
Markov-Chain-Based Heuristics for the

Minimum Feedback Vertex Set Problem
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Abstract

Let G = (V,A) be a directed graph. A vertex set F ⊆ V is called
feedback vertex set (FVS) if its removal from G results in an acyclic
graph. Because determining a minimum cardinality FVS is known to
be NP hard, [15], one is interested in designing fast approximation
algorithms determining near-optimum FVSs.

The paper presents deterministic and randomised heuristics based
on Markov chains. In this regard, an earlier approximation algorithm
developed in [31] is revisited and refined. Experimental results demon-
strate the overall performance superiority of our algorithms compared
to other algorithms known from literature with respect to both cri-
teria, the sizes of solutions determined, as well as the consumed run-
times.
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1 Introduction

Let G = (V, A) be a (di)graph with vertex set V and arc set A. A subset
F ⊂ V is called a feedback vertex set (FVS) of G if G − F is acyclic. The
minimum FVS problem consists of determining a FVS of minimum cardi-
nality. The feedback arc set (FAS) problem is defined similarly: determine a
minimum cardinality set F ⊂ A such that G−F is acyclic. Each of these two
problems can be polynomially reduced to the other, [14], so in this paper we
will concentrate on the FVS problem. Feedback problems occur as the core
of many real world problems from various areas, such as deadlock breaking,
[25], program verification, [30], Bayesian inference, [33], et al.
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Even if determining a minimum cardinality FVS is known to be NP-hard
for both undirected and directed graphs, [15], it is more intricate dealing with
directed than with undirected graphs. While for general undirected graphs
there exist approximation algorithms with performance ratio of 2, [1, 2], the
best known approximation algorithm for directed graphs achieves a perfor-
mance ratio of O(log n log log n), [7], based on a result from [29].

Besides this challenging problem of designing efficient algorithms that
produce FVSs guaranteeing good worst case ratios, one is often more inter-
ested in obtaining efficiently FVSs that typically come close to the optimum
ones, while sometimes they may be arbitrarily bad. These algorithms rely
on exploiting heuristics in order to estimate the suitability of the vertices of
the digraph to be included into the FVS, and the vertex with the highest
score will be included into the solution each time. Heuristic algorithms of
this type can be found in [11, 19, 23]. These algorithms typically produce
solutions that are better than those computed by algorithms guaranteeing
certain worst case ratio solutions.

The heuristic primarily aims at detecting vertices covering as many cycles
as possible, and the highest ranked vertex is considered to be a good choice
to be included into the FVS. Counting the number of cycles in digraphs can
easily be seen to be #P complete. Therefore, simple heuristics are used, like
assigning to each vertex v the product of the number of incoming arcs into
v and the number of outgoing arcs from v, see e.g. [11].

Heuristics of this type exploit local information of the digraph only, while
cycles however have a global structure. Unsurprisingly, the degree-product
heuristic may fail arbitrarily. As an example consider the digraph G from Fig-
ure 1. Obviously, {v} is an optimum FVS of G. The degree-product heuristic
however iteratively selects the vertices y1, . . . , yr with degree-product m2 if
e.g. r = bm2

3
c. Note that for growing values of m the FVS thus determined

consists of the huge majority of all vertices of the digraph.

An approach developed in [31], exploiting information on random walks
in G, provided by the theory of Markov chains, has some potential to de-
liver more reliable information on the suitability of a vertex v to be included
into a FVS of G by incorporating also global information into the evaluation.

For the digraph G in Figure 1 the mean return time in random walks in
G is smallest for vertex v, indicating v to be the best choice for the FVS,
see [31]. Mean return times of random walks are the reciprocal values of the
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Figure 1: A digraph for which the degree-product heuristic fails arbitrarily
to yield the optimum FVS {v}.

stationary distribution vector of a Markov chain corresponnding to the di-
graph, while the stationary distribution vector is obtained as the solution of
a system of linear equations. Experimental results with an implementation
of this Markov-based heuristic, as reported in [31], were very promising. On
the other hand, the heuristic can be fooled as was shown by Heusch, [27].
Figure 2 displays an example digraph.

