. 2012; Szemenyei et al. 2008).

The JAZ family in Arabidopsis has 12 members (Chini

et al. 2007). In addition to MYC2, JAZ proteins also

Table 2 Genes discussed in this review

Gene Function of gene product References

ABA3 ABA biosynthesis Leon-Kloosterziel

et al. (1996)

ALC1 Mediates COR response

in N. benthamiana

Wangdi et al. (2010)

ASK1, ASK2 Component of the SCF

family of E3 ubiquitin

ligases

Gray et al. (2001)

AtCUL1 Component of the SCF

family of E3 ubiquitin

ligases

del Pozo and Estelle

(1999)

AtMIN7 ADP ribosylation factor-

guanine nucleotide

exchange factor

Nomura et al. (2006)

COI1 Receptor component of

SCFCOI1 complex

Xu et al. (2002)

GRX480 Glutaredoxin family

regulator of redox state

Ndamukong et al.

(2007)

JAR1 Conjugates jasmonic acid

(JA) to amino acids

Staswick et al. (2002)

MYB21 R2R3-MYB transcription

factor, JA-induced

regulator of stamen

development and

defense

Cheng et al. (2009),

Song et al. (2011)

MYB51 R2R3-MYB transcription

factor, regulator of

indole glucosinolate

biosynthesis

Qi et al. (2011), Song

et al. (2011)

MYB75 R2R3-MYB transcription

factor, regulator of

anthocyanin

accumulation and

trichome initiation

Qi et al. (2011)

MYC2 MYC-related

transcriptional

activator, central

regulator of JA-

signaling

Chini et al. (2007)

NahG Bacterial salicylate

hydroxylase, prevents

accumulation of SA

when expressed in

planta

Delaney et al. (1994),

Gaffney et al. (1993)

NINJA Novel interactor of JAZ,

function as negative

regulators of jasmonate

responses

Pauwels et al. (2010),

Pauwels and

Goossens (2011),

Shyu et al. (2012)

NPR1 Redox-regulated

transducer of SA signal,

putative receptor for SA

Cao et al. (1994), Wu

et al. (2012)

NPR3, NPR4 NPR1 homologs, putative

receptors for SA

Fu et al. (2012)

NYE1/SGR Regulator of chlorophyll

degradation

Ren et al. (2007)
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interact with two other MYC2-related bHLH TFs, which

regulate overlapping as well as distinct responses with

MYC2, and other bHLH/MYB transcriptional factors, like

MYB75 and MYB21, which also regulate JA responses

(Cheng et al. 2009; Qi et al. 2011; Song et al. 2011).

Additionally, interactome and functional analyses indicate

that JAZ proteins likely interact with a wide variety of TFs

to regulate development and stress responses (Kazan and

Manners 2012; Qi et al. 2011; Seo et al. 2011; Song et al.

2011). For example, Song et al. (2011) found that JAZ1,

JAZ8 and JAZ11 interact with MYB21 and MYB24 in both

yeast and planta to mediate JA-regulated development

processes. Similarly, Seo et al. (2011) found that OsJAZ1

interact with OsbHLH148 to regulate JA-regulated drought

stress in rice. Specificity of individual JAZ proteins for

diverse transcription factors likely contributes to tuning the

JA-response to specific contexts, such as in different cell-

types, developmental stages, and stresses, via integration

with other signaling pathways.

JA-signaling is activated when JAZ proteins are desta-

bilized by proteasome-mediated degradation. A typical

SCF ubiquitin ligase complex consists of an F-box protein

in complex with SKP1 and a Cdc53 (Hershko and Cie-

chanover 1998; Deshaies 1999). In Arabidoposis, the F-box

protein COI1 associates with Skp1-like proteins ASK1,

ASK2 (Gray et al. 1999; Gray et al. 2001) and Cdc53-like

protein AtCUL1 (del Pozo and Estelle 1999) to assemble

the SCFCOI1 E3 ubiquitin ligase complex (Devoto et al.

2002; Xu et al. 2002). JA-Ile binding to co-receptor com-

plexes composed of a JAZ protein and COI1 within

SCFCOI1 triggers ubiquitination of the JAZ proteins. The

resulting 26S proteasome-mediated degradation relieves

JAZ-mediated transcriptional repression to activate JA-

responsive gene expression (Fonseca et al. 2009a; Katsir

et al. 2008). High affinity binding of COI1 complexes to

JAZ proteins requires both JA-Ile (or COR) and inositol

pentakisphosphate, which interacts with both COI1 and

JAZ adjacent to the ligand (Sheard et al. 2010). A recent

report indicates that COI1 has a function additional to

functioning as a receptor for active JA-conjugates. The

vascular pathogen, Verticillium longisporum, requires a

COI1 activity that is independent of JA or JA-mimicry to

complete its life cycle in Arabidopsis, indicating an

unknown function of COI1 during the V. longisporum-plant

interaction (Ralhan et al. 2012).

