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A greedily routable region (GRR) is a closed subset of R2, in which any destination
point can be reached from any starting point by always moving in the direction with

maximum reduction of the distance to the destination in each point of the path. Recently,

Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor
networks based on decomposing the network area into a small number of interior-disjoint

GRRs. They showed that minimum decomposition is NP-hard for polygonal regions

with holes.
We consider minimum GRR decomposition for plane straight-line drawings of graphs.

Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has

become a popular research topic in graph drawing. We show that minimum decomposition
is still NP-hard for graphs with cycles and even for trees, but can be solved optimally for

trees in polynomial time, if we allow only certain types of GRR contacts. Additionally, we
give a 2-approximation for simple polygons, if a given triangulation has to be respected.

∗A preliminary version of this paper has been presented at the 26th International Symposium on

Algorithms and Computation (ISAAC 2015).18
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1. Introduction

Geographic or geometric routing is a routing approach for wireless sensor networks

that became popular recently. It uses geographic coordinates of sensor nodes to

route messages between them. One simple routing strategy is greedy routing. Upon

receipt of a message, a node tries to forward it to a neighbor node that is closer

to the destination than itself. However, delivery cannot be guaranteed, since a

message may get stuck in a local minimum or void. Another local routing strategy

is compass routing. It forwards the message to a neighbor, such that the direction

from the node to this neighbor is closest to the direction from the node to the

destination. Kranakis et al.15 showed that compass routing can produce loops even

in plane triangulations. They also showed that compass routing is always successful

on Delaunay triangulations. More advanced geometric routing protocols employ

strategies like face routing2 and related techniques based on planar graphs to get

out of local minima; see Refs. 5 and 17 for an overview.

An alternative approach is to decompose the network into components such

that in each of them greedy routing is likely to perform well.10,21,23 A global

data structure of preferably small size is used to store interconnectivity between

components. One such network decomposition approach has been recently proposed

by Tan and Kermarrec.22 They assume that global connectivity irregularities, i.e.,

large holes in the network and the network boundary, are the main source of local

minima in which greedy routing between a pair of sensor nodes might get stuck.

They note that in practical sensor networks, local connectivity irregularity normally

has low impact on the cost of routing and the quality of the resulting paths, since the

local minima in this context can be overcome by simple and light-weight techniques;

see Ref. 22 for a list of such strategies. With this reasoning, Tan and Kermarrec

model the network as a polygonal region with obstacles or holes inside it and consider

greedy routing inside this continuous domain. Local minima now only appear on

the boundaries of the polygonal region. In this work, we use the same model.

Tan and Kermarrec22 try to partition this region into a minimum number of

polygons, in which greedy routing works between any pair of points. They call such

components greedily routable regions (GRRs). For intercomponent routing, region

adjacencies are stored in a graph. The protocol is able to guarantee finding paths

of bounded stretch, i.e., the length of such a path exceeds the distance between its

endpoints only by a constant factor.

For routing in the underlying network of sensor nodes corresponding to discrete

points inside the polygonal region, greedy routing is used if the source and the

destination nodes are in the same component, and existing techniques are used to

overcome local minima. For inter-component routing, each node stores a neighbor

on a shortest path to each component. This path is used to get to the component of

the destination, and then intra-component routing is used.
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Tan and Kermarrec22 emphasize the importance for the nodes to store as small

routing tables as possible and note that the number of network components in a

decomposition directly reflects the number of nonlocal routing states of a node. This

number determines the size of the node’s routing table. Therefore, the goal is to

partition the network into a minimum number of GRRs. In this work, we focus

on the problem of partitioning a polygonal region or a graph drawing (for which

we extend the notion of a GRR) into a minimum number of GRRs. For a detailed

description of an actual routing protocol based on GRR decompositions, see the

original work of Tan and Kermarrec.22

The authors prove that partitioning a polygon with holes into a minimum number

of regions is NP-hard and they propose a simple heuristic. Its solution may strongly

deviate from the optimum even for very simple polygons; see Fig. 2(a).

Some real-world instances from the work of Tan and Kermarrec (see Ref. 22,

Fig. 17) are networks of sensor nodes distributed on roads of a city. The resulting

polygonal regions are very narrow and strongly resemble plane straight-line graph

drawings. Therefore, considering plane straight-line graph drawings in addition to

polygonal regions is a natural adjustment of the minimum GRR partition problem.

In this paper, we approach the problem of finding minimum or approximately

minimum GRR decompositions by first considering the special case of partitioning

drawings of graphs, which can be interpreted as very thin polygonal regions. We

notice that in this scenario, GRRs coincide with increasing-chord drawings of trees

as studied by Alamdari et al.1

A self-approaching curve is a curve, where for any point t′ on the curve, the

Euclidean distance to t′ decreases continuously while traversing the curve from the

start to t′.12 An increasing-chord curve is a curve that is self-approaching in both

directions. The name is motivated by their equivalent characterization as those

curves, where for any four points a, b, c, d in this order along the curve, |bc| ≤ |ad|,
where |pq| denotes the Euclidean distance from point p to point q.

A graph drawing is self-approaching or increasing-chord if every pair of vertices

is joined by a self-approaching or increasing-chord path, respectively. The study of

self-approaching and increasing-chord graph drawings was initiated by Alamdari

et al.1 They studied the problem of recognizing whether a given graph drawing

is self-approaching and gave a complete characterization of trees admitting self-

approaching drawings. In our own previous work,19 we studied self-approaching

and increasing-chord drawings of triangulations and 3-connected planar graphs.

Furthermore, the problem of connecting given points to form an increasing-chord

drawing has been investigated.1,9

Contributions. First, we show that partitioning a plane graph drawing into a

minimum number of increasing-chord components is NP-hard. This extends the

result of Tan and Kermarrec22 for polygonal regions with holes to plane straight-

line graph drawings. Next, we consider plane drawings of trees. We show that the

problem remains NP-hard even for trees, if arbitrary types of GRR contacts are
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allowed. For a restriction on the types of GRR contacts, we show how to model the

decomposition problem using Minimum Multicut, which provides a polynomial-

time 2-approximation. We then solve the partitioning problem for trees and restricted

GRR contacts optimally in polynomial time using dynamic programming. Finally,

we use the insights gained for decomposing graphs and apply them to the problem

of minimally decomposing simple triangulated polygons into GRRs. We provide a

polynomial-time 2-approximation for decompositions that are formed along chords

of the triangulation.

2. Preliminaries

In the following, let P be a polygonal region, and let ∂P denote its boundary. For

p ∈ P, let V (p) denote the visibility region of p, i.e., the set of points q ∈ P such

that the line segment pq lies inside P . For directions
#»

d1 and
#»

d2, let ∠(
#»

d1,
#»

d2) ≤ 180◦

denote the angle between them. For points p, q, p 6= q, let ray(p, q) denote the ray

with origin p and direction #»pq.

Definition 1. For an s-t-path ρ and a point p 6= t on ρ, we define the forward

tangent on ρ in p as the direction
#»

d = limε→0{ #»pq|q succeeds p on ρ, and |pq| = ε}.

Next, we formally define paths resulting from greedy routing inside P. We call

such paths greedy. Note that this definition of greediness is different from the one

used in the context of greedy embeddings of graphs.20

Definition 2. For points s, t ∈ P , an s-t-path ρ is greedy if the distance to t strictly

decreases along ρ and if for every point s′ 6= t on ρ, the forward tangent
#»

d on ρ in

s′ has the minimum angle with
# »

s′t among all vectors
#  »

s′q for any q ∈ V (s′)\{s′}.

A greedy path is shown in Fig. 1(a). Note that such paths are polylines. The

way greedy paths are defined resembles compass routing.15

2.1. Greedily routable regions

Greedily Routable Regions were introduced by Tan and Kermarrec22 as follows:

s

t

P

(a)

s

t

Pp

vi

x

(b)

Fig. 1. (a) The thick s-t-path inside the polygonal region P (grey) is greedy. (b) If t is not visible,
a greedy path must trace an edge until the endpoint. If it is not possible, a local minimum must
exist.
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Definition 3 (Ref. 22). A polygonal region P is a greedily routable region (GRR),

if for any two points s, t ∈ P, s 6= t, point s can always move along a straight-line

segment within P to some point s′ such that |s′t| < |st|.

Next we show that P is a GRR if and only if every pair of points in P is

connected by a greedy path. Therefore, Definition 3 is equivalent to the one used

in the abstract. We shall show that the following procedure produces a greedy path

inside a GRR.

Procedure 1. Constructing a greedy s-t-path inside a GRR.

1 Set p = s.

2 If t is visible from p, move p to t and finish the procedure.

3 Move p to the first intersection of pt and ∂P. (Note that p itself may be the

first intersection.)

4 If p is in the interior of a boundary edge v1v2, consider the angle between #  »pvi
and

#»
pt, i = 1, 2. Let vi be the vertex minimizing ∠( #  »pvi,

#»
pt), i = 1, 2 (break ties

arbitrarily). If vi is the closest point to t on the segment pvi, move p to vi and

return to Step 2, otherwise, return failure.

5 If p coincides with the vertex v2 incident to boundary edges v1v2 and v2v3,

consider the angle between #  »pvi and
#»
pt, i = 1, 3. Let vi be the vertex minimizing

∠( #  »pvi,
#»
pt), i = 1, 3 (break ties arbitrarily). Again, if vi is the closest point

to t on the segment pvi, move p to vi and return to Step 2, otherwise, return

failure.

Lemma 1. A polygonal region P is a GRR if and only if for every s, t ∈ P there

exists a greedy s-t-path ρ ⊆ P. Procedure 1 produces such a greedy path.

Proof. First, consider s, t ∈ P connected by a greedy s-t-path ρ. Then s, t satisfy

the condition in Definition 3 using the endpoint s′ of the first segment ss′ of ρ.

Conversely, let P be a GRR. Let s, t be two distinct points in P , and consider a

path ρ constructed by moving a point p from s to t according to Procedure 1. We

consider the segments of ρ iteratively and show that each of them would be taken by

a greedy path. Since P is a GRR, every point p ∈ P can get closer to t by a linear

movement. If all points on ray(p, t) sufficiently close to p are in P, a greedy path

would move along ray(p, t), until it hits ∂P . This shows that Step 3 of the procedure

traces a greedy path.

Assume all points on ray(p, t) sufficiently close to p are not in P. Then, p is

on ∂P. Let
#»

d1 and
#»

d2 be the two tangents in p to the paths that start at p and

go along ∂P. Let Λ be the cone of directions spanned by
#»

d1 and
#»

d2, such that
#»
pt /∈ Λ. Then, Λ contains the directions of all possible straight-line movements from

p. By Definition 3, for some direction
#»

d ∈ Λ, we have ∠(
#»
pt,

#»

d ) < 90◦. But then,

mini=1,2 ∠(
#»
pt,

#»

di) ≤ ∠(
#»
pt,

#»

d ) < 90◦. Therefore, a greedy path would continue in the

direction
#»

di, as does ρ. Let vi be the endpoint of the edge containing p, such that
#  »pvi =

#»

di. Therefore, ∠tpvi < 90◦. We must show that a greedy path is traced if p
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follows
#»

di until vi. We have ∠pvit ≥ 90◦. Otherwise, the projection point x of t on

the line through pvi lies in the interior of the segment pvi and is a local minimum

with respect to the distance to t, which is not possible in a GRR; see Fig. 1(b).

