
Efficient Enumerations for Minimal Multicuts and
Multiway Cuts
Kazuhiro Kurita
National Institute of Informatics, Tokyo, Japan
kurita@nii.ac.jp

Yasuaki Kobayashi
Kyoto University, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

Abstract
Let G = (V, E) be an undirected graph and let B ⊆ V × V be a set of terminal pairs. A node/edge
multicut is a subset of vertices/edges of G whose removal destroys all the paths between every
terminal pair in B. The problem of computing a minimum node/edge multicut is NP-hard and
extensively studied from several viewpoints. In this paper, we study the problem of enumerating
all minimal node multicuts. We give an incremental polynomial delay enumeration algorithm
for minimal node multicuts, which extends an enumeration algorithm due to Khachiyan et al.
(Algorithmica, 2008) for minimal edge multicuts.

Important special cases of node/edge multicuts are node/edge multiway cuts, where the set
of terminal pairs contains every pair of vertices in some subset T ⊆ V , that is, B = T × T . We
improve the running time bound for this special case: We devise a polynomial delay and exponential
space enumeration algorithm for minimal node multiway cuts and a polynomial delay and space
enumeration algorithm for minimal edge multiway cuts.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Multicuts, Multiway cuts, Enumeration algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.60

Related Version https://arxiv.org/abs/2006.16222

Funding Kazuhiro Kurita: JSPS KAKENHI Grant Number JP19J10761.
Yasuaki Kobayashi: JSPS KAKENHI Grant Numbers JP20K19742 and JP20H00595.

1 Introduction

Let G = (V,E) be an undirected graph and let B be a set of pairs of vertices of V . We
call a pair in B a terminal pair and the set of vertices in B is denoted by T (B). A node
multicut of (G,B) is a set of vertices M ⊆ V \ T (B) such that there is no path between any
terminal pair of B in the graph obtained by removing the vertices in M . A edge multicut of
(G,B) is defined as well: the set of edges whose removal destroys all the paths between every
terminal pair. The minimum node/edge multicut problem is of finding a smallest cardinality
node/edge multicut of (G,B). When B = T ×T for some T ⊆ V , the problems are called the
minimum node/edge multiway cut problems, and a multicut of (G,B) is called a multiway
cut of (G,T).

These problems are natural extensions of the classical minimum s-t separator/cut problems,
which can be solved in polynomial time using the augmenting path algorithm. Unfortunately,
these problems are NP-hard [11] even for planar graphs and for general graphs with fixed |T | ≥
3. Due to numerous applications (e.g. [14,23,36]), a lot of efforts have been devoted to solving
these problems from several perspectives such as approximation algorithms [1,9,17,18,24],
parameterized algorithms [10,20,30,32,40], and restricting input [3, 6, 11,21,27,31].

© Kazuhiro Kurita and Yasuaki Kobayashi;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-7638-3322
mailto:kurita@nii.ac.jp
https://orcid.org/0000-0003-3244-6915
mailto:kobayashi@iip.ist.i.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.MFCS.2020.60
https://arxiv.org/abs/2006.16222
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

In this paper, we tackle these problems from yet another viewpoint. Our focus is
enumeration. Since the problems of finding a minimum node/edge multicut/multiway cut
are all intractable, we rather enumerate minimal edge/node multicuts/multiway cuts instead.
We say that a node/edge multicut M of (G,B) is minimal if M ′ is not a node/edge multiway
cut of (G,B) for every proper subset M ′ ⊂M , respectively. Minimal node/edge multiway
cuts are defined accordingly. Although finding a minimal node/edge multicut is easy, our
goal is to enumerate all the minimal edge/node multicuts/multiway cuts of a given graph G
and terminal pairs B. In this context, there are several results related to our problems.

There are linear delay algorithms for enumerating all minimal s-t (edge) cuts [33, 38],
which is indeed a special case of our problems, where T contains exactly two vertices s and
t. Here, an enumeration algorithm has delay complexity f(n) if the algorithm outputs all
the solutions without duplication and for each pair of consecutive two outputs (including
preprocessing and postprocessing), the running time between them is upper bounded by f(n),
where n is the size of the input. For the node case, the problem of enumerating all minimal
s-t (node) separators has received a lot of attention and numerous efforts have been done for
developing efficient algorithms [28,35,37] due to many applications in several fields [4,13,15].
The best known enumeration algorithm for minimal s-t separators was given by Tanaka [37],
which runs in O(nm) delay and O(n) space, where n and m are the number of vertices and
edges of an input graph, respectively.

Khachiyan et al. [25] studied the minimal edge multicut enumeration problem. They
gave an efficient algorithm for this problem, which runs in incremental polynomial time [22],
that is, ifM is a set of minimal edge multicuts of (G,B) that are generated so far, then the
algorithm decides whether there is a minimal edge multicut of G not included inM in time
polynomial in |V |+|E|+|M|. Moreover, if such a minimal edge multicut exists, the algorithm
outputs one of them within the same running time bound. As we will discuss in the next
section, this problem is a special case of the node counterpart and indeed a generalization of
the minimal edge multiway cut enumeration problem. Therefore, this algorithm also works
for enumerating all minimal edge multiway cuts. However, there can be exponentially many
minimal edge multicuts in a graph. Hence, the delay of their algorithm cannot be upper
bounded by a polynomial in terms of input size. To the best of our knowledge, there is no
known non-trivial enumeration algorithm for minimal node multiway cuts.

Let (G = (V,E), B) be an instance of our enumeration problems. In this paper, we give
polynomial delay or incremental polynomial delay algorithms.

I Theorem 1. There is an algorithm which enumerates all the minimal node and edge
multiway cuts of (G,B) in O(|T (B)| · |V | · |E|) and O

(
|T (B)| · |V | · |E|2

)
delay, respectively.

The algorithm in Theorem 1 requires exponential space to avoid redundant outputs. For
the edge case, we can simultaneously improve the time and space consumption.