This Markov-based FVS heuristic will be improved in this paper in three
ways. The first improvement is very simple but useful. Reversing the direc-
tions of all arcs of a digraph G leads to a new digraph G−1 with the property
that all FVSs of G are FVSs of G−1 and vice versa. The mean return times
of the vertices in G and G−1 however are not the same in general. A mix of
both mean return times will be used as heuristic measure for classifying good
candidates to be included in a FVS. The above mentioned example digraph
in Figure 2 fooling the Markov-based algorithm will be solved correctly with
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this extension.

The second improvement puts some noise on the canonical transition ma-
trix corresponding to the digraph G. The transition probability from a vertex
u to a vertex v in a random walk will no longer be the inverse of the outdegree
of u. The best solution from several independent runs for a digraph will be
output.

The third improvement performs a limited search for good solutions in
the space of minimal FVSs of G in the following way: Suppose F is the
current minimal FVS of G. Then, a convenient fraction F \

∼

F of the FVS
F is reintegrated into the digraph G− F yielding the digraph G−

∼

F =: G′

which is no longer acyclic. After that, a FVS
≈

F of G′ is determined by the
mixed version of the Markov-based FVS algorithm.

∼

F ∪
≈

F not necessarily is
a minimal FVS of G from which a minimal FVS F ′ of G is extracted. This
process is iterated a fixed number of times and the best solution is output.
Experimental runs with this algorithm always determined solutions for the
benchmark digraphs from [11] better than those presented there within a
small fraction of runtime consumed by the algorithm applied there. Solving
all 40 benchmark digraphs from [11] the approximation algorithm presented
there determined FVSs of total size 6941 within 41626 seconds, while the
sizes of the FVSs determined by the best approximation algorithm devel-
oped here sum up to 6749 consuming only 733 seconds.

Besides these new FVS algorithms we describe and implement fast meth-
ods for solving sparse systems of linear equations, as they always occur when
dealing with sparse digraphs.

The paper is organised as follows: The rest of this section presents nota-
tions while section 2 introduces the basic approximation framework. Section
3 describes the original Markovian heuristic from [31] and also introduces the
above mentioned extension involving the reversion of arcs. These heuristics
are applied to construct a Greedy Randomised Adaptive Search Procedure
(GRASP), [10], as well as the above mentioned local search procedure. These
two procedures are described in sections 4 and 5, respectively. Finally, sec-
tion 6 presents the experimental results while section 7 contains concluding
remarks.
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1.1 Notation

Throughout this paper, G = (V, A) denotes a directed graph (digraph) with
vertex set V and arc set A. Given an arc (u, v) ∈ A, we will say that u is a
predecessor of v, while v is a successor of u. An arc (v, v) is called loop.
The indegree and outdegree of a vertex v ∈ V is denoted by d−

G(v) and
d+

G(v), respectively.

For a vertex v ∈ V of G, G− v denotes the digraph resulting from G by
removing v along with all its incident arcs. This notation is also used for sets
F of vertices. Thus, F ⊂ V is a feedback vertex set (FVS) of G if G−F

is acyclic. It is said to be minimal if there is no proper subset F ′ $ F that is
a FVS of G, whereas it is said to be optimum if F is of minimum cardinality.

Finally, the reversed digraph G−1 of G is the digraph

G−1 = (V, A−1), where A−1 = {(v, u) : (u, v) ∈ A}.

2 The basic approximation framework

Recall that cycles occur only within strongly connected components (SCCs)
of a digraph. Therefore, in order to break all cycles, the strongly connected
components have to be considered. Decomposing a digraph into its SCCs can
be done in linear time, [32]. As a consequence, our greedy algorithm follows a
general framework, shown in Algorithm 1, that is common in approximation
algorithms for determining FVSs.

function MinFVS(digraph G = (V,A)) do

vertex set F ← ∅;
vertex v;

DoReductions(G, F );

for all SCCs Gi of G do

v ← SelectVertex(Gi);

F ← F ∪ {v} ∪ MinFVS(Gi − v);

od;

return F ;

od;

Algorithm 1: The basic approximation procedure.
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The functions DoReductions(G, F) and SelectVertex(G) have to be
specified in order to describe an algorithm based on this framework.
DoReductions(G, F) performs five reductions on G and adjusts F accord-
ingly. The reductions, as described in [21], are based on the following reason-
ing: If G contains a loop (v, v), then v belongs to any FVS of G and has to be
removed from G and appended to F . If v has in- or outdegree 0, it obviously
cannot be part of any cycle in G, so v is removed. Finally, suppose v has
indegree 1 and let u be its unique predecessor. Then, every cycle broken by
v is also broken by u. Thus, v can be excluded from further consideration.
This is technically done by removing v from G and adding an arc (u, w) for
every (former) successor w of v. The case of d+

G(v) = 1 is handled similarly.

