16 research outputs found

    Marginal Release Under Local Differential Privacy

    Full text link
    Many analysis and machine learning tasks require the availability of marginal statistics on multidimensional datasets while providing strong privacy guarantees for the data subjects. Applications for these statistics range from finding correlations in the data to fitting sophisticated prediction models. In this paper, we provide a set of algorithms for materializing marginal statistics under the strong model of local differential privacy. We prove the first tight theoretical bounds on the accuracy of marginals compiled under each approach, perform empirical evaluation to confirm these bounds, and evaluate them for tasks such as modeling and correlation testing. Our results show that releasing information based on (local) Fourier transformations of the input is preferable to alternatives based directly on (local) marginals

    Doctor of Philosophy

    Get PDF
    dissertationWe are living in an age where data are being generated faster than anyone has previously imagined across a broad application domain, including customer studies, social media, sensor networks, and the sciences, among many others. In some cases, data are generated in massive quantities as terabytes or petabytes. There have been numerous emerging challenges when dealing with massive data, including: (1) the explosion in size of data; (2) data have increasingly more complex structures and rich semantics, such as representing temporal data as a piecewise linear representation; (3) uncertain data are becoming a common occurrence for numerous applications, e.g., scientific measurements or observations such as meteorological measurements; (4) and data are becoming increasingly distributed, e.g., distributed data collected and integrated from distributed locations as well as data stored in a distributed file system within a cluster. Due to the massive nature of modern data, it is oftentimes infeasible for computers to efficiently manage and query them exactly. An attractive alternative is to use data summarization techniques to construct data summaries, where even efficiently constructing data summaries is a challenging task given the enormous size of data. The data summaries we focus on in this thesis include the histogram and ranking operator. Both data summaries enable us to summarize a massive dataset to a more succinct representation which can then be used to make queries orders of magnitude more efficient while still allowing approximation guarantees on query answers. Our study has focused on the critical task of designing efficient algorithms to summarize, query, and manage massive data

    Doctor of Philosophy

    Get PDF
    dissertationKernel smoothing provides a simple way of finding structures in data sets without the imposition of a parametric model, for example, nonparametric regression and density estimates. However, in many data-intensive applications, the data set could be large. Thus, evaluating a kernel density estimate or kernel regression over the data set directly can be prohibitively expensive in big data. This dissertation is working on how to efficiently find a smaller data set that can approximate the original data set with a theoretical guarantee in the kernel smoothing setting and how to extend it to more general smooth range spaces. For kernel density estimates, we propose randomized and deterministic algorithms with quality guarantees that are orders of magnitude more efficient than previous algorithms, which do not require knowledge of the kernel or its bandwidth parameter and are easily parallelizable. Our algorithms are applicable to any large-scale data processing framework. We then further investigate how to measure the error between two kernel density estimates, which is usually measured either in L1 or L2 error. In this dissertation, we investigate the challenges in using a stronger error, L ∞ (or worst case) error. We present efficient solutions for how to estimate the L∞ error and how to choose the bandwidth parameter for a kernel density estimate built on a subsample of a large data set. We next extend smoothed versions of geometric range spaces from kernel range spaces to more general types of ranges, so that an element of the ground set can be contained in a range with a non-binary value in [0,1]. We investigate the approximation of these range spaces through ϵ-nets and ϵ-samples. Finally, we study coresets algorithms for kernel regression. The size of the coresets are independent of the size of the data set, rather they only depend on the error guarantee, and in some cases the size of domain and amount of smoothing. We evaluate our methods on very large time series and spatial data, demonstrate that they can be constructed extremely efficiently, and allow for great computational gains

    Monitoring Network Data Streams

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Doctor of Philosophy

    Get PDF
    dissertationThe contributions of this dissertation are centered around designing new algorithms in the general area of sublinear algorithms such as streaming, core sets and sublinear verification, with a special interest in problems arising from data analysis including data summarization, clustering, matrix problems and massive graphs. In the first part, we focus on summaries and coresets, which are among the main techniques for designing sublinear algorithms for massive data sets. We initiate the study of coresets for uncertain data and study coresets for various types of range counting queries on uncertain data. We focus mainly on the indecisive model of locational uncertainty since it comes up frequently in real-world applications when multiple readings of the same object are made. In this model, each uncertain point has a probability density describing its location, defined as kk distinct locations. Our goal is to construct a subset of the uncertain points, including their locational uncertainty, so that range counting queries can be answered by examining only this subset. For each type of query we provide coreset constructions with approximation-size trade-offs. We show that random sampling can be used to construct each type of coreset, and we also provide significantly improved bounds using discrepancy-based techniques on axis-aligned range queries. In the second part, we focus on designing sublinear-space algorithms for approximate computations on massive graphs. In particular, we consider graph MAXCUT and correlation clustering problems and develop sampling based approaches to construct truly sublinear (o(n)o(n)) sized coresets for graphs that have polynomial (i.e., nδn^{\delta} for any δ>0\delta >0) average degree. Our technique is based on analyzing properties of random induced subprograms of the linear program formulations of the problems. We demonstrate this technique with two examples. Firstly, we present a sublinear sized core set to approximate the value of the MAX CUT in a graph to a (1+ϵ)(1+\epsilon) factor. To the best of our knowledge, all the known methods in this regime rely crucially on near-regularity assumptions. Secondly, we apply the same framework to construct a sublinear-sized coreset for correlation clustering. Our coreset construction also suggests 2-pass streaming algorithms for computing the MAX CUT and correlation clustering objective values which are left as future work at the time of writing this dissertation. Finally, we focus on streaming verification algorithms as another model for designing sublinear algorithms. We give the first polylog space and sublinear (in number of edges) communication protocols for any streaming verification problems in graphs. We present efficient streaming interactive proofs that can verify maximum matching exactly. Our results cover all flavors of matchings (bipartite/ nonbipartite and weighted). In addition, we also present streaming verifiers for approximate metric TSP and exact triangle counting, as well as for graph primitives such as the number of connected components, bipartiteness, minimum spanning tree and connectivity. In particular, these are the first results for weighted matchings and for metric TSP in any streaming verification model. Our streaming verifiers use only polylogarithmic space while exchanging only polylogarithmic communication with the prover in addition to the output size of the relevant solution. We also initiate a study of streaming interactive proofs (SIPs) for problems in data analysis and present efficient SIPs for some fundamental problems. We present protocols for clustering and shape fitting including minimum enclosing ball (MEB), width of a point set, kk-centers and kk-slab problem. We also present protocols for fundamental matrix analysis problems: We provide an improved protocol for rectangular matrix problems, which in turn can be used to verify kk (approximate) eigenvectors of an n×nn \times n integer matrix AA. In general our solutions use polylogarithmic rounds of communication and polylogarithmic total communication and verifier space