I Theorem 2. There is an algorithm which enumerates all the minimal edge multiway cuts
of (G,B) in O(|T (B)| · |V | · |E|) delay in polynomial space.

For the most general problem among them (i.e., the minimal node multicut enumeration
problem), we give an incremental polynomial time algorithm.

I Theorem 3. There is an algorithm of finding, given a set of minimal node multicutsM
of (G,B), a minimal node multicut M of (G,B) with M /∈M if it exists and runs in time
O(|M| · poly(n)).

The first and second results simultaneously improve the previous incremental polynomial
running time bound obtained by applying the algorithm of Khachiyan et al. [25] to the edge
multiway cut enumeration and extends enumeration algorithms for minimal s-t cuts [33,38]

K. Kurita and Y. Kobayashi 60:3

and minimal a-b separators [37]1. The third result extends the algorithm of Khachiyan
et al. to the node case. Since enumerating minimal node multicuts is at least as hard as
enumerating minimal node multiway cuts and enumerating minimal node multiway cuts is
at least as hard as enumerating minimal edge multiway cuts (See Proposition 4 for details),
this hierarchy directly reflects on the running time of our algorithms.

The basic idea behind these results is that we rather enumerate a particular collection
of partitions/disjoint subsets of V than directly enumerating minimal edge/node multicut-
s/multiway cuts of (G,B). It is known that an s-t edge cut of G is minimal if and only
if the bipartition (V1, V2) naturally defined from the s-t cut induces connected subgraphs
of G, that is, G[V1] and G[V2] are connected [12]. For minimal a-b separators, a similar
characterization is known using full components (see [19], for example). These facts are
highly exploited in enumerating minimal s-t cuts [33, 38] or minimal a-b separators [37], and
can be extended for our cases (See Sections 3, 4, and 5). To enumerate such a collection
of partitions/disjoint subsets of V in the claimed running time, we use three representative
techniques: the proximity search paradigm due to Conte and Uno [8] for the exponential
space enumeration of minimal node multiway cuts, the reverse search paradigm due to Avis
and Fukuda [2] for polynomial space enumeration of minimal edge multiway cuts, and the
supergraph approach, which appeared implicitly and explicitly in the literature [7,8, 25,34],
for the incremental polynomial time enumeration of minimal node or edge multicuts. These
approaches basically define a (directed) graph on the set of solutions we want to enumerate. If
we appropriately define some adjacency relation among the vertices (i.e. the set of solutions)
so that the graph is (strongly) connected, then we can enumerate all solutions from a specific
or arbitrary solution without any duplication by traversing this (directed) graph. The key to
designing the algorithms in Theorem 1 and 2 is to ensure that every vertex in the graphs
defined on the solutions has a polynomial number of neighbors.

We also consider a generalization of the minimal node multicut enumeration, which we
call the minimal Steiner node multicut enumeration. We show that this problem is at least
as hard as the minimal transversal enumeration on hypergraphs.

Due to the space limitation, proofs (marked F) are omitted and can be found in the full
version [29].

2 Preliminaries

In this paper, we assume that a graph G = (V,E) is connected and has no self-loops and
no parallel edges. Let X ⊆ V . We denote by G[X] the subgraph of G induced by X. The
neighbor set of X is denoted by NG(X) (i.e. NG(X) = {y ∈ V \X : x ∈ X ∧{x, y} ∈ E} and
the closed neighbor set of X is denoted by NG[X] = N(X)∪X. When X consists of a single
vertex v, we simply write NG(v) and NG[v] instead of NG({v}) and NG[{v}], respectively. If
there is no risk of confusion, we may drop the subscript G. For a set of vertices U ⊆ V (resp.
edges F ⊆ E), the graph obtained from G by deleting U (resp. F) is denoted by G−U (resp.
G− F).

Let B be a set of pairs of vertices in V . We denote by T (B) = {s, t : {s, t} ∈ B}. A
vertex in T (B) is called a terminal, a pair in B is called a set of terminal pairs, and T (B) is
called a terminal set or terminals. When no confusion can arise, we may simply use T to
denote the terminal set. A set of edges M ⊆ E is an edge multicut of (G,B) if no pair of
terminals in B is connected in G −M . When B is clear from the context, we simply call

1 However, our algorithm requires exponential space for minimal node multiway cuts, whereas Takata’s
algorithm [37] runs in polynomial space.

MFCS 2020

60:4 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

M an edge multicut of G. An edge multicut M is minimal if every proper subset M ′ ⊂M
is not an edge multicut of G. Note that this condition is equivalent to that M \ {e} is not
an edge multicut of G for any e ∈ M . Analogously, a set of vertices X ⊆ V \ T is a node
multicut of G if there is no paths between any terminal pair of B in G−X. The minimality
for node multicuts is defined accordingly.

The demand graph for B is a graph defined on T (B) in which two vertices s and t are
adjacent to each other if and only if {s, t} ∈ B. When B contains a terminal pair {s, t} for
any distinct s, t ∈ T (B), that is, the demand graph for B is a complete graph, a node/edge
multicut is called a node/edge multiway cut of G.

Let G = (V,E) be a graph and let B be a set of terminal pairs. Let G′ be the graph
obtained from the line graph of G by adding a terminal t′ for each t ∈ T and making t′
adjacent to each vertex corresponding to an edge incident to t in G.

I Proposition 4. Let M ⊆ E. Then, M is an edge multicut of G if and only if M is a node
multicut of G′.

By Proposition 4, designing an enumeration algorithm for minimal node multicuts/multi-
way cuts, it allows us to enumerate minimal edge multicuts/multiway cuts as well. However,
the converse does not hold in general.

3 Incremental polynomial time enumeration of minimal node
multicuts

In this section, we design an incremental polynomial time enumeration algorithm for minimal
node multicuts. Let G = (V,E) and let B be a set of terminal pairs.

For a (not necessarily minimal) node multicut M of G, there are connected components
C1, C2, . . . , C` in G −M such that each component contains at least one terminal but no
component has a terminal pair in B. Note that there can be components of G −M not
included in {C1, · · · , C`}. The following lemma characterizes the minimality of node multicut
in this way.

