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Abstract	

Plant pathogens can cause serious diseases that impact global agriculture. Molecular 

mechanisms of the plant immune system have been intensively studied in the past decades, 

revealing mechanisms for pathogen recognition and immune signaling in plant cells. 

However, we still lack a fundamental knowledge of how plant immunity affects pathogen 

metabolisms to inhibit their growth in plants. In the case of bacterial pathogens, a major 

bottleneck is the difficulty in profiling bacterial responses in planta. Here, I established a 

method to isolate bacterial cells from Arabidopsis thaliana leaves to enrich bacterial 

information. I profiled the transcriptomes and proteomes of the foliar bacterial pathogen 

Pseudomonas syringae by using various combinations of host and bacterial genotypes and 

pretreatments. This unveiled that bacterial transcriptome changes affected by plant immunity 

explain bacterial growth suppression in the plant apoplast and identified that a bacterial iron 

acquisition pathway is a major plant immune target. Bacterial transcriptomes and proteomes 

were well correlated in general, but I also found that plant immunity affects the abundance of 

specific components of the bacterial type III secretion system, an essential component for 

bacterial virulence, only at the protein level. Together, these analyses provided insights into 

the long-standing question of how biological processes of bacterial pathogens are influenced 

by plant immunity. I also applied the in planta bacterial transcriptomics method to address 

an important open question in plant microbiota research: how does plant immunity influence 

the responses of microbiota members to affect the shape and functions of the plant 

microbiota? I profiled the co-transcriptomes of plants and bacteria in the monoassociation 

condition and revealed conserved and specific plant and bacterial responses during 

interaction events. This approach will help us understand how plants winnow different 

microbiota members and control the microbiota function, and transform the current plant 

microbiota research from descriptive studies to mechanistic studies. Taken together, this 

study sets the foundation for the comprehensive understanding of molecular events on both 

plant and bacterial sides during their interactions. 
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Zusammenfassung	

Pflanzenpathogene können schwere Krankheiten verursachen, die sich auf die globale 

Landwirtschaft auswirken. Molekulare Mechanismen des pflanzlichen Immunsystems 

wurden in den letzten Jahrzehnten intensiv untersucht, wodurch Erkenntnisse über die 

Pathogenerkennung und die Immunsignaltransduktion in Pflanzenzellen gewonnen werden 

konnten. Jedoch fehlt grundlegendes Wissen darüber, wie die pflanzliche Immunität 

Pathogenmetabolismen beeinflusst, um deren Wachstum zu hemmen. Vor allem bei 

krankheitserregenden Bakterien fehlen experimentelle Methoden, um die bakteriellen 

Reaktionen auf das pflanzliche Immunsystem in planta zu erfassen. Hier habe ich eine 

Methode zur Isolierung von Bakterienzellen aus Arabidopsis thaliana-Blättern etabliert, um 

Bakterieninformationen anzureichern, ohne deren Stoffwechsel zu beeinflussen. Ich 

analysierte die Transkriptome und Proteome verschiedener Genotypen des Modell-

Bakterienpathogens Pseudomonas syringae unter 38 bzw. 15 Bedingungen in Kombination 

mit verschiedenen Vorbehandlungen und in unterschiedlichen Wirtspflanzen. Diese 

Experimente zeigten, dass die Aktivität des pflanzlichen Immunsystems bakterielle 

Transkriptome maßgeblich verändert, was zu einer Unterdrückung des bakteriellen 

Wachstums innerhalb der Pflanzenzelle führt. Interessanterweise ist dabei ein 

Stoffwechselweg, über den Bakterien Eisen aufnehmen, ein Hauptziel der pflanzlichen 

Immunabwehr. Im Allgemeinen konnte ich eine Korrelation zwischen Reaktionen von 

bakteriellen Transkriptomen und Proteomen auf die pflanzliche Immunabwehr feststellen. 

Allerdings konnte ich ebenfalls beobachten, dass das Vorkommen spezifischer Komponenten 

des bakteriellen Typ III-Sekretionssystems, welches für die Virulenz wichtig ist, nur auf der 

Protein- aber nicht auf der Transkriptionsebene beeinflusst wird. Zusammengefasst liefern 

diese Analysen Einblicke in die seit langem bestehende Frage, wie Stoffwechselprozesse von 

bakteriellen Krankheitserregern durch die Immunität von Pflanzen beeinflusst werden. Die 

hier etablierte Methode für in planta Bakterientranskriptome konnte auch angewendet 

werden, um eine wichtige offene Frage in der Pflanzenmikrobiomforschung zu beantworten: 

Wie beeinflusst die Immunität von Pflanzen die Metabolismen einzelner bakterieller 

Mikroben, um ein Pflanzenmikrobiom zu formen und seine Funktionen zu steuern? Ich habe 

die Transkriptome sowohl von Pflanzen, als auch von Bakterien in Monoassoziationen 

untersucht und konservierte sowie spezifische Reaktionen von Pflanzen und Bakterien auf 
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Interaktionsereignisse feststellen können. Dieser Ansatz wird uns helfen zu verstehen, wie 

Pflanzen aus verschiedenen bakteriellen Mikroben nützliche auswählen und die 

Mikrobiomfunktion steuern. Dies könnte die derzeitige Pflanzen-Mikroben-Forschung von 

deskriptiven Studien hin zu mechanistischen Studien führen. Zusammengenommen schafft 

diese Studie die Grundlage für ein umfassendes Verständnis molekularer Ereignisse während 

Pflanzen-Bakterien-Interaktionen.  
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Preamble	

Part of this thesis is from manuscripts published, submitted, or in preparation as 

listed above in the “Publication” section. Figures that have been adopted from these papers 

were noted in the figure legends. Some paragraphs were adopted from the papers listed above 

with some modification, but no paragraph in this thesis was entirely quoted from these 

papers unless otherwise specified. Most of the experiments and analyses described in this 

thesis were conducted by myself. Those that were conducted by other people were indicated 

in the “Contribution” section on page 145. 
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1. Introduction	

The ultimate role of plant immunity, from the human point of view, is to stave off all 

potential pathogens that harm plant survival. One straightforward way to accomplish this 

might be to devise parallel and constitutively active immune branches that are collectively 

effective against all pathogens. However, it appears that evolution did not favor this way for 

several reasons. Firstly, resources that plants can use are limited. Plants need to allocate 

resources to their growth and responses to abiotic stresses as well as to fight against 

pathogens; thus constitutively active immunity poses a burden on plant fitness. Secondly, 

there is no versatile immune response effective against all pathogens and some immune 

responses lead to conflicting outcomes. For instance, hypersensitive cell death is an immune 

response effective against some biotrophic pathogens, which rely on living host cells, but it 

promotes the growth of necrotrophic pathogens, which feed on dead cells (Glazebrook, 2005; 

Mengiste, 2012). In addition, constitutively active immune responses might be harmful to 

plant-associated microbial communities (microbiota) that contribute to plant health (Duran 

et al., 2018). In mammals, it is known that excessive activation of host immunity can lead to 

abnormal microbiota structure, which negatively affects host health (M. Levy et al., 2017).  

An inducible immune system can be a solution plants have adopted to reconcile these 

problems. Plants have evolved immune systems that are activated upon encountering 

pathogens by using various types of receptors, such as pattern recognition receptors (PRRs) 

(Boutrot and Zipfel, 2017) and nucleotide-binding domain and leucine-rich repeat-

containing proteins (NLRs) (Kourelis and Van Der Hoorn, 2018). An energy-efficient and 

flexible immune system would be advantageous for plant survival and therefore be selected. 

Indeed, plants are able to (i) deploy immune responses that are resilient against perturbations 

by biotic and abiotic factors, (ii) fine-tune immune responses in context-dependent manners, 

and (iii) prioritize or balance immune responses in relation to other responses. Such traits 

can be explained by interwoven plant immune networks comprised of immune receptors, 

plant hormones, transcription factors, and other components (Nobori et al., 2018a). Here, I 

introduce our knowledge of the plant immune network system and its resilient, tunable, and 

balanced properties and discuss roles of the immune system in interactions with pathogens 

and microbiota. I also introduce molecular networks of bacteria, in particular pathogen 

virulence networks, and their interactions with plant networks. 
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1.1 Plant	immune	networks	

The plant innate immune system relies on an expanded repertoire of immune 

receptors on the cell surface or inside the cell to detect molecular signatures associated with 

microbial invasions (Boutrot and Zipfel, 2017; Kourelis and Van Der Hoorn, 2018). 

Recognition of microbe- and damage-associated molecular patterns (MAMPs and DAMPs) 

and effector molecules by the plant immune receptors activates pattern-triggered immunity 

(PTI) and effector-triggered immunity (ETI), respectively (Boutrot and Zipfel, 2017; Kourelis 

and Van Der Hoorn, 2018). PTI and ETI activate various immune signaling pathways such as 

phytohormone pathways and restrict microbial invasion and proliferation (Berens et al., 

2017; Boutrot and Zipfel, 2017; Cui et al., 2014). Plant immune receptors and immune 

signaling components have evolved to interact in a complex manner. These immune 

receptors and signaling networks are collectively defined as plant immune networks in this 

thesis (Figure 1). The plant immune networks are further connected with components in 

other physiological processes to optimize plant responses in ever-changing environment. For 

instance, phytohormone signaling networks coordinate plant immunity with abiotic stress 

responses and developmental programs (Alcázar et al., 2011; Berens et al., 2017; Heil and 

Baldwin, 2002; Huot et al., 2014; Smakowska et al., 2016).  

 
Figure 1: Possible structures of the plant immune and bacterial virulence networks and their 
interactions  
Blue arrows: Bacterial type III effectors and toxins regulated by the hrp regulon target the plant 
immune networks. Red arrows: Plant immunity targets components in the bacterial virulence 
networks with unknown mechanisms. The plant immune networks include leucine-rich repeat 
receptor kinases (LRR-RKs) networks, nucleotide-binding domain and leucine-rich repeat-containing 
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proteins (NLRs) networks, and phytohormone networks. The bacterial virulence networks include 
Hrp regulon, AlgU regulon, quorum sensing (QS) system, and iron homeostasis system. The sub- 
networks in the plant immune or bacterial virulence networks are interconnected (black lines). This 
figure was adopted from (Nobori et al., 2018a). 

1.1.1 Immune	receptor	networks		

PTI is activated through recognition of microbe-derived ligands, called MAMPs, or 

plant-derived ligands, known as DAMPs, by PRRs, a major class of which are leucine rich-

repeat receptor kinases (LRR-RKs) (Boutrot and Zipfel, 2017). For instance, FLS2 senses the 

MAMP flg22 derived from bacterial flagellin, and PEPR1/PEPR2 recognize Pep peptides, 

which are DAMPs derived from endogenous PROPEP proteins in Arabidopsis thaliana 

(Boutrot and Zipfel, 2017). Upon ligand binding, these LRR-RKs recruit another LRR-RK, 

BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE (BAK1), for transducing the 

signal to the cytosol (Yasuda et al., 2017). Although it has been known that LRR-RKs often 

interact with each other through their extracellular domains (ECDs) (Belkhadir et al., 2014), a 

comprehensive analysis on LRR-RK interactions has been difficult due to a massive 

diversification of this class of receptor proteins in plants (Sun et al., 2017). Recently, a high-

throughput in vitro interaction assay was conducted to test 40,000 interactions between 200 

ECDs in A. thaliana to construct an LRR-RK interaction network (CSILRR) (Smakowska-luzan 

et al., 2018). The CSILRR helped to identify previously uncharacterized LRR-RKs that 

modulate immune responses. For instance, the LRR-RK FIR interacts with both FLS2 and 

BAK1 and promotes flg22-induced FLS2-BAK1 complex formation and immune responses 

(Smakowska-luzan et al., 2018). In the CSILRR, BAK1 and APEX are hub LRR-RKs whose 

removal could strongly affect network connectivity (Smakowska-luzan et al., 2018). BAK1 

interact with multiple PRRs, including FLS2, PEPR1, and PEPR2 (Yasuda et al., 2017). APEX 

interacts with PEPR1 and PEPR2 and contributes to Pep2-induced immune responses 

(Smakowska-luzan et al., 2018). Unlike BAK1, the APEX protein does not interact with FLS2. 

Interestingly, however, genetic removal of APEX enhanced flg22-induced FLS2-BAK1 

complex formation and immune responses (Smakowska-luzan et al., 2018), indicating that 

APEX can affect the FLS2 functions through the CSILRR even without a direct physical 

interaction with FLS2. It is possible that the CSILRR monitors the integrity of APEX and 

modulates plant immune responses by an unknown mechanism. Similarly, it was shown that 

perturbations on BAK1 enhance PEPR1/PEPR2-mediated cell death and immune responses 
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to compensate for the absence of BAK1-dependent PRR signaling (Yamada et al., 2015). It 

will be of key future challenge to explore and define such regulatory functions possibly 

mediated by the CSILRR. 

ETI is mediated by NLRs and is often accompanied by hypersensitive response (HR) 

cell death (Cui et al., 2014). Typically, NLRs are intracellular immune receptors that can 

directly recognize pathogen effectors or indirectly sense the activities of effectors (Cui et al., 

2014; Kourelis and Van Der Hoorn, 2018). It has been proposed that NLRs form a network 

structure, in which “sensor” NLRs recognize pathogen effectors and “helper” NLRs transduce 

signals after the effector recognition (Bonardi et al., 2011; Castel et al., 2018; Qi et al., 2018; 

Wu et al., 2017, 2016, 2018). In A. thaliana, the helper NLRs, ADR1, ADR1-L1, and ADR-L2, 

contribute redundantly to ETI mediated by three different sensor NLRs that detect the 

effectors bacteria and oomycetes (Bonardi et al., 2011). Another helper NLR, NRG1, was 

shown to function downstream of multiple TIR-NLRs in A. thaliana and Nicotiana 

benthamiana (Castel et al., 2018; Qi et al., 2018; Wu et al., 2018). N. benthamiana NRC2, 

NRC3, and NRC4 are helper NLRs that redundantly function to elicit HR cell death following 

recognition of bacterial, oomycete, nematode, or viral effectors by nine different sensor NLRs 

(Wu et al., 2017). Phylogenetic analysis of plant NLRs revealed that the ADR1 and NRC 

families are distantly related (Wu et al., 2017). Moreover, the NRC family proteins are present 

in asterids including N. benthamiana, although they are absent in rosids including A. thaliana 

(Andolfo et al., 2014; Collier et al., 2011; Wu et al., 2017). Therefore, it is likely that ADR1 

and NRC families have evolved independently as helper NLRs, on which signals from various 

sensor NLRs converge. This would allow sensor NLRs to gain a new recognition spectrum 

without losing the inter-relationship with cognate helper NLRs for signal transduction. Thus, 

the NLR network comprised of pathogen-detecting sensor NLRs and downstream 

functionally-redundant helper NLRs might drive the evolution of sensor NLRs to cope with a 

large variety of effectors from fast-evolving pathogens and, at the same time, allow plants to 

maintain robust NLR signaling mediated by helper NLRs. 

1.1.2 Immune	signaling	networks		

Phytohormones are small signal molecules that are produced in plants in response to 

internal and external stimuli, such as developmental cues and pathogen invasion, and 

regulate plant responses (Shigenaga et al., 2017). Land plants have expanded the repertoire of 
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phytohormones, which likely contributed to plant adaptation to more fluctuating terrestrial 

environments (Berens et al., 2017). An evolutionary and comparative genomic analysis of 

species representing all the major plant lineages revealed that signaling mediated by the major 

immunity-related phytohormones jasmonate (JA) and salicylic acid (SA) likely originated in 

the last common ancestor of land plants (Wang et al., 2015). JA and SA signaling can interact 

either antagonistically or synergistically, depending on the context, and these interactions are 

modulated by other phytohormones such as ethylene (ET), abscisic acid (ABA), and auxin, 

collectively forming a phytohormone signaling network (Berens et al., 2017). The properties 

of the phytohormone signaling network were difficult to elucidate due to complex 

interactions among network components. An approach to dissect such a complex network is 

to remove network components to the level where the network largely loses its functional 

output and then assign functions to individual network components and their interactions by 

studying how the network output is recovered during stepwise reconstruction of the network 

using combinatorial genetic perturbations (Mine et al., 2014). To this end, all possible 

combinations (from single to quadruple) of A. thaliana mutants deficient in signaling 

mediated by JA, ET, SA, and phytoalexin deficient 4 (PAD4), a major component of plant 

immunity, were generated, enabling experimental stepwise reconstitution of the four 

signaling sectors and their interactions in the network (Tsuda et al., 2009).  

1.1.3 Resilience	and	tunability	in	the	plant	immune	system	

In a resilient system, the output is stable even when part of the system is disabled 

(Katagiri, 2018). Resilience in the immune system is important because pathogens attempt to 

disrupt plant immune sectors by using effector molecules (Kazan and Lyons, 2014; Toruño et 

al., 2016); and such pathogen acts are virtually unavoidable because pathogens can evolve 

much faster than plants (Katagiri, 2018). Environmental stresses also compromise plant 

immune systems. For instance, high temperature suppresses plant immunity mediated by SA 

and PAD4, leading to susceptibility against biotrophic pathogens (Alcázar and Parker, 2011; 

Huot et al., 2017). A system is tunable when the level and spectrum of the outputs can be 

quantitatively changed depending on the inputs (Katagiri, 2018). Tunability is important 

because the immune response is costly, making unnecessary activation a burden for plant 

fitness (Katagiri, 2018). In addition, MAMPs that can be recognized by plant immune 

receptors are produced by harmless microbes in the plant microbiota as well as by pathogens, 
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thus immune activation needs to be carefully regulated according to the hazard levels of 

individual microbes.  

1.1.4 Mechanisms	underlying	resilience	and	tunability	

Resilient and tunable properties of plant immunity have been uncovered in a four-

sector network comprised of SA, JA, ET and PAD4. When one of the sectors is removed, 

plants still retain a large part of pathogen growth suppression activity induced by flg22 or 

AvrRpt2, elicitors of PTI or ETI, respectively (Tsuda et al., 2009). However, removal of all 

four sectors abolished around 80% of inducible immunity in both cases (Tsuda et al., 2009). 

Similarly, the network reconstitution approach was used to dissect complex regulation of A. 

thaliana transcriptome responses to flg22 by the JA/ET/PAD4/SA signaling network (Hillmer 

et al., 2017). Statistical modelling of the contributions of the individual signaling sectors and 

their interactions to expression changes of over 5000 flg22-responsive genes revealed that 

these genes are not merely dependent on single signaling sectors, but rather on multi-sector 

interactions (Hillmer et al., 2017). Consequently, the transcriptional responses of most of the 

flg22-responsive genes are highly buffered (i.e. single mutations do not affect flg22 

responsiveness), and thus likely resilient to perturbation of the network components by 

pathogen effectors and environmental factors. The combination of network reconstitution 

and statistical modelling also unveiled transcriptional regulatory logic that could not be 

detected in conventional genetic studies. For instance, the SA-dependent genes defined by a 

conventional genetic means (genes showing no transcriptional responses in an SA-deficient 

mutant sid2) were not simply regulated by the SA signaling sector alone, but were regulated 

by the ET, PAD4, and SA signaling sectors and their interactions (Hillmer et al., 2017). The 

four-sector network also contributes to rapid transcriptional reprogramming during 

AvrRpt2-triggered immunity, which is critical for suppressing pathogen growth (Mine et al., 

2018). Quantitative measurements of expression of marker genes for each signaling sector, as 

well as the growth of P. syringae pv. tomato DC3000 (Pto) and pv. maculicola ES4326 in all 

possible combinations of plant genotypes treated with three different MAMPs (flg22, elf18, or 

chitosan) enabled construction of a highly predictive regression model that describes signal 

flow in the JA/ET/SA/PAD4 signaling network during PTI (Kim et al., 2014). The model 

showed that the ET sector represses the JA and PAD4 sectors, the latter of which explains a 

mechanism for ET-mediated SA suppression, as PAD4 is required for SA accumulation in 
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PTI (Tsuda et al., 2008). Loss of either ET or JA sectors increased network fragility, indicating 

that the inhibitory effect of the ET sector on the JA sector is important for resilience of the 

network output (Kim et al., 2014). This model showed that the JA and PAD4 sectors are 

compensatory in activation of the SA sector, enabling resilient SA-mediated immune 

responses (Kim et al., 2014). The positive effect of the JA sector on the SA sector was 

somewhat unexpected. Both JA and SA accumulation increases during PTI and ETI (Doares 

et al., 1995; Hillmer et al., 2017; Kim et al., 2014; Tsuda et al., 2008), suggesting the 

importance of JA-SA crosstalk for orchestrating plant immune responses. Nevertheless, our 

understanding of the biological significance of JA-SA crosstalk was mostly limited to their 

antagonistic interactions explaining prioritization of JA- or SA-mediated immunity, each of 

which is effective to suppress the growth of pathogens with different lifestyles over the other 

(Glazebrook, 2005; Spoel et al., 2007). This is likely because most studies on JA-SA crosstalk 

have been performed with exogenous application of these hormones or through analysis of 

single null mutants (Pieterse et al., 2012). Recently, Mine et al. have revealed the molecular 

mechanisms by which the JA and PAD4 sectors enable resilient and tunable SA responses 

during flg22-triggered immunity (Mine et al., 2017b) (Figure 2A). Expression of EDS5, 

encoding an SA transporter, is both negatively and positively regulated by JA; JA suppresses 

the expression of PAD4, a positive regulator of EDS5, while JA positively regulates EDS5 

expression via MYC2 (Mine et al., 2017b) (Figure 2A). This network explains the negative 

role of JA on SA accumulation in the intact network (tunability) and the positive role of JA on 

SA accumulation when the PAD4 sector is abolished (resilience). Notably, the positive effect 

of JA on SA is physiologically relevant for the growth suppression of Pto under high 

temperature, which compromises the PAD4 function (Mine et al., 2017b). 

Resilience and tunability are also realized by the interactions between PTI and ETI. A 

recent study revealed a novel immune sector termed EMPIS (ETI-mediating, PTI-inhibited 

Sector) (Hatsugai et al., 2017). EMPIS regulates ETI responses, including HR cell death, even 

without the four-sector network and is suppressed by PTI signaling (Figure 2B) (Hatsugai et 

al., 2017). This system can be interpreted in the context of network resilience and tunability. 

As long as PTI is effective against pathogens, ETI signaling is suppressed by PTI at EMPIS, 

but once PTI is compromised by pathogen effectors or other environmental factors, ETI can 

be activated through EMPIS. The molecular identity of this ETI signaling and its inhibition 

mechanism by PTI remain elusive, but the latter could be explained by the GYF domain 
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protein PSIG1 that is phosphorylated upon MAMP perception and is required for 

suppressing HR cell death during ETI in an SA- and ROS-independent manner (Matsui et al., 

2017). This system avoids unnecessary activation of ETI, which is costly, and is resilient 

against perturbations of PTI. The study also showed that some avirulent effectors activate 

EMPIS signaling before EMPIS is suppressed by PTI, suggesting that the strength and 

dynamics of immune responses can be tuned depending on the repertoire of effectors, which 

partly determines the potency of pathogens. Thus, this system monitors the pathogen type 

and activity and protects against pathogens suppressing plant immunity.  

1.1.5 Balance:	harmony	between	conflicting	responses	

Prioritizing responses is considered to be an adapted trait of plants to efficiently use 

finite energy (Karasov et al., 2017). This is enabled by hormone cross talk such as antagonistic 

interactions between SA and JA or ABA. During responses against biotrophic pathogens, 

which activate SA response, plants become more susceptible to attacks by necrotrophic 

pathogens and insect herbivory, which requires JA responses (Thaler et al., 2012). Also, ABA 

signal suppresses SA to prioritize abiotic stress responses over biotic stress responses (Yasuda 

et al., 2008). An apparent paradox is that heterogeneous environments often require plants to 

accomplish tasks that entail conflicting responses at the same time. It is conceivable that 

biotrophic and necrotrophic pathogens simultaneously attack plants or that plants experience 

pathogen attack under abiotic stress conditions such as high salinity (Bai et al., 2018). Recent 

studies suggested that conflicting stress responses are balanced within the plant body in 

spatial manners. 