It has been long known that significant overlap exists

between COR- and JA-signaling in tomato (Palmer and

Bender 1995). Structural and pharmacological studies

revealed that COR, as a structural mimic of JA-Ile, binds

with high affinity to Arabidopsis COI1 (Sheard et al. 2010).

The most active diastereomer for promoting pull down of

plant expressed COI1 by JAZ proteins and for promoting

anthocyanin accumulation in wild-type and jar1 mutant

Arabidopsis seedlings is (?)-7-iso-JA-Ile (Fonseca et al.

2009b). The cyclopentanone ring of COR is a stereoisomer

of and demonstrates slightly higher activity than (?)-7-iso-

JA-Ile in these assays (Wasternack and Xie 2010; Fonseca

et al. 2009b). Also, COR may be resistant to catabolic and

epimeric inactivation of JA-Ile (Fonseca et al. 2009b; Koo

and Howe 2012). Thus, not only does COR mimic the

active JA-Ile conjugate, but it may also function as a

hyperactive agonist of JA-signaling.

COR and JA-Ile contact not only COI1, but also the JAZ

protein within the COI1-JAZ co-receptor (Sheard et al.

Table 2 continued

Gene Function of gene product References

ORA59 AP2/ERF domain

transcription factor, an

essential integrator of

the JA and ET-signaling

pathways

Pré et al. (2008)

OST1 Guard cell specific kinase Mustilli et al. (2002)

PEN2 Atypical myrosinase that

hydrolyzes 4-methoxy

indol-

3ylmethylglucosinolate

(4MI3G)

Lipka et al. (2005)

PR genes Pathogenesis-related

proteins, various

functions

Uknes et al. (1992)

RAP2.6 Ethylene response factor

subfamily B-4

transcription factor of

ERF/AP2 family

He et al. (2004)

SID2(EDS16) Isochorismate synthase,

required for the

majority of defense-

associated SA

production

Wildermuth et al.

(2001)

TGA2,TGA3,

TGA5,TGA6,

TGA7

Transcription factors of

the B-ZIP family that

interact with NPR1 to

regulate PR gene

expression.

Zhou et al. (2000),

Zhang et al. (1999),

Kim et al. (2002),

Despres et al. (2000)

THF1 ALC1 homolog in

Arabidopsis

Wang et al. (2004)

TPL Groucho/Tup1-type co-

repressor TOPLESS

(TPL), as general co-

repressors that affect

multiple signaling

pathways including JA-

signaling pathway

Szemenyei et al.

(2008), Pauwels

et al. (2010),

Pauwels and

Goossens (2011),

Shyu et al. (2012)

WRKY70 WRKY-family

transcription factor,

activator of SA-induced

genes, repressor of JA-

induced genes.

Li et al. (2004)
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2010), which raises the interesting possibility that COR is

biased, relative to JA-Ile, toward specific COI1-JAZ co-

receptors. For example, the JA-Ile interacting degron of

Arabidopsis JAZ proteins is sequence divergent in JAZ7/8.

While this variation renders JAZ8 largely insensitive to JA-

Ile, COR retains, albeit at a lower affinity than for other

JAZ proteins, the ability to bind and induce degradation of

JAZ8 (Shyu et al. 2012). Differences in the ability of COR

to target different JAZ proteins could be interpreted in two,

non-mutually exclusive ways. Selective targeting of spe-

cific JAZs could reflect a ‘‘fine-tuning’’ of transcriptional

activation by COR. Alternatively, the inability of COR to

target individual JAZs, including alternative C-terminal

splice variants with reduced affinity for JA-Ile and COR

(Moreno et al. 2013; Chung et al. 2010), could reflect an

adaptive, counter-defense strategy of the plant to resist the

effect of COR (Chung et al. 2009). In either (or both)

case(s), understanding the JAZ-selectivity of COR and JA-

Ile is an important area to be explored.

COR suppresses SA-signaling via antagonistic SA-JA

crosstalk

Hormone crosstalk is used to fine-tune defense responses

against biotic challengers with distinct lifestyles. To

exploit these networks to their benefit, numerous plant

pathogens produce hormones, hormone mimics, or effec-

tors that stimulate plant production of hormones or mod-

ulate hormone signaling. An example of hormone crosstalk

relevant to biotic defense occurs between the SA- and JA-

dependent signaling pathways (Fig. 1). Generally, the JA/

SA balance dictates whether plants mount defense

responses tailored to necrotrophic pathogens and herbi-

vores, by favoring JA-signaling, or to biotrophic and

hemibiotrophic pathogens, by favoring SA-signaling

(Baldwin et al. 1994; Creelman and Mullet 1997; Gimenez-

Ibanez and Solano 2013; Kessler and Baldwin 2002;

Paschold et al. 2008; Petersen et al. 2000; El Oirdi et al.

2011; Gao et al. 2011; Spoel et al. 2003).

