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Abstract
We consider the Steiner Multicut problem, which asks, given an undirected graph G, a col-
lection T = {T1, . . . , Tt}, Ti ⊆ V (G), of terminal sets of size at most p, and an integer k, whether
there is a set S of at most k edges or nodes such that of each set Ti at least one pair of termin-
als is in different connected components of G \ S. This problem generalizes several well-studied
graph cut problems, in particular the Multicut problem, which corresponds to the case p = 2.
The Multicut problem was recently shown to be fixed-parameter tractable for parameter k

[Marx and Razgon, Bousquet et al., STOC 2011]. The question whether this result generalizes
to Steiner Multicut motivates the present work.

We answer the question that motivated this work, and in fact provide a dichotomy of the
parameterized complexity of Steiner Multicut on general graphs. That is, for any combination
of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of
the problem (edge deletion and node deletion with and without deletable terminals), we prove
either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or
even (para-)NP-complete). Among the many results in the paper, we highlight that:

The edge deletion version of Steiner Multicut is fixed-parameter tractable for parameter
k + t on general graphs (but has no polynomial kernel, even on trees).
In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the para-
meter k + t on general graphs.
All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p = 3 and
the graph is a tree plus one node.

Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy
for Steiner Multicut on trees (for tw(G) = 1) as well as a polynomial time versus NP-hardness
dichotomy (by restricting k, t, p, tw(G) to constant or unbounded).
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1 Introduction

Graph cut problems are among the most fundamental problems in algorithmic research. The
classic result in this area is the polynomial-time algorithm for the s–t cut problem of Ford and
Fulkerson [19] (independently proven by Elias et al. [17] and Dantzig and Fulkerson [13]). This
result inspired a research program to discover the computational complexity of this problem
and of more general graph cut problems. One well-studied generalization of the s–t cut
problem is the Multicut problem, in which we want to disconnect t pairs of nodes instead
of just one pair. In a recent major advance of the research program on graph cut problems,
Bousquet et al. [3] and Marx and Razgon [32] showed that Multicut is fixed-parameter
tractable in the size k of the cut only, meaning that it has an algorithm running in time
f(k) · poly(|V (G)|) for some function f , resolving a longstanding problem in parameterized
complexity (with many papers [30, 33, 21, 31] building up to this result).

In this paper, we continue the research program on generalized graph cut problems, and
consider the Steiner Multicut problem. This problem was proposed by Klein et al. [25],
and appears in several versions, depending on whether we want to delete edges or nodes, and
whether we are allowed to delete terminal nodes. Formally, these versions of the Steiner
Multicut problem are defined as follows:

{Edge, Node, Restr. Node} Steiner Multicut
Input: An undirected graph G with terminal sets T1, . . . , Tt ⊆ V (G), and integer k ∈ N.
Task: Find a set S of k {edges, nodes, non-terminal nodes} such that for i = 1, . . . , t

and at least one pair u, v ∈ Ti there is no u− v path in G \ S.

Observe that Multicut is the special case of Steiner Multicut in which each terminal
set has size two. In general, the terminal sets of Steiner Multicut can have arbitrary size,
and we use p to denote maxi |Ti|.

The complexity of Steiner Multicut has been investigated extensively, but so far
only from the perspective of approximability. This line of work was initiated by Klein et
al. [25], who gave an LP-based O(log3(kp))-approximation algorithm. The approximability of
several variations of the problem has also been considered [35, 20, 2]; in particular, Garg et
al. [20] give an O(log t)-approximation algorithm for Multicut. On the hardness side, even
Multicut is APX-hard [12, 4] and cannot be approximated within any constant factor
assuming the Unique Games Conjecture [6]. We also remark that Steiner cuts (the case when
t = 1) are of interest: they are an ingredient in several LP-based approximation algorithms
(for example for Steiner Forest [1, 26]) and there is a connection to the number of
edge-disjoint Steiner trees that each connect all terminals [29]. To the best of our knowledge,
however, Steiner Multicut in its general form has not yet been considered from the
perspective of parameterized complexity.

1.1 Our Contributions
In this paper, we fully chart the (parameterized) complexity landscape of Steiner Multicut
according to k, t, p (defined as above), and the treewidth tw(G). For all three versions of
Steiner Multicut, for each possible combination of k, t, p, and tw(G), where each may
be either chosen as a constant, a parameter, or unbounded, we consider the complexity of
Steiner Multicut. We show a complete dichotomy: either we provide a fixed-parameter
algorithm with respect to the chosen parameters, or we prove a W[1]-hardness or (para-)
NP-completeness result that rules out a fixed-parameter algorithm (unless many canonical
NP-complete problems have subexponential- or polynomial-time algorithms respectively).
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Table 1 Summary of known and new complexity results for Steiner Multicut, where new
results are marked with ?; the other entries are either known or follow easily from known results in
the literature. Only maximal FPT results and minimal W[·]- or NP-hardness results are listed; empty
cells are dominated by other results. E.g. Edge Steiner Multicut with parameter t is hard, since
it is already NP-hard for t = 3, p = 2. For Node Steiner Multicut, one also has to apply the rule
that k < t (see Section 2) to generate a full characterization of all cases. Tree diagrams of this table
are offered in the full version of this paper.

