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Abstract

We study the following optimization problem. The input is a number k and a directed
graph with a specified “start” vertex, each of whose vertices may have one “memory bank
requirement”, an integer. There are k “registers”, labeled 1 . . . k. A valid solution associates
to the vertices with no bank requirement one or more “load instructions” L[b, j], for bank b
and register j, such that every directed trail from the start vertex to some vertex with bank
requirement c contains a vertex u that has been associated L[c, i] (for some register i ≤ k)
and no vertex following u in the trail has been associated an L[b, i], for any other bank b. The
objective is to minimize the total number of associated load instructions.

We give a k(k + 1)-approximation algorithm based on linear programming rounding, with
(k+1) being the best possible unless Vertex Cover has approximation 2− ǫ for ǫ > 0. We also
present a O(k logn) approximation, with n being the number of vertices in the input directed
graph. Based on the same linear program, another rounding method outputs a valid solution
with objective at most 2k times the optimum for k registers, using 2k − 1 registers.

This version of the paper corrects some minor errors that made it in the final Algorithmica
paper.

1 Introduction

Partitioned memory architecture is common in 8-bit microcontrollers. For example, Freescale
[1] 68HC11 8-bit microcontrollers allow multiple 64KB memory banks to be accessed by their
16-bit address registers with only one bank being active at a time. Zilog [2] Z80 also addresses
a maximum of 64 KB memory using 16-bit address registers. Other examples include Intel 8051
processor family and MOS technology 6502 series microcontrollers. For embedded systems using
these 8-bit microcontrollers, how to insert bank selection instructions (or load instructions) to
minimize the code size is an important research topic. Given a Control Flow Graph, where each
node represents some code block, we can insert bank selection instructions (loading a bank index
to a register) either immediately before the block or immediately after the block to activate some
memory bank. We want to use the minimum number of bank selection instructions to guarantee
that no matter from which path the program enters the current code block, the memory bank
which contains this block is active at this moment. Formal definitions are in the next subsection.

Note that we are not optimizing the run-time of the program (in which case the problem
would resemble caching [26]) nor the number of registers needed for a program (as in Thorup [28],
Kannan and Proebsting [19], and Jansen and Reiter [18]). An early related work is [16]. More
recent work appears in [25], while [13, 20, 21, 27, 22] and many other papers deal with practical
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issues of NP-hard variants of register allocation. Also, as opposed to most theoretical work, we
do not assume any structure (such as low treewidth) for the input graph. Most related to our
model are the “spill heuristics” discussed in [6, 5, 7, 29, 12, 10], but as the name suggests we do
not know of any previous approximation algorithms. Here “spill” means putting some variables
in the RAM instead of registers and the aim of those heuristics is to minimize the number of
variables “spilled”.

So, while our problem resembles register allocation, it differs in the following ways. We do
not force a bank with a “live-range” to stay in the same register but allow the register to change
content over time. We also have the restriction that a bank variable cannot be stored in RAM
when it is to be visited (it must come back to a register in time, which is different from the Register
Allocation problem where a variable can be spilled). In the new setting, our goal is to minimize
the total number of content switching instructions for registers inserted into the program.

We organize the remaining of the paper as follows. Subsection 1.1 gives the original problem
formulation k-OBSIM together with the more pure version k-BSIM. Subsection 1.2 describes
previous and new results and further discussion. In Section 2, we show a reduction to prove
the hardness of k-OBSIM and also show that the k-OBSIM problem can be transformed to the
k-BSIM problem and hence we will focus on solving k-BSIM. Section 3 presents our integer linear
program for 1-BSIM and the rounding procedure giving the 2-approximation. We also discuss
derandomization in Subsection 3.2, using linear programming duality to reduce the running time
of the rounding procedure. Section 4 presents the generalization of the approximation results from
1-BSIM to k-BSIM, as well as the two other approximation results mentioned in the abstract. We
conclude in Section 5.

1.1 Problem Formulation

Starting directly from embedded systems, we obtain the Original k-Bank Selection Instruction
Minimization problem (k-OBSIM), defined as follows: the input is a number k and a directed
graph, called the Control Flow Graph (CFG), with a specified “start” vertex, and for each vertex
we have at most one “memory bank requirement”, an integer. The vertices of the CFG correspond
to blocks of code in an embedded system, and arcs represent possible jumps in the code. Many
embedded systems use partitioned memory architecture, and program variables are stored in
“banks” that must be activated by storing its index in registers before use. For illustration
convenience, we simply say a bank is stored in a register when the bank is activated. A vertex
with no bank requirement is called a transparent vertex, and a vertex with one bank requirement
is called a required vertex. There are k registers, labeled 1 . . . k. Let B be the set of possible
banks.

Each vertex of the CFG may “load” a bank (use a bank load instruction), either at the
“entrance” or at the “exit” of the vertex (or both). We write Lu

in[b, j] for loading bank b in
register j at the entrance of vertex u, and Lu

out[b, j] for loading at the exit. Although loading is
also allowed on the arcs of the CFG, we prefer to subdivide such arcs with transparent vertices to
keep the problem description simpler. Also, when k = 1, a small proof shows that any load on an
arc can be done instead at the entry of the head of the arc, resulting in another feasible solution
not worse in the number of load instructions.

For a trail (directed path, not necessarily simple) P , let P̂ denote the set of interior vertices
of P , obtained as follows: from the sequence of vertices of P , remove the first and last vertex,

2



2 2

12 2

L(1)

L(2)

bb

a

a

L(b)

L(a)

Figure 1: On the left: An example input with a feasible solution when k = 1. Circles represent
nodes and the number in the circle means the bank required by this node (empty circles are
transparent nodes). The start vertex is not represented, or it could be the top (transparent)
vertex. With only one register, and the position w.r.t. a vertex clear from the picture, we write
L(a) to mean “load bank a”. On the right: another example (also k = 1) with an unfeasible
solution. There is a non-simple path going to the lower vertex with bank requirement a that
loads a, then b, and does not load a again.
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Figure 2: On the left, an instance with directed cycles, for k = 1. Nodes 1a and 2a require bank
a, nodes 1b and 2b require bank b, nodes 1c and 2c require bank c, while the start s and node
u are transparent. On the right, a feasible solution. We abbreviate Lout[b, j] or Lin[b, j] to L(b)
since the figure shows the position of the load instructions, and there is exactly one register.
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Figure 3: An example input with a feasible solution when k = 3. For the bottom node which
accesses bank 1, there are three paths entering it, where two of them have bank 1 loaded in register
1 and one of them has bank 1 loaded in register 3. We abbreviate Lout[b, j] or Lin(b, j) to L(b, j)
since the figure shows the position of the load instructions. The start vertex is not represented
and has only one arc, to the top-most vertex.

