
MONITORING NETWORK DATA STREAMS

RUI ZHANG

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48629557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgement

I would like to thank my supervisor Professor Beng Chin Ooi for his guidance

on all my work during my PhD candidature, his guidance on how to be a better

researcher, and his suggestions on how to be a better person. I would like to thank

Dr. Divesh Srivastava and Dr. Nick Koudas for their guidance and contribution

to the work on multiple aggregations over data streams. I would like to thank

Associate Professor Kian-Lee Tan for his suggestions and comments on the work

on nearest neighbor search over data streams.

CONTENTS

Acknowledgement ii

Summary xi

1 Introduction 1

1.1 Phenomenon of data streams . 2

1.2 Network data streams . 4

1.2.1 Traffic management . 4

1.2.2 Security . 5

1.3 Contributions of this thesis . 9

1.3.1 Contributions on aggregate queries over data streams 9

1.3.2 Contributions on nearest neighbor queries over data streams 11

1.4 Outline of the thesis . 12

2 The Data Streams 14

2.1 The data stream model and queries 15

2.1.1 The data stream model . 15

iii

iv

2.1.2 Queries over data streams 16

2.2 Stream algorithms . 18

2.2.1 Approximation techniques 19

2.2.2 Window queries . 29

2.2.3 Sharing among queries . 30

2.3 Data stream management systems 32

2.4 Gigascope: a network stream system 44

2.4.1 Query language and query model 45

2.4.2 Architecture of Gigascope 47

2.4.3 Research based on Gigascope 49

2.5 Related work . 50

2.5.1 Work related to aggregations over data streams 50

2.5.2 Work related to approximate nearest neighbor search over

data streams . 54

2.6 Summary . 59

3 Efficient Aggregation Over Data Streams 60

3.1 Single aggregation . 61

3.1.1 Cost of processing a single aggregation 64

3.2 Multiple aggregations . 65

3.2.1 Processing multiple aggregations naively 65

3.2.2 Processing multiple aggregations using phantoms 67

3.2.3 Choice of phantoms . 70

3.3 Problem formulation . 72

3.3.1 Terminology and notation 72

3.3.2 Cost model . 73

3.3.3 Our problem . 76

v

3.4 Synopsis of our proposal . 81

3.5 Phantom choosing . 82

3.5.1 Greedy by increasing space 82

3.5.2 Greedy by increasing collision rates 84

3.5.3 An Example . 86

3.6 The collision rate model . 88

3.6.1 Randomly distributed data 88

3.6.2 Validation of collision rate model 92

3.6.3 Clustered data . 93

3.6.4 Approximating the low collision rate part 95

3.7 Space allocation . 97

3.7.1 A case of two levels . 97

3.7.2 A case of three levels . 101

3.7.3 Other cases . 103

3.7.4 Heuristics . 104

3.7.5 Revisiting simplifications . 108

3.8 Experiments . 109

3.8.1 Experimental setup and data sets 109

3.8.2 Evaluation of space allocation strategies 110

3.8.3 Evaluation of the greedy algorithms 115

3.9 Summary . 123

4 Approximate Nearest Neighbor Search Over Data Streams 125

4.1 Motivation and applications . 126

4.2 Problem formulation . 128

4.3 Synopsis of our proposal . 129

4.4 The framework . 130

vi

4.4.1 Capturing the footprints . 131

4.4.2 An array-based method . 136

4.5 The DISC method . 137

4.5.1 Index creation . 139

4.5.2 Algorithms to merge cells 143

4.5.3 Query processing . 146

4.6 Processing sliding window queries by DISC 150

4.7 Deploying DISC in Gigascope . 151

4.8 Experiments . 153

4.8.1 Memory usage of DISC . 154

4.8.2 Accuracy of DISC . 159

4.8.3 GMC vs. BMC . 162

4.8.4 Updates and query processing 164

4.8.5 DISC on data sets of other dimensions 166

4.9 Summary . 167

5 Conclusions and Future Work 169

5.1 Conclusions . 169

5.2 Future work . 172

LIST OF TABLES

2.1 Histograms . 26

2.2 Data Stream Management Systems 32

3.1 Symbols . 74

3.2 Average relative costs of the four heuristics 114

3.3 Statistics on SL . 115

4.1 Symbols . 132

vii

LIST OF FIGURES

2.1 Sliding window and tumbling window 31

2.2 Structure of Aurora . 33

2.3 QoS graphs . 34

2.4 A Query example in CQ . 36

2.5 Architecture of CQ . 37

2.6 Architecture of STREAM . 40

2.7 STREAM query plans . 41

2.8 Architecture of TelegraphCQ . 43

2.9 A Query example in Gigascope . 46

2.10 An R-tree example . 55

2.11 A VA-file example . 57

3.1 Single aggregation in Gigascope . 62

3.2 Multiple aggregations in Gigascope 66

3.3 Multiple aggregations using phantoms 68

3.4 Choices of phantoms . 70

viii

ix

3.5 Feeding graph for the relations . 71

3.6 Algorithm GS . 83

3.7 Algorithm GC . 85

3.8 Feeding graph of the example . 86

3.9 Collision rates of random data . 93

3.10 Collision rates of real data . 94

3.11 The collision rate curve . 96

3.12 The low collision rate part . 96

3.13 A case of three levels . 101

3.14 Heuristic SL . 106

3.15 Space allocation for (ABC(AC(A C) B)) 112

3.16 Space allocation for AB(A B) CD(C D) 113

3.17 Space allocation for (ABCD(ABC(A BC(B C)) D)) 113

3.18 Space allocation for (ABCD(AB BCD(BC BD CD))) 114

3.19 Comparison of phantom choosing algorithms 116

3.20 Phantom choosing process . 117

3.21 Cost comparison . 118

3.22 Comparison on synthetic data set: GCSL vs. GS 119

3.23 Comparison on synthetic data set: GCSL vs. no phantom 119

3.24 Comparison on real data set: GCSL vs. GS 121

3.25 Comparison on real data set: GCSL vs. no phantom 121

3.26 Peak load constraint . 123

4.1 Diagram to explain Theorem 2 . 133

4.2 A example of the tight bound . 135

4.3 Cell Merging . 141

4.4 Algorithm Build Index . 142

x

4.5 Algorithm GMC . 144

4.6 Algorithm BMC . 145

4.7 Algorithm KNN Search . 147

4.8 An example of KNN search . 148

4.9 An example of KNN search (close look) 149

4.10 Data distributions . 154

4.11 Memory Usage of DISC: Exponentially distributed data 155

4.12 Memory Usage of DISC: Normally distributed data 155

4.13 Memory Usage of DISC: Netflow data 156

4.14 Effect of Node Size . 157

4.15 Effect of G . 158

4.16 Accuracy vs. Arrived Data Size . 159

4.17 Accuracy vs. Order of the Z-curve 160

4.18 Memory Usage vs. Order of the Z-curve 160

4.19 Memory Usage vs. Accuracy . 161

4.20 Memory Usage vs. Relative Error 162

4.21 Node accesses of GMC and BMC 163

4.22 Response time of GMC and BMC 164

4.23 Update and Query Cost . 165

4.24 Memory usage of DISC on 3D data sets 166

4.25 Accuracy of DISC on 3D data sets 167

xi

Summary

The data input of a new class of applications such as network monitoring, web

contents analysis and sensor networks takes the form of a stream, called data stream.

This type of data is characterized by an extremely high data arrival rate and a very

large data volume. Network monitoring may be the most compelling application

that deals with data streams. The backbone of a large Internet service provider

(ISP) can generate 500 gigabytes data per day, even with a high degree of sampling.

Data stream algorithms are essential to the efficient processing of such data. Major

network tasks such as traffic management and security exploit two basic operations:

aggregation and nearest neighbor search. This thesis addresses the problem of

efficient processing of these two types of queries. We base our study on Gigascope, a

real data stream management system (DSMS) deployed in AT&T, which is specially

designed for processing network data streams.

Aggregation is a primitive operation needed for network performance analysis

and statistics collection. The need for exploratory IP traffic data analysis naturally

leads to related aggregation queries on data streams that differ only in the choice

of grouping attributes. One problem we address in this thesis is to efficiently com-

xii

pute multiple aggregations over high speed data streams, based on the two-level

(LFTA/HFTA1) query processing architecture of Gigascope. On this problem, our

first contribution is the insight that in such a scenario, additionally computing and

maintaining fine-granularity aggregation queries (phantoms) at the LFTA has the

benefit of supporting shared computation. Our second contribution is an investi-

gation into the problem of identifying beneficial LFTA configurations of phantoms

and user queries. We formulate this problem as a cost optimization problem, which

consists of two sub-optimization problems: how to choose phantoms and how to

allocate space for them in the LFTA. We formally show the hardness of determining

the optimal configuration, and propose cost greedy heuristics for these independent

sub-problems based on detailed analyses. Our third contribution is a thorough ex-

perimental study using synthetic data and real IP traffic data to demonstrate the

effectiveness of our techniques for identifying beneficial configurations.

Another problem we address in this thesis is similarity search over data streams,

which we model as the nearest neighbor queries. This type of queries can be useful

for security and stream mining, where TCP/IP packets that are similar to a certain

pattern need to be found. We use approximation techniques to achieve low memory

usage and high performance for this problem. Our first contribution on this problem

is the introduction of a new type of approximate nearest neighbor queries, called the

e-approximate kNN (ekNN) query, which considers the class of applications where

errors are expressed as an absolute value. Our second contribution is the proposal

of a framework that could reduce the information that has to be maintained to

guarantee the error bound. Our third contribution is the proposal for a technique

called aDaptive Indexing on Streams by space-filling Curves (DISC) to realize the

proposed framework. DISC can adapt to different data distributions to either:

1LFTA/HFTA stands for Low/High-level Filter, Transform and Aggregate. These are the two
query processing components in the Gigascope system.

xiii

(a) optimize memory utilization to answer ekNN queries under certain accuracy

requirements, or (b) achieve the best accuracy under a given memory constraint.

At the same time, DISC provides efficient updates and query processing, which

are important requirements in data stream applications. Our fourth contribution

is an extensive experimental study, still using both synthetic and real data sets to

demonstrate the effectiveness and efficiency of DISC.

CHAPTER 1

Introduction

The phenomenon of data streams has emerged in recent years, and the wide use of

the Internet is the driving force. Internet service providers possess large networks,

which generate data, mainly in the form of TCP/IP packets, at an extremely high

speed. Much of web site activities, such as online ordering systems, bulletin board

systems and stock price reporting systems, exhibit stream characteristics. Another

new application, the sensor network, also generates data in a streamed fashion. In

this chapter, we describe the phenomenon of data streams in detail and identify

two important query types for monitoring network data streams: the aggregate

query and the nearest neighbor query. These two query types are the focus of the

study presented in this thesis.

The rest of the chapter is organized as follows. We first show some real life data

stream examples such as network monitoring, network security, financial tickers,

sensor network and web contents monitoring in Section 1.1. Then in Section 1.2,

we take a closer look at network data streams, which are of central interest in this

1

2

thesis. We articulate the problems we are trying to solve, give an overview of the

work we have done, and summarize the contributions of our work in Section 1.3.

Finally, we present an outline of the thesis in Section 1.4.

1.1 Phenomenon of data streams

Over the past few years, we have witnessed the emergence of a new class of applica-

tions where the data input is of a very large volume (possibly infinite) and arrives

at the system at a very high speed. Due to the high data volume, we cannot afford

to store the data on hard disk and issue queries on it offline as in the traditional

database. Typically, we can read the data records only once as they stream by

and then discard the data. A small portion may be retained for some time in

order to answer certain queries, but generally, the data would not be stored onto

the hard disk. Moreover, the queries in these applications are usually continuously

evaluated, and the query answers change as new data arrive. In other words, query

processing is driven by data input instead of, traditionally, the human who issues

the query. The input in these applications, characterized by a large volume and a

high speed, is called data stream (subsequently, we may simply say “stream”).

Representative data stream applications are as follow:

• Network traffic management

Large Internet service providers (ISPs) need to monitor and analyze the net-

work traffic flowing through their system to obtain link utilization, compute

traffic matrices, detect denial-of-service attacks, etc. For example, even with a

high degree of sampling and aggregation in Netflow records (traffic summaries

produced by routers) the AT&T IP backbone alone generates 500 gigabytes

of data per day (about 10 billion fifty-byte records) [46]. Monitoring and

3

analyzing such a large network system are typical data stream problems.

• Network security

Network security systems apply sophisticated rules over the network or com-

pare the traffic against signatures that describe network intrusion patterns

to support firewall or detect intrusions [125, 124]. For example, iPolicy Net-

works [95] provide these services through an integrated security platform that

performs complex stream processing including URL-filtering based on table

lookups, and correlation across multiple network traffic flows.

• Sensor networks

Recent advances in integrated circuit technology have enabled the mass pro-

duction of very capable sensor motes (e.g., [89]), which are actually full-

fledged computer systems with a CPU, main memory, operating system and

a suite of sensors, and the communication between sensors is wireless. These

sensors are to be used for a wide range of monitoring and data collection

tasks in industries such as transportation, manufacturing, health care, envi-

ronmental oversight, safety and security. For example, in the US, a sensor

infrastructure is deployed on San Francisco Bay Area freeways to monitor

traffic conditions [113]. Thousands of primitive sensors have been embed-

ded on the freeways. These sensors consist of inductive loops that register

whenever a vehicle passes over them, and can be used to determine aggregate

flow and volume information on a stretch of road as well as provide gross

estimates of vehicle speed and length. The readings of the large number of

sensors arrive at a central system continuously, therefore stream algorithms

are crucial for processing the data.