Edge Node Restr. Node
constants params Steiner MC Steiner MC Steiner MC

k — poly (Sect. 2) poly (Sect. 2) poly (Sect. 2)
t ≤ 2 — poly (Sect. 2) poly (Sect. 2)
t = 3, p = 2 — NP-h [12] NP-h [12]
— k, t ?FPT (Thm. 1) ?W[1]-h (Thm. 2) ?W[1]-h (Thm. 2)
— k, p, t FPT (Sect. 2) FPT (Sect. 2)
t k FPT (Sect. 2)
p = 2 k FPT [3, 32] FPT [3, 32] FPT [3, 32]
p = 3, tw = 2 k ?W[1]-h (Thm. 3) ?W[1]-h (Thm. 3) ?W[1]-h (Thm. 3)
— t, tw ?FPT (Thm. 13) ?FPT (Thm. 13) ?FPT (Thm. 13)
tw = 1 — ?poly (Thm. 15)
tw = 1 k ?W[2]-h (Thm. 16) ?W[2]-h (Thm. 16)
tw = 1 k, p ?FPT (Thm. 18) ?FPT (Thm. 18)
tw = 1, p = 2 — NP-h [4] NP-h [4]
tw = 2, p = 2 — NP-h [4]

The dichotomy is composed of three main results, along with many smaller ones (see
Table 1). These three main results are stated in the three theorems below:

I Theorem 1. Edge Steiner Multicut is fixed-parameter tractable for parameter k + t.

I Theorem 2. Node Steiner Multicut and Restr. Node Steiner Multicut are
W[1]-hard for the parameter k + t.

I Theorem 3. Node Steiner Multicut, Edge Steiner Multicut, and Restr. Node
Steiner Multicut are W[1]-hard for the parameter k, even if p = 3 and tw(G) = 2.

Observe the sharp gap described by Theorem 1 and Theorem 2 between the parameterized
complexity of the edge deletion version versus the node deletion version; this gap does not
exist for the Multicut problem. Also note that Theorem 3 implies that the fixed-parameter
algorithms for Multicut for parameter k [3, 32] do not generalize to Steiner Multicut.

To obtain the fixed-parameter algorithm of Theorem 1, we have to avoid the brute-force
choice of a pair of separated terminals of each terminal set: Although one can trivially
reduce every instance of the Edge Steiner Multicut problem to at most

(
p
2
)t instances

of Multicut parameterized by k, this only yields an f(k) · nO(t)-time algorithm (for
unbounded p). Our contribution in Theorem 1 is that we improve on this simple algorithm
and obtain a runtime of f(k, t) · nO(1). We give two independent proofs of Theorem 1:

Our first proof uses a variation of the recent technique of Chitnis et al. [8] known
as randomized contractions (even though the technique actually yields deterministic
algorithms). The rough idea of the algorithm is to first determine a large subgraph G′
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of the input graph G, such that G′ has no small cut and only has a small interface
(i.e. a small number of vertices that connect the subgraph to the rest of the graph).
We can then branch on the behavior of a solution on the interface to determine a set
U ⊆ E(G′) of ‘useless’ edges, in the sense that when U is contracted in G a smallest
solution (of size at most k) persists in the remaining graph. By iterating this procedure,
we can reduce the size of the graph until it is small enough to be handled by exhaustive
enumeration. Our algorithm is similar to the one for Edge Multiway Cut-Uncut in
the paper by Chitnis et al. [8]; however, in contrast to that problem, there seems to be
no straightforward projection of the instance onto G′ in our case, and therefore more
involved arguments are needed to determine the set U .
Our second proof (presented only in the full version) is based on several novel structural
lemmas that show that a minimal edge Steiner cut can be decomposed into important
separators and minimal s-t cuts. Using a branching strategy, we ascertain the topology of
the decomposition that is promised by the structural lemmas. Since there are only few
important separators of bounded size [30, 7, 32] and all relevant minimal s-t cuts lie in a
graph of bounded treewidth (following the treewidth reduction techniques of Marx et
al. [31]), we can then optimize over important separators and minimal s-t cuts.

The advantage of the first algorithm over the second is that it runs in single-exponential
time, instead of double-exponential time. However, the second algorithm is slightly faster in
terms of n. Moreover, as part of the correctness proof of the second algorithm, we present
some structural lemmas that give additional insight into the properties of the cut, which
may be of independent interest. Therefore, we present both algorithms in the full version,
but only show the first algorithm in this extended abstract.

The W[1]-hardness results of Theorem 2 and 3 all rely on reductions from the Multi-
colored Clique problem [18]. For the proof of Theorem 3, we introduce a novel intermediate
problem, NAE-Integer-3-SAT, which is an integer variant of the better known Not-All-
Equal-3-SAT problem. We show that NAE-Integer-3-SAT is W[1]-hard parameterized
by the number of variables. This is a powerful starting point for parameterized hardness
reductions and should turn out to be useful to prove the hardness of other problems.

To complete our dichotomy, we chart the full (parameterized) complexity of Steiner
Multicut on trees, that is, for graphs G with tw(G) = 1 (these results are mostly deferred
to the full version of this paper). In fact, some of the hardness results that we prove for
Steiner Multicut on general graphs even hold for trees. We also show that many of the
results for trees do not carry over to graphs of bounded treewidth, the only exception being
a fixed-parameter algorithm for parameters tw(G) + t.

