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Plants are closely associated with microorganisms including pathogens and mutualists
that influence plant fitness. Molecular genetic approaches have uncovered a number
of signaling components from both plants and microbes and their mode of actions.
However, signaling pathways are highly interconnected and influenced by diverse sets
of environmental factors. Therefore, it is important to have systems views in order
to understand the true nature of plant–microbe interactions. Indeed, systems biology
approaches have revealed previously overlooked or misinterpreted properties of the
plant immune signaling network. Experimental reconstruction of biological networks
using exhaustive combinatorial perturbations is particularly powerful to elucidate network
structure and properties and relationships among network components. Recent advances
in metagenomics of microbial communities associated with plants further point to the
importance of systems approaches and open a research area of microbial community
reconstruction. In this review, we highlight the importance of a systems understanding
of plant–microbe interactions, with a special emphasis on reconstruction strategies.
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INTRODUCTION
Systems biology is an area of biology that aims at a comprehensive
and mechanistic understanding of complex and dynamic bio-
logical processes and phenomena. Systems biology approaches
begin with system identification, where the (almost) whole com-
ponents of a biological system are identified through functional
and comparative genomics. This is followed by or coupled with
systems analysis, where activities of individual components and
their interactions are measured, and mathematical and compu-
tational models are built to describe and predict relationships of
the system’s components and to explain intrinsic properties of the
system. A generated model is used to build new hypotheses to
be experimentally verified, and the experimentally verified infor-
mation increases resolution of a next round of modeling. These
repeated processes would advance a mechanistic understanding of
how properties and traits of the biological system emerge (systems
understanding), and eventually provide a basis for controlling
the biological system and designing new biological traits (Kitano,
2002; Ukai and Ueda, 2010).

Due to immobile lifestyles, plants need to optimize their fit-
ness within their living environments. Pathogenic and mutualistic
microbes are major factors that influence plant fitness and use
host plants for proliferation. Consistent with this, host plants and
microbes have coevolved and acquired a number of mechanisms
that modulate outcomes of their interactions (Jones and Dangl,
2006; Oldroyd, 2013). In addition, plant responses to microbes
are affected by diverse abiotic environmental factors such as tem-
perature and light (Hua, 2013). Thus, plant–microbe interactions
are very complex and dynamic biological processes. Therefore,

systems biology approaches are required to understand the true
nature of plant–microbe interactions.

Plants rely on their innate immune system to resist pathogenic
microorganisms. Pattern-triggered immunity (PTI) and effector-
triggered immunity (ETI) are two defined modes of plant innate
immunity against microbial pathogens (Jones and Dangl, 2006;
Tsuda and Katagiri, 2010). PTI is triggered via recognition
of conserved microbial molecules known as microbe-associated
molecular patterns (MAMPs) by plasma membrane-localized
pattern recognition receptors (PRRs; Boller and Felix, 2009; Mon-
aghan and Zipfel, 2012). Well-characterized Arabidopsis PRRs
include the flagellin sensing 2 (FLS2) for flg22 (a 22 amino
acid peptide from the bacterial protein flagellin), the elonga-
tion factor-Tu (EF-Tu) receptor (EFR) for elf18 (a 18 amino
acid peptide from the bacterial protein EF-Tu), and the chitin
elicitor receptor kinase 1 (CERK1) for chitin (a part of fungal
cell walls; Chinchilla et al., 2006; Zipfel et al., 2006; Miya et al.,
2007; Wan et al., 2008). PTI is effective against most cases of
microbial invasions. However, virulent pathogens have acquired
diverse mechanisms to suppress PTI during coevolution (Jones
and Dangl, 2006; Boller and He, 2009). For example, a set of
effector proteins are delivered into plant cells to manipulate PTI
signaling (Dou and Zhou, 2012). To counteract pathogen vir-
ulence, plants have evolved resistance (R) proteins, which are
often nucleotide-binding leucine-rich repeat proteins (NLRs) as
intracellular receptors that specifically recognize pathogen effec-
tors directly or indirectly and that in turn activate ETI (Jones
and Dangl, 2006; Jacob et al., 2013). For instance, Arabidopsis
NLRs, resistance to Pseudomonas syringae 2 (RPS2) and resistance
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to P. syringae pv. maculicola 1 (RPM1), recognize actions of the
bacterial effectors AvrRpt2 and AvrRpm1, respectively (Jones and
Dangl, 2006).

Salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are
immune-related phytohormones. It is generally accepted that
SA signaling plays a major role in immunity against biotrophs
and hemibiotrophs which require living hosts for multiplication,
such as Hyaloperonospora arabidopsidis (Hpa) and P. syringae,
respectively (Glazebrook, 2005). In contrast, JA and ET signaling
are major contributors of immunity against necrotrophs which
actively kill hosts during infection (Glazebrook, 2005). JA, ET, and
SA are produced in some cases of PTI and ETI (Spoel et al., 2003;
Liu and Zhang, 2004; Mur et al., 2008; Tsuda et al., 2008, 2013;
Halim et al., 2009; Tintor et al., 2013). Since JA, ET, and SA signal-
ing pathways intimately interact with synergism and antagonism
(Pieterse et al., 2009), these signaling pathways form a complex
network to regulate plant immunity.

In this review, we describe how a systems understanding
of plant–microbe interactions can be achieved using functional
genomics such as protein–protein interactomics, transcriptomics,
and metagenomics. We will then focus on experimental recon-
struction of complex biological networks, such as the phytohor-
mone signaling network, as a powerful approach to elucidate
mechanisms underlying complex and dynamic properties of
plant–microbe interactions.

A PHYSICAL INTERACTION NETWORK BETWEEN PLANT PROTEINS
AND PATHOGEN EFFECTORS
Microbial pathogens range from viruses, bacteria, oomycetes
to fungi but often have common hosts. For example, the
hemibiotrophic bacterium, P. syringae, and the obligate biotrophic
oomycete, Hpa, can colonize the model plant Arabidopsis, rais-
ing a question whether there is a common mechanism employed
by these evolutionally distant pathogens to suppress Arabidopsis
immunity. This question was addressed by generating protein–
protein interaction networks between Arabidopsis proteins and
effectors from these pathogens based on genome-wide yeast two-
hybrid analysis (Figure 1A; Mukhtar et al., 2011). This approach
identified 165 putative effector targets, of which 18 were tar-
geted by effectors from both pathogens. Most of the common
effector targets were experimentally proved to be important for
immunity by genetic analysis. Remarkably, they were enriched
in proteins that have more than 50 interactors and were there-
fore considered as the hubs of a highly interconnected Arabidopsis
protein–protein interaction network. For instance, one of such
hub proteins, CSN5a, a component of COP9 signalosome, inter-
acted with 29 distinct effectors from Hpa and P. syringae and was a
negative regulator of immunity against Hpa. These results suggest
that irrespective of their lifestyles, the two pathogens from different
kingdoms have independently evolved effectors that converge onto
cellular hub proteins to attack the plant immune system (Mukhtar
et al., 2011). This is further supported by a study showing that
most Hpa effectors promoted bacterial growth in Arabidopsis
(Fabro et al., 2011). As similar observations were obtained in other
systems such as plant–virus, human–virus, and human–bacteria
interactions (Calderwood et al., 2007; De Chassey et al., 2008; Dyer
et al., 2008; Elena and Rodrigo, 2012), targeting hub components

of host immune systems is likely a common and effective strategy
of distinct pathogens.

NETWORK MODELING USING EXPRESSION PROFILES OF GENETIC
MUTANTS
Transcriptome analysis in combination with genetics and a net-
work modeling algorithm was applied to generate a signaling
network during immunity against P. syringae carrying the effector
AvrRpt2 (Sato et al., 2010). The modified version of locally linear
embedding (LLE) enabled detection of weak regulatory relation-
ships by subjecting the residual from the first round of LLE to
another round of LLE (Sato et al., 2010). Regulatory relationships
among 22 known immune signaling components representing
different signaling sectors such as the MAP kinase (MAPK) sec-
tor (MPK3 and MPK6; Liu and Zhang, 2004; Wang et al., 2007),
the nitric oxide (NO) sectors (NOA1 and NIA2; Wilkinson and
Crawford, 1991; Guo et al., 2003) the reactive oxygen species
(ROS) sector (RBOHD and RBOHF; Torres et al., 1998), the cal-
lose sector (PMR4; Nishimura et al., 2003) and phytohormones
were modeled based on similarities in mRNA expression profiles
of Arabidopsis mutants deficient in one of the network compo-
nents (Figure 1B; Sato et al., 2010). The resulting static model
inferred extensive negative regulatory relationships among sig-
naling sectors during AvrRpt2-ETI. For example, the JA sector
was negatively linked to most of other signaling sectors includ-
ing the SA sector. The model also inferred a novel negative link
between the SA sector and the early MAMP-triggered signaling
sectors such as the MAPK, callose, and ET sectors. Importantly,
this prediction was experimentally validated, as mutual inhibi-
tion between flg22- and SA-induced marker gene inductions was
observed in a dose dependent manner, highlighting the signifi-
cance of the modeling approach based on expression profiles of
multiple genetic mutants to generate testable hypotheses (Sato
et al., 2010). The negative regulatory relationships among the sig-
naling sectors may make the ETI signaling network robust against
perturbation by, for example, pathogen effectors, as perturbation
of one sector can be compensated by the other sectors through a
switch-like mechanism: one sector(s) gets activated due to the loss
of negative effects from the other sector(s) perturbed by pathogens
(Sato et al., 2010).