Omitted in Algorithm 1 is the minimisation of the final FVS F of G by
removing redundant vertices. A vertex v ∈ F is said to be redundant if
F \{v} is still a FVS of G. Thus, in order to obtain a minimal FVS, we check
the vertices of F for redundancy in reversed order of insertion and remove
them in case of being redundant. Intuitively, this seems plausible since the
earlier selected vertices are expected to belong more likely to an optimum
FVS.

The choice of the function SelectVertex(G) primarily influences the FVS
determined by the approximation algorithms. In [11], the sum, product and
maximum of in- and outdegree are chosen as selection criterion, whereas in
[23] an approach based on essential cycles was used. Our approach relies on
Markov chains and is described next.

3 A Markov chain heuristic

3.1 The Markovian FVS algorithm

The main idea of all our Marekov chain based algorithms is to model a ran-
dom walk in the digraph G = (V, A) for which a FVS is to be determined.
For this purpose we associate with each pair (vi, vj) ∈ V × V of vertices the
probability pij of moving from vertex vi to vertex vj. If there is no arc from
vi to vj, this transition probability is 0. Otherwise, we set pij = 1

d+

G
(vi)

. Thus,

the transition probabilities pij induce the |V | × |V | transition matrix PG

of G. Obviously, PG is non-negative and the row elements of each row sum
up to 1.

As PG can be seen as a finite-state Markov chain, the theory of Markov
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function SelectVertex(digraph G = (V,A)) do

matrix P ← TransitionMatrix(G);

vector π ← StationaryDistribution(P );

vertex v ← vertex corresp. to maximum entry of π;

return v;

od;

Algorithm 2: The vertex selection heuristic of MFVS.

chains yields some interesting properties of PG, see e.g. [26]. Important for
our approach is the result that there is a unique positive vector π = (πi)
satisfying

tπPG = tπ and

n∑

i=1

πi = 1 (1)

if and only if G is strongly connected. The vector π — called the stationarty
distribution vector of G — encodes information about the cycle structure
of G. That is, π−1

i is the mean return time to vertex vi in random walks in
G. The smaller π−1

i is, the more (short) cycles are expected to contain vi.
Because a FVS breaks all cycles, a vertex vi with the least mean return time
π−1

i is considered to be a good candidate for the inclusion into a FVS.

So, the vertex selection heuristic first determines the stationary distribu-
tion vector π = (πi)vi∈V of the transition matrix PG by solving the system
(1) of linear equations using standard techniques (see section 3.3). Then,
we choose the vertex vi with the least mean return time π−1

i to be included
into the FVS. The selection process is summarised in Algorithm 2. Together
with the framework from Algorithm 1 it yields the Markovian FVS algorithm
(MFVS) developed in [31].

3.2 The mean approach

The idea behind the mean approach is simple: Any polynomial time greedy
heuristic for the selection of vertices for an optimum FVS will fail eventually
(unless P = NP ). Although it cannot be expected to detect all failures,
we would like to detect (and correct) at least some of them. In order to
do so, another ‘independent’ heuristic of the same kind is required. With
such an alternative heuristic, both of these heuristics can be exploited in a
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function SelectVertexMean(digraph G = (V,A)) do

matrix P ← TransitionMatrix(G);

vector π ← StationaryDistribution(P );

P ← TransitionMatrix(G−1);

π ← π + StationaryDistribution(P );

vertex v ← vertex corresp. to maximum entry of π;

return v;

od;

Algorithm 3: The vertex selection heuristic of MFVSMean.

way yet to be specified in order to select a vertex to be included into the FVS.