We remark that our characterization induces a polynomial time vs. NP-hardness dichotomy
for Steiner Multicut, i.e., for any choice of k, p, t, tw(G) as any constants or unbounded
(and all three problem variants), we either prove that Steiner Multicut is in P or that
it is NP-hard. This characterization can be obtained from Table 1 by considering all its
polynomial time and NP-hardness results as well as using the rule that any fixed-parameter
algorithm induces a polynomial-time algorithm by setting all parameters to O(1).

1.2 Related Work
We already mentioned several results on the special case of Steiner Multicut when p = 2
(Multicut) [30, 33, 21, 3, 32, 31]. Multicut is itself a generalization of Multiway Cut,
also known as Multiterminal Cut, where the goal is to delete k edges or nodes to separate
all terminals from each other. This problem is NP-complete even for three terminals [12]
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and has been extensively studied from a parameterized point of view (see, e.g., the work of
Cao et al. [5] or Cygan et al. [11]). The parameterized complexity of many different other
graph cut problems has also been considered in recent years [16, 8, 24, 30]. On trees, we only
mention here that Edge Multicut and Restr. Node Multicut remain NP-hard [4], but
are fixed-parameter tractable [23, 22]. In contrast, Node Multicut has a polynomial-time
algorithm on trees [4].

Organization. We begin our exposition in Section 2 by giving easy results for certain
parameter combinations of Steiner Multicut. Thereafter, we present our fixed-parameter
algorithm for Edge Steiner Multicut (Theorem 1) in Section 3. Following this, in the two
subsequent sections, we present our W[1]-hardness proofs: the proof of Theorem 3 in Section 4,
and of Theorem 2 in Section 5. Section 6 then focuses on trees to complete our dichotomy. We
conclude with some discussion and open problems in Section 7. The full version of this paper
is included as an appendix; there we also define basic notions of parameterized complexity.

2 Easy and Known Results

In this section, we collect easy and known results about the Steiner Multicut problem.
Some of these results are scattered throughout the literature, while others are new. First,
observe that whenever the cut size k is constant, we can solve the problem in polynomial
time by simply guessing the desired set S of at most k edges or nodes.

Furthermore, Node Steiner Multicut is trivially solvable when t ≤ k, as in this case
we may simply delete an arbitrary terminal node from each set Ti, resulting in a solution of
size at most k; thus, any instance is always a “yes”-instance in this case.

We may reduce Steiner Multicut to
(

p
2
)t instances of Multicut by branching for

each terminal set over its separated terminals. Since Multicut is in FPT for parameter k,
we obtain a fixed-parameter algorithm for Steiner Multicut for parameter k + t + p. Also,
since

(
p
2
)t ≤ nO(t), Steiner Multicut is in FPT for parameter k and any constant t.

Now, Multicut on instances with t = 1 (i.e. instances that have only one terminal
pair |T1| = {s, t}) is polynomial-time solvable by running an s− t cut algorithm. For t = 2
a result by Yannakakis et al. [34, Lemma 1] also yields a polynomial time algorithm for
Multicut. Again by branching over the separated terminals in both terminal sets, we obtain
a polynomial time algorithm for Steiner Multicut for t ≤ 2.

When there are three or more terminal sets, then Steiner Multicut generalizes
Multiway Cut and thus is NP-complete [12] even when p = 2.

We next show that Restr. Node Steiner Multicut is as least as hard as Node
Steiner Multicut. Therefore, whenever Node Steiner Multicut is W[1]-hard (or NP-
hard) for a certain combination of parameters, then so is Restr. Node Steiner Multicut.

I Lemma 4. Any instance of Node Steiner Multicut can be reduced in polynomial time
to an instance of Restr. Node Steiner Multicut with the same parameter values k, t,
p, and tw(G).

Proof. Take an instance (G, T , k), T = {T1, . . . , Tt}, of Node Steiner Multicut and
transform it to an instance of Restr. Node Steiner Multicut by adding for each terminal
node v ∈ T1 ∪ . . . ∪ Tt a new pendant node v′. Then replace v by v′ in every terminal set Ti.
It is easy to see that the original instance admits a node cut of size k if and only if the new
instance admits a node cut of size k that does not use any terminal nodes. J
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3 Tractability for Edge Deletion and Parameter k + t

In this section, we prove Theorem 1, namely that Edge Steiner Multicut parameterized
by k + t is fixed-parameter tractable. The proof uses the technique of randomized contractions
pioneered by Chitnis et al. [8]; a second, independent proof is deferred to the full version.
Later we will see that Theorem 1 is “maximal”, in the sense that Edge Steiner Multicut
is W[1]-hard parameterized by k or t alone (this follows from Theorem 16 and the fact that
even Edge Multicut is NP-hard when t = 3 [12] respectively), that the corresponding node
deletion problem is W[1]-hard parameterized by k + t (Theorem 2), and that there exists no
polynomial kernel for Edge Steiner Multicut parameterized by k + t (Theorem 17).

We first state some notions and supporting lemmas from the paper of Chitnis et al. [8],
which are needed to make our proof work. The identification of two vertices v, w ∈ V (G)
results in a graph G′ by removing v, w, adding a new vertex vw, and if v or w is an endpoint
of an edge, then we replace this endpoint by vw. Note that the identification of two vertices
does not remove any edges, and generally results in a multigraph (with parallel edges and
self-loops). Without confusion, we may sometimes refer to vw by its old names v or w.