INTEGRATION OF MULTIPLE INPUTS INTO GENE REGULATION
Environmental factors such as temperature and light are known
to affect plant immunity (Hua, 2013), suggesting that plants
integrate complex information coming from environments and
microbes to optimize their response. Yet, how plants integrate
complex information into response is not well understood. Several
recent studies tackled this question by comparing transcriptional
responses of Arabidopsis to single and multiple stresses (Figure 1C;
Atkinson et al., 2013; Prasch and Sonnewald, 2013; Rasmussen
et al., 2013). All these studies found that transcriptional responses
to multiple stresses are not easily predictable from the responses
to single stresses. For example, effects of multiple stresses on
gene expression were not simply additive. Consistent with this
unpredictability, transcriptional response to the viral pathogen,
turnip mosaic virus, was significantly altered when combined with
additional abiotic stresses, such as heat and drought (Prasch
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FIGURE 1 | A schematic representation of systems approaches

using functional genomics. (A) A protein–protein interaction network
represents a global picture of a system at the protein level. In this
example, several plant hub proteins (large blue circles) that interact with
many plant proteins (small blue circles) are targeted by microbial effectors
(large red circles). This approach was used in Mukhtar et al. (2011).
(B) Gene regulatory network modeling infers regulatory relationships
among components of a system. As an example, a network consisting of
seven components (circles with different colors) with positive and
negative regulatory relationships (red and blue lines, respectively) is
depicted. This approach was used in Sato et al. (2010). (C) Co-expression

module analysis is useful to visualize behavior of a system under certain
conditions. As an example, co-regulated genes under different conditions
are visualized in the heatmap. Red and green boxes indicate up-regulated
and down-regulated genes in a certain condition, respectively. This
approach was used in Zou et al. (2011), Atkinson et al. (2013), Prasch and
Sonnewald (2013), and Rasmussen et al. (2013). (D) A ternary plot is used
to show influence by three variables on composition. This example
depicts bacterial OTUs whose relative abundance changes according to
the three compartments, soil, rhizosphere, and root. Blue circles mark
OTUs enriched in the root compartment. This approach was used in
Bulgarelli et al. (2012) and Lundberg et al. (2012).

and Sonnewald, 2013). This was associated with enhanced viral
susceptibility under these abiotic stress conditions. Moreover,
transcriptional response to the parasitic nematode, Heterodera
schachtii, in combination with drought stress was significantly
different from those to the single stresses (Atkinson et al., 2013).

Rapid alkalinization factor-like 8, methionine gamma lyase, and aze-
laic acid induced 1 are genes that showed unpredictable expression
patterns under the combined stress condition. Overexpression or
loss of function of these genes resulted in altered responses to
drought stress as well as to nematode infection. These results
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suggest that specific transcriptional responses to combinatorial
stresses are crucial parts of stress tolerance mechanisms in plants.

It is an interesting question whether signal integration for gene
regulation is achieved at a transcription factor which is regulated
by multiple signaling pathways or at a gene promoter where multi-
ple transcription factors recognize distinct cis-regulatory elements
(CREs). Although a number of CREs have been experimentally
identified in promoters of stress-responsive genes, this informa-
tion is not sufficient to correctly predict stress-responsive gene
expression. Based on co-expression patterns of Arabidopsis genes
under many different biotic and abiotic stresses, a number of
putative CREs with characteristics of authentic cis-elements were
computationally identified (Figure 1C; Zou et al., 2011). Strik-
ingly, prediction of gene up-regulation by salt, ultraviolet or flg22
was markedly improved by considering binary combinations of
known or putative CREs compared to that based on the presence
or absence of single CREs. Thus, stress-responsive gene expression
is apparently governed by multiple CREs which are signal integra-
tion sites for gene regulation, and further systems analysis will be
required to untangle the complexity.