Spatial balancing of conflicting responses was observed within a leaf. Real-time 

monitoring of SA and JA marker gene responses in leaves infected by Pto carrying AvrRpt2 

revealed that the activation of the SA response was limited to several layers of cells 

surrounding the pathogen infection site while the JA response was activated widely but 

exclusively outside of the SA-active region (Betsuyaku et al., 2018). Thus, SA and JA 

responses are spatially separated within a leaf (Figure 2C). This might suggest that plant 

leaves fight against biotrophic pathogens by activating SA-mediated immunity at the local 

infection site and, at the same time, prepare for attacks by other types of pathogen 

(necrotrophs and herbivores) by activating JA-mediated immunity in the distal area within 
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the same leaf (Tsuda, 2018) The biological significance of this spatial separation awaits future 

investigation.  

Another balancing effect was seen between leaves when plants experienced biotic and 

abiotic stresses at the same time. Berens et al., found that ABA antagonized SA responses in 

old leaves but not in young leaves of four week-old A. thaliana plants (Berens et al., 2019). In 

young leaves, PBS3, an SA signaling component, blocks the negative impact of ABA on SA 

responses and steers young leaves to prioritize for immunity under salt or drought stress. 

Thus, plants balance SA-ABA crosstalk depending on leaf age (Berens et al., in press) (Figure 

2D). This balancing crosstalk mediated by PBS3 appears to contribute to plant growth and 

reproduction under combined stresses of biotrophic pathogens (bacteria or oomycetes) and 

salinity (Berens et al., 2019). Moreover, PBS3 plays a role in shaping leaf age- and salt stress-

dependent microbiota assembly (Berens et al., 2019), suggesting that the balancing SA-ABA 

crosstalk is important to recruit specific microbial communities in old and young leaves 

under environmental stresses, which may contribute to plant health. 
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Figure 2: Resilience, tunability, and balance in the plant immune system  

(A) The network regulating salicylic acid (SA) accumulation via EDS5. In a normal condition, the 
jasmonate (JA) pathway negatively regulates PAD4 to fine-tune SA accumulation. At high 
temperature, where PAD4 function is abolished, the JA pathway positively contributes to SA 
accumulation by activating EDS5. (B) Interactions between pattern-triggered immunity (PTI) and 
effector-triggered immunity (ETI) via EMPIS (ETI-mediating, PTI-inhibited Sector). (C) Spatial 
separation of SA and JA responses upon infection of Pseudomonas syringae pv. tomato DC3000 (Pto) 
carrying AvrRpt2. (D) Leaf age-dependent prioritization of biotic and abiotic stress responses. Under 
saline/drought conditions, plant SA responses to biotrophic pathogens are inhibited by the abscisic 
acid (ABA) pathway in old leaves, while in young leaves, PBS3 protects the SA pathway from 
suppression by the ABA pathway. This figure was adopted from Nobori et al., 2019 (submitted). 

1.2 Bacterial	virulence	networks		

During the course of co-evolution with host plants, pathogens have evolved diverse 

virulence mechanisms to manipulate the plant immune networks at different levels (Toruño 
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et al., 2016). A remarkable example is that many pathogens deploy effector proteins or 

produce phytohormones or their mimics to exploit existing antagonistic interactions in the 

phytohormone signaling networks, thereby interfering with plant immunity (Kazan and 

Lyons, 2014; Shen et al., 2018). Thus, the interconnectivity in the plant immune networks 

provides not only versatile regulation in plants but also vulnerability to pathogen exploitation.  

Bacterial pathogens are well-studied with respect to their virulence mechanisms. In 

addition to proteinaceous type III effectors (T3Es) delivered into the host cell by the type III 

secretion system (T3SS), many other virulence-related molecules and processes have been 

characterized, including siderophores, exopolysaccharides, quorum sensing (QS), and 

production of phytohormones and their mimics (Aslam et al., 2008; Fones and Preston, 2013; 

Kunkel and Harper, 2017; Quiñones et al., 2005; Ronald and Joe, 2017). Moreover, regulation 

of these virulence factors are likely coordinated to accomplish diverse tasks in host plants 

(Mole et al., 2007). These coordinated regulations of virulence factors can be regarded as 

bacterial virulence networks (Figure 1). Analogous to bacterial virulence molecules that 

interfere with plant immunity, some plant-derived compounds are known to affect the 

components of bacterial virulence networks (Yuan et al., 2008). 

Bacterial genes and processes that are important for virulence in plants have been 

characterized in various bacterial species. These include T3SSs, T3Es, QS, and iron 

homeostasis (Büttner and He, 2009; Fones and Preston, 2013; Quiñones et al., 2005). 

However, how these processes are regulated in planta is poorly understood. In addition, the 

regulatory mechanisms of pathogen virulence pathways appear to be diverse bacterial species, 

making it difficult to distil a general concept (Mole et al., 2007). Nevertheless, I highlight 

relatively well-studied bacterial virulence factors and their regulations in planta and discuss 

the possible feature of the bacterial virulence networks. 

 T3SSs and T3Es are the best studied bacterial factors in plant pathogens as they are 

crucial for virulence and for determining host range (Collmer et al., 2000; Fouts et al., 2002; 

Lindeberg et al., 2009; Tang et al., 2006). Genes related to the T3SS and T3Es are involved in 

so called the hrp regulon and are co-regulated, e.g., they are globally induced upon infection 

to the host or in growth media mimicking plant environments (Tang et al., 2006). HrpL, an 

extracytoplasmic function (ECF) sigma factor, is the primary regulator of the T3SS and T3E 

regulatory pathway in many plant bacterial pathogens (Tang et al., 2006). P. syringae lacking 

hrpL showed impaired virulence in tomato and A. thaliana (Chen et al., 2009; Sreedharan et 
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al., 2006). HrpL also regulates genes that do not encode the T3SS or T3Es. These include iaaL, 

an IAA-amino acid conjugate synthase, matE, a putative MATE family transporter, and corR, 

a coronatine regulator, all of which are important for the virulence of Pto (Castillo-Lizardo et 

al., 2015; Mucyn et al., 2014; Sreedharan et al., 2006). 

QS is a cell-cell communication process with which bacteria orchestrate their 

responses as a community and is important for bacterial virulence in the host (Papenfort and 

Bassler, 2016). QS is mediated by signaling molecules called autoinducers that are produced 

and secreted into the environment and are perceived by specific receptors. Acyl-homoserine 

lactones (AHLs) are the most common autoinducer in gram-negative bacteria (Papenfort and 

Bassler, 2016). In P. syringae pv. syringae (Pss), a mutant lacking both the AHL synthase and 

AHL receptor showed impaired virulence in bean leaves (Quiñones et al., 2005). The QS 

system was shown to regulate many downstream genes related to virulence, such as plant cell 

wall degrading enzymes and the T3SS in Pectobacterium atrosepticum during infection in 

potato (Liu et al., 2008). Bacteria might also employ QS systems to respond to host signals in 

addition to their own signals. Typically, genes encoding an AHL synthase and AHL receptor 

are linked on the genome, but some receptor genes lack their paired AHL synthase genes and 

are called orphan or solo receptors (Patankar and Gonz´alez, 2009). A subgroup of the 

orphan receptors of plant-associated bacteria responds to plant-derived compounds and 

regulates bacterial genes related to virulence (González and Venturi, 2013; Venturi and 

Fuqua, 2013). For instance, an orphan receptor of Xanthomonas oryzae pv. oryzae, OryR, is 

important for responding to rice-derived compounds and positively regulating the expression 

of virulence genes (Ferluga et al., 2007; Ferluga and Venturi, 2009; González et al., 2013). 

Iron is an essential element for most organisms including plants and bacteria and iron 

homeostasis is known to be important for bacterial virulence in plant and animal hosts 

(Chandrangsu et al., 2017; Fones and Preston, 2013). In many bacterial species, iron 

responses are primarily regulated by Fur, which typically functions as a transcriptional 

repressor of its target genes in the presence of Fe2+ and this negative regulation is released 

under an iron deficient condition (Troxell and Hassan, 2013). Among the Fur-regulated 

genes is pvdS, encoding an ECF sigma factor, which regulates genes related to the production 

of a siderophore, pyoverdine, and other genes (Butcher et al., 2011; Swingle et al., 2008). 

Siderophores were shown to be important for virulence of P. syringae pv. tabaci in tobacco 
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(Taguchi et al., 2010), but are dispensable for virulence of Pto in tomato and A. thaliana 

(Jones and Wildermuth, 2011). 

Another ECF sigma factor, AlgU, also contributes to the virulence of bacterial 

pathogens (Markel et al., 2016). AlgU controls alginate biosynthesis and other processes and 

algU mutants of Pto, P. syringae pv. glycinea (Psg) PG4180, and Pss B728a showed reduced 

virulence in plants (Markel et al., 2016; Schenk et al., 2008; Yu et al., 2014). Alginate 

production was shown to be important for the virulence of P. aeruginosa and Pss (Yorgey et 

al., 2001; Yu et al., 1999), but be dispensable for the virulence of Pto and Psg PG4180 (Markel 

et al., 2016; Schenk et al., 2008), suggesting that other processes controlled by AlgU are 

important for bacterial virulence. Indeed, RNA-seq analysis of in vitro cultured Pto showed 

that, in addition to alginate biosynthesis, AlgU regulates genes related to osmotic and 

oxidative stress responses and the T3SS, which might explain the role of AlgU in bacterial 

virulence (Markel et al., 2016). Moreover, a microarray analysis of the algU mutant of Pss 

B728 in planta showed that AlgU impacts expression of many genes beyond  alginate 

production(Yu et al., 2014). 

In some plant bacterial pathogens, the regulation of the T3SS and QS systems are 

influenced by AlgU and/or iron availability. The hrp regulon of Pto is positively regulated by 

AlgU and external iron (Bronstein et al., 2008; Markel et al., 2016). Fur positively regulates 

psyI and psyR, which encode an AHL synthase and receptor, respectively, in P. syringae pv. 

tabaci (Cha et al., 2008). A PvdS-binding site was found in the upstream region of psyI in Pto 

(Swingle et al., 2008), although whether PvdS regulates psyI remains elusive. In addition, it 

has been shown that iron availability affects QS processes in Pss (Dulla et al., 2010). Thus, 

bacterial virulence signaling pathways appear to be interconnected to form bacterial virulence 

networks. Similar to plant immune networks, this interconnected feature would provide 

regulatory potential that benefits bacterial pathogens inside and outside the host, but at the 

same time might be targeted by plant immunity. 
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1.3 Interactions	between	plant	immune	and	bacterial	virulence	networks		

1.3.1 	The	plant	receptor	networks	as	targets	of	pathogens	

Pathogens have evolved effector molecules that target the network of cell surface 

receptors to dampen PTI. BAK1, a hub of the network, is targeted by multiple effectors: 

AvrPto, AvrPtoB, HopF1, and HopB1 (Li et al., 2016; Shan et al., 2008; Zhou et al., 2014). 

Intriguingly, HopB1 protease specifically cleaves immune-activated BAK1, thus conferring 

virulence without perturbing other BAK1 functions such as those in plant growth (Li et al., 

2016). AvrPtoB also targets the MAMP receptors FLS2 and CERK1 (Gimenez-Ibanez et al., 

2009; Göhre et al., 2008; Xiang et al., 2008). HopAO1 targets another MAMP receptor, EFR 

(Macho et al., 2014). Therefore, although the network of cell surface receptors enables plants 

to finely control PTI responses, it can be exploited by pathogens as the manipulation of a PRR 

could affect other parts of the network due to its highly interconnected nature.  

Although ETI confers potent and resilient immunity against biotrophic pathogens, 

which feed on living host tissues, ETI is exploited by some necrotrophic pathogens, which 

actively kill host tissues and feed on the dead cells. In oats, an immune component TRX-h5 is 

guarded by the NLR LOV1 (Lorang et al., 2012; Wolpert and Lorang, 2016). Cochliobolus 

victoriae, a necrotrophic fungus and the causal agent of Victoria blight, hijacks this immune 

system by producing an effector molecule, victorin, which binds to TRX-h5 and consequently 

triggers HR cell death via LOV1, rendering the oat plant susceptible (Lorang et al., 2012; 

Wolpert and Lorang, 2016). Another necrotrophic fungus, Parastagonospora nodorum, 

produces SnToxA, which indirectly activates the wheat NLR Tsn1 to cause HR cell death and 

susceptibility (Shi et al., 2016). P. nodorum also produces another toxin SnTox1, which 

directly binds to Snn1, a wall associated kinase class receptor kinase, to trigger cell death for 

inducing susceptibility (Shi et al., 2016). Thus, plant immune signaling that is associated with 

cell death is exploited by necrotrophic pathogens for their growth in plants. However, it was 

shown that prior ETI activation in one half of a leaf has no effect on promoting the growth of 

the necrotrophic fungus Alternaria brassicicola in the other leaf half (Spoel et al., 2007). 

Furthermore, ETI-associated cell death and immune responses are tightly regulated in a 

spatiotemporal manner (Betsuyaku et al., 2018; Tsuda, 2018). Therefore, it may be possible 
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that spatiotemporal regulation of ETI responses including cell death provides certain 

tolerance against exploitation by necrotrophic pathogens in natural conditions. 

1.3.2 Phytohormone	networks	as	targets	of	pathogens	

Bacterial and fungal pathogens have evolved to target the phytohormone network to 

interfere with plant immunity, often by exploiting the interconnected feature of the 

phytohormone signaling networks (Kazan and Lyons, 2014; Shen et al., 2018). Hormone 

crosstalk suppressing SA (e.g., JA-SA, ABA-SA, and auxin-SA) is often exploited by 

biotrophic bacterial pathogens that are sensitive to SA-mediated immunity. Here, I highlight 

two types of exploitation/targeting of phytohormone crosstalk in plant-bacteria interactions. 

The first is the manipulation of phytohormone signaling pathways by using effector proteins. 

AvrB, HopBB1, HopX1, and HopZ1a employ different mechanisms to inactivate JAZ 

proteins, the repressors of JA-mediated transcriptional reprogramming, thereby activating JA 

signaling to suppress SA-mediated immunity (Gimenez-Ibanez et al., 2014; Jiang et al., 2013; 

Yang et al., 2017; Zhou et al., 2015). Similarly, AvrPtoB and AvrRpt2 enhance the 

accumulation of ABA and auxin, respectively, and promote virulence (Chen et al., 2007; de 

Torres-Zabala et al., 2007). The second strategy is the production of phytohormones or their 

mimics. The phytotoxin coronatine produced by some strains of P. syringae functions as an 

analogue of JA-isoleucine (JA-Ile), an active form of plant endogenous JA, and contributes to 

suppressing stomatal and apoplastic immunity by reducing SA accumulation and/or by 

inactivating MAPKs (Mine et al., 2017a; Zheng et al., 2012). Production of coronatine or 

coronatine-like compounds is known in other bacterial strains, suggesting that producing JA-

Ile mimicking compounds may be a wide-spread strategy for bacteria to confer fitness 

advantages in plant hosts (O’Neill et al., 2018; Zhang et al., 2017). Several plant pathogens 

produce the auxin indole-3-acetic acid (IAA) and affect host auxin signaling (Kunkel and 

Harper, 2017). Disruption of bacterial aldA and aldB, encoding IAA biosynthesis enzymes, 

leads to reduced bacterial virulence in the plant host in an SA-dependent manner 

(McClerklin et al., 2018), suggesting that exploiting auxin signaling is a bacterial virulence 

mechanism that suppresses SA-mediated immunity. Notably, some bacteria are known to 

produce SA although the physiological significance of this during interaction with plants 

remains elusive (Bakker et al., 2014; Jones et al., 2007). 
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Which of these two strategies (signaling manipulation by proteinaceous effectors or 

phytohormones) is more advantageous for pathogens? Effector proteins that target 

phytohormone signaling pathways are risky because effectors can be recognized by plant 

NLRs and trigger ETI. Indeed, AvrRpt2, AvrB, AvrPtoB, and HopZ1a are known to trigger 

ETI in certain plant genotypes (Bent et al., 1994; Jiang et al., 2013; Kim et al., 2002; Mackey et 

al., 2002; Mindrinos et al., 1994). On the other hand, phytohormones or their mimics 

produced by bacteria would have no or less risk of triggering ETI as they can hardly be 

recognized as foreign molecules. Thus, it could be argued that the production of 

phytohormones (mimics) is more advantageous. However, a comparative genome analysis of 

287 P. syringae strains showed that coronatine is not the dominating JA-activating molecule 

over other JA-manipulating effectors (Yang et al., 2017). Although more comprehensive 

analysis including coronatine-like molecules would be helpful, this data implies that there are 

additional factors that determine the value of these virulence molecules. Since biosynthesis of 

coronatine requires a series of chemical reactions and enzyme-encoding genes, it is possible 

that coronatine production may be costly for bacteria compared with T3Es as a single T3E 

can provide an added value (Bender et al., 1999). Another possible advantage of effectors is 

that effectors may be able to target specific functions of plants. It was proposed that, while 

coronatine and HopX1a fully activate JA responses, HopBB1 targets only a subset of the JAZ 

proteins and activates a subset of JA-mediated responses, potentially minimizing pleiotropic 

negative effects on the hosts, which could lead to the benefit of the pathogens (Yang et al., 

2017). 

Plants are not entirely helpless against pathogen virulent effectors. ETI can effectively 

suppress pathogen growth despite the existence of many virulence T3Es and toxins that 

interfere with the plant immune networks. An emerging idea for explaining this is that ETI 

can counteract virulence actions of pathogen effectors. For instance, ETI triggered by 

AvrRpt2 induces S-nitrosylation and inactivation of the bacterial effector HopAI1 that 

suppresses mitogen-activated protein kinases (MAPKs), important components of plant 

immunity (Meng and Zhang, 2013), thereby restoring plant immunity (Ling et al., 2017). 

Also, AvrRpt2-triggered ETI cancels coronatine-triggered gene regulation that causes MAPK 

inactivation (Mine et al., 2017a). Understanding the precise mechanisms of pathogen 

virulence and its suppression by plant immunity is key to engineer the plant immune 

networks.  For instance, the crystal structure of the receptor-ligand complexes guided the 
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engineering of the JA receptor COI1 to avoid binding to coronatine while maintaining the 

binding with JA-Ile (Zhang et al., 2015). Transgenic plants expressing the modified COI1 

receptor in coi1 background showed insensitivity against coronatine while maintaining the 

functions of endogenous JA (Zhang et al., 2015), supporting its potential benefit in 

agriculture. 

1.3.3 Plant-derived	compounds	affect	bacterial	virulence-related	processes		

The role of plant-derived compounds during plant-bacterial interactions is well 

studied in the legume-rhizobium symbiosis. Phenolic compounds, especially flavonoids, are 

secreted by legume plants and recognized by rhizobia in a species-specific manner, which 

then regulates rhizobial genes important for establishing symbiotic interactions (Cao et al., 

2017). However, little is understood about how plant-derived compounds affect bacterial 

pathogens in plants. 

Although we poorly understand about how plants intervene with the bacterial 

virulence networks, accumulating evidence suggests that plant-derived compounds can affect 

bacterial physiology. The QS signaling of some bacterial species was shown to be affected by 

plant-derived compounds in vitro (Choo et al., 2006; Degrassi et al., 2007; Gao et al., 2003; 

Keshavan et al., 2005; Rasmussen and Givskov, 2006; Teplitski et al., 2004, 2000; Vikram et 

al., 2010; Yuan et al., 2008). For instance, SA and γ-aminobutyric acid activate the quorum-

quenching system, attKLM operon, in Agrobacterium tumefaciens and suppress QS responses 

(Yuan et al., 2008). Also, flavonoids derived from citrus inhibit the QS system, biofilm 

formation, and T3SS expression of Vibrio harveyi (Vikram et al., 2010). Rosmarinic acid was 

shown to act as an AHL mimic and directly bind to a QS receptor RhlR of P. aeruginosa 

affecting bacterial physiology (Corral-Lugo et al., 2016). These examples illustrate the 

possibility that plants modulate bacterial QS processes as a defense strategy. 

Phytohormones also can directly affect bacterial physiology. SA was shown to 

suppress the expression of virulence genes in A. tumefaciens and P. aeruginosa (Prithiviraj et 

al., 2005; Yuan et al., 2008). Lebeis et al. showed that SA directly affects in vitro growth of 

some bacterial strains isolated from A. thaliana plants grown in a wild soil (Lebeis et al., 

2015). Notably, the accumulation of SA in the apoplast, a prevalent growth niche for bacterial 

pathogens, was shown to increase upon pathogen infection (Carviel et al., 2014). These results 

imply that plants employ SA to affect metabolisms of bacterial pathogens directly as well as 
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through well-described SA-mediated plant immune signaling (Seyfferth and Tsuda, 2014). In 

addition, a plant-derived auxin, IAA, negatively affects expression of virulence genes in A. 

tumefaciens and the T3SS in Pseudomonas savastanoi in vitro (Aragón et al., 2014; Yuan et al., 

2008). On the other hand, plant-produced IAA in plants and the exogenous application of 

IAA in vitro positively regulate the expression of virulence genes in Dickeya dadantii 3937 

(Yang et al., 2007) and genes encoding components of the type VI secretion system of P. 

savastanoi (Aragón et al., 2014), respectively. Although it is evident that phytohormones can 

affect bacterial metabolism and behaviors, the molecular mechanisms of how bacteria 

perceive phytohormones and if phytohormone perception is important for bacterial virulence 

are poorly understood. 

The hrp regulon is also responsive to plant-derived compounds (Tang et al., 2006).  

Plant apoplastic extracts can induce the hrp genes (Rico and Preston, 2008). Moreover, 

several organic acids produced by plants were shown to induce the hrp genes of Pto in vitro as 

well as in planta (Anderson et al., 2014). This may contribute to the induction of the hrp 

genes upon contact with plant cells. Some plant-derived compounds suppress the hrp genes. 

Plant-derived flavonoids suppress the expression of hrp genes and flagella (Vargas et al., 

2013). Also, the A. thaliana mutant of att1, a cytochrome P450 monooxygenase catalyzing 

fatty acid hydroxylation, showed higher expression of T3SS genes of P. syringae pv. 

phaseolicola (Pph) compared with wild-type plants (Xiao et al., 2004), implying that plant-

derived fatty acids may suppress the expression of the T3SS. Collectively, various plant-

derived compounds might function as signaling cues for bacterial pathogens to induce the 

virulence pathways and also function as defense molecules for plants to suppress bacterial 

virulence.  