Salicylic acid (SA) is a key phytohormone in plant

defense against a variety of biotrophic and hemibiotrophic

pathogens, including bacterial strains producing COR

(Fig. 1). SA is a monohydroxybenzoic acid that mediates

changes in redox potential, probably through S-nitrosyla-

tion and thioredoxin activity, when it accumulates in plant

cells (Tada et al. 2008). A key protein in SA-signaling is

NPR1 (Nonexpresser of PR genes 1) (Cao et al. 1997). The

SA-induced redox change leads to the reduction of cyto-

solic, thiol-linked NPR1 oligomers to monomers that

translocate to the nucleus (Cao et al. 1994; Kinkema et al.

2000; Mou et al. 2003). NPR1 monomers activate

expression of pathogenesis responsive (PR) genes (Uknes

et al. 1992) through interaction with TGA TFs, including

TGA2, TGA3, TGA5, TGA6, and TGA7, that bind to

activator sequence-1 (as-1) or as-1-like promoter elements

(Fan and Dong 2002; Zhou et al. 2000; Zhang et al. 1999;

Kim and Delaney 2002; Gimenez-Ibanez and Solano 2013;

Despres et al. 2000). Through interaction with TL1-binding

factor 1, an HSF-like transcription factor, nuclear-localized

NPR1 also activates genes with TL1 promoter elements

that support secretion of PR, and perhaps other classes of

proteins, through the ER (Pajerowska-Mukhtar et al. 2012;

Wang et al. 2005). Additionally, NPR1 induces expression

of several WRKY TFs that function as both activators and

suppressors of defense (Wang et al. 2006). During its

activation by SA, NPR1-phosphorylation facilitates tar-

geting of NPR1 by a Cullin3-based ubiquitin ligase and

proteosome-mediated NPR1 turnover is required for full

induction of NPR1 target genes (Spoel et al. 2009). One

recent report indicated that NPR3 and NPR4, two para-

logues of NPR1, are SA-receptors in Arabidopsis that

function as adaptors to mediate NPR1 degradation (Fu

et al. 2012). A second recent report used equilibrium

dialysis ligand binding to show that NPR1 is itself an SA-

receptor (Wu et al. 2012). Thus, clearly defining the nature

of the SA-receptor(s) remains an important area for further

work.

SA plays a central role in regulating plant biotic

defenses. In addition to activating defense against bio-

trophs, for example through inducing expression of

defense-promoting secretory genes and antimicrobial PR

genes, SA-signaling also has an antagonistic effect on JA-

signaling (Fig. 1). Induction of JA-responsive genes is

suppressed by SA when SA and MeJA are together exog-

enously applied to Arabidopsis plants. In SA-deficient

NahG plants infected by P. syringae, JA accumulates to

25-fold higher levels and consequently JA-responsive

genes are expressed to higher levels (Spoel et al. 2003;

Glazebrook et al. 2003). Activation of SA-signaling by P.

syringae suppresses JA-signaling and thus renders plants

more susceptible to a necrotrophic pathogen (Spoel et al.

2007). NPR1 plays a crucial role in SA-mediated inhibition

of JA-dependent signaling, with mechanisms including

induced expression of the glutaredoxin GRX480 and the

WRKY70 transcription factor as well as destabilization of

the ORA59 (OCTADECANOID-RESPONSIVE ARABI-

DOPSIS AP2/ERF domain protein 59) (Li et al. 2004;

Ndamukong et al. 2007; Van der Does et al. 2013; Pre et al.

2008). Also, type II TGA factors are essential for the

ability of SA to suppress the ET-signaling contribution to

the expression of Arabidopsis genes induced dependent on

both JA- and ET-signaling (Zander et al. 2014). Notably,

cytosolic, but not nuclear, NPR1 is required for crosstalk,

indicating that NPR1 has distinct roles in SA-signaling and

suppression of JA-signaling (Spoel et al. 2003). The sig-

nificance of the suppressive effect of SA on JA-signaling is
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supported by the observation that it occurs in numerous

Arabidopsis accessions treated with SA, MeJA, or both in

combination (Koornneef et al. 2008).

The inhibitory crosstalk of SA-signaling toward JA-

signaling is mirrored by JA-mediated suppression of SA-

signaling (Fig. 1). To exploit this crosstalk, P. syringae

produces COR to hijack JA-signaling and suppress SA-

mediated defense. Compared to wild-type plants, Pto

DC3000 infection of coi1-20 plants elicits elevated levels

of SA and PR gene expression, and bacterial growth is

suppressed. Bacterial multiplication is recovered in coi1-20

plants expressing NahG (Kloek et al. 2001). Also, cor- (a

COR-deficient mutant of Pto DC3000) bacteria induced

less JA- and more SA-responsive gene expression, and the

reduced growth of cor- strains was restored when the

bacteria infected SA-signaling deficient plants (Brooks

et al. 2005; Uppalapati et al. 2007; Geng et al. 2012). Thus,

studies utilizing both plant and bacterial mutants indicate

that COR stimulates JA-signaling to suppress SA-signaling

and that SA-signaling is a necessary component of the

defense suppressed by COR. A mechanism for suppression

of SA-signaling by COR is through MYC2-dependent

expression of three NAC TFs that both 1) repress expres-

sion of genes controlling SA-biosynthesis, including an

isochorismate synthase (SID2), and 2) induce expression of

a benzoic/salicylic acid carboxyl methyltransferase

(BSMT1) that reduces the pool of free (biologically active)

SA via methylation (Zheng et al. 2012).