Therefore, when p moves in the direction
#»

di towards vi, its distance to t decreases

continuously, and the forward tangent always has the minimum possible angle with

respect to the direction towards t. This shows that Steps 4 and 5 of the procedure

trace a greedy path and never return failure.

It follows that, when moving along ρ, point p either moves directly to t or slides

along a boundary edge until it reaches one of the endpoints. Therefore, point p never

reenters an edge and must finally reach t. The forward tangent on ρ always satisfies

the condition of Definition 2, therefore, ρ is a greedy s-t-path.

A decomposition of a polygonal region P is a partition of P into polygonal regions

Pi with no holes, i = 1, . . . , k, such that
⋃k

i=1 Pi = P and no Pi, Pj with i 6= j

share an interior point. Recall that GRRs have no holes. A decomposition of P is a

GRR decomposition if each component Pi is a GRR. We shall use the terms GRR

decomposition and GRR partition interchangeably. Using the concept of a conflict

relationship between edges of a polygonal region (see Fig. 2(b)), Tan and Kermarrec

give a convenient characterization of GRRs.

Definition 4 (Normal ray). Let P be a polygonal region, e = uv a boundary

edge and p an interior point of uv. Let rayuv(p) denote the ray with origin in p

orthogonal to uv, such that all points on this ray sufficiently close to p are not in

the interior of P.

We restate the definition of conflicting edges from Ref. 22.

Definition 5 (Conflicting edges of a polygonal region). Let e and f be two

edges of a polygonal region P. If for some point p in the interior of e, raye(p)

intersects f , then e conflicts with f .

A polygonal region is a GRR if and only if it has no pair of conflicting edges

(Theorem 1, Ref. 22). Furthermore, GRRs are known to have no holes.

1
2

4

6
3

5

(a)

f

e

p

(b)

Fig. 2. (a) The heuristic in Ref. 22 splits a non-greedy region by a bisector at a maximum reflex
angle. If the splits are chosen in order of their index, seven regions are created, although two is

minimum (split only at 6). (b) Normal ray rayf (p) and a pair of conflicting edges e, f .
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Now consider a plane straight-line drawing Γ of a graph G = (V,E). We identify

the edges of G with the corresponding line segments of Γ and the vertices of G with

the corresponding points. Plane straight-line drawings can be considered as infinitely

thin polygonal regions. The routing happens along the edges of Γ, and we define

GRRs for graph drawings as follows.

Definition 6 (GRRs for plane straight-line drawings). A plane straight-line

graph drawing Γ is a GRR if for any two points s 6= t on Γ there exists a point s′ on

an edge that also contains s, such that |s′t| < |st|.

Note that for an interior point p of an edge e of Γ there exist two normal rays at

p with opposite directions. Let ne(p) denote the normal line to e at p. We define

conflicting edges of Γ as follows:

Definition 7 (Conflicting edges of a plane straight-line drawing). Let e

and f be two edges of a plane straight-line drawing Γ. If for some point p in the

interior of e, ne(p) intersects f , then e conflicts with f .

Assume ne(s) for an interior point s on an edge e of Γ crosses another edge f

in point t. Then, any movement along e starting from s increases the distance to t.

We call such edges conflicting. It is easy to see that Γ is a GRR if it contains no

pair of conflicting edges. Obviously, such a drawing Γ contains no cycles. In fact, a

straight-line drawing of a tree is increasing-chord if and only if it has no conflicting

edges,1 which implies the following lemma:

Lemma 2. The following two properties are equivalent for a straight-line drawing

Γ to be a GRR:

(1) Γ is connected and has no conflicting edges;

(2) Γ is an increasing-chord drawing of a tree.

Since every individual edge in a straight-line drawing is a GRR, the following

observation can be made on the worst-case size of a minimum GRR partition.

Observation 1. A plane straight-line drawing Γ of graph G = (V,E), |E| = m,

has a GRR decomposition of size m.

Therefore, if G is a tree, the drawing Γ has a GRR partition of size n − 1 for

n = |V |.

2.2. Splitting graph drawings at non-vertices

Note that in a GRR partition of a plane straight-line drawing Γ of a graph G = (V,E),

an edge e ∈ E does not necessarily lie in one GRR. Pieces of the same edge can

be part of different GRRs. Allowing splitting edges at intermediate points might

result in smaller GRR partitions; see Fig. 3. In this section, we discuss splitting Γ at
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(a) (b)

Fig. 3. Splitting at non-vertices results in a smaller partition. (a) No pair of the thick red edges

can be in the same GRR. Therefore, if no edge splits are allowed, every GRR partition has size at
least 3. (b) Splitting the longest edge results in a GRR partition of size 2 (color online).

non-vertices. We will show that there are only a discrete set of O(n2) points where

we might need to split edges.

Definition 8 (Subdivided drawing Γs). Let Γs be the drawing created by

subdividing edges of Γ as follows. For every pair of original edges u1u2, u3u4 ∈ E,

let `i be the normal to u1u2 at ui, i = 1, 2. If `i intersects u3u4, we subdivide u3u4

at the intersection.

Since we consider only the original edges of Γ, the subdivision Γs has O(n2)

vertices.

Lemma 3. Any GRR decomposition of Γ with potential edge splits can be trans-

formed into a GRR decomposition of Γs in which no edge of Γs is split, such that

the size of the decomposition does not increase.

Proof. Consider edge uv of the subdivision Γs, a point x in its interior and assume

an increasing-chord component C (green in Fig. 4) contains vx, but not ux. We

claim that we can reassign ux to C. Note that iterative application of this claim

implies the lemma.

For points p, q ∈ R2, p 6= q, let l+pq denote the halfplane not containing p bounded

by the line through q orthogonal to the segment pq. Note that if segment pq is on

the path from vertex p to vertex r in an increasing-chord tree drawing then r ∈ l+pq.1

v2

u2

u

v

x

l+u2v2

y

Fig. 4. Proof of Lemma 3. Segment ux can be added to the thick green GRR C, such that the
entire edge uv of Γs is in one GRR (color online).
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Let u2v2 be an original edge of Γ such that v2 is in C, as well as a subsegment yv2

of u2v2 with a non-zero length containing v2. Since segment yv2 is on the y-v-path

in C, the halfplane l+u2v2 = l+yv2 contains v, and its boundary does not cross uv by

the construction of Γs. Thus, l+u2v2 contains uv. In this way, we have shown that no

normal ray of an edge of C crosses uv.

Furthermore, l+uv = l+xv. Since C − xv lies entirely in l+xv = l+uv, this shows that

no normal of uv crosses another edge of C. It follows that the union of C and ux

contains no conflicting edges and, therefore, is increasing-chord by Lemma 2.

Finally, removing ux from the component C ′ containing it doesn’t disconnect

them, since no edge or edge part is attached to x (or an interior point of ux). Since

C ′ − ux is connected and C ′ is a GRR, C ′ − ux is also a GRR.

2.3. Types of GRR contacts in plane straight-line graph drawings

We distinguish the types of contacts that two GRRs can have in a GRR partition of

a plane straight-line graph drawing.

Definition 9 (Proper, non-crossing and crossing contacts). Consider two

drawings Γ1, Γ2 of trees with the only common point p.

(1) Γ1 and Γ2 have a proper contact if p is a leaf in at least one of them.

(2) Γ1 and Γ2 have a non-crossing contact if in the clockwise ordering of edges of Γ1

and Γ2 incident to p, all edges of Γ1 (and, thus, also of Γ2) appear consecutively.

(3) Γ1 and Γ2 are crossing or have a crossing contact if in the clockwise ordering

of edges of Γ1 and Γ2 incident to p, edges of Γ1 (and, thus, also of Γ2) appear

non-consecutively.

The first part of Definition 9 allows GRRs to only have contacts as shown in

Fig. 5(a) and forbids contacts as shown in Figs. 5(b) and 5(c). The second part

allows contacts as those in Fig. 5(b), but forbids the contacts in Fig. 5(c).

Note that a contact of two trees Γ1,Γ2 with a single common point p is either

crossing or non-crossing. Moreover, if the contact of Γ1 and Γ2 is proper, then it

is necessarily non-crossing, since for a proper contact, Γ1 or Γ2 has only one edge

incident to p, therefore, all edges of Γ1 and of Γ2 appear consecutively around p.

(a) (b) (c)

Fig. 5. (a) Proper GRR contact; (b) non-crossing contact which is not proper and (c) crossing
contact.
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We shall show that for trees, restricting ourselves to GRR decompositions with

only non-crossing contacts makes the otherwise NP-complete problem of finding a

minimum GRR partition solvable in polynomial time.

3. NP-Completeness for Graphs with Cycles

We show that finding a minimum decomposition of a plane straight-line drawing Γ

into increasing-chord trees is NP-hard. This extends the NP-hardness result by Tan

and Kermarrec22 for minimum GRR decompositions of polygonal regions with holes

to plane straight-line drawings.

Note that in the graph drawings used for our proof, all GRRs will have proper

contacts; see Definition 9. Moreover, the graph drawings can be turned into thin

polygonal regions in a natural way by making them slightly “thicker”, and the proof

can be reused as another proof for the NP-hardness result in Ref. 22.

Both our NP-hardness proof and the proof in Ref. 22 are reductions from the

NP-complete problem Planar 3SAT.16 Recall that a Boolean 3SAT formula ϕ

is called planar, if the corresponding variable clause graph Gϕ having a vertex for

each variable and for each clause and an edge for each occurrence of a variable (or

its negation) in a clause is a planar graph. In fact, Gϕ can be drawn in the plane

such that all variable vertices are aligned on a vertical line and all clause vertices lie

either to the left or to the right of this line and connect to the variables via E- or

∃-shapes;14 see Fig. 6.

The basic idea of the gadget proof is as follows. Using a number of building

blocks, or gadgets, we construct a plane straight-line drawing Γϕ, whose geometry

mimics the variable-clause graph Gϕ drawn as described above. We construct Γϕ in

a way such that its minimum GRR decompositions are in correspondence with the

truth assignments of the Planar 3SAT formula ϕ.

The variable gadgets in Ref. 22 are cycles formed by T-shaped polygons which

can be made arbitrarily thin. Thus, in the case of plane straight-line drawings we

w

x

y

z

c2

c1 c3

Fig. 6. An orthogonal graph drawing of the variable-clause graph Gϕ for a planar 3SAT formula

φ = (w ∨ x ∨ z) ∧ (x̄ ∨ y ∨ z̄) ∧ (w̄ ∨ x̄ ∨ z̄).
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(a) (b) (c)

Fig. 7. Variable gadget and the two possibilities to pair vertical and horizontal segments to
make GRRs: (a) true variable state: >-shapes and ⊥-shapes; (b) false variable state: a-shapes

and `-shapes. (c) Extending the variable gadgets to create the upper, middle and lower arm gadgets
by substituting T-shapes of the variable gadget.

can use very similar variable gadgets (see Fig. 7). The clause gadgets in Ref. 22,

however, are squares, at which three variable cycles meet. This construction cannot

be adapted for straight-line plane drawings, and we have to construct a significantly

different clause gadget; see Fig. 9.

We define a variable gadget as a cycle of alternating vertical and horizontal

segments. The tip of each segment touches an interior point of the next segment.

We can join pairs of consecutive segments into a GRR by assigning each vertical

segment either to the next or to the previous horizontal segment on the cycle. In this

way, the variable loop is partitioned either in >-shapes and ⊥-shapes or in a-shapes

and `-shapes; see Fig. 7.