I Lemma 5 (F). A set of vertices M ⊆ V \ T of G is a minimal node multicut if and
only if there are ` connected components C1, C2, . . . , C` in G−M , each of which includes
at least one terminal of T , such that (1) there is no component which includes both vertices
in a terminal pair and (2) for any v ∈ M , there is a terminal pair (si, ti) such that both
components including si and ti have a neighbor of v.

From a minimal node multicut M of G, we can uniquely determine the set C of `
components satisfying the conditions in Lemma 5, and vice-versa. Given this, we denote
by CM the set of components corresponding to a minimal multicut M . From now on, we
may interchangeably use M ⊆ V \ T and CM as a minimal node multicut of G. For a (not
necessarily minimal) node multicut M of G, we also use CM to denote the set of connected
components {C1, . . . , C`} of G−M such that each component contains at least one terminal
but no component has a terminal pair.

We enumerate all the minimal node multicuts of G using the supergraph approach [7, 8,
25, 26]. To this end, we define a directed graph on the set of all the minimal node multicuts
of G, which we call a solution graph. The outline of the supergraph approach is described
in Algorithm 1. The following “distance” function plays a vital role for our enumeration
algorithm: For (not necessarily minimal) node multicuts M and M ′ of G,

dist(M,M ′) =
∑

C′∈CM′

|C ′ \ mcc (C ′,M)| ,

K. Kurita and Y. Kobayashi 60:5

Algorithm 1 Traversing a solution graph G using a breadth-first search.

1 Procedure Traversal(G)
2 S ← an arbitrary solution
3 Q,U ← {S}, ∅
4 while Q 6= ∅ do
5 Let S be a solution in Q
6 Output S //We do not output here for minimal node multicuts
7 Delete S from Q
8 for S′ ∈ Neighborhood(S,U) do
9 if S′ /∈ U then Q,U ← Q∪ {S′},U ∪ {S′}

where mcc (C ′,M) is the component C of G −M minimizing |C ′ \ C|. If there are two or
more components C minimizing |C ′ \ C|, we define mcc (C ′,M) as the one having a smallest
vertex with respect to some prescribed order on V among those components. It should be
mentioned that the function dist is not the actual distance in the solution graph which we
will define later. Note moreover that this value can be defined between two non-minimal
node multicuts as CM is well-defined for every node multicut M of G. Let M , M ′, and M ′′
be (not necessarily minimal) node multicuts of G. Then, we say that M is closer than M ′ to
M ′′ if dist(M,M ′′) < dist(M ′,M ′′).

I Lemma 6 (F). Let M and M ′ be minimal node multicuts of G. Then, M is equal to M ′
if and only if dist(M,M ′) = 0.

From a node multicut M of G, a function µ maps M to an arbitrary minimal node
multicut µ (M) ⊆M . In this paper, we define µ (M) as follows: If there is a vertex v such
that M \ {v} is a node multicut, we remove v. When there are two or more such vertices,
we pick a vertex with the minimum index. Clearly, this function computes a minimal node
multicut of G in polynomial time.

I Lemma 7 (F). Let M be a node multicut of G and M ′ a minimal node multicut of G.
Then, dist(µ (M),M ′) ≤ dist(M,M ′) holds.

To complete the description of Algorithm 1, we need to define the neighborhood of each
minimal node multicut of G. To enumerate all the minimal node multicut of G, we want to
ensure that the solution graph is strongly connected. To do this, we exploit dist as follows.
Let M and M ′ be distinct minimal node multicuts of G. We will define the neighborhood of
M in such a way that it should contain at least one minimal node multiway cut M ′′ of G
that is closer than M to M ′. This allows to eventually have M ′ from M with Algorithm 1.
The main difficulty is that the neighborhood of M contains such M ′′ for every M ′, which
will be described in the rest of this section.

To make the discussion simpler, we use the following two propositions. Here, for an edge
e of G, we let G/e denote the graph obtained from G by contracting edge e. We use ve to
denote the newly introduced vertex in G/e.

I Proposition 8. Let t1 be a terminal adjacent to another terminal t2 in G. Suppose {t1, t2}
is not included in B. Then, M is a minimal node multicut of (G,B) if and only if it is a
minimal node multicut of (G/e,B′), where e = {t1, t2} and B′ is obtained by replacing t1
and t2 in B with the new vertex ve in G/e.

If G has an adjacent terminal pair in B, then obviously there is no node multicut of G.
By Proposition 8, G has no adjacent terminals.

MFCS 2020

60:6 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

s2

s1

t2

s3

t3

t1

v

C1

C2 = C C4

C3

s2

s1

t2

s3

t3

t1

v

C′ 1

C′ 2

C′ 4

C′ 3

Figure 1 This figure illustrates an example of Lemma 10. White circles represent vertices in
node multicuts and pairs of stars, squares, and triangles represent terminal pairs. The left and right
pictures depict a minimal node multicut M and a node multicut M ′′.

I Proposition 9. If there is a vertex v of G such that N(v) contains a terminal pair {s, t},
then for every node multicut M of G, we have v ∈ M . Moreover, M is a minimal node
multicut of (G,B) if and only if M \ {v} is a minimal node multicut of (G− {v} , B).

From the above two propositions, we assume that there is no pair of adjacent terminals
and no vertex including a terminal pair in B as its neighborhood. To define the neighborhood
of M , we distinguish two cases.

I Lemma 10 (F). Let M and M ′ be distinct minimal node multicuts of G, let C ′ ∈ CM ′ ,
and let C = mcc (C ′,M). Suppose there is a vertex v ∈ N(C) ∩ C ′ ⊆M such that N [v] ∪ C
has no terminal pair in B. Let Tv = N(v) ∩ T . Then M ′′ = (M \ {v}) ∪ (N(Tv ∪ {v}) \ C)
is a node multicut of G. Moreover, µ (M ′′) is closer than M to M ′.