and then eliminate duplicates. Note that the start or end of P may appear in P̂ . If for trail P we
have vertex w ∈ P̂ , let P [w] be the subtrail of P from the last occurrence of w in P to the end
vertex of P . Let s be the start vertex of the CFG. In a feasible solution, bank load instructions
must be associated to CFG vertices such that, for any trail P from s to some node v that has a
bank requirement b, P has a vertex w (which may be v) and a register j for some j ≤ k such that
one of the following holds:

1. w = v, and we have Lw
in[b, j] but no Lw

in[c, j] for any c ∈ B with c 6= b

2. w has Lw
out[b, j], and for no c ∈ B with c 6= b there is Lv

in[c, j] or Lw
out[c, j] or a vertex u of

P̂ [w] with either Lu
out[c, j] or L

u
in[c, j]

3. w has Lw
in[b, j], and for no c ∈ B with c 6= b there is Lv

in[c, j] or Lw
in[c, j] or Lw

out[c, j] or a

vertex u of P̂ [w] with either Lu
out[c, j] or L

u
in[c, j].

We call such a trail fulfilled. See figures 1, 2, and 3 for examples of feasible solutions. In other
words, in a trail from the start vertex to some vertex v requiring bank b, bank b is always loaded
in some register and there are no other bank loads over b further on the trail. The objective is to
minimize the total number of bank load instructions (as to keep the embedded code as short as
possible). See the right example in Figure 1 for a scenario where simple paths can be fulfilled but
there exists an unfulfilled trail.

We prefer to work with a slightly more pure problem, called k-BSIM. The input is a number
k and a directed graph with a specified “start” vertex, each of whose vertices may have one
“memory bank requirement”, an integer. There are k “registers”, labeled 1 . . . k. A valid solution
associates to the vertices with no bank requirement one or more “load instructions” L[b, j], for
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bank b and register j, such that every directed trail from the start vertex to some vertex with
bank requirement c contains a vertex u that has been associated L[c, i] (for some register i ≤ k)
and no vertex following u in the trail has been associated an L[b, i], for any other bank b. The
objective is to minimize the total number of associated load instructions.

The difference between k-OBSIM and k-BSIM is that in k-BSIM, “load instructions” can only
be added inside nodes with no bank requirement (transparent nodes) while in k-OBSIM, “load
instructions” can be added before and after any node.

1.2 Results and Discussion

The paper [23] studies 1-OBSIM without transparent nodes, showing NP-hardness and a 2-
approximation algorithm. We generalize this result, by giving a k(k+1)-approximation algorithm
for k-OBSIM (transparent nodes also allowed) based on linear programming rounding. In a per-
sonal communication, Yuan Zhou [31] claimed that 1-OBSIM without transparent nodes does not
have a 2 − ǫ approximation algorithm unless Vertex Cover has a 2 − ǫ approximation algorithm
(and it is believed that such an algorithm does not exist). We also present such a reduction, and
generalize it to show that k-OBSIM without transparent nodes does not have a α − ǫ approxi-
mation algorithm unless (k + 1)-uniform Hypergraph Vertex Cover has such an algorithm. It is
known that it is NP-hard to approximate Hypergraph Vertex Cover in a r-uniform-hypergraph to
within a factor of (r− 1− ǫ) [11], and it is believed that an approximation ratio of r is the best a
polynomial-time algorithm can do. Thus it is NP-hard to approximate k-OBSIM (k > 2) within
a factor of k − ǫ.

The results in [23] only work for acyclic CFGs with no transparent nodes, while all our ap-
proximation algorithms work for arbitrary CFGs (with cycles and transparent nodes) by adding
an essential new constraint and also using a more sophisticated rounding analysis, which is akin
to how Node-Multiway-Cut [14] generalizes Vertex Cover. For k = 1, the existence of transparent
nodes poses a serious challenge, since given a transparent node v, solutions without a “load in-
struction” at v may exist, and for such a solution, different program flows (trails) going through
v can have different banks being active when leaving v. However, for a node with a bank require-
ment, no matter which flow the program goes through, the active bank will be the same after
going through this node. For k > 1, there are similar issues.

Based on the same linear program, we also present a O(k log n)-approximation, with n being
the number of vertices in the input directed graph, for k-BSIM. Another rounding method outputs
a valid solution with objective at most 2k times the optimum for k registers, however using 2k−1
registers instead of k registers. The linear program contains one “clever” constraint which makes
it similar, for k = 1, to the linear program used by Garg, Vazirani, and Yannakakis [14] to obtain a
2-approximation for Node Weighted Multiway Cut. We discussed earlier the hardness of k-BSIM,
obtained from the hardness of k-uniform Hypergraph Vertex Cover. Informally, k-BSIM also
inherits some hardness from k-Coloring (as in the register allocation papers [28] and [19], with
the latter using, as one of our algorithms above, 2k instead of k registers) and we see intuitive
connections to Directed Steiner Tree [30, 8, 32] and Multicut in Directed Graphs [9, 15, 3].
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Figure 4: An example of reducing Vertex Cover (instance on the left) to 1-OBSIM (instance on
the right; each oval contains many vertices with the same bank requirement).

2 Reductions

A reduction from Vertex Cover to 1-OBSIM without transparent nodes was announced by Yuan
Zhou [31]. We show directly how (k+1)-uniform Hypergraph Vertex Cover reduces to k-OBSIM
without transparent nodes.

r-uniform Hypergraph Vertex Cover is the following problem: The input H = (V,E) is a r-
uniform hypergraph; that is each hyperedge e ∈ E is a subset of V of size r. A set C of vertices is
said to cover a hyperedge e if e∩C 6= ∅, and is said to be a vertex cover if it covers all hyperedges.
The objective is to find a minimum size vertex cover. Vertex Cover is 2-uniform Hypergraph
Vertex Cover.

Please refer to Figure 4 for an illustration. Given a (k+1)-uniform Hypergraph Vertex Cover
instance G = (V,E) (with |V | = n and |E| = m), construct the CFG as follows: add to its vertices
many (say, km2) copies of each vertex of v ∈ V , all with required bank v, creating groups with
vertices in different groups having different requirements. For each hyperedge e ∈ E, add to the
CFG a vertex with bank 0 6∈ V , and put an arc from this vertex to all the copies of the vertices of
V included in e. Add to the CFG the start vertex s and put arcs from it to all the CFG-vertices
obtained from hyperedges of E. Call this k-OBSIM instance I.