STRUCTURE IDENTIFICATION OF PLANT ROOT-INHABITING BACTERIAL
MICROBIOTA
Plant–microbe interaction studies have been mostly focused on
binary interactions, typically consisting of a single host plant
and either pathogenic or mutualistic microbes (Jones and Dangl,
2006; Oldroyd, 2013). However, plants are surrounded by numer-
ous microbes in natural environments, especially in soil, where
one of the richest bacterial diversities exists (Gans et al., 2005).
Recently, two independent research groups developed similar
experimental pipelines for classifying bacterial 16S ribosomal
DNA sequences into operational taxonomic unit (OTU) based
on high-resolution pyrosequencing, and defined bacterial com-
munities associated with Arabidopsis roots (Bulgarelli et al., 2012;
Lundberg et al., 2012). In accordance with prior studies, plant-
associated bacterial OTUs that are present inside or firmly attached
to roots were significantly different from OTUs found in rhi-
zosphere (defined as soil particles associated with roots) and
in bulk soil (Figure 1D), suggesting a selection mechanism(s)
that shapes the structure of root-inhabiting bacterial microbiota.
Strikingly, by comparing bacterial community profiles associated
with different Arabidopsis accessions and in soils from different
locations, both studies independently identified a similar profile
of root-inhabiting microbiota and reached the same conclusion
that the soil type had a greater influence than the host genotype
on the bacterial community composition (Bulgarelli et al., 2012;
Lundberg et al., 2012). This suggests that the selection process may
be facilitated by enrichment and/or exclusion of particular bacteria
through interactions among different bacterial species present in
a soil. Overall, these studies demonstrated the power of metage-
nomics for characterization of interactions between plants and
microbial communities.

A STEPWISE RECONSTRUCTION OF A PLANT IMMUNE SIGNALING
NETWORK FROM A GROUND LEVEL STATE
One of the longstanding questions in plant–pathogen interac-
tions is why ETI response is very robust compared to PTI, which

is overcome by virulent pathogens. A systems analysis using
an Arabidopsis quadruple mutant and combinatorial mutants
regarding the core immune signaling components, JA, ET, SA,
and phytoalexin deficient 4 (PAD4), revealed differential prop-
erties of PTI and ETI signaling networks, which provided an
answer for this question (Figure 2; Tsuda et al., 2009). Delayed-
dehiscence 2 (DDE2), ethylene insensitive 2 (EIN2), and sali-
cylic acid induction-deficient 2 (SID2) are essential components
of JA, ET, and SA signaling, respectively (Alonso et al., 1999;
Wildermuth et al., 2001; Park et al., 2002). PAD4 is required for
pathogen-induced SA accumulation and other immune responses
(Jirage et al., 1999), and the latter is considered as the PAD4
signaling sector. Thus, the JA, ET, PAD4, and SA signaling sec-
tors are all compromised in the dde2/ein2/pad4/sid2-quadruple
mutant. Growth measurement of P. syringae showed that flg22-
triggered immunity (flg22-PTI) and AvrRpt2-triggered immunity
(AvrRpt2-ETI) are largely (∼80%) lost in the quadruple mutant.
Hence, we consider the quadruple mutant as a (almost) ground
level state of the plant immune signaling network accounting for
flg22-PTI and AvrRpt2-ETI. The stepwise reconstruction (triple,
double, and single mutants to the wild-type) of the plant immune
signaling network from the ground level state (the quadruple
mutant) followed by signaling allocation analysis revealed that
contrary to previous ideas, the JA, ET, PAD4, and SA signal-
ing sectors can all positively contribute to both flg22-PTI and
AvrRpt2-ETI. The analysis also illustrated differential relation-
ships among the signaling sectors in PTI and ETI: partly synergistic
and partly compensatory in PTI but almost exclusively compen-
satory in ETI. For example, the interaction between the PAD4
and SA sectors is synergistic in PTI but compensatory in ETI.
Thus, reconstructing a network from a ground level state is
a powerful approach to understand the true contribution of a
signaling sector in and properties of a highly interconnected
network.