1.3.4 How	does	plant	immunity	affect	bacterial	signaling	networks?	

It has been shown that PTI, but not ETI, suppresses the expression of T3SS genes in 

Pto (Crabill et al., 2010a; Nomura et al., 2011) and the translocation of T3Es into plant cells 

(Crabill et al., 2010a; Nomura et al., 2011; Oh et al., 2010). However, the molecular 

mechanism of how plant immunity affects bacterial gene expression is mostly enigmatic. It 

was shown in A. thaliana that the MAPK MPK6 suppresses the production of plant organic 

acids that induce T3SS expression and T3E translocation, thereby inhibiting bacterial growth 

(Anderson et al., 2014). These organic acids are likely secreted into the plant apoplast and 
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affect bacterial responses. Changing apoplastic conditions may be a major plant immune 

strategy to control foliar bacterial pathogens. During ETI triggered by the infection of Pph, 

the leaf apoplast of Phaseolus vulgaris showed various changes including increased pH and 

accumulation of GABA and metal cations, some of which may be responsible for pathogen 

growth inhibition (O’Leary et al., 2016). Sugar transporters in A. thaliana are activated during 

PTI and sequester apoplastic sugar to inhibit the activity of the T3SS and bacterial growth 

(Yamada et al., 2016). Plant immunity might also control pathogen virulence by keeping 

water content in the apoplast low, as Pto creates an aqueous apoplast for virulence (Xin et al., 

2016). Furthermore, limiting or over-supplying metals is known to be a defense strategy in 

animals (Chandrangsu et al., 2017). Thus, it is plausible that plants change the content of 

metals in the apoplast to inhibit bacterial growth (Fones and Preston, 2013). Understanding 

how these changes in the apoplast caused by plant immunity affect bacterial metabolisms in 

planta is crucial for better understanding the mode of action of plant immunity to inhibit 

pathogen growth. However, there is no comprehensive study on this topic due to the 

technical difficulties in profiling global bacterial responses in planta. 

1.4 	Roles	of	plant	immunity	in	shaping	microbiota		

Plant immunity not only inhibits the growth of pathogens in the plant body, but it 

also allows plant microbial communities to assemble and endure (Hacquard et al., 2017). 

Bacterial communities can promote plant growth and protect plants from pathogenic bacteria 

or filamentous fungi, suggesting that keeping certain microbes close is crucial for plant 

survival (Duran et al., 2018; Kwak et al., 2018). Thus, it is likely that plants integrate signals 

from the microbiota for their decision-making. Microbiota signals can be highly 

heterogeneous as they contain a variety of microbes that have various MAMPs and other 

factors that affect plant immune systems. Recently, it has been shown that some plant-

associated Rhizobiales species suppress plant immune responses by yet unknown 

mechanisms (Garrido-Oter et al., 2018). The spatial distribution of microbiota members 

(niche specificity) can be highly heterogeneous, although no comprehensive study has 

visualized this. Moreover, a bacterial species can create heterogeneous populations in hosts 

(Rufián et al., 2016; West and Cooper, 2016). Environmental factors that impact plant 

immune responses are also heterogeneous in time and space. In soil, nutrients exist in a 
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heterogeneous manner and thus nutrient availability varies within a plant body (Farley and 

Fitter, 1999; Jackson and Caldwell, 1993; Lark et al., 2004). Therefore, plant immunity would 

need to be resilient, tunable, and balanced to integrate heterogeneous microbial and non-

microbial inputs and respond in spatially resolved manners for shaping a healthy microbiota.  

To understand the interactions between the plant immune system and plant 

microbiota, a reductionist approach can be taken. A first step is to understand the potential of 

plants to respond to a microbial community. Host genetics can then dissect the contribution 

of plant processes in responding to the microbiota under different environmental conditions. 

A recent study showed that a bacterial community regulates plant immune responses under 

phosphate deficiency in a manner dependent on PHR1, the master transcriptional regulator 

of phosphate starvation responses (Castrillo et al., 2017). Studies of plant responses to 

bacteria and fungi that can trigger induced systemic resistance (ISR) pointed to MYB72 as a 

central regulator of ISR (Martínez-Medina et al., 2017; Van der Ent et al., 2008; Verhagen et 

al., 2004). MYB72 is known to be induced under iron-deficient conditions and is essential for 

the excretion of iron-mobilizing compounds, such as coumarins, which also have selective 

antimicrobial activity (Gnonlonfin et al., 2012; Stringlis et al., 2018; Zamioudis et al., 2014). A 

recent study showed that MYB72-depenent coumarin exudation is important for root 

microbiota assembly (Stringlis et al., 2018). These examples suggest that the link between 

plant immunity and plant responses to nutrient conditions is likely an adaptive trait for 

plants to integrate multiple environmental inputs. 

Currently, plant responses to each microbiota member or microbial community are 

poorly understood except for some microbes beneficial to plants. The roles of plant immune 

networks in responses to the plant microbiota are important areas of research for the better 

understanding of plant-microbiota interactions. It is important to understand the plant 

immune system at multiple layers, i.e., plant cellular responses against microbiota members, 

immune outputs that directly affect microbiota members, and the impact of plant immunity 

on microbiota members and microbe-microbe interactions. This would be crucial to address 

a fundamental question in plant microbiota research: how do plants winnow the surrounding 

microbial communities to shape the plant microbiota? Transcriptome and proteome studies 

of each plant microbiota member and metatranscriptome and metaproteome studies of 

microbial communities are potential strategies to tackle this question (Levy et al., 2018). 
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1.5 	Thesis	Aims		

Despite extensive studies on molecular events inside the plant cells during immunity, 

little is known about how plant immunity influences bacterial cellular processes to inhibit 

pathogen growth. One approach to gain insights into bacterial cellular changes during plant 

immunity is in planta transcriptome/proteome profiling of bacteria. However, in planta 

bacterial transcriptomics and proteomics of bacteria are challenging due to low abundance of 

bacterial mRNA/proteins compared to plant RNA/proteins, and it is particularly difficult to 

obtain sufficient bacterial information at an early stage of infection, where molecular events 

that critically influence the outcome of the plant-bacterial interaction might occur. Several 

previous studies profiled in planta bacterial transcriptomes by using microarrays and RNA-

seq (Chapelle et al., 2015; Chatnaparat et al., 2016; Yu et al., 2014, 2013) and in planta 

proteomes of bacteria on the leaf surface (Müller et al., 2016). However, the impact of plant 

signaling on the genome-wide bacterial transcriptomes/proteomes remains unknown. 

Here, I established methods for profiling transcriptomes and proteomes of Pto in 

naïve and immune-activated plant leaves at early and late infection stages (6 and 48 h post 

infection, hpi). These methods greatly enriched bacterial information from plant leaves. By 

profiling Pto transcriptomes in various immune activated/compromised conditions, I 

uncovered specific “immune-responsive” bacterial processes and genes whose expression was 

altered by PTI and ETI. Also, I showed that expression patterns of Pto genes at the early 

infection stage had a high predictive power for later bacterial growth at 48 hpi. Furthermore, I 

found that overexpression of pvdS, a global iron regulator belonging to the immune-

responsive gene sector, could partially counter bacterial growth inhibition during ETI. I also 

demonstrated that bacterial transcriptomes and proteomes are highly correlated in general, 

but there are cases where gene and protein expression patters are discordant. Notably, 

proteins at the tip part of the bacterial T3SS were suppressed only at the protein level by the 

plant SA pathway.  

Plant immunity not only suppresses pathogen growth, but it also affects the structure 

of bacterial communities (microbiota) and probably their functions. However, it is not 

understood how plant immunity affects individual bacterial species surrounding plants and 

shape the plant microbiota. To address this important question, I developed a pipeline for the 

co-transcriptome analysis of both A. thaliana and various commensal bacteria during 
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interactions. I found that different bacterial strains trigger plant immunity at different levels 

and there are common and specific bacterial processes regulated in planta among diverse 

bacterial strains. This approach, combined with bacterial growth assay, has the potential to 

elucidate the mechanisms by which plants discriminate different bacterial species and control 

their growth in planta. In summary, these approaches would help the research community of 

plant-microbe interactions to understand the mechanisms of plant immunity to inhibit 

pathogen growth and to shape the microbiota. 
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2 Results		

2.1 In	planta	transcriptomics	of	Pto	DC3000		

2.1.1 Method	establishment	of	in	planta	bacterial	transcriptomics			

To analyze the transcriptome of the model foliar bacterial pathogen P. syringae pv. 

tomato DC3000 (Pto) in A. thaliana, I initially attempted RNA-seq analysis using total RNA 

extracted from A. thaliana leaves infected by Pto. This approach failed to capture sufficient 

bacterial mRNA reads, being masked by overwhelmingly abundant plant RNA reads 

(Supplementary figure 1 A and B). To solve this problem, I established a method in which 

bacterial cells are first isolated from infected leaves before RNA extraction (Figure 3A) 

(Nobori et al., 2018b; Nobori and Tsuda, 2018). Infected leaves were harvested, coarsely 

crushed, and incubated in “bacterial isolation buffer”, which fixes and stabilizes bacterial 

RNA (Figure 3C and Supplementary figure 1C; see Materials and Methods for the 

establishment of a bacterial isolation buffer). After incubation, large plant debris was 

removed by filtering, and the flow-through was centrifuged to separate bacterial cells from 

plant tissues. Total RNA was extracted from the isolated bacterial cells, followed by rRNA 

depletion of both plants and bacteria to enrich mRNA, library preparation, and RNA-seq. 

This method successfully enriched for bacterial sequences (Figure 3C and Supplementary 

figure 1 A and B), allowing me to profile high-quality in planta bacterial transcriptomes with 

as few as 10 million total RNA-seq reads using the Illumina HiSeq platform (Supplementary 

figure 1 C and D and Supplementary figure 2 A-C). RNA-seq results were highly reproducible 

among independent biological replicates and sensitive enough to capture bacterial 

transcriptome differences between biologically distinct samples (Supplementary figure 2B). 

Gene expression data obtained by this RNA-seq strategy strongly correlated with RT-qPCR 

measurements using total RNA extracted directly from Pto-infected leaves (Figure 3D), 

indicating the accuracy of the RNA-seq data. To further assess the validity of the RNA-seq 

data, I compared my data with the one from a more costly alternative approach developed by 

the group of Prof. Dr. Sheng Yang He (Michigan State University), in which bacterial mRNA 

was isolated directly from infected plants without prior bacterial separation from the plant 

tissue, but, instead, highly abundant plant mRNA as well as plant and bacterial rRNAs were 
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removed by customized probes to enrich bacterial mRNA during cDNA library preparation 

(Figure 3B; See Materials and Methods). Note that these experiments were done completely 

independently in two laboratories with different growth conditions and pretreatments for 

plants, different preparations of bacterial inocula, and different kits for RNA extraction and 

cDNA library preparation (see Materials and Methods). Strikingly, these two methods led to 

highly similar results (Figure 3E), providing further proof-of-concept for both methods. 

Collectively, the method I established enabled a reliable profiling of in planta bacterial 

transcriptome with RNA-seq. 

 

 

Figure 3: Establishment of in planta Pto transcriptome analysis 

(A) Workflow of in planta bacterial transcriptome analysis based on bacterial isolation (See Materials 
and Methods for further information). (B) Workflow of in planta bacterial transcriptome analysis 
based on selective depletion of plant-derived transcripts (See Materials and Methods for further 
information). (C) The ratio of sequenced reads mapped on bacterial (“Bac.”) coding sequence (CDS), 
bacterial non-coding sequence, A. thaliana (“Plant”) genome, and else in all samples, including 
samples without bacterial enrichment as well as in vitro samples. (D) Validation of RNA-seq data by 
RT-qPCR. Four-week-old A. thaliana leaves were pretreated with 1 μM flg22 or water (Mock) one day 
before infection with Pto (OD600 = 0.5) and harvested at 6 h post infection. The samples were split into 
two: one was subjected to direct RNA extraction followed by RT-qPCR analysis and the other was 
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subjected to bacterial enrichment followed by RNA-seq. RT-qPCR results were normalized with the 
Pto 16S or gyrA expression (mean±s.e.m; n = 4 biological replicates from four independent 
experiments). RNA-seq data were processed as described in Materials and Methods (mean log2 count 
per million±s.e.m.; n = 4 biological replicates from four independent experiments). Pearson 
correlation coefficients (R2) are shown. (E) Pto gene expression fold changes (log2) in flg22-pretreated 
plants compared to mock-pretreated plants based on RNA-seq data independently obtained by two 
different approaches in two different laboratories: the method based on bacterial isolation from 
infected plants (MPI Cologne; x-axis) and on bacterial mRNA enrichment using customized 
oligonucleotides to remove abundant plant RNA without bacterial isolation (Michigan State U; y-
axis). Pearson correlation coefficient is shown. See Materials and Methods for detailed experimental 
procedures. This figure was adopted from (Nobori et al., 2018b). 

2.1.2 Pto	transcriptome	signatures	influenced	by	plant	immune	activation	

I profiled Pto transcriptomes under 27 in planta conditions and five in vitro 

conditions using the method shown in Figure 3A (114 samples in total; Figure 4A and 

Supplementary figure 3; see Supplementary table 1 for the full sample list with the number of 

replicates). Four Pto strains were employed. Wild-type Pto strain has T3Es that effectively 

suppress plant immunity in the A. thaliana wild-type Col-0, resulting in effector-triggered 

susceptibility (ETS). Pto strains that ectopically express a T3E, AvrRpt2 or AvrRps4 (hereafter 

Pto AvrRpt2 or Pto AvrRps4) trigger ETI dependent on the presence of cognate plant 

intracellular immune NLR receptor, RPS2 or RPS4, respectively (Bent et al., 1994; Gassmann 

et al., 1999; Mindrinos et al., 1994). The Pto D36E mutant lacks 36 Pto T3Es, lacking the 

ability to suppress plant immunity (Wei et al., 2015). In my conditions, bacterial proliferation 

was observed at 9 hpi, but not at 6 hpi (Supplementary figure 4) in both ETS and ETI in WT 

Col-0 plants and highly immune-compromised dde2 ein2 pad4 sid2 mutant plants (Tsuda et 

al., 2009). Thus, I decided to profile in planta Pto transcriptomes at 6 hpi because bacterial 

population density can affect bacterial gene expression patterns through, for instance, 

quorum sensing (Papenfort and Bassler, 2016). All four Pto strains showed similar 

transcriptome patterns in nutrient-rich King’s B (KB) bacterial growth medium; and these 

patterns were distinct from that of Pto grown in T3E-inducible minimal medium (Huynh et 

al., 1989) (MM; Figure 4B and Supplementary figure 5A). As expected from the previous 

studies (Tang et al., 2006), genes related to the T3SS and T3Es were globally induced in MM 

compared to KB (Figure 4C). Gene ontology (GO) analysis revealed that genes related to the 

T3SS and coronatine biosynthesis (Mittal and Davis, 1995) were induced in plants as 
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compared with KB medium (Figure 4C), consistent with the crucial roles of the T3SS and 

coronatine for Pto virulence (Brooks et al., 2004; Hauck et al., 2003). 

Pretreatment with a PTI elicitor derived from bacterial flagellin, flg22, triggers strong 

plant transcriptional reprogramming and resistance against bacterial pathogens (Zipfel et al., 

2004). However, the impact of flg22-triggered plant responses on any bacterial transcriptome 

remains unknown. I found that flg22-pretreated plants affected a substantial number of Pto 

genes and globally suppressed the bacterial processes activated in susceptible plants (Figure 

4C). The transcriptome patterns of Pto D36E in planta resembled that of Pto in flg22-

pretreated plants (Figure 4 B and C and Supplementary figure 5A). This supports the notion 

that effector deficient Pto D36E lacks the ability to suppress PTI and that pre-activation of 

PTI with flg22 can overcome effector-mediated immune suppression by wild-type Pto. 

Importantly, these results revealed that PTI suppresses not only bacterial virulence-associated 

mechanisms such as the T3SS, siderophore and coronatine biosynthesis, but also 

fundamental housekeeping processes for organisms. For instance, genes related to translation 

(mostly ribosomal proteins) were induced in Pto in planta, but were suppressed by PTI 

(Figure 4C), implying that the bacterial protein synthesis activity may also be targeted by PTI.  

During ETI triggered by AvrRpt2 or AvrRps4, several hundred genes (199 genes for 

AvrRpt2 and 317 genes for AvrRps4) were differentially expressed when compared with ETS 

(Pto infection; Figure 4C), although the effect was not as dramatic as PTI (Figure 4B). In 

particular, I found that ETI triggered by AvrRpt2 or AvrRps4 specifically led to down-

regulation of genes associated with siderophore and coronatine biosynthesis (Figure 4C). 

However, T3SS genes were not globally affected during ETI, in contrast to PTI-inducing 

conditions, suggesting that PTI and ETI differently affect Pto transcriptomes despite their 

overlapping downstream immune signaling components and their common ability to inhibit 

bacterial growth in planta. In addition, within the genes differentially expressed among the 

different conditions, 658 genes were annotated as “hypothetical proteins” (Supplementary 

figure 5B), suggesting that a substantial number of Pto genes likely playing roles during the 

interaction with A. thaliana have yet to be characterized. Taken together, the data revealed 

previously unknown transcriptomic responses of Pto during the activation of two major 

forms of plant immunity, PTI and ETI. 
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Figure 4: Profiles of Pto transcriptome under various conditions 

(A) Plant genotypes, bacterial (bac.) strains, and conditions used in this study. For the full sample list, 
see Supplementary table 1. Pto, Pseudomonas syringae pv. tomato DC3000; ETS, effector-triggered 
susceptibility; ETI, effector-triggered immunity; PTI, pattern-triggered immunity; SA, salicylic acid; 
JA, jasmonic acid; ET, ethylene; Trp, tryptophan; NLRs, nucleotide-binding domain leucine-rich 
repeat proteins. (B) Principle component analysis of 3344 genes detected in all of the samples. (C) 
Heatmap of -log10 p-value (adjusted by the Benjamini-Hochberg method) of the gene ontology (GO) 
terms representing the differentially expressed genes in different comparisons. MM, Pto in MM 
medium; KB, Pto in KB medium; vivo, Pto infection to Col-0; vitro, Pto in KB medium. This figure 
was adopted from (Nobori et al., 2018b). For the list of differentially expressed genes and complete 
enriched GO terms, see (Nobori et al., 2018b). 

2.1.3 In	planta	bacterial	transcriptome	patterns	at	an	early	time	point	is	tightly	linked	to	

later	bacterial	growth	during	infection	

Plant signaling pathways mediated by defense hormones, SA, JA, and ET contribute to 

bacterial growth suppression in a redundant manner (Tsuda et al., 2009). However, it is not 

known whether these hormone-signaling pathways affect the bacterial transcriptome 

similarly or differently. To address this question, I investigated transcriptome patterns of Pto 

or Pto AvrRpt2 in seven different A. thaliana mutants lacking one or more of these hormone 
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defense pathways (Figure 4A). Host genotype effects were observed more clearly in Pto 

AvrRpt2 infection than in Pto infection at 6 hpi; 321 genes of Pto AvrRpt2 were differentially 

expressed between Col-0 plants and at least one of the defense signaling mutants, while only 

26 genes of wild type Pto were differentially expressed. Thus, I focused on the differentially 

expressed genes (DEGs) of Pto AvrRpt2 (Figure 5A; left panel; blue/yellow heatmap) for 

further analysis. Comparisons between Col-0 and the immune-compromised mutants 

revealed that the effects of distinct hormone pathways were qualitatively similar (Figure 5A; 

middle panel; green/magenta heatmap). For example, the genes suppressed by the SA 

pathway were also suppressed by the JA/ET pathway. This implies that different immune 

pathways may converge on a common impact on the global gene expression of Pto. Strikingly, 

the expression patterns of the DEGs at 6 hpi, when bacterial population density remained 

unchanged compared to that observed at 0 hpi (Supplementary figure 4), strongly correlated 

with bacterial growth at 48 hpi in different plant genotypes (R2=0.94; Figure 5B), suggesting 

that bacterial transcriptome patterns at the early phase of infection could explain future 

bacterial growth.  

STP1 and STP13 encode sugar transporters, which were shown to sequester sugars 

from the apoplast where foliar bacterial pathogens colonize (Yamada et al., 2016). CYP79B2 

and CYP79B3 encode enzymes required for tryptophan-derived defense secondary 

metabolites including camalexin and 4-hydroxyindole-3-carbonyl nitrile (Mikkelsen et al., 

2000; Zhao et al., 2002). Previous studies showed that sugar sequestration and tryptophan-

derived defense secondary metabolite production contribute to resistance against Pto 

(Rajniak et al., 2015; Yamada et al., 2016). In the present study, Pto and Pto AvrRpt2 

transcriptomes in stp1 stp13 and cyp79b2 cyp79b3 mutants were similar to those in Col-0 

(Figure 5A), suggesting that these mechanisms do not play a major role in affecting bacterial 

responses in this experimental setup.  
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Figure 5: Host genotype effects on bacterial transcriptome 

(A) Left panel (blue/yellow heatmap): Hierarchical clustering of the relative expression (RE) of the 
differentially expressed genes (DEGs) in Pto AvrRpt2 based on the pairwise comparisons between 
Col-0 plants and the mutant plants (FDR < 0.01; |log2FC| > 1; represented by the red marks in the 
right panel). Middle panel (green/magenta heatmap): Gene expression fold changes of Pto AvrRpt2 in 
defense mutant plants compared to those in Col-0 or fold changes of Pto in flg22-pretreated Col-0 
compared to mock-pretreated Col-0. Pto and Pto AvrRpt2 are represented by gray and black marks, 
respectively. (B) The relationship between the expression pattern of the bacterial DEGs at 6 h post 
infection (hpi) and bacterial growth at 48 hpi. The Pearson correlation coefficient is shown (R2 = 
0.94). The genes of Pto AvrRpt2 identified as DEGs in at least one of the pairwise comparisons 
between Col-0 and mutant plants (FDR < 0.01; |log2FC| > 2) were used for the analysis. The x-axis 
represents Pearson correlation coefficients of DEGs expression patterns between each sample and Pto 
AvrRpt2 in Col-0 plants. The y-axis represents increased bacterial growth levels in each sample as 
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compared with Pto AvrRpt2 in Col-0 plants at 48 hpi (adapted from (Tsuda et al., 2009)). (C) List of 
gene ontology (GO) terms enriched in the clusters shown in (A) (next to the dendrogram). For the full 
GO list, see (Nobori et al., 2018b). See Figure 2A for the acronyms. This figure was adopted from 
(Nobori et al., 2018b). 

2.1.4 The	system	of	bacterial	iron	acquisition	is	influenced	by	plant	immunity	

The host genotype-dependent DEGs in Pto AvrRpt2 could be separated into six 

clusters based on the expression patterns (Figure 5A). I conducted GO term enrichment 

analysis for each cluster (Figure 5C; For the full GO list, see (Nobori et al., 2018b).). In cluster 

II, genes related to siderophore biosynthesis, which is known to be induced under iron-

deficient conditions and scavenge iron from the environment, were induced in susceptible 

plants and suppressed by both PTI and ETI (Figure 5C). Because both PTI and ETI impact 

the expression of iron-related genes, I investigated the link between bacterial responses to 

iron and plant immunity. Of the 133 previously reported iron-responsive genes in in vitro 

grown Pto (Bronstein et al., 2008), a significant number of genes (69 genes) were differentially 

regulated by plant immunity (4.8-fold over-enriched; p = 1.89e-37; hypergeometric test; Figure 

6A; overlap between the red and green bars). More strikingly, of the 69 genes co-regulated by 

iron and plant immunity, iron-repressive genes were almost exclusively suppressed by plant 

immunity, whereas iron-inducible genes involved both immune-inducible and -repressive 

genes (Figure 6A). Therefore, plant immunity modulates a part of the bacterial iron responses. 