The contraction of an edge (v, w) ∈ E(G) results in a graph G′ by removing all edges
between v and w, and then identifying v and w. This is also known as contraction without
removing parallel edges. Again, the result of a contraction is generally a multigraph. Given a
set F ⊆ E(G) of edges that induce a connected subgraph of G with a + 1 vertices of which v

is one, after contracting all edges of F , we say that a vertices were contracted onto v.

I Definition 5 ([8]). Given two integers a, b, an (a, b)-good edge separation of a connected
graph G is a partition (V1, V2) of V (G) such that |V1|, |V2| > a, G[V1] and G[V2] are connected,
and the number of edges between V1 and V2 is at most b.

We now define several notions and prove a few lemmas that are implicit in the work of
Chitnis et al. [8].

I Definition 6. A b-bordered subgraph of G is a connected induced subgraph G′ of G such
that in G at most b vertices of V (G′) have an edge to a vertex of V (G) \ V (G′). We call the
vertices of G′ that have an edge in G to a vertex of V (G) \ V (G′) the border vertices of G′.

I Lemma 7. Given a connected graph G and two integers a, b (b even), one can find in time
2O(min{a,b} log(a+b)) |V (G)|4 log |V (G)| a b-bordered subgraph of G that does not admit an
(a, b/2)-good edge separation.

Let G be a connected graph and let a be an integer. Given a set F ⊆ E(G), let GF denote
the graph obtained from G by contracting all edges of F , and then identifying into a single
vertex (which we denote by hF ) all vertices onto which at least a vertices were contracted.
Observe that GF is potentially a multigraph, and that hF might not exist.

A subset Y of the edges of a connected graph G is a separator if G \ Y has more than
one connected component. The set Y is a minimal separator if there is no Y ′ ⊂ Y such that
G \ Y ′ has the same connected components as G \ Y .

I Lemma 8 ([8]). Let G be a connected graph, let a, b be two integers (b even), and let
F ⊆ E(G) with |F | ≤ b/2. If G admits no (a, b/2)-good edge separation, then G \ F has at
most (b/2) + 1 connected components, of which at most one has more than a vertices.

I Lemma 9. Let G be a connected graph, let a, b be any two integers (b even) such that G

does not admit an (a, b/2)-good edge separation and such that |V (G)| > a(b/2 + 1), and let
Y ⊆ E(G) with |Y | ≤ b/2 be a minimal separator. In time 2O(b log(a+b)) |E(G)| log |E(G)|
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one can find a family F of 2O(b log(a+b)) log |E(G)| subsets of E(G) that contains a set
F0 ⊆ E(G) with the following properties: (1) F0 ∩ Y = ∅, (2) hF0 exists in GF0 , (3) hF0 is
the identification of a subset of the vertices of a connected component of G \ Y , and (4) for
each connected component C of GF0 \ {hF0}, Y either contains all edges of GF0 [C ∪ {hF0}]
or none of these edges.

It is important to observe that the construction of the family F does not require knowledge
of Y itself, beyond that it has size at most b/2. Moreover, note that all edges of Y are present
in GF0 , as F0 ∩ Y = ∅.

We are now ready to describe the algorithm for Edge Steiner Multicut for the
parameter k + t. The basic intuition is to find a part of the graph that does not have a
(q, k)-good edge separation for some q, but that only has a small number of border vertices.
In this part of the graph we find and contract a set of edges that are provably not part
of some smallest edge Steiner multicut. We repeat this procedure until the graph is small
enough to be handled by an exhaustive enumeration algorithm.

Consider an instance (G, T , k) with T = {T1, . . . , Tt} of Edge Steiner Multicut. We
may assume that G is connected. Let q be an integer determined later (q will depend on k

and t only). We assume that |E(G)| > q, or we can use exhaustive enumeration to solve the
problem in t qO(k) time.

We apply the algorithm of Lemma 7 to find a 2k-bordered subgraph G′ of G that does
not admit a (q, k)-good edge separation. Let B denote the set of border vertices of G′. Note
that possibly G′ = G, in which case B = ∅. The idea is now to determine a set of edges of G′

that is not used by some optimal solution.
Let S be a smallest edge Steiner multicut of (G, T ). Let G′′ denote the graph (B∪(V (G)\

V (G′)), E(G) \ E(G′)). Observe that E(G′) and E(G′′) partition E(G). Let S′ = S ∩ E(G′)
and let S′′ = S ∩E(G′′). We call a terminal set active if it is not separated in G \S′′. We call
border vertices b, b′ ∈ B paired if there is a path between b and b′ in G′′ \ S′′. Note that this
defines an equivalence relation on B. We call an equivalence class B′ of this relation i-active
if the terminal set Ti is active and the component of G′′ \ S′′ that contains B′ contains a
terminal of Ti. Intuitively, this information suffices to compute a set Z ⊆ E(G′) such that
Z ∪ S′′ is a smallest edge Steiner multicut of (G, T ). Then we could contract (in G) all other
edges of G′ to get a smaller instance, and repeat this until the instance is small enough to be
solved by exhaustive enumeration.