Figure 1 illustrates an example of M and M ′′ in Lemma 10.
If there is a terminal pair {s, t} ∈ B in G[C ∪N [v]], M ′′ defined in Lemma 10 is not a

node multicut of G since s and t are contained in the connected component C ∪ Tv ∪ {v} of
G−M ′′ (see Figure 2). In this case, we have to separate all terminal pairs in this component.

I Lemma 11 (F). Let M and M ′ be two distinct minimal node multicuts of G, let C ′ ∈ CM ′ ,
and let C = mcc (C ′,M). Suppose there is a vertex v ∈ N(C) ∩ C ′ ⊆M such that N [v] ∪ C
contains some terminal pair in B. Let Tv = N(v) ∩ T . Then, M ′′ = (M \ {v}) ∪ (N(Tv ∪
{v}) \ C) ∪ (C ∩M ′) is a node multicut and µ (M ′′) is closer than M to M ′.

Now, we formally define the neighborhood of a minimal node multicut M in the solution
graph. Our goal is to ensure the strong connectivty of the solution graph. For each component
C and v ∈ N(C), the neighborhood ofM contains µ ((M \ {v}) ∪ (N(Tv ∪ {v}) \ C)) ifN [v]∪
C has no terminal pair in B and µ ((M \ {v}) ∪ (N(Tv ∪ {v}) \ C) ∪ (C ∩M ′)) otherwise.
By Lemmas 10 and 11, this neighborhood relation ensures that the solution graph is strongly
connected, which allows us to enumerate all the minimal node multicuts of G from an
arbitrary one using Algorithm 1. However, there is an obstacle: We have to generate the
neighborhood without knowing M ′ for the case where N [v] ∪ C has a terminal pair. To this
end, we show that computing the neighborhood for this case can be reduced to enumerating
the minimal a-b separators of a graph.

Suppose that N [v] ∪ C has a terminal pair. Let M ′ be an arbitrary node multicut of G.
An important observation is that C ∩M ′ is a node multicut of (G[C ∪ Tv ∪ {v}], {{s, t} :
{s, t} ∈ B, s ∈ Tv, t ∈ C}). Since C is a component of G−M , by Proposition 9, one of the
terminals in each terminal pair contained in N [v]∪C belongs to N(v)∩ T and the other one
belongs to C. Thus, every path between those terminal pairs pass through v in G[C∪Tv∪{v}]

K. Kurita and Y. Kobayashi 60:7

C1 = C

s2
s1

t2 s3

t3

t1v

C′ 1

C′ 2 C′ 4

C′ 3

C′ 5

s2

s1

t2

s3

t3

t1

v

C2 C4

C3

Figure 2 This figure illustrates an example of Lemma 11. (M \ {v})∪ (N(Tv ∪ {v}) \C1)) is not
a node multicut of G, and then we additionally have to separate a pair of terminals (represented by
stars) in the component C′

1 = C1 ∪ Tv ∪ {v}.

and v /∈ M ′. It implies that C ∩M ′ is a node multicut of (G[C ∪ {v}], {{v, t} : {s, t} ∈
B, t ∈ C}). Let H = G[C ∪ {v}] and let B′ = {{v, t} : {s, t} ∈ B, t ∈ C}). Moreover, if we
have two distinct minimal node multicuts M1 and M2 of (H,B′), minimal node multicuts
µ ((M \ {v}) ∪ (N(Tv ∪ {v}) \ C) ∪ (C ∩Mi)), for i = 1, 2, are distinct since function µ does
not remove any vertex in M1 and M2.

Now, our strategy is to enumerate minimal node multicuts µ (C ∩M ′) of (H,B′) for
all M ′. This subproblem is not easier than the original problem at first glance. However,
this instance (H,B′) has a special property that the demand graph for B′ forms a star.
From this property, we show that this problem can be reduced to the minimal a-b separator
enumeration problem.

I Lemma 12 (F). Let H = G[C ∪ {v}] and let B′ = {{v, t} : {s, t} ∈ B, t ∈ C}. Let H ′ be
the graph obtained from H by identifying all the vertices of T (B′) \ {v} into a single vertex
vt. Then, M ⊆ (C ∪ {v}) \ T (B′) is minimal node multicut of (H,B′) if and only if M is a
minimal v-vt separator of H ′.

By Lemma 12, we can enumerate µ (C ∩M ′) for every minimal node multicut M ′ of G
by using the minimal a-b separator enumeration algorithm of Takata [37]. Moreover, as
observed above, for any distinct minimal v-vt separators S1 and S2 in H ′, we can generate
distinct minimal node multicuts µ ((M \ {v}) ∪ (N(Tv ∪ {v}) \ C) ∪ Si) of G.

The algorithm generating the neighborhood of M is described in Algorithm 2.

I Theorem 13 (F). Algorithm 1 with Neigborhood in Algorithm 2 enumerates all the
minimal multicuts of G in incremental polynomial time.

Note that, in Algorithm 2, we use Takata’s algorithm to enumerating minimal v-vt

separators of H ′. To bound the delay of our algorithm, we need to process lines 13-14 for
each output of Takata’s algorithm.

4 Polynomial delay enumeration of minimal node multiway cuts

This section is devoted to designing a polynomial delay and exponential space enumeration
algorithm for minimal node multiway cuts. Let G = (V,E) be a graph and let T be a set of
terminals. We assume hereafter that k = |T |. We begin with a characterization of minimal
node multiway cuts as Lemma 5.

I Lemma 14 (F). A node multiway cut M ⊆ V \ T is minimal if and only if there are k
connected components C1, C2, . . . , Ck of V \M such that (1) for each 1 ≤ i ≤ k, Ci contains
ti and (2) for every v ∈M , there is a pair of indices 1 ≤ i < j ≤ k with N(v) ∩ Ci 6= ∅ and
N(v) ∩ Cj 6= ∅.