• Financial tickers

4

Real-time stock price analysis tools need to discover correlations, trends and

arbitrage opportunities, and forecast future values in an online fashion as the

stock market changes. For example, the Traderbot web site [88] is a web-

based financial ticker that allows users to pose complex continuous queries

over the streaming financial data as follows: find all stocks priced between

$10 and $100, where the spread between the high tick and the low tick over

the past 20 minutes is greater than five percent of the last price.

• Web log/content monitoring and analysis

Web sites monitor logs to discover interesting customer behavior patterns and

identify suspicious spending behavior for applications such as personalization

and crime detection and for performance considerations. Some researchers

also envision a “World-Wide Database” in which continuous queries can be

posed over the large amount of XML data on the Internet [39].

1.2 Network data streams

In this section, we focus on the two fundamental network management tasks: traffic

management and network security, and present more details on real-life applica-

tions. Then we show what kinds of data management problems are posed by these

applications and why data stream approaches are needed to solve them.

1.2.1 Traffic management

Managing a large communication network is a complex task handled by a group of

human operators called network analysts. The analysts perform tasks such as per-

formance analysis and conformance testing to detect equipment failure and shifts

in traffic load. If a failure or unbalanced load is detected, the operator may change

5

the configuration of the equipment to improve the utilization of network resources

and the performance experienced by users. At the same time, statistics such as

link utilizations are collected for use in functions such as billing clients. Perfor-

mance analysis and statistics collection are done through aggregate queries. For

example, the operator may query the number of packets sent from every source

to every destination during a particular time period, which translates into a sum-

group-by query, to see if there is unbalanced load between links. To process such

a query, network operators usually use a combination of hardware and software

tools. High speed (gigabit and higher) network hardware or software tools such as

NetFlow built into the routers are available. These tools operate directly on the live

network, but they all have the problem of inflexibility. For complex operations, net-

work analysts have to use TCPdump to save network traces and then write ad-hoc

programs to analyze the data. These ad-hoc programs are highly tuned to perform

well on the dumped data, which could not be achieved if a conventional database

management system (DBMS) were used. When diagnosing potential performance

problems, analysts benefit from having a timely view of the traffic across the net-

work. However, this requirement cannot be satisfied by dumping network traces

and examining them offline. A stream approach for the aggregation operation is

compelling. Efficiently aggregating network data is one of the topics in this thesis,

and we study it in Chapter 3.

1.2.2 Security

Network intrusions are common these days and have been a major concern of

ISPs. A typical intrusion scenario is as follows. An intruder first finds out as

much as possible publicly available information about a target machine such as its

domain name through a “whois” lookup. The intruder may also use more invasive

6

techniques to scan for information. For example, he/she may walk through the

web pages and look for CGI scripts (CGI scripts are often easily hacked) and

do “ping” sweeps to see which machines are available. Until now, the intruder

has not done anything harmful. Next, the intruder crosses the line and starts

exploiting holes such as software buffer overflows and TCP/IP protocol flaws in

the target machines to get access to the machines. Once the intruder gains access

to the machines, he/she can do whatever to them at will. More information about

network intrusion may be found in [141]. There are mainly three intrusion detection

techniques: signature, anomaly and misbehavior [119].

• Intrusion detection by signature

The signature approach defines a set of policies (or rules), and then filters the

network packets according to the policies. Usually, the policies use signatures

which define or describe a traffic pattern of interest. These signatures are

extracted from known intrusions and need to be updated if new ones appear.

For example, the Land attack (a type of denial-of-service attack) sends pack-

ets whose source IP address and source port are the same as their destination

IP address and port, which causes some TCP/IP implementations to crash.

Since no legitimate application would send these kinds of packets, we can use

a filter to check the equality of source and destination IP addresses/ports.

So the signature for the Land attack is that the source IP address and port

are the same as the destination IP address and port, respectively [125]. This

signature is relatively simple since we only need to do an equality check, but

many signatures are complex and may be fuzzy. For example, intrusions that

exploit buffer overflow usually use a command sequence that contains a large

number of hex 90’s followed by some machine code, some ASCII strings, and

a literal command “/bin/sh -C”. This buffer overflow is designed to break out

7

to a shell and execute code that will break out. One of the intrusion’s char-

acteristics is to create a directory called ADMROCKS. Therefore, we may

have a signature looking for some 90’s, “/bin/sh -C” and “ADMROCKS” in

different parts of the traffic flow. But if we make the signature too strict,

an intruder can modify the exploit code slightly (e.g. change some 90’s to

other numbers or change ADMROCKS to ADMROXXS) to slip under the

highly tuned radar [124]. Therefore, we should allow approximate pattern

matching between the signatures and actual traffic, which translates to ap-

proximate similarity search over the network packets. Similarity search on

multi-attribute data is usually modelled as the nearest neighbor query in

multi-dimensional space.

• Intrusion detection by anomaly

Anomaly detection takes the opposite approach from signature detection. It

admits the fact that malicious behavior evolves, and that a defense system

cannot predict and model all of them. Instead, anomaly detection tries to

model legitimate traffic and raises an alert if the observed traffic violates

the model. Legitimate traffic are defined from past traffics that have been

shown to be of no harm to the system. The advantage of this approach is

that attacks unknown previously can be discovered if they differ sufficiently

from the legitimate traffic. However, there is a big challenge in anomaly

detection. Legitimate traffic is diverse with new applications arising from

time to time. It is difficult to model legitimate traffic as its patterns change

over time. A model that is too rigid would generate many false positives from

legitimate traffic, but a model that is too flexible may overlook real intrusions

(false negatives). Identifying the right set of features and model to tackle

the balance between false positives and false negatives is a real challenge.

8

Operations needed by anomaly detection is again pattern matching over the

packets, which translates into the nearest neighbor query.

• Intrusion detection by misbehavior

In contrast to anomaly detection, which models legitimate behavior, misbe-

havior detection tries to model misbehavior in the traffic. At the extreme,

misbehavior detection is similar to signature-based detection, that is, receiv-

ing packets that match certain pattern of a particular attack toolkit. However,

misbehavior can be more generally defined than signatures. For example,

when the machine is receiving high traffic and is not able to keep up, there is

probably a denial-of-service (DoS) attack and an alarm is triggered. This phe-

nomenon can be defined as a misbehavior but not a signature. Misbehavior

detection faces a challenge similar to that of the anomaly detection approach.

It needs to model misbehavior properly so that the false positive and false

negative rates are kept low. Operations needed by misbehavior detection are

aggregate queries (to obtain the number of packets arriving at a machine)

and nearest neighbor queries (to detect certain traffic patterns) over the

packets.

Irrespective of which of the above approaches is used, a common requirement

is that intrusions be detected promptly. To this end, online monitoring of network

traffic is necessary, and hence, stream algorithms are required. The operations

needed frequently are aggregate queries, and similarity search which translates into

nearest neighbor queries. Aggregate queries (e.g. “how many packets are sent

from every sender to the backbone server?”, more specific examples in Section

3.1) are needed in network performance analysis, statistics collection and intrusion

detection by misbehavior. Nearest neighbor queries are needed in most intrusion

detection techniques, and may also be useful for virus detection.

9

We note that malware (virus, worm, trojan, etc.), is generally viewed as virus,

and poses a significant security problem for computers. However, most anti-virus

software monitors files which are contents reassembled from packets instead of

the raw packets themselves. The files delivered to the computers of end users

usually arrive at a much lower speed, and therefore, a stream algorithm may not be

necessary. A few anti-virus software companies, such as Trend Macro and McAfee,

also provide gateway virus scanners which perform virus protection at the gateway

of a network. A gateway virus scanner must check for virus at a very high speed, and

it usually exploits hardware of high performance. Stream algorithms for pattern

matching may also be useful in this case.

1.3 Contributions of this thesis

As discussed in the previous section, many network monitoring tasks comprise ag-

gregate queries and nearest neighbor queries as their basic operations. We therefore

focus on these two types of queries in this thesis. We have based our research on the

two-level (LFTA/HFTA1) query processing architecture of the data stream system,

Gigascope, developed at AT&T.

1.3.1 Contributions on aggregate queries over data streams

For aggregate queries, we study how to achieve optimal overall processing cost

when a set of aggregate queries are given. We propose maintaining additional

information, called phantoms, which are fine-granularity aggregation queries not

defined by users but maintained for sharing of computation among the queries.

There are many choices of phantoms. The problem is which phantoms to maintain,

1LFTA/HFTA stands for Low/High-level Filter, Transform and Aggregate. These are the two
query processing components in the Gigascope system.

10

and for the chosen phantoms, how to allocate limited resources (memory in our

case) to them. We model this multiple aggregation problem as an optimization

problem consisting of two subproblems: phantom choosing and space allocation.

Specifically, we make the following contributions on the multiple aggregate query

processing problem:

• We generate the insight on the benefit of computing and maintaining phan-

toms at the LFTA when computing multiple aggregate queries that differ

only in their grouping attributes. Phantoms are fine-granularity aggregate

queries that, while not of interest to the user, allow for shared computation

between multiple aggregate queries over a high speed data stream.

• We investigate the problem of identifying beneficial configurations of phan-

toms and user-queries in the LFTA of Gigascope. We formulate this problem

as a cost optimization problem which consists of two sub-optimization prob-

lems: how to choose phantoms and how to allocate space for hash tables in

the LFTA amongst a set of phantoms and user queries. Specifically, among

many choices of phantoms, the phantom choosing sub-problem needs to find

out the set of phantoms to maintain so as to minimize the cost. However,

just finding out the right set of phantoms is not enough to achieve the mini-

mum cost. We still need to allocate space correctly to the hash tables of the

phantoms to reach the goal. This is the second sub-problem, space allocation.

We formally show the hardness of determining the optimal configuration (the

set of phantoms to be maintained), and propose a greedy algorithm to identify

phantoms which can help reduce the cost. We have a detailed analysis on the

space allocation problem and the analysis results in optimal space allocation

for some configurations. For those untractable configurations, we propose

some heuristics based on our analysis.

11

• We carry out a thorough experimental study using synthetic data and real

IP traffic data to understand the effectiveness of our techniques for identi-

fying beneficial configurations. We demonstrate that the heuristics result in

near optimal configurations (within 15-20% most of the time) for processing

multiple aggregations over high speed streams. Further, choosing a configura-

tion is extremely fast, taking only a few milliseconds. This permits adaptive

modification of the configuration to changes in data stream distributions.

1.3.2 Contributions on nearest neighbor queries over data

streams

For nearest neighbor queries, we study what information should be maintained in

order to answer queries approximately with an error bound guarantee. The in-

formation maintained should be only what is necessary to satisfy the error bound

requirement so that either memory usage can be minimized, or conversely, when a

memory constraint is given, errors are minimized. We make the following contri-

butions on this problem:

• We introduce of a new type of approximate nearest neighbor queries, called

the e-approximate k nearest neighbor (ekNN) query, which specifies the error

bound as an absolute value instead of a relative one.

• We propose a framework that makes it possible to reduce the information

needed to answer ekNN queries with a guaranteed error bound. Specifically,

we divide the data space in to cells and only need to maintain at most G

records in each cell in order to guarantee some error bound, where G is a user

defined parameter.

• We propose a technique called aDaptive Indexing on Streams by space-filling

12

Curves (DISC), under our proposed framework, to efficiently maintain data

and process queries from the maintained data. DISC has efficient insertion,

deletion and kNN search operations. We also propose an efficient merge-cell

algorithm for DISC, which is essential to adjust DISC to the data distribution

of the data stream. By DISC, we attain two optimization goals: memory

optimization for a given error bound, and error minimization for a given

memory size.

• We carry out a thorough experimental study using synthetic data and real IP

traffic data to study the memory and error behavior of DISC. The results show

that DISC achieves the optimization goals, outperforming competitors with

very efficient query processing which meets the real-time response requirement

of data stream applications.

1.4 Outline of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 gives a more precise description of the data stream model, reviews

commonly used techniques in data stream algorithms, surveys state-of-the-art

data stream management systems built in different institutes and organiza-

tions, with an emphasis on the Gigascope data stream management system

(DSMS) since we will use this system’s architecture as the infrastructure of

our network stream monitoring algorithms. Finally we discuss related work

to the problems we study in this thesis.

• Chapter 3 presents our proposed technique for optimizing the processing of

multiple aggregate queries based on a two-level query processing architec-

ture of the Gigascope DSMS. This optimization problem consists of two sub-

13

problems: phantom choosing and space allocation, which are studied in depth

in the chapter.

• Chapter 4 presents a technique called aDaptive Indexing on Streams by space-

filling Curves (DISC) to process approximate nearest neighbor queries over

data streams. We focus on the set of approximate nearest neighbor queries

guaranteed by an absolute error bound, which is a new query type we intro-

duce, called the e-approximate kNN (ekNN) query. While the DISC technique

is originally proposed for general data stream applications, we show that it

fits into the two-level query processing architecture of Gigascope fairly well.

• Chapter 5 concludes our work and discusses directions for future work.

Two papers have been published from the work reported in this thesis. The

work on multiple aggregations over data streams, presented in Chapter 3, has been

published in [155]. The work on approximate nearest neighbor processing over data

streams, presented in Chapter 4, has been published in [103].