 

Figure 6: Iron-related genes of Pto are targeted by plant immunity 
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 (A) Hierarchical clustering of the relative expression (RE) of Pto genes previously reported as iron 
responsive (Bronstein et al., 2008). Iron-inducible and -repressive genes are represented by dark and 
light green marks, respectively (p-value < 0.05). The red marks represent differentially expressed genes 
of Pto AvrRpt2 in at least one of the pairwise comparisons between Col-0 plants and the defense 
mutant plants. Binding motifs of Fur, and PvdS are represented by orange and purple marks, 
respectively. Pto and Pto AvrRpt2 were represented by gray and black marks, respectively. (B) RT-
qPCR analysis of pvdS expression of Pto AvrRpt2 carrying an empty vector (EV) or Pto AvrRpt2 pvdS-
ox (OD600 = 0.5) normalized to 16S in Col-0 or rps2 rpm1 plants at 6 h post infection (hpi). (C) 
Growth of Pto AvrRpt2 EV or Pto AvrRpt2 pvdS-ox (OD600 = 0.001) in Col-0 or rps2 rpm1 plants at 48 
hpi. (B and C), Mean±s.e.m. was calculated by using a mixed linear model (A: n = 4 biological 
replicates from four independent experiments, B: n = 72 and 48 biological replicates from six and four 
independent experiments for Col-0 and rps2 rpm1, respectively). Different letters indicate statistically 
significant differences (adjusted P < 0.01; the Benjamini-Hochberg method). The asterisk indicates 
statistically significant difference of the host genotype effect between the bacterial strains (p-value = 
6.61E-08; two-tailed Student t-test). This figure was adopted from (Nobori et al., 2018b). 

2.1.5 pvdS	and	its	regulatory	targets	are	commonly	suppressed	by	PTI	and	ETI	

To understand the molecular mechanisms underlying the impact of plant immunity 

on bacterial iron responses, I investigated the promoter region of iron-responsive genes for 

the binding motifs of the transcriptional regulators Fur and PvdS, both of which are known to 

be involved in iron responses (Llamas et al., 2014) (Figure 6A). Fur is the primary regulator of 

iron homeostasis and typically functions as a repressor of the downstream iron responses in 

the presence of iron (Llamas et al., 2014). PvdS, an ECF sigma factor, regulates the 

biosynthesis of pyoverdine, a siderophore enriched in cluster II (Figure 5A; See (Nobori et al., 

2018b) for the list of DEGs.). pvdS is negatively regulated by Fur and its expression is 

derepressed under iron-deficient conditions (Bronstein et al., 2008). The Fur- or PvdS-motif 

was enriched in the promoter region of the genes suppressed by both plant immunity and 

iron (Figure 6A; the cluster of genes marked with red in the dendrogram), including the pvdS 

gene itself (Fur: 17.4-fold over enriched, p = 6.22e-9; PvdS: 15.2-fold over enriched; p = 1.85e-9; 

hypergeometric test; Figure 6A). RT-qPCR analysis confirmed the RNA-seq data that pvdS 

expression was suppressed by AvrRpt2-triggered ETI (Figure 6B). These results point to the 

Fur-PvdS pathway as a potential target of plant immunity for impeding bacterial growth. 

Moreover, three out of five bacterial sigma factors directly regulated by Fur (Markel et al., 

2013) were strongly induced in planta and suppressed by both flg22-PTI and AvrRpt2-ETI 

(Supplementary figure 6), suggesting that plant immunity might broadly target iron-related 

sigma factors to manipulate bacterial iron metabolism.   
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2.1.6 pvdS	has	a	causal	impact	on	bacterial	growth	in	planta	

The PvdS pathway appeared to be a major target of plant immunity as this pathway 

was suppressed by both PTI and ETI (Figure 4C and Figure 5 A and C). To examine whether 

the manipulation of the PvdS regulatory pathway has causal effects on bacterial growth in 

planta, I generated a Pto AvrRpt2 strain that constitutively expresses pvdS (AvrRpt2 pvdS-ox) 

to counteract the suppression of pvdS expression by ETI (Figure 6B). AvrRpt2 pvdS-ox grew 

12-fold more than Pto AvrRpt2 (AvrRpt2 EV) in Col-0 plants at 48 hpi, whereas the growth 

level of these strains were comparable in rps2 rpm1 mutant plants, which do not trigger ETI 

(Figure 6C and Supplementary figure 7 A and B). Thus, high pvdS expression confers Pto 

tolerance against AvrRpt2-triggered ETI. 

2.1.7 Regulation	of	pvdS	in	plants	is	independent	of	iron	concentration	

Since pvdS suppression occurs under iron-rich conditions in vitro, I tested the 

possibility that ETI suppressed pvdS expression by increasing apoplastic iron. Co-inoculating 

bacteria with Fe-citrate did not influence pvdS expression even at an iron concentration 

detrimental for bacterial growth in plants (Figure 7 A and B). Furthermore, the content of 

total iron in apoplastic and intracellular fluid did not change upon flg22 treatment or ETI 

triggered by bacterial infection (Figure 7 C and D). Collectively, these data suggest that 

altered iron availability is unlikely to be the cause of pvdS expression changes by plant 

immunity and that plant immunity influences pvdS expression by means other than directly 

regulating iron availability. 
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Figure 7: Iron content in the apoplast does not explain pvdS expression and Pto growth 

 (A) Growth assay of Pto AvrRpt2 infected in Col-0 and rps2 rpm1 plants at 48 hpi. Bacterial 
suspension (OD600 = 0.001) was co-infiltrated with Na-citrate or Fe-citrate. (B) qRT-PCR analysis of 
pvdS expression in Pto AvrRpt2 infected to Col-0 or rps2 rpm1 plants.  Bacterial suspension (OD600 = 
0.5) was co-infiltrated with Na-citrate or Fe-citrate. (A and B) Bars represent means and standard 
errors calculated from independent experiments using a mixed linear model (A: n = 3, B: n = 6). 
Different letters or asterisks indicate statistically significant differences (adjusted p-value < 0.01). ns, 
not significant (adjusted p-values were shown). (C) Iron contents in apoplastic and intracellular fluids 
extracted from Col-0 plants sprayed with 1 μM flg22 or water (Mock) at the indicated time points. (D) 
Iron contents in apoplastic and intracellular fluids extracted from Col-0 or rps2 rpm1 plants infiltrated 
with Pto AvrRpt2 (OD600 = 0.5). (C and D) Bars represent means and standard errors calculated from 
three independent experiments. ns, not significant (p-values were shown; two-tailed Student t-test). 
This figure was adopted from (Nobori et al., 2018b). 

 

2.2 In	planta	multi-omics	of	Pto		

2.2.1 In	planta	transcriptome	and	proteome	profiling	of	Pto		

To enrich bacterial information from plant leaves, I isolated bacterial cells from 

infected plant leaves using the method established in this thesis (Figure 3A) (Nobori et al., 

2018b). RNA and proteins extracted from isolated bacteria were subjected to RNA-seq 

(transcriptome) and LC-MS (proteome) analysis, respectively (Figure 8A). I profiled the 
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transcriptomes and proteomes of Pto under 15 conditions, including in vitro (minimal 

medium (MM) and King’ B medium (KB)) conditions and in planta conditions using five A. 

thaliana genotypes (Col-0, sid2, pad4, pad4 sid2, and rps2 rpm1), two Pto genotypes (Pto and 

Pto AvrRpt2), and two time points (6 and 48 hpi) (Figure 8B). Note that this is not a time-

course study as the doses of starting bacterial inocula are different for the two time points 

(OD600=0.5 for 6 hpi and OD600=0.005 for 48 hpi). Pto AvrRpt2 was not used for the sampling 

at 48 hpi because this strain caused tissue collapse in the leaves in this condition. RNA-seq 

analysis detected, on average, 4877, 4659, and 5228 genes of Pto in in vitro, in planta 6 hpi, 

and in planta 48 hpi conditions, respectively (Figure 8C). LC-MS analysis detected, on 

average, 3617, 1183, and 1889 proteins of Pto in in vitro, in planta 6 hpi, and in planta 48 hpi 

conditions, respectively (Figure 8C). Proportion of the subcellular localization of the detected 

proteins was comparable among mRNAs/proteins detected in different conditions (Figure 

8C), suggesting no obvious bias was introduced to mRNA/proteins detection during bacterial 

enrichment processes. Pto showed distinct responses under different conditions at both 

transcriptome (Figures 8 D and E) and proteome (Figures 8 F and G) levels. Both 

transcriptomes and proteomes of Pto in in vitro conditions were closer to those in in planta at 

48 hpi compared with 6 hpi (Figures 8 D-G), implying that more drastic transcriptomic and 

proteomic reprogramming occurs at the early stage of infection than the late stage of 

infection. 
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Figure 8: In planta transcriptomics and proteomics of Pto  

(A) Schematic workflow of in planta bacterial transcriptome and proteome analysis. (B) Bacterial 
strains, plant genotypes, and conditions used in this study. (C) Number (left) and proportion (right) 
of mRNAs/proteins detected in the RNA-seq/LC-MS analysis with the information of protein 
localization. Total: all annotated genes of Pto. (D) Hierarchical clustering of relative expression (RE) 
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of the genes of Pto and Pto AvrRpt2 detected in RNA-seq analysis. (E) Principle component analysis 
of the genes of Pto and Pto AvrRpt2 detected in RNA-seq analysis. (F) Hierarchical clustering of 
relative expression (RE) of the proteins of Pto and Pto AvrRpt2 detected in LC-MS analysis. (G) 
Principle component analysis of the proteins of Pto and Pto AvrRpt2 detected in LC-MS analysis. This 
figure was adopted from Nobori et al., (in preparation). 

2.2.2 Bacterial	proteins	differentially	expressed	under	various	conditions	

I analyzed proteins whose expression was significantly changed between the in vitro 

(KB) and in planta (Col-0) conditions at 6 hpi or 48 hpi. GO enrichment analysis showed that 

bacterial proteins related to “pathogenesis” were induced both at 6 and 48 hpi (Cluster III in 

Figure 9A). Interestingly, tRNA synthases and ribosomal proteins, both of which are related 

to protein translation, showed the opposite expression patterns, i.e., tRNA synthases were 

suppressed at 48 hpi, while ribosomal proteins were induced (Figure 9A). Whether bacterial 

translation efficiency is reduced or enhanced at 48 hpi compared with the other conditions 

remains to be elucidated. Proteins annotated as “response to oxidative stress” were induced at 

48 hpi, implying that Pto experienced oxidative stress at the later time of infection or that a 

longer exposure to oxidative stress caused such induction. A substantial number of proteins 

(559 proteins) of Pto were differentially expressed among different host genotypes at 48 hpi 

(Figure 9B), whereas host genotype effects were small at 6 hpi (only one protein was 

differentially expressed). Pto AvrRpt2, which was strongly affected by host SA pathways at 6 

hpi at the transcriptome level (Figure 5A), showed similar proteome patterns among SA 

mutant plants (only one protein was differentially expressed). This might be because 

transcriptional changes were not reflected to the protein accumulation yet at 6 hpi. Therefore, 

I focused on analyzing host genotype effects on protein expression in Pto at 48 hpi. There 

were 196 proteins whose expression was significantly affected in at least one of the SA 

mutants (Figure 9B). I found that pathogenesis-related proteins (“Interaction with host”) 

were highly expressed in the SA mutants (Figure 9B), suggesting that the SA immune 

pathway suppresses the expression of pathogenesis-related proteins. On the other hand, 

expression of “translation” related proteins (ribosomal proteins) was suppressed in the SA 

mutants (Figure 9B). Taken together, the SA pathway affects expression of bacterial proteins 

related to bacterial virulence and basic metabolisms in planta. It remains to be investigated 

whether the SA pathway directly affects expression of these proteins or the effect is the 

indirect consequence of different bacterial population density in planta at this time point. 
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Figure 9: Distinct patterns of Pto proteomes in various conditions  

(A) Hierarchical clustering of the relative expression (RE) of Pto proteins differentially expressed in at 
least one condition among in vitro (KB) and in planta (Col-0) at 6 hpi and 48 hpi (FDR < 0.01; 
|log2FC| > 1). List of GO terms enriched in the clusters shown in the sidebar of the heatmap. (B) 
Hierarchical clustering of the relative expression of Pto proteins differentially expressed in at least one 
plant mutant compared with the wild-type Col-0 at 48 hpi (FDR < 0.01; |log2FC| > 1). List of GO 
terms enriched in the clusters shown in the sidebar of the heatmap. Venn diagram of Pto proteins 
differentially expressed in each plant mutant compared with Col-0. This figure was adopted from 
Nobori et al., (in preparation). 

 

2.2.3 Bacterial	functions	differently	expressed	in	various	conditions	

Bacterial functions differentially expressed in different conditions could be studied by 

GO enrichment analysis following to statistical tests (Figure 9 A and B). However, this 

analysis is highly dependent on thresholds to be applied for selecting differentially expressed 

genes or proteins, and thus some important information can be lost before GO enrichment 

analysis. Moreover, it is difficult to compare the global expression pattern of GO terms across 

many conditions in this approach. To gain more insights into biological functions that are 
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differentially regulated in various conditions, I first annotated the Pto genome with GO terms 

before statistical tests. Gene/protein expression data was standardized using z-score and GO 

expression matrix was generated by taking the mean z-score for each GO term. To select GO 

terms that show distinct expression pattern among different conditions, I performed 

statistical tests in all pairwise comparisons among 15 conditions for each GO term and 

manually curated GO terms with high number of significant pairs (redundant GO terms were 

avoided). This allowed me to select 24 and 18 highly condition-dependent GO terms in 

transcriptome and proteome data, respectively, and to analyze expression changes across 15 

conditions (Figure 10 A and B). I also analyzed expression of individual genes/proteins in 

selected GO terms (Figure 11). A GO term “pathogenesis” was one of top hits in both 

transcriptome and proteome data (Figure 10 A and B and Figure 11). These genes/proteins 

were strongly induced in planta at 6 hpi; their expression remained high at 48 hpi and clear 

host genotype effect was observed at this time point, i.e., expression was higher in the SA 

mutants compared with Col-0 (Figure 10 A and B and Figure 11), suggesting that SA-

mediated immunity suppresses the “pathogenesis” related function at 48 hpi. This is 

consistent with the GO enrichment analysis following the gene/protein-based statistical tests 

(Figure 9B), supporting the reliability of both approaches. “Coronatine”-related 

genes/proteins (not involved in the GO term “pathogenesis”) showed similar expression 

patterns as “pathogenesis”-related genes/proteins in planta (Figure 10 A and B and Figure 

11). Genes/proteins annotated as “catalase activity” were strongly induced only under ETI 

condition at 6 hpi, but their expression was even higher at 48 hpi without ETI (Figure 10 A 

and B and Figure 11). Host genotype effect on expression of the “catalase activity”-related 

function was seen only at the protein level: highly expressed in Col-0 compared with the SA 

mutants (Figure 10 A and B and Figure 11), implying that SA-mediated immunity affected 

this function at the protein level. “Cell division”-related genes/proteins were highly expressed 

at 6 hpi, but not at 48 hpi (Figure 10 A and B and Figure 11). This might suggest that bacterial 

growth approached a plateau at 48 hpi. 
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Figure 10: Bacterial functions differentially expressed in different conditions.  

(A and B) Hierarchical clustering of selected GO terms in transcriptome (A) and proteome (B) data. 
Transcriptome and proteome data were standardized by using z-scores and mean z-scores of 
genes/proteins involved in individual GO terms were shown. This figure was adopted from Nobori et 
al., (in preparation). 
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Figure 11: Regulation of mRNAs and proteins involved in selected functions  

Box plots show expression (z-score) of mRNAs (left) and proteins (right) related to “pathogenesis”, 
“coronatine biosynthesis”, and “catalase” under various conditions. Light and dark green sidebars 
represent transcriptome and proteome data, respectively. Black, orange, and brown sidebars represent 
in vitro (KB), in planta (Col-0) 6 hpi, and in planta 48 hpi, respectively. This figure was adopted from 
Nobori et al., (in preparation). 

2.2.4 Comparative	analysis	of	bacterial	transcriptomes	and	proteomes		

To compare global expression patterns of genes and proteins, I combined the 

transcriptome and proteome data of all 15 conditions. For this, expression of genes/proteins 
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detected in all conditions was standardized by using z-scores and hierarchical clustering was 

performed (Figure 12). Intriguingly, transcriptome and proteome data were clustered 

together by three major conditions (in vitro, in planta 6 hpi, and in planta 48 hpi) (Figure 12), 

suggesting that the global pattern of bacterial gene expression and protein expression is 

similar in both in vitro and in planta. 

I compared the RNA-seq and proteome data in the fold changes between Pto in vitro 

(KB) and each of the other conditions (Figure 13A). Overall, transcriptome and proteome 

data correlated well (R2 = 0.52 – 0.69), suggesting that bacterial mRNA abundance explains 

part of protein abundance, but posttranscriptional regulation might also play roles during 

interaction with plants. Of 1129 genes/proteins detected in both RNA-seq and proteome 

analyses, 144 genes/proteins (12.8%) were differentially regulated at both transcriptome and 

proteome levels in planta 6 hpi compared with in KB (Figure 13B). GO analysis showed that 

“pathogenesis”-related process was induced at both transcriptome and proteome levels 

(Figure 13C), consistent with previous analyses (Figure 10 A and B and Figure 11). 

Interestingly, more proteins were down-regulated (151 proteins) than up-regulated (44 

proteins) in a protein-specific manner (Figure 13B). This may be explained by a prominent 

role of protein degradation in planta or by that plant immunity affect bacterial metabolisms 

via protein degradation (Figure 13B). GO analysis showed that “Cell wall biogenesis”-related 

proteins were enriched in this group of proteins (Figure 13C). Biological relevance of this 

remains to be elucidated. 
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Figure 12: Integration of bacterial transcriptome and proteome data  

Transcriptome and proteome data were standardized by using z-score and combined, followed by 
hierarchical clustering. Genes/proteins detected in all conditions were subjected to the analysis. Light 
and dark green sidebars represent transcriptome and proteome data, respectively. Black, orange, and 
brown sidebars represent in vitro (KB), in planta (Col-0) 6 hpi, and in planta 48 hpi, respectively. This 
figure was adopted from Nobori et al., (in preparation). 
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Figure 13: Conserved and specific regulation of Pto metabolisms at mRNA and protein levels  

(A) Comparisons between transcriptome and proteome data in each condition. Fold changes relative 
to in vitro (KB) condition were subjected to the analysis. Pearson’s correlation coefficients were 
shown. (B) For RNA-seq and proteome data, gene/protein expression fold changes between in planta 
(Col-0) at 6 hpi and in vitro (KB) were compared. Genes/proteins differentially expressed (DE; FDR < 
0.01; |log2 fold change| > 2) in both, either, and none (“Unchanged”) of transcriptome and proteome 
studies were grouped and colored. Genes/proteins differentially expressed to the opposite direction 
were colored in blue (“Inconsistent”). The numbers of genes/proteins are shown for each category. (C) 
List of gene ontology (GO) terms enriched in the group of proteins that are significantly induced in 
planta at both mRNA and protein levels or proteins that are significantly suppressed in planta only at 
the protein level. This figure was adopted from Nobori et al., (in preparation). 
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2.2.5 Bacterial	iron	acquisition	process	affected	in	planta	

I have shown above that gene expression of bacterial iron acquisition pathway is 

strongly affected by plant immunity at 6 hpi (Figure 6). I investigated expression of bacterial 

genes responsive to iron availability using the dataset shown in Figure 8D. Genes suppressed 

by iron supplementation (iron starvation genes) were globally induced at 6 hpi, but their 

expression was lower at 48 hpi, although the level was still higher than in vitro conditions 

(Figure 14 A and B). Interestingly, the accumulation of Fur protein was negatively correlated 

with expression of iron starvation genes among three major conditions (in vitro, in planta 6 

hpi, and in planta 48 hpi) (Figure 14C), implying that Pto controls the protein accumulation 

of Fur to regulate iron starvation genes in planta or that plants affect iron starvation genes via 

Fur expression.  
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Figure 14: Regulation of bacterial iron acquisition pathway  

(A) Hierarchical clustering of the relative expression (RE) of Pto genes previously reported as iron 
responsive (Bronstein et al., 2008). Iron-inducible and iron-repressive genes are represented by dark 
and light green marks, respectively (p-value < 0.05). Binding motifs of Fur, PvdS, and HrpL are 
represented by color bars. (B) Expression (z-score) of Pto genes previously reported as iron repressive 
(Bronstein et al., 2008). (C) Expression of Fur protein in the proteome data (log2 normalized). This 
figure was adopted from Nobori et al., (in preparation). 
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2.2.6 The	gene	co-expression	network	of	Pto			

Motivated by highly diverse bacterial transcriptome patterns among different 

conditions, I sought to investigate the gene regulatory network of Pto. I used 132 

transcriptome data of Pto in 38 conditions. Correlation matrix of 4765 genes revealed highly 

correlated gene clusters, some of which contain genes that are known to be co-regulated 

(Figure 15A). I built a gene co-expression network based on the correlation matrix and 

annotated some genes with known functions and found that genes with the same function 

tend to be co-expressed (Figure 15B). For instance, genes related to pathogenesis (mostly 

T3SS and T3E genes), coronatine biosynthesis, alginate biosynthesis, and iron starvation 

responses were found in highly co-expressed gene clusters (Figure 15B). Intriguingly, genes 

involved in coronatine biosynthesis and alginate biosynthesis were clustered very closely, 

suggesting that these processes might share the same regulatory mechanism (Supplementary 

figure 9A). On the other hand, genes related to coronatine biosynthesis and the T3SS were 

only mildly correlated (Supplementary figure 9A), although it has been known that the 

expression of CorR, the master regulator of coronatine biosynthesis genes, is dependent on 

HrpL, the master regulator of the T3SS (Sreedharan et al., 2006). This suggests that there 

might be additional regulators that differentiate the expression patterns of genes related to 

coronatine biosynthesis and the T3SS. I also found that some genes annotated as T3Es were 

not co-expressed with the majority of T3Es (Supplementary figure 9), suggesting that they are 

not functioning as effectors or they function as effectors in different contexts. 

Strong negative correlation was found between some genes. To understand negatively 

correlated functions of bacteria, I created a correlation matrix based on GO expression 

(Supplementary figure 10). Strong anti-correlation was observed between “siderophore 

transport” genes, which are iron-repressive, and “ferric iron binding” genes, which involve 

iron-inducible bacterioferritin (Supplementary figure 10), indicating that this analysis could 

capture known expression patterns of GOs. I found that genes related to chemotaxis were 

negatively correlated with genes involved in translation. Whether this negative correlation is 

explained by a direct molecular link between these processes needs further study. 
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Figure 15: The gene co-expression network of Pto  

(A) Correlation matrix of bacterial gene expression generated from 132 bacterial transcriptome data 
(38 conditions). (B) Gene co-expression network of Pto. Each node represents a gene. Highly 
correlated (R2 > 0.8) genes are connected with edges. Functions are annotated with colors. This figure 
was adopted from Nobori et al., (in preparation). 
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2.2.7 The	gene	co-expression	network	predicts	bacterial	gene	regulatory	logic	

Under the premise that transcriptional regulators and their targets are often co-

expressed, I assumed that the highly correlated gene clusters infer transcriptional regulators 

in individual clusters. Indeed, hrpL was found in the cluster of T3SS genes; and the cluster of 

iron starvation genes includes iron starvation related sigma factors, PSPTO_1203, 

PSPTO_1209, and PSPTO_2133 (pvdS). I selected three co-expressed gene clusters that 

involve putative transcriptional regulators (TRs), PSPTO_0384 (ArsR family transcriptional 

regulator), PSPTO_3050 (AraC family transcriptional regulator), and PSPTO_4908 (TetR 

family transcriptional regulator) (Figure 16). To test if these TRs have the ability to regulate 

expression of genes in the same cluster, Pto strains that overexpress each of TRs were 

generated (Figure 16). Expression of PSPTO_7653 (iron(III) dicitrate transport system, 

periplasmic iron-binding protein FecB), PSPTO_4540 (proline iminopeptidase), and 

PSPTO_2681 (penicillin-binding protein 7) was highly correlated with each of TRs and these 

genes were selected as candidate target genes (Figure 16). Remarkably, expression of all of 

three candidate target genes were highly enhanced in bacterial strains overexpressing 

respective candidate TRs compared with wild type Pto in vitro (Figure 16). This indicates that 

the gene co-expression analysis of Pto has the potential to predict transcriptional regulators 

and their targets, thereby revealing the gene regulatory logic of bacteria. Further analyses will 

be conducted to test this in plants.   
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Figure 16: Gene co-expression network predicts the gene regulatory logic of Pto 

Two independent Pto strains overexpressing putative transcriptional regulators (TRs) were generated. 
Expression of the TRs and the predicted target genes of them was measured by RT-qPCR. For each 
pair of a TR and its predicted target, pearson correlation coefficient (R2) is shown based on the result 
in Figure 15A. n = 2. This figure was adopted from Nobori et al., (in preparation). 