The ability of COR to inhibit defense signaling in plant

cells extends beyond its ability to promote JA-signaling. In

addition to causing analogous plant physiological respon-

ses as JA, such as inhibiting root elongation, inducing

anthocyanin production, and promoting senescence, COR

also causes responses not associated with JA, including cell

wall thickening and changes to chloroplast structure in

tomato plants (Palmer and Bender 1995). Furthermore,

exogenous treatment with COR causes hypertrophy and

increased amylase activity in potato tuber tissue and also

causes anomalous cell growth in tobacco leaves (Kenyon

and Turner 1992; Sakai et al. 1979; Sakai 1980; Bender

et al. 1999; Feys et al. 1994). More recently, COR was

shown to inhibit defensive fortification of cell walls inde-

pendent of targeting COI1 and suppressing SA-signaling

(Geng et al. 2012). Thus, in addition to its well-docu-

mented ability to dampen SA-signaling, at least some of

the virulence activity of COR is independent of the

inhibitory crosstalk between JA- and SA-signaling path-

ways, and even independent of its ability to target COI1.

COR induces stomatal reopening

A critical first step in the disease cycle of epiphytic phy-

topathogenic bacteria is the ability to enter the intracellular

spaces of plant tissues. Stomata are natural openings and a

key portal exploited for bacterial invasion. Guard cells not

only regulate gas exchange and water transpiration, but

stomatal closure is also an important strategy for plants to

prevent the ingress of pathogens, such as P. syringae.

Melotto et al. (2006) discovered that P. syrinage on leaf

surfaces congregate at stomata and that stomatal closure

triggered by recognition of Pathogen Associated Molecular

Pattern (PAMPs) is a plant counter-defense strategy to

prevent bacterial entry (Melotto et al. 2006). At least two

hormone signaling pathways, SA and abscisic acid (ABA),

are critical to PAMP-triggered stomatal closure. Stomatal

closure was not observed in SA-deficient nahG transgenic

plants and SA-biosynthetic mutant sid2 (also known as

eds16) plants (Wildermuth et al. 2001). Extensive studies

have shown that ABA is required for stomatal closure

when plants are under abiotic stress (Cummins et al. 1971;

Fan et al. 2004; Mustilli et al. 2002; Tardieu and Davies

1992). PAMP-induced stomatal closure also was not

observed in ost1 kinase mutant and ABA-deficient aba3

mutant plants (Leon-Kloosterziel et al. 1996; Melotto et al.

2006; Mustilli et al. 2002).

COR exploits a role for JA-signaling in PAMP-induced

stomatal closure. Similar to treatment with purified

PAMPs, Pto DC3000 causes stomata to close. But unlike

PAMPs, the bacteria quickly reverse the closure, thus

allowing for bacterial invasion into the apoplast. The

ability of Pto DC3000 to overcome the PAMP-induced

stomatal defense is dependent on COR; a cor- strain fails to

reopen closed stomata. Furthermore, COR inhibits ABA-

induced stomatal closure in a COI1-dependent manner

(Melotto et al. 2006). Thus, COR is critical for the ability

of P. syringae to overcome PAMP-induced stomatal clo-

sure by a mechanism that acts either on or downstream of

both SA- and ABA-dependent processes. The same NAC

TFs through which COR suppresses SA accumulation also

contribute to the ability of COR to overcome ABA-induced

stomatal closure and to reopen stomata during P. syringae

infection (Zheng et al. 2012).

COR promotes chlorotic disease symptoms in infected

plants

Mutant strains of P. syringae unable to produce COR elicit

reduced disease symptoms including little or no chlorosis

(Feys et al. 1994; Bender et al. 1987; Bender et al. 1999;

Kloek et al. 2001; Brooks et al. 2004; Brooks et al. 2005;

Block et al. 2005; Mittal and Davis 1995). Treatment of

tomato leaves with exogenous COR induced shrunken and

descended chloroplasts located near the bottom of the

palisade mesophyll cells (Uppalapati et al. 2005). Possibly

related to this observation, COR or MeJA repress expres-

sion of a large number of genes involved in chloroplast

Planta (2014) 240:1149–1165 1155

123



metabolism, including genes encoding chlorophyll a/b

binding proteins and thylakoid luminal proteins (Palmer

and Bender 1995; Uppalapati et al. 2005; Attaran et al.

2014). Despite these long-standing observations, the

molecular basis of how COR contributes to chlorosis is just

beginning to be understood.

In Arabidopsis, COR alone induces anthocyanin accu-

mulation (Bent et al. 1992; Feys et al. 1994). However, in

the context of an infection by Pto DC3000, COR contrib-

utes to chlorotic disease symtpoms. Screening for Arabi-

dopsis mutant plants that do not display chlorosis after

infection by Pto DC3000 identified a ‘‘no chlorosis’’

mutant (Mecey et al. 2011). Unlike in wild-type plants, the

chlorophyll levels in the mutant are relatively unchanged

after infection. The mutation causes an amino acid sub-

stitution in the nuclear-encoded, chloroplast-localized

Staygreen/Non-Yellowing/Mendel’s I locus (SGR) protein.