14

CHAPTER 2

The Data Streams

Data streams have the nature of extremely high speed and large volume. The tra-

ditional database model for relatively static data is no longer capable of processing

the streams. In this chapter, we present the data stream model and the way stream

queries are specified. We give an overview of stream algorithms and systems with

an emphasis on Gigascope, the system our study is based on. Finally we discuss

related work.

The rest of the chapter is organized as follows. We first discuss the data stream

model and queries over data streams in Section 2.1. Then we summarize commonly

used techniques in data stream algorithms such as approximation, window queries

and sharing in Section 2.2. Next, we review a number of existing data stream

management systems (DSMSs) in Section 2.3. We describe the Gigascope DSMS

in detail in Section 2.4, since we would use this system’s architecture as the infras-

tructure of our network stream monitoring algorithms. Finally, in Section 2.5, we

investigate existing work related to the two problems we study. Some topics such

15

as query language for DSMSs are not covered in this section because they are not

our focus. Interested readers would be directed to the survey paper [14], which

provides a more comprehensive view of models and issues in data streams.

2.1 The data stream model and queries

2.1.1 The data stream model

In the data stream model, the input is a sequence of data records. Each record

is of the same record type. The records can be of fixed length or of variable

lengths. The particular attributes depend on the application. For example, in

network data streams, the typical attributes are source IP, source port, destination

IP, destination port, etc. The length of the sequence may be infinite. The input

arrives at the system or the query processing unit continuously. The arrival rate,

time and the order of the records depend on the nature of the input; they could not

be controlled by the system. Each record is read only once, processed immediately,

and then discarded; it cannot be accessed again unless it is explicitly stored in

main memory, which is very small relative to the size of the input stream. In very

rare cases, the data having streamed by could be archived, but the archived data

is hard to be retrieved due to the very large size.

Given the above discussion of the data stream model, a stream algorithm typi-

cally should satisfy the following requirements:

• The algorithm reads each data record only once as the record streams by.

• The algorithm can only use a limited amount of memory.

• The algorithm should be very efficient to answer the queries, that is, having

almost real-time response.

16

The third requirement is due to the reason that many data stream applica-

tions need real-time response such as network traffic monitoring, sensor network

monitoring, etc.

The data stream model was first formalized in [85]. Their model allows multiple

passes over the data streams. However, more realistic data stream applications fit

into the model that allows only one pass over the streams, and most of the existing

work on data streams have assumed this model. In this thesis, we also focus on

this model, which allows only one pass over the data streams.

2.1.2 Queries over data streams

Many traditional query types find their applications in data streams, but their se-

mantics differ slightly from the traditional ones in the data stream setting. One

class of the queries include those common operators found in a DBMS such as selec-

tion, aggregations (SUM, COUNT, MIN, MAX and AVG), join, etc. Another im-

portant class of queries maintain “miniature” representations of the original stream

data, such as sketches, sampling, histograms and wavelets to facilitate other queries

or query optimization. Finally, we also have some ad hoc query types over streams

such as nearest neighbor queries. Note that all these queries must change their

requirements a little to comply with the data stream model. That is, these queries

require that each input record be read only once and the record typically gets dis-

carded except maybe a few ones maintained in a memory with size constraint. The

queries may also be modified in another way. Many applications such as monitor-

ing tasks require the system to provide answers continuously, therefore we can also

have a continuous version of the above queries, for example, “report the IP address

that sends the maximum number of packets every second”. Here, “continuously”

means every time unit, or at a user-defined frequency.

17

While most of the above mentioned query types have counterparts in previous

database research, the term “sketch” may seem new as it just started to appear in

the past couple of years in the data stream literature. we would explain it a little

bit here. Sketches are a small amount of data maintained based on the data stream

in order to compute some characteristics (such as frequency moments as explained

below) of the data stream approximately. For example, Morris [120] showed that a

register of O(log log m) bits can be used to count up to m elements approximately

(usually we need log m bits to count to m accurately). Then the data maintained

in the register (which has a small size, O(log log m)) is called a sketch of the data

stream. Frequency moments [5] provide useful statistics on the data sequence. They

are defined as follows. Let S = (r1, r2, ..., rn) be a sequence of elements, where each

ri is a member of the set N = {1, 2, ..., n}. Let mi = |{j : rj = i}| denote the

number of occurrences of i in the sequence S. Then for each non-negative integer

k,

Fk =
n

∑

i=1

mk
i

is the k-th frequency moment of S. Frequency moments represent important de-

mographic information about the data sequence. For example, F0 is the number of

distinct elements in the sequence, F1(= m) is the length of the sequence, and F2 is

the self-join size (also called Gini’s index of homogeneity), that is, when a relation

is joined with itself, F2 is the output size of the join. F∞ is defined as max1≤i≤nmi

[5], which is the most frequent element’s number of occurrence. Consider the se-

quence, {A,A,A,B,B}, which has 5 records (please note that a data stream can be

of limited length). For this sequence, the frequency of A is 3 and the frequency of

B is 2. Therefore, F0 = 30 + 20 = 2, F1 = 31 + 21 = 5, F2 = 32 + 22 = 13 and

F∞ = max{3, 2} = 3. N. Alon et al. [5] proved memory upper bounds needed

to approximate the Fk’s through randomized algorithms. They also proposed ran-

18

domized algorithms to improve previous ones to calculate some Fk’s. The word

“sketch” was first used in [72] to mean the structure and data needed to calculate

the frequency moments through randomized algorithms, and was then widely used

in other papers [54, 14, 43]. It was called “sketch” probably because the struc-

ture and the data maintained to calculate the frequency moments give a sketch

(approximate representation) of the data stream.

2.2 Stream algorithms

As discussed in Section 2.1.1, stream algorithm can read the record once and store

only a small portion of it in memory. Since we cannot access all the data, when-

ever we need to process a query that refers to data not explicitly stored, the answer

must be inaccurate. Therefore, a prominent characteristic of stream algorithm

is approximation. Many queries evolve to an approximate version. The research

community has been very active in developing algorithms to provide approximate

answers to queries over streams. We would discuss techniques to obtain approxi-

mation of either the original data stream or the query answers in Section 2.2.1. In

many applications, the user is only or more interested in recent data, say, the total

network traffic in the last 5 minutes instead of that in the last two years ever since

the server started working. In these cases, a window query that returns merely

the answers for the query in a recent time window is appropriate. More generally,

a window query can also be viewed as an algorithmic strategy for approximation,

that is, approximating the whole history by the recent status. However, differ-

ent from the other techniques that approximate by reducing the data, the window

query approach approximates by reducing the time range. Therefore we discuss

the window queries separately in Section 2.2.2.

19

2.2.1 Approximation techniques

In this section, we summarize the state of the art of several approximation tech-

niques commonly used in stream algorithms. They are sketches, sampling, his-

tograms and wavelets.

In our work on nearest neighbor search over data streams presented in Chapter

4, we also use an approximation technique. We partition the space into cells and

use some representative points in the space to approximate all the points and

provide guarantee that the query answers are within certain error bound. This

is a spatial approximation technique, which is different from the approximation

techniques commonly used in the literature of data stream research.

Sketches

We have presented the definition of sketch in Section 2.1.2. Sketches are used to

efficiently calculate the frequency moments, Fk’s, by using a small amount of space

(usually less than O(log m), where m is the length of the stream). Probabilistic

counting may be the earliest form of sketch technique (recall that F1 is the length

of the sequence, namely the count of the elements). R. Morris [120] showed how to

count approximately (that is, to approximate F1) using O(log log m) bits of memory

(see [66] for a detailed analysis). The basic idea is to use a randomized algorithm

to determine whether to increase the counter when there is an occurrence of an

event. Then one can estimate the actual counts from the number in the counter

using statistics. An algorithm approximating F0 using O(log n) (n is the cardinality

of the domain of the elements) bits of memory was proposed by P. Flajolet and

G. Martin [67]. This algorithm hashes the data values to a bit string. Then the

number of distinct values can be estimated statistically from the 0’s and 1’s in the

bit string. Using a similar approach, that is, statistical estimation from a hashed

20

bit string, K.-Y. Whang et al. [147] proposed an algorithm to approximate F0 in

O(log n) time while allowing duplicates in the data set. A key contribution of [5]

is an algorithm to approximate F2 using O(log n+ log m) and providing arbitrarily

small approximation factors. The basic idea of the F2-sketch technique is as follows.

Every element i in the domain N hashes randomly to a value vi ∈ {−1, +1}. Then

the random variable X =
∑

i mivi is defined and X2 is returned as the estimator of

F2. The estimator can be computed in a single pass over the stream as long as the vi

values can be efficiently computed. It can be proven that X2 has expectation equal

to F2 and variance less than 2F 2
2 if the hash functions have four-wise independence1.

We can combine several independent estimators to achieve an accurate estimation

of F2 with high probability. This sketch technique for F2 has many applications in

database, including join size estimation [4], estimation L1-distance of vectors [62],

and processing complex aggregate queries over multiple streams [54, 70].

Sampling

Sampling has been widely used in statistics and databases. When a small sample is

expected to capture the essential characteristics of the whole data set, we can use

sampling as a summary structure. Here we focus on sampling over data streams. If

we simply want to compute a random sample of the stream, we can use the reservoir

sampling [145] which makes one pass over a sequence of data with unknown length.

The first step of any reservoir sampling is to put the first n records of the file into

a “reservoir”. The rest of the records are processed sequentially; records can be

selected for the reservoir only as they are processed. The algorithm maintains the

invariant that after each record is processed a true random sample of size n can be

1A family H of hash functions is called “k-wise independent” if a random hash function from
H maps each set of k elements in the universe U to uniformly random and independent values.
There are standard techniques (e.g. see [138]) to construct a family of k-wise independent hash
functions.

21

extracted from the current state of the reservoir. Sometimes it may be more efficient

to use specially designed sampling methods for particular problems. Chaudhuri et

al. proposed a sampling technique for join queries [37]. They devised a variety of

sampling schemes based on the observation that that given some partial statistics

(e.g., histograms) on the first operand relation, they can use the statistics to bias

the sampling from the second relation in such a way that it becomes possible to

produce the sample of the join. Manku and Motwani proposed a sampling based

algorithm to approximate frequency counts [115]. They use a changing sampling

rate as the data elements arrive so that they can use a user-defined space to obtain

the frequency counts within a good error bound. Gibbons proposed a sampling

based algorithm to estimate the number of distinct values [128]. In particular,

the algorithm collects a specially tailored sample over the data which estimates

the number of distinct values with high accuracy. Duffield et al. [56] proposed a

sampling algorithm to estimate the size of a subset of objects in a data stream .

The algorithm continuously stratifies the sampling scheme so the probability that

a record in a subset is selected depends on the size of the subset. This attaches

more weight to larger subsets whose omission could skew the total size estimate,

and so reduce the impact of heavy tails on variance. Therefore the algorithm

obtains smaller variance and hence better accuracy. Datar and Muthukrishnan

[49] proposed a sampling algorithm to attack two problems: rarity of elements

in a data stream and similarity between two data streams. The basic idea is to

use a hash function in the sampling. The hash values are nearly random and

therefore they are able to derive an unbiased estimator. Hershberger and Suri

[86] proposed an adaptive sampling algorithm to approximate the convex hull of

objects in a data stream. The algorithm first uses an uniform sampling and then

adapt the sampling according to the distribution of the data objects. By this

22

means, both the error bound and the computation time are reduced. Recently

stratified sampling was proposed in place of uniform sampling to reduce error caused

by the variance in the data and also reduce error for group-by queries [3, 35].

Johnson et al. [98] reported the implementation of a stream sample operator in

the Gigascope [46] DSMS. This stream sample operator is actually a framework,

which can accommodate a wide variety of sampling algorithms over streams which

are better than traditional random sampling algorithms.

Histograms

Histograms are summary structures to succinctly capture the distribution of val-

ues in a data set. They approximate the data by grouping attribute values into

“buckets”(subsets) and then maintain certain summary statistics (e.g., the aver-

age) in each bucket to approximate the true values and frequencies. For many

applications, there exist histograms that produce low-error estimates while using

reasonably small space. They have been used in selectivity estimation and approx-

imate query answering. There are different types of histograms (see [130] for a

classification of the histograms). We describe as follows some popular ones and

recent work on computing them over data streams.

• Equi-width histograms: These histograms partition the domain into ranges

of the same length. Suppose we have β buckets in total, then the sum of the

spreads in each bucket (i.e., the maximum minus the minimum in the bucket)

is approximately 1/β times the range of all the values that appear (i.e., the

maximum of all the values minus the minimum of all the values). Equi-width

histograms are used in many commercial systems. To compute an equi-width

histogram in one pass, we can simply maintain an array of β counters which

count the number of elements that fall in each bucket. Building equi-width

23

histograms needs to know the minimum and maximum of the values a priori.

This may not be possible sometimes. Also, data skew would result in equi-

width histograms with poor quality. Recently Fu and Rajasekaran proposed

to use a tree structure to organize equi-width histograms [68]. These his-

tograms partition dense buckets into subbuckets to adapt to the distribution,

so that the unknown maximum/minimum problem and data skew problem

are alleviated.