2.2.8 Type	III	translocator	components	are	selectively	affected	by	plant	SA	pathways	

Many of pathogenesis-related proteins that were negatively affected by the SA 

pathway at 48 hpi were proteins comprising the T3SS. Integrative analysis of bacterial 

transcriptomes and proteomes revealed that some of the T3SS components were affected by 

the SA pathway particularly at the protein accumulation level (Figure 17A). I further 

investigated the effect of plant SA pathways on each component of bacterial T3SS and found 

that proteins comprising the tip part of the T3SS, namely HrpZ, HrpK, and HrpW, were 

affected by the SA pathways, while most of the other T3SS proteins showed similar expression 

level among the host genotypes (Figures 16 B and C). This implies that the SA pathways 

selectively target the tip part of bacterial T3SS. This observation was confirmed by 

immunoblotting using proteins extracted directly from Pto infected leaves and a HrpZ 

antibody (Figure 17D), exemplifying that the bacterial isolation process did not introduce 
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artefacts in the proteome data. There was no significant effect of the SA pathway on the gene 

expression of hrpZ and hrcC based on the RNA-seq data (Figure 17C), and this was 

confirmed by RT-qPCR (Figure 17E), suggesting the selective effect of the SA pathways is 

likely at the protein level. The mechanisms by which the SA pathways selectively affect the 

proteins of some T3SS components remain to be elucidated. 

 

Figure 17: Plant SA pathway selectively affects bacterial T3SS proteins  

(A) Hierarchical clustering of expression (z-score) of genes and proteins related to the T3SS. (B) 
Expression of T3SS-related proteins based on the proteome data (normalized iBAQ intensity). 
Approximate localization of each protein was shown in the diagram. (C) Expression of HrpZ protein 
and gene relative to HrcC in the proteome and transcriptome data, respectively. (D) HrpZ and HrcC 
proteins detected by western blotting using specific antibodies provided by Prof. Dr. Sheng Yang He. 
Protein loading amount was adjusted by the expression of HrcC protein. Similar results were obtained 
in three independent experiments. (E) RT-qPCR analysis of hrpZ and hrcC relative to 16S. n = 2. (A-
E) Plants were infiltrated with Pto at OD600 = 0.05 and harvested at 48 hpi. This figure was adopted 
from Nobori et al., (in preparation).    
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2.3 In	planta	transcriptomics	of	commensal	bacteria	

2.3.1 Comparative	transcriptomics	of	four	Pseudomonas	strains		

I applied the bacterial enrichment method described in 2.1 to study the 

transcriptomes of commensal bacteria. As a proof of principle experiment, I used two 

bacterial strains (EK10 and EK47; both are Pseudomonas spp.) that were isolated from the leaf 

endosphere of wild A. thaliana plants by the group of Prof. Dr. Eric Kemen (University of 

Tübingen, Germany). Bacterial enrichment successfully worked for both strains in Col-0 

plants and I also profiled an in vitro condition (KB). Gene expression fold changes between in 

planta and in vitro were used for comparative analysis among different strains. For 

comparative transcriptome analysis, I annotated the genome of each strain with KEGG 

ontologies (KOs) and combined the RNA-seq data of both strains and that of Pto and D36E. 

This analysis could capture distinct transcriptome patterns of different strains in different 

conditions (Figure 18A). Interestingly, the commensal Pseudomonas EK10 and EK47 showed 

relatively similar transcriptome patterns and they were clustered closer with D36E rather than 

Pto (Figure 18A). This suggests that there is a correlation between bacterial transcriptome 

patterns and bacterial virulence. Since these in planta bacterial transcriptomes were profiled 

at 6 hpi, when even the population density of virulent Pto remains unchanged 

(Supplementary figure 4), bacterial population density does not explain the different 

transcriptome patterns. Thus, there might be a transcriptional signature that only virulent 

bacteria can achieve at an early stage of infection to aggressively proliferate in plants. I 

investigated expression of genes with functions related to the interaction with plants. Genes 

related to flagellar tended to be induced in the avirulent strains (D36E, EK10, and EK47), but 

not in virulent Pto (Figure 18B). Similarly, genes annotated as “catalase” were strongly 

induced only in the avirulent strains (Figure 18C). Genes related to iron-starvation tended to 

be strongly induced only in Pto (Figure 18D), which is in line with the finding in 2.1 that the 

expression level of iron-starvation genes correlated with the virulence of Pto in planta (Figure 

6A). Notably, I also found genes that are differently regulated between non-virulent bacteria. 

Genes involved in alginate biosynthesis were strongly induced in Pto and EK10 in planta, but 

the induction level was substantially lower in D36E and EK47 (Figure 18E). In summary, the 



2.	Results	

53	

comparative transcriptome analysis among four Pseudomonas strains could capture shared 

and distinct features, some of which are associated with bacterial virulence.  

 

 

 
 

Figure 18: Comparative transcriptomics of four Pseudomonas strains in vitro and in planta 

(A) Hierarchical clustering of KEGG ontology (KO) expression fold changes (FC) between in vitro 
and in planta. (B-E) Hierarchical clustering of expression FC of KOs related to (B) flagellar, (C) 
catalse, (D) iron-starvation, and (E) alginate biosynthesis.  

2.3.2 Selecting	and	characterizing	12	commensal	bacterial	strains		

Motivated by the results in 2.3.1, I extended the comparative transcriptome approach 

to more bacterial strains. I selected 12 commensal bacterial strains from the culture collection 

of bacteria isolated from A. thaliana plants grown in natural soils (Bai et al., 2015) (Table 1). 

The strains represent major phyla of plant-associated bacteria, which include Actinobacteria, 
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Bacteroidetes, Firmicutes, and Proteobacteria; and they are morphologically different with 

each other (Supplementary figure 8).  

Table 1: List of commensal bacteria used in this study 

ID Phylum Class Order Family 
Leaf1 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae 

Leaf130 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae 
Leaf155 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae 
Leaf176 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae 
Leaf177 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 
Leaf187 Firmicutes Bacilli Bacillales Exiguobacterium 
Leaf404 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 
Root147 Firmicutes Bacilli Bacillales Bacillaceae 
Root563 Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae 
Root604 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 
Root935 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 
Soil763 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae 
EK10 Proteobacteria Gammaproteobacteria Pseudomonadales  EK47 Proteobacteria Gammaproteobacteria Pseudomonadales  

2.3.3 In	vitro	and	in	planta	transcriptomics	of	commensal	bacteria	from	various	phyla	

In this experiment, 50% Tryptic Soy Broth (TSB) medium was used instead of KB 

medium for in vitro transcriptome analysis. To find an optimal sampling time point in the 

liquid medium, the growth curve of each commensal strain was determined and bacteria were 

harvested at the late exponential phase before the plateau. For in planta transcriptome 

analysis, the leaves of Col-0 plants were infiltrated by each commensal strain and harvested at 

6 hpi. As described in Figure 3A, bacterial cells were isolated from the harvested leaves and 

RNA was extracted, followed by rRNA depletion, cDNA library generation, and RNA-seq. 

Here, I present preliminary results based on 1-2 biological replicates; more replicate will be 

analyzed in the future. Principle component analysis was conducted using the expression fold 

changes (in planta – in vitro) of KOs shared among five commensal strains in Table 1 and 

four Pseudomonas strains used in 2.3.1 (Figure 19). The preliminary result showed that 

bacterial transcriptome responses in planta show a phylogenetic pattern, i.e., four 

Gammaproteobacteria (Pseudomonas) strains were clustered together and two Bacteroidetes 

strains were clustered together (Figure 19). I compared expression of genes annotated with 

known functions among the nine strains. Genes related to catalase tended to be highly 

expressed in planta compared with in vitro (Figure 20A); and avirulent Pseudomonas strains 

showed strong induction of these genes compared with the other strains (Figure 20A). If this 
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gene expression pattern reflects the activation of plant immunity remains to be investigated. 

Flagellar related genes, which were induced in avirulent Pseudomonas, were not induced in 

two commensals L155 and L187; and they were not annotated in the other three commensal 

strains (Figure 20D). Thus, induction of flagellar related genes in avirulent bacteria is not a 

general phenomenon, but may be specific to Pseudomonas spp. Genes encoding ribosomal 

proteins were globally induced in Pto and mildly induced in avirulent Pseudomonas strains, 

but suppressed in non-Pseudomonas commensals (Figure 20B). Expression of ribosomal 

proteins may reflect the metabolic and reproductive activity of bacteria, i.e., Pseudomonas 

strains are more actively proliferating compared with the other strains in planta. In planta 

bacterial growth assay is one way to test this hypothesis. I also observed that genes encoding 

the components of the type VI secretion system (T6SS) were strongly induced in L155 in 

planta compared with other strains (Figure 20C). As the T6SS is known to be involved in 

microbe-microbe interactions (Russell et al., 2014), this result implies that L155 may actively 

interact with other microbes using T6SS in planta. More bacterial strains and replicates will 

be analyzed in the near future.  

 

 

Figure 19: Comparative transcriptomics of nine bacterial strains 

Principle component analysis (left) and hierarchical clustering (right) based on KEGG ontology (KO) 
expression fold changes (FC) between in vitro (TSB) and in planta (Col-0, 6 hpi). KOs shared among 
the all strains are used for the analysis.  
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Figure 20: Bacterial functions differently expressed in planta 
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Hierarchical clustering of KEGG ontology (KO) expression fold changes (FC) between in vitro and in 
planta in nine bacterial strains. (A) catalase, (B) ribosomal proteins, (C) type VI secretion system, (D) 
flagellar. The taxonomic affiliation (phylum level) of the strains is depicted using various colors. 
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2.3.4 Transcriptomes	responses	of	A.	thaliana	against	commensal	bacteria	

Bacterial responses in planta varied depending on strains (Figure 20). To investigate 

whether the strain-specific responses reflect different plant immune responses triggered by 

different bacterial strains, I profiled plant transcriptome responses upon bacterial infiltration 

in the same experimental condition used for in planta bacterial transcriptome analysis. Plant 

genes related to immunity showed bacterial strain-specific expression patterns (Figure 21). 

Interestingly, Pto D36E appeared to trigger the strongest plant immune responses. As 

bacterial population is similar among all the strains tested at 6 hpi, it is plausible that A. 

thaliana recognized certain molecular feature of D36E, such as the flg22 peptide, to trigger 

relatively strong immunity. There was no clear phylogenetic pattern in plant immune 

activation, but Actinobacteria tended to trigger stronger immunity compared with 

commensal bacteria from other phyla. At this point, it is difficult to link in planta bacterial 

responses and plant responses due to the limited data points, but comprehensive profiling of 

the co-transcriptomes of plants and bacteria can address the question of whether bacterial 

strain-specific immune activation explains different bacterial responses in plants. 

 

 

Figure 21: Bacterial strain-dependent plant immune activation 

Plant genes that showed significant changes (FDR < 0.01; |log2FC| > 1) upon the infiltration of at least 
one of the bacterial strains compared with mock (water) treatment. The leaves of Col-0 were 
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infiltrated with each bacterial strain at OD600 = 0.5 or mock. The leaves were sampled at 6 hpi. The 
color code below the strain names indicates the taxonomic affiliation (phylum level) of each strain. 
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3 Discussion	

3.1 In	vivo	bacterial	RNA-seq	and	Dual	RNA-seq	as	powerful	approaches	 in	

host-pathogen	interaction	studies	

Bacterial transcriptomics within hosts has been a popular and powerful strategy in 

animal infection biology. In the 2000s, a number of studies profiled the transcriptomes of 

various bacterial pathogens in various hosts by using microarrays (La et al., 2008). RNA-seq 

technologies enabled the unbiased profiling of bacterial transcriptomes at higher resolution 

initially in vitro and, in 2010s, in vivo (Westermann et al., 2012). For instance, RNA-seq 

analysis of Vibrio cholerae isolated from the caecum of infected rabbits or the intestine of 

infected mice identified a set of bacterial genes induced upon infection, including known 

virulence factors and genes previously not linked to virulence (Mandlik et al., 2011). Rapid 

advancement of DNA sequencing technologies allowed the field to quickly move to the next 

level: simultaneous RNA-seq profiling of hosts and pathogens (Dual RNA-seq) (Westermann 

et al., 2017, 2012). Dual RNA-seq study of Salmonella typhimurium and infected HeLa cells 

identified a pathogen small RNA that is induced upon infection and suppresses host immune 

responses (Westermann et al., 2016). A number of other Dual RNA-seq studies revealed 

novel virulence mechanisms of pathogens or genes associated with virulence (Avraham et al., 

2015; Nuss et al., 2017; Stapels et al., 2018). However, since many studies focus on the 

virulence of pathogens they gained relatively limited insights into the mechanisms of host 

resistance, i.e., how resistant hosts respond to pathogens and affect pathogen responses. A 

recent study conducted Dual RNA-seq analysis using Staphylococcus aureus and two mouse 

strains, susceptible or resistant to the pathogen, as well as immunocompromised mutants of 

the resistant mouse strain (Goldmann et al., 2017). This experimental design allowed the 

authors to evaluate the impact of host immunity on pathogen transcriptomes and to show 

that pathogen virulence factors are affected by host immunity (Goldmann et al., 2017). 

Therefore, testing various conditions that differ in host immune activation and pathogen 

virulence for in vivo bacterial transcriptomics or Dual RNA-seq analysis is important to 

elucidate the impact of host immunity on pathogens.   
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3.2 In	 planta	 bacterial	 transcriptomics	 and	 proteomics	 illuminate	 the	

mechanisms	of	pathogen	growth	suppression	by	plant	immunity.	

Study of plant disease resistance in the past decades have revealed two major forms of 

plant innate immunity (PTI and ETI). PTI and ETI are highly effective in restricting 

pathogen growth. However, how PTI and ETI halt pathogen growth remains an outstanding 

question that has been difficult to elucidate. In this thesis, using in planta bacterial 

transcriptome and proteome analyses, I was able to link activation of various immune 

signaling pathways to specific changes of global bacterial metabolic changes. Moreover, 

comparative analyses of bacterial transcriptomes and proteomes illuminated the potential 

regulatory mechanisms of bacterial genes in planta.  

3.2.1 The	impact	of	plant	immunity	on	the	transcriptomes	of	Pto	

In this thesis, I profiled in planta transcriptomes of Pto with RNA-seq in various 

plant-bacterial strain combinations that show a wide spectrum of PTI/ETI activation (Figure 

4A). Dual RNA-seq approach was not taken because this approach is still costly to get high-

resolution data, and thus not suitable for testing a large number of conditions. By comparing 

bacterial transcriptomes under 27 conditions, I defined the “immune-responsive sector” of 

the Pto transcriptome at an early stage of infection (Figure 4 and Figure 5). I found that the 

expression pattern of the immune-responsive sector genes at an early time point of infection 

is tightly linked to bacterial growth at a later time point (Figure 5B). Importantly, among the 

immune-responsive sector genes is pvdS (Figure 6), a transcriptional regulator previously 

known for its role in regulating iron responses (Llamas et al., 2014). I found that 

overexpression of pvdS is sufficient to partially counter AvrRpt2-triggered ETI (Figure 6C), 

exemplifying a causal role of the immune-responsive sector genes in mediating bacterial 

growth inhibition by plant immunity. 
The T3SS and T3Es have long been known as essential virulence factors of bacterial 

pathogens (Büttner and He, 2009). Suppression of T3E translocation and T3SS expression by 

PTI has been proposed to be a mechanism to attenuate pathogen virulence capacity during 

plant immunity (Crabill et al., 2010a) (Figure 4C). Remarkably, however, the in planta 

transcriptome analysis revealed that PTI has a much broader impact on bacterial metabolism 
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beyond the T3SS, including fundamental processes of life, such as protein translation (Figure 

4C). This suggests that bacterial growth inhibition during PTI may be caused by alteration of 

multiple bacterial processes other than or in addition to T3SS suppression. Because the 

bacterial transcriptome profiling was conducted at an early time point before bacterial 

population densities diverged in different samples (Supplementary figure 4), these broad 

effects are not a consequence of differential bacterial population densities per se. 

Furthermore, although ETI can also effectively halt bacterial growth, the data suggested that 

ETI has a narrower impact on the bacterial transcriptome. Most notably, ETI did not 

markedly affect the expression of the T3SS genes (Figure 4C and Figure 5A, see Pto vs Pto 

AvrRpt2 in Col-0 plants or Col-0 vs rps2 rpm1 plants in Pto AvrRpt2), which is in agreement 

with a previous study (Nomura et al., 2011). This is consistent with the notion that PTI, but 

not ETI, invariably blocks T3Es translocation into host plant cells (Crabill et al., 2010b; 

Nomura et al., 2011). I cannot exclude the possibility that the different effects observed 

between PTI and ETI could be partially due to different kinetics of immune activation during 

PTI and ETI. Time-course analyses of bacterial transcriptomes would be an important future 

direction to understand the dynamic transcriptome responses of bacteria in plants. 

In this thesis, I profiled the transcriptomes of Pto at another time point, 48 hpi. 

Although this is not a time-course experiment (the doses of bacterial inocula were different 

between experiments for the two time points), comparison of bacterial transcriptomes at 6 

hpi and 48 hpi provided insights into time-dependent responses of Pto in plants. I found that 

Pto showed distinct transcriptome patterns at 48 hpi compared with 6 hpi (Figure 8 D and E). 

For instance, genes related to pathogenesis were further induced at 48 hpi compared with 6 

hpi; and the expression was the highest in pad4 sid2 (Figures 10A and 11), in which bacterial 

population is the highest. This result seems counterintuitive since it is known that expression 

of the T3SS is negatively regulated by QS signaling (Henke and Bassler, 2004), which is 

activated when bacterial population density is high (Papenfort and Bassler, 2016). It is 

possible that there are host factors that can induce the T3SS even when bacterial population is 

high. Importantly, Pto likely creates heterogeneous populations within a leaf and/or colony 

(Rufián et al., 2016; West and Cooper, 2016); thus, spatially-resolved analysis of bacterial gene 

expression is crucial to fully understand the impact of plant immunity on bacterial functions 

especially at a later stage of infection, where bacteria have established niches. Genes encoding 

catalase were highly expressed at 48 hpi (Figure 11). Since catalase is important for protecting 
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the cell from oxidative damage by reactive oxygen species (ROS), it is plausible that 

expression of catalase genes reflects the level of the ROS stress. Indeed, expression of these 

genes clearly correlated with the level of plant immune activation at 6 hpi (Figure 11), which 

is likely associated with ROS burst. However, whether high expression of catalase genes at 48 

hpi reflects the strong ROS burst remains elusive.           

3.2.2 Iron-acquisition	pathway	of	Pto	as	a	major	target	of	plant	immunity		

As discussed above, the bacterial transcriptome data can provide some clues for the 

changes of apoplastic environments during immune activation. I found that both PTI and 

ETI commonly suppress the expression of bacterial iron starvation-related genes and this was 

associated with bacterial growth inhibition (Figure 6C). This finding enabled me to uncover 

that the bacterial sigma factor gene pvdS plays a causal role in mediating part of bacterial 

growth inhibition during ETI (Figure 6B). PvdS is a widely conserved global iron response 

regulator in plant/animal pathogenic and commensal bacteria (Swingle et al., 2008), implying 

that the suppression of bacterial iron starvation responses may be a general strategy for plant 

immunity to control bacterial growth in planta. Future research should examine whether 

PvdS and related sigma factors are also required for basic Pto virulence in plants. Pto has four 

other sigma factor genes that are responsive to iron starvation (Markel et al., 2013), at least 

two of which, PSPTO_1203 and PSPTO_1209, were suppressed by plant immunity 

(Supplementary figure 6). Understanding the roles of these sigma factors in basic bacterial 

virulence is an important future issue. 

Iron is a two-faced element for bacterial growth; it is essential for biological processes, 

yet excess amount of iron can be toxic (Verbon et al., 2017). Animal hosts regulate iron 

availability in both directions, iron sequestration and intoxication, to inhibit pathogen growth 

(Chandrangsu et al., 2017). It is also known that some bacterial pathogens have evolved 

mechanisms to avoid host-mediated iron regulation (Chandrangsu et al., 2017). Thus, 

regulation of iron homeostasis seems to be an important factor in host-bacteria interactions. 

However, this study could not establish whether and how plant immunity affects Pto iron 

homeostasis during infection. Since PvdS-target genes may function in cellular processes 

beyond iron homeostasis (Swingle et al., 2008), it is possible that bacterial processes regulated 

by PvdS other than iron homeostasis may also be critical for Pto growth in plants. A previous 

study suggested that, in A. thaliana, the iron concentration in the apoplast was not a limiting 
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factor for bacterial growth (O’Leary et al., 2016). It has also been shown that a PvdS-regulated 

siderophore, pyoverdine, and other high-affinity iron-scavenging systems are dispensable for 

the virulence of Pto in plants (Jones and Wildermuth, 2011). Together with my observation 

that iron co-infiltration did not promote in planta Pto growth (Figure 7A), I infer that iron 

limitation in the apoplast unlikely explains poor Pto growth under ETI. However, PTI and 

ETI clearly suppressed Pto genes that are known to be suppressed by iron supplementation in 

vitro (Figure 6A), suggesting that plant immunity causes an iron-rich-like response in 

bacteria. As I showed that PTI and ETI do not change the iron content in the plant apoplast 

(Figure 7), plant immunity likely influences bacterial iron responsive genes independent of 

iron content. In this regard, it is tempting to speculate that plants may secrete an iron-

mimicking compound that manipulate the Fur-PvdS regulon to force bacteria into an iron-

starved state without drastically changing the apoplastic iron content, which otherwise may 

cause collateral damages on plant growth and reproduction. Future research is needed to test 

the hypothesis that production of iron-mimicking compounds to perturb bacterial iron 

response might be an antibacterial strategy in plant immunity. 

3.2.3 The	gene	regulatory	network	of	Pto	

Correlation analysis of bacterial gene expression under various conditions revealed 

bacterial genes/processes that are co-regulated, some of which are not explained by our 

current knowledge. For example, expression of genes related to coronatine biosynthesis and 

alginate biosynthesis correlated very strongly (Figure 15B and Supplementary figure 9A), 

suggesting that these processes might share the upstream regulator(s). AlgU, a transcriptional 

sigma factor, is known to be a master regulator of alginate related genes, but a ChIP-seq study 

of AlgU in Pto did not detect  coronatine-related genes as targets (Markel et al., 2016). 

Coronatine-related genes are known to be regulated by CorR (Sreedharan et al., 2006). It may 

be possible that CorR also regulates alginate related genes. Further studies are required to 

understand the molecular link between these two processes. I also found that genes related to 

coronatine and the T3SS were only mildly co-expressed (Supplementary figure 9A), which 

was counterintuitive because CorR is known to be regulated by HrpL (Sreedharan et al., 2006), 

the master regulator of the T3SS. A major difference in expression of genes related to 

coronatine and the T3SS was that coronatine related genes are not induced in minimal 

medium, while T3SS genes are strongly induced (Supplementary figure 9B). The results 
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suggest that there might be additional regulators that differentiate expression of genes in 

these processes. Collectively, the analysis of the gene co-expression network has illuminated 

novel gene regulatory mechanisms of bacterial functions that are well studied for 

pathogenesis.  