We claim that if G has a vertex cover C of size q, we can find a feasible solution for I that
uses at most 1 + km+ qkm2 bank load instructions: (please refer to Figure 5 for an illustration)
all the qkm2 copies of all the vertices in C will load their respective requirement at the entry, all
the vertices of I obtained from some e ∈ E will load, at the exit, the requirement of the vertices
in e \ C (there are at most k such vertices since e has cardinality (k + 1) and at least one vertex
of C is contained in the set e). s loads bank 0 at the exit.

Moreover, if I has a solution with less than qkm2 bank load instructions, then G has a vertex
cover Q of size less than q: put in Q a vertex v if all the km2 copies of v load their requirement.
Then |Q| < q and it remains to prove that all the hyperedges of G are covered by Q. Indeed, if
hyperedge e ∈ E is not covered by Q, then for every u ∈ e, there is a copy of u with no bank
load instruction; however then no matter what k load instructions we associate with the vertex
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Figure 5: A feasible solution for the Vertex Cover instance of Figure 4 appears on the left. The
corresponding 1-OBSIM feasible solution appears on the right; as each oval contains many vertices
with the same bank requirement, there will be many L(v), L(w), and L(y) instructions.

of I corresponding to e or with the start vertex, we do not obtain a feasible solution for I: since
|e| > k there will be a vertex w ∈ e such that bank w is not loaded after leaving the vertex of I
corresponding to e, and since also one of w’s copy (call it w′) in I does not have an associated
load instruction at its entry, the trail (here, a simple path) s, e, w′ is not fulfilled.

In conclusion, if G has optimum vertex cover of size q, I has optimum between qkm2 and
qkm2 + km + 1, and thus k-OBSIM cannot be approximated with ratio k − ǫ unless P = NP
(using [11]) and 1-OBSIM cannot be approximated with ratio 2 − ǫ unless Vertex Cover can be
approximated with ratio 2− ǫ.

We continue by showing how k-OBSIM reduces to k-BSIM (with transparent nodes), a problem
easier to describe. Given an instance of k-OBSIM, for every node v in CFG with bank requirement
b, add a transparent node vtin which takes in all the incoming arcs of v and has one arc to v, thus v
has exactly one incoming arc. Also add a transparent node vtout which sends out all the outgoing
arcs of v, and has one arc from v, thus v has exactly one outgoing arc. If for the k-OBSIM
instance, there is a load operation at the entrance of some vertex v with bank requirement b, then
in the transformed k-BSIM instance, we do the same load to node vtin; if there is a load operation
at the exit of some vertex v with bank requirement b, then in the transformed k-BSIM instance,
we do the same load to node vtout. Thus, with the above correspondence, a feasible solution for
the k-OBSIM instance can be changed to a feasible solution for the transformed k-BSIM instance.
Also, it is easy to see that a feasible solution for the transformed k-BSIM instance can be changed
to a feasible solution for the original k-OBSIM instance, without an increase in the objective
function.

3 1-BSIM

Remove nodes from the CFG such that every node is reachable from the start vertex s. We do
a transformation for the given OBSIM instance, similar to the previous reduction. The linear
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Figure 6: Splitting a node as described in the reduction from 1-OBSIM to BSIM. From node v
with bank requirement 8 (a), four nodes are created (b). vin is the transparent node taking in
all the incoming arcs of vin, and vout is the transparent node sending out all the incoming arcs of
vout.

program obtained later after this transformation is more intuitive (but this reduction only works
for k = 1).

Create a new transparent start vertex, s′, with exactly one arc, outgoing to the original s. For
every node v in CFG with bank requirement b, split v in two nodes, vin with all the incoming
arcs of v, and vout with all the outgoing arcs of v; both have requirement b. This operation is
illustrated in Figure 6. Note that we do not have an arc from vin to vout. Moreover, for vin, add
a transparent node vin which takes in all the incoming arcs of vin and has one arc to vin, thus vin
has exactly one incoming arc. Also, for vout, add a transparent node vout which sends out all the
outgoing arcs of vout, and has one arc from vout, thus vout has exactly one outgoing arc. We now
insist that all load instructions are done at transparent nodes. Figure 7 gives an example.

Call the resulting directed graph G = (V,E). Let RI ⊂ V (lowest level in Figure 7) contain
all the required nodes with one incoming arc each (that is, the vin nodes), let RO ⊂ V (highest
level in Figure 7) contain s′ and the required nodes with one outgoing arc each (that is, the vout
nodes), and let F be the set of transparent nodes other than s′ (in Figure 7, these nodes are
neither on the highest nor lowest levels). For a ∈ B, let RI

a be the subset of RI with requirement
a, and RO

a be the subset of RO with requirement a. In G, we insist that for every bank a ∈ B and
every vertex v ∈ RI

a, every trail ending in v and starting at a vertex of RO \RO
a contains a vertex

u ∈ F loading bank a, and no load instructions after u. Call BSIM this new problem. One can
check that a 1-OBSIM feasible solution for the original instance corresponds to a BSIM feasible
solution to the constructed instance, with the same number of load instructions.

For v ∈ V and a ∈ B, let T v
a be the (possibly infinite) set of trails of G from v to some node

of RI
a, and let Pv

a be the set of simple paths of G from v to some node of RI
a. Write the following

integer linear program (IP1), with variables xvb for every node v ∈ F and bank requirement b ∈ B
(xvb in the IP would be 1 if node v ∈ F loads bank b), and variables dvb for every node v ∈

(
F ∪RO

)

8
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Figure 7: On the left, the instance from Figure 2. Nodes 1a and 2a require bank a, nodes 1b and
2b require bank b, nodes 1c and 2c require bank c, while the start s and node u are transparent.
On the right, the BSIM instance created (not represented are three weakly connected components
with 2aout, 1bout, and 1cout). Note also that weakly connected component of 2bout plays no role
in finding optimal solutions.

and bank requirement b ∈ B (dvb in the IP would be 1 if either Pv
b = ∅ or, for any simple path

P ∈ Pv
b , P̂ contains at least one node that loads bank b). Note that Pv

b = ∅ iff T v
b = ∅, and that

if any simple path P ∈ Pv
b , P̂ contains at least one node that loads bank b, then for any trail

T ∈ T v
b , T̂ contains at least one node that loads bank b. Also note that if, for some v ∈