    Sampling Algorithms for Evolving Datasets

    Get PDF
    Perhaps the most flexible synopsis of a database is a uniform random sample of the data; such samples are widely used to speed up the processing of analytic queries and data-mining tasks, to enhance query optimization, and to facilitate information integration. Most of the existing work on database sampling focuses on how to create or exploit a random sample of a static database, that is, a database that does not change over time. The assumption of a static database, however, severely limits the applicability of these techniques in practice, where data is often not static but continuously evolving. In order to maintain the statistical validity of the sample, any changes to the database have to be appropriately reflected in the sample. In this thesis, we study efficient methods for incrementally maintaining a uniform random sample of the items in a dataset in the presence of an arbitrary sequence of insertions, updates, and deletions. We consider instances of the maintenance problem that arise when sampling from an evolving set, from an evolving multiset, from the distinct items in an evolving multiset, or from a sliding window over a data stream. Our algorithms completely avoid any accesses to the base data and can be several orders of magnitude faster than algorithms that do rely on such expensive accesses. The improved efficiency of our algorithms comes at virtually no cost: the resulting samples are provably uniform and only a small amount of auxiliary information is associated with the sample. We show that the auxiliary information not only facilitates efficient maintenance, but it can also be exploited to derive unbiased, low-variance estimators for counts, sums, averages, and the number of distinct items in the underlying dataset. In addition to sample maintenance, we discuss methods that greatly improve the flexibility of random sampling from a system's point of view. More specifically, we initiate the study of algorithms that resize a random sample upwards or downwards. Our resizing algorithms can be exploited to dynamically control the size of the sample when the dataset grows or shrinks; they facilitate resource management and help to avoid under- or oversized samples. Furthermore, in large-scale databases with data being distributed across several remote locations, it is usually infeasible to reconstruct the entire dataset for the purpose of sampling. To address this problem, we provide efficient algorithms that directly combine the local samples maintained at each location into a sample of the global dataset. We also consider a more general problem, where the global dataset is defined as an arbitrary set or multiset expression involving the local datasets, and provide efficient solutions based on hashing

    Building efficient wireless infrastructures for pervasive computing environments

    Get PDF
    Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people\u27s daily life and activities. Most of these computing devices are very small, sometimes even invisible , and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but networked with each other through wireless channels so that people can easily control and access them. In the architecture of pervasive computing systems, these small and networked computing devices form a wireless infrastructure layer to support various functionalities in the upper application layer.;In practical applications, the wireless infrastructure often plays a role of data provider in a query/reply model, i.e., applications issue a query requesting certain data and the underlying wireless infrastructure is responsible for replying to the query. This dissertation has focused on the most critical issue of efficiency in designing such a wireless infrastructure. In particular, our problem resides in two domains depending on different definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can be replied. Many applications, especially real-time applications, require prompt response to a query as the consequent operations may be affected by the prior delay. The second definition is energy efficiency which is extremely important for the pervasive computing devices powered by batteries. Above all, our design goal is to reply to a query from applications quickly and with low energy cost.;This dissertation has investigated two representative wireless infrastructures, sensor networks and RFID systems, both of which can serve applications with useful information about the environments. We have comprehensively explored various important and representative problems from both algorithmic and experimental perspectives including efficient network architecture design and efficient protocols for basic queries and complicated data mining queries. The major design challenges of achieving efficiency are the massive amount of data involved in a query and the extremely limited resources and capability each small device possesses. We have proposed novel and efficient solutions with intensive evaluation. Compared to the prior work, this dissertation has identified a few important new problems and the proposed solutions significantly improve the performance in terms of time efficiency and energy efficiency. Our work also provides referrable insights and appropriate methodology to other similar problems in the research community

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    corecore