Of course, we do not know S, and thus we do not know this equivalence relation on B nor
which classes are i-active for each i = 1, . . . , t. However, we can branch over all possibilities.
In each branch, we find a small set of edges, which we mark. At the end, we contract (in G)
the set of edges of G′ that were not marked, and thus reduce the size of the instance. We will
prove that in one of the branches, we mark a smallest set Z of edges (of size at most k) such
that (Z ∪ S′′) is a smallest edge Steiner multicut (of size at most k) of (G, T ). Therefore,
after contraction, a smallest edge Steiner multicut (of size at most k) of (G, T ) persists (if
such a cut existed in the first place). In particular, we argue that we mark Z in the branch
with the active classes T S , the equivalence relation BS , and i-active classes BS

i of BS for
i = 1, . . . , |T S | that are induced by S.

The algorithm proceeds by branching over all possibilities. Let T ′ = {T ′1, . . . , T ′t′} be an
arbitrary subset of T , let B be an arbitrary equivalence relation on B, and let Bi denote
an arbitrary subset of B for i = 1, . . . , t′. We say that we made the right choice if T ′ = T S ,
B = BS , and Bi = BS

i for i = 1, . . . , t′. The algorithm considers two cases.

Case 1: If |V (G′)| ≤ q(k + 1), then we can essentially use exhaustive enumeration. Let G̃

be the graph obtained from G′ by identifying two border vertices if they are in the same
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equivalence class of B. This also makes each Bi a set of vertices, which by abuse of notation,
we denote by Bi as well. For i = 1, . . . , t′, let T̃i be equal to Bi ∪ (T ′i ∩ (V (G′) \B)). Then
T̃ = {T̃1, . . . , T̃t′}. We verify that no terminal set in T̃ is a singleton; otherwise, we can
continue with the next branch.

I Lemma 10. Assume we made the right choice. Then S′ is an edge Steiner multicut of
(G̃, T̃ ). Moreover, for any edge Steiner multicut X of (G̃, T̃ ), X ∪ S′′ is an edge Steiner
multicut of (G, T ).

Now the algorithm uses exhaustive enumeration to find a smallest edge Steiner multicut
of (G̃, T̃ ) of size at most k (if one exists) in t(qk)O(k) time. Mark this set of edges in G′.

By Lemma 10, if we made the right choice, we mark a set Z such that Z ∪S′′ is a smallest
edge Steiner multicut of (G, T ).

Case 2: If |V (G′)| > q(k + 1), then a more complicated approach is needed, because we
cannot just use exhaustive enumeration. In fact, we cannot work with (G̃, T̃ ) directly here,
as G̃ might have a (q, k)-good edge separation, even though G′ does not.

We proceed as follows. Apply Lemma 9 with a = q and b = 2k to G′ with respect
to Y := S′, and let F be the resulting family. Note that Y = S′ is a minimal separator,
|V (G′)| > q(k + 1) = a(b/2 + 1), and G′ has no (a, b/2)-good edge separation, and thus the
lemma indeed applies. Consider an arbitrary F ∈ F . We augment our definition of the right
choice by adding the condition that F = F0, where F0 is the family that Lemma 9 promises
exists in F . Now find G′F . If hF does not exist in G′F , then we proceed to the next set F , as
Lemma 9 promises that hF exists if we made the right choice.

We call a set X ⊆ E(G′F ) an all-or-nothing cut if for each connected component C ′ of
G′F \ {hF }, X either contains all edges of G′F [C ′ ∪ {hF }] or none of these edges. Note that
Lemma 9 promises that S′ is an all-or-nothing cut in G′F for F = F0 ∈ F .

Let C denote the set of connected components of G′F \ {hF } that contain a vertex onto
which a border vertex was contracted. Let Y ⊆

⋃
C∈C E(G′F [C ∪ {hF }]) be an arbitrary set

of edges that contains for each C ∈ C either all edges of G′F [C ∪{hF }] or none of these edges.
Note that Y is basically an all-or-nothing cut restricted to the edges induced by C. The
algorithm will consider all possible choices of Y . We augment our definition of the right choice
again, by adding the condition that Y = Y0, where Y0 := S′ ∩ (

⋃
C∈C E(G′F [C ∪ {hF }])).

Now the algorithm deletes all edges in Y and contracts any edges in (
⋃

C∈C E(G′F [C ∪
{hF }])) \ Y . Denote the resulting graph by HF . Let Ĝ be the graph obtained from HF

by identifying two border vertices if they are in the same equivalence class of B. This also
compresses each Bi into a set of vertices, which by abuse of notation, we denote by Bi as
well. For i = 1, . . . , t′, let T̂i be equal to Bi ∪ (T ′i ∩ (V (Ĝ) \ B)). Then T̂ consists of all T̂i

that are not already separated in HF . We verify that no terminal set in T̂ is a singleton;
otherwise, we can continue with the next branch.

I Lemma 11. Assume that we made the right choice. Then S′ \Y is an edge Steiner multicut
of (Ĝ, T̂ ) that is an all-or-nothing cut. Moreover, for any edge Steiner multicut X of (Ĝ, T̂ ),
Y ∪X ∪ S′′ is an edge Steiner multicut of (G, T ).