SGR is associated with chlorophyll degradation. Mutation

of SGR causes a stable, non-yellowing phenotype during

senescence of leaves (Ren et al. 2007). Exogenously

applied COR and Pto DC3000 induce SGR expression in a

COI1-dependent manner and, conversely, cor- bacteria

induce low levels of SGR compared to the wild-type bac-

teria. Thus, activating expression of SGR by targeting of

COI1 (and thus likely by mimicking JA-Ile) plays a critical

role in the contribution of COR to the induction of chlo-

rotic disease symptoms by Pto DC3000 (Mecey et al.

2011).

Wangdi et al. 2010 used virus-induced gene silencing to

identify several genes with altered COR (ALC) responses

following exogenous application of COR. Silencing of

ALC1 in N. benthamiana and tomato resulted in a COR-

induced necrotic phenotype that occurs without visible

chlorosis. In addition to the lack of COR-induced chlorotic

symptoms, Pto DC3000 infection of tomato with silenced

ALC1 or Arabidopsis with a mutation of the ALC1 homo-

log (THF1) induced accelerated, coalescing necrotic

lesions without apparent chlorosis (Wangdi et al. 2010).

ALC1/THF1 is localized in the chloroplast and ALC1 is

destabilized by COR in N. benthamiana leaves (Wangdi

et al. 2010; Wang et al. 2004). Since the ability of COR to

destabilize ALC1 and to cause necrotic lesions without

chlorosis depends on COI1, this activity likely results from

its mimicry of JA (Wangdi et al. 2010). Thus, ALC1 links

activation of COI1 by COR to both chlorotic and necrotic

disease symptoms. SGR-mediated chlorophyll breakdown

promotes the production of defense-promoting reactive

oxygen (Mur et al. 2010) and ALC1/THF1 is speculated to

play a role in maintenance of reactive oxygen homeostasis

(Wangdi et al. 2010). Thus, the effects of COR highlight

the importance of chloroplast physiology, including chlo-

roplast-derived reactive oxygen, during P. syringae

infection.

COR disrupts defense-associated secondary metabolism

and cell wall reinforcement

Secondary metabolites are not necessary for plant growth

and development in pristine growth conditions, but provide

important and sometimes essential functions when plants

growing in natural conditions are subjected to biotic or

abiotic stresses. JA-signaling plays a crucial role in regu-

lating plant secondary metabolites in both a COI1-depen-

dent and a COI1-independent manner (Devoto et al. 2005).

Similarly, COR regulates primary and secondary metabo-

lism during P. syringae infection of Arabidopsis, including

the induction of genes involved in tryptophan synthesis,

anthocyanin synthesis, and methionine-derived glucosino-

lates (Thilmony et al. 2006). Treatment of Arabidopsis

with purified COR also induces the expression of genes

involved in glucosinolate and phenylpropanoid metabolism

(Attaran et al. 2014). Indolic compounds constitute one

branch of the phenylpropanoid pathway. One fate of indole

rings is as intermediates in the synthesis of tryptophan that

in turn can serve as a precursor to secondary metabolites

involved in plant defense, such as benzoxazinoids, indole

glucosinolates (IGs) and the phytoalexin camalexin (Ah-

mad et al. 2011; Bednarek et al. 2009; Frey et al. 1997). Of

these myriad potential effects of COR, perturbation of IGs

metabolism has of late come into focus as a potentially

critical means by which COR suppresses host defense.

IGs are a class of thioglucosides that have been well

documented to play a role in the resistance to chewing

insects (Bednarek et al. 2009; Clay et al. 2009; Halkier and

Gershenzon 2006; Kim and Jander 2007). More recent

studies have demonstrated that tryptophan-derived IGs also

play a significant role in defense responses of living tissue

against microbes (Bednarek et al. 2009; Clay et al. 2009).

Callose, a glucan polymer, is deposited as part of cell wall

appositions, which are physical barriers formed at pathogen

infection sites. The deposition of callose induced by the

PAMP flg22 is well studied in Arabidopsis (Clay et al.

2009; Kim and Mackey 2008). Both ET-signaling and IGs

are required for PAMP-induced callose deposition in the

leaves of liquid-grown Arabidopsis seedlings (Clay et al.