For heuristics based on Markov chains it is quite simple to construct such
an alternative heuristic. For, note that a digraph G and its reversed digraph
G−1 have the same FVSs. Hence, determine the stationary distribution —
once for MG and once for MG−1 — and take the componentwise mean of these
two vectors. It remains to decide which mean to be taken — the arithmetic,
the geometric or another mean. Experiments indicate that the arithmetic
mean is best. Thus, the complete procedure for selecting a vertex is dis-
played in Algorithm 3.

Figure 2 shows an example digrasph due to Heusch, [27], for which
MFVSMean outperforms MFVS. While MFVSMean determines the optimum
solution {A, B}, MFVS successively selects the vertices M1, . . . , Mr. This
example also shows that MFVS can behave arbitrarily bad. Nevertheless,
such examples may exist for MFVSMean, too.

3.3 The runtime of MFVS and MFVSMean

Basically, the runtime of MFVSMean is twice the runtime of MFVS. So, we
concentrate on the runtime of MFVS.

Let G = (V, A) be a digraph and let F be the FVS of G which is deter-
mined by MFVS. Because each vertex v ∈ F is selected by means of solving
a |V | × |V | system of linear equations which takes time O(|V |2.376), [5], one
might argue that MFVS runs in time O(|V |2.376|F |).
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Figure 2: A pathological graph for MFVS where MFVSMean determines the
minimum cardinality FVS {A, B}.

However, we must keep in mind that the digraphs arising in practical ap-
plications are typically sparse. In addition, the stationary distribution vector
π does not necessarily need to be evaluated to full precision in order to iden-
tify the largest entry of π. These two facts suggest applying an iterative
method to solve the |V | × |V | system of equations. By doing so, we obtain a
better runtime of MFVS.

A basic iterative method for solving a system of linear equations is the
power method, [17, 34], which is used in our implementation. Applied to the
problem of determining a vector π = (πi) satisfying tπP = tπ and

∑
πi = 1

for a stochastic matrix P (associated with MG), the power method consists
of computing txP k for sufficiently large values of k, where x = (xi) is an
arbitrary vector with

∑
xi = 1. For if G is strongly connected and MG is

aperiodic, then
lim
k→∞

txP k = tπ

holds. The periodic case is easily transformed into an equivalent aperiodic
one.

Now, suppose we want to evaluate π to an accuracy of 10−d. Let λ be
the subdominant eigenvalue of P having index one. Then, as shown in [17],
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roughly
d

− log10 |λ|

iterations are needed. On the other hand, P has exactly |A| nonzero entries.
Hence, the vector matrix product of any vector y and P can be implemented
to run in time O(|A|) using a sparse matrix package. This yields a runtime
of O(|A| d

− ln |λ|
) to determine π to the desired accuracy. Because d usually is

bounded, e.g. by the machine precision, it can be regarded as constant. So,
the total runtime of MFVS reduces to

O(|A||F | 1
− ln |λ|

).

Thus, the runtime of MFVS is mainly governed by 1
− ln |λ|

. If |λ| is well-

separated from 1, i.e. there is some δ > 0 with |λ| ≤ 1 − δ for each input
instance G = (V, A), MFVS runs in time O(|A||F |), being considerably faster
than the approach involving direct matrix inversion with the time bound of
O(|V |2.376|F |). Unfortunately, this is not always the case. However, while
the closeness of |λ| to 1 might theoretically cause runtime problems, for most
practical applications this is not an issue and the power method is the algo-
rithm of choice. Although we have implemented it in the simplest form, we
have not encountered any runtime problems. Besides, there are approaches
to accelerate the power method. A survey can be found in [18], where the
focus is on the PageRank computation, [3]. A more general approach to
speedup the computation of the stationary distribution vector is based on
the state compression technique described in [34].

4 Randomised algorithms

The GRASP (Greedy Randomised Adaptive Search Procedure) concept is
often used to solve problems from areas such as propositional satisfiability,
[24], crossing minimisation, [16], Steiner tree, [22], and set cover problems,
[9], to mention just a few. The feedback vertex set problem is a particular
set cover problem and Resende et al, [11], have adapted GRASP to solve this
problem on digraphs.