We now aim to find a smallest edge Steiner multicut X of (Ĝ, T̂ ) that is an all-or-nothing
cut. Let {C ′1, . . . , C ′u} be the set of connected components of Ĝ \ {hF }. Let T̂ |i denote the
set of terminal sets in T̂ that are separated if one removes all edges of E(Ĝ[{hF } ∪C ′i]) from
G′F . Define z[U , i], where U ⊆ T̂ and 1 ≤ i ≤ u, as the size of the smallest all-or-nothing cut
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of the terminal sets in U using only edges in or going out of C ′1, . . . , C ′i. Then for any U ⊆ T̂ ,

z[U , 1] =
{
∞ if U 6⊆ T̂ |1
|E(G′F [{hF } ∪ C ′1])| otherwise (i.e. if U ⊆ T̂ |1)

and for i > 1, z[U , i] = min
{

z[U , i− 1], |E(G′F [{hF } ∪ C ′i])|+ z[U \ T̂ |i, i− 1]
}

. Note that
z[T̂ , u] holds the size of the smallest edge Steiner multicut of (Ĝ, T̂ ) that is an all-or-nothing
cut (if one exists). Finding the set achieving this smallest size is straightforward from the
dynamic-programming table. Finally, over all choices of F and all choices of Y , mark in G′

the smallest set of edges that was found if it has size at most k.
By Lemma 11, if we made the right choice, we mark a set Z such that Z ∪S′′ is a smallest

edge Steiner multicut of (G, T ).

In both cases, let M be the set of marked edges. Now we contract all unmarked edges
E(G′) \M in G. Let G̃ denote the resulting graph; note that in general G̃ is a multigraph.
Each time we contract an edge between two vertices u and v, we replace u and v by uv in all
terminal sets in T . Let T̃ denote the resulting set of terminal sets. Observe that if a terminal
set T̃i in T̃ is a singleton set and Ti was not a singleton set in T , then we can answer “no”.
Now it remains to prove that (G, T , k) is a “yes”-instance if and only if (G̃, T̃ , k) is. For this,
it suffices to note that an edge Steiner multicut of (G̃, T̃ ) corresponds directly to an edge
Steiner multicut of (G, T ), and that for any smallest edge Steiner multicut S of (G, T ) there
is a smallest edge Steiner multicut Z ∪ (S \ E(G′)) of (G, T ) such that Z ⊆M .

Since there are at most 2k border vertices and t terminal sets, there are r = 2O(kt log k)

different branches that we consider for T ′, B, and Bi, and in each we mark at most k edges.
Choose q = rk + 1. Now note that |E(G′)| ≥ q. If G = G′, then this follows from the
assumption that |E(G)| > q. If G 6= G′, then G′ was obtained after considering multiple
(q, k)-good separations. Hence, |V (G′)| > q, and since G′ is connected, |E(G′)| ≥ q. Since
q = rk + 1, at least one edge of G′ was not marked and thus contracted. Therefore, |V (G)|
decreases by at least one, and the entire procedure finishes after at most |V (G)| iterations.

To analyze the running time, note that the dynamic-programming algorithm requires time
2O(t)k+O(t|E(G)|). The family F contains 2O(k2t log k) log |E(G)| sets and can be constructed
in 2O(k2t log k) |E(G)| log |E(G)| time. Hence, Case 2 runs in 2O(k2t log k) |E(G)| log |E(G)|
time. Case 1 runs in 2O(k2t log k) time. Since there are r = 2O(kt log k) different branches for
T ′, B, and Bi that we consider, and it takes 2O(k2t log k) |V (G)|4 log |V (G)| time to find a
2k-bordered subgraph that does not admit a (q, k)-good separation, each iteration takes
2O(k2t log k) |V (G)|4 log |V (G)| time. Since there are at most |V (G)| iterations, the total
running time is 2O(k2t log k) |V (G)|5 log |V (G)|. Actually, using the recurrence outlined by
Chitnis et al. [8], one can show a bound on the running time of 2O(k2t log k) |V (G)|4 log |V (G)|.

4 Steiner Multicuts for Graphs of Bounded Treewidth

In this section, we consider Steiner Multicut on graphs of bounded treewidth. To start the
exposition, we note that Edge Steiner Multicut and Restr. Node Steiner Multicut
are NP-complete for trees and Node Steiner Multicut is NP-complete on series-parallel
graphs [4], which are graphs of treewidth two. This means that any efficient algorithm for
Steiner Multicut on graphs of bounded treewidth needs an additional parameter.

We first show Theorem 3, namely that all variants of Steiner Multicut for the
parameter k are W[1]-hard, even if p = 3 and tw(G) = 2 (but t is unbounded). The graph G

is in fact a tree plus one node. We then contrast this result by showing that the problem is
fixed-parameter tractable on bounded treewidth graphs when t is a parameter.
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The reduction for Theorem 3 is from an intermediate problem, (Monotone) NAE-
Integer-3-SAT. In this problem, we are given variables x1, . . . , xk that each take a value in
{1, . . . , n} and clauses C1, . . . , Cm of the form NAE(xi1 ≤ a1, xi2 ≤ a2, xi3 ≤ a3), a1, a2, a3 ∈
{1, . . . , n}, which is satisfied if not all three inequalities are true and not all are false (i.e.,
they are “not all equal”). The goal is to find an assignment of the variables that satisfies all
given clauses. We remark that NAE-Integer-3-SAT generalizes Monotone NAE-3-SAT
(by restriction to n = 2), and that NAE-Integer-3-SAT can be solved in time O(m · nk),
by enumerating all assignments.