(
F ∪RO

)
,

we have that for any simple path P ∈ Pv
b , P̂ contains at least one node that loads bank b, it does

not necessarily follow that bank b “arrives loaded at the destination” on such a path since it is
not mentioned that another bank is not loaded ”over b” later on the path.

min
∑

v∈F,b∈B

xvb

subject to
∑

b∈B

xvb ≤ 1 ∀v ∈ F (1)

dua ≥ 1 ∀a ∈ B ∧ ∀u ∈
(
RO \RO

a

)
(2)

dva ≥ xvb ∀a 6= b ∈ B ∧ ∀v ∈ F (3)

dua ≤ dva + xva ∀a ∈ B ∧ ∀u ∈
(
F ∪RO

)
∧ ∀v ∈ F such that uv ∈ E (4)

dua = 0 ∀a ∈ B ∧ ∀u ∈ F such that ∃v ∈ RI
a such that uv ∈ E (5)

dua + dub ≥ 1 ∀a 6= b ∈ B ∧ ∀u ∈ F (6)

xva ≥ 0 ∀v ∈ F ∧ ∀a ∈ B (7)

dva ≥ 0 ∀v ∈
(
F ∪RO

)
∧ ∀a ∈ B (8)

xva, d
v
a ∈ Z ∀v ∈ V ∧ ∀a ∈ B (9)

See an example in Figure 8. We argue the fact that any IP solution obtained from a BSIM
solution satisfies all these constraints, and that we can construct a valid BSIM solution from any
IP solution. It is rather obvious the objective function of the two feasible solutions matches.
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Figure 8: A feasible solution to the integer program instance from the BSIM instance from Figure
7. Nodes 1a and 2a require bank a, nodes 1b and 2b require bank b, nodes 1c and 2c require bank
c, while the original start s and node u are transparent. To fit the notations in the figure, 1aout
is replaced by 1a, 1aout is 1a with an arrow on top, and 1ain is replaced by 1a. This IP1 feasible
solution corresponds to the 1-OBSIM feasible solution from Figure 2.
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Constraint (1) enforces only one load per vertex of F . It holds for the same reason. Constraint
(2) enforces the condition that for every bank a ∈ B and every vertex v ∈ RI

a, every simple path
(and also every trail) ending in v and starting at a vertex of RO \ RO

a contains a transparent
vertex loading bank a; it does not guarantee however no load instructions after u. This is done by
Constraint (3), which enforces the following observation: if bank b is loaded in vertex v, then for
any simple path (and also every trail) from v to a vertex requiring bank a, there must be at least
one load of bank a. These are also the reasons Constraints (2) and (3) hold for an IP solution
cosntructed from a BSIM solutions as explained before the description of IP1.

Constraint (4) holds for the the following reason: if for bank a and vertices u, v with uv ∈ E,
we have Pv

a 6= ∅ and there exists a simple path P ∈ Pv
a such that P̂ contains no node that loads

bank a, and v also does not load a, then Pu
a 6= ∅ and there exists a path P ′ ∈ Pu

a (namely, shortcut
if needed the trail starting with arc uv followed by P ) such that P̂ ′ contains no node that loads
bank a. Constraint (5) holds since, if v ∈ RI

a and uv ∈ E, then Pu
a 6= ∅ and there exists a trail

P ′ ∈ Pu
a (namely, arc uv) such that P̂ ′ contains no node that loads bank a.

The trickier to verify constraint is (6), which indeed holds for integer solutions as, if for vertex
v and banks a 6= b, Pv

a and Pv
b are both non-empty, then no matter if or what bank is loaded

in v or in any other free vertex, either we must have that every simple path P ∈ Pv
a satisfies

that P̂ contains at least one node that loads bank a, or we must have that every simple path
P ∈ Pv

b satisfies that P̂ contains at least one node that loads bank b. Indeed, if there is a simple

path P ∈ Pv
a with P̂ not loading a, then we must have that either v loads a, or all the simple

paths from RO to v load a or are coming from RO
a (and a trail from RO to v must exist since we

assumed every vertex of the CFG is reachable from s). Thus if such a P exists, we must have
that every simple path P ′ ∈ Pv

b satisfies that P̂ ′ contains at least one node that loads bank b. It
is the crucial (and clever) Constraint (6) that allows good approximation algorithms.

Now, given an IP1 feasible solution, it remains to argue that loading bank b at vertex u
whenever xub = 1 gives a feasible BSIM solution. Indeed, let a ∈ B, v ∈ RI

a and P be a trail from

some w ∈
(
RO \RO

a

)
to v. Constraints (2),(4), and (5) ensure that at least one vertex u of P̂

has xub = 1. Pick z to be the last such vertex of P̂ . If any vertex y following z on P̂ has xya = 1

then Constraint (3) ensures dyb = 1 and therefore another vertex v of P̂ , following y, has xvb = 1,
contradicting the selection of z.

3.1 LP rounding

Let LP1 be the linear programming relaxation of IP1, which can be solved in polynomial time.
See Figure 9 for an example of a fractional solution. Let x̄va, d̄

v
a be an optimum LP1 solution.

Pick uniformly at random a real number δ ∈ (0, 1/2). Set (for all possible v, a) xva = 1 iff
d̄va < δ ≤ d̄va + x̄va. Set (for all possible v, a) dva = 1 iff Pv

a = ∅ or any path P in Pv
a has

some u ∈ P̂ with xua = 1 (this can be achieved by Breadth First Search). It is immediate that
Pr[xva = 1] ≤ 2x̄va, and thus we have a 2-approximation, provided we prove that for any such δ,
we get a valid IP1 solution.

Lemma 3.1 For any δ ∈ (0, 1/2), and for any v ∈ (F ∪RO) and b ∈ B, if d̄vb ≥ 1/2 and Pv
b 6= ∅,

then any simple path P ∈ Pv
b has a vertex z 6= v with xzb = 1 (in the BSIM instance G, vertex z

load bank b).
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Figure 9: A feasible solution to the linear program instance from the BSIM instance from Figure
7. Nodes 1a and 2a require bank a, nodes 1b and 2b require bank b, nodes 1c and 2c require bank
c, while the original start s and node u are transparent. To fit the notations in the figure, 1aout
is replaced by 1a, 1aout is 1a with an arrow on top, and 1ain is replaced by 1a. This LP1 feasible
solution has objective 4.5, while one can verify that the 1-OBSIM instance from Figure 2 only
has solutions with objective 5 or more.
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Proof: Let P be such a simple path from v to some w ∈ RI
b . By Constraint (5), the vertex y

before w in P has d̄yb = 0. Therefore P must have consecutive vertices u and u′ such that d̄u
′

b < δ

and d̄ub ≥ δ; here u may be v. Note that u′ ∈ F . Constraint (4) also gives d̄u
′

b + x̄u
′

b ≥ d̄ub ≥ δ, and
therefore xu

′

b is set to 1 by the algorithm. The lemma holds with z = u′. ⊓⊔
Now we check the feasibility of all constraints. For Constraint (1), note that for a 6= b ∈ B

and v ∈ F , in order to have both xva and xvb be made 1, we must have d̄va < 1/2 and d̄vb < 1/2,
leading to d̄ violating Constraint (6).