Although a synergistic interaction in PTI can be easily attenu-
ated by a pathogen effector that disrupts one of the synergistically
interacting signaling sectors, compensatory interactions such as
in ETI would make the signaling network highly robust to per-
turbations. An interesting question is if robust immunity is
correlated with robust gene expression. A genome-wide expres-
sion profile showed that SA is not essential during AvrRpt2-ETI
for regulation of the majority of SA-responsive genes which
are regulated in an SA-dependent manner in PTI (Figure 1C;
Tsuda et al., 2013), demonstrating extensive compensation by
other signaling mechanism(s) for the loss of SA. This seems rea-
sonable because hemibiotrophic and biotrophic pathogens have
diverse mechanisms to perturb SA signaling (Zheng et al., 2012;
Caillaud et al., 2013; Jiang et al., 2013; Gimenez-Ibanez et al.,
2014). The two immune-related MAPKs, MPK3, and MPK6,
are activated with different kinetics during PTI and ETI: tran-
sient during flg22-PTI but sustained during AvrRpt2-ETI (Tsuda
et al., 2013). The SA compensation in ETI seems to be reg-
ulated by, in part, sustained activation of MPK3 and MPK6.
Thus, although the MAPKs are shared by PTI and ETI, different
activation kinetics leads to different downstream events (Tsuda
et al., 2013). ROS production and Ca2+ flux are also known to
be more sustained during ETI than PTI (Shapiro and Zhang,
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FIGURE 2 | A schematic representation of a stepwise reconstruction of

a plant immune signaling network from a ground level state. The
Arabidopsis dde2/ein2/pad4/sid2-quadruple mutant is considered a ground
level state of the plant immune signaling network consisting of the JA, ET,
PAD4, and SA signaling sectors. Network reconstruction from the ground
level state to the wild-type state via all combinatorial mutants is conducted
to quantitatively measure contribution of the individual sectors to immunity
(black lines) and activities (circles) and predict their regulatory relationships
(gray lines). These predictions are experimentally verified (red lines). For
simplicity, only one example is shown for triple, double, and single
mutants. This approach was used in Tsuda et al. (2009) and Kim et al. (2014).

2001; Torres et al., 2006; Gao et al., 2013). Thus, time-resolved
analysis is needed to fully understand downstream signaling
mechanisms.

It should be noted that contribution of the four signaling
sectors to immunity differs depending on trigger of immunity

and/or pathogens (Tsuda et al., 2009; Maekawa et al., 2012). There-
fore, further elucidation of network components is needed to
understand the complete structure of the plant immune signal-
ing network. MAPKs (Meng and Zhang, 2013; Tsuda et al., 2013),
calcium-dependent protein kinases (Tena et al., 2011; Gao et al.,
2013), NO (Zeidler et al., 2004; Zeier et al., 2004), ROS (Torres
et al., 2002, 2006), and other phytohormones such as abscisic acid,
auxin, and gibberellin (Asselbergh et al., 2008; Robert-Seilaniantz
et al., 2011; Mang et al., 2012) are important players in plant
immunity and should be integrated in further network analysis.