I Lemma 12. NAE-Integer-3-SAT is W[1]-hard for parameter k.

Proof. Let (G, k) be an instance of Multicolored Clique [18]. We use Vi to denote the set
of vertices of color i, ni = |Vi|, and Ei,j to denote the set of edges with one endpoint in Vi and
the other in Vj . We create an instance of NAE-Integer-3-SAT on variables xi, one for each
color 1 ≤ i ≤ k, and yij , one for each pair of colors 1 ≤ i < j ≤ k. We identify the vertices
Vi with the integers {1, . . . , ni} in an arbitrary way. We restrict xi to {1, . . . , ni} using the
clause NAE(xi ≤ 0, xi ≤ 0, xi ≤ ni), and write xi = u if the number xi corresponds to vertex
u. Analogously, we can identify the edges uv ∈ Ei,j with numbers in {1, . . . , |Ei,j |} and write
yij = uv if we pick the number corresponding to edge uv. Consider the following constraints
(for any edge uv, with u of color i and v of color j), yij = uv ⇒ xi = u, yij = uv ⇒ xj = v.

If we can encode these constraints with NAE-clauses, then any satisfying assignment of
the constructed NAE-Integer-3-SAT instance corresponds to a clique in G, as all chosen
pairs yij correspond to edges, and edges sharing a color i picked the same vertex xi. We
focus on the first constraint; the second is similar. Note that the constraint is equivalent
to yij = uv ⇒ xi ≥ u, yij = uv ⇒ xi ≤ u. Again, w.l.o.g., we focus on the first of these
constraints. It is equivalent to yij < uv ∨ yij > uv ∨ xi ≥ u, which in turn can be written
as NAE(yij < uv, yij > uv, xi ≥ u), since yij < uv, yij > uv cannot both be true. Note
that we can replace any inequality x < a by x ≤ a − 1 (and similarly for x > a). Hence,
we can encode all desired constraints if we may use “≤” and “≥” inequalities, not only “≤”
inequalities, as is the case in the definition of NAE-Integer-3-SAT.

In the remainder of this proof, we reduce NAE-Integer-3-SAT with “≤” and “≥”
inequalities to the original variant with only “≤” inequalities. Given any instance of NAE-
Integer-3-SAT with both types of inequalities, for any variable x we introduce a new
variable x̄. For any 1 ≤ v ≤ n, we add the constraint NAE(x ≤ v, x ≤ v, x̄ ≤ n− v). This
enforces x̄ = n + 1− x. Finally, we replace any inequality x ≥ v by x̄ ≤ n + 1− v. This yields
an equivalent NAE-Integer-3-SAT instance with only “≤” inequalities. J

Proof of Theorem 3. We first give a reduction from NAE-Integer-3-SAT to Edge
Steiner Multicut (satisfying p = 3 and tw(G) = 2). Consider an instance of NAE-
Integer-3-SAT on variables x1, . . . , xk taking values in {1, . . . , n} with clauses C1, . . . , Cm.
Take k paths consisting of n edges and identify their start nodes (to a common node s) and
end nodes (to a common node t), respectively. The resulting graph G has tw(G) = 2, since it
is not a tree, but becomes a tree after deleting s (or t). Let vi

j be the j-th node on the i-th
path from s to t, so that vi

0 = s and vi
n = t. For each clause NAE(xi1 ≤ a1, xi2 ≤ a2, xi3 ≤ a3)

we introduce a terminal set {vi1
a1

, vi2
a2

, vi3
a3
} (note that we can assume 0 ≤ aj ≤ n without loss

of generality). Further, we let {s, t} be a terminal set and set the cut size to k, i.e., we allow
to delete k edges. This finishes the construction. In order to separate s from t we need to cut
at least one edge of each of the k paths that connect s and t, and because the cut size is k

we have to delete exactly one edge per path. Say we delete the xi-th edge on the i-th path.
This splits G into two components, one containing s and the other containing t. Note that
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we separate nodes vi
j and vi′

j′ by cutting at xi ≤ j and xi′ > j′ (or with both inequalities the
other way round), since then vi

j is in the t-component and vi′

j′ in the s-component. Hence,
the following are equivalent:

the terminal set {vi1
a1

, vi2
a2

, vi3
a3
} is disconnected;

some pair of nodes in this set is disconnected;
among the inequalities xij ≤ aj , j = 1, 2, 3, one is true and one is false;
the clause NAE(xi1 ≤ a1, xi2 ≤ a2, xi3 ≤ a3) is satisfied.

Therefore, the given NAE-Integer-3-SAT instance is equivalent to the constructed Edge
Steiner Multicut instance.

We can adapt this construction to prove hardness of Node Steiner Multicut; hardness
of Restr. Node Steiner Multicut then follows from Lemma 4. J

We contrast the above theorem with the following result by showing that Steiner
Multicut is fixed-parameter tractable for the parameter t if the graph has bounded
treewidth, through an MSOL-formula.

I Theorem 13. Node Steiner Multicut, Edge Steiner Multicut, and Restr. Node
Steiner Multicut are fixed-parameter tractable for the parameter t + tw(G).

5 Hardness for Cutsize k and Number of Terminal Sets t

In this section, we consider the Steiner Multicut problem on general graphs parameterized
by k+t. We show that both node deletion versions of the problem, Node Steiner Multicut
and Restr. Node Steiner Multicut, are W[1]-hard for this parameter.

