60 research outputs found

    Efficient Enumerations for Minimal Multicuts and Multiway Cuts

    Get PDF
    Let G=(V,E)G = (V, E) be an undirected graph and let B⊆V×VB \subseteq V \times V be a set of terminal pairs. A node/edge multicut is a subset of vertices/edges of GG whose removal destroys all the paths between every terminal pair in BB. The problem of computing a {\em minimum} node/edge multicut is NP-hard and extensively studied from several viewpoints. In this paper, we study the problem of enumerating all {\em minimal} node multicuts. We give an incremental polynomial delay enumeration algorithm for minimal node multicuts, which extends an enumeration algorithm due to Khachiyan et al. (Algorithmica, 2008) for minimal edge multicuts. Important special cases of node/edge multicuts are node/edge {\em multiway cuts}, where the set of terminal pairs contains every pair of vertices in some subset T⊆VT \subseteq V, that is, B=T×TB = T \times T. We improve the running time bound for this special case: We devise a polynomial delay and exponential space enumeration algorithm for minimal node multiway cuts and a polynomial delay and space enumeration algorithm for minimal edge multiway cuts

    Parameterized Complexity Dichotomy for Steiner Multicut

    Get PDF
    The Steiner Multicut problem asks, given an undirected graph G, terminals sets T1,...,Tt ⊆\subseteq V(G) of size at most p, and an integer k, whether there is a set S of at most k edges or nodes s.t. of each set Ti at least one pair of terminals is in different connected components of G \ S. This problem generalizes several graph cut problems, in particular the Multicut problem (the case p = 2), which is fixed-parameter tractable for the parameter k [Marx and Razgon, Bousquet et al., STOC 2011]. We provide a dichotomy of the parameterized complexity of Steiner Multicut. That is, for any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)NP-complete). We highlight that: - The edge deletion version of Steiner Multicut is fixed-parameter tractable for the parameter k+t on general graphs (but has no polynomial kernel, even on trees). We present two proofs: one using the randomized contractions technique of Chitnis et al, and one relying on new structural lemmas that decompose the Steiner cut into important separators and minimal s-t cuts. - In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the parameter k+t on general graphs. - All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p=3 and the graph is a tree plus one node. Hence, the results of Marx and Razgon, and Bousquet et al. do not generalize to Steiner Multicut. Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1), and a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).Comment: As submitted to journal. This version also adds a proof of fixed-parameter tractability for parameter k+t using the technique of randomized contraction

    Partitioning Graph Drawings and Triangulated Simple Polygons into Greedily Routable Regions

    Get PDF
    A greedily routable region (GRR) is a closed subset of R2\mathbb R^2, in which each destination point can be reached from each starting point by choosing the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygons with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles, but can be solved optimally for trees in polynomial time. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.Comment: full version of a paper appearing in ISAAC 201

    Markov-Chain-Based Heuristics for the Minimum Feedback Vertex Set Problem

    Get PDF
    Let G be a directed graph. A vertex set F is called feedback vertex set (FVS) if its removal from G results in an acyclic graph. Because determining a minimum cardinality FVS is known to be NP hard, [Karp72], one is interested in designing fast approximation algorithms determining near-optimum FVSs. The paper presents deterministic and randomised heuristics based on Markov chains. In this regard, an earlier approximation algorithm developed in [Speckenmeyer89] is revisited and refined. Experimental results demonstrate the overall performance superiority of our algorithms compared to other algorithms known from literature with respect to both criteria, the sizes of solutions determined, as well as the consumed runtimes

    Optimal Trees

    Get PDF
    Not Availabl

    The Range of Topological Effects on Communication

    Full text link
    We continue the study of communication cost of computing functions when inputs are distributed among kk processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges. Chattopadhyay, Radhakrishnan and Rudra (FOCS'14) recently initiated a study of the effect of topology of the network on the total communication cost using tools from L1L_1 embeddings. Their techniques provided tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. This work addresses two other kinds of natural functions. We show that for a large class of natural functions like Set-Disjointness the communication cost is essentially nn times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like ED∘XOR\text{ED} \circ \text{XOR} and XOR∘ED\text{XOR} \circ \text{ED}, the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs. To obtain our results, we use some new tools in addition to ones used in Chattopadhyay et. al. These include (i) viewing the communication constraints via a linear program; (ii) using tools from the theory of tree embeddings to prove topology sensitive direct sum results that handle the case of composed functions and (iii) representing the communication constraints of certain problems as a family of collection of multiway cuts, where each multiway cut simulates the hardness of computing the function on the star topology

    Register Loading via Linear Programming

    Get PDF
    We study the following optimization problem. The input is a number k and a directed graph with a specified “start ” vertex, each of whose vertices may have one “memory bank requirement”, an integer. There are k “registers”, labeled 1...k. A valid solution associates to the vertices with no bank requirement one or more “load instructions ” L[b,j], for bank b and register j, such that every directed trail from the start vertex to some vertex with bank requirement c contains a vertex u that has been associated L[c,i] (for some register i ≀ k) and no vertex following u in the trail has been associated an L[b,i], for any other bank b. The objective is to minimize the total number of associated load instructions. We give a k(k +1)-approximation algorithm based on linear programming rounding, with (k+1) being the best possible unless Vertex Cover has approximation 2−ǫ for Ç«> 0. We also present a O(klogn) approximation, with n being the number of vertices in the input directed graph. Based on the same linear program, another rounding method outputs a valid solution with objective at most 2k times the optimum for k registers, using 2k−1 registers. This version of the paper corrects some minor errors that made it in the final Algorithmica paper.

    Approximating Requirement Cut via a Configuration LP

    Get PDF
    • 

    corecore