2009). MYB51, a TF involved in the regulation of IGs

biosynthesis, is induced dependent on ET-signaling and is

required for the response. A role for IGs in PAMP-induced

callose deposition was demonstrated by the lack of callose

in mutant seedlings deficient in IGs biosynthesis. 4-meth-

oxyindol-3-ylmethylglucosinolate (4MI3G), an IG candi-

date found by metabolic profiling, rescued callose

deposition in seedlings unable to produce 4MI3G. Fur-

thermore, an unknown hydrolysis product(s) from degra-

dation of 4MI3G by PEN2, an atypical myrosinase

(Bednarek et al. 2009; Lipka et al. 2005), are also required

for PAMP-induced callose deposition (Clay et al. 2009).
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Similarly, IGs metabolism and 4MI3G are important for

broad-spectrum, penetration-stage resistance of plants to

biotrophic fungal pathogens (Bednarek et al. 2009), per-

haps also through regulation of cell wall-associated

defense. It was recently shown that COR suppresses IGs

metabolism and PEN2-dependent callose deposition during

P. syringae infection of Arabidopsis (Geng et al. 2012).

It is an interesting paradox that COR inhibits the pro-

duction of specific IGs, including 4MI3G and presumably

downstream products necessary for callose deposition,

while it more generally stimulates the expression of genes

that promote the production of IGs. The mechanism by

which COR perturbs the production of specific IGs is

unknown, but may be through perturbation of additional

plant hormone signaling pathways. A first possibility is that

COR generally perturbs metabolism of indole-containing

compounds. Reduced production of IGs and increased

expression of genes involved in tryptophan metabolism

could relate to changes in the synthesis of the phytohor-

mone auxin. Uppalapati et al. 2005 demonstrated that

exogenous application of COR induces auxin-related gene

expression in tomato, indicating that COR might promote

bacterial virulence by perturbing auxin signaling (Uppala-

pati et al. 2005; Robert-Seilaniantz et al. 2011; Thilmony

et al. 2006; Kazan and Manners 2009). In addition to off-

setting the flg22-induced suppression of auxin signaling

(Navarro et al. 2006), another consequence of COR pro-

moting auxin production may be to limit indole availability

for IGs production.

A second possibility is that COR affects IGs metabolism

through perturbation of ET-signaling, which plays a key

role in IGs metabolism (Fig. 1). COR causes accumulation

of ACC, increased ACC-synthase (ACS) activity, and

increased ET production in Bean and Nicotiana tabacum

plant leaves (Ferguson and Mitchell 1985; Kenyon and

Turner 1992). Whether COR directly or indirectly stimu-

lates ET production is unclear, but considering the CMA

moiety of COR is a structural mimic of ACC (Brooks et al.

2004); the effect of COR on production of ET from

methionine might be direct. The stimulation of ET pro-

duction by COR is counter-intuitive relative to its ability to

suppress ET-dependent responses, i.e., IGs metabolism and

callose deposition. However, this apparent contradiction

may result from COR-mediated inhibition of ET produc-

tion disrupting feedback regulation and thus ultimately

leading to mis-timed and/or mis-regulated ET production.

Hypotheses for how COR might initially inhibit ET pro-

duction include interaction with ACS enzymes as a non-

released substrate analog or with ACC oxidase enzymes as

a competitive inhibitor of ACC.

The role of ET-signaling in IGs metabolism and cal-

lose deposition differs between Arabidopsis tissues and

growth conditions. Both ET-signaling and IGs are

required for PAMP-induced callose deposition in the

roots of liquid-grown Arabidopsis seedling. Further

experiments with seedling roots indicated that both ET-

dependent and ET-independent mechanisms contribute to

PAMP-induced expression of MYB51 and that COR,

dependent on COI1, inhibits callose deposition and sup-

presses MYB51 expression in both an ET-signaling

dependent and an ET-signaling independent manner

(Millet et al. 2010). In the leaves of liquid-grown

Arabidopsis seedlings, MYB51 expression, IGs synthesis,

and callose deposition were each dependent on ET-sig-

naling (Clay et al. 2009). In the leaves of soil-grown

plants, COR promoted bacterial multiplication and

inhibited IGs metabolism and callose deposition (Geng

et al. 2012). Surprisingly, COR was able to suppress

callose deposition in the leaves of coi1-16 mutant plants,

indicating a COI1-indpendent defense suppressing activ-

ity of COR. Collectively, these studies indicate the

existence of complicated mechanisms of PAMP-induced

callose deposition in different plant tissues and growth

conditions and point to the potential for multiple activi-

ties of COR suppressing these pathways.

It is unclear if the COI1-independent, defense sup-

pressing activities of COR in Arabidopsis are mediated

through mimicry of JA-Ile, ET, both or neither. Consistent

with the JA-mimicry hypothesis, it has been shown that

MeJA induces some genes independent of targeting COI1

(Devoto et al. 2005). COR, through its ability to mimic

active JA-conjugates, could similarly alter gene expression

independent of targeting COI1. One of the COI1-inde-

pendent, MeJA-induced genes is an ACC-synthase (Devoto

et al. 2005), indicating a possible mechanism for how COR

might indirectly affect ET-signaling. An alternative and

non-exclusive hypothesis is that the COI1-independent

function of COR is also independent of its ability to mimic

active JA-conjugates. An intriguing possibility is that the

CMA moiety of COR, through mimicry of ACC, directly

perturbs ET biosynthesis.