• Equi-depth histograms: These histograms (also called equi-height his-

tograms) partition the domain into ranges so that the number of records

in each range is the same. Equi-depth histograms are less sensitive to the

skew of the data distribution. The β (still assuming β buckets in total for

the histogram) boundaries of the equi-depth histograms are also called quan-

tiles [130]. Determination of these quantiles are expensive, therefore the use

of equi-depth histograms are limited in commercial systems. Chaudhuri et

al. [36] studied the problem of how much sampling is enough for computing

approximate histograms. Specifically, they introduced a conservative metric

to capture the errors of histograms and established optimal bound on sam-

pling required for pre-specified error bounds. Then they can build histograms

based on the sampling. Their algorithms require multiple passes over the data

streams. Manku et al. [116] proposed algorithms to compute approximate

quantiles with explicit error bounds in one pass of the data. They further

proposed methods to exploit sampling with the algorithm to reduce memory

requirement. But these algorithms must know the length of the input se-

quence in advance, which may not be possible in many stream applications.

The same authors proposed algorithms that released this requirement by giv-

ing up deterministic guarantee on accuracy in [117]. In this paper, they also

24

presented a more efficient algorithm for quantile that is an extreme value, e.g.,

within the top 1% of the elements. More recently, Greenwald and Khanna

[75] proposed an algorithm to improve the worst-case space requirement of

previous work [116], which is O(1
ε
log2(εN)), to O(1

ε
log(εN)), where ε is the

approximation factor. This new algorithm gives deterministic error bound

while not requiring a priori knowledge of the length of the input sequence.

• V-optimal histograms: These histograms have the least variance among

all histograms using the same number of buckets. The variance of a histogram

is the sum of the squared errors between the histogram values and the ac-

tual attribute values in each bucket. Let v1, v2, ..., vn be the set of values we

want to approximate by histograms. The V-optimal histogram of this set is a

piecewise-constant function v̂(i) that minimizes the sum
∑

i(vi − v̂(i))2. Ja-

gadish et al. [96] used dynamic programming to compute optimal V-optimal

histograms for a given data set. The algorithm requires O(N) space and

O(N 2β) time, where N is the data set size and β is the number of buck-

ets. These requirements are too expensive for data streams. Guha et al.

[79] adapted this algorithm to sorted data streams but with approximate

answers. Their result is an arbitrarily close V-optimal histogram (i.e., with

the error bound arbitrarily close to that of the optimal histogram), which

requires O(β2 log N) space and O(β2 log N) time per element. The authors

further adapted their algorithms over sorted data streams for two types of

time windows, namely agglomerative window and fixed window in [78]. Their

algorithm’s update time per element is amortized to O((β3/ε2) log3 N), but

the space requirement is linear with respect to the time window size. Sub-

sequently, Gilbert et al. [71] removed the restriction that the data stream

must be sorted and provided algorithms based on sketch techniques. They

25

view the data sequence as a vector of length N and each data record as

an update to the sequence. The time to process a single update, time

to reconstruct the histogram, and size of the sketch are each bounded by

poly(B, log(N), log ||A||, 1/ε). They first obtain a robust histogram (a his-

togram such that adding a few buckets does not change the approximation

quality significantly) approximation for the data sequence, and then select a

histogram of desired accuracy with β buckets.

• End-biased histograms: These histograms maintain exact counts on some

of the highest frequencies and some of the lowest frequencies in separate in-

dividual buckets. The remaining frequencies (those in the middle) are all

approximated by a single bucket. The task of computing end-biased his-

tograms is actually to find out the most frequent items. In some literature,

finding frequent items are also called iceberg queries [60] or finding hot items

[44]. Demaine et al. [51] proposed an algorithm that processes each record

in expected O(1) time using O(k) space, where k is the number of the most

frequent items we want to find out. Manku and Motwani [115] provided

stronger guarantee of finding all items that occur more than n/k times and

not reporting any items that occur less than n(1/k − ε) times, where n is

the number of records in the input sequence and ε is the approximation fac-

tor. Their algorithm makes use of a sampling that changes the sampling

rate as the data elements arrive so that they can use a user-defined space

to obtain the frequency counts within a good error bound. This algorithm

uses O(1/ε log εn) space. Cormode and Muthukrishnan [44] studied the case

where records can be both deleted as well as inserted through a random-

ized algorithm. The algorithm monitors the changes to data distribution and

maintains some summary data structure using O(k log k log m) space, where

26

k is the number of hot items and m is the maximum possible value of the data

items. When queries, the hot items can be found from the summary structure

in O(k log k log m) time . Babcock and Olston [18] studied the top-k moni-

toring problem in a distributed environment. In their approach, arithmetic

constraints are maintained at remote stream sources to ensure that the most

recently provided top-k answer remains valid to within a user-specified error

tolerance. Distributed communication is only necessary when constraints are

violated, therefore the overall communication cost is greatly reduced.

We summarize the above described histograms in Table 2.1.

Table 2.1: Histograms
Histogram Error Computation Use

type cost

Equi-width Largest Smallest Implemented in many commercial systems

Equi-depth Large Medium Not widely implemented in
commercial systems due to higher

computation cost compared to
equi-width histograms

V-optimal Smallest Largest Recently proposed, not widely implemented

End-biased Small Small Recently proposed, not widely implemented

Some notes about these histograms are as follow. Equi-depth histograms were

first proposed by G. Piatetsky-Shapiro and C. Connell [129] (called distribution

steps in this paper). G. Piatetsky-Shapiro and C. Connell [129] also showed that

equi-width histograms have a much higher worst-case and average error for a va-

riety of selection queries than equi-depth histograms. V-optimal histograms were

introduced in [93]. It is proved that optimal histograms must be serial [92]. A

serial histogram means that the frequencies of the attribute values associated with

each bucket are either all greater or all less than the frequencies of the attribute

values associated with any other bucket. That is, the buckets of a serial histogram

27

group frequencies that are close to each other with no interleaving [94]. Therefore

the V-optimal histogram are actually the V-optimal serial histogram. We can also

have the V-optimal end-biased histogram, which minimizes the sum squared errors

of the histogram among all end-biased histograms. The end-biased histogram is a

subclass of the serial histogram, but with the restrictions specified in the previous

paragraph. It is shown in [93] that the errors of the end-biased histograms are not

far from the (V-optimal) general serial histograms, but the (V-optimal) end-biased

histograms use much less number of buckets and have much smaller storage and

usage complexity than the (V-optimal) general histograms.

Wavelets

Wavelets , wavelet analysis or wavelet transform is a commonly used signal

processing technique like other transforms such as Fourier transform. It appeared

just a few decades ago, but has been used widely in many areas such as data

compression, computer graphics, databases as well as signal processing. Wavelet

transform becomes so widely accepted is because, through a multi-resolution de-

composition of the original signal, it overcomes Fourier transform’s (or more ac-

curately, short time Fourier transform’s) deficiency of not being able to achieve

good frequency resolution and time resolution at the same time. After applying

the wavelet transform over a signal, we obtain a number of wavelet coefficients

(the number is the same as the length of the original signal), analogous to the

amplitudes we get after the Fourier transform. The wavelet coefficients are pro-

jections of the signal onto a set of orthogonal basis vectors. The choice of the

basis vectors determines the types of wavelets. The most popular one may be

the Haar wavelets, which is easy to implement and fast to compute. Some of the

wavelet coefficients we obtained may be small, therefore we can replace these ones

28

by zeros and have the data reduced. We can apply inverse wavelet transform on

the reduced wavelet coefficients and get an approximation of the original signal.

This is basically how wavelet transform is used for compression. It is shown that

discrete wavelet transform based compression provides better image quality than

discrete cosine transform based compression [150], and the new JPEG digital image

standard, JPEG-2000, uses wavelets for all its codecs [139].

If we view the data stream sequence as a discrete signal, we can also use the

wavelet transform to compress the stream and get a synopsis structure about the

stream. Y. Matias et al. [118] introduced an efficient method for dynamic mainte-

nance of wavelet-based histograms using probabilistic counting and sampling. A.

C. Gilbert et al. [72] uses sketch techniques to maintain the coefficients of the

wavelet transform of the input sequence. Later, the same authors improved their

algorithm in construction time, error bound, and generality of the technique [71].

S. Guha et al. [77] proposed algorithms to maintain extended wavelets (a flexible

storage method wavelet coefficients when multiple measures are present [50]) over

streams based on dynamic programming and a near optimal approximate greedy

algorithm. S. Guha and B. Harb [76] proposed algorithm to construct wavelet syn-

opses over data streams that minimize non-Euclidean error measures. The authors

also released some restriction such as synopsis having to be wavelet coefficients, or

how the synopsis must be arrived at. Some other work also takes advantage of other

virtues of wavelets. S. Papadimitriou et al. [127] proposed a modelling method to

discover interesting patterns and trends in data streams. They use wavelet coeffi-

cients as data representation so that: i) redundancies, seasonalities and long-range

behavior are eliminated; ii) arbitrary periodicities can be discovered.

29

2.2.2 Window queries 2

When answering queries over the whole data stream accurately is impossible,

we may choose to answer queries based on the data stream within a recent time

window, during which the appeared data can fit in the limited memory and com-

putation resources.

We can view window queries as a way of approximation, that is, we approxi-

mate the whole stream by the recent part of the stream, which may be the most

interesting part to the users. However, this approximation approach is different

from previous approaches discussed in Section 2.2.1. The previous approaches are

independent of time. They may choose some data records during a time period as

representatives of all the data records in that period or, if multiple records can have

a same timestamp, they choose some of them as the representatives of all the data

records at that timestamp. The window query approach approximates with regard

to time. It chooses the data records in the current time window (data records at all

the timestamps in the window) as the representatives of all the data records (data

records at all timestamps). Therefore, window is an approximation technique that

is orthogonal to the previous ones, and it is possible that both approximations

coexist, for example, histograms over sliding windows [78].

From another perspective, evaluating queries in a windowed fashion may be

requirements of certain applications. In [12], window queries were introduced to

adaptively react over time to the changes in performance and data characteristics.

In many real-time monitoring applications, the window query requirement is even

obvious, for example, “report the number of IP packets sent by each IP source in

every minute” (more explanation on this query is given in Section 2.4.1).

2Note that here “window” is a range in the time domain or in the data sequence domain. It
is not a hyperrectangle in a multi-dimensional space as in spatial databases.

30

Next we would discuss how the “window” in window queries is defined. A

window at any timestamp is determined by the beginning and end. A window for

a continuous query is determined by how the beginning and the end change over

time. Usually the users are interested in a window of fixed length, that is, the

end of the window is always the beginning of the window plus the window length.

This type of window is called the sliding window. The sliding window is actually

determined by how many time units it proceeds (called the pace) after one window

finishes processing. Two kinds of paces are often used, one time unit or the length

of the time window. Using pace of one time unit results in the finest granularity

to slide the window. Using pace of the window length results in disjoint partitions

of the time domain, or called the tumbling window. Although tumbling window is

a special case of sliding window, we usually mean a non-tumbling window when

we talk about a sliding window, because algorithms to process tumbling window

queries can be every different from those to process general sliding window queries.

Figure 2.1 shows the difference between a general sliding window and a tumbling

window. B. Babcock et al. [15] also considered moving the window over the data

record domain (called sequence-based window), instead of the time domain (called

the time-based window). An example of the sequence-based window query would

be:“report the highest temperature in every five continuous temperature readings”.

We do not elaborate the exact definition of sequence-based window here since the

extension from the time-based window is straightforward.

2.2.3 Sharing among queries

Resource sharing has been an important technique for reducing cost when multiple

queries exist. In data stream applications, quite often the queries are continuous

and sustain for a period of time. The chances are that a number of monitoring

31

Tumbling window

Sliding widow

t

t=1 t=2

t

t=1 t=2

Figure 2.1: Sliding window and tumbling window

tasks coexist at the same time. Therefore, quite a few papers have been published

regarding how to optimize the resource allocation. S. Madden et al. [114] showed

how to share work and space across queries aggressively in the eddy query process-

ing framework [12]. S. Chandrasekaran and M. J. Franklin [31] discussed sharing

both computation and storage of different query results. J. Chen et al. [39] address

the problem of system scalability by grouping web queries that have similar struc-

tures so as to share the computation and reduce I/O cost. A. Arasu and J. Widom

[9] considered resource sharing among large number of sliding-window aggregates

and presented a suite of sharing techniques that cover a wide range of possible

scenarios: different classes of aggregation functions (algebraic, distributive, holis-

tic aggregation functions as defined in [74]), different window types (time-based,

tuple-based, suffix, historical), and different input models (single stream, multiple

substreams). In Chapter 3 of this thesis, we study sharing the computation among

aggregations queries with different group-by relations.

32

2.3 Data stream management systems

In this section, we review a number of existing data stream management systems

(DSMSs). These systems may be specially designed for certain applications or may

aim at a general stream system. We summarize their characteristics in Table 2.3 and

subsequently discuss each of them. As assume the Gigascope system architecture

in our work, we would discuss Gigascope in detail in the next section.

Table 2.2: Data Stream Management Systems

Name Organization Target application Web stie

Aurora Brandeis Univ. , Brown General www.cs.brown.edu
Univ. and M.I.T. /research/aurora

COUGAR Cornell Univ. Sensor networks www.cs.cornell.edu
/database/cougar

CQ Georgia Institute Web content disl.cc.gatech.edu/CQ
of Technology

Gigascope AT&T Labs-research Network traffic
NiagaraCQ Univ. of Wisconsin and Web content www.cs.wisc.edu/niagara

Portland State Univ.
STREAM Stanford Univ. General www-db.stanford.edu

/stream
TelegraphCQ U.C. Berkeley General telegraph.cs.berkeley.edu

Tribeca Bell Communications Network traffic
Research

• Aurora: Aurora [40, 28, 2] is a data-flow system that uses the boxes (opera-

tors) and arrows (workflow) paradigm as in workflow systems. The structure

is shown in Figure 2.2. Users can build continuous queries out of a small

set of well-defined operators: Filter, Map, Aggregate and Join. Filter is like

the relational operator select. It applies any number of predicates to each

incoming tuple, routing the tuples according to which predicates they satisfy.