Consider a variable gadget consisting of k T-shapes as shown in Fig. 7. On each

T-shape we place one black and one white point as shown in the figure. The points

are placed in such a way that neither two black points nor two white points can

be in one increasing-chord component. Thus, a minimum GRR decomposition of a

variable gadget contains at least k components. If it contains exactly k components,

then each component must contain one black and one white point, and there are

exactly two possibilities. Each black point has exactly two white points it can share

a GRR with, and once one pairing is picked, it fixes all the remaining pairings.

The corresponding possibilities are shown in Figs. 7(a) and 7(b) and will be used

to encode the values true and false, respectively. For the pairing of the black and

white points corresponding to the true state, the variable loop can be partitioned in

>-shapes and ⊥-shapes, and for the pairing corresponding to the false state, it can

be partitioned in a-shapes and `-shapes.

To pass the truth assignment of a variable to a clause it is part of, we use arm

gadgets. Arm gadgets are extensions of the variable gadget. To add an arm gadget

to the variable, we substitute several >- or ⊥-shapes from the variable loop by a
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more complicated structure. Figure 7(c) shows such extensions for all arm types

pointing to the right, the other case is symmetric. In this way, for a variable, we can

create as many arms as necessary. Each variable loop will have one arm extension

for each occurrence of the corresponding variable in a clause in ϕ. The working

principle for the arm gadgets is the same as for the variable gadgets. The drawing

created by the variable cycle and the arm extensions (the variable-arm loop) will

once again contain distinguished black and white points, such that only one black

and one white point can be in a GRR. However, for variable-arm loops, the cycles

formed by segments of varying orientation are more complicated than the loop in

Fig. 7. For example, for some arm types we use segments of slopes ±1 in addition to

vertical and horizontal segments.

In total twelve variations of the arm gadget will be used, depending on the

position of the literal in the clause, the position of the clause, and whether the literal

is negated or not. Since in Gϕ each clause c connects to three variables, we denote

these variables or literals as the upper, middle, and lower variables of c depending

on the order of the three edges incident to c in the one-bend orthogonal drawing

of Gϕ used by Knuth and Raghunathan14; see Fig. 6. Similarly, an arm of c is called

an upper, middle, or lower arm if it belongs to a literal of the same type in c. An

arm is called a right (resp. left) arm if it belongs to a clause that lies to the right

(resp. to the left) of the vertical variable line. Finally, an arm of c is positive if the

corresponding literal is positive in c and it is negative otherwise.

The basic principle of operation of any arm gadget is the same; as an example

consider the right upper positive arm in Fig. 8. Figures 11–13 and the proof of

Property 2 cover the remaining arm types.

The positive and the negative arms are differentiated by an additional structure

that switches the pairing of the black and white points close to the part of the arm

that touches the clause gadget; for example, compare Figs. 8(b) and 13(a). By this

inversion, for a fixed truth assignment of the variable, the >- and ⊥-shapes next to

the clause are turned into `- and a-shapes, and vice versa. In this way, the inverted

truth assignment of the corresponding variable is passed to the clause.

q
p

b1
b2

b3

w1
c

(a)

q
p

b1
b2

b3

w1
c

(b)

Fig. 8. Variable gadget with a right upper positive arm (shaded region). (a) true and (b) false

states (color online).
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upper arm

clau
se

d

d

c
pi

pj

pk

middle arm

lower arm

(a)

c

(b)

Fig. 9. Clause gadget (thick green). (a) true and (b) false state of the involved literals (color

online).

(a) (b)

Fig. 10. Merging the clause gadget with GRRs from the arm loops. (a) None of the three
components is a GRR. (b) All three components are GRRs; see the dashed normals (color online).

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

17
.2

7:
12

1-
15

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 E

IN
D

H
O

V
E

N
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
11

/2
7/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 13, 2017 9:28 110-IJCGA 1760006
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Note that each arm can be arbitrarily extended both horizontally and verti-

cally to reach the required point of its clause gadget. We select again black and

white points (also called distinguished points) on the line segments of the arm

gadget.

The clause gadget (the thickest green polyline in Fig. 9, partly drawn in Fig. 8) is

a polyline which consists of six segments. The first segment has slope 2, the second is

vertical, the third has slope −1, the fourth has slope 1, the fifth is vertical, and the

sixth has slope −2. Each clause gadget connects to the long horizontal segments of

the arms of three variable gadgets. The three connecting points of the clause gadget

are the start and end of the polyline as well as its center, which is the common point

of the two segments with slopes ±1.

We shall prove the following property which is crucial for our construction:

Property 1.

(1) Consider a drawing Γi of a variable gadget together with all of its arms. Then,

neither two black nor two white points on Γi can be in one GRR. In a mini-

mum GRR decomposition of Γi, each component has one black and one white

point, and exactly two such pairings of points are possible, one for each truth

assignment.

(2) Consider two such drawings Γi, Γj for two different variables. Then, no distin-

guished point of Γi can be in the same GRR as a distinguished point of Γj .

Proof. Part (1) of Property 1 extends the same property that we already showed

for variable gadgets without arms to the case including all arms. It is an immediate

consequence of the way we constructed the arm gadgets and placed the distinguished

points; see Figs. 8 and 11–13.

Part (2) follows from the way the arms are connected by a clause, i.e., in Fig. 9

no pair of points from pi, pj , pk can be in the same GRR, since the three points lie

on three horizontal segments and are vertically collinear.

The clause gadget is connected to the arm by a horizontal segment with a

distinguished point p on its end, which is either black or white depending on the

arm type. Each clause has one special point c chosen as shown in Fig. 9.

We show that c and p can be in the same GRR in a minimum GRR decomposition

if and only if the variable gadget containing p is in the state that satisfies the clause.

Property 2.

(1) In a minimum GRR decomposition, the special point c of a clause gadget can

share a GRR with a black or white point of an arm gadget if and only if the

corresponding literal is in the true state.

(2) If a variable assignment satisfies a clause, then its entire clause gadget can be

contained in a GRR of an arm corresponding to a true literal.
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Proof. For each arm gadget we select a special red point q; see Fig. 8. Point q is

neither white nor black. By Property 1, in a minimum GRR decomposition, point q

must be in a GRR together with one black and one white point.

For the various arm types, if points q and p are in the same GRR, we shall show

that this GRR cannot contain the entire clause gadget and, in particular, cannot

contain point c. This is illustrated in Fig. 10(a).

Furthermore, we shall show that if the literal is in the true state, then points p

and q are in different GRRs, and the GRR containing p can be merged with the

entire clause gadget, including c. For example, in Fig. 9(a), each variable is in a

state that satisfies the clause. The lengths of the thick segments are chosen such

that each thick blue component can be merged with the clause gadget (thickest

green) into a single GRR, as shown in Fig. 10(b).

(i) We first show the lemma for a positive right upper arm. We use the notation

from Fig. 8 to refer to the distinguished points. In the true state of the variable

(see Fig. 8(a)), points w1, b1 and q are in the same GRR. Points b2 and p are

in another GRR (e.g., the thickest green one in Fig. 8) which can contain the

distinguished point c of the clause.

In the false state of the variable (see Fig. 8(b)), the points b1 and p are in

the same GRR. Moreover, point q can share a GRR with exactly one point

from b1, b2 or b3. But if q were with b2 or b3, then b1 would be disconnected

from any white point, a contradiction to the minimality of the decomposition.

Thus, points q, b1 and p are in the same GRR, which cannot contain a point of

the clause.

(ii) We now show the lemma for a negative right lower arm. We use the notation

from Fig. 11. In the false state of the variable (which corresponds to the true

state of the considered literal), points w1, b1 and q are in the same GRR; see

Fig. 11(a). Points b2 and p are in another GRR (e.g., the very thick green one

q
p

b1
b2

b3

w1

(a)

q
p

b1
b2

b3

w1

(b)

Fig. 11. Right lower negative arm gadget. (a) false and (b) true variable state. Thin dashed lines
indicate that the variable-arm loop continues.
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in Fig. 8) which can contain the entire clause; see the lower arm in Fig. 9 and

the corresponding merged component in Fig. 10(b).

Now consider a true state of the variable; see Fig. 11(b). Point q shares a

GRR with exactly one point from b1, b2 or b3. If q is with b2 or b3, then b1 is

disconnected from any white point, a contradiction to the minimality of the

decomposition. Thus, points q, b1 and p are in the same GRR, which cannot

contain a point of the clause.

(iii) Next, consider a positive right middle arm; see Fig. 12. We identify points p

and b1. Point b1 is either with w0 (true state of the variable) or w1 (false state

of the variable).

In the true state, points b1 and w0 are in one GRR, which cannot contain q.

This GRR can be merged with the clause gadget; see Figs. 12(a), 9 and 10(b).

In the false state, points b1, w1 and q are in one GRR, which cannot contain

point c of the clause.

(iv) To construct the negative right upper arm, the positive right lower arm and

the negative right middle arm, we invert the arm gadgets constructed before.

The inverted gadgets are shown in Fig. 13. The proofs are analogous to the

respective non-inverted cases.

(v) The left arms are constructed by mirroring.

Finally, we can prove the NP-hardness result by showing that any satisfying truth

assignment for a formula ϕ yields a GRR decomposition into a fixed number k of

GRRs, where k is the total number of black points in our construction. Likewise, using

Properties 1 and 2, we can show that any decomposition into k GRRs necessarily

satisfies each clause in ϕ.

Theorem 1. For k ∈ N0, deciding whether a plane straight-line drawing can be

partitioned into k increasing-chord components is NP-complete.

Proof. First, we show that the problem is in NP. Given a plane straight-line

drawing Γ, we construct its subdivision Γs as described in Sec. 2.2. By Lemma 3, it

b1 = p

c

q b2

w1

w2

w0

(a)

b1 = p

c

q b2

w1

w2

w0

(b)

Fig. 12. Right positive middle arm gadget. (a) true and (b) false variable state.
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q

(a) (b)

c

(c)

Fig. 13. The remaining three right arms in the satisfying variable state. (a) negative right upper
arm, (b) the positive right lower arm and (c) the negative right middle arm.

is sufficient to consider only partitions of edges in Γs into k components. To verify

a positive instance, we non-deterministically guess the partition of the edges of Γs

into k components. Testing if each component is a tree and if it is increasing-chord

can be done in polynomial time.

Next, we show NP-hardness. Given a Planar 3SAT formula ϕ, we construct a

plane straight-line drawing Γϕ using the gadgets described above. It is easy to see

that Γϕ can be constructed on an integer grid of polynomial size and in polynomial

time. Let k be the number of black points produced by the construction. Note that

k is O(m+ n), where n is the number of variables and m the number of clauses in

ϕ. We claim that Γϕ can be decomposed in k GRRs if and only if ϕ is satisfiable.

Consider a truth assignment of the variables satisfying ϕ. We decompose each

variable gadget and the attached arms as intended in our gadget design, which

yields exactly k GRRs. By Property 2, each clause gadget can be merged with the

GRR of the arm of a literal which satisfies the clause. Therefore, we have k GRRs

in total.

Conversely, consider a decomposition of Γϕ into k GRRs. Then, each variable

and the attached arms must be decomposed minimally and, by Property 1, must

be either in the true or in the false state. Furthermore, each special point c of a
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clause must be in a component belonging to one of the arms of the clause. But

then, the corresponding variable must satisfy the clause by Lemma 2. This induces

a satisfying variable assignment for ϕ.