Their algorithm using default settings (denoted by GRASPResende) works
as follows: A FVS is constructed employing a greedy heuristic, as depicted
in Algorithm 1. To select a vertex, first, a restricted candidate list (RCL)
is constructed. It consists of all vertices v for which the degree product
d−

G(v) · d+
G(v) is maximal. Then, a vertex of that list is chosen randomly
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to belong to the FVS. Once having determined a FVS for the digraph, it is
transformed into a minimal one by testing vertices for redundancy in reversed
order of insertion. In the default settings this process is repeated 2048 times
and the smallest FVS generated is output.

4.1 Randomising MFVSMean

Inspired by the algorithm GRASPResende, we have been looking for a way to
randomise MFVSMean – the best deterministic Markov chain algorithm so
far. For this purpose randomly perturb the entries of the transition matrix
P , thus obtaining a matrix Q. Of course, Q is no longer stochastic. So,
assuming that the entries of Q are still positive, the rows of Q have to be
scaled appropriately to obtain a perturbed stochastic matrix

∼

P . Obviously,
the transition digraphs of the initial and the perturbed Markov chain are
the same. Based on Markov chains perturbed in that way, the vertices are
selected as described above. This process is iterated and the smallest FVS
obtained is output.

How to perturb P ? After several experiments, allowing a perturbation of
up to 10% proved to be reasonable. The resulting algorithm is denoted by
GRASPMFVSMean

. This simple setting of the perturbation parameter seems
unsatisfactory, though. Particularly, perturbing P depending on the matrix
itself is desireable and remains to be investigated.

5 Searching locally with Markov chains

Local search procedures are frequently applied in many fields of combinato-
rial optmisation. In the case of directed FVS problems we are only aware of
the uninformed search procedure described in [28]. Inspired by that proce-
dure, a new informed search procedure MarkovSearch is devised which uses
Markov chains.

Let F ⊂ V be an initial minimal FVS of a digraph G = (V, A), e.g. de-
termined by MFVSMean. Then, MarkovSearch expands a fixed number of k

minimal successor FVSs of F and holds them in a priority queue Q. After
that, following the principle of best-first search, MarkovSearch extracts from
Q an unexpanded FVS of minimum cardinality for expansion. A parameter
t determines the number of such expansions. Finally, the best FVS is chosen
as an approximation of the optimum one.
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The expansion itself is governed by another parameter called step width.
Suppose F and F ′ are two minimal FVSs of G and define the step width from
F to F ′ by

δ(F, F ′) := |F \ F ′|.

If MarkovSearch generates F ′ as a successor FVS of F , we will say that
MarkovSearch moves from F to F ′ in one step of width δ(F, F ′). On this
basis, the expansion of successor FVSs is constrained in such a way that only
a fixed step width is allowed – say a step width of at most d. Then, the
generation of such successors is performed as follows.
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Figure 3: Test results for MarkovSearch on 100 random digraphs (with arc
density p = 0.05) consisting of 300 vertices.

Select a subset X ⊂ F of cardinality d and set
∼

F := F \X. Because of
the minimality of F ,

∼

F is not a FVS of G, i.e.
∼

G := G −
∼

F is cyclic. Let
≈

F := MFVSMean(
∼

G) be the FVS of
∼

G determined by MFVSMean. Then,
∼

F ∪
≈

F

is a FVS of G with δ(F,
∼

F ∪
≈

F ) ≤ d which is not necessarily minimal and
has to be transformed into a minimal one by removing redundant vertices.
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Figure 4: Test results for MarkovSearch on 100 random digraphs (with arc
density p = 0.05) consisting of 500 vertices.

The FVS obtained in that way is denoted by F ′. Note that δ(F, F ′) ≤ d

does not hold necessarily because some vertices of
∼

F might be redundant.
Thus, d represents only a reference value for the step width. The choice of
the subset X remains open. Experiments with several heuristics provided
the best results for randomly chosen X ⊂ F . The complete search procedure
is shown in Algorithm 4.