Map is a generalized projection operator which can take multiple streams as

33

Output to
applications

Storage
Historical

Operators Continuous &
ad hoc queries

Filter

Filter

Mapstreams

Join
Input data

Figure 2.2: Structure of Aurora

inputs. Aggregate computes stream aggregates in a way that addresses the

fundamental push-based nature of streams, applying a function across a win-

dow of values in a stream (e.g., a moving average). Join is an operator that

performs join over two streams in a “banded” fashion, that is, a data record in

one stream can only be joined with a record in another stream within a time

range from its own timestamp. For example, in Figure 2.2, the query first

applies a Filter operation on both data streams, then applies a Map operation

on the second stream and finally performs a join over the two streams.

Each Aurora application defines one or more Quality of Service (QoS) func-

tions/graphs in terms of some quality metrics over the query answers such

as latency, value produced and loss-tolerance. Figure 2.3 shows some QoS

graphs (the curves of QoS functions). For example, the first graph means the

quality is good as long as the latency of query processing is within a certain

time. The quality decreases when the latency goes beyond that time and

becomes even larger. A load shedder is responsible for detecting overload

situations and in these cases, adding “drop” operators into the processing

workflow to filter out some messages based on the value of the records or

34

in a randomized fashion. The load shedder will get feedback from the QoS

functions/graphs to achieve better overall QoS.

1

0

1

0

1

0 Output value

QoS QoS

#tuples deliveredLatency

QoS

Figure 2.3: QoS graphs

Research focus of the Aurora project includes real-time data processing is-

sues, such as QoS- and memory-aware operator scheduling, semantic load

shedding for coping with transient spikes in incoming data rates, as well as

novel hybrid data storage organizations that would seamlessly and efficiently

combine pull- and push-based data processing [28]. Specifically, D. Carney

et al. [29] studied scheduling issues such as which operators to schedule, in

what order to schedule them, how many records to process at each execution

step as well as various scheduling techniques such as batching of operators

and records. N. Tatbul et al. [142] addressed the problem of determining

when shedding is needed, where to insert drop operators and how much load

to shed.

The Aurora group also proposed a distributed system, called Borealis [1] to

achieve high scalability and availability. Based on this Borealis system, Y.

Xing et al.[151] proposed a load distribution algorithm that aims at avoid-

ing overload and minimizing end-to-end latency by minimizing load variance

and maximizing load correlation. J.-H. Hwang et al. [90] studies various

35

recovery guarantees and pertinent recovery techniques in a distributed steam

environment where the applications can tolerate some impreciseness.

• COUGAR: COUGAR [27] is a sensor database that models each type of

sensors as a new Abstract Data Type (ADT). This sensor database has both

stored data represented as relations and sensor data represented as time se-

ries. Signal processing functions are modelled as ADT functions that return

sensor data. Like other data stream data, each record in the sensor data

stream is of the same record type. The records can be of fixed length or of

variable lengths. The particular attributes depend on the application. For

example, the data from temperature sensors may have attributes tempera-

ture and timestamp. COUGAR’s query execution engine is extended with a

new mechanism to execute the sensor ADT functions so that evaluation of

long-running queries are supported. A. Faradjian [61] proposed a new object-

relational data type, the Gaussian ADT (GADT), that models physical data

as Gaussian probability distribution functions (pdf’s). Y. Yao and J. Gehrke

[153] presented the design of a query layer for sensor networks based on the

COUGAR system. The query layer accepts queries in a declarative language

that are then optimized to generate efficient query execution plans with in-

network processing. Y. Yao and J. Gehrke [152] also discussed some research

problems to address in the sensor network, such as aggregation, query opti-

mization and catalog management.

• CQ: CQ [112, 111] is a distributed event-driven continuous query system.

The targeted applications of CQ is monitoring the contents on the large scale

World Wide Web. The framework of CQ is organized around five abstract

models: an object model, an event model, an observation model, a notifi-

cation model and a resource model. All hardware and software components

36

of the system, such as the information producers and consumers, a clock, a

file, a program and a process, are characterized by the object model. The

event model characterizes distributed events, which may be defined in the

time dimension (e.g., every 10 minutes or 10am everyday) or in the infor-

mation space (e.g., some company’s stock price drop by 10%). The events

can be predefiend, which would be automatically detected by the system,

or user-defined, which should be registered in the system by the user. The

observation model defines the mechanisms by which event occurrences and

patterns of event occurrences are observed. The notification model defines

the mechanisms that users use to express queries on events and receive noti-

fications. In the CQ system, the continuous query specification language is

used to express the event monitoring requests. For example, the query shown

Creat CQ Savannah weather watch as

Query: SELECT * FROM www.wns.nova.gov

WHERE location like% ‘Savannah’ AND state = ‘Georgia’;

OR location like% ‘Fort Stewart’;

Trigger: 20 minutes;

Stop: 1 year (default).

Figure 2.4: A Query example in CQ

in Figure 2.4 specifies the request for monitoring updates on weather condi-

tions at the region from port of Savannah to Fort Stewart every 20 minutes,

and detects the update on weather conditions at this region using a temporal

event detector. Whenever an update event is signaled, the system takes the

action of notifying some relevant person by email and delivering the updated

result using a specific web URL pointer. Notifications are treated as inde-

pendent communications between event detectors (observers) and recipients.

The resource model defines where in the Internet the observation and notifi-

37

cation components are located, and how resources for the computations are

allocated and accounted. Typically each information source is wrapped by a

“wrapper” that establishes the correspondence between the resource entities

and objects in the CQ system.

Continuous Query

Client
Registration

CQ
Installation

Wrapper 1

DB Event
Detector

Form Manager Manager
Registration

CQ Client
Manager

Client service

Sys. Admin. Service

Repository
System

Evaluation Manager
Triger Condition

Manager
Object Manager

(sys.+app. objects)

(Clock Event Detection)
Event Detector
Time−based Content−based

Event Detector (Coupling Models)
Manager

Transaction

Query Evaluator (brute−force algo.+differential algo.)

Query
Routing

Query
Planner

Result
Assembler

Rich Format
Generator

Change

Manager
Notification

Wrapper 2 Wrapper 3

System Polling
Controller

System Polling
Controller

Database
Sources

File System
Sources

Web HTML
Sources

Wrapper Tier

Server Tier

Client Tier

Admin. service calls

Internet

registration confirmation

reg. form

Q, Tcq, Stop

Q, Tcq, Stop

reg. form

Figure 2.5: Architecture of CQ

CQ has a three-tier architecture, client, server, and wrapper/adapter as shown

in Figure 2.5. The client tier has four components: (1) The form manager

which provides the CQ clients with fill-in forms to register their continu-

38

ous queries; (2) The registration manager which manages user ID and pass-

words; (3) The client system administration services which provide utilities

for browsing and updating installed continuous queries, for testing query trig-

gers and tracing performance. (4) The client manager which coordinates dif-

ferent client requests and invokes different external devices. CQ’s second tier,

the server has three major components: (1) The continuous query manager,

which is responsible for coordinating with the trigger condition evaluator and

event detectors to monitor updates of interest, and coordinating with wrap-

pers/adapters to track the new updates to the source data; (2) The trigger

condition evaluation manager, which is in charge of evaluating the trigger

condition for each registered continuous query whenever the update events of

interest are detected by the event detectors; (3) The query evaluator, which

executes a query Q whenever the trigger condition Tcq for the query is evalu-

ated to be true. It also provides a guard for the Stop condition to guarantee

the semantic consistency of the continuous query (Q, Tcq, Stop). CQ’s third

tier, the wrapper/adapters tier serves as a “translator” between event detec-

tors/the query evaluator and the information sources. One wrapper is needed

for each data source due to the difference in how the data is accessed and

represented. It translates the query into the format understood by the remote

site and as result comes back, translates the response from the data source

site into the CQ object format, which can be understood by the system. The

three tiers could all be located on a single machine or distributed in different

combinations among multiple computers connected through networks. Based

on the system, further work has been done on wrapper construction over

XML data [109, 110].

• NiagaraCQ: NiagaraCQ [39, 123] is a distributed database system for query-

39

ing distributed XML data sets on the Internet using a query language like

XML-QL [53]. Due to the large volume of data on the Internet, scalability

of the system is a significant issue. J. Chen et al. [39] addressed this prob-

lem by grouping continuous queries based on their query plan structures. J.

Chen et al. [38] showed that among different incremental group optimiza-

tion strategies, a PullUp strategy, in which selections are pulled above joins,

is often better than other alternatives. A cost model for choosing grouping

strategies is also proposed in this paper. J. F. Naughton et al. [123] studied

the interaction between the search engine and the query engine.

• STREAM: STREAM [20, 58, 6, 122] is a general-purpose relational data

stream management system. It supports a declarative query language using

CQL [7] and flexible query execution plans which can be entered directly

through a graphical interface or using XML. The architecture of STREAM

is shown in Figure 2.6. The system has three store components: the stored

relations, the archive and the scratch store. The stored relations are data kept

as in the traditional relational DBMS. The scratch store keeps intermediate

state of the streams, typically synopses on the streams. Finally, if some

records need to be preserved or processed offline, they are copied to the

archive. In the figure, the data streams coming in on the left produce the input

infinitely and drive the query processing. The users can register continuous

queries to the system. Query results are either in the form of data streams or

relational results that are updated over time (similar to materialized views).

A continuous query is registered using the declarative query language CQL

and is compiled into a query plan. A separate plan is generated for each

query, then the system would optimize the processing by trying to merge

similar plans. The query plans can also be entered and merged manually for

40

experimenting different optimization strategies.

Result

Stored
Relations

Scratch
Store

Archive

Stored
Result

DSMSInput streams

Register
Query

Streamed

Figure 2.6: Architecture of STREAM

The query plan consists of three types of components: query operators, inter-

operator queues and synopses. Inter-operator queues and synopses comprise

the scratch store. Query operators are similar to those in a traditional DBMS,

but enhanced by stream-oriented operators such as window and sample. Inter-

operator queues are also similar to the approach taken by a traditional DBMS,

which connect operators along query paths (query path is explained below).

Synopses are used to maintain state associated with operators through tech-

niques as discussed in Section 2.2.1. They summarizes the records seen so far

at some intermediate operator in a running query plan, as needed for future

evaluation of the operator. Figure 2.7 shows the example of a plan for two

queries Q1 and Q2. This plan contains three operators O1 (join), O2 (selec-

tion), O3 (join), four synopses s1 ∼ s4 (two per joins, which keep summaries

of the tuples of some intermediate stream) and four queues q1 ∼ q4. Query

Q1 is a selection over a join of two streams R and S. Query Q2 is a join of

41

three streams, R, S and T . The two plans share a subplan joining streams

R and S by sharing its output queue q3. Finally, the answers to the queries

are given to the users (along the arrows pointing to Q1 and Q2 in the figure).

For each query Qi, there is a corresponding path in the data flow diagram

from some input data stream though a set of query operators Oi1, Oi2, ... Oip

to node Qi. This path represents the processing necessary to compute the

answer to query Qi, and it is called the query path for query Qi.

S

σ

q2

q3 q4

q1

O1

O2 O3

Q1 Q2

s3 s4

s2s1

Scheduler

R T

Figure 2.7: STREAM query plans

Research problems over the STREAM system include resource allocation and

sharing [9], operator scheduling [13], caching [121, 19], load shedding [16] and

general approximation techniques [15, 115, 17, 8].

• TelegraphCQ: TelegraphCQ [30, 104] is a stream system designed to process

large number of continuous queries over high-volume, highly-variable streams.

Figure 2.8 shows the architecture of TelegraphCQ. Its server consists of three

42

parts: (1) The Telegraph Front End contains the Listener, Catalog, Parser,

Planner and “mini-Executor”; (2) The TelegraphCQ Back End is a separate

process that does the actual query processing; (3) The TelegraphCQ Wrap-

per ClearingHouse is used to host the data ingress operators which make

fresh tuples available for processing, archiving them if required. The query

process runs as follows. The Postmaster listens on a well-known port and

forks a Front End (FE) process for each fresh connection it receives. The

listener accepts commands from a client and based on the command, chooses

where to execute it. Data definition language (DDL) statements and queries

over tables are executed in the FE process. Continuous queries that involve

streams are “preplanned” and sent via the Query Plan Queue to the Back

End (BE) process. The BE executor continually dequeues fresh queries and

dynamically folds them into the current running query. Query results are

placed into the Query Result queues. Once the FE has handled a query off to

the BE, it produces an FE-local minimal query plan the Mini-Executor runs

to continually dequeue results from the Query Result queue and send back

to the user.