MFCS 2020

60:8 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

Algorithm 2 Computing the neighborhood of a minimal node multicut M of (G, B).

1 Function Neigborhood(M,M)
2 S ← ∅
3 for v ∈M do
4 for C ∈ CM do
5 Tv ← N(v) ∩ T
6 M ′′ ← (M \ {v}) ∪ (N(Tv ∪ {v}) \ C))
7 if G[C ∪N [v]] has no terminal pairs then
8 if µ (M ′′) 6∈ M then Output µ (M ′′)
9 S ← S ∪ {µ (M ′′)}

10 else
11 Run Takata’s algorithm [37] for (H ′, v, vt) in Lemma 12
12 foreach Output M ′ of minimal v-vt separator in H ′ do
13 if µ (M ′′ ∪M ′) 6∈ M then Output µ (M ′′ ∪M ′)
14 S ← S ∪ {µ (M ′′ ∪M ′)}
15 return S

From a minimal node multiway cut M of G, one can determine a set of k connected
components C1, . . . , Ck in Lemma 14. Conversely, from a set of connected components
C1, . . . , Ck satisfying (1) and (2), one can uniquely determine a minimal node multiway cut
M . Given this, we denote by CM a set of k connected components associated to M .

The basic strategy to enumerate minimal node multiway cuts is the same as one used
in the previous section: We define a solution graph that is strongly connected. Let M be
a minimal node multiway cut of G and let CM = {C1, . . . , Ck}. For 1 ≤ i ≤ k, v ∈M with
N(v)∩ (T \ {ti}) = ∅, let M i,v = (M \ {v})∪ (

⋃
j 6=i N(v)∩Cj). Intuitively, M i,v is obtained

from M by moving v to Ci and then appropriately removing vertices in N(v) from Cj . The
key to our polynomial delay complexity is the size of the neighborhood of each M is bounded
by a polynomial in n, whereas it can be exponential in the case of minimal node multicut.

I Lemma 15 (F). If M is a minimal node multiway cut of G, then so is M i,v.

Now, we define the neighborhood of M in the solution graph. The neighborhood of M
consists of the set of minimal node multiway cuts µ

(
M i,v

)
for every 1 ≤ i ≤ k and v ∈M

with N(v) ∩ (T \ {ti}) = ∅. To show the strong connectivity of the solution graph, we define

dist(M,M ′) =
∑

1≤i≤k

|C ′i \ Ci| ,

where CM = {C1, . . . , Ck} and CM ′ = {C ′1, . . . , C ′k}. Note that the definition of dist is
slightly different from one used in the previous section. Each component of a node multicut
may be have a several terminals. It is difficult to provide one-to-one correspondence between
connected components in the two solutions. However, in a node multiway cut, each connected
component has just one terminal. The fact makes it easy to provide appropriate one-
to-one correspondence between connected components in the two solutions. Let M , M ′,
M ′′ be minimal node multiway cuts of G. We say that M is closer than M ′′ to M if
dist(M,M ′) < dist(M ′′,M ′).

I Lemma 16 (F). LetM andM ′ be minimal node multiway cuts of G. Then, dist(M,M ′)=
0 if and only if M = M ′.

K. Kurita and Y. Kobayashi 60:9

Algorithm 3 Computing the neighborhood of a minimal node multiway cut M of G.

1 Function Neighborhood(M,M)
2 S ← ∅
3 for v ∈M do
4 for Ci ∈ CM do
5 if N(v) \ Ci has no terminals then S ← S ∪ µ

(
M i,v

)
6 return S

I Lemma 17 (F). Let M and M ′ be distinct minimal node multiway cuts of G. Then, there
is a minimal node multiway cut M ′′ of G in the neighborhood of M such that M ′′ is closer
than M to M ′.

Similarly to the previous section, by Lemma 17, we can conclude that the solution graph
is strongly connected. From this neighborhood relation, our enumeration algorithm is quite
similar to one in the previous section, which is described in Algorithm 3. To bound the delay
of Algorithm 3, we need to bound the time complexity of computing µ (M).

I Lemma 18 (F). Let M be a node multiway cut of G. Then, we can compute µ (M) in
O(n+m) time.

I Theorem 19 (F). Algorithm 1 with Neigborhood in Algorithm 3 enumerates all the
minimal node multiway cuts of G in O(knm) delay and exponential space.

5 Polynomial space enumeration for minimal edge multiway cuts

In the previous section, we have developed a polynomial delay enumeration for both node
multiway cuts. Proposition 4 and the previous result imply that the minimal edge multiway
cut enumeration problem can be solved in polynomial delay and exponential space. In this
section, we design a polynomial delay and space enumeration for minimal edge multiway
cuts. Let G = (V,E) be a graph and let T be a set of terminals.

I Lemma 20 (F). Let M ⊆ E be an edge multiway cut of G. Then, M is minimal if and
only if G−M has exactly k connected components C1, . . . , Ck, each Ci of which contains ti.

Note that the lemma proves in fact that there is a bijection between the set of minimal
multiway cuts of G and the collection of partitions of V satisfying the condition in the
lemma. In what follows, we also regard a minimal multiway cut M of G as a partition
PM = {C1, C2, . . . Ck} of V satisfying the condition in Lemma 20. We write Pi<

M , P<i
M , and

P≤i
M to denote

⋃
i<j Cj ,

⋃
j<i Cj , and

⋃
j≤i Cj , respectively. For a vertex v ∈ V , the position

of v in PM , denoted by PM (v), is the index 1 ≤ i ≤ k with v ∈ Ci.
The bottleneck of the space complexity for enumeration algorithms in the previous sections

is to use a dictionary to avoid duplication. To overcome this bottleneck, we propose an
algorithm based on the reverse search paradigm [2]. Fix a graph G = (V,E) and a terminal
set T ⊆ V . In this paradigm, we also define a graph on the set of all minimal edge multiway
cuts of G and a specific minimal edge multiway cut, which we call the root, denoted by
R ⊆ V . By carefully designing the neighborhood of each minimal edge multiway cut of G,
the solution graph induces a directed tree from the root, which enables us to enumerate those
without duplication in polynomial space.