Determining a convenient step width d turned out to be difficult. As the
optimum step width strongly depends on the given digraph, we have no rule
determining d. Yet, Figures 3 and 4 give strong evidence that an optimum
step width indeed exists depending on the parameters of the class of digraphs
under consideration. Furthermore, the optimum step width does not seem
to depend on the number of expansions. For further hints on the choice of
the step width d we refer to [20].
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function MarkovSearch(digraph G = (V,A), integer k, d, t) do

dictionary D

priority queue Q;

vertex set Fmin;

vertex set F ;

vertex set F ′;

integer i;

D ← ∅;
Q ← ∅;

F ← MFVSMean(G);
D.insert(F );

Q.insert(F );

Fmin ← F ;

while (Q 6= ∅ and t > 0) do

t ← t− 1;

F ← Q.extract_min();

for i = 1 to k do

F ′ ← GenSucc(G, F , d);

if (D.search(F ′) 6= nil) do

D.insert(F ′);

Q.insert(F ′);

if (|F ′| < |Fmin|) do

Fmin ← F ′;

od;

od;

od;

od;

return Fmin;

od;

Algorithm 4: The local search procedure MarkovSearch.
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6 Experimental results

We want to demonstrate the effectiveness of the described algorithms. Since
the test instances are often too big to allow for an optimum solution, we are
not able to make a statement on the quality of the approximative solutions
determined by the implementations of the FVS algorithms considered here.
Therefore, we compare the solutions of these algorithms in order to evaluate
their relative performances.

We first compare the algorithms MFVS and MFVSMean. To get a ref-
erence, we include test results of the algorithm Simple which selects the
feedback vertices v according to the heuristic

∑

(u,v)∈A

d−
G(u) ·

∑

(v,u)∈A

d+
G(u),

i.e. the product of the number of length-2 paths ending in v and starting
from v, respectively. The tests are run with samples of 100 random digraphs
from Gp(n), where Gp(n) is the class of digraphs G with n vertices and
each arc is chosen independently with probability p. The results are shown
in Table 1 and 2. As can be seen, MFVSMean outperforms the other two.
Furthermore, note that while MFVS is weaker than Simple, MFVSMean per-
forms considerably better than Simple. This demonstrates that the mean
concept results in a major improvement over the original MFVS algorithm.
Moreover, the time consumption of all three algorithms is almost the same
– at least for sparse digraphs. Furthermore, as expected, the performance
differences of the algorithms diminish as the density of the digraphs increases.

Because MFVSMean turned out to be the best among the deterministic
algorithms, we proceed comparing it with GRASPResende which is considered
to be the best approximation algorithm for the FVS problem in digraphs,
[8]. The test set consists of 40 benchmark digraphs which are part of the
GRASPResende implementation, [11]. As reported in [13], that implementa-
tion had a bug which led GRASPResende to produce too big FVSs. We have
corrected the bug and Table 3 presents the results divergating from [11]. The
table indicates that the deterministic single-iteration algorithm MFVSMean

can compete with the 2048 iterations of GRASPResende, although in the end
GRASPResende is still slightly better.

Next, we compare the randomised algorithms GRASPMFVSMean
and

MarkovSearch to GRASPResende. GRASPMFVSMean
has been run perform-

ing 10 iterations with the first one being unperturbed. With respect to
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vertices Simple MFVS MFVSMean

50 7.53 (σ=1.77) 7.53 (σ=1.72) 7.48 (σ=1.70)
100 32.67 (σ=2.42) 33.38 (σ=2.31) 32.36 (σ=2.27)
150 67.27 (σ=2.88) 68.30 (σ=2.86) 66.33 (σ=2.50)
200 106.60 (σ=2.40) 108.39 (σ=2.73) 105.44 (σ=2.34)
250 148.53 (σ=2.62) 150.33 (σ=2.73) 146.81 (σ=2.66)
300 191.47 (σ=3.08) 194.32 (σ=3.14) 189.65 (σ=2.80)
350 236.39 (σ=2.98) 239.36 (σ=3.16) 234.04 (σ=2.51)
400 281.29 (σ=3.00) 285.54 (σ=2.89) 279.16 (σ=2.74)
450 327.58 (σ=2.94) 332.14 (σ=3.30) 325.04 (σ=2.64)
500 374.43 (σ=2.59) 379.16 (σ=3.19) 371.74 (σ=2.56)