4. Trees

In this section we consider greedy tree decompositions, or GTDs. For trees, greedy

regions correspond to increasing-chord drawings. Note that increasing-chord tree

drawings are either subdivisions of K1,4, subdivisions of the windmill graph (three

caterpillars with maximum degree 3 attached at their “tails”) or paths; see the

characterization by Alamdari et al.1

In the following, we consider a plane straight-line drawing Γ of a tree T = (V,E),

with |V | = n. As before, we identify the tree with its drawing, the vertices with the

corresponding points and the edges with the corresponding line segments. We want

to partition it into a minimum number of increasing-chord subdrawings. In such a

partition, each pair of components shares at most one point.

Recall that a contact of two trees Γ1,Γ2 with a single common point p is either

crossing or non-crossing; see Definition 9. Also, recall that proper contacts are

non-crossing. Let Πall be the set of all GRR partitions of the plane straight-line tree

drawing Γ. Let Πnc be the set of GRR partitions of Γ, in which every pair of GRRs

has a non-crossing contact. Finally, let Πp be the set of GRR partitions of Γ, in which

every pair of GRRs has a proper contact. It holds: Πp ⊆ Πnc ⊆ Πall. For minimum

partitions πp, πnc, πall from Πp,Πnc,Πall, respectively, we have |πall| ≤ |πnc| ≤ |πp|.
We show that finding a minimum GTD of a plane straight-line tree drawing is

NP-hard; see Sec. 4.1. In Sec. 4.2, we show that the problem becomes polynomial if

we consider GRR partitions in which GRRs have only non-crossing contacts, i.e.,

partitions from Πnc. The same holds if we only consider GRR partitions in which

GRRs only have proper contacts, i.e., partitions from Πp.

4.1. NP-completeness

We show that if GRR crossings as in Definition 9 are allowed, deciding whether a

partition of given size exists is NP-complete.

The problem Partition into Triangles (PIT) has been shown to be NP-

complete by Ćustić et al. (see Ref. 8, Proposition 5.1) and will be useful for our

hardness proof.

Problem 1 (PIT). Given a tripartite graph G = (V,E) with tripartition V =

V1 ∪· V2 ∪· V3, where |V1| = |V2| = |V3| = q. Does there exist a set T of q triples in

V1 × V2 × V3, such that every vertex in V occurs in exactly one triple and such that

every triple induces a triangle in G?

It is easy to show that the following, similar problem Partition into Indepen-

dent Triples (PIIT) is NP-complete as well.
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Problem 2 (PIIT). Given a tripartite graph G = (V,E) with tripartition V =

V1 ∪· V2 ∪· V3, where |V1| = |V2| = |V3| = q. Does there exist a set T of q triples in

V1 × V2 × V3, such that every vertex in V occurs in exactly one triple and such that

no two vertices of a triple are connected by an edge in G?

Lemma 4. PIIT is NP-complete.

Proof. It is easy to see that PIIT is in NP. For NP-hardness, consider a graph

G = (V,E) from an instance of PIT. We construct G′ = (V,E′) with E′ = {uv|uv 6∈
E, u ∈ Vi, v ∈ Vj , i 6= j for i, j = 1, 2, 3}. In this way, a triple from V1 × V2 × V3

induces a triangle in G if and only if it is independent in G′. Therefore, PIT can be

reduced to PIIT in polynomial time.

We now show that deciding whether a GRR partition of a plane straight-line

tree drawing of given size exists is NP-complete even for subdivisions of a star.

Theorem 2. Given a plane straight-line drawing Γ of a tree T = (V,E), which is a

subdivision of a star with 3q leaves, it is NP-complete to decide whether Γ can be

partitioned into q GRRs.

Proof. The proof that the problem is in NP is analogous to the corresponding proof

of Theorem 1.

To prove NP-hardness, we present a polynomial-time reduction from PIIT.

Consider the tripartite graph G = (V,E) with tripartition V = V1 ∪ V2 ∪ V3 from an

instance Π = (G,V1, V2, V3, q) of PIIT, where |V1| = |V2| = |V3| = q. We may assume

q ≥ 3. We show how to construct a plane straight-line drawing Γ of a subdivision of

a star in polynomial time, such that Γ can be partitioned into q GRRs if and only if

Π is a yes-instance of PIIT. Figure 14 shows an example of such a construction for

q = 3.

We use the following basic ideas to construct the drawing Γ. Let o be the center

of Γ. Each vertex v of G corresponds to a leaf vertex vΓ of Γ. The leaves of Γ are

partitioned into three sets corresponding to V1, V2, V3. Consider a pair of vertices

u ∈ Vi, v ∈ Vj . If i = j, the angle that the uΓ-vΓ path has at point o in our

construction is at most 12◦. Therefore, u and v can not be in the same GRR. For

i 6= j, however, the angle that the uΓ-vΓ path has at point o is between 106◦ and

134◦. We construct the o-uΓ and o-vΓ paths in such a way that the uΓ-vΓ path is

increasing-chord if and only if edge uv is not in G.

The path from o to vΓ takes a left turn of at most 12◦ and then continues as

a straight line, except for at most q dents; see the left magnified part of Fig. 14.

Each dent is used to realize exactly one edge from G. For a pair of vertices u ∈ Vi,
v ∈ Vj , j ≡ i+ 1 (mod 3) with edge uv in G, the o-uΓ path has a dent with a normal

crossing the o-vΓ path. Furthermore, no normal to this dent crosses the o-wΓ path

for any vertex w ∈ Vj ∪ Vk\{v}, for k ≡ i + 2 (mod 3). Consider the example in

Fig. 14. Assume that there is an edge u3v2 in G. Then, the o-uΓ
3 path has a dent
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o

vΓ1

vΓ2

vΓ3

uΓ
i

wΓ
i

o

magnified

magnified

magnified

uΓ
1 uΓ

2 uΓ
3

Fig. 14. Reduction from a PIIT instance with q = 3 for the proof of Theorem 2 (color online).

whose normal (dashed red) crosses the o-vΓ
2 path, but not the paths from o to vΓ

1 ,

vΓ
3 , wΓ

1 , wΓ
2 and wΓ

3 .

We now describe the procedure to construct Γ from Π in detail. We will make sure

that all vertices of Γ have rational coordinates with numerators and denominators

in O(n2). Let V1 = {u1, . . . , uq}, V2 = {v1, . . . , vq} and V3 = {w1, . . . , wq}. For the

construction, we introduce dummy points uΓ
0 , uΓ

q+1, vΓ
0 , vΓ

q+1, wΓ
0 , wΓ

q+1, which do

not lie on Γ. For all i = 0, . . . , q + 1, it will be |ouΓ
i | = |ovΓ

i | = |owΓ
i |.

We first show how to choose coordinates for points o, uΓ
0 , . . . , u

Γ
q+1; see Fig. 15(a).

We approximate 120◦ rotation using the angle α ≈ 120.51◦ with cosα = − 33
65 and

sinα = 56
65 . The points vΓ

i are acquired from uΓ
i by a clockwise rotation by α at o,

and the points wΓ
i are acquired from uΓ

i by a counterclockwise rotation by α at o.

Then, ∠uΓ
i ov

Γ
i = ∠uΓ

i ow
Γ
i = α and ∠vΓ

i ow
Γ
i = 360◦ − 2α ≈ 118.98◦.

Let point o have coordinates (0, 0). For i = 1, . . . , q, let the first segment of the o-

uΓ
i path have its other endpoint in (i, c1q) for a constant c1. For i = 0, . . . , i+1, point

uΓ
i has x-coordinate i. Let yi denote the y-coordinate of uΓ

i . We set y0 = c1q + c2q
2

for a constant c2. For i = 1, . . . , q, we set yi = yi−1 + 2q + 1 − i; see Fig. 15(a).

Thus, for i = 0, . . . , q + 1, points uΓ
i lie on a parabola that opens down. Note
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q

c1 · q

c2 · q2

2q

2q − 1

q + 1

uΓ
0

uΓ
1

uΓ
2

uΓ
q

uΓ
q+1q

..
.

o

(a)

vΓ1
vΓ2

vΓ3
vΓ4
vΓ5

vΓ0

vΓ2

vΓ3

vΓ4

(b)

1
2

1

5
2

(c) (d)

Fig. 15. Constructing Γ from Π for the proof of Theorem 2 (color online).

that all vertices of Γ constructed so far are integers in O(n2). We set c1 = 5 and

c2 = 40.

Next, we show how to construct the dents on the o-uΓ
i paths. For edge uivj in

G, i, j = 1, . . . , q, consider the straight line through vΓ
j−1v

Γ
j+1; see the dashed red

line in Fig. 15(b) for j = 3. Consider the intersection of this line and the vertical

line through uΓ
i . The coordinates of that intersection are rational numbers with
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numerators and denominators in O(n2). It is easy to show that this intersection has

y-coordinates between c2
2 q = 20q and 6

5 (c1 + c2q + 3
2 (q + 1)) < 8 + 50q.

At the intersection, we place a dent consisting of two segments; see Fig. 15(c).

The first segment of the dent has positive slope and is orthogonal to vΓ
j−1v

Γ
j+1. Its

projection on the x axis has length 1
2 . The second segment has the negative slope of

−5. It is easy to verify that the line through vΓ
j v

Γ
j+2 (the upper red dashed line in

Fig. 15(c)) has distance at least c2
8 = 5 from the lowest point of the dent. Therefore,

the dent fits between the two dashed red lines. Note that all three vertices of the

dent have coordinates that are rational numbers with numerators and denominators

in O(n2).

By the choice of the slopes, no normal to either one of the dent segments crosses

owΓ
k for k = 0, . . . , q + 1. Furthermore, no normal on the second segment crosses

ovΓ
k for k = 0, . . . , q + 1, and a normal to the first segment only crosses ovΓ

k for

k = j. In this way, the dent ensures that uΓ
i and vΓ

j can not be in the same GRR,

and it does not prohibit any other vertex pair (uΓ
k and vΓ

` , vΓ
k and wΓ

` , wΓ
k and vΓ

` ,

k, ` = 1, . . . , q) from being in the same GRR. Finally, for each leaf vertex uΓ
i , we

add the missing segments on the vertical line through uΓ
i to connect o and uΓ

i by a

path. Analogously, we construct the o-vΓ
i and the o-wΓ

i paths.

Note that by our construction, the dent normals do not cross other dents on the

paths from o to the leaves from another partition; see Fig. 15(d), where the dents

lie in the dark gray rectangles, and the crossings of dent normals and paths from o

to the leaves from another partition lie in the light gray rectangles. It follows that

for i, j = 1, . . . , q, the o-uΓ
i and the o-vΓ

j path can be merged into one GRR, if no

dent corresponding to edge uivj in G exists on the o-uΓ
i path in Γ.

From the construction of Γ, it follows that a pair of leaves xΓ and yΓ can be in the

same GRR if and only if the corresponding vertices x, y are in different partitions of

V and edge xy is not in G. Therefore, triples of leaves xΓ, yΓ, zΓ for which xΓ, yΓ, zΓ

can be in the same GRR, are in one to one correspondence to independent triples

from V1 × V2 × V3 in G. Therefore, Γ can be partitioned into q GRRs if and only

if Π is a yes-instance of PIIT. Note that Γ can be constructed in polynomial time

and that all coordinates of vertices in Γ are rational numbers with numerators and

denominators in O(n2).

4.2. Polynomial-time algorithms for restricted types of contacts

We now make a restriction by only allowing non-crossing contacts.

First, assume T is split only at its vertices. As shown in Sec. 2.2, we can drop

this restriction and adapt our algorithms to compute minimum or approximately

minimum GRR decompositions of plane straight-line tree drawings which allow

splitting tree edges at interior points. Note that the construction in the proof of

Lemma 3 preserves the non-crossing property of GRR contacts.