Gene co-expression networks also have the potential to identify clusters of highly co-

expressed genes with unknown functions. In addition, as transcriptional regulators (TRs) and 

their targets are often co-expressed, a cluster of co-expressed genes can involve the TR(s) of 

other genes in the cluster. In this study, I selected three putative TRs from three gene clusters, 

none of which showed obvious functional enrichment. Strikingly, overexpressoin of each of 

these three TRs all led to enhanced expression of genes predicted to be downstream of the 

TRs based on my co-expression data (Figure 16), indicating that gene co-expression analysis 

can predict gene regulatory logic. The knowledge of functional TRs allows to globally 

manipulate genes involved in the same cluster by manipulating expression of the TRs, which 

is particularly useful to study the functions of the gene cluster. Since expression of genes in 

the three clusters is highly affected in the plant apoplast or immune activation 

(Supplementary Figure 11), it is possible that these genes may play roles in bacterial growth 

and/or virulence in planta. The role of the selected TRs will be further investigated by 

generating the knockout Pto strains of these TRs and the overexpressing/knockout strains will 

be tested for their growth in plants. 

3.2.4 Proteome	landscape	of	Pto	in	planta	and	integrative	multi-omics		

Unlike transcriptome responses, proteome responses of bacterial pathogens in hosts 

are mostly unexplored in any interaction systems including animals. In the present study, the 

proteomes of Pto were profiled under 15 conditions, both in vitro and in planta. This is, to my 

knowledge, the first study profiling the proteomes of bacteria in the plant apoplast. In planta 

proteome analysis of Pto detected up to 2000 proteins (Figure 8C). As about 3500 proteins 

could be detected in vitro (Figure 8C), it is likely that the sensitivity of the in planta proteome 

analysis has not reached the completeness yet. Especially, the number of proteins detected at 

an early time point of infection was low probably due to the low abundance of bacteria in the 

plant (Figure 8C). Improving the sensitivity of in planta bacterial proteomics is a future 

challenge. Nevertheless, in planta proteome analysis of Pto could capture distinct protein 
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expression patterns among various conditions (Figure 8 F and G), providing novel insights 

into the proteome landscape of the bacterial pathogen in plants. 

The abundance of transcripts does not necessarily correlate with the abundance of 

proteins because of various factors such as translation efficiency and protein stability. Studies 

comparing genome-wide abundance of transcripts and proteins in plants, yeasts, and 

mammals showed that transcriptomes and proteomes modestly correlate with each other in 

most cases (Foss et al., 2007; Ghazalpour et al., 2011; Gygi et al., 1999; Lan et al., 2012), 

whereas Marguerat et al. observed relatively high correlation between mRNA and protein 

levels of yeasts (Marguerat et al., 2012). In the present study, I found that the correlation 

between transcript and protein fold changes in planta is high (R2 values are around 0.6) in 

general in Pto (Figure 13A), providing evidence that bacterial transcriptomes can explain 

large part of bacterial proteomes in planta at different stages of infection. Transcriptomes and 

proteomes are highly correlated in all conditions tested in this study (Figure 13A), thus there 

was no signal that plant immunity globally affects the relationship between mRNA and 

protein expression of bacteria. In addition to this, it is notable that, since the profiling of 

transcriptomes and proteomes was conducted completely independently, the relatively high 

correlation between tanscriptome and proteome data supports that the quality of both omics 

data is high. 

Integrative analysis of transcriptome and proteome data illuminated the regulatory 

mechanisms of bacterial iron responses in planta. Transcription suppression activity of Fur 

on iron-starvation genes has been known to be dependent on the binding of Fe(II) to Fur 

protein (Llamas et al., 2014). However, whether the regulation of the abundance of Fur 

protein is also important for iron-starvation responses is unknown. The proteome data 

showed that the abundance of Fur protein partially anti-correlates with expression of Fe 

responsive genes (Figure 14 B and C), suggesting that the regulation of the accumulation of 

Fur protein might contribute to iron-starvation responses. Whether the protein abundance of 

Fur has a causal impact on bacterial iron-starvation responses and how plants affect the 

accumulation of Fur proteins will be a future issue. 

There were cases in which mRNA regulation and protein regulation do not correlate 

with each other (Figure 13). Expression of the T3SS was one of such cases (Figure 17A). The 

T3SS of Pto must cross the plant cell wall and plasma membrane as well as inner/outer 

membranes of bacteria to successfully translocate T3Es into plant cells. Harpins, HrpZ1, 
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HrpW1, and HopAK1 and HrpK comprise the tip part of the T3SS and were shown to 

function redundantly on T3E translocation (Kvitko et al., 2007). Also, lack of HrpK alone 

compromised growth of Pto in A. thaliana (Petnicki-ocwieja and Alfano, 2005), indicating 

the importance of harpin proteins for pathogen virulence. In the present study, I showed that 

the SA pathway of A. thaliana globally suppresses expression of HrpZ1, HrpW1, and HrpK at 

the protein level but not at the mRNA level (HopAK1 was not detected in the proteome 

analysis) (Figure 17 B-E). This suggests that plant immunity mediated by the SA pathway 

might degrade harpin proteins and/or affect translation of harpin proteins; and this might be 

a plant’s strategy to suppress effector translocation into plant cells and to inhibit pathogen 

growth. This is, to my knowledge, the first study suggesting that T3SS components are 

targeted by host immunity at the protein level. Since most of the non-harpin proteins in the 

T3SS were not affected by the SA pathway, it is tempting to speculate that plant immunity 

selectively and directly target the harpin proteins, which have direct contact with the plant 

cell wall. The mechanism by which plant SA pathway suppresses expression of these proteins 

is an exciting research topic. 

3.3 Understanding	how	plant	immunity	shapes	plant	microbiota		

Beyond uncovering enigmatic transcriptome responses of Pto to plant immunity, the 

in planta bacterial RNA-seq pipeline opens up an exciting possibility to study the in planta 

transcriptomes of a variety of bacterial species and bacterial communities naturally associated 

with plants.  

A preliminary analysis comparing the transcriptomes of four Pseudomonas strains, 

including pathogens and non-pathogens, revealed that there is a correlation between bacterial 

gene expression patterns in planta and their virulence (Figure 18A). For instance, avirulent 

strains (D36E, EK10, and EK47) strongly induced catalase genes, while the virulent strain 

(Pto) did not (Figure 18C). As catalase is important for detoxifying ROS, the induction of 

catalase genes in avirulent strains could be explained by ROS burst associated with plant 

immune activation, which is suppressed by effectors in the case of Pto infection. There were 

some genes differently responded even between commensals. Commensal Pseudomonas, 

EK10 and EK47, showed similar response as Pto and D36E, respectively, regarding expression 

of genes related to alginate biosynthesis (Figure 18E). The differential responses between 



3.	Discussion		

 68 

commensal strains can be explained by two non-mutually exclusive possibilities: (i) different 

bacterial strains triggered different plant responses and (ii) the same plant environment 

affected differently on different bacteria strains. Indeed, transcriptome analysis of plants 

infiltrated with various commensal bacteria showed a variety of immune responses (Figure 

21). The preliminary result of the comparative transcriptomics using nine bacterial strains 

from wide range of phyla showed a phylogenetic pattern in transcriptome responses in planta 

(Figure 19). A major challenge in this analysis is the sparsity of the dataset. Only a small 

number of KOs were shared among different strains, making comparison of KO expression 

difficult. Improving the quality of KO annotation and gene prediction in individual genomes 

would help to extract more information. Alternatively, using the orthologous gene list could 

increase the number of genes that can be compared among strains. Extensive co-

transcriptomics of plants and bacteria will deepen our understanding of the interactions 

between plants and the microbiota.  

It is important to note that, the co-transcriptome analysis in this thesis was not done 

in the gnotobiotic condition, i.e., plants might already be colonized by microbes before the 

infiltration of the bacterial strain of interest. Therefore, caution is required when interpreting 

the results; the potential effect of the already established microbiota on plant and bacterial 

responses needs to be taken into account. Nevertheless, as I used a single plant genotype (Col-

0) and the plants were grown in the same condition, the background microbiota structure 

should be comparable among all samples, and thus comparisons between different plant-

commensal strain combinations are still highly informative. Implementing the co-

transcriptome analysis in the gnotobiotic condition would be an important future challenge. 

The primary focus of plant microbiota studies has been, in most cases, the relative 

abundance of microbiota members, but the absolute abundance of them are less understood. 

It is of great importance to investigate the growth potential of individual commensal bacteria 

in the plant body and how plants affect bacterial growth to shape the microbiota. Therefore, 

in planta growth assay of commensal bacteria in the monoassociation condition is an 

important next step. Combined with the co-transcriptome data, this can reveal the bacterial 

strain-specific mechanisms by which plants respond to microbiota members and affect 

bacterial metabolisms to control bacterial growth in planta.  

Microbe-microbe interactions are widespread among plant-associated microbes and 

can affect the outcome of plant-microbe interactions (Duran et al., 2018; Helfrich et al., 
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2018). Thus, it is possible that plants have evolved mechanisms to direct microbe-microbe 

interactions for the benefit of plants. However, whether and how plant immunity affects 

interactions between microbes is not understood. Accumulation of knowledge regarding 

plant and bacterial responses during the monoassociation allows a reductionist approach to 

understand microbe-microbe interactions in the context of microbial communities. For 

instance, by inoculating the mixture of bacterial strains that show different responses in 

planta in the monoassociation condition, one can ask whether the presence of other bacterial 

species affect responses of plants and bacteria and investigate molecular bases underlying 

microbe-microbe or microbe-plant-microbe interactions.  

3.4 How	does	plant	immunity	control	bacterial	growth?	

Unlike animal immune cells, such as macrophages, plant cells do not appear to 

actively kill bacteria. Bacterial population in plants is not significantly reduced when 

infiltrated into plant leaves even under strong activation of PTI or ETI (compare bacterial 

growth in Figure 6C and Supplementary figure 7A) (Narusaka et al., 2009; Tsuda et al., 2009). 

Thus, the central role of plant immunity might be to suppress the excessive growth of bacteria 

without killing them. Successful activation of plant immunity is prerequisite for plants to 

inhibit pathogen growth, the mechanisms of which have been shown (or suggested) in this 

study and previous studies: (i) Pre-activated PTI can suppress expression of genes encoding 

the T3SS/T3Es (Figure 4B) and the translocation of the T3Es into plant cells (Crabill et al., 

2010a; Oh et al., 2010), thereby avoiding immune suppression by pathogens, (ii) the SA 

pathway can suppress the protein accumulation of specific components of the T3SS, which 

might abolish its function (Figure 17), and (iii) ETI can overcome the suppression of immune 

responses by the T3Es (Ling et al., 2017; Mine et al., 2017a). How successfully activated plant 

immunity inhibits pathogen growth is a long-standing question in the plant-microbe 

interactions research, yet we have limited knowledge on this thus far. Asking a question on 

the flip side of the coin might be helpful: what makes bacteria virulent? The T3SSs and T3Es 

are essential for the virulence of various bacterial pathogens, but many other processes are 

likely involved in bacterial growth in planta as the present study and previous studies showed 

that a number of bacterial functions are activated upon infection (Figure 4B) (Yu et al., 2013). 

Intriguingly, GO enrichment analysis showed that most of GO terms significantly changed in 
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expression upon infection were induced rather than reduced (Figure 4B), implying that the 

induction rather than the suppression of a set of functional processes is necessary for bacterial 

virulence in plants. Thus, blocking the induction of such processes might be key for plant 

immunity to inhibit pathogen growth. Indeed, I found that PTI suppresses various processes 

that are activated in Pto upon infection, including “iron acquisition”, “coronatine 

biosynthesis”, “alginate biosynthesis”, and “translation”, whereas ETI suppressed a specific 

process, “iron acquisition“ (Figure 4B). As both PTI and ETI are effectively inhibit pathogen 

growth, there are probably multiple ways for plant immunity to inhibit pathogen growth. It 

remains elusive what is the minimum set of bacterial processes whose suppression is 

sufficient for inhibiting Pto growth. Intriguingly, I observed, in a preliminary study, that 

plants do not allow commensal bacteria to induce genes related to translation and iron 

acquisition (Figure 18D and Figure 20B), implying that these processes might be important 

targets for plant immunity to control the growth of plant-associated bacteria in general. 

Recent advancement of DNA sequence technologies empowered scientists to identify 

bacterial genes required for colonization and growth in plants by comparative genomics of 

large number of bacterial species or saturation mutagenesis of specific bacterial species by 

using transposon insertion site sequencing (Tn-seq) (Cole et al., 2017; Levy et al., 2017; Levy 

et al., 2018). Understanding bacterial processes important for virulence or successful 

colonization in plants and their regulation by plant immunity is crucial for elucidating the 

molecular basis of how plant immunity acts on bacteria to control their growth. 

3.5 Outlook	

3.5.1 Resilience,	tunability,	and	balance	at	different	layers	of	plant	immunity		

As described in the introduction, plant immune networks provide plants with a 

resilient, tunable, and balanced ability to suppress pathogen growth. The resilient pathogen 

growth suppression could partly be explained by highly buffered transcriptome responses of 

plants mediated by the immune hormone network (Hillmer et al., 2017). In this thesis, 

bacterial transcriptome analysis at an early point of infection in a panel of A. thaliana 

immune-compromised mutants (single and multiple mutants) suggested that the SA, JA, ET, 

and PAD4 sectors affect bacterial transcriptomes in a qualitatively similar manner (Figure 
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5A). Bacterial T3SS and iron acquisition systems were shown to be major targets of plant 

immunity that were commonly suppressed by these hormone pathways (Figure 5A), 

suggesting the resilient targeting of pathogenesis-related functions by plant immunity. 

Importantly, abiotic factors can directly affect microbial responses as well as plant responses 

(Velasquez et al., 2018). For instance, elevated temperature enhances effector secretion of a 

bacterial pathogen and promotes disease susceptibility of plants (Huot et al., 2017). 

Combined with plant genetics and environmental perturbations, in planta microbial ‘omics’ 

profiling is a powerful strategy to elucidate molecular mechanisms underlying host-microbe-

environment interactions. Another bottleneck is that we have scant knowledge about 

immune outputs that directly execute pathogen growth suppression and how such immune 

outputs are regulated. Quantitative analyses of immune outputs such as metabolites, peptides, 

nutrients, pH, ROS, redox state, and plant hormones would help to understand how immune 

outputs are regulated by the plant immune network. The temperature of the apoplastic space 

in relation to plant immunity is one of the unexplored research topics. The activation of plant 

immunity causes stomatal closure (Melotto et al., 2017) and stomatal closure is known to lead 

to higher leaf temperature (Mustilli, 2002). Thus, it may be possible that apoplastic 

temperature rises during plant immune activation and affects bacterial virulence as analogous 

to the fever response of vertebrates, a hallmark of infection and inflammatory response 

(Evans et al., 2015). The past decade has produced a rich and growing toolbox for the imaging 

analysis of those factors (Hilleary et al., 2018; Martinière et al., 2018; Nietzel et al., 2018). 

Phytoalexins and glucosinolates are known metabolites that suppress fungal growth (Piasecka 

and Jedrzejczak-rey, 2015). Imaging mass spectrometry analyses showed that the 

accumulation of a phytoalexin, camalexin, is limited to pathogen infection sites (Ryffel et al., 

2015), implying that camalexin production is tuned/balanced in plant leaves. 

In summary, there are a number of open questions regarding resilience, tunability, 

and balance of plant immunity at different layers such as plant responses, substances that 

directly act on microbes, impacts on microbial metabolism, and microbe-microbe 

interactions (Fig. 22).   



3.	Discussion		

 72 

 

Figure 22: The plant immune system at different layers 

Biotic and abiotic inputs trigger and modulate plant immune responses through plant immune 
networks (e.g., hormone networks). (1) Immune responses inside plant cells occur at the level of 
transcriptome, proteome, and metabolome. (2) Immune outputs that directly affect microbial 
responses can interact with each other to fine-tune the outcomes. (3) Impact of plant immunity on 
microbial functions at different layers, i.e., transcriptome, proteome, and metabolome of the microbe. 
This figure was adopted from Nobori et al., 2019 (submitted). 

3.5.2 Zooming	in:	plant	immune	system	at	tissue-	and	cell-specific	levels	

The initial encounter of plants with microbes mainly occurs at the level of single or 

few cells. Unlike animals, plants do not have mobile immune cells, thus it is considered that 

all plant cells have the potential to defend themselves in addition to other functions. Since 

different cell types have different functions, the properties of immune networks and their 

connections with other processes are likely cell type-specific. Indeed, mesophyll cells and 

guard cells show opposite properties regarding the roles of SA and ABA. SA and ABA 

positively regulate guard cell immunity, i.e., stomatal closure, while ABA adversely affects SA-

mediated immune responses in mesophyll cells (Melotto et al., 2017; Pieterse et al., 2012). 

However, our current understanding of the plant immune system is mostly limited to the 

bulk tissue level. Defining cell types that play distinct roles in plant-microbe interactions and 
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studying cell type-specific plant immune networks has the potential to elucidate systems that 

are masked when studied in bulk tissues. 

As discussed in the previous section, plant microbiota can be a source of 

heterogeneous inputs. How plants integrate the heterogeneous microbial inputs and fine-tune 

their responses is still enigmatic. Cell type-specific expression of receptors might be a way. 

FLS2, a receptor for a well-conserved peptide derived from bacterial flagellin, expresses in 

stele but not in root epidermis (Beck et al., 2014), implying that root epidermal cells are not 

highly responsive to bacteria on the root surface, but once bacteria reach the endodermis (a 

sign for potential pathogens), endodermal cells trigger immune responses. This may be a 

plant strategy to avoid unnecessary immune activation by commensal bacteria harmlessly 

existing on the root surface, allowing allocation of resources in the cells to other tasks such as 

nutrient acquisition. 

‘Omics’ profiling of cell-type specific responses helps understand the immune 

regulatory networks in different cell types. Cell type specific responses to MAMPs, flg22 and 

Pep1, were shown in A. thaliana roots by RNA-seq analysis of FACS-sorted cell types based 

on fluorescent markers (Rich et al., 2018). Recent advances in single cell analysis technologies 

hold promise for the studies of plant immune systems at the single cell level (Efroni and 

Birnbaum, 2016). Understanding plant immune receptor/signaling networks at single cell/cell 

type-specific levels is an important future challenge (Figure 23). 

 

 

Figure 23: Plant immune networks at the single cell/cell-type specific level  
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Different cells/cell types have different immune network structures (e.g., receptor networks and 
hormone networks) and encounter different sets of microbes, resulting in different spectra of immune 
outputs. This figure was adopted from Nobori et al., 2019 (submitted). 

 

3.5.3 Overcoming	tradeoffs	in	agriculture	

Plants have evolved complex molecular systems to adapt to rapidly evolving microbes 

and changing climates. Although these systems would benefit the survival of the species in 

nature, they can pose a burden in agriculture, where yields are more appreciated than the 

survival of species and growth conditions are relatively less heterogeneous than the natural 

environment. Such phenomena are pervasively called as “tradeoffs”. A classical example is 

that crops with enhanced disease resistance often have reduced yield (“growth-defense trade-

off”) (Karasov et al., 2017). A recent study showed that the genetic link mediating a tradeoff 

between JA-mediated defense against insects and plant growth can be unlinked by rewiring 

JA and phytochrome B signaling (Campos et al., 2016), suggesting that resource limitation is 

not the sole reason for this growth-defense tradeoff in laboratory conditions. Such mutant 

plants may show reduced fitness in the natural environment, but if we could artificially 

control plant growth conditions and remove the environmental factors that require the 

tradeoff, the tradeoff could truly be overcome in an agricultural setup. Therefore, better 

understanding of plant immune systems and their connections with plant responses to 

heterogeneous and complex environmental factors paves the way to unlocking the potential 

of crop engineering combined with tailor-made agricultural management.   

3.5.4 Towards	 the	 understanding	 of	 molecular	 super-networks	 in	 plant-bacterial	

interactions.	

Plants and bacteria both have evolved their own molecular signaling networks. The 

molecular networks of plants and bacterial pathogens appear to be interconnected to form 

supernetworks, as bacterial pathogens interfere with plant immune networks by multiple 

means and plant immunity also affects components of the bacterial virulence networks as 

described in this thesis (Figure 1). Here, I discuss small molecules produced by plants and 

bacteria that potentially play a role in assembling the supernetworks between the two 

organisms.   
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Bacteria produce a variety of phytohormones (mimics), such as IAA, SA, ET, ABA, 

cytokinin, gibberellin, and coronatine (Bakker et al., 2014; Fahad et al., 2015; Kunkel and 

Harper, 2017; Nagel and Peters, 2017; Zhang et al., 2017); some of these phytohormones 

(mimics) produced by bacteria can affect plant physiology including plant immunity (Kunkel 

and Harper, 2017; Zhang et al., 2017). On the other hand, bacteria also use phytohormones to 

regulate their own responses. For instance, IAA is used as a QS signal in some bacteria (Yue 

et al., 2014), suggesting that plant-derived IAA has the potential to affect bacterial physiology 

including virulence via the QS system. The ability of both plants and bacteria to produce and 

perceive phytohormones raises the possibility that phytohormones are key molecules that 

connect the plant immune and bacterial virulence networks. Moreover, plants can perceive 

siderophores (Aznar and Dellagi, 2015) and AHLs (Mathesius et al., 2003; Miao et al., 2012; 

Schenk et al., 2014) produced by bacteria to trigger defense responses, suggesting that the role 

of these small molecules is not restricted within or between bacterial species but that they 

might be used for direct interactions between plants and bacteria. Intriguingly, a number of 

bacterial strains produce pipecolic acid and likely release a large amount of this chemical into 

the soil (Vranova et al., 2013). Pipecolic acid is also produced by plants and plays an 

important role in mediating systemic acquired resistance, which is effective against a broad 

range of pathogens (Návarová et al., 2012). Therefore, bacteria-derived pipecolic acid may 

have a significant effect on inducing systemic acquired resistance, thereby protecting plants 

from potential pathogens. Reciprocally, plant-derived pipecolic acid may affect bacterial 

networks. Indeed, it is known that a number of bacterial strains assimilate pipecolic acid 

(Vranova et al., 2013). Collectively, small molecules that play important roles in the signaling 

networks within plants and/or bacteria can potentially connect these two networks, 

assembling supernetworks and potentially driving the evolution of the plant-bacterial 

pathogen interactions (Figure 24).  

The concept of supernetwork is not specific to the interaction between plants and 

pathogenic bacteria. For instance, in legume-rhizobium symbiosis, regulation of symbiosis-

related genes of the hosts and bacteria are tightly connected by the exchange of small 

molecules produced by both sides (Cao et al., 2017). It is plausible that plants form molecular 

supernetworks also with various commensal bacteria in the plant microbiota, in which inter- 

and intra-kingdom communications occur via diverse signals (Leach et al., 2017). 
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Transcriptome and proteome analyses of bacteria and plants will open a new avenue for 

better understanding the molecular supernetworks of diverse interactions. 
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Figure 24: A conceptual model illustrating the plant–bacterial supernetwork 

In the supernetwork, the molecular networks of plant immunity and bacterial virulence are connected 
by small molecules shared between plants and bacteria. Red and blue arrows indicate signals derived 
from plants and bacteria, respectively. AHLs, Acyl-homoserine lactones. This figure was adopted from 
(Nobori et al., 2018a). 
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3.6 Concluding	remarks	and	future	perspectives	

Plant-microbe interactions are processes in which responses of plants and microbes 

are tightly connected to determine the outcomes of interactions. Interactions between plants 

and pathogens have been intensively studied in the past decades and we gained an enormous 

amount of knowledge about plant immune responses against pathogens and how pathogens 

affect the plant immune systems. However, we have relatively limited knowledge about 

pathogen responses necessary for their virulence and how plant immunity influences 

pathogen responses to fight against them. In this thesis, I established methods to profile 

transcriptomic and proteomic responses of bacterial pathogens in plant leaves. This approach 

allowed me to gain unprecedented insights into the mechanisms by which plant immunity 

affects bacterial metabolisms to inhibit pathogen growth and into bacterial gene regulatory 

mechanisms in plants.  