TelegraphCQ is a new generation system of the Telegraph project [84, 12],

which targets at a global-scale, plug-and-play shared-nothing parallel query

engine that can execute complex continuous queries over all the available data

online. Therefore, many techniques proposed for the Telegraph project are

applied in the TelegraphCQ system. Research in the Telegraph project has

focused on shared query evaluation and adaptive query processing. eddy [12]

is an online query reoptimization mechanism which can reorder the pipelined

query processing operators to adapt to changing parameters such as operator

costs, selectivities and data arrival rates. S. Madden et al. [114] showed the

43

Query Result Queues

Back End

Modules

Query Plan Queue

Eddy Control Queue

Shared Memory Infrastructure

Split

TelegraphCQ
Front End

Planner
Parser

Listener

Mini−Executor

Catalog

Shared Memory Buffer Pool

Scanners

Disk

TelegraphCQ
Wrappers

Legend

Query + Control

Data Tuples

TelegraphCQ

ClearingHouse
Wrapper

CQEddy

Figure 2.8: Architecture of TelegraphCQ

continuously adaptive continuous query implementation, which exploits not

only adaptivity but also aggressive cross query sharing of work and space,

over the Telegraph data flow engine [84]. S. Madden and M. J. Franklin [113]

proposed the architecture Fjord as part of the Telegraph dataflow engine, for

managing multiple queries over many sensors and show how it can be used to

limit sensor resource demands while maintaining high query throughput. S.

Chandrasekaran and M.J. Franklin [31] presented PSoup, a system built on

Telegraph that combines the processing of ad-hoc and continuous queries by

treating data and queries symmetrically, allowing new queries to be applied to

old data and new data to be applied to old queries. M. A. Shah et al. [137]

proposed a dataflow operator Flux that can repartition stateful operators

online so as to adapt to changing workload and runtime conditions. V. Raman

44

et al.[131] proposed to decompose join operators into their constituent data

structures (State Modules, or SteMs), and then dataflow among these SteMs

is managed adaptively by an eddy routing operator. S. Krishnamurthy et al.

[105] proposed the approach of precision sharing, aiming to share common

work aggressively without unnecessary work. S. Chandrasekaran and M. J.

Franklin [32] studied DSMS that process queries on both historical and live

data. This paper proposed a framework in which multiple resolutions of

summarization/sampling can be generated efficiently so that the query engine

can select only a reduced version (an appropriate level of summarization

depending on available resources) of the historical data. A. Deshpande and

J. M. Hellerstein [52] proposed a mechanism STAIRSs which improves both

adaptivity and performance of eddies by lifting the historical effects on the

state of operators in the query.

• Tribeca: Tribeca [140] is a software system for monitoring and analyzing

either a live network or recorded network traffic on tape. M. Sullivan and

A. Heybey [140] discussed the query language and optimization issues. The

query language contains the Tribeca type system, basic stream operators

(such as AND, OR, NOT), demultiplexing operators used to partition streams,

multiplexing operators used to combine streams and window operators. Op-

timization issues include minimizing query execution time and trying to fit

the intermediate state associated with the query into memory.

2.4 Gigascope: a network stream system

In this section, we have a detailed look at the Gigascope since we have adopted it

as the basic architecture of our work. Gigascope [47, 48, 46] is a DSMS specialized

45

for high speed network traffic monitoring, developed at AT&T Labs-research. We

would discuss its query language, architecture and related research, respectively as

follows.

2.4.1 Query language and query model

There are two options for the query language: a standard database language such

as SQL, or a special purpose language designed to succinctly and efficiently ex-

press network monitoring queries such as the procedural ones used in Tribeca [140]

and Hancock [45]. Gigascope took the standard language approach (with some

adaptation to the system) considering that the advantage of using a well-known

and well-researched query language outweighed the advantages to be had from a

special purpose language. The Gigascope query language, GSQL, is a pure stream

query language with SQL-like syntax but restricted version of SQL due to the

functionalities supported in Gigascope.

On the issue of query semantics, many systems have adopted the model of

continuous queries over a sliding window (recall the discussion on window queries

in Section 2.2.2). This approach has the advantage of precise presentation of the

results at very fine time granularity. However, sliding window queries have several

drawbacks. First, it is hard to compose complex queries. Specifically, we cannot

directly use the result of a sliding window query as the input of another continuous

query since these results contain overlapping states. We have to reverse-interpret

the result as a stream before feeding it to another query. Second, query evaluation of

sliding window queries is less efficient. They may not satisfy the requirement of the

extremely high-speed network traffic data. Gigascope takes the tumbling window

query model as the tumbling window query can be evaluated much more efficiently

than the sliding window query. The tumbling window query gives coarse result

46

compared to the sliding window query, but this may not be a significant problem for

network traffic analysis since usually approximate answers suffice. Another effect

of using the tumbling window query model is that, result of one query is a stream

and can be used as input to other queries directly, therefore we can easily compose

stream queries. To implement the tumbling window query, a “timestamp” must

be enforced. Network data usually contains several types of timestamps and also

sequence numbers; they can be used as the “timestamp” for the tumbling window

queries. Gigascope provides a mechanism for schema annotations to indicate which

stream fields act as the timestamp. For example, consider the following query

(Figure 2.9). IPPackets is a relation defined by the user to represent IP packets.

select tb, SourceIP, count(*) as cnt

from IPPackets

group by time/60 as tb, SourceIP

Figure 2.9: A Query example in Gigascope

Its attributes are extracted from raw network data, usually containing SourceIP,

SourcePort, DestinationIP, DestinationPort, time, and maybe other attributes such

as packet length etc, depending on its exact definition given by the user. The

meaning of SourceIP, SourcePort, DestinationIP and DestinationPort are clear.

The attribute time is the timestamp when the packet arrives. Here we assume

the unit for time is second. What the above query does is actually to obtain the

number of packets sent from every sender per minute (that is, show each one’s IP

address with the number of packets sent from it). This query is meaningful as long

as time has been annotated as the timestamp.

47

2.4.2 Architecture of Gigascope

Gigascope has two major components, a stream manager and a registry. The stream

manager tracks queries that can be activated. Each query is a process. When the

queries are started, they register themselves with the registry. When a user or a

query needs to subscribe the output of a query (a query can use the output as

input), it submits the query name to the registry and receives a query handle in

turn. The process then contacts the query to set up communication through shared

memory.

Gigascope is featured by a two-level query processing architecture. Any query

is decomposed to a low-level subquery, called LFTA3 and a high-level subquery,

called HFTA. Usually LFTAs work on the network traffic directly, either through

libpcap or in the Network Interface Card (NIC). The LFTAs provide data streams

to the stream manager, which can be used by HFTAs or the user applications.

HFTAs also provide streams to the stream manager, which can be used by user

applications. All the FTAs provide the schema of their output to the registry,

including attribute names, data types, the query that FTA executes, and temporal

properties of the attributes.

When a query is submitted, it is analyzed by the system to determine which

parts should be executed as LFTAs and which parts as HFTAs. After the query

is decomposed, it is translated into executable code. HFTAs are implemented as

separate processes using template operators written in C++. LFTAs are translated

into C for linking and execution in a run time system (RTS) discussed below.

In Gigascope, a replace run time system (RTS) is written for the Tigon Gigabit

Ethernet NIC. When the RTS receives a packet from the network, it presents the

packet to a set of processing modules. These modules can perform arbitrary pro-

3FTA stands for “Filter, Transform, Aggregate”.

48

cessing (within resource constraints) and produce output streams for transmission

to the host computer. The LFTAs are translated into C modules that follow the

API expected by the RTS. The packets are linked into an executable and loaded

onto the NIC. A collection of templatized push-based operators have been imple-

mented for evaluating higher-level queries such as selection, projection, aggregation

and stream merge. These operators make use of the temporal properties of the at-

tributes in a stream to optimize query processing (e.g., emit aggregates as soon as

possible). Given the schema of a stream and the query evaluated on it, temporal

properties of the output stream can be deduced. Thus, both LFTAs and HFTAs

produce data streams with temporal properties and the users can compose complex

queries using stream operators.

The design of the two-level architecture has several advantages. First, the LF-

TAs are lightweight queries which perform preliminary filtering, projection and

aggregation. They are linked to the RTS of the NIC (which would be discussed

more below), therefore the preliminary queries can be evaluated without additional

data transfers, which makes them very fast. Second, it is observed that data anal-

ysis is best done close to the data source to reduce the data volume as soon as

possible. After the LFTA subqueries, the data traffic passed to the HFTAs is

greatly reduced, enabling the HFTAs to take their time to perform more com-

plex operations. Take aggregation as an example. The LFTA of the aggregation

operator uses a small hash table to direct packet counts. A hash table collision

results in a tuple’s count ejected from the hash table and written to the output

stream, which is passed on to HFTA. HFTA will complete the aggregation as in

the subaggregates and superaggregates algorithm used in data cube computation.

Due to the temporal clustering of network stream data (all packets in a flow have

the same source/destination IP/port), even with a small hash table has a low col-

49

lision rate and the LFTA is effective in early data reduction. Third, the LFTAs

usually use a small size of memory and the operations can fit L2 cache of the CPU,

which makes the execution rather efficient. Because of these advantages, Gigascope

meets its goal of being a lightweight stream query processing system which works

as fast as hand-written specially tuned programs while also having the flexibility

of composing complex queries.

The Gigascope design also has some limitations. Because LFTAs are linked

into the RTS which is possibly into the NIC, all queries which generate LFTAs

must be submitted in a batch. Changing the set of LFTAs requires the system

to be stopped, the RTS changed and restarted. HFTAs can be submitted at any

point. To increase this flexibility, the queries can accept query parameters, which

are similar to constants and which are specified at query installation time and

can be changed on-the-fly. Therefore the small inflexibility can be alleviated and is

tolerable since our major goal is to achieve extremely high speed stream processing.

2.4.3 Research based on Gigascope

Several research directions are pointed out in [46]. One issue is that the choice

of operator implementation affects the attribute ordering properties of the output,

which in turn affects the performance of downstream operators. Another issue is

the proper use of sampling and approximation techniques and the integration of

them into the query language under the users’ control. Other issues include how

to integrate complex group definition mechanisms as described in [34] into GSQL

and a scalable scheme for expressing stream query sources. G. Cormode et al.

[43] studied how to use user-defined aggregate functions (UDAFs) to implement

selection-based and sketch-based algorithms for holistic aggregate (quantiles and

heavy hitters) operators in Gigascope. Key performance bottlenecks are identified

50

and novel techniques to improve efficiency are proposed. T. Johnson et al. [98]

reported the implementation of a stream sample operator in the Gigascope [46]

DSMS. This stream sample operator can accommodate a wide variety of sampling

algorithms such as reservoir sampling [145], subset-sum sampling [56], min-wise

hash sampling [49] and heavy hitter algorithm [115] over streams which are bet-

ter than traditional random sampling algorithms. In Chapter 3, we study how to

optimize processing in case of multiple aggregations. The idea is to maintain addi-

tional hash tables in LFTAs, called phantoms, to share computation among queries.

The technique optimize the phantom choosing and space allocation processes. T.

Johnson et al. [99] introduced a system for punctuation-carrying heartbeat gen-

eration and showed how heartbeats can be generated in query execution plans to

unblock stream operators. Note that the DISC method for approximate nearest

neighbor search presented in Chapter 4 of this thesis is generally applicable. We

would show how it can be implemented in the Gigascope two-level query processing

architecture.

2.5 Related work

2.5.1 Work related to aggregations over data streams

The focus of our work is how to optimize the computation when processing multiple

aggregate queries over the network data streams. This work is closely related

to the problem of multi-query optimization, i.e., optimizing multiple queries for

concurrent evaluation. This problem has been around for a long time, and several

techniques for this problem have been proposed in the context of a conventional

DBMS. P. A. V. Hall [82] uses operator trees to represent the queries and a bottom-

up traversal algorithm to find common subexpressions. N. Roussopoulos [133]

51

uses query graphs [149] to find views for indexing to minimize the total cost of

answering all queries. U. Charkravarthy and J. Minker [33] extended query graphs

to integrated query graphs and proposed an algorithm based on integrated query

graphs. S. Finkelstein [65] studied how query processing can be improved using

answers produced from early queries when no common expressions are found for

multiple query optimization. Per-Ake Larson and H. Z. Yang [107] showed when

and how can a query be computed from derived relations. T. Sellis [136] analyzed

this problem from a systematic point of view and proposed heuristics under different

system architectures. The basic idea of all these techniques is the identification of

common query subexpressions, whose evaluation can be shared among the query

execution plans produced. This is also the basis for sharing of filters in pub-

sub systems (see, e.g., [59]). Our technique of sharing computation common to

multiple aggregate queries is based on the same idea, but our technique is specially

devised for data stream applications where the data inputs stream by the system

at extremely high speed.

Our problem also has similarities to the view materialization problem, which

is described below. View materialization is a common way to reduce computation

when processing queries in data warehouses, where a data set is viewed as a mul-

tidimensional data cube. Cells of the data cube, namely views, are chosen to be

materialized so that aggregate queries can be answered from materialized views

instead of computed from the raw data. As materializing all views may be too

expensive (in terms of both computation and space), one needs to decide which

views to materialize, which is the view materialization problem. This problem has

been studied extensively in the literature (a survey can be found in [80]). K. A.