Constraint (2), for a ∈ B and u ∈ RO \ RO
a follows from d̄ua ≥ 1 and the lemma above (if

Pu
a 6= ∅), or the way we set all dva = 1 above if Pv

a = ∅.
Constraint (3), for a 6= b ∈ B and v ∈ F follows from the following argument: if xvb = 1, then

d̄vb < 1/2, and therefore by d̄ satisfying Constraint (6), d̄va ≥ 1/2. Therefore, by the lemma above
applied to v and a, we set dva = 1 whether Pv

a = ∅ or not.
Constraint (4), for a ∈ B and uv ∈ E, follows from the way d was constructed: if both dva = 0

and xva = 0, then Pu
a 6= ∅ since P

v
a 6= ∅, and there is a simple path P ∈ Pu

a such that, for all z ∈ P̂ ,
xza = 0: obtain P by shortcutting, if needed, the trail that starts with arc uv and finishes with a
simple path P ′ ∈ Pv

a with, for all z ∈ P̂ ′, xza = 0. The existence of P implies dua = 0. If dva 6= 0 or
xva 6= 0, then dva = 1 or xva = 1, so Constraint (4) is satisfied.

Constraint (5), for a ∈ B and u ∈ F such that there exists uv ∈ E with v ∈ RI
a is also satisfied

since Pu
a 6= ∅ and the simple path with its only arc uv has no interior.

Constraint (6), for a 6= b ∈ B and u ∈ F follows as follows: either d̄ua ≥ 1/2 or d̄ub ≥ 1/2, and
the lemma above ensures that the one at least 1/2 becomes 1. Constraints (7), (8), and (9) are
immediate.

3.2 Derandomization

Note that only a polynomial number of values of δ must be tried, so derandomization is immediate.
We go further, and write a relaxation of LP1, and its dual and use complementary slackness to
show that every value of δ gives a 2-approximation, as it also happens for the linear program of
Garg, Vazirani, and Yannakakis [14]. Let LP1’ be the variant of LP1 without constraints (1) and
(3); LP1’ is a relaxation of BSIM and thus any BSIM feasible solution within 2 of the optimum
of LP1’ is a 2-approximation. Note that we do not claim that the integral version of LP1’ is
equivalent to the original BSIM instance.

The following linear program with exponentially many constraints (as we only consider simple
paths) can be seen to be equivalent to (and solved by) LP1’.

min
∑

v∈F,b∈B

xvb

subject to
∑

v∈P̂

xva ≥ 1 ∀a ∈ B ∧ ∀u ∈
(
RO \RO

a

)
∧ ∀P ∈ Pu

a (10)

∑

v∈P̂1

xva +
∑

v∈P̂2

xvb ≥ 1 ∀a < b ∈ B ∧ ∀u ∈ F ∧ ∀P1 ∈ P
u
a ∧ ∀P2 ∈ P

u
b (11)

xva ≥ 0 ∀v ∈ F ∧ a ∈ B (12)
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To see the equivalence, use the same values xva, and set in LP1’: dua = minP∈Pu
a

∑
v∈P̂ xva.

The program above is in fact a covering linear program and combinatorial 1+ǫ approximations
also exist [24, 17]; however the method below requires an optimum, and one would need to try all
δ if only an approximate linear programming optimum is given.

The dual of the above program, given below, has variables αP for all a ∈ B and for all
u ∈

(
RO \RO

a

)
and for all P ∈ Pu

a , and variables βP1,P2 (the order of the paths matter) for all
a < b ∈ B, all u ∈ F , all P1 ∈ P

u
a and all P2 ∈ P

u
b .

max
∑

a∈B

∑

u∈(RO\RO
a )

∑

P∈Pu
a

αP +
∑

a∈B

∑

b6=a∈B

∑

u∈F

∑

P1∈Pu
a

∑

P2∈Pu
b

βP1,P2

subject to
∑

u∈(RO\RO
a )

∑

P∈Pu
a | v∈P̂

αP +
∑

b<a∈B

∑

u∈F

∑

P2∈Pu
a | v∈P̂2

∑

P1∈Pu
b

βP1,P2 (13)

+
∑

b>a∈B

∑

u∈F

∑

P1∈Pu
a | v∈P̂1

∑

P2∈Pu
b

βP1,P2 ≤ 1 ∀v ∈ F ∧ ∀a ∈ B (14)

αP ≥ 0 (15)

βP1,P2 ≥ 0 (16)

Let x̄va, d̄
v
a be an optimum solution to the primal. Pick any real number δ ∈ (0, 1/2). Set

x̂va = 1 iff d̄va < δ ≤ d̄va + x̄va.

Claim 3.1 x̂ gives a valid BSIM solution.

Proof: Assume x̂va = 1. This implies d̄va < 1/2, and Constraint (11) gives that for all b 6= a ∈ B,
d̄vb > 1/2, and thus x̂vb = 0.

Note also that Lemma 3.1 holds as well (same proof). Let P be an arbitrary trail from a
vertex of RO \ RO

b to a vertex of RI
b . Let P ′ be the simple path obtained by short-cutting P .

Then Constraint (10) ensures the existence of a vertex u in P̂ ′ with x̂ub = 1. Then such a vertex
also exists on P , and choose w to be the last vertex on P with x̂wb = 1. Thus on trail P , w loads
bank b.