We start in Sec. 4.2.1 and use the well-known problem Minimum Multicut to

compute a 2-approximation for minimum GTDs for the scenario in which GRRs are
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only allowed to have proper contacts. A similar approach will be used in Sec. 5 to

compute minimum GRR decompositions of triangulated polygons. After that, in

Sec. 4.2.2, we present an exact, but more complex approach for computing GTDs,

which also allows non-crossing contacts.

4.2.1. 2-approximation using multicut

We show how to partition the edges of T into a minimum number of increasing-chord

components with proper contacts using Minimum Multicut on trees. Given an

edge-weighted graph G = (V,E) and a set of terminal pairs {(s1, t1), . . . , (sk, tk)},
an edge set S ⊆ E is a multicut if removing S from G disconnects each pair si, ti,

i = 1, . . . , k. A multicut is minimum if the total weight of its edges is minimum.

For the complexity of Minimum Multicut on special graph types, see the survey

by Costa et al.7 Computing Minimum Multicut is NP-hard even for unweighted

binary trees,3 but has a polynomial-time 2-approximation for trees.11

Consider a plane straight-line drawing of a tree T = (V,E). We construct a tree

TM by subdividing every edge of T once as follows. Tree TM has a vertex nv for

each vertex v ∈ V and a vertex ne for each edge e ∈ E. For each e = uv ∈ E, edges

nune and nenv are in TM . The set X of terminal pairs contains a pair (ne, nf ) for

each pair of conflicting edges e, f of T . Let all edges of TM have weight 1.

Lemma 5. Let E′ be a Minimum Multicut of TM with respect to the terminal

pairs X and let CM
1 , . . . , CM

k denote the connected components of TM −E′. Then,

components Ci = {e ∈ E|ne ∈ CM
i } form a minimum GRR decomposition of T .

Proof. Consider a multicut E′ of TM , |E′| = k − 1. Consider a component CM
i .

Then, the edges in Ci are conflict-free and form a connected subtree Ti of T . Thus,

Ti is a GRR by Lemma 2.

Next, consider a GRR decomposition of T into k subtrees Ti = (Vi, Ei) with

proper contacts. We create an edge set S as follows. Assume Ti, Tj touch at vertex

v ∈ V . Let edge e = uv be in Ti, and let v be a leaf in Ti. Then we add edge nenv of

TM to set S; see Figs. 16(a) and 16b. It is |S| = k − 1. After removing S from TM ,

no connected component contains vertices ne1 , ne2 for a pair of conflicting edges e1,

e2. Thus, S is a multicut.

We have shown that GRR decompositions of T of size k are in one-to-one

correspondence with the multicuts of TM of size k−1. Therefore, minimum multicuts

correspond to minimum GRR decompositions, and it follows that Ci form a minimum

GRR decomposition of T .

Note that Minimum Multicut can be solved in polynomial time in directed

trees,6 i.e., trees whose edges can be directed such that for each terminal pair (si, ti),

the si-ti path is directed. We note that this result cannot be applied in our context,

since we can get Minimum Multicut instances for which no such orientation is
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144 M. Nöllenburg, R. Prutkin & I. Rutter

v0

v1

v2

v3 v4

v5

v6e1
e2

e3
e4

e5

e6

(a)

nv1

nv2

nv3 nv4

nv5

nv6ne1

ne2

ne3 ne4

ne5

ne6

(b)

Fig. 16. (a) Tree drawing decomposed in GRRs. Edge pairs {e1, e2}, . . . , {e4, e5}, {e5, e1} as well

as {e1, e6}, {e4, e6} are conflicting. (b) Minimum Multicut instance constructed according to
the proof of Proposition 5. No edge orientation respecting all paths between the terminals exists.
Dashed edges form a solution.

possible, see Fig. 16(b). However, using the approximation algorithm from Ref. 11,

we obtain the following result.

Corollary 1. Given a plane straight-line drawing of a tree T = (V,E), a partition

of E into 2 · OPT − 1 increasing-chord subtrees of T having only proper contacts

can be computed in time polynomial in n, where OPT is the minimum size of such a

partition.

4.2.2. Optimal solution

In the following we show how to find a minimum GRR partition with only non-

crossing contacts in polynomial time. As is the case with minimum partitions of

simple hole-free polygons into convex4 or star-shaped13 components, our algorithm

is based on dynamic programming. We describe the dynamic program in detail and

use it to find minimum GTDs for the setting as in Sec. 4.2.1, as well as for the

setting in which non-proper, but non-crossing contacts of GRRs are allowed. First,

we shall prove the following theorem.

Theorem 3. Given a plane straight-line drawing of a tree T = (V,E), a partition

of E into a minimum number of increasing-chord subtrees of T (minimum GTD)

having only non-crossing contacts can be computed in time O(n6).

At the end of Sec. 4.2.2, we modify our dynamic program slightly to prove

Theorem 4, which shows the same result for the setting in which only partitions

with proper contacts are considered.

Theorem 4. Given a plane straight-line drawing of a tree T = (V,E), a partition

of E into a minimum number of increasing-chord subtrees of T (minimum GTD)

having only proper contacts can be computed in time O(n6).

Let T be rooted. For each vertex u with parent πu, let Tu be the subtree of u

together with edge πuu. We shall use the following definition.
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Definition 10 (root component). Given a GRR partition of the edges of a

rooted tree T ′, we call all GRRs containing the root of T ′ the root components.

If the root of T ′ has degree 1, every GRR partition of T ′ has one unique root

component.

A minimum partition is constructed from the solutions of subinstances as follows.

Let u1, . . . , ud be the children of u. For subtrees Tu1
, . . . , Tud

whose only common

vertex is u, a minimum partition P ′ of T ′ =
⋃

i Tui induces partitions Pi of Tui .

Furthermore, P ′ is created by choosing Pi as partitions of Tui
and possibly merging

some of the root components of Tui , i = 1, . . . , d. Note that Pi is not necessarily a

minimum partition of Tui
, if Pi allows us to merge more root components than a

minimum partition of Tui
would allow. Therefore, for every u we shall store minimum

partitions of Tu for various possibilities of the root component of Tu. For the sake of

uniformity, we choose a vertex with degree 1 as the root of T .

Given a tree root, the number of different subtrees it could be contained in may

be exponential, e.g., it is Θ(2n) in a star. The key observation for our algorithm

is that we do not need to store a partition for each possible root component. We

require the following notation.

Definition 11 (Path clockwise between). Consider directed non-crossing paths

ρ1, ρ2, ρ3 with common origin r, endpoints t1, t2, t3 and, possibly, common prefixes.

Let Vi be vertices of ρi, i = 1, 2, 3, and let T be the tree formed by the union of ρ1, ρ2

and ρ3. We say that ρ2 is clockwise between ρ1 and ρ3, if the clockwise traversal of

the outer face of T visits t1, t2, t3 in this order; see Fig. 17(a).

Note that in Definition 11 the three paths may (partially) coincide. Lemma 6

shows that to decide whether a union of two subtrees is increasing-chord, it is

sufficient to consider only the two pairs of “outermost” root-leaf paths of each subtree.

This result is crucial for limiting the number of representative decompositions that

need to be considered during our dynamic programming approach. The statement

of the lemma is illustrated in Fig. 17(b).

Lemma 6. Let T1, T2 be increasing-chord trees sharing a single vertex r. Let all

tree edges be directed away from r. Let paths ρ1, ρ2 in T1 and ρ3, ρ4 in T2 be paths

r

ρ1

ρ2
ρ3

t1 t3

(a)

r
u1

v1

u4
v4

ρ1

ρ2

ρ3

ρ4

(b)

Fig. 17. (a) Path ρ2 is clockwise between paths ρ1 and ρ3. (b) Statement of Lemma 6.
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from r to a leaf, such that:

— every directed path from r in T1 is clockwise between ρ1 and ρ2;

— every directed path from r in T2 is clockwise between ρ3 and ρ4;

— for i = 1, . . . , 4, path ρi is clockwise between ρi−1 and ρi+1 (indices modulo 4).

Then, ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4 is increasing-chord if and only if T1 ∪ T2 is

increasing-chord.

Proof. Consider trees T1, T2 and paths ρ1, . . . , ρ4 satisfying the condition of the

lemma; see Fig. 17(b) for a sketch. Note that ρ1 and ρ2 may have common prefixes,

and so may ρ3 and ρ4. Assume the four paths ρ1, . . . , ρ4 are drawn with increasing

chords, but the union T ′ of the trees T1 and T2 is not. Then, there exist edges u1v1

in T1 and u4v4 in T2, such that the normal ` to u1v1 at u1 crosses edge u4v4.

Claim 1. Without loss of generality, we may assume the following; see Fig. 18. (i)

Edge u1v1 points vertically upwards, (ii) edge u4v4 is the first edge on the r-v4 path

ρ′′ crossed by ` and points upwards, (iii) vertex u4 is on ` and to the right of u1.

We ensure (i) by rotation. Then, point r is below ` (or on it), since the r-v1 path

ρ′ is increasing-chord. For (ii), we choose u4v4 as the first edge with this property.

If it points downward, there is an edge on the r-u4 path crossed by `. For (iii), if

` crosses u4v4 in an interior point p, we subdivide the edge at p and replace u4v4

by pv4. If u4 is left of u1, we mirror the drawing horizontally. This proves the claim.

First, assume that v1, v4 are not on paths ρ1, . . . , ρ4. Recall that two of the

paths ρ1, . . . , ρ4 (without loss of generality, ρ2 and ρ3) are between ρ′ and ρ′′. Let

u2v2 and u3v3 be the last two edges on ρ2 and ρ3, respectively. Note that ray(u1, v1)

and ray(u2, v2) must diverge, and so must ray(u2, v2) and ray(u3, v3). If u4v4 points

upwards and to the left as in Fig. 18(a), then ray(u3, v3) and ray(u4, v4) must

converge; a contradiction. Thus, u2v2, u3v3 and u4v4 point upwards and to the

right; see Fig. 18(b). Since T1 as well as the union of ρ1 and ρ2 is increasing-

chord, the angles ∠v1u1u2, ∠u1u2v2, ∠v2u2u3 and ∠u2u3v3 are between 90◦ and

180◦. Therefore, vertices u2 and u3 must lie below `. Let `3 be the normal to

u1

v1

r

u4

v4

ρ2 ρ3

ρ ρ

(a)

v2

v3
u3

u1

v1

r

u4

v4

ρ2
ρ3

3

u2

(b)

Fig. 18. Constructions in Lemma 6.
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u3v3 at u3. Since T2 is drawn with increasing chords, u4v4 must lie below `3, a

contradiction.

The proof works similarly if u1v1 is on ρ2 (by identifying u1v1 and u2v2), and

the remaining cases are symmetric.

We now describe our dynamic programs for proper and non-crossing contacts

in detail. We first give an overview of the general approach, then describe the

non-crossing case and afterwards modify it for proper contacts. For a root component

R of Tu, let the leftmost path (or, respectively, the rightmost path) be the simple

path in R starting at πu which always chooses the next counterclockwise (clockwise)

edge.