A STEPWISE RECONSTRUCTION OF A PATHOGEN EFFECTOR
REPERTOIRE
Although individual functions of pathogen effectors have been
studied, how these effectors function in a coordinated manner
has been rarely investigated (Lindeberg et al., 2012). Therefore,
a stepwise reconstruction of effectors was used to understand
a pathogen virulence strategy (Cunnac et al., 2011). P. syringae
pv. tomato DC3000 (Pto) is a model pathogen for systems anal-
ysis because virtually all effector candidates that are injected by
the type III secretion system (T3SS) were identified (Lindeberg
et al., 2006). The Pto mutant (DC3000D28E), which is deficient in
the 28 effectors, was found to grow less than the T3SS-deficient
mutant in Nicotiana benthamiana. Therefore, this functionally
effector less mutant can be considered as a ground level state
(Cunnac et al., 2011). A stepwise reconstruction of the effec-
tor repertoire to restore virulence of DC3000D28E identified a
minimal set of eight effectors with hierarchical functions (AvrP-
toB, HopM1, AvrE, HopE1, HopG1, HopAM1, HopAA1, and
HopN1; Figure 3). AvrPtoB blocks initiation of PTI signaling
by targeting PRRs such as FLS2 (Göhre et al., 2008; Gimenez-
Ibanez et al., 2009) and the co-receptor BRI1-associated kinase
1 (BAK1; Shan et al., 2008; Monaghan and Zipfel, 2012). AvrP-
toB alone was sufficient to promote growth of DC3000D28E
(Cunnac et al., 2011). Bacterial growth was further promoted
when HopM1, which targets a PTI component involved in vesi-
cle trafficking (Nomura et al., 2006), was introduced together
with AvrPtoB, suggesting that attenuation of receptor functions
is a prerequisite for the function of HopM1 (Cunnac et al.,
2011). The remaining six effectors supported bacterial growth
to near the wild-type level when introduced into DC3000D28E
harboring AvrPtoB and HopM1. HopE1, HopG1, HopAM1,
HopAA1, and HopN1 seem less important for the bacterial vir-
ulence in N. benthamiana, because these effectors are lacking
in the genome of P. syringae pv. syringae B728a and P. syringae
pv. tabaci 11528, both of which cause disease in N. benthami-
ana (Vinatzer et al., 2006; Studholme et al., 2009), suggesting
that these five effectors can be replaced with other effectors.
It would be interesting to investigate whether these two P.
syringae strains use effectors with functions similar to or distinct
from the five effectors to promote bacterial growth. In sum-
mary, reconstruction of the functional effector repertoire from
the ground level state together with the comparative genomics
of P. syringae strains revealed the virulence strategy by which
the bacterial pathogen manipulates plant immunity by deploy-
ing a few core effectors and many interchangeable effectors
(Lindeberg et al., 2012).
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FIGURE 3 | A schematic representation of a stepwise reconstruction

of a functional effector repertoire of Pseudomonas syringae. The
P. syringae pv. tomato (Pto) DC3000 mutant lacking 28 effectors
(DC3000D28E) is considered a ground level state for virulence.
AvrPtoB but not HopM1 is sufficient to promote in planta bacterial

growth. HopM1 requires AvrPtoB to promote bacterial growth. The
remaining six effectors (AvrE, HopE1, HopG1, HopAM1, HopAA1, and
HopN1) support bacterial growth to near the wild-type level in the
presence of AvrPtoB and HopM1. This approach was used in Cunnac
et al. (2011).

MODELING SIGNAL FLOWS USING EXPERIMENTAL NETWORK
RECONSTRUCTION WITH MULTIPLE INPUTS AND OUTPUTS
The plant immune signaling network needs to be robust against
pathogen attack and at the same time tunable to achieve opti-
mal fitness since plants combat a diverse range of microbial
pathogens including biotrophs and necrotrophs and since unnec-
essary immune responses have a negative impact on plant fitness
(Tsuda and Katagiri, 2010; Alcázar et al., 2011; Mengiste, 2012).
The PTI signaling network has some level of robust property
although the level of robustness is lower compared to that in
ETI (Tsuda et al., 2009). To elucidate the mechanisms underly-
ing intrinsic properties of the PTI signaling network, such as
robustness and tunability, the stepwise network reconstruction
(Tsuda et al., 2009) was used to generate a dynamic model that

describes signal flows and their contributions to immunity in the
network consisting of the JA, ET, PAD4, and SA sectors (Kim et al.,
2014). Expression levels of marker genes for each of the four sec-
tors at two different time points and growth inhibition of two
different P. syringae strains were measured as proxies of signaling
sector activities and immune outputs, respectively, after the treat-
ment with three different MAMPs, flg22, elf18 and a modified
form of chitin, chitosan (Silipo et al., 2010) as well as mock treat-
ment (Figure 2). Using this multifactorial quantitative data set, a
highly predictable dynamic PTI network model was generated. We
describe four key findings below.