Suppose for a contradiction that some vertex v that follows or equals w on P loads bank a 6= b.
This means that d̄va < 1/2 and Constraint (11) ensures that d̄vb ≥ 1/2. Let P ′′ be the simple path

from v to the endpoint of P obtained by short-cutting P . Lemma 3.1 gives a vertex z 6= v on P̂ ′′

with x̂zb = 1; note that P̂” is a subtrail of P that strictly follows w, contradicting the choice of w.
Thus no vertex v that follows or equals w on P loads bank a 6= b, which means that P is fulfilled.
As P was arbitrary, the claim follows. ⊓⊔

As for the approximation ratio of 2, write the complementary slackness conditions (below, in
the summation

∑
v∈P̂

xva, the bank a is such that path P ends at a vertex of RI
a) :

αP > 0 =⇒
∑

v∈P̂

xva = 1 (17)

βP1,P2 > 0 =⇒
∑

v∈P̂1

xva +
∑

v∈P̂2

xvb = 1 (18)

xva > 0 =⇒
∑

...

αP +
∑

...

βP1,P2 = 1 (19)
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which hold for x̄ and an optimum dual solution (Condition (19) says Constraint (14) is tight;
we did not give all the details above). With respect to the same dual solution, it is immediate
that x̂va > 0 only if x̄va > 0 and therefore Condition (19) holds. Any path P ∈ Pu

a with αP > 0
must have that going through the vertices v ∈ P̂ , we see non-increasing d̄va-values (we know P is
a shortest path w.r.t x̄a, from Condition (17)), and thus only one such vertex v can have x̂va = 1,
and thus Condition (17) is respected by x̂ as well. Any two paths P1, P2 with βP1,P2 > 0 must be

such that P1 and P2 are each a shortest path, and thus as argued above, P̂1 has at most one v
with x̂va = 1 and P̂2 has at most one w with x̂wb = 1. For x̂, Condition (18) holds approximately -
with a factor of 2, and as in the primal-dual method, we obtain that x̂ is a 2-approximation of x̄.

We do not see half-integrality as in [14], and we do not see a direct primal-dual algorithm.

4 k-BSIM

Without loss of generality, assume that every node is reachable from the start vertex s. For
technical reasons, add a new transparent start vertex, s′, with exactly one arc, outgoing to the
original s (s is transparent as well, or else the instance does not have valid solutions). Let F be
the set of transparent nodes other than s′, R be the set of required vertices, and, for a ∈ B, let Ra

be the subset of R with requirement a. As before, for v ∈ V and a ∈ B, T v
a denotes the (possibly

infinite) set of trails of G from v to some node of RI
a, and P

v
a denotes the set of simple paths of

G from v to some node of RI
a.

Write the following integer linear program (IP2), with variables xvb for every node v ∈ F and
bank requirement b ∈ B (xvb in the IP would be 1 if transparent node v loads bank b, in any of its
registers), and variables dvb for every bank requirement b ∈ B and node v ∈ ((F ∪R ∪ {s′}) \Rb)

(dvb in the IP would be 1 if either Pv
b = ∅ or, for any P ∈ Pv

b , P̂ contains at least one node that
loads bank b, in any register).

min
∑

v∈F,b∈B

xvb

subject to
∑

b∈B

xvb ≤ k ∀v ∈ F (20)

ds
′

a ≥ 1 ∀a ∈ B (21)∑

a∈B

dua ≥ |B| − k ∀u ∈ F (22)

dua ≤ dva + xva ∀a ∈ B ∧ ∀u ∈ (F ∪R \Ra) ∧ ∀v ∈ F such that uv ∈ E (23)

dua ≤ dva ∀a ∈ B ∧ ∀u ∈ (F ∪R \Ra) ∧ ∀v ∈ (R \Ra) such that uv ∈ E (24)

dua = 0 ∀a ∈ B ∧ ∀u ∈ (F ∪R \Ra) such that uv ∈ E (25)

1 ≥ xva ≥ 0 ∀v ∈ F ∧ ∀a ∈ B (26)

1 ≥ dva ≥ 0 ∀a ∈ B ∧ ∀v ∈ (F ∪R \Ra) (27)

xva, d
v
a ∈ Z ∀v ∈ F ∧ ∀a ∈ B (28)

Constraints (22) are the generalization of the “clever” constraints (6); in fact they could (and
should, if one uses an IP solver) be used together with Constraints (27) to replace Constraints
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(6) in LP1. Indeed, Constraints (22) hold for integer solutions since, if for transparent vertex v
there are k + 1 banks b with variable dvb = 0, then for any of these banks b, Pv

b 6= ∅ and there is

at least one path P ∈ Pv
b such that no node in P̂ loads bank b in any of its registers. Then no

matter what banks arrive or are loaded at v (which is reachable from s′), we do not get a valid
k-BSIM solution. Note that constraints

∑

a∈Q

dua ≥ |Q| − k ∀Q ⊆ B ∧ ∀u ∈ F (29)

are implied by (27) and (22).
IP2 above is not equivalent to k-BSIM, as it does not specify in which register a bank is

loaded. Nevertheless, from a k-BSIM solution, we can get an IP2 solution of the same value (but
not vice versa; that will be a coloring problem), by setting xvb to be 1 iff transparent node v loads

bank b and dvb to be 1 iff either Pv
b = ∅ or, for any P ∈ Pv

b , P̂ contains at least one node that
loads bank b. We relax IP2 to the linear program LP2, and solve it in polynomial time.

Let x̄va, d̄
v
a be an optimum LP2 solution. Pick uniformly at random a real number δ ∈ (0, 1/(k+

1)). Set xva = 1 iff d̄va < δ ≤ d̄va + x̄va.
It is immediate that Pr[xva = 1] ≤ (k+1)x̄va. We load at v all the q banks a with d̄ua < 1/(k+1)

if at least one of them has xva = 1, using registers 1, 2, . . . , q. We have q ≤ k, since Constraint (29)
implies that, for any vertex u, at most k banks a can have d̄ua < 1/(k + 1). Thus the expected
number of loads is at most k(k + 1) times the LP cost.

One needs to check that indeed this is a valid solution of k-BSIM: pick an arbitrary a ∈ B,
an arbitrary u ∈ Ra, and an arbitrary trail P from s′ to u. Let u′ be the last vertex of P in F ; u′

exists since s is on P and in F . From Constraints (25) and (24) we get d̄u
′

a = 0. From Constraints
(21) we get d̄s

′

a ≥ 1/k. Let v be, as we go on P , the last vertex (last occurrence also) such that
d̄va ≥ δ; such a v exists since d̄s

′

a ≥ δ and d̄u
′

a = 0. Let v′ be the vertex following the last occurrence
of v on P . Note that d̄v

′

a < δ, and Constraints (24) inply that v′ ∈ F . Moreover, Constraints (23)
give d̄va ≤ d̄v

′

a + x̄v
′

a . Thus d̄
v′
a < δ ≤ d̄va ≤ d̄v

′

a + x̄v
′

a .
Now, let y be, as we go on P , the last vertex of F (last occurrence also) such that there exists

b ∈ B with d̄yb < δ ≤ d̄yb + x̄yb ; such a vertex y exists since v′ is a candidate. Note that also d̄ya < δ
since otherwise we could go on P from y to u and find v′ after y as explained above. Then also
d̄ya < 1/(k + 1) and therefore bank a is loaded in some register at y. As we go on P from y to u,
no load instructions are selected by the algorithm after y (as we cannot have vertices w ∈ P̂ [y]
and banks b with xwb = 1, since this contradicts the choice of y), and thus P is fulfilled.