The basic idea of the dynamic program is as follows. For a given subtree Tu,

we store the sizes of the minimum GTDs of Tu for different possibilities of the

root component. We combine these solutions to compute minimum GTDs of bigger

subtrees. For this step, we must be able to test which root components can be

merged into one GRR. Instead of storing the partition sizes for all possible root

components, we only store the minimum partition size for each combination of the

leftmost and rightmost path of the root component. Thus, for each Tu, we only store

O(n2) partition sizes. Note that this is sufficient, since by Lemma 6 the question

whether two root components can be merged depends only on their leftmost and

rightmost paths.

If u is the root of a subtree T ′ and has degree 2 or greater in T ′, there might

be several root components in a partition of T ′, i.e., GRRs containing u. Let R be

some fixed root component of the considered GTD. If u has degree 2 or greater in

R, then we need a reference direction to define the leftmost and rightmost paths of

R. Let ρl be the leftmost path of the rooted tree R + πuu. Note that ρl contains

the edge πuu. Then, the leftmost path of R is ρl − πuu. The rightmost path of R is

defined analogously.

Recall that Tu is the subtree of u together with edge πuu. For each pair of

vertices ti, tj in Tu, cell τ [u, ti, tj ] of a table τ stores the size of a minimum GRR

decomposition of Tu, in which the root component has the πu-ti path and the πu-tj
path as its leftmost and rightmost path, respectively. Cell τ [u] stores the size of a

minimum GRR decomposition of Tu. It is τ [u] = minti,tj τ [u, ti, tj ]. For simplicity,

we set min ∅ =∞.

Clearly, for each leaf u, τ [u, u, u] = 1, and τ [u, ti, tj ] =∞ for all other values of

ti, tj . Let v be the only neighbor of the root r of the tree T . Then, τ [v] is the size of

a minimum GRR decomposition of T . We show how to compute τ bottom-up.

For ease of presentation, we use the following notation. Vertex u is not a leaf and

has children u1, . . . , ud. Let πu, u1, . . . , ud have this clockwise order around u. Let

ti 6= u be a vertex in Tui . We define tj , tk, t` analogously for 1 ≤ i ≤ j ≤ k ≤ ` ≤ d.

Let ρi be the u-ti path.

We consider two settings: allowing arbitrary non-crossing contacts and allowing

only proper contacts. The dynamic programs for the two cases are very similar,
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and the program for arbitrary non-crossing contacts is slightly more complex.

To reduce duplication, we first present the program for arbitrary non-crossing

contacts, and later show how to modify it for the case when only proper contacts

are allowed.

4.2.3. Non-crossing contacts

Recall that vertex u can live in a root component R together with non-consecutive

children ui, u`, i < `. If arbitrary non-crossing contacts are allowed, some nodes

from ui+1, . . . , u`−1 that are not in R can also be in one GRR. Therefore, after

choosing the root component R of Tu, we must be able to recursively compute the

minimum size of a partition of the union of Tuj
, uj /∈ R. We introduce additional

tables for this purpose.

In addition to the table τ storing the values τ [u, ti, tj ], we use tables σ∆ for

∆ = 1, . . . , 4, as well as tables σ and σM . These additional tables will be used to

formulate the recurrences for τ . For fixed u, i, j, the corresponding values of σ∆, σ

and σM denote the sizes of minimum GTDs of Tui
∪ Tui+1

∪ · · · ∪ Tuj
with certain

properties. Table σ∆ considers different possibilities of the leftmost and rightmost

paths of the root components as well as the degree ∆ of u in the root component.

Recall that in an increasing-chord tree drawing, every vertex has degree at most 4.

Formally, the value σ∆[u, ti, tj ] denotes the minimum number of GRRs in a GTD of

the tree Tui
∪ Tui+1

∪ · · · ∪ Tuj
, in which there exists a GRR R with the rightmost

path u-ti and leftmost path u-tj and in which u has degree ∆ in R.

For some recurrences, we need to aggregate the various possibilities stored in σ∆.

For this purpose, we use tables σ and σM as follows. The value σ is the minimum of

σ∆ over all values of ∆. We define σ[u, ti, tj ] as σ[u, ti, tj ] = min∆=1,...,4 σ∆[u, ti, tj ].

The value σM stores the minimum over all combinations of the leftmost and

rightmost paths. Thus, it stores the size of the minimum partition of Tui
∪ · · · ∪ Tuj

,

regardless of the root component. Formally, σM [u, i, j] denotes the minimum number

of GRRs in a GTD of Tui
∪ · · · ∪ Tuj

. Note that the arguments of σM [u, ·, ·] are

indices i, j of a pair of children of u, and the arguments of σ∆[u, ·, ·] and σ[u, ·, ·]
are a pair of vertices in Tui ∪ · · · ∪ Tuj .

In the following recurrences, for a fixed pair of vertices ti and t`, all possibilities

for tj and tk are considered, such that both paths ρj and ρk are clockwise between

ρi and ρ`. We test whether root components R1 with the leftmost and rightmost

paths ρi and ρj and R2 with the leftmost and rightmost paths ρk and ρ` can be

merged to a single GRR. We show that this covers all representative possibilities for

a root component of a GTD of Tui
∪ · · · ∪ Tu`

to have the leftmost and rightmost

paths ρi and ρ`, respectively.

Lemma 7. We have the recurrences

(1) σ1[u, ti, tj ] = σ[u, ti, tj ] = τ [ui, ti, tj ] for all ti, tj 6= u in Tui , i = 1, . . . , d;

(2) σM [u, i, i] = τ [ui] for all i = 1, . . . , d;
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(3) σ2[u, ti, t`] = mintj ,tk{σ1[u, ti, tj ] + σM [u, j + 1, k − 1] + σ1[u, tk, t`]− 1};
(4) σ3[u, ti, t`] = min{mintj ,tk{σ2[u, ti, tj ] + σM [u, j + 1, k − 1] + σ1[u, tk, t`]− 1},

mintj ,tk{σ1[u, ti, tj ] + σM [u, j + 1, k − 1] + σ2[u, tk, t`]− 1}};
(5) σ4[u, ti, t`] = mintj ,tk{σ1[u, ti, ti] + σM [u, i+ 1, j − 1] + σ1[u, tj , tj ]

+σM [u, j+1, k−1]+σ1[u, tk, tk]+σM [u, k+1, `−1]+σ1[u, t`, t`]}−3.

The minimizations in lines (4) and (5) only consider vertices tj , tk, such that

ρi ∪ ρj ∪ ρk ∪ ρ` is increasing-chord.

Proof. Consider Recurrence (1) and a GTD of Tui ∪ · · · ∪ Tuj of size x with root

component R, such that R has u-ti and u-tj as its leftmost and rightmost paths,

respectively. Since u has degree 1 in R, it must be i = j. Thus, this partition is a GTD

of Tui
with R as the root component, so by definition of τ we have τ [u, ti, tj ] ≤ x.

Thus, we have σ1[u, ti, tj ] ≥ τ [ui, ti, tj ]. Conversely, consider a GTD of Tui , such that

its root component R has u-ti and u-tj as its leftmost and rightmost paths. Thus, ti
and tj are both in Tui

, and vertex u has degree 1 in R. By the definition of σ1, this

partition has size at least σ1[u, ti, tj ]. Thus, we have σ1[u, ti, tj ] ≤ τ [ui, ti, tj ]. Finally,

since for i = j we have Tui
∪ · · · ∪ Tuj

= Tui
, vertex u can only have degree 1 in the

root component of a GTD, so we have σ1[u, ti, tj ] = σ[u, ti, tj ]. Thus, Recurrence (1)

holds.

Recurrence (2) holds trivially, since by the definitions of σM and τ [·], both

σM [u, i, i] and τ [ui] denote the size of the minimum GRR partition of Tui
.

Consider Recurrence (3) and a GTD P of Tui
∪ · · · ∪ Tu`

of size x with root

component R. Again, let R have u-ti and u-t` as its leftmost and rightmost paths,

respectively. Let u have degree 2 in R. Therefore, i 6= `, and R only consists of two

parts R1, R2 (green and blue in Fig. 19(a), respectively), such that R1 is contained

in Tui
and R2 is contained in Tu`

. Partition P induces a GTD P1 of Tui
of size x1,

a GTD P2 of Tu`
of size x2 and a GTD P3 of Tui+1 ∪ · · · ∪ Tu`−1

of size x3. Since

R1 ∪ R2 = R, we have x = x1 + x2 + x3 − 1. Let uj be a vertex in R1, such that

u-uj is the rightmost path of R1. Let uk be the vertex in R2, such that u-uk is the

leftmost path of R2. The subtree ρi ∪ ρj ∪ ρk ∪ ρ` is contained in R and, therefore,

is increasing-chord. By the definition of σ1 and σM , we have σ1[u, ti, tj ] ≤ x1,

σ1[u, tk, t`] ≤ x2 and σM [u, j + 1, k− 1] ≤ x3. Thus, the right part of Recurrence (3)

is at most x, so the right side is upper bounded by the left side.

Conversely, let the right side of Recurrence (3) be less than ∞. Let j, k, tj , tk be

chosen such that the minimum on the right side is realized. Then, ρi ∪ ρj ∪ ρk ∪ ρ`
is increasing-chord. Let σ1[u, ti, tj ] = x1, and let P1 be a GTD of size x1 realizing

the minimum in the definition of σ1[u, ti, tj ]. Let R1 be the root component of P1.

Then, R1 has leftmost and rightmost paths u-ti and u-tj respectively. Analogously,

let σ1[u, tk, t`] = x2, and let P2 be a GTD of size x2 realizing the minimum in the

definition of σ1[u, tk, t`]. Let R2 be the root component of P2. Then, R2 has leftmost

and rightmost paths u-tk and u-t` respectively. Finally, let P3 be a GTD of size x3

realizing the minimum in the definition of σM [u, j + 1, k− 1]. By Lemma 6, R1 ∪R2
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πu

uui
= uj

uk= u�

Tuj+1 Tuk−1
· · ·

tk

t�

tj

ti

(a)

πu

u
ui

uj

uk= u�

Tuj+1

Tuk−1

···

tk

t�

tj

ti

(b)

πu

u

uk

u�

Tuk−1

··· tk

t�
ui
= uj

tj

ti

Tuj+1

(c)

Fig. 19. Recurrences in Lemma 7: (a) Recurrence (3); (b) Recurrence (4) for the case m = j;

(b) Recurrence (4) for the case m = k (color online).

is increasing-chord. Consider the GTD P formed by taking the union of P1, P2 and

P3 and merging R1 and R2. Partition P has size x1 +x2 +x3−1. Its root component

R has leftmost and rightmost paths u-ti and u-t` respectively, and u has degree 2

in R. Thus, by the definition of σ2[u, ti, t`], it is σ2[u, ti, t`] ≤ x1 + x2 + x3 − 1.

Thus, the left side of Recurrence (3) is upper bounded by its right side. Therefore,

Recurrence (3) holds.

Next, consider Recurrence (4) and a GRR partition P of Tui ∪ · · · ∪ Tu`
of size

x with root component R. Once again, let R have u-ti and u-t` as its leftmost

and rightmost paths, respectively. Let u have degree 3 in R. Therefore, it is i 6= `.