I further extended this approach to investigate plant-microbiota interactions, an 

emerging field in plant-microbe interactions research. Many studies have investigated the 

structure of plant-associated microbial communities under various conditions, revealing 

microbial species adapted to plant environments and factors that affect microbiota assembly 

(Bulgarelli et al., 2013; Hacquard et al., 2015; Vorholt, 2012). However, it remains largely 

enigmatic how individual interactions between plants and each microbiota member influence 

the shape and functions of the microbiota. To tackle this issue, accumulation of knowledge in 

the individual interactions is crucial. Here, I established a pipeline for the RNA-seq analysis 

of plants and bacteria in monoassociation conditions, which revealed that different 

combinations of plants and bacterial species have both common and specific transcriptomic 

signatures in plant and bacterial responses. This approach can be applied, in the future, to 

simplified bacterial communities to investigate the transcriptome landscape of plant-

microbiota holobiont and its role in affecting microbiota structure and functions.       

Further research using the approaches established in this thesis has the potential to (i) 

identify previously unknown virulence-related processes in bacterial pathogens and 

molecular mechanisms by which resistant plants target these processes and (ii) understand 

the commonalities and differences of molecular supernetworks in diverse plant-bacterial 

interactions. Such knowledge will help us unlock the complex molecular interactions between 



3.	Discussion	

79	

plants and pathogens/microbiota, which will provide untapped engineering potential in plant 

breeding.  
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4 Materials	and	Methods			

4.1 Key	resources	

REAGENT or RESOURCE SOURCE 

Chemicals and Peptides  

Tryptic Soy Broth Sigma-Aldrich 

Rifampicin Duchefa 

Tetracycline Sigma 

Kanamycin Duchefa 

Gentamycin Duchefa 

Salicylic acid Duchefa 

flg22 EZBiolab Inc. 

Chitosan Sigma 

pegGOLD TriFastTM Peqlab 

EvaGreen DNA Dye Biotium 

Phenol solution pH 8.0 Sigma 

100% ethanol VWR international 

NaOH Carl Roth 

Chloroform Carl Roth 

Sodium citrate Sigma 

Iron(III) citrate Sigma 

Tris(2-carboxyethyl)phosphine (TCEP) Sigma 

Nuclease-Free Water (not DEPC-Treated) Ambion 

Kits  

TURBO DNA-free Kit Ambion 

RNAqueous-Micro Total RNA isolation Kit Ambion 

RNeasy Mini Kit Qiagen 

RNAproTM Solution  MP Biomedicals 

Lysing Matrix E MP Biomedicals 

FastRNA PRO™ BLUE KIT MP Biomedicals 

Ovation® Complete Prokaryotic RNA-Seq Library 
Preparation Kit 

NuGEN 

Ribo-Zero rRNA Removal Kit (Plant) Illumina 

SuperScript™ III Platinum™ One-Step qRT-PCR 

KKit 

Invitrogen 
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REAGENT or RESOURCE SOURCE 

  

Plant materials  

see 4.2  

Bacterial strains  

see 4.3  

Software and algorithms  

see 4.11  

Primers  

see 4.12  

 

4.2 Plant	materials	and	growth	conditions		

The Arabidopsis thaliana accession Col-0 was the background of all A. thaliana 

mutants used in this study. The A. thaliana mutants cyp79b2 cyp79b3 (Zhao et al., 2002), 

npr1-1 (Cao et al., 1997), rpm1-3 rps2-101C (Mackey et al., 2003), stp1 stp13 (Yamada et al., 

2011), and combinatorial mutants (Tsuda et al., 2009) of the A. thaliana mutants dde2-2 

(Malek et al., 2002), ein2-1 (Alonso et al., 1999), pad4-1 (Jirage et al., 1999), and sid2-2 

(Wildermuth et al., 2001) were described previously. The double mutant sid2-2 pmr4-1 was 

generated by standard genetic crosses (Nishimura et al., 2003). Plants were grown in a 

chamber at 22°C with a 10-h light period and 60% relative humidity for 24 days and then in 

another chamber at 22°C with a 12-h light period and 60% relative humidity. For all 

experiments, 31 to 34 day-old plants were used.  

4.3 Bacterial	strains		

Pto DC3000 carrying empty vector (pLAFR), avrRpt2 (pLAFR), and avrRps4 

(pVSP61) (Tsuda et al., 2013) and effector-deficient mutant Pto D36E (Wei et al., 2015) were 

described previously. Commensal Pseudomoans strains, EK10 and EK47, were kindly 

provided by the group of Prof. Dr. Eric Kemen. The other commensal strains shown Table 1 

were described previously (Bai et al., 2015).  
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4.4 Accession	numbers		

The accession numbers for the genes discussed in this article are as follows: 

AtACTIN2 (At2g18780), AtPR1 (AT2G14610), AtDDE2 (AT5G42650), AtEIN2 (AT5G03280), 

AtPAD4 (AT3G52430), AtSID2 (AT1G74710), AtNPR1 (AT1G64280), AtPMR4 

(AT4G03550), AtSTP1 (AT1G11260), AtSTP13 (AT5G26340), AtCYP79B2 (AT4G39950), 

AtCYP79B3 (AT2G22330), AtRPS2 (AT3G03600), AtRPM1 (AT3G07040), pvdS 

(PSPTO_2133), hrpL (PSPTO_1404), avrPto (PSPTO_4001), cmaA (PSPTO_4709), gapA 

(PSPTO_1287), katB (PSPTO_3582), katG (PSPTO_4530), gyrA (PSPTO_1745), hrcC 

(PSPTO_1389), hrpZ (PSPTO_1382). 

4.5 In	vitro	bacterial	cultures	for	bacterial	transcriptomics	and	proteomics		

P. syringae strains were grown in either King’s B medium or type III-inducible 

medium (Huynh et al., 1989) (50 mM KH2PO4; 7.6 mM (NH4)2SO4; 1.7 mM NaCl; 1.7 mM 

MgCl26H2O; 10 mM fructose) to OD600 = 0.65 (late log phase) at 28ºC. In the experiments 

using commensal bacteria, bacterial strains were grown in 50% Tryptic Soy Broth (TSB; 

Sigma) to the late log phase at 23ºC. Upon harvesting bacterial cells, 0.1 volumes of 5% 

phenol and 95% ethanol were added to the culture which was then resuspended and 

centrifuged, followed by total RNA extraction for RNA-seq of the bacterial pellet. 

4.6 Elicitor	pretreatment		

One day before bacterial infection, leaves were sprayed with H2O (Mock), 1 μM flg22 

(EZBiolab), 100 μg/ml chitosan (Sigma), or 50 μM SA (Duchefa Biochemie).  

4.7 Bacterial	 infection	and	 sampling	 for	 in	planta	 bacterial	 transcriptomics	

and	proteomics	

Pto stains were cultured in King’s B medium at 28°C. Commensal strains were 

cultured in 50% TSB medium at 23°C. Bacteria were harvested by centrifugation and 

resuspended in sterile water to an OD600 of 0.5 and 0.005 for the sampling at 6 and 48 h post 
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infection, respectively. In total, 80 to 100 A. thaliana leaves (four leaves per plant) were 

syringe-inoculated with bacterial suspensions using a needleless syringe. The infected leaves 

were harvested at 6 h post infection, immediately frozen in liquid nitrogen, and stored at -

80°C. 

4.8 Transcriptome	analysis	of	plants	

Bacterial suspensions were prepared and syringe infiltrated as described in 4.6. Water 

was used for mock treatment. Six infected leaves were harvested at 6 h post infection, 

immediately frozen in liquid nitrogen, and stored at -80°C. RNA was extracted by using 

RNAproTM Solution and Lysing Matrix E (MP Biomedicals) followed by DNase treatment 

with TURBO DNA-free kit (Ambion). Illumina TrueSeq cDNA libraries were subjected to 

RNA-seq at the Max Planck Genome Centre Cologne using Illumina HiSeq3000 with 150 bp 

strand-specific single-end read, resulting in approximately 30 million reads per sample. 

4.9 In	planta	bacterial	transcriptomics	

*Sections 4.9.1 – 4.9.4 were adopted from my previous publication (Nobori and Tsuda, 2018). 

4.9.1 Establishment	of	a	bacterial	isolation	buffer	

The bacterial isolation buffer needs to be able to fix bacterial metabolism, protect 

bacterial RNA from degradation, and separate bacterial cells from plant cells. I first tested a 

commonly used solution containing 9.5% ethanol and 0.5% phenol. This could protect 

bacterial RNA when bacteria were incubated alone, but not when mixed with crushed plant 

leaves (Supplementary figure 1C). Adding the reducing agent Tris(2-carboxyethyl)phosphine 

(TCEP; Sigma) to a final concentration of 25 mM protected bacterial RNA in the mixed 

condition in a pH-dependent manner: buffers with lower pH protected bacterial RNA better 

(Supplementary figure 1C). I determined pH 4.5 as an optimal condition, where both RNA 

protection and bacterial enrichment could be sufficiently accomplished. Incubating bacterial 

cells in this buffer did not affect bacterial transcriptome patterns, suggesting that this buffer 

fixed bacterial metabolism (Supplementary figure 1D).  
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4.9.2 Bacterial	isolation	

Bacterial isolation Day1 

1. Infiltrate bacterial suspension (OD600 = 0.5) to 80 leaves (approximately 3 g) of A. 

thaliana leaves from the abaxial side to the entire leaf area with a 1 ml needle-less 

syringe. 4 leaves/plant x 20 plants. 

2. Six hours after infiltration, collect 80 leaves with forceps in a 50 ml Falcon tube 

containing 8-10 stainless steel balls (4 mm; sterilized by washing with ethanol and air 

dried). Flash-freeze with liquid nitrogen. Samples can be stored at -80 °C. 

3. Shake thoroughly by hand and crush the leaves into small pieces (Method figure 1). 

Ensure that the samples do not thaw during crushing. 

 

 

 

Method figure 1: Crushed leaf sample before incubation in the bacterial isolation buffer 

 

4. Add 30 ml ice-cold bacterial isolation buffer (Nuclease-Free Water, 25 mM TCEP 

(tris(2-carboxyethyl)phosphine), pH 4.5 adjusted with 10 N NaOH 9.5% ethanol 0.5% 

Phenol solution; prepare it fresh every time) in a fume hood and vortex immediately 

for 10 sec followed by shaking vigorously by hand for 10 sec. Incubate the tubes for 20 

h with shaking at 33 rpm using Roller mixer SRT1 at 4 °C. 

 

Bacterial isolation Day2 
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1. Equip a 50 ml Falcon tube with a filter holder (handmade from a QIAGEN-tip 500 

column; the upper half was cut by a plastic cutter; autoclaved before using) and a 

single layer of 6 µm filter mesh (cut into 12 cm x 15 cm size, and then autoclaved) 

(Method figure 2). Trim away the excess filter mesh with scissors so that the cap can 

fit the tube. 

 

 

Method figure 2: Filter and filter holder equipped to a 50 ml Falcon tube  

(A) A QIAGEN-tip 500 column is cut to make a filter holder. (B) A 50 ml Falcon tube, a 6 µm filter 
mesh (12 cm x 15 cm), and the filter holder. (C) Equip the 50 ml Falcon tube with the filter holder and 
the filter mesh. (D) Trim away the excess filter mesh so that the cap can fit the tube.  

 

2. Apply the sample (15 ml; without stainless steel balls) to the column and filter it by 

centrifuging at 1,300 x g for 10 sec (or until all the liquid goes through) at 4 °C. While 

keeping the flow-through in the tube, apply the rest of the sample (15 ml) to the 

column and repeat the filtering.  

3. Remove the filter and the filter holder. Centrifuge the flow-through for 20 min at 

3,200 x g at 4 °C. Discard the supernatant with an electronic pipette equipped with a 

25 ml serological pipette. You may leave some liquid (100 μl) to avoid the sample loss. 

4. Add 900 μl of ice-cold bacterial isolation buffer and resuspend the pellet by vortexing, 

then transfer it to a new 1.5 ml tube on ice by pipetting. Make sure that the pellet is 

completely resuspended. 

5. Centrifuge for 20 min at 2,300 x g at 4 °C. You will see two-layered pellet: white on the 

top and green at the bottom (Method figure 3). 
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Note: Sometimes the upper part of the tube gets pale green. In this case, you may 

remove the green part by pipetting with a small amount of the liquid phase and discard 

it to avoid a potential plant contamination. 

 

 

Method figure 3: A two-layered pellet consists of plants (bottom, green) and bacteria (top, white) 

 
6. Equip 20 μl Gilson pipette with 10 μl filter tip (with 20 μl capacity) and set the volume 

to 18 μl. Carefully resuspend only the top white layer by pipetting up and down close 

to the surface of the pellet. When the buffer gets cloudy by the bacterial cells, transfer 

the buffer (approximately 1,000 μl) to a new 1.5 ml tube on ice using 1,000 μl pipette. 

Then, carefully add 1 ml of new ice-cold bacterial isolation buffer without disrupting 

the pellet by tiling the tube. Repeat resuspending and collecting bacterial cell 

suspensions in new 1.5 ml tubes (total three times or until the white layer is 

completely removed). 

Note-1: You may use larger tips that fit the pipette, but smaller tips make it 

easier to resuspend the bacterial layer without breaking the plant layer. 

Note-2: If the layer of plant tissues is collapsed and mixed with the layer of 

bacterial cells, you can recover the bacterial layer by completely resuspending the entire 

pellet by vortexing and then repeating the centrifugation step (step C-5).  

7. Centrifuge the bacterial suspensions for 2 min at 10,000 x g to harvest bacterial cells. 

Discard the supernatant by pipetting. 
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4.9.3 RNA	extraction		

For Pto strains, the TriFast solution was mixed with 200 μl of chloroform and the 

aqueous phase was isolated by centrifugation (typically 400 μl). The aqueous phase was mixed 

with 200 μl (half volume) of ethanol and then applied to the column of RNAqueous kit 

(Ambion). RNA was eluted in 30 μl of RNase free water following the manufacturer’s 

protocol. For commensal bacteria, RNA was extracted by using FastRNA PRO™ BLUE KIT (MP 

Biomedicals) following the manufacturer’s protocol. Extracted RNA was treated with 2 U of 

TURBO DNase (Ambion) for 30 min at 37°C. Then, plant rRNA was removed using Ribo-

Zero plant kit (Epicentre) following the manufacturer’s protocol. Input RNA amount ranged 

from 2.5 to 5 μg depending on the yield of RNA after DNase treatment. Plant rRNA-depleted 

RNA was purified and concentrated with RNeasy MiniElute kit (Qiagen). 

4.9.4 cDNA	library	generation	and	RNA-seq		

cDNA libraries were generated with Ovation Complete Prokaryotic RNA-seq kit 1-8 

(NuGEN), following the manufacturer’s protocol with some modifications. Ten ng of plant 

rRNA-depleted RNA was used as input. DNA fragmentation was conducted with a Covaris S-

Series instrument. cDNA libraries were subjected to RNA-seq at the Max Planck Genome 

Centre Cologne using Illumina HiSeq3000 with 150 bp strand-specific single-end read, 

resulting in approximately 10 million reads per sample. Illumina CASAVA pipeline (version 

1.8.2) was used for base calling and cutadapt (Martin, 2011) was used for discarding reads 

containing the Illumina adaptor sequences. The resulting reads were mapped onto the Pto 

DC3000 genome/CDS (Pseudomonas Genome Database) and the A. thaliana genome 

(TAIR10) using Bowtie2 (Langmead and Salzberg, 2012) and TopHat2 (Kim et al., 2013), 

respectively. Mapped reads were counted with the Python package HTSeq (Anders et al., 

2014). 

4.9.5 Statistical	analysis	of	RNA-seq	data		

The statistical analysis of the RNA-seq data was performed in the R environment. 

Genes with zero counts in at least one of the samples were excluded. The count data of the 

remaining genes was normalized and log-transformed by the function calcNormFactors 
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(TMM normalization) in the package edgeR (Robinson et al., 2010) and the function 

voomWithQualityWeights in the package limma (Smyth, 2005), respectively. Density plot 

analysis, carried out with the function plotDensities in the package limma, showed that TMM 

normalization successfully normalized the read-count distribution of each sample 

(Supplementary figure 2C). To each gene, a linear model was fit by using the function lmFit 

in the limma package with the following terms: Sgtr = GTgt + Rr+ ɛgtr, where S is the log2 

count per million, GT is the host genotype: Pto strain interaction and the random factors, R is 

the biological replicate, and ɛ is the residual. The eBayes function in the limma package was 

used for variance shrinkage in the calculation of the p-values, which was then used to 

calculate the false discovery rate (FDR; the Storey’s q-values) using the qvalue function in the 

qvalue package (Storey and Tibshirani, 2003). All normalized mean expression values (log2 

counts per million) of bacterial genes are available in a previous paper (Nobori et al., 2018b). 

To extract genes with significant expression changes, the cutoff of q-value < 0.01 and |log2FC| 

>2 was applied. The prcomp function was used for principal component analysis. MDS plot 

was created with the plotMDS function in the package edgeR. Hierarchical clustering was 

done using the dist and hclust functions in the R environment or using the Cluster3.0 

software (Hoon et al., 2004). Heatmaps were created with the heatmap3 function in the R 

environment or using the TreeView (Eisen et al., 1998). For the distance heat map, the 

distances were calculated using the dist function in R environment after estimating a mean-

dispersion relationship of the data using estimateDispersions function with method = ‘blind’ 

and transforming the variance with the varianceStabilizingTransformation function in the 

DESeq2 package (Love et al., 2014). Enriched gene ontology terms were identified using 

BiNGO plugin for cytoscape (Maere et al., 2005a). 

4.9.6 Quality	assessment	of	RNA-seq	data		

There was certain variation in bacterial enrichment rate among samples and some 

sequence reads were mapped to neither the Pto nor A. thaliana genome due to low-quality or 

contaminations (“Else” in Figure 3C). However, hierarchical clustering of RNA-seq data 

showed that the bacterial enrichment rate and the sequence depth did not explain the 

transcriptome pattern (Supplementary figure 2A), suggesting that there are no systematic 

biases caused by the enrichment method.  
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4.9.7 Co-expression	analysis	of	Pto	genes		

Co-expression matrix was generated by using cor function with the method = 

‘pearson’ in the R environment. The co-expression network was visualized on the Cytoscape 

(Shannon et al., 2003) using yFiles organic layout. Gene pairs with correlation coefficient 

greater than 0.8 were used as edges.  

4.9.8 Analysis	of	RNA-seq	data	of	commensal	strains		

RNA-seq count data were normalized and log-transformed as described in 4.8.5. The 

genome of each bacterial strain was annotated with KEGG ontology (KO) by BlastKOALA 

(Kanehisa et al., 2016). Gene expression fold changes between in vitro (TSB) and in planta 

(Col-0, 6 hpi) were used for analyses. In case a KO was assigned to multiple genes, the mean 

expression fold change was used as the KO expression data. 

4.9.9 In	planta	bacterial	transcriptome	method	based	on	customized	probes		

Pto was grown in the KB medium at 30°C. Plants were grown in a chamber with a 12-

h light period, 23°C temperature at day time and 21°C at night time. Two leaves from three to 

four-and-one-half week-old A. thaliana plants were infiltrated with either 0.005% dimethyl 

sulfoxide (DMSO, Mock) or 500 nM flg22 using a needleless syringe. Plants were inoculated 

with a suspension of Pto at OD600 = 0.75 at 20 h after the infiltration of mock or flg22. Seven 

hours after Pto inoculation, leaves were collected for RNA extraction.  

RNA was extracted using the TRIzolTM reagent (Thermo Fisher Scientific) and the 

Direct-zolTM RNA Miniprep kit (Zymo Research). Purified RNA was treated with 10 U of 

RNase-free DNase I (Roche Applied Science); then RNA was purified with the Direct-zolTM 

RNA Miniprep kit. Non-organellar 18S and 28S rRNAs, and poly(A) mRNAs were depleted 

using the MICROBEnrichTM kit (Thermo Fisher Scientific). RNA quality was evaluated using 

the Agilent 2100 BioAnalyzer and RNA concentration was determined using the QubitTM 

RNA HS assay kit (Thermo Fisher Scientific). 

RNA-seq libraries were prepared using the Ovation Arabidopsis RNA-seq system 1–

16 (NuGEN) with modifications to the manufacturer’s protocol. First strand cDNA synthesis 

used only the first strand primer random mix (the oligo dT primer mix was omitted), while 
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on strand selection II, custom insert-dependent adapter cleavage probes (AnyDeplete) with 

specificity to highly abundant A. thaliana chloroplast and nuclear transcripts (361 probes) 

and Pto DC3000 rRNAs (65 probes; 1 µL of each 2 µM probe mixture was used; see (Nobori 

et al., 2018b) for the probe information) were added to the mixture of custom probes for A. 

thaliana cytoplasmic, chloroplast, and mitochondrial rRNA that are included with the kit.  

Libraries were sequenced with the Illumina HiSeq 2500 using HiSeq SBS reagents 

(version 4) to obtain 50 bp single reads. Base calling was done by the Illumina Real Time 

Analysis software (RTA version 1.18.64). 

4.10 In	planta	bacterial	proteomics	

4.10.1 Bacterial	isolation	and	protein	extraction	

Bacterial isolation was done as described in 4.7.2. The TriFast solution was mixed with 

0.2 volume of chloroform and the organic (lower) phase was isolated by centrifugation. The 

organic phase was mixed with 4 volume of MeOH 0.01M Ammonium Acetate and incubated 

at -20ºC overnight to precipitate proteins. The precipitated proteins were washed twice with 

MeOH 0.01M Ammonium Acetate and then washed once with 80% acetone. Proteins were 

stored in 80% acetone at -20ºC. 

4.10.2 Sample	preparation	and	fractionation		

Proteins were pelleted and re-dissolved in 8M urea 100mM Tris-HCl pH 8.5, then 

protein mixtures were reduced with dithiothreitol, alkylated with chloroacetamide, and 

digested first with Lys-C for 3h and subsequently with trypsin o/n. Samples were submitted to 

SDB-RPS fractionation using a protocol adapted from Borner and Fielding (Cold Spring 

Harb. Protoc.; doi:10.1101/pdb.prot084137). In brief, stage tips were prepared with 2 layers of 

SDB-RPS membrane and activated with 100 µL acetonitrile, followed by equilibration with 

100 µL equilibration buffer (30% (v/v) MeOH, 1% (v/v) TFA) and 100 µL 0.2% TFA. Then, 

peptides were immobilized on the membrane and washed with 100 µL 0.2% TFA. Peptides 

were eluted into three consecutive fractions using SDS-RPS buffer 1 (100 mM NH4HCO2, 

40% (v/V) ACN, 0.5% FA), SDS-RPS buffer 2 (150 mM NH4HCO2, &0% (v/V) ACN, 0.5% 
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FA) and finally SDS-RPS buffer 3 (5% Ammonia (v/v), 40% (v/V) ACN). The collected 

fractions were evaporated to dryness to remove residual ammonia.  