MFCS 2020

60:10 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

To this end, we first define the root PR = {Cr
1 , . . . , C

r
k} as follows: Let Cr

i be the
component in G− (P<i

R ∪ {ti+1, . . . , tk}) including ti. Note that P<1
R is defined as the empty

set and hence Cr
1 is well-defined.

I Lemma 21 (F). The root R is a minimal edge multiway cut of G.

Next, we define the parent-child relation in the solution graph. As in the previous sections,
we define a certain measure for minimal edge multiway cuts M of G: The depth of M as

depth(M) =
∑
v∈V

(PM (v)− PR(v)).

Intuitively, the depth of M is the sum of a “difference” of the indices of blocks in PM and
PR that v belongs to. For two minimal edge multiway cuts M and M ′ of G, we say that
M is shallower than M ′ if depth(M) < depth(M ′). Note that the depth of M is at most
kn for minimal edge multiway cut M of G. One may think that the depth of M or more
specifically PM (v) − PR(v) can be negative. The following two lemmas ensure that it is
always non-negative.

I Lemma 22 (F). Let M be a minimal edge multiway cut of G and let PM = {C1, . . . , Ck}.
Then, Ci ⊆ P≤i

R holds for every 1 ≤ i ≤ k.

I Lemma 23 (F). Let M be a minimal edge multiway cut of G and let PM = {C1, . . . , Ck}.
Then, depth(M) = 0 if and only if M = R.

Let M be a minimal edge multiway cut of G. To ensure that the solution graph forms a
tree, we define the parent of M which is shallower than M . Let PM = {C1, . . . , Ck}. We say
that a vertex v ∈ (N(Ci) ∩ Pi<

M) \ T is shiftable into Ci (or simply, shiftable). In words, a
vertex is shiftable into Ci if it is non-terminal, adjacent to a vertex in Ci, and included in Cj

for some j > i.

I Lemma 24 (F). Let M be a minimal node multiway cut of G with M 6= R and let
PM = {C1, . . . , Ck}. Then, there is at least one shiftable vertex in V \M .

Let PM = {C1, . . . , Ck} with M 6= R. By Lemma 24, V \M has at least one shiftable
vertex. The largest index i of a component Ci into which there is a shiftable vertex is denoted
by ` (M). There can be more than one vertices that are shiftable into C`(M). We say that a
vertex v is the pivot of M if v is shiftable into C`(M), and moreover, if there are more than
one such vertices, we select the pivot in the following algorithmic way:
1. Let Q be the set of vertices, each of which is shiftable into C`(M).
2. If Q contains more than one vertices, we replace Q by Q := Q ∩ Cs, where s is the

maximum index with Q ∩ Cs 6= ∅.
3. If Q contains more than one vertices, we compute the set of cut vertices of G[Cs]. If

there is at least one vertex in Q that is not a cut vertex of G[Cs], remove all the cut
vertices of G[Cs] from Q. Otherwise, that is, Q contains cut vertices only, remove a cut
vertex v ∈ Q from Q if there is another cut vertex w ∈ Q of G[Cs] such that every path
between w and ts hits v.

4. If Q contains more than one vertices, remove all but arbitrary one vertex from Q.
Note that if we apply this algorithm to Q, Q contains exactly one vertex that is shiftable into
C`(M). We select the remaining vertex in Q as the pivot of M . Now, we define the parent of
M for each M 6= R, denoted by par (M), as follows: Let Ppar(M) = {C ′1, . . . , C ′k} such that

C ′i =


Ci (i 6= ` (M),PM (p))
Ci ∪ (CPM (p) \ C) (i = ` (M)))
C (i = PM (p)),

K. Kurita and Y. Kobayashi 60:11

Algorithm 4 Enumerating the minimal multiway cuts of G in O(knm) delay and O
(
kn2)

space.

1 Procedure EMC(G,M, d)
2 if d is even then Output M
3 for Ci ∈ PM do
4 for v ∈ B(Ci) with v 6= ti do
5 P ′ ← P // P ′ = {C ′1, . . . , C ′k}
6 C ′i ← the component including ti in G[Ci \ {v}]
7 C ← Ci \ C ′i
8 for j with j > i and N(v) ∩ Cj 6= ∅ do
9 C ′j ← Cj ∪ C

10 if par (M ′) = M then EMC(G,M ′, d+ 1)
11 C ′j ← Cj

12 if d is odd then Output M

where p is the pivot of M and C is the component in G[CPM (p) \ {p}] including terminal
tPM (p). Since p has a neighbor in C`(M), G[C ′`(M)] is connected, and hence par (M) is a
minimal edge multiway cut of G as well. If M = par (M ′) for some minimal edge multiway
cut M ′ of G, M ′ is called a child of M . The following lemma shows that par (M) is shallower
than M .

I Lemma 25 (F). Let M be a minimal edge multiway cut of G with M 6= R. Then, par (M)
is shallower than M .

This lemma ensures that for every minimal edge multiway cut M of G, we can eventually
obtain the root R by tracing their parents at most kn times.

Finally, we are ready to design the neighborhood of each minimal edge multiway cut M
of G. The neighborhood of M is defined so that it includes all the children of M and whose
size is polynomial in n. Let C be a set of vertices that induces a connected subgraph in G.
The boundary of C, denoted by B(C), is the set of vertices in C that has a neighbor outside
of C.

I Lemma 26 (F). Let M and M ′ be minimal edge multiway cuts of G with par (M ′) = M .
Let PM = {C1, . . . , Ck}. Then, the pivot p of M ′ belongs to the boundary of C`(M ′) and is
adjacent to a vertex in CPM′ (p).