In addition to ui and u`, the GRR R must contain another child um of u, such

that i < m < `. We can partition R into two GRRs R1 and R2, such that ui is

in R1, u` in R2 and um is either in R1 or in R2. First, assume um is in R1; see

Fig. 19(b). The other case is symmetric; see Fig. 19(c). We choose j = m. Let tj be

a vertex in Tuj , such that u-tj is the rightmost path of R1. Let tk be a vertex in

Tu`
, such that u-tk is the leftmost path in R2. Note that in this case, tk and t` are

in the same subtree Tuk
= Tu`

. We can split the partition P into GRR partitions

P1 of Tui
∪ · · · ∪ Tuj

of size x1, P2 of Tu`
of size x2 and P3 of Tuj+1

∪ · · · ∪ Tuk−1

of size x3. It holds: R = R1 ∪ R2, and apart from R, no other GRR in P is split,

since the contacts are non-crossing. Thus, it is x = x1 + x2 + x3 − 1. By definition,

σ2[u, ti, tj ] ≤ x1, σ1[u, tk, t`] ≤ x2 and σM [u, j + 1, k − 1] ≤ x3. Therefore, the right

side of Recurrence (4) is at most x. The same holds for the symmetric case in which

um is in R2 by analogous arguments. Thus, the right side of Recurrence (4) is upper

bounded by its left side.

Conversely, let the right side of Recurrence (4) be less than ∞. Let j, k, tj , tk
be chosen such that the minimum on the right side is realized. First, assume it is

realized by σ2[u, ti, tj ] + σM [u, j + 1, k− 1] + σ1[u, tk, t`]− 1. Then, ρi ∪ ρj ∪ ρk ∪ ρ`
is increasing-chord. Let σ2[u, ti, tj ] = x1, and let P1 be a GRR partition of size x1

realizing the minimum in the definition of σ2[u, ti, tj ]. Let R1 be the root component

of P1. Then, R1 has leftmost and rightmost paths u-ti and u-tj respectively. The

degree of u in R1 is 2, and the vertices ti and tj must lie in different subtrees Tui and

Tuj
, respectively. Analogously, let σ1[u, tk, t`] = x2, and let P2 be a GRR partition
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of size x2 realizing the minimum in the definition of σ1[u, tk, t`]. Let R2 be the

root component of P2. Then, R2 has leftmost and rightmost paths u-tk and u-t`
respectively. Finally, let P3 be a GRR partition of size x3 realizing the minimum

in the definition of σM [u, j + 1, k − 1]. By Lemma 6, R1 ∪ R2 is increasing-chord.

Consider the GRR partition P formed by taking the union of P1, P2 and P3 and

merging R1 and R2. Partition P has size x1 + x2 + x3 − 1. Its root component R

has leftmost and rightmost paths u-ti and u-t`, respectively, and u has degree 3 in

R. Therefore, by the definition of σ3[u, ti, t`], it is σ3[u, ti, t`] ≤ x1 + x2 + x3 − 1.

Thus, the left side of Recurrence (4) is upper bounded by its right side. The same

holds for the symmetric case in which the minimum on the right side is realized by

σ1[u, ti, tj ] + σM [u, j + 1, k − 1] + σ2[u, tk, t`]− 1. Therefore, Recurrence (4) holds.

Finally, consider Recurrence (5) and a GTD P of Tui
∪ · · · ∪ Tu`

of size x with

root component R. Once again, let R have u-ti and u-t` as its leftmost and rightmost

paths, respectively. Let u have degree 4 in R. Then, R is a subdivision of K1,4.1 Let

tj and tk be the other two leaves of R lying in the subtrees Tuj and Tuk
respectively,

for 1 ≤ i < j < k < ` ≤ d. Then, we can split P into 7 GTDs P1, . . . , P7 as follows.

Partitions P1, P2, P3, P4 are GTDs of subtrees Tui , Tuj , Tuk
and Tu`

, respectively,

with the respective sizes x1, x2, x3, x4 and paths u-ui, u-uj , u-uk and u-u` as the

respective root components. Partitions P5, P6, P7 are GTDs of Tui+1
∪ · · · ∪ Tuj−1

,

Tuj+1
∪ · · · ∪ Tuk−1

and Tuk+1
∪ · · · ∪ Tu`−1

, respectively, with respective sizes x5,

x6 and x7. The root component R is split into the four paths u-ui, u-uj , u-uk
and u-u`, and no other GRR is split, since the contacts in P are non-crossing.

Therefore, it is x = x1 + · · ·+ x7 − 3. By the definition of σ1, it is σ1[u, ti, ti] ≤ x1,

σ1[u, tj , tj ] ≤ x2, σ1[u, tk, tk] ≤ x3 and σ1[u, t`, t`] ≤ x4. By the definition of σM ,

σM [u, i+ 1, j − 1] ≤ x5, σM [u, j + 1, k − 1] ≤ x6 and σM [u, k + 1, `− 1] ≤ x7. Thus,

the right side of Recurrence (5) is at most x, so the right side is upper bounded by

the left side.

Conversely, let the right side of Recurrence (5) be less than ∞. Let j, k, tj , tk
be chosen such that the minimum on the right side is realized. Then, ρi ∪ ρj ∪
ρk ∪ ρ` is increasing-chord. Let σ1[u, ti, ti] = x1, σ1[u, tj , tj ] = x2, σ1[u, tk, tk] = x3

and σ1[u, t`, t`] = x4. Let P1, P2, P3 and P4 be GTDs realizing the minimum in the

definitions of σ1[u, ti, ti], σ1[u, tj , tj ], σ1[u, tk, tk] and σ1[u, t`, t`], respectively. Next,

let σM [u, i+ 1, j − 1] = x5, σM [u, j + 1, k− 1] = x6 and σM [u, k+ 1, `− 1] = x7. Let

P5, P6 and P7 be GTDs realizing the minima in the definitions of σM [u, i+ 1, j − 1],

σM [u, j + 1, k − 1] and σM [u, k + 1, ` − 1], respectively. The four paths ρi, ρj , ρk,

ρ` can be merged into a single GRR R with leftmost path ρi and rightmost path

ρ`. Consider partition P with root component R formed by taking the union of

P1, . . . , P7 and merging the four paths ρi, ρj , ρk, ρ`. No more GRRs can be merged,

since the contacts in P1, . . . , P7 are non-crossing. The GRR R is the root component

of P . It has leftmost and rightmost paths u-ti and u-t` respectively, and u has

degree 4 in R. Thus, by the definition of σ4[u, ti, t`], it is σ4[u, ti, t`] ≤ x1+· · ·+x7−3.

Thus, the left side of Recurrence (5) is upper bounded by its right side. Therefore,

Recurrence (5) holds.
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Lemma 8. We have the following recurrence:

(6) σM [u, i, `] = mintj ,tk{σM [u, i, j − 1] + σ[u, tj , tk] + σM [u, k + 1, `]},
The minimization only considers j, k for i ≤ j ≤ k ≤ ` and vertices tj , tk, such

that tj is in Tuj
and tk is in Tuk

.

Proof. First, consider a GTD P of Tui
∪· · ·∪Tu`

. Consider a GRR R in P containing

u with leftmost and rightmost paths u-tj and u-tk, respectively, for some vertices tj
in Tuj

and tk in Tuk
. Additionally, let R be chosen such that k − j is maximized.

Then, by the choice of R, no GRR in P has vertices both in Tui ∪ · · · ∪ Tuj−1 and in

Tuk+1
. . . Tu`

. Therefore, we can split partition P into GTDs P1 of Tui
∪ · · · ∪ Tuj−1

of size x1, P2 of Tuj ∪ · · · ∪ Tuk
of size x2 and P3 of Tuj+1 ∪ · · · ∪ Tu`

size x3, such

that no GRR of P is split. Thus, x = x1 + x2 + x3. By the definition of σ and σM ,

we have σM [u, i, j − 1] ≤ x1, σ[u, tj , tk] ≤ x2 and σM [u, k + 1, `] ≤ x3. Therefore,

the right side of Recurrence (6) is at most x, so the right side is upper bounded by

the left side.

Conversely, let the right side of Recurrence (6) be less than ∞. Let j, k, tj , tk
be chosen such that the minimum on the right side is realized. Let P1, P2, P3 be

GTDs of size x1, x2, x3, respectively, realizing the minima in the definitions of

σM [u, i, j − 1], σ[u, tj , tk] and σM [u, k + 1, `], respectively. The union of the three

partitions is a GTD of Tui
∪ · · · ∪ Tu`

. Thus, by the definition of σM [u, i, `], it is

σM [u, i, `] ≤ x1 + x2 + x3, so the left side of Recurrence (6) is upper bounded by its

right side. Therefore, Recurrence (6) holds.

Lemma 9. We have the following recurrences regarding τ:

(7) τ [u, u, u] = 1 + σM [1, d];

(8) τ [u, ti, tj ] = σM [u, 1, i − 1] + σ[u, ti, tj ] + σM [u, j + 1, d], if πuu + ρi ∪ ρj is

increasing-chord , and ∞ otherwise.

In Recurrence (8), vertex ti 6= u is in Tui and vertex tj 6= u is in Tuj .

Proof. First, we prove Recurrence (7). Let P be a GTD of Tu = πuu+ Tu1
∪ · · ·

∪ Tud
, such that the edge πuu is the root component of P . Then, the other GRRs of

P induce a partition P1 of Tu1 ∪ · · · ∪ Tud
. Let x1 be the size of P1. Then, P has

size x1 + 1. Furthermore, by the definition of σM , σM [u, 1, d] ≤ x1. Thus, the right

side of Recurrence (7) is at most x1 + 1, so the right side is upper bounded by the

left side.

Conversely, let the right side of Recurrence (7) be less than ∞. Let P1 be a

GTD of Tu1
∪ · · · ∪ Tud

size x1. We add edge πuu as a new GRR to P1 and get a

partition P of Tu of size x1 + 1 having πuu as its root component. Thus, the left

side of Recurrence (7) is at most x1 + 1, so the left side is upper bounded by the

right side. Therefore, Recurrence (7) holds.

We now prove Recurrence (8). Let P be a GTD of Tu of size x with root component

R, such that R has πu-ti and πu-tj as its leftmost and rightmost paths, respectively.
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Then, no GRR of P has edges both in Tu1 ∪ · · · ∪ Tui−1 and in Tuj+1 ∪ · · · ∪ Tud
,

since otherwise such a GRR would cross R. Thus, P can be split into GTDs P1

of Tu1
∪ · · · ∪ Tui−1

of size x1, P2 of πuu + Tui
∪ · · · ∪ Tuj

of size x2 and P3 of

Tuj+1
∪ · · · ∪ Tud

of size x3, such that R is the root component of P2 and such that

it is x = x1 + x2 + x3. By the definition of σ and σM , we have σM [u, 1, i− 1] ≤ x1,

σ[u, ti, tj ] ≤ x2 and σM [u, j + 1, `] ≤ x3. Thus, the right side of Recurrence (8) is at

most x, so the right side is upper bounded by the left side.

Finally, let the right side of Recurrence (8) be less than ∞. Let P1 be a GTD

of Tu1
∪ · · · ∪ Tui−1

of size x1, let P2 be a GTD of Tui
∪ · · · ∪ Tuj

of size x2 and

P3 a GTD of Tuj+1
∪ · · · ∪ Tud

of size x3, such that R is the root component of P2

having leftmost and rightmost paths u-ti and u-tj , respectively. If πuu+ ρi ∪ ρj is

increasing-chord, by Lemma 6, the subtree R2 := πuu+R is also a GRR. By taking

the union of P1, P2 and P3 and merging R and πuu into R2, we get a GTD P of

Tu of size x := x1 + x2 + x3 with the root component R2, such that R2 has the

leftmost and rightmost paths πuti and πutj , respectively. By the definition of τ , it

is τ [u, ti, tj ] ≤ x, so the left side of Recurrence (8) is is upper bounded by the right

side. Therefore, Recurrence (8) holds.