For the derandomization, we can try polynomially many values of δ ∈ (0, 1/(k + 1)), or prove
as in Subsection 3.2 that any such value will do. The following comprises this discussion (as well
as that of Section 3):

Theorem 4.1 There is a k(k + 1)-approximation algorithm for k-BSIM.

Theorem 4.2 There is a polynomial-time algorithm whose output uses at most 2k − 1 registers
and a number of load instructions at most 2k times the optimum solution with k registers.

Proof: For this bicriteria result, we choose independently and uniformly at random real numbers
δb ∈ (0, 1/2). Then, for every v ∈ F , if there is an a with d̄va < δa ≤ d̄va + x̄va, we set xva = 1.
If xva = 1, we load at node v (in some of the available 2k − 1 registers) all the banks b with
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d̄vb < δb; we write this as x̂
v
b = 1. Indeed, there can be at most 2k− 1 banks b with d̄vb < 1/2, from

Constraint (29).
We next argue that the necessary trails are fulfilled. Pick an arbitrary a ∈ B, an arbitrary

u ∈ Ra, and an arbitrary trail P from s′ to u. Let u′ be the last vertex of P in F ; u′ exists since
s is on P and in F . From Constraints (25) and (24) we get d̄u

′

a = 0. From Constraints (21) we
get d̄s

′

a ≥ 1/2. Let v be, as we go on P , the last vertex (last occurrence also) such that d̄va ≥ δa;
such a v exists since d̄s

′

a ≥ δa and d̄u
′

a = 0. Let v′ be the vertex following the last occurrence of
v on P . Note that d̄v

′

a < δa, and Constraints (24) inply that v′ ∈ F . Moreover, Constraints (23)
give d̄va ≤ d̄v

′

a + x̄v
′

a . Thus d̄
v′
a < δa ≤ d̄va ≤ d̄v

′

a + x̄v
′

a .
Now, let y be, as we go on P , the last vertex of F (last occurrence also) such that there exists

b ∈ B with d̄yb < δb ≤ d̄yb + x̄yb ; such a vertex y exists since v′ is a candidate. Note that also d̄ya < δa
since otherwise we could go on P from y to u and find v′ after y as explained above. Therefore
also bank a is loaded in some register at y. As we go on P from y to u, no load instructions are
selected by the algorithm after y (as we cannot have vertices w ∈ P̂ [y] and banks b with xwb = 1,
since this contradicts the choice of y), and thus P is fulfilled.

Moreover, for any u ∈ V , requiring a ∈ B, any path P from s to u has vertex v′ with
d̄v
′

a < δa ≤ d̄v
′

a + x̄v
′

a . Let v be the last vertex on P̂ with d̄vb < δb ≤ d̄vb + x̄vb , for some b ∈ B.

Then also d̄va < δa (as otherwise there is a further, on P̂ , vertex v′′ with d̄v
′′

a < δa ≤ d̄v
′′

a + x̄v
′′

a ).
and therefore bank a is loaded in some register at v. As we go on P̂ from v to u, no further load
instructions are selected by the algorithm, and thus at vertex u bank a is loaded.

Let Qv be the set of banks a with d̄va < 1/2. The probability that bank b is loaded at vertex
v ∈ Qv is (using the independence of the choices of δa):

Pr[x̂vb = 1] ≤ Pr[xvb = 1]+
∑

a∈Qv\{b}

Pr[xva = 1]·Pr[d̄vb < δb] ≤ 2x̄vb+
∑

a∈Qv\{b}

2x̄va ·Pr[d̄vb < δb] (30)

and thus the expected number of loads at node v is at most

∑

b∈Qv


2x̄vb +

∑

a∈Qv\{b}

2x̄va · Pr[d̄vb < δb]


 =

∑

b∈Qv

x̄vb


2 + 2

∑

a∈Qv\{b}

Pr[d̄va < δa]




If |Qv| ≤ k, then 
2 + 2

∑

a∈Qv\{b}

Pr[d̄va < δa]


 ≤ 2 + 2 (|Qv| − 1) ≤ 2k

and thus the expected number of loads at node v is at most 2k
∑

b∈B x̄vb .
Otherwise, |Qv| ≥ k + 1, and Constraint (29) together with d̄vb < 1/2 gives:

∑

a∈Qv\{b}

d̄va ≥ |Qv| − k − 1/2. (31)
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We have

2 + 2
∑

a∈Qv\{b}

Pr[d̄va < δa] = 2 + 2
∑

a∈Qv\{b}

(1− 2d̄va)

= 2 + 2(|Qv| − 1)− 4
∑

a∈Qv\{b}

d̄va

≤ 2|Qv| − 4(|Qv | − k − 1/2)

= 4k + 2− 2|Qv |

≤ 4k + 2− 2(k + 1)

= 2k

where we used Inequality (31) for the first inequality and |Qv| ≥ k + 1 for the last. Thus in all
cases, the expected number of bank loads is at most 2k times the LP solution value. ⊓⊔

Assuming lnn << k, the following result is an improvement:

Theorem 4.3 There is a O(k lnn) randomized approximation algorithm for k-BSIM.

Proof: Use the rounding method of the previous theorem, with the interval (0, 1/(8 ln n)) for
each δa. Let Qv be the set of banks a with d̄va < 1/(8 ln n); as above |Qv| ≤ 2k. Let Q′

v be the
(random) set of banks loaded by the algorithm at v.