Ross et al. [132] has studied the problem of identifying, in a cost-based manner,

what additional views to materialize, in order to reduce the total cost of view main-

52

tenance. V. Harinarayan et al. [83] proposed a lattice framework to represent the

dependencies among views and a greedy algorithm to determine which views to

materialize. Our idea of additionally maintaining phantoms, and choosing which

phantoms to maintain, to efficiently process multiple aggregations is based on the

same conceptual idea. However, due to two differences: i) maintaining a view uses

fixed space while maintaining a phantom can use flexible space; ii) maintaining a

view is always beneficial while maintaining a phantom is not, the greedy algorithm

proposed by V. Harinarayan et al. [83] is inapplicable to our problem. Although we

can somehow adapt the view materialization algorithm to our problem, the adapted

algorithm is very cumbersome and shown to be very inefficient by our experiments.

We devise a novel greedy algorithm for our problem which optimizes the cost.

Many papers (see, e.g., [39, 28, 30]) have highlighted the importance of resource

sharing in continuous queries. [39, 114] use variants of predicate indexes for resource

sharing in filters in continuous query processing systems. In the context of query

processing over data streams, A. Dobra et al. [55] considers the problem of sharing

sketches for approximate join-based processing.

On computing aggregates over data streams, J. Gehrke et al. [70] proposed

single-pass techniques for approximate computation of correlated aggregates such

as “compute the percentage of international phone calls that are longer than the

average duration of a domestic phone call”, whose exact answer requires multiple

passes over the data. S. Chaudhuri et al. [35] uses sampling-based technique

to provide approximate answers to aggregate queries, but different from previous

studies, S. Chaudhuri et al. [35] treats the problem as an optimization problem

whose goal is to minimize the error in answering queries in the given workload.

A. Dobra et al. [54] uses randomized techniques that compute “small” summaries

of the streams to provide approximate answers for general aggregate SQL queries

53

with provable guarantees on the approximation error. A. C. Gilbert et al. [72] uses

sketching techniques to approximate wavelet projections that represent the original

data stream. However, none of these papers considered query optimization through

sharing among different queries.

S. Chandrasekaran and M. J. Franklin [31] and A. Arasu and J. Widom [9]

studied sharing data structures among sliding window queries posed on the same

input stream, aggregate function and aggregated attributes. The sharing queries

only differ in the window specifications. The approach proposed in [31] is to main-

tain a ranked n-ary tree on the recent data that can cover all the sliding windows

of the queries. Each leaf of the tree is a data record of the stream and the leaves

are sorted in the order of their insertion times. Each internal node stores the

value of the aggregate function computed over the descendant leaves of that node.

This algorithm has an update and search cost of O(log n), where n is the number

of elements maintained in the tree, which equals the number of elements needed

to cover all the query windows. The other work, A. Arasu and J. Widom [9],

proposes to exploit the distributive or algebraic properties of the aggregate func-

tions. These properties ensure that the aggregation over the union of two sets

of elements can be computed from the aggregation over each set (for example,

SUM(S1

⋃

S2) = SUM(S1) + SUM(S2)). The idea of A. Arasu and J. Widom

[9] is to precompute the aggregation over some intervals and store them. When

an aggregate query is issued, the window of the query is decomposed into intervals

whose aggregations have been precomputed. Then the asked aggregation can be

computed from the precomputed aggregations. This approach uses more space (to

store the precomputed aggregations) and may have more update costs. However,

it has better search performance and works well especially when the number of

queries is large. Two algorithms are proposed in [9], B-Int and L-Int, for general

54

aggregate queries. B-Int requires O(n) space, has an amortized update time com-

plexity of O(1) and a worst-case search time complexity of O(logW), where W is

the size of the query window. L-Int requires O(γn) space, has an amortized up-

date time complexity of O(γ) and a worst case search time of O(1), where γ is a

parameter used in partitioning the stream sequence. As mentioned, the algorithms

proposed in [31] and [9] use a sliding window model and share data structures for

aggregates differing only in the query window specifications. Our work, based on

the Gigascope architecture, assumes a tumbling window model. Moreover, our ap-

proach shares the computation among different aggregated attributes, or relations

in general.

2.5.2 Work related to approximate nearest neighbor search

over data streams

There have been extensive studies on the Nearest Neighbor (NN) problem in tra-

ditional databases. Early algorithms are based on R-tree-like structures [81]. The

R-tree is a hierarchical structure consisting of nodes, each of which corresponds

to the minimum bounding rectangle (MBR) of the objects in or under this node.

For example, Figure 2.10(a) shows a set a points {A, B, C, D, F, G, H, I, J, K}

and Figure 2.10(b) shows how these points are organized in an R-tree with node

capacity of three entries. This R-tree has three levels, where level 0 contains the

data points and the other levels contain entries (E1, E2, ...), each consisting of an

MBR and pointers to the nodes in the next level of the tree. In Figure 2.10(a), the

dark gray regions are the MBRs of the level 0 nodes and the light gray regions are

the MBRs of the level 1 nodes.

The NN algorithms based on the R-tree follow a branch-and-bound approach,

that is, they traverse the tree in certain order and obtain some candidate NN from

55

N6

N2

N1 N2

N3 N4 N5 N6

N3 E1 E2

E3 E4 E5 E6

Q
1

N4
N5

J

K

A B C G KFD H I J

N

Level 0

Level 1

Level 2

Root

(b)(a)

A

B

C

F

D

G

H

I

Figure 2.10: An R-tree example

the nodes visited. On the other hand, some distance bounds can be derived for

the points in the rest of the nodes. If the current candidate NN distance is smaller

than the minimum distance between an unvisited node and the query point, the

algorithm will skip this node. These algorithms mainly differ in the order they

traverse the tree. For example, a depth-first algorithm is proposed in [134]. Starting

from the root, it proceeds down the tree until a path is exhausted and then moves

back one level and proceeds down another path. For each node, the entries are

visited in the order of the minimum distance between their MBRs and the query

point. For query point Q in Figure 2.10(a), the algorithm first visits the nearest

node to the root, that is, N1. Among the entries of N1, E4 has the nearest MBR,

therefore the algorithm visits N4 and gets a NN candidate F . Then it moves one

level up and visits the second nearest node in N1, that is, N3, but find no points

nearer than F , so it moves one level up and begins to visit N2. Following similar

steps, the algorithm stops when it gets the NN candidate G in N5, which has a

smaller distance to Q than the minimum distance between N6 and Q. Therefore,

G is the nearest neighbor.

Another algorithm traverses the tree in a closest-first style [87]. It accesses the

nodes in the order of increasing distance to the query point. After N4, the algorithm

56

goes to N2, instead of N3, and then N5. At this moment, the NN candidate G has

a distance smaller than the minimum distance of the remaining nodes, N3 and N6.

Hence they need not be accessed. However, this closest-first traversal is achieved

by using a priority queue which maintains the information of the nodes that may

contain the nearest neighbor. It may cause problems when memory is stringent.

The above R-tree based algorithms work well in low-dimensional space. It was

observed later that, in medium- and high-dimensional spaces, the overlaps in the

R-tree become significant and its performance deteriorates rapidly. Although vari-

ations of the R-tree have been proposed [148, 100, 25, 135], the intrinsic difficulty of

(k)NN search in high-dimensional space is still unresolved. A quantitative analysis

in [146] shows that these structures are outperformed by a sequential scan of the

data when dimensionality is high. Therefore a technique based on data quantiza-

tion called the vector approximation-file (VA-file) was proposed [146] to accelerate

sequential scan.

The VA-file uses bit strings, each of which is typically 4 to 8 bits long, to

compress the original data, which are usually floating point variables, therefore the

size of the VA-file is 1/8 to 1/4 of the original data. Figure 2.11(b) shows how the

set of points {A, B, C, D} shown in Figure 2.11(a) are represented in a VA-file. In

this example, the data space is divided into four partitions in each dimension and

each partition is assigned a two-bit string. A data point is represented by the bit

strings of all the dimensions, which is called the vector approximation (VA) of the

point. Vector approximations of all the points are stored sequentially resulting in a

VA-file. The search algorithm first scans the VA-file and maintains a kNN candidate

list. According to the distance bounds derived from the VAs, most of the points

can be pruned in the VA-file scan. Then the few points in the kNN candidate list

are retrieved from the original data file directly for further check. The IQ-tree [24]

57

approximation

1011

0001

1100

10

00

01

00 01 1110

11

data space

(a) (b)

A

B

C

D

A

B

C

D

0011

Figure 2.11: A VA-file example

combines the R-tree-like structure and the approximation technique, and exploits

a cost model to decide which approach to adopt.

Some methods are proposed for kNN search in a metric space such as the M-

tree[41], Omni-family indexes[64] and the iDistance [97]. In [97], it is reported

that the iDistance performs better than sequential scan on uniform data up to

30 dimensions and beats existing techniques on clustered data sets in even higher

dimensions.

All the above methods assume that the data are disk-resident and can be

scanned multiple times. As such, they are not suitable for processing data streams

that typically require one-pass algorithms as the data are not stored on disk and

are too large to fit into memory.

Due to the intrinsic difficulty of the kNN problem, some researchers have looked

into approximate solutions. A structure based on quadtrees for answering kNN

queries approximately was proposed in [26]. The relative error is dependent on the

dimensionality d so that the larger the value of d, the greater the relative error.

58

Then the (1 + ε)-approximate nearest neighbors problem was studied [10, 11, 106],

in which the relative error ε is a constant specified by the user. An algorithm

requiring exponential time in d and linear space was proposed in [10] and follow-up

studies improved its time/space requirements [91, 106, 108]. These studies share

the common feature of a relative error bound, while in our work, we specify the

error as an absolute value. Moveover, these studies assume the whole data set is

in memory, therefore they are inapplicable to the data stream model, where only a

small portion of the data can be maintained in memory.

The ND P-sphere tree [73] also accelerates kNN search by providing non-exact

answers. The algorithm guarantees that for a user specified percentage of time,

the returned answers are correct, but it cannot distinguish between the correct and

incorrect answers. Again, this technique is proposed for traditional database where

data are disk-resident and hence inapplicable for data stream queries.

A most closely related work may be [69], which proposes using the Fast Fourier

Transform to solve the problem of pattern similarity search over data streams. How-

ever, it uses values from the incoming stream (time series) as queries to identify

the nearest neighbors from an existing pattern database. In our problem setting,

queries are specified by users on demand and we seek to locate nearest neighbors in

the incoming data stream. The idea of [69] is to take advantage of batch process-

ing through prediction of the data streams. When the actual time series arrives,

prediction error lower bounds and upper bounds are calculated and used together

with the predicted distances to filter candidate patterns. Their error bounds are

used for prediction but the answers are accurate. In our case, the error bounds are

for the answers, which means that the answers are approximate. In [42], hamming

norms are used to measure the similarity between two streams, and in [143], a

regression-based algorithm was proposed to mine frequent temporal patterns for

59

data streams. Reverse nearest neighbor aggregate queries over streams have also

been investigated in [102].

2.6 Summary

In this chapter, we first discussed the data stream model and queries over data

streams. We have seen the differences of data stream applications from traditional

databases and the necessity of algorithms specially devised for data streams. Then

we examined commonly used techniques in data stream algorithms: approxima-

tion, window queries and sharing. Next, we reviewed a number of existing data

stream management systems (DSMSs), and had a close look at Gigascope, a DSMS

especially designed for network data streams. Finally, we explored existing work

related to the two problems we study.

60

CHAPTER 3

Efficient Aggregation Over Data Streams

Aggregation is a basic operation for both traffic management and some security

applications as discussed in Section 1.2. The need for exploratory IP traffic data

analysis naturally leads to posing related aggregation queries on data streams, that

differ only in the choice of grouping attributes. In this chapter, we address this prob-

lem of efficiently computing multiple aggregations over high speed data streams,

based on the two-level LFTA/HFTA query processing architecture of Gigascope.

The rest of the chapter is organized as follows. We first show how a single

aggregation is processed in the Gigascope DSMS in Section 3.1. Then we examine

the problem of multiple aggregations and introduce an approach, that is, maintain-

ing phantoms, to optimize the multi-query processing in Section 3.2. Section 3.3

gives the cost model for optimization and formalize our problem which consists of

two sub-problems, phantom choosing and space allocation. Hardness result of the

problem is also given in this section. A synopsis of our proposed solution follows

in Section 3.4. Section 3.5 presents the phantom choosing algorithms. Section 3.6

61

presents our collision rate model, a key component in the space allocation scheme,

which is in turn used by our proposed greedy algorithm. Section 3.7 analyzes space

allocation schemes. Section 3.8 presents our experimental study.

3.1 Single aggregation

Let us first see how a single aggregate query is processed in Gigascope. Consider

the following query Q0, which is the same as the one shown in Figure 2.9.

Q0: select tb, SourceIP, count(*) as cnt

from IPPackets

group by time/60 as tb, SourceIP

As explained in Section 2.4.1, IPPackets is a relation defined by the user to rep-

resent IP packets. Its attributes are extracted from raw network data, usually

containing SourceIP, SourcePort, DestinationIP, DestinationPort, time, and maybe

other attributes such as packet length etc, depending on its exact definition by the

user. The meaning of SourceIP, SourcePort, DestinationIP and DestinationPort

are clear. The attribute time is the timestamp when the packet arrives. Here we

assume the unit for time is second. What the above query does is actually to obtain

the number of packets sent from every sender per minute (that is, show each one’s

IP address with the number of packets sent from it).