4.10.3 LC-MS/MS	data	acquisition		

Dried peptides were re-dissolved in 2% ACN, 0.1% TFA for analysis and adjusted to a 

final concentration of 0.1 µg/µl. Samples were analysed using an EASY-nLC 1200 (Thermo 

Fisher) coupled to a Q Exactive Plus mass spectrometer (Thermo Fisher) or using an EASY-

nLC 1000 (Thermo Fisher) coupled to a Q Exactive mass spectrometer (Thermo Fisher), 

respectively. Peptides were separated on 16 cm frit-less silica emitters (New Objective, 0.75 

µm inner diameter), packed in-house with reversed-phase ReproSil-Pur C18 AQ 1.9 µm resin 

(Dr. Maisch). Peptides (0.5 µg) were loaded on the column and eluted for 115 min using a 

segmented linear gradient of 5% to 95% solvent B (80% ACN, 0.1%FA) (0-5 min: 5%, 5-65 

min: 20%, 65-90 min: 35%, 90-100 min: 55%, 100-115 min: 95%) at a flow rate of 300 nL/min. 

Mass spectra were acquired in data-dependent acquisition mode with a TOP15 method. MS 

spectra were acquired in the Orbitrap analyzer with a mass range of 300–1750 m/z at a 

resolution of 70,000 FWHM and a target value of 3×106 ions. Precursors were selected with 

an isolation window of 1.3 m/z (Q Exactive Plus) or 2.0 m/z (Q Exactive). HCD 

fragmentation was performed at a normalized collision energy of 25. MS/MS spectra were 

acquired with a target value of 105 ions at a resolution of 17,500 FWHM, a maximum 

injection time (max.) of 55 ms and a fixed first mass of m/z 100. Peptides with a charge of +1, 

greater than 6, or with unassigned charge state were excluded from fragmentation for MS2, 

dynamic exclusion for 30s prevented repeated selection of precursors. 

4.10.4 Protein	identification	and	quantification		

Raw data were processed using MaxQuant software (version 1.5.7.4, 

http://www.maxquant.org/) (Cox and Mann, 2008) to calculate iBAQ values (Tyanova et al., 

2016). MS/MS spectra were searched by the Andromeda search engine against a combined 

database containing the amino acid sequences of Pto (The Pseudomonas Genome Database) 

and 248 common contaminant proteins and decoy sequences. Trypsin specificity was 

required and a maximum of two missed cleavages were accepted. Minimal peptide length was 

set to seven amino acids. Carbamidomethylation of cysteine residues was set as fixed, 
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oxidation of methionine and protein N-terminal acetylation as variable modifications. 

Peptide-spectrum-matches and proteins were retained if they were below a false discovery 

rate of 1%. 

4.10.5 Statistical	analysis	

iBAQ values were used for the statistical analysis. Protein groups were omitted from 

the analysis. iBAQ values were normalized by TMM normalization in the package edgeR 

(Robinson et al., 2010). For this, normalization factors were calculated with the 

calcNormFactors function with default settings based on expression of proteins with iBAQ 

values greater than zero in all the samples. When iBAQ values were zero in more than one 

replicate out of three replicates, the protein was defined as “not detected” and the iBAQ 

values of all the replicates were converted to NA. TMM normalized iBAQ values were then 

log2 transformed. To each protein, a linear model was fit by using the function lmFit in the 

limma package with the following terms: Sgptr = GPTgpt + Rr+ ɛgtr, where S is the log2 count 

per million, GPT is the host genotype (or liquid medium): Pto strain: time point interaction 

and the random factors, R is the biological replicate, and ɛ is the residual. The eBayes 

function in the limma package was used for variance shrinkage in the calculation of the p-

values, which was then used to calculate the false discovery rate (FDR; the Storey’s q-values) 

using the qvalue function in the qvalue package (Storey and Tibshirani, 2003). To determine 

proteins with significant expression changes, the cutoff of q-value < 0.01 and |log2FC| >2 was 

applied. Hierarchical clustering was done using the dist and hclust functions in the R 

environment or using the Cluster3.0 software (Hoon et al., 2004). Heatmaps were created 

with the TreeView (Eisen et al., 1998). Enriched gene ontology terms were identified using 

BiNGO plugin for cytoscape (Maere et al., 2005a). 

4.11 Gene	ontology	based	analyses	of	transcriptome	and	proteome	data	

Log2-transformed transcriptome or proteome data were standardized by using z-

score. The genome of Pto was annotated with gene ontology (GO) terms and GO expression 

data were generated by calculating mean z-score for each GO term. For each GO category, t-

test was performed for all possible pair-wise comparisons of 15 conditions. GO terms with 

large number of significantly different (adjusted p-value < 0.01; the Benjamini-Hochberg 
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method) pairs were curated avoiding redundancy and mean z-scores were used create 

heatmaps.  

4.12 Software	and	packages	used	in	this	study	

Table 2: List of software and packages used in this study  

Software/Package Version Reference Purpose 

BinGO 3.0.3 Maere et al., 2005 GO enrichment 

Corrplot 0.77 Murdoch and Chow, 1996 Correlation plots 

Cytoscape 3.3.0 Shannon et al., 2003 Run ClueGO 

EdgeR 3.14.0 Robinson et al., 2009 Analysing DEGs 

Htseq 0.6.0 Anders et al., 2015 Count RNSeq reads 

limma 3.28.14 Ritchie et al., 2015 Analysing DEGs 

TopHat 2.1.1 Trapnell et al., 2009 Mapping RNA-seq reads 

BlastKOALA  Kanehisa	et	al.,	2016) KO annotation 

MaxQuant 1.5.7.4 Cox and Mann, 2008 Proteome analysis 

4.13 Primer	information.	

Table 3: List of primers used in this study 

Name Sequence (5’ – 3’) Purpose 

avrPto_qF ATCAACTTGCGGAGTCTGCT RT-qPCR 

avrPto_qR CCGCCATATCCAGTGTTCTT RT-qPCR 

cmaA_qF TACACGCTTTCATCGTGCTC RT-qPCR 
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cmaA_qR GGCTGTAAGGAACGCTTGTC RT-qPCR 

gapA_qF GTTTCGACACTGTACACGGC RT-qPCR 

gapA_qR CACCATTGACGGTCAGGCTT RT-qPCR 

hrpL_qF TCATCAGGTAGAGGGGCATC RT-qPCR 

hrpL_qR AGCGACACTTCCAGCACTTT RT-qPCR 

katB_qF CGTACCAACCTGGACAACGA RT-qPCR 

katB_qR TTGGACTGAACCTGAGCGAC RT-qPCR 

katG_qF ATAGCTGGCCTGACAACGTC RT-qPCR 

katG_qR TTTCGGAACCCCAGTACACG RT-qPCR 

16S_qF CATTGAGACAGGTGCTGCAT RT-qPCR 

16S_qR CACCGGCAGTCTCCTTAGAG RT-qPCR 

gyrA_qF TTCAATGCTGATCCCGGAAGAAGG RT-qPCR 

gyrA_qR ATTTCCTCACCATCCAGCACCTGA RT-qPCR 

pvdS_qF CCAGAAATCTCGCACATCAA RT-qPCR 

pvdS_qR GCAGGCGATACATCTCGAAC RT-qPCR 
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ActinII_qF AGTGTCTGGATCGGTGGTTC RT-qPCR 

ActinII_qR CCCCAGCTTTTTAAGCCTTT RT-qPCR 

PR1_qF CGGAGCTACGCAGAACAACT RT-qPCR 

PR1_qR CTCGCTAACCCACATGTTCA RT-qPCR 

PvdS_F ACAAGCATAAAGCTTTCAGGCTTCGGCAGTGGT PvdS 
overexpression 

PvdS_R ACAGGAAACAGCTAAATGACGGAACACGTAATCAC PvdS 
overexpression 

pLMB426_F TTAGCTGTTTCCTGTGTGAA amplifiying 
pLMB426 

pLMB426_R AAGCTTTATGCTTGTAAACCG amplifiying 
pLMB426 

avrPto_qF ATCAACTTGCGGAGTCTGCT RT-qPCR 

avrPto_qR CCGCCATATCCAGTGTTCTT RT-qPCR 

cmaA_qF TACACGCTTTCATCGTGCTC RT-qPCR 

cmaA_qR GGCTGTAAGGAACGCTTGTC RT-qPCR 

gapA_qF GTTTCGACACTGTACACGGC RT-qPCR 

gapA_qR CACCATTGACGGTCAGGCTT RT-qPCR 

hrpL_qF TCATCAGGTAGAGGGGCATC RT-qPCR 
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hrpL_qR AGCGACACTTCCAGCACTTT RT-qPCR 

katB_qF CGTACCAACCTGGACAACGA RT-qPCR 

katB_qR TTGGACTGAACCTGAGCGAC RT-qPCR 

katG_qF ATAGCTGGCCTGACAACGTC RT-qPCR 

katG_qR TTTCGGAACCCCAGTACACG RT-qPCR 

16S_qF CATTGAGACAGGTGCTGCAT RT-qPCR 

16S_qR CACCGGCAGTCTCCTTAGAG RT-qPCR 

gyrA_qF TTCAATGCTGATCCCGGAAGAAGG RT-qPCR 

gyrA_qR ATTTCCTCACCATCCAGCACCTGA RT-qPCR 

pvdS_qF CCAGAAATCTCGCACATCAA RT-qPCR 

pvdS_qR GCAGGCGATACATCTCGAAC RT-qPCR 

ActinII_qF AGTGTCTGGATCGGTGGTTC RT-qPCR 

ActinII_qR CCCCAGCTTTTTAAGCCTTT RT-qPCR 

PR1_qF CGGAGCTACGCAGAACAACT RT-qPCR 

PR1_qR CTCGCTAACCCACATGTTCA RT-qPCR 
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PvdS_F ACAAGCATAAAGCTTTCAGGCTTCGGCAGTGGT PvdS 
overexpression 

PvdS_R ACAGGAAACAGCTAAATGACGGAACACGTAATCAC PvdS 
overexpression 

pLMB426_F TTAGCTGTTTCCTGTGTGAA amplifiying 
pLMB426 

pLMB426_R AAGCTTTATGCTTGTAAACCG amplifiying 
pLMB426 

	

4.14 RT-qPCR	analysis		

RT-qPCR was performed using SuperScript One-Step RT-PCR system kit 

(Invitrogen). As inputs, 3 ng and 300 ng of DNase-treated RNA extracted from infected 

leaves was used for analyzing plant and bacterial genes, respectively. 

Table 4: qRT-PCR master mix 

Compound Volume 

10x PCR buffer 2.5 µl 

10 mM dNTPs 0.5 µl 

EvaGreen DNA Dye 1.25 µl 

2.5 µM primer forward 2 µl 

2.5 µM primer reverse 2 µl 

Hommade Taq polymerase 0.5 µl 
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4.15 Generation	of	mutant	Pto	strains		

For overexpressing pvdS, the pvdS coding sequence was amplified from Pto genomic 

DNA by PCR with the primers pvdS_F and pvdS_R. The amplified fragment was linked with 

the DNA amplified from pLMB426 plasmid (Rott, 2012) with the primers pLMB426_F and 

pLMB426_R, using in-fusion cloning kit (Clonetech) to make the circular plasmid. The 

resulted plasmid was transformed into Pto AvrRpt2 by a triparental mating using the helper 

strain carrying pRK600 and selected with 40 µg ml-1 rifampicin, 10 µg ml-1 tetracycline, and 50 

µg ml-1 gentamycin. Pto strains overexpressing selected putative transcriptional regulators or 

predicted target genes were generated by triparental mating of Pto, E. coli carrying pRK2013, 

and E. coli carrying the plasmid pCPP5040 conjugated with a desired gene and selected with 

50 µg/ml rifampicin, 5 µg/ml gentamycin and 35 µg/ml chloramphenicol. 

4.16 Bacterial	growth	assay		

Bacterial growth assays were performed as described previously (Tsuda et al., 2009). 

For Fe co-infiltration study, Na-citrate or Fe-citrate (Sigma) was dissolved in a bacterial 

suspension at the desired concentration before syringe infiltration. 

4.17 Apoplastic	and	intracellular	fluids	extraction	and	iron	measurement		

Extraction of apoplastic and intracellular fluid was performed following a previous 

publication with slight modifications (Sasaki et al., 2011). Leaves from four-week-old plants 

were washed and vacuum infiltrated with cold water twice for 2 min. Apoplastic fluids were 

collected by centrifugation at 3,000g for 5 min in 50 mL tubes. The leaves were then frozen at 

-80°C overnight, and thawed at room temperature for 20 min. Intracellular fluids were 

collected by centrifugation at 12,000g for 10 min from the frozen leaves. For iron 

measurement, HNO3 and H2O2 were added to the apoplastic and intracellular fluids for final 

concentrations of 1% (v/v), followed by boiling at 95 ºC for 10 min. The precipitate was 

removed by centrifugation at 12,000g for 5 min. The remaining solutions were filtered 

through 5 μm filters (Millex-SV syringe filter unit; Millipore), followed by measurement with 

ICP-MS. The concentration of the different elements was determined using an Agilent 7700 
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inductively coupled plasma mass spectrometer (ICP-MS) (Agilent Technologies, Waldbronn, 

Germany) by strictly following the manufacturer’s instructions. 
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6 Supplementary	figures	

 
Supplementary figure 1: Bacterial enrichment and quality of RNA extraction in in planta bacterial 
transcriptome 

(A) Proportion of the sequencing reads mapped on P. syringae pv. tomato DC3000 (Pto; Bacteria) 
coding sequence (CDS), Pto non-coding sequence, A. thaliana (Plant) genome, and else. (B) 
Proportion of the RNA-seq reads mapped on the A. thaliana genome. Left and middle: RNA extracted 
from the infected leaves, followed by bacterial rRNA depletion and bacterial and plant rRNA 
depletion, respectively (n = 3). Right: RNA extracted from the bacteria enriched samples, followed by 
bacterial and plant rRNA depletion (Bacteria enriched; n = 8; a subset of all 100 in planta samples 
were randomly selected). Protein coding RNA (coding), ribosomal RNA (rRNA), and other RNA 
(else) encoded in the nucleus (Nuc), chloroplast (Ch), and mitochondrion (Mt) are shown. (C) 
Assessment of RNA integrity with the 2100 Bioanalyzer (Agilent). Total RNA from Pto (Bac.), A. 
thaliana leaves (Plant), and the mixtures of both (Mix) were analyzed (left panel). Bacterial cells were 
incubated with crushed A. thaliana leaves in RNA stabilizing buffer (9.5% ethanol and 0.5% phenol) 
without or with Tris(2-carboxyethyl)phosphine (TCEP) at different pHs for 20 h at 4 ºC. Then, total 
RNA was extracted and analyzed (right panel). (D) Bacterial isolation buffer fixes bacterial 
transcriptome. Pto (OD600 = 0.65) was incubated in bacterial isolation buffer for 0 h or 24 h, followed 
by RNA extraction and RNA-seq. Hierarchical clustering (left) and Pearson correlation plot (right) of 
all the genes detected are shown (n = 2 biological replicates from two independent experiments). This 
figure was adopted from (Nobori et al., 2018b). 
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Supplementary figure 2: Normalization and quality control of RNA-seq data 

(A) Heatmap of Euclidean distances between RNA-seq data of each sample. The top panel shows the 
ratio of sequencing reads mapped on the bacterial genome (blue), plant genome (green), and else 
(orange) in each sample. The right panel shows the sequencing depth of bacterial RNA in each 
sample. (B) Multidimensional scaling (MDS) plot of the RNA-seq data of Pto (circle) and Pto AvrRpt2 
(triangle) profiled in in vivo (Col-0) and in vitro (KB medium) conditions. Distances represent leading 
log2-fold differences between samples. (C) Hierarchical clustering of the relative expression (RE) of 
the RNA-seq data of Pto and Pto AvrRpt2 profiled in in vivo (Col-0) and in vitro (KB medium) 
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conditions. (D) Density plots of log2-transformed count per million RNA-seq data (Intensity) before 
(left) and after (right) the trimmed mean of M-values (TMM) normalization. All 114 samples in in 
vitro and in planta (6 hpi) conditions were plotted. This figure was adopted from (Nobori et al., 
2018b). 
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Supplementary figure 3: Heatmap of Pto transcriptomes (relative expression; RE) in all samples 
analyzed in this study 

Hierarchical clustering was performed for both the rows (genes) and the columns (samples). The 
sample name consists of the name of bacterial strains preceded by the name of host genotypes, 
pretreatments to Col-0, or in vitro conditions (see Figure 4A for the acronyms and (Nobori et al., 
2018b) for the mean expression values). This figure was adopted from (Nobori et al., 2018b). 
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Supplementary figure 4: Pto populations did not change at 6 h post infection 

Growth assay of Pto or Pto AvrRpt2 in Col-0 and dde2 ein2 pad4 sid2 (deps) plants at the indicated 
time points. Bacterial suspension (OD600 = 0.5) was syringe infiltrated into leaves. Mean±s.e.m was 
calculated by using mixed linear model (n= 24 biological replicates from two independent 
experiments). Different letters indicate statistically significant differences in each genotype (adjusted P 
< 0.001; the Benjamini-Hochberg method). This figure was adopted from (Nobori et al., 2018b). 
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Supplementary figure 5: Profiles of Pto transcriptome under various conditions 

(A) Hierarchical clustering of the relative expression (RE) of 3344 genes detected in all of the samples. 
(B) Hierarchical clustering of the RE of genes annotated as “hypothetical protein” that were 
differentially regulated in at least one of the comparisons shown in Figure 5C. This figure was adopted 
from (Nobori et al., 2018b). 
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Supplementary figure 6: Hierarchical clustering of the relative expression (RE) of Pto sigma 
factors 

The red marks show the iron starvation related sigma factors. MM, minimal medium; KB, King’s B 
medium; rr, rps2 rpm1. This figure was adopted from (Nobori et al., 2018b). 

 

 
Supplementary figure 7: Infection assay of pvdS-overexpressing Pto 

(A) Growth assay of Pto AvrRpt2 (EV) and Pto AvrRpt2 pvdS-ox (OD600 = 0.001) in Col-0 and rps2 
rpm1 plants at 0 h post infection (hpi). (B) RT-qPCR analysis of PR1 expression in Col-0 and rps2 
rpm1 plants infected with Pto AvrRpt2 (EV) or Pto AvrRpt2 pvdS-ox (OD600 = 0.001) at 24 hpi. 
Mean±s.e.m was calculated by using a mixed linear model (A: n = 52 biological replicates from six 
independent experiments, B: n = 2 biological replicates from two independent experiments). Different 
letters indicate statistically significant differences (adjusted P < 0.05; the Benjamini-Hochberg 
method). This figure was adopted from (Nobori et al., 2018b). 



6.	Supplementary	figures	

135	

 
Supplementary figure 8: Colonies of bacterial strains 

Bacterial suspensions were spotted on 50% TSB plate. The picture was taken three days after spotting 
bacterial suspensions on the plate. COR: coronatine deficient Pto. The other strains are listed in Figure 
4A and Table 1. 
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Supplementary figure 9: Expression of genes related to coronatine, alginate, and the type III 
secretion system 

Correlation matrix (A) and hierarchical clustering (B) of expression of genes related to coronatine, 
alginate, and the type III secretion system (T3SS) under various conditions. Gene cluster I and III 
contain T3SS genes and cluster II contains genes related to coronatine and alginate. This figure was 
adopted from Nobori et al. (in preparation). 

 

 

 

Supplementary figure 10: Gene ontologies showing negative correlation in expression 

Correlation matrix of bacterial GO expression generated from 132 bacterial RNA-seq data (38 
conditions). This figure was adopted from Nobori et al. (in preparation). 
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Supplementary figure 11: Co-expression patterns of genes in Pto 
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Hierarchical clustering of highly co-expressed genes including putative transcriptional regulators and 
their predicted targets (indicated by arrows). This figure was adopted from Nobori et al. (in 
preparation). 
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Supplementary table 1: List of samples used in this study for RNA-seq 

Bacterial strain Host genotype Pretreatment Time point Number of 
replicates 

Pto Col-0 water (Mock) 6 hpi 5 
Pto Col-0 flg22 6 hpi 5 
Pto Col-0 chitin 6 hpi 3 
Pto Col-0 SA 6 hpi 3 
Pto Col-0 - 6 hpi 13 
Pto pad4 - 6 hpi 4 
Pto sid2 - 6 hpi 3 
Pto pad4 sid2 - 6 hpi 4 
Pto npr1 - 6 hpi 2 
Pto dde2 ein2 - 6 hpi 2 

Pto dde2 ein2 pad4 
sid2 - 6 hpi 2 

Pto sid2 pmr4 - 6 hpi 2 
Pto cyp79b2 cyp79b3 - 6 hpi 2 
Pto stp1 stp13 - 6 hpi 2 

Pto AvrRpt2 Col-0 - 6 hpi 16 
Pto AvrRpt2 pad4 - 6 hpi 4 
Pto AvrRpt2 sid2 - 6 hpi 3 
Pto AvrRpt2 pad4 sid2 - 6 hpi 3 
Pto AvrRpt2 npr1 - 6 hpi 3 
Pto AvrRpt2 dde2 ein2 - 6 hpi 3 

Pto AvrRpt2 dde2 ein2 pad4 
sid2 - 6 hpi 3 

Pto AvrRpt2 sid2 pmr4 - 6 hpi 2 
Pto AvrRpt2 cyp79b2 cyp79b3 - 6 hpi 2 
Pto AvrRpt2 stp1 stp13 - 6 hpi 2 
Pto AvrRpt2 rps2 rpm1 - 6 hpi 2 
Pto AvrRps4 Col-0 - 6 hpi 2 

Pto D36E Col-0 - 6 hpi 3 
Pto Col-0 - 48 hpi 3 
Pto pad4 - 48 hpi 3 
Pto sid2 - 48 hpi 3 
Pto pad4 sid2 - 48 hpi 3 

Pto AvrRpt2 Col-0 - 48 hpi 3 
Pto AvrRpt2 pad4 - 48 hpi 3 
Pto AvrRpt2 sid2 - 48 hpi 3 
Pto AvrRpt2 pad4 sid2 - 48 hpi 3 

EK10 Col-0 - 6 hpi 2 
EK47 Col-0 - 6 hpi 2 
Leaf 1 Col-0 - 6 hpi 1 

Leaf 155 Col-0 - 6 hpi 1 
Leaf 176 Col-0 - 6 hpi 1 
Leaf 187 Col-0 - 6 hpi 2 
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Leaf 404 Col-0 - 6 hpi 2 

Bacterial strain Growth medium Pretreatment  
Number of 
replicates 

Pto King's B medium -  2 

Pto Hrp-inducible 
minimal medium -  4 

Pto AvrRpt2 King's B medium -  3 
Pto AvrRps4 King's B medium -  2 

Pto D36E King's B medium -  3 
EK10 50% TSB -  2 
EK47 50% TSB -  2 
Leaf 1 50% TSB -  2 

Leaf 155 50% TSB -  2 
Leaf 176 50% TSB -  2 
Leaf 187 50% TSB -  2 
Leaf 404 50% TSB -  2 
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Most of the experiments and analyses described in this thesis were conducted by myself. 

Those that were conducted by and in corporation with other people were indicated below. 

• Figure 3B: This method was established by the group of Prof. Dr. Sheng Yang He at 

the Michigan State University. 

• Figure 7 C and D: These experiments were conducted with Dr. Yiming Wang at Max-

Planck Institute for Plant Breeding Research (MPIPZ). 

• Figure 8 F and G: Part of the data (in planta 6 hpi) was obtained by Dr. Jingni Wu at 

MPIPZ. 

• Figure 16 and 17D: These data were generated by Dr. Yiming Wang at MPIPZ.  

• Supplementary figure 8: The picture was taken by Mr. Yu Cao at MPIPZ. 

• RNA sequencing and LC-MS analyses were supported by the Max-Planck Genome 

Centre and Protein Mass Spectrometry Service, respectively, at MPIPZ.
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