COR and type III effectors cooperate to promote

bacterial virulence

Bacterial pathogens deploy a variety of virulence factors,

including toxins and type III effectors (T3Es), that work in

a ‘multifunctional, cooperative, and redundant’ manner

(Dean and Kenny 2009). As a result, bacteria often main-

tain their overall disease-causing ability even when one of

their virulence strategies fails due to mutation or incom-

patibility on a given host. Consistent with this idea, several

recent studies have indicated that the multifunctional COR

toxin has functions that overlap with various T3Es in a

cooperative or (semi-)redundant manner.
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Transcription remodeling by COR and type III effectors

An examination of Arabidopsis gene expression following

infiltration with wild-type Pto DC3000, Ptocor-, or Ptocor-

hrpS (a COR- and type III secretion system (TTSS)-defi-

cient double mutant of Pto DC3000) revealed overlapping

yet still distinct roles of COR and T3Es in reprogramming

of the host transcriptome (Thilmony et al. 2006). Both COR

and T3Es contribute to the regulation of genes responsive to

auxin, ABA, and cytokinin, suggesting that Pto DC3000

utilizes multiple virulence factors to ensure the successful

perturbation of the host hormone network. One unique

effect of COR, the significant induction of JA- responsive

genes, is in accordance with JA-mimicry by COR and

earlier work in tomato showing COR from Pto DC3000

induces JA-related gene expression and contributes to vir-

ulence (Zhao et al. 2003). Another unique effect of COR

likely related to JA-mimicry by COR, is the prominent

modulation on genes involved in secondary metabolism

consistent with induced expression of Arabidopsis genes

involved in secondary metabolism by JAs (Sasaki-Sekimoto

et al. 2005; Taki et al. 2005). Interestingly, some of the

secondary metabolism-related genes are antagonistically

regulated by COR and type III effectors, presumably due to

the distinct functions of these virulence factors. Contrary to

COR, the prominent function of T3Es was differential

regulation of SA-related genes and suppression of basal

defense-related genes. Suppression of a few basal defense-

related genes by COR was also observed. This study defined

effects of COR by comparing wild-type Pto DC3000 to the

Ptocor- mutant, both of which deliver the full complement

of T3Es. Thus, some effects of COR were likely masked by

T3Es and more functional overlap is expected between

COR and T3Es than revealed by this study alone. Examples

of functional overlap between COR and specific T3Es are

described in the following sections.

Perturbation of hormone signaling by COR and T3Es

A variety of T3Es have been demonstrated to perturb

hormone signaling pathways also targeted by COR. The

T3Es AvrPto and AvrPtoB from Pto DC3000 induce ET

production and signaling contributing to cell death in sus-

ceptible tomato plants (Cohn and Martin 2005). The ability

of these T3Es to stimulate ET production correlates with

their ability to induce the expression of two tomato ACC

oxidase genes. Thus, in tomato, the virulence activity

AvrPto and AvrPtoB might functionally overlap with that

of COR. While functional redundancy between COR,

AvrPto and AvrPtoB is speculative, the following para-

graphs describe examples of overlapping function of COR

with three different T3Es that target the JA-signaling

pathway. Interestingly, relative to direct targeting of COI1

by COR, these T3Es perturb JA-signaling upstream of or at

the COI1-signaling node.

The first example is AvrB, a T3E that targets upstream

of COI1 (Fig. 1). He et al. 2004 showed that Pto DC3000,

dependent on both COR and T3Es, induces the expression

of an Arabidopsis ERF (ethylene responsive factor) gene,

RAP2.6. Both a TTSS mutant and a cor- mutant of DC3000

failed to induce RAP2.6. Interestingly, AvrB comple-

mented the ability of the cor- mutant strain to induce

RAP2.6, indicating overlapping activities for the T3E and

toxin. Further support for this overlap came from the

observation that the ability of AvrB to induce RAP2.6 was

dependent on COI1 (He et al. 2004). Later work indicated

the ability of AvrB to activate JA-signaling is mediated by

targeting of MAP kinase 4 (Cui et al. 2010). Thus, AvrB

appears to induce JA-response genes by activating JA-

signaling upstream of COI1.

The other two effectors activate JA-signaling by tar-

geting JAZ proteins (Fig. 1). HopZ1a from P. syringae pv.

syringae strain A2 acetylates JAZ proteins causing them to

become destabilized dependent on COI1 (Jiang et al.

2013). HopX1 from P. syringae pv. tabaci (Pta) strain

11528 destabilizes JAZ proteins without a requirement for

COI1, likely via its cysteine protease activity that directly

cleaves the central Zim domain of the JAZ proteins

(Gimenez-Ibanez et al. 2014). Like COR, both HopX1 and

HopZ1a can induce expression of JA-response genes,

suppress SA-signaling, and restore virulence to cor- mutant

Pto DC3000 (Jiang et al. 2013; Gimenez-Ibanez et al.

2014). HopX1 shares additional activities with COR,

including reopening of stomata, causing plant cells to lose

chlorophyll, and induction of chlorosis in susceptible plants

(Gimenez-Ibanez et al. 2014). Since Pta 11528 does not

produce COR, HopX1 may serve as an alternative evolu-

tionary strategy to compensate for the lack of COR. It is

interesting to consider whether HopZ1a and HopX1 will

target all or a specific subset of JAZ proteins in host plants.