Figure 3.1 is an abstracted model of Gigascope. ML corresponds to the LFTA,

and MH corresponds to the HFTA. Q0 is processed in Gigascope as follows. When a

network data stream record arrives, it is observed at ML. ML maintains a hash table

consisting of a specified number of entries, and each entry is a {group-by-attributes,

count} pair. The item group-by-attributes stores the value of the attributes grouped

by in the query, and this item always records the most recently observed values that

62

2

2

c 1

MH

ML

cnt

LFTA

HFTA

SrcIP

2 3

24 1

17 1

3

c

Figure 3.1: Single aggregation in Gigascope

hash to this entry. In query Q0, we group the results by SourceIP every minute,

so the first item of an entry stores the most recent source IP hashed to this entry.

The second item of an entry, count, keeps track of the number of times the value

stored in the first item of the entry has been observed without any other record

hashed to this entry.

When a new record r hashes to entry bk, Gigascope checks if r belongs to

the same group as the existing group in bk (that is, to check if the value of r’s

group-by attributes is the same as the value stored in bk). If yes, the count of bk

is incremented by 1. Otherwise, we say a collision occurs. In this case, first the

current entry in bk is evicted to MH . Then, a new group corresponding to r is

created in bk in the hash table in ML and the count of the group corresponding to

r is set to 1. Because MH is much larger than ML, we can store all the groups in

a big table with their counts. When the group in the evicted entry already exists

in the table in MH , we just add the new count in the evicted entry to the existing

63

count of the group in the table.

Consider an example stream with the following (simplified) source IP’s: 2, 24,

2, 2, 3, 17, 3, 4. Suppose we use a simple hash function which is the remainder

modulo 10 and maintain a hash table of 10 entries at ML. The first item in the

stream, 2, hashes to the third entry. We check the entry in the hash table, which is

empty in the beginning, so we set the third entry of the hash table as (2, 1). Then

we see 24, which hashes to the fifth entry of the hash table. Similarly (24, 1) is

put in the fifth entry of the hash table. The third item is 2, which hashes to the

third entry of the hash table. We check the hash table and find that the existing

source IP in the third entry is also 2, which means they are in the same group, so

we just increment the count of the entry by 1, resulting in (2, 2). The rest of the

items are similarly processed one by one. After we processed the 7th item, which

is 3, the status of the hash table is shown in Figure 3.1. The next item 4 hashes

to fifth entry of the hash table. The existing group value in the fifth entry is 24,

different from the new value 4, therefore a collision happens. In this case, we evict

the existing entry (24, 1) to MH and set the fifth entry to (4, 1).

Query Q0 is processed by Gigascope in an epoch by epoch fashion (that is,

tumbling window query), for an epoch of length 1 minute (i.e., time/60). This

means that at the end of every minute, all the entries in ML would be evicted to

MH to compute the aggregation results for this epoch at the MH . At MH , multiple

tuples for the same group in the same epoch may be seen because of evictions, and

these are combined to compute the desired query answer.

Gigascope is especially designed for processing network level packet data. Usu-

ally this data exhibits a lot of clusteredness, that is, all packets in a flow have the

same source/destination IP/port. Therefore, the likelihood of a collision is very

low until many packets have been observed. In this fashion, the data volume fed

64

to MH is greatly reduced.

3.1.1 Cost of processing a single aggregation

In Gigascope, LFTAs are run on a Network Interface Card (NIC), which has a

memory constraint. Also LFTAs use a small size of memory which fits into the

L2 cache of the CPU so that LFTAs are run very efficiently. Therefore, we have

a memory size constraint for ML, depending on the hardware (typically several

hundred KB). MH has much more space and a much reduced volume of data to

process, so the processing at MH does not dominate the total cost. The overall

bottlenecks are:

• The cost of looking up the hash table in ML, and possible update in case of

a collision. This whole operation, called a probe, has a nearly constant cost

c1.

• The cost of transferring an entry from ML to MH . This operation, called an

eviction, has a nearly constant cost c2.

Usually, c2 is much higher than c1 because the transfer from ML to MH is more

expensive than a probe in ML.

The total cost of query processing thus depends on the number of collisions

incurred, which is determined by the number of groups of the data and collision

rate of the hash table. The number of groups depends on the nature of the data.

The collision rate depends on the hash function, size of the hash table, and the

data distribution. Therefore, generally, what we can do is to devise a good hash

function and allocate more space (within space and peak load constraints, as we

will discuss more later) to the hash table in order to minimize the total cost.

65

3.2 Multiple aggregations

3.2.1 Processing multiple aggregations naively

Given the method to process single aggregate queries, and its cost model, based

on the Gigascope architecture, we now examine the problem of evaluating multiple

aggregate queries. Suppose the user is interested in the following three aggregate

queries:

Q1: select tb, SourceIP, count(*) as cnt

from IPPackets

group by time/60 as tb, SourceIP

Q2: select tb, DestinationIP, count(*) as cnt

from IPPackets

group by time/60 as tb, DestinationIP

Q3: select tb, DestinationPort, count(*) as cnt

from IPPackets

group by time/60 as tb, DestinationPort

In the sequel, for the sake of simplicity, we will use R to represent the relation

of the data stream and A, B, C, D, etc as R’s attributes. Then the above three

queries are re-written as follow:

Q1: select tb, A, count(*) as cnt

from R

group by time/60 as tb, A

66

Q2: select tb, B, count(*) as cnt

from R

group by time/60 as tb, B

Q3: select tb, C, count(*) as cnt

from R

group by time/60 as tb, C

A straightforward method is to process each query separately using the above

single aggregate query processing algorithm, so we maintain, in ML, three hash

tables for A, B, and C separately as shown in Figure 3.2. For each incoming

record, we need to probe each hash table, and if there is a collision, some entry

gets evicted to MH .

C

2

c 1

c 1

c 1

MH

ML

LFTAs

HFTAs

B

A

c

Figure 3.2: Multiple aggregations in Gigascope

67

3.2.2 Processing multiple aggregations using phantoms

Since we are processing multiple aggregate queries, we may be able to share the

computation that is common to each one and thereby reduce the overall processing

cost. For example, we can additionally maintain a hash table for the relation ABC

in ML as shown in Figure 3.3. If we have the counts of each group in ABC, we can

derive the counts of each group of A, B and C, respectively, from it. The processing

of the group-by queries on A, B and C runs as follows. When a new record arrives,

we first hash on the combined attributes, ABC, and maintain the groups of ABC in

its hash table. Suppose the new record hashes to entry bk1 in the hash table ABC.

If the new record belongs to the same group as the existing group in bk1, then we

simply increase the count by one in bk1; otherwise, we evict the existing entry to

the three hash tables for A, B and C and put the new group in bk1 with count one.

At this moment, the entry evicted from the hash table ABC is like a new record

arriving at the hash tables A, B and C, respectively. Then we do similar things

on each of hash tables A, B and C as we do in the single query case. Suppose the

evicted entry from hash table ABC is (vavbvc, cnt), where va, vb, vc are the values

of A, B, and C in this entry respectively and cnt is the count of this entry. For

hash table A, we hash va and suppose it’s hashed to the entry bk2. If the existing

entry in bk2 is also in group va, then we add the count of bk2 by cnt; otherwise, we

evict the existing entry in bk2 to MH and put the entry (va, cnt) in bk2. For hash

tables B and C, the similar process happens.

The intuition behind the processing with phantoms is that, when a new record

arrives, instead of probing three hash tables A, B and C, we only probe the hash

table ABC. We would delay the probes on A, B and C (we omit “hash tables” when

the context is clear) until the point when an entry is evicted from ABC (that is, a

collision happens in ABC). Again, because network data show much clusteredness,

68

that is, all packets in a flow have the same source/destination IP/port. Therefore,

the likelihood of a collision is very low until many packets have been observed.

Therefore, we may reduce the probing cost by maintaining ABC.

LFTAs

H

ML

c 2

ABC

A

B

C

c 1

c 1

c 1

c 1

HFTAsM

Figure 3.3: Multiple aggregations using phantoms

Since the aggregate queries of A, B and C are derived from ABC, we say that

ABC feeds A, B and C. Although ABC is not of interest to the user, its maintenance

could help reduce the overall cost. We call such a relation as a phantom. While for

A, B and C, whose aggregate information is of users’ interest, we call each of them

as a query. Both queries and phantoms are called relations.

Now we examine Figure 3.3 to illustrate how the instantiation (“maintenance”

and “instantiation” are used interchangeably throughout this chapter) of a phantom

can benefit the total evaluation cost. To be fair, the total space used for the hash

tables should be the same with or without the phantoms. So when we add the

phantom ABC, the size of the hash tables for A, B and C need to be reduced.

Suppose the total space allocated for the three queries is M . Assume that ABC

has twice the number of groups as the number of groups of A (A has the same

69

number of groups as B or C). We should allocate more space to ABC so that ABC

does not have a too high collision rate. Simply, we can allocate the space to their

hash tables proportional to their number of groups (but actually this is not the

optimal way; we will show the optimal scheme in Section 3.7). Then ABC has

the space 2M/5 and each of A, B, C has M/5. Without phantoms, we allocate

M/3 to each hash table. In both cases, A, B and C have the same collision rate.

Without the phantom, their collision rate is denoted x1; with the phantom, their

collision rate is denoted x′
1. Since the hash table size of A, B and C is smaller in

the presence of the phantom, x′
1 should be larger than x1. Let the collision rate of

phantom ABC be x2.

Consider the cost for processing n records. Without the phantom, we need to

probe 3 hash tables for each incoming record, and there are x1n evictions from each

table. Therefore the total cost is:

E1 = 3nc1 + 3x1nc2 (3.1)

With the phantom, we probe only ABC for each incoming record and there would

be x2n evictions. For each of these evictions, we probe A, B and C, and hence

there are x′
1x2n evictions from each of them. The total cost is:

E2 = nc1 + 3x2nc1 + 3x′
1x2nc2 (3.2)

Comparing Equations 3.1 and 3.2, we can get the difference of E1 and E2 as follows

E1 − E2 = [(2 − 3x2)c1 + 3(x1 − x′
1x2)c2]n (3.3)

If x2 is small enough so that both (2− 3x2) and (x1 −x′
1x2) are larger than 0, then

70

E2 will be smaller than E1, and therefore instantiation of the phantom benefits the

total cost. If x2 is not small enough so that one of (2 − 3x2) and (x1 − x′
1x2) is

larger than 0 but the other is less than 0, then E1−E2 depends on the relationship

of c1 and c2. If x2 is so large that both (2 − 3x2) and (x1 − x′
1x2) are less than 0,

then the instantiation of the phantom increases the cost and therefore we should

not instantiate it.

3.2.3 Choice of phantoms

AB BC BD CD

ABC

AB BC BD CD

BCD

AB BC BD CD

ABCD

BCD

(a) (b) (c)

Figure 3.4: Choices of phantoms

In the above example, we have only considered one phantom. In fact, we can

have many phantoms and multiple levels of phantoms. Again, consider stream

relation R with four attributes A, B, C, D. Suppose the queries are AB, BC, BD

and CD. We could instantiate phantom ABC, which feeds AB and BC as shown

in Figure 3.4(a) (a shaded box is a phantom and a non-shaded box is a query);

or we could instantiate phantom BCD, which feeds BC, BD and CD as shown in

Figure 3.4(b); or we could instantiate BCD and ABCD, where ABCD feeds AB

and BCD as shown in Figure 3.4(c). We only list three choices here, although there

are many other possibilities.

It is easy to prove that a phantom that feeds less than two relations is never

beneficial. So by combining two or more queries, we can obtain all possible phan-

71

BC BD CD

ABC ABD BCD

ABCD

AB

Figure 3.5: Feeding graph for the relations

toms and plot them in a relation feeding graph as in Figure 3.5. Each node in the

graph is a relation and each directed edge shows a feed relationship between two

nodes, that is, the parent feeds the child. Note that this feed relationship can be

“short circuited”, that is, a node can be directly fed by any of its ancestors in the

graph. For example, AB could be fed directly by ABCD without having ABC or

ABD maintained.

Given the relation feeding graph, and a set of user queries that are maintained

in the LFTA, one optimization problem is to identify the phantoms that we should

instantiate to minimize the cost. The exhaustive method is obvious, that is, we try

all possible combinations of the phantoms and calculate the cost (the same way as

in Section 3.2.2) of each combination. Then we choose the one with the minimum

cost. However, the exhaustive method is too expensive, especially for data stream

systems where a fast response is essential.

In our example in Section 3.2.2, we assumed that each hash table has the same

size for simplicity of exposition. However, given a set of phantoms and queries to

instantiate in ML, how does the allocation of space to each hash table affect the

collision rate and hence the cost? Therefore, another optimization problem is that,

given a set of relations to instantiate, how to allocate space to them so that the

cost is minimized.

72

In summary, our cost optimization problem consists of two sub-optimization

problems: how to choose phantoms and how to allocate space. We formulate

the cost model for the multiple aggregation problem and propose a cost greedy

algorithm to choose phantoms. The algorithm is “cost greedy” in the sense that

it always chooses the phantom that reduces the cost most among the candidate

phantoms. In addition, for a given set of relations to instantiate, we analyze which

space allocation gives the minimum cost; in case the optimal space allocation cannot

be calculated, we propose heuristics which can approximate the optimal solution

very well.

3.3 Problem formulation

In this section, we formulate our cost model, and give a formal definition of our

optimization problem. We present hardness results, motivating the greedy heuristic

algorithms for identifying optimal configurations.

3.3.1 Terminology and notation

When we have chosen a set of phantoms to instantiate in the ML, we call the set of

maintained relations (i.e., the chosen phantoms and user queries) as a configuration.

For example, Figure 3.4 shows