The above lemma implies every pivot of a child of M is contained in a boundary of Ci for
some 1 ≤ i ≤ k. Thus, we define the neighborhood of M as follows. Let PM = {C1, . . . , Ck}.
For each Ci, we pick a vertex v ∈ B(Ci) with v 6= ti. Let C be the set of components in
G[Ci \ {v}] which does not include ti. Note that C can be empty when v is not a cut vertex
in G[Ci]. For each 1 ≤ i < j ≤ k and N(v) ∩ Cj 6= ∅, PM ′ = {C ′1, . . . , C ′k} is defined as:

C ′` =


C` (` 6= i, j)
C` ∪ (C ∪ {v}) (` = j)
C` \ (C ∪ {v}) (` = i).

The neighborhood of M contains such M ′ if par (M ′) = M for each choice of Ci, v ∈
B(Ci) \ {ti}, and Cj . The heart of our algorithm is the following lemma.

I Lemma 27 (F). Let M be a minimal edge multiway cut of G. Then, the neighborhood of
M includes all the children of M .

MFCS 2020

60:12 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

Based on Lemma 27, Algorithm 4 enumerates all the minimal edge multiway cuts of G.
Finally, we analyze the delay and the space complexity of this algorithm. To bound the
delay, we use the alternative output method due to Uno [39].

I Theorem 28 (F). Let G be a graph and T be a set of terminals. Algorithm 4 runs in
O(knm) delay and O

(
kn2) space, where n is the number of vertices, m is the number of

edges, and k is the number of terminals.

6 Minimal Steiner node multicuts enumeration

We have developed efficient enumeration algorithms for minimal multicuts and minimal
multiway cuts so far. In this section, we consider a generalized version of node multicuts,
called Steiner node multicuts, and discuss a relation between this problem and the minimal
transversal enumeration problem on hypergraphs.

Let G = (V,E) be a graph and let T1, T2, . . . Tk ⊆ V . A subset S ⊆ V \ (T1∪T2∪· · ·∪Tk)
is called a Steiner node multicut of G if for every 1 ≤ i ≤ k, there is at least one pair of
vertices {s, t} in Ti such that s and t are contained in distinct components of G − S. If
|Ti| = 2 for every 1 ≤ i ≤ k, S is an ordinary node multicut of G. This notion was introduced
by Klein et al. [27] and the problem of finding a minimum Steiner node multicut was studied
in the literature [5, 27].

Let H = (U, E) be a hypergraph. A transversal of H is a subset S ⊆ U such that for
every hyperedge e ∈ E , it holds that e ∩ S 6= ∅. The problem of enumerating inclusion-wise
minimal transversals, also known as dualizing monotone boolean functions, is one of the
most challenging problems in this field. There are several equivalent formulations of this
problem and efficient enumeration algorithms developed for special hypergraphs. However, the
current best enumeration algorithm for this problem is due to Fredman and Khachiyan [16],
which runs in quasi-polynomial time in the size of outputs, and no output-polynomial time
enumeration algorithm is known. In this section, we show that the problem of enumerating
minimal Steiner node multicuts is as hard as this problem.

Let H = (U, E) be a hypergraph. We construct a graph G and sets of terminals as follows.
We begin with a clique on U . For each e ∈ E , we add a pendant vertex ve adjacent to v for
each v ∈ e and set Te = {ve : v ∈ e}. Note that G is a split graph, that is, its vertex set can
be partitioned into a clique U and an independent set {ve : e ∈ E , v ∈ e}.

I Lemma 29 (F). S ⊆ U is a transversal of H if and only if it is a Steiner node multicut
of G.

This lemma implies that if one can design an output-polynomial time algorithm for
enumerating minimal Steiner node multicuts in a split graph, it allows us to do so for
enumerating minimal transversals of hypergraphs. For the problem of enumerating minimal
Steiner edge multicuts, we could neither develop an efficient algorithm nor prove some
correspondence as in Lemma 29. We leave this question for future work.

References
1 S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense

instances of NP-hard problems. Journal of Computer and System Sciences, 58(1):193–210,
1999. doi:10.1006/jcss.1998.1605.

2 D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,
65(1):21–46, 1996. doi:10.1016/0166-218X(95)00026-N.

https://doi.org/10.1006/jcss.1998.1605
https://doi.org/10.1016/0166-218X(95)00026-N

K. Kurita and Y. Kobayashi 60:13

3 M. Bateni, M. Hajiaghayi, P. N. Klein, and C. Mathieu. A polynomial-time approximation
scheme for planar multiway cut. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, page 639–655, USA, 2012. Society for Industrial
and Applied Mathematics.

4 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31(1):212–232, 2002. doi:10.1137/S0097539799359683.

5 Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan [van Leeuwen]. Parameterized
complexity dichotomy for Steiner Multicut. Journal of Computer and System Sciences,
82(6):1020–1043, 2016.

6 D. Z. Chen and X. Wu. Efficient algorithms for k-terminal cuts on planar graphs. Algorithmica,
38(2):299–316, February 2004. doi:10.1007/s00453-003-1061-2.

7 Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Generating all maximal induced subgraphs
for hereditary and connected-hereditary graph properties. J. Comput. Syst. Sci., 74(7):1147–
1159, 2008. doi:10.1016/j.jcss.2008.04.003.

8 Alessio Conte and Takeaki Uno. New polynomial delay bounds for maximal subgraph
enumeration by proximity search. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1179–1190,
2019. doi:10.1145/3313276.3316402.

9 G. Cǎlinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multiway
cut. Journal of Computer and System Sciences, 60(3):564–574, 2000. doi:10.1006/jcss.
1999.1687.

10 M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut parameterized
above lower bounds. ACM Trans. Comput. Theory, 5(1), 2013. doi:10.1145/2462896.
2462899.

11 E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994. doi:{10.1137/
S0097539792225297}.

12 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

13 Jixing Feng, Xin Li, Eduardo L. Pasiliao, and John M. Shea. Jammer placement to partition
wireless network. In 2014 IEEE GLOBECOM Workshops, Austin, TX, USA, December 8-12,
2014, pages 1487–1492, 2014. doi:10.1109/GLOCOMW.2014.7063644.