I Theorem 14. Node Steiner Multicut and Restr. Node Steiner Multicut are
W[1]-hard for the parameter k + t.

Proof. We present a parameterized reduction from the Multicolored Clique problem [18]
to Node Steiner Multicut. Let (H, k) be an instance of Multicolored Clique, and
let Vi and Ei,j be as in the definition of Multicolored Clique. We then create the
following instance of Node Steiner Multicut. First, we subdivide each edge of H, and
let Ni,j denote the set of nodes that were created when subdividing the edges of Ei,j . Then,
add a complete graph C with 2k nodes, where we denote the nodes of C by c1, . . . , c2k,
and make all nodes of Vi adjacent to c2i−1 and c2i for each i = 1, . . . , k. Let G denote
the resulting graph. Observe that G[V (H)] and G[

⋃
i,j Ni,j ] are both independent sets of

G. We then create terminal sets Ti = Vi ∪ {c2i−1} and T ′i = Vi ∪ {c2i}, and terminal sets
Ti,j = Ni,j ∪ V (C). Let T = {Ti, T ′i | i = 1, . . . , k} ∪ {Ti,j | i 6= j, i, j = 1, . . . , k}. Then the
created instance is (G, T , k).

Suppose that (H, k) is a “yes”-instance of Multicolored Clique, and let K denote
a clique of H such that V (K) ∩ Vi 6= ∅ for each i. Pick a node vi ∈ V (K) ∩ Vi and let
S = {vi | i = 1, . . . , k}. Observe that vi disconnects terminal sets Ti and T ′i . Further, if we
let ni,j denote the subdivision node of the edge (vi, vj) ∈ E(H), then vi and vj disconnect
ni,j from the rest of Ti,j . Finally, |S| = k. Therefore, (G, T , k) is a “yes”-instance of Node
Steiner Multicut.

Suppose that (G, T , k) is a “yes”-instance of Node Steiner Multicut, and let S ⊆ V (G)
denote a node Steiner multicut of G with respect to terminal sets T such that |S| ≤ k. We
claim that H[S] is a multicolored clique of H. First, observe that to disconnect Ti and T ′i ,
we need that S ∩ Ti 6= ∅ and S ∩ T ′i 6= ∅. Since |S| ≤ k, we know that S ∩ Ti ∩ T ′i 6= ∅ for
each i = 1, . . . , k. This implies that |S| = k, that S ⊆ V (H), and that S ∩ Vi 6= ∅ for each
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i = 1, . . . , k. It remains to show that H[S] is a clique. Let vi denote the node in S ∩ Vi.
Suppose that (vi, vj) 6∈ E(H) for some i, j. Then consider the terminal set Ti,j , and observe
that for any node n ∈ Ni,j at least one endpoint of the edge corresponding to n is not in
S. Since S ∩ V (C) = ∅, this implies that Ti,j is not disconnected by S, a contradiction. It
follows that H[S] is a clique, and thus (H, k) is a “yes”-instance of Multicolored Clique.

For Restr. Node Steiner Multicut hardness follows from the statement for Node
Steiner Multicut and Lemma 4. J

6 Steiner Multicuts in Trees

We state the following results on trees; the proofs are in the full version. The first theorem
generalizes the algorithm for Node Multicut on trees [4].

I Theorem 15. Node Steiner Multicut can be decided in linear time on trees.

The next theorems follow from a reduction from Hitting Set [15, 14].

I Theorem 16. Edge Steiner Multicut and Restr. Node Steiner Multicut are
W[2]-hard on trees for the parameter k.

I Theorem 17. Edge Steiner Multicut and Restr. Node Steiner Multicut have no
polynomial kernel on trees for the parameter k + t, unless the polynomial hierarchy collapses
to the third level.

Note that the above theorem complements the FPT result of Theorem 1.
The final theorem uses a branching strategy in which an incident edge or neighbor needs

to be chosen for the lowest common ancestor of the terminals in any terminal set.

I Theorem 18. Edge Steiner Multicut and Restr. Node Steiner Multicut are
fixed-parameter tractable on trees for the parameter k + p.

7 Discussion

We provided a comprehensive computational complexity analysis of the Steiner Multicut
problem with respect to fundamental parameters, culminating in either a fixed-parameter
algorithm or a W[1]-hardness result for every combination of parameters. This way, we
generalize known tractability results for special cases of Steiner Multicut, and chart the
boundary of tractability for other cases. See Table 1 for a complete overview.

We leave several interesting questions for future research. A possible extension is to
consider directed graphs. Already Multicut is W[1]-hard in this case [32] for parameter cut
size k, even on acyclic directed graphs [27]. On the other hand, Multicut is fixed-parameter
tractable for the parameter k + t in directed acyclic graphs [27]. It would be interesting
whether this result generalizes to Steiner Multicut.

Another possible extension is to investigate which problems admit polynomial kernels.
While we have resolved many kernelization questions in the full version of this paper, several
open problems remain, in particular whether there is a polynomial kernel for the parameters
k + t + p on general graphs. Answers in this research direction might shed new light on some
long-standing open questions [9] on the existence of polynomial kernels for Multicut for
parameter k + t (currently, only a kernel of size kO(

√
t) is known [28], and there is no kernel

of size polynomial in k only [10]).
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