Claim 4.1 Pr[|Q′
v| > k] ≤ 1

n2

Proof: We are setting up a Chernoff bound. We define da = d̄va, Q = Qv, q = |Q|, and
σ =

∑
a∈Q da. We may assume q > k or else the claim is trivially true. For bank a ∈ Q, define

the random variables:

Za =

{
1 if da > δa
0 otherwise

Define the random variable Z =
∑

a∈Q Za. Let pa = 8da lnn and p =
∑

a∈Q pa
q . Let Xa (a ∈ Q)

be the random variables Za − pa. Then Xa are mutually independent with Pr[Xa = 1− pa] = pa
and Pr[Xa = −pa] = 1 − pa. Define the random variable X =

∑
a∈QXa. Then X satisfies

Assumptions A.1.3 of [4] and therefore Theorem A.1.13 of [4] states that, for any α > 0,

Pr[X < −α] < e−α2/2pq. (32)

We have that the event |Q′
v| > k is included in the event Z < q − k, which is the event

X < (q − k)−
∑

a∈Q pa. Note that

−(q − k) +
∑

a∈Q

pa = −(q − k) + 8 ln n
∑

a∈Q

da ≥ 7σ lnn,

where we used Constraints (29), which state σ ≥ (q − k). Note also that q − k ≥ 1, and thus
Chernoff’s bound from Equation (32) gives

Pr[|Q′
v| > k] < e−(7σ lnn)2/(2·8σ lnn) ≤ e−2σ lnn ≤ e−2 lnn,

18



which is what the claim requires. ⊓⊔
The expected number of banks loaded at vertex v, computed as in the bicriteria algorithm,

does not exceed (2 + 8k lnn)
∑

b∈Qv
x̄vb , when one uses that Constraint (29) actually gives |Qv| ≤

k (1 + 2/(8 ln n)). Thus Markov’s inequality gives Pr[number of banks loaded > 20k(ln n)Z∗
LP2] ≤

1/2, where Z∗
LP2 is the objective value of LP2. From Claim 4.1, taken as a union over all v, the

probability that there is a vertex loading more than k banks is at most 1/n. So with probability
1/3 no vertex is overloaded and less than 20k(ln n)Z∗

LP2 banks are loaded in total. This concludes
the proof of Theorem 4.3. ⊓⊔

4.1 Integrality gap

Let opt(I) be the optimum value for a k-BSIM instance I, Z∗
IP2(I) be the optimum value for

the constructed IP2 instance, and Z∗
LP2(I) be the optimum value for the LP2 relaxation. We

are unable to find the worst case ratio between opt(I) and either Z∗
IP2(I) or Z

∗
LP2(I). The next

theorem relates Z∗
IP2(I) to Z∗

LP2(I) and is not surprising in view of the connection of k-BSIM to
(k + 1)-uniform Hypergraph Vertex Cover.

Theorem 4.4 For any ǫ > 0, there exists a k-BSIM instance I with Z∗
IP2(I) > (k+1−ǫ)Z∗

LP2(I).

Proof: We use the first reduction from Section 2, starting with a complete (k + 1)-uniform
hypergraph G with n vertices (and thus

( n
k+1

)
hyperedges). The number n will be picked large

enough (and depend on ǫ). We obtain a k-OBSIM instance, which we call J . In J , we call nodes
corresponding to the hyperedges in G hyperedge-nodes and call nodes corresponding to vertices
in G hypervertex-nodes. The hypervertex-nodes come in n groups, where all the k

( n
k+1

)2
nodes of

I coming from the same vertex of G are in the same group and have the same requirement, and
vertices in different groups have different requirements. To simplify some notation, we change J
by making the hyperedge-nodes transparent. We further transform J into a k-BSIM instance I
using the second reduction of Section 2; this adds for every hypervertex-node v a node vin (it
should also add vout, but with no arc leaving vout we ignore it) and then we add s′ and construct
an IP2 instance we call I ′.

Next we describe a fractional (LP2) solution to I ′. For every hypervertex-node v, in a group
with requirement a (where a is a vertex in G), set dvina = 0, and for all b 6= a ∈ B, set dvinb = 1.
Also set xvina = 1/(k + 1), and for all b 6= a ∈ B, set xvinb = 0. For every hyperedge-node w,
corresponding to a hyperedge e of G, set for all a ∈ e, dwa = 1/(k + 1) and xwa = k/(k + 1),
and for all b 6∈ e, set dwb = 1 and xwb = 0. Set for both s and s′ all d-values to be 1 and all
x-values to be 0. One can check that this is indeed a feasible LP2 solution, and its objective is
n · k

(
n

k+1

)2
· (1/(k + 1)) +

(
n

k+1

)
· (k + 1) · (k/(k + 1)). Thus:

Z∗
LP2(I) ≤

nk

k + 1

(
n

k + 1

)2

+ k ·

(
n

k + 1

)
(33)

Now assume for a contradiction that

Z∗
IP2(I) ≥ (n− k)k

(
n

k + 1

)2

(34)

19



does not hold. Let d̄ and x̄ be this feasible solution. Then there exist k + 1 groups, from vertices

y1, y2, . . . , yk+1 of G, such that each has a node vi, for i = 1, 2, . . . , k + 1 such that x̄
viin
yi = 0.

G being complete, there is a hyperedge e = {y1, y2, . . . , yk+1}, and let w be the hyperedge-node
corresponding to hyperedge e. For all i = 1, 2, . . . , k + 1, Constraints (25) for viin and vi give

d̄
viin
yi = 0, and Constraints (23) for w and viin give d̄wyi = 0, leading to contradicting Constraint

(22) for w, a contradiction to d̄ and x̄ being a feasible solution.
Thus Equation (34) holds, and together with Equation (33), n←∞ and k fixed, we conclude

that indeed for any ǫ > 0, there exists a k-BSIM instance I with Z∗
IP2(I) > (k+1− ǫ)Z∗

LP2(I). ⊓⊔

5 Conclusion

For k-BSIM we presented approximation algorithms with ratios k(k+1), and O(k log n). Another
algorithm outputs a valid solution with objective at most 2k times the optimum for k registers,
using 2k registers. These results hold in arbitrary input CFGs. Our algorithms can easily be
extended to the case when required nodes each has a set of banks A ⊂ B with |A| ≤ k, and all
banks of A must be loaded.

Our hardness results, that hold for acyclic CFGs as well, are that for any ǫ > 0, an approxi-
mation ratio of k − ǫ is NP-hard, and an approximation ratio of k + 1− ǫ is unlikely, as it would
imply that Vertex Cover has approximation 2− ǫ.

We leave open the existence of a O(k)-approximation. It is not immediate to apply our
methods to the following variant of the problem: For every CFG node v that requires bank b, we
must select a register i ∈ {1, 2, . . . , k} and ensure every directed path from s to v loads bank b in
register i, and no further loads in register i are allowed. Notice, as for example in Figure 3, that
k-OBSIM does not require such an i to be selected.
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