First, the model predicted that the ET sector suppresses the
JA and PAD4 sectors, which is a source of the robustness in the
PTI signaling network. Second, although it is often thought that
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JA signaling inhibits SA signaling (Vlot et al., 2009), the JA sec-
tor was predicted to activate the SA sector. This prediction was
surprising but experimentally verified as introducing the dde2
mutation into the genotypes containing the pad4 mutation abol-
ished the flg22-induced SA accumulation to the same level as
in sid2, indicating that the positive effect of the JA sector on
the SA sector is evident only when the PAD4 sector is miss-
ing (Kim et al., 2014). This clearly points to the significance of
combinatorial perturbations: simultaneous perturbations of mul-
tiple components are necessary to truly understand component’s
functions in a highly interconnected network. Third, the model
revealed that different MAMPs activate the four signaling sectors
with different strength, resulting in different immune outputs.
For example, flg22 strongly activates the JA, ET, and PAD4 sec-
tors, which leads to strong contributions of the PAD4 and SA
sectors to immunity against P. syringae. In contrast, elf18 and
chitosan predominantly activate the JA and ET sectors, resulting
in weaker immunity against the bacterial pathogens. Since chi-
tosan is a MAMP from fungal pathogens including necrotrophs,
it may have been selected to prioritize the JA and ET sectors over
the other sectors to mount immunity effective against this type
of pathogens (Glazebrook, 2005). Given that a microbe likely
presents multiple MAMPs, it is tempting to speculate that plants
tune sector activities of the PTI signaling network by sensing dif-
ferent compositions of MAMPs from different microbes to tailor
appropriate immune responses for a specific condition. Last, the
contribution of the PAD4 sector to immunity against the bac-
terial pathogens was clearly larger than that of the SA sector.
Although a primary function of PAD4 is often thought to be
the amplification of SA signaling (Vlot et al., 2009), this result
suggests it may be the other way around: a major function of
the SA sector is to activate the PAD4 sector rather than its direct
contribution to immunity against biotrophic and hemibiotrophic
pathogens. It will be necessary to characterize activities of the
PAD4 and SA sectors independently of each other in order
to re-define the relationship between the two sectors in plant
immunity.

CONCLUSION AND PERSPECTIVES
The first step of systems biology, system identification, has been
achieved in many studies of plant–microbe interactions by means
of functional and comparative genomics using model organisms.
However, only some of these studies reached the second step,
systems analysis, which is the most critical step to understand com-
plex and dynamic properties of plant–microbe interactions (Tsuda
et al., 2009, 2013; Sato et al., 2010; Cunnac et al., 2011; Mukhtar
et al., 2011; Bulgarelli et al., 2012; Lundberg et al., 2012; Kim et al.,
2014). Indeed, systems analysis using reconstruction approaches
revealed how a plant immune signaling network is structured
to be robust and tunable and how pathogen effectors manipu-
late plant immunity (Tsuda et al., 2009; Cunnac et al., 2011; Kim
et al., 2014). Furthermore, reconstruction of microbial communi-
ties would undoubtedly facilitate our understanding of selection
mechanisms and functions of plant root-inhabiting bacterial
microbiota (Bulgarelli et al., 2012; Lundberg et al., 2012), as shown
in studies of phyllosphere and gut microbiota (Atarashi et al.,
2013; Bodenhausen et al., 2014). All these studies provide bases

for improving future agricultural productivity and food security.
For instance, we will, in principle, be able to develop chemical
compounds that target core effectors to control pathogens effec-
tively (Cunnac et al., 2011). Another idea will be potentiation of
plant immunity by, for example, conferring ETI-like robustness to
PTI (Tsuda et al., 2009, 2013; Kim et al., 2014). Notably, transgenic
potato plants that trigger ETI-like sustained MAPK activation
through recognition of MAMPs were generated (Yamamizo et al.,
2006). This transgenic plants showed no developmental abnor-
malities but exhibited high resistance to both the necrotrophic
fungus, Alternaria solani, and the biotrophic oomycete, Phytoph-
thora infestans (Yamamizo et al., 2006). Conventional molecular
genetic approaches for rigorous testing of hypotheses emerging
from systems analysis will further elucidate molecular mechanisms
underlying complexity and dynamics of plant–microbe interac-
tions, which will again provide a basis for controlling the outcomes
of plant–microbe interactions.

So far, most systems biology studies have utilized data sets
obtained under controlled laboratory conditions. However, com-
plex and dynamic environmental conditions, which plants actually
face in nature, should be taken into account to model plant–
microbe interactions. Given the significant impact of environ-
mental factors on not only plants but also microbes, it will be
a key future challenge to directly incorporate relevant informa-
tion from a complex environment with changing conditions in
order to understand the true nature of plant–microbe interactions.
Considering recent technological advances and lowering cost for
quantitative measurement such as RNA-seq, we propose that it
is time to tackle the grand challenge with the power of systems
biology.
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