14 L. Fireman, E. Petrank, and A. Zaks. New algorithms for simd alignment. In Compiler
Construction, pages 1–15, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

15 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations
and CMSO. SIAM J. Comput., 44(1):54–87, 2015.

16 Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms, 21(3):618–628, 1996. doi:10.1006/jagm.1996.0062.

17 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM J. Comput., 25(2):235–251, 1996. doi:
10.1137/S0097539793243016.

18 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997. doi:
10.1007/BF02523685.

19 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete
Mathematics, Vol 57). North-Holland Publishing Co., NLD, 2004.

20 S. Guillemot. Fpt algorithms for path-transversal and cycle-transversal problems. Discrete
Optimization, 8(1):61–71, 2011. doi:10.1016/j.disopt.2010.05.003.

21 Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann. Complexity
and exact algorithms for vertex multicut in interval and bounded treewidth graphs. Eur. J.
Oper. Res., 186(2):542–553, 2008. doi:10.1016/j.ejor.2007.02.014.

MFCS 2020

https://doi.org/10.1137/S0097539799359683
https://doi.org/10.1007/s00453-003-1061-2
https://doi.org/10.1016/j.jcss.2008.04.003
https://doi.org/10.1145/3313276.3316402
https://doi.org/10.1006/jcss.1999.1687
https://doi.org/10.1006/jcss.1999.1687
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1145/2462896.2462899
https://doi.org/{10.1137/S0097539792225297}
https://doi.org/{10.1137/S0097539792225297}
https://doi.org/10.1109/GLOCOMW.2014.7063644
https://doi.org/10.1006/jagm.1996.0062
https://doi.org/10.1137/S0097539793243016
https://doi.org/10.1137/S0097539793243016
https://doi.org/10.1007/BF02523685
https://doi.org/10.1007/BF02523685
https://doi.org/10.1016/j.disopt.2010.05.003
https://doi.org/10.1016/j.ejor.2007.02.014

60:14 Efficient Enumerations for Minimal Multicuts and Multiway Cuts

22 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all max-
imal independent sets. Inf. Process. Lett., 27(3):119–123, 1988. doi:10.1016/0020-0190(88)
90065-8.

23 J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnörr. Globally optimal image
partitioning by multicuts. In Proceedings of the 8th International Conference on Energy
Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR’11, page
31–44, Berlin, Heidelberg, 2011. Springer-Verlag.

24 D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algorithms for
a geometric embedding of minimum multiway cut. Math. Oper. Res., 29(3):436–461, 2004.
doi:10.1287/moor.1030.0086.

25 L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino. Generating cut
conjunctions in graphs and related problems. Algorithmica, 51(3):239–263, 2008.

26 Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, and
Kazuhisa Makino. Enumerating spanning and connected subsets in graphs and matroids. In
Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September
11-13, 2006, Proceedings, pages 444–455, 2006. doi:10.1007/11841036_41.

27 P. N. Klein and D. Marx. Solving planar k-terminal cut in O(nc
√

k) time. In Proceedings of
the 39th International Colloquium Conference on Automata, Languages, and Programming
- Volume Part I, ICALP’12, page 569–580, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-31594-7_48.

28 T. Kloks and D. Kratsch. Listing all minimal separators of a graph. SIAM J. Comput.,
27(3):605–613, June 1998.

29 Kazuhiro Kurita and Yasuaki Kobayashi. Efficient enumerations for minimal multicuts and
multiway cuts. CoRR, abs/2006.16222, 2020. arXiv:2006.16222.

30 D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/j.tcs.2005.10.007.

31 D. Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
Proceedings of the 39th International Colloquium Conference on Automata, Languages, and
Programming - Volume Part I, ICALP’12, page 677–688, Berlin, Heidelberg, 2012. Springer-
Verlag. doi:10.1007/978-3-642-31594-7_57.

32 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

33 J. S. Provan and D. R. Shier. A paradigm for listing (s, t)-cuts in graphs. Algorithmica,
15(4):351–372, 1996. doi:10.1007/BF01961544.

34 Benno Schwikowski and Ewald Speckenmeyer. On enumerating all minimal solutions of feed-
back problems. Discret. Appl. Math., 117(1-3):253–265, 2002. doi:10.1016/S0166-218X(00)
00339-5.

35 H. Shen and W. Liang. Efficient enumeration of all minimal separators in a graph. Theoretical
Computer Science, 180(1):169–180, 1997.

36 H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Trans.
Softw. Eng., 3(1):85–93, 1977. doi:10.1109/TSE.1977.233840.

37 K. Takata. Space-optimal, backtracking algorithms to list the minimal vertex separators of a
graph. Discrete Applied Mathematics, 158(15):1660–1667, 2010.

38 S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi. An algorithm to enumerate all cutsets of
a graph in linear time per cutset. J. ACM, 27(4):619–632, 1980. doi:10.1145/322217.322220.

39 T. Uno. Two general methods to reduce delay and change of enumeration algorithms. Technical
report, National Institute of Informatics Technical Report E, 2003.

40 M. Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theor. Comp.
Sys., 46(4):723–736, 2010. doi:10.1007/s00224-009-9215-5.

https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1287/moor.1030.0086
https://doi.org/10.1007/11841036_41
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1007/978-3-642-31594-7_48
http://arxiv.org/abs/2006.16222
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1007/978-3-642-31594-7_57
https://doi.org/10.1137/110855247
https://doi.org/10.1007/BF01961544
https://doi.org/10.1016/S0166-218X(00)00339-5
https://doi.org/10.1016/S0166-218X(00)00339-5
https://doi.org/10.1109/TSE.1977.233840
https://doi.org/10.1145/322217.322220
https://doi.org/10.1007/s00224-009-9215-5

	Introduction
	Preliminaries
	Incremental polynomial time enumeration of minimal node multicuts
	Polynomial delay enumeration of minimal node multiway cuts
	Polynomial space enumeration for minimal edge multiway cuts
	Minimal Steiner node multicuts enumeration