Table 1: Test results for random digraphs with arc density p = 0.05. The
average is taken over 100 instances. The standard deviation is denoted by σ.

vertices Simple MFVS MFVSMean

50 17.73 (σ=1.68) 18.05 (σ=1.72) 17.49 (σ=1.62)
100 55.41 (σ=1.95) 56.03 (σ=1.97) 54.86 (σ=1.92)
150 98.44 (σ=2.16) 99.58 (σ=2.30) 97.26 (σ=1.96)
200 143.16 (σ=2.31) 145.09 (σ=2.34) 142.05 (σ=2.27)
250 189.52 (σ=2.23) 191.51 (σ=2.17) 188.26 (σ=2.09)
300 236.71 (σ=1.95) 239.31 (σ=2.30) 235.34 (σ=1.83)
350 284.80 (σ=1.94) 286.81 (σ=2.26) 283.03 (σ=2.08)
400 332.73 (σ=2.18) 335.77 (σ=2.10) 331.00 (σ=2.09)
450 380.77 (σ=2.17) 384.31 (σ=2.15) 378.96 (σ=1.98)
500 429.69 (σ=1.96) 432.65 (σ=1.98) 427.46 (σ=1.66)

Table 2: Test results for random digraphs with arc density p = 0.1. The
average is taken over 100 instances. The standard deviation is denoted by σ.
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MarkovSearch, in each of the 100 expansions two successor FVSs (k =
2) have been generated. For this special test suite the step width d =

min{40, |F |
2
} was chosen. Table 3 shows MarkovSearch to be superior. But

even GRASPMFVSMean
with its 10 iterations clearly outperforms GRASPResende.

In this regard, it is remarkable that both algorithms produce much better
results using only a fraction of iterations of GRASPResende and consuming
only a fraction of time despite the fact that our Markovian algorithms have
a higher worst case runtime than the corresponding GRASPResende version.

7 Conclusion

Our experiments have demonstrated that the new Markovian approximation
algorithms for the minimum FVS problem outperform the existing ones with
respect to both, quality of the delivered solutions and their runtimes. This
holds particularly for MarkovSearch, so MarkovSearch can be considered as
the algorithm of choice for the approximation of the minimum FVS problem.
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vert. arcs Opt. MFVSMean GRASPResende GRASPMFVSMean
M-Search

50 100 3 3 3 3 3
50 150 9 9 9 9 9
50 200 13 13 13 13 13
50 250 17 17 17 17 17
50 300 19 20 19 20 19

50 500 28 29 28 29 28
50 600 31 32 31 32 32
50 700 33 34 33 33 33
50 800 34 37 34 34 35
50 900 36 38 36 36 36

100 200 9 9 9 9 9
100 300 17 19 17 17 19
100 400 23 25 23 25 23
100 500 32 33 32 33 32
100 600 36 39 38 38 37

100 1000 53 55 54 55 53
100 1100 54 56 55 56 55
100 1200 57 58 58 58 57
100 1300 60 63 61 62 60
100 1400 61 66 62 64 62

500 1000 31 34 32 33 31
500 1500 ≤ 63 70 68 69 65
500 2000 ≤ 101 108 107 108 105
500 2500 ≤ 132 143 146 143 138
500 3000 ≤ 162 178 175 173 167

500 5000 ≤ 238 254 252 250 244
500 5500 ≤ 252 270 270 266 261
500 6000 ≤ 266 282 284 279 273
500 6500 ≤ 277 296 294 292 288
500 7000 ≤ 289 305 304 305 298

1000 3000 ≤ 128 143 139 137 132
1000 3500 ≤ 162 175 175 172 168
1000 4000 ≤ 193 210 206 205 201
1000 4500 ≤ 229 248 249 248 237
1000 5000 ≤ 260 282 283 275 267

1000 10000 ≤ 473 505 508 497 490
1000 15000 ≤ 588 620 619 612 600
1000 20000 ≤ 655 682 692 681 674
1000 25000 ≤ 704 736 733 730 718
1000 30000 ≤ 748 768 773 766 762

sum ≤ 6576 6964 6941 6883 6749

time 193 sec. 41626 sec. 800 sec. 733 sec.

Table 3: Test results for the test suite supplied with GRASPResende.