When tested against a nearly complete set of Arabidopsis

JAZ proteins, HopX1 targeted all and HopZ1a targeted a

subset. One model is that JAZ-selectivity reflects fine-

tuning of the virulence activity of a T3E. Another possi-

bility is that resistant JAZ proteins, such as those derived

from alternate splice variants or sequence divergent

homologs, are present in co-evolved hosts to help over-

come the effects of T3Es. In either case, HopX1, which

comes from a tabaci pathovar of P. syringae, might be

expected to target only a subset of JAZ proteins from

tobacco plants.

Suppression of cell wall defense by COR and T3Es

HopM1 is a T3E encoded by a gene located in the con-

served effector locus (CEL) of Pto DC3000. HopM1
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overcomes SA-dependent host immunity by destabilizing

AtMIN7 to disrupt G-protein-mediated endomembrane

trafficking as well as perturbing another Arabidopsis tar-

get(s) to disrupt an SA-independent pathway supporting

Arabidopsis defense (Nomura et al. 2006; Gangadharan

et al. 2013; Nomura et al. 2011) (Fig. 1). CEL, which is

physically adjacent to the locus containing genes that

encode the structural proteins of the type III secretion

system apparatus, contains effectors important for the vir-

ulence of a variety of bacterial pathogens (Alfano et al.

2000; Badel et al. 2006; DebRoy et al. 2004; Ham et al.

2006; Kvitko et al. 2009). A recent study revealed a

functional overlap between COR and HopM1 in sup-

pressing cell wall-associated defense (Geng et al. 2012).

The ability of COR to suppress cell wall-associated

defense escaped detection until recently (Geng et al.

2012; Millet et al. 2010) because the effect of COR is

masked by T3Es of the CEL. Further obscuring this

activity of COR, PtoDCEL (CEL deletion of Pto

DC3000) elicits SA-signaling that overcomes the sup-

pressive effect of COR. The new activity of COR was

detected by examining defense responses against a

PtoDCEL cor- (CEL deletion and COR-deficient double

mutant strain) in SA-signaling deficient mutant plants

(sid2 and npr1). The PtoDCEL cor- double mutant elic-

ited more callose and grew less than the PtoDCEL single

mutant in SA-signaling mutant plants. Furthermore, those

higher levels of callose elicited by PtoDCEL cor- were

suppressed by either exogenous application of COR or

expression of hopM1 in the double mutant strain. Thus,

COR and HopM1 carry out overlapping roles in sup-

pressing cell wall-associated defense.

Although COR and T3Es of the CEL locus share the

ability to suppress cell wall-associated defense, their mode

of action differs. In SA-signaling competent plants, HopM1

suppressed the high levels of callose deposition induced by

PtoDCEL cor- while COR could not. Thus, COR and

HopM1 distinctly suppress signaling within the plant

defense network by functioning in mechanistically distinct

manners. The ability of COR to suppress callose deposition

and promote bacterial growth in SA-signaling deficient

mutants indicates that COR targets an SA-independent

sector. Consistent with this idea, Geng et al. 2012 showed

that COR perturbs IGs metabolism. Unlike COR that can

only do so in SA-signaling deficient mutant plants, HopM1

suppresses callose deposition induced by PtoDCEL cor-

and restores bacterial growth in both wild-type and SA-

signaling deficient mutant plants. Thus, HopM1 suppresses

both SA-dependent and SA-independent sectors, perhaps

through downstream effects on defense-associated vesicle

trafficking. The mode of action by which COR and HopM1

each target distinct sectors of a converged portion of the

plant defense network remains to be elucidated.

Conclusions and future questions

Plants consistently face environmental stresses, including

biotic stresses, due to their sessile lifestyle. The key roles

of hormone signaling and secondary metabolic pathways in

the ability of plants to deal with these stresses make tar-

geting of them an effective strategy deployed by plant

bacterial pathogens to suppress host defense. Here, we

reviewed the demonstrated ability of the phytotoxin COR

to hijack JA-signaling and thus suppress SA-signaling. We

also speculated about targeting of ET-signaling by COR

and considered how one, or perhaps both, of these activities

contributes to the various virulence activities of COR. The

finding that COR promotes virulence independent of tar-

geting COI1 opens a path to study this novel activity of

COR separate from the confounding effects of COI1 acti-

vation. The perturbation of ET-dependent IGs metabolism

provides an attractive system for this effort. In addition to

producing hormones and/or hormone mimics, such as

COR, bacteria also produce T3Es. COR cooperates with

other T3Es to promote bacterial virulence and dampen the

induced defense responses. The collaborative targeting of

plant hosts by pathogen-produced virulence factors, for

example by COR and T3Es that target plant hormone

signaling pathways, is an area that, with further explora-

tion, will reveal a better view of the elegant network

comprising the plant immune system and how it is col-

laboratively defeated by pathogen-derived virulence

factors.
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