We can now use the above recurrences to fill the tables τ , σ, σ∆ and σM in

polynomial time. This proves Theorem 3.

Theorem 3. Given a plane straight-line drawing of a tree T = (V,E), a partition

of E into a minimum number of increasing-chord subtrees of T (minimum GTD )

having only non-crossing contacts can be computed in time O(n6).

Proof. For each pair s, t ∈ V , it can be tested in time O(n) whether the path s-t

is increasing-chord.1 We store the result for each pair s, t ∈ V , which allows us to

query in time O(1) whether any s-t path is increasing-chord. This precomputation

takes O(n3) time.

We process the vertices u ∈ V bottom-up and fill the tables τ [u, ·, ·], σ[u, ·, ·],
σ∆[u, ·, ·] and σM [u, ·, ·]. Consider a vertex u ∈ V and assume all these values have

been computed for all successors of u.

Using Recurrences (1) and (2), we can compute all values of σ1[u, ti, tj ] and

σM [u, i, i] in O(n2) time. We shall compute the remaining values σ∆[u, ti, t`],

σ[u, ti, t`] and σM [u, i, `] by an induction over `− i. For a fixed m ≥ 0, assume all

these values have been computed for `− i ≤ m. We show how to compute them for

`− i = m+ 1.

First, we compute the new values σ∆[u, ti, t`] from the already computed ones

using Recurrences (3), . . . , (6). This can be done in O(n4) time by testing all

combinations of ti, tj , tk, t`. Next, we compute σ[u, ti, t`] = min∆=1,...,4 σ∆[u, ti, t`]

in O(n2) time. After that, the new values σM [u, i, `] can be computed using

Recurrence (6). This can be done in O(n4) time by testing all combinations

of i, `, tj , tk.
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In this way, we compute all values σ∆[u, ti, t`], σ[u, ti, t`] and σM [u, i, `], for all

`− i ≤ d, in O(n5) time. Then, we compute τ [u, ti, tj ] using Recurrences (7) and (8).

This can be done in O(n2) time by testing all combinations of ti and tj . After that,

we compute τ [u]. It took us O(n5) time to compute all the values for the vertex u.

Let r be the root of T , and let v be the only child of r. By the above procedure,

we can compute τ [v] in O(n6) time. Since T = Tv, τ [v] is the minimum size of a

GTD of T .

For partitions allowing edge splits, we use the results from Sec. 2.2 to reduce the

problem to the scenario without edge splits.

Corollary 2. An optimal partition of a plane straight-line tree drawing into GRRs

with non-crossing contacts can be computed in O(n6) time, if no edge splits are

allowed, and in O(n12) time, if edge splits are allowed.

4.2.4. Proper contacts

For GTDs allowing only proper contacts of GRRs, we can modify the above dynamic

program. We redefine σM [u, i, j] to be the size of a minimum GTD of Tui ∪ · · ·
∪ Tuj

, in which no two edges uui, . . . , uuj are in the same GRR. Furthermore, we

replace two recurrences as follows:

Lemma 10. For GTDs with proper contacts, the following recurrences replace

Recurrences (6) and (7):

(6′) σM [u, i, j] =
∑j

m=i σ1[u,m,m];

(7′) τ [u, u, u] = 1 + minti,tj{σM [u, 1, i− 1] + σ[u, ti, tj ] + σM [u, j + 1, d]}.
The minimization in Recurrence (7′) only considers i, j for 1 ≤ i ≤ j ≤ d and

vertices ti, tj , such that ti is in Tui
and tj is in Tuj

.

Recurrence (6′) follows trivially from the new definition of σM . The proof of

Recurrence (7′) is very similar to the proof of Lemma 8. Recurrences (1), . . . , (5)

and (8) still hold and can be proved by reusing the proofs of Lemma 7 and 9. The

runtime of the modified dynamic program remains the same. This proves Theorem 4.

Theorem 4. Given a plane straight-line drawing of a tree T = (V,E), a partition

of E into a minimum number of increasing-chord subtrees of T (minimum GTD )

having only proper contacts can be computed in time O(n6).

Analogously as for non-crossing contacts, we use the results from Sec. 2.2 to

extend the result to GTDs allowing edge splits.

Corollary 3. An optimal partition of a plane straight-line tree drawing into GRRs

with proper contacts can be computed in O(n6) time, if no edge splits are allowed,

and in O(n12) time, if edge splits are allowed.
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Note that Corollary 3 provides a better runtime than the dynamic program in

the conference version of this paper.18

5. Triangulations

In this section, we consider GRR partitions of polygonal regions. Recall that a

polygonal region is a GRR if and only if it contains no pairs of conflicting edges.

Further, recall that GRRs that are polygonal regions need not be convex and that

they do not have holes.22 Since partitioning polygonal regions into a minimum

number of GRRs is NP-hard,22 we study special cases of this problem.

We consider partitioning a hole-free polygon P with a fixed triangulation into

a minimum number of GRRs by cutting it along chords of P contained in the

triangulation. For such decompositions we restrict the GRRs to consist of a group of

triangles of the triangulation whose union forms a simple polygon without articulation

points. Note that allowing articulation points makes the problem NP-hard. To prove

this, we can easily turn the plane straight-line tree drawing Γ from Sec. 4.1, which is

a subdivision of a star, into a hole-free triangulated polygon with a single articulation

point corresponding to the star center.

We reduce the problem to Minimum Multicut on trees and use it to give a

polynomial-time (2−1/OPT)-approximation, where OPT is the number of GRRs in

an optimal partition. Recall that a polygon is a GRR if and only if it has no conflict

edges.22 Let 4uvw be the triangle defined by three non-collinear points u, v, w.

Lemma 11. Let P be a simple polygon, uv an edge on its boundary and w /∈ P
another point, such that P ∩ 4uvw = uv. If P is not a greedy region, neither is

P ∪4uvw.

Proof. Polygon P ′ = P ∪4uvw can become greedy only if uv is a conflict edge in

P. Then, either uv is crossed by a normal ray to another edge, or a normal ray to

uv crosses another edge. In the former case, either uw or wv is crossed by a normal

ray to another edge, a contradiction to the greediness of P ∪4uvw.

In the latter case, there exists a point p in the interior of uv, such that rayuv(p)

crosses the boundary ∂P of P. Let y be the first intersection point; see Fig. 20(a).

Then, either rayuv(u) or rayuv(v) must also cross ∂P. Without loss of generality,

there exists a point x on ∂P , such that: vx and uv are orthogonal, vx ∩ P = {v, x},
and adding edge vx to P would create an inner face f , such that u is not on the

boundary of f ; see Fig. 20(a).

Let ρ be the v-x path on the boundaries of both P and f . Without loss of

generality, let uv point upwards, and let x lie to the right of uv. Then, w must lie

to the right of the line through uv, and there must exist a point q on vw, such that

rayvw(q) intersects ρ.

From now on, let triangles τ1, . . . , τn form a triangulation of a simple hole-free

polygon P , and let T be its corresponding dual binary tree. For simplicity we use τi
to refer both to a triangle in P and its dual node in T .
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u

v xf

ρ

w
p y

(a)

u1
u2

u3

v1

v2

v3

(b)

Fig. 20. (a) When adding triangles as in Lemma 11, P remains non-greedy. (b) Conflicting

triangles (color online).

Definition 12 (Projection of an edge). For three non-collinear points u1, u2, u3,

let proju1
(u2u3) denote the set of points covered by shifting u2u3 orthogonally to

itself and away from u1 (blue in Fig. 20(b)).

Definition 13 (Conflicting triangles). Let τi = 4u1u2u3 and τj = 4v1v2v3 be

two triangles such that the two edges dual to u1u2 and v1v2 are on the τi-τj path

in T . We call τi, τj conflicting, if proju1
(u2u3) ∪ proju2

(u1u3) contains an interior

point of τj .

Lemma 12. Let T ′ ⊂ T be a subtree of T and let P ′ be the corresponding simple

polygon dual to T ′. Then P ′ is a GRR if and only if no two triangles τ, τ ′ in P ′ are

conflicting.

Proof. Assume there are two conflicting triangles τi = 4u1u2u3
, τj = 4v1v2v3 in T ′.

Let P ′′ denote the polygon defined by the τi-τj path in T ′ and assume that the two

edges dual to u1u2 and v1v2 are on the τi-τj path. Since τi and τj are conflicting,

there is, without loss of generality, a point p on u2u3 such that rayu2u3
(p) intersects

an edge of τj . Hence, P ′′ is not greedy. Moreover, P ′ is obtained from P ′′ by adding

triangles. Thus Lemma 11 implies that P ′ cannot be greedy.

Conversely, assume P ′ is not greedy. There exists an outer edge uv of P ′ and a

point x in the interior of uv such that rayuv(x) crosses another boundary edge of P ′
in a point y. Let τx, τy be the triangles with x ∈ τx and y ∈ τy. Then τx and τy are

conflicting.

By Lemma 12, the decompositions of P in k GRRs correspond bijectively to

the multicuts E′ of T with |E′| = k − 1 where the terminal pairs are the pairs of

conflicting triangles.

We now use the 2-approximation for Minimum Multicut on trees11 to give

a (2− 1/OPT)-approximation for the minimum GRR decomposition of P. Let E′

be a 2-approximation of Minimum Multicut in T with respect to the pairs of

conflicting triangles. By the above observation the minimum multicut for T has

size OPT−1, hence |E′| ≤ 2 OPT−2, which in turn yields a decomposition into
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2 OPT−1 regions. Thus the approximation guarantee is 2− 1/OPT. We summarize

this in Theorem 5.

Theorem 5. There is a polynomial-time (2− 1/OPT)-approximation for minimum

GRR decomposition of triangulated simple polygons.

6. Conclusions

Motivated by a geographic routing protocol for dense wireless sensor networks

proposed by Tan and Kermarrec,22 we further studied the problem of finding

minimum GRR decompositions of polygons. We considered the special case of

decomposing plane straight-line drawings of graphs, which correspond to infinitely

thin polygons. For this case, we could apply insights gained from the study of

self-approaching and increasing-chord drawings by the graph drawing community.

We extended the result of Tan and Kermarrec22 for polygonal regions with

holes by showing that partitioning a plane graph drawing into a minimum number

of increasing-chord components is NP-hard. We then considered plane drawings

of trees and showed how to model the decomposition problem using Minimum

Multicut, which provided a polynomial-time 2-approximation. We solved the parti-

tioning problem for trees optimally in polynomial time using dynamic programming.

Finally, using insights gained from the decomposition of graph drawings, we gave

a polynomial-time 2-approximation for decomposing triangulated polygons along

their chords.

Open questions

For the NP-hard problem of decomposing plane drawings of graphs into the minimum

number of GRRs, it is interesting to find approximation algorithms.

For decomposing polygons, many problems remain open. For example, one could

investigate whether minimum decomposition is NP-hard for simple polygons for

different types of allowed partition types. Is finding the optimum solution hard

for partitioning triangulations as in Sec. 5? Is the minimum GRR decomposition

problem hard if we allow cutting the polygon at any diagonal? Is it hard if arbitrary

polygonal cuts are allowed, i.e., the partition can use Steiner points? Finally, are

there approximations for partitioning polygons with and without holes into GRRs?
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18. M. Nöllenburg, R. Prutkin and I. Rutter, Partitioning graph drawings and triangulated

simple polygons into greedily routable regions, eds. K. Elbassioni and K. Makino,
Algorithms and Computation (ISAAC ’15), Vol. 9472 (Springer, 2015), pp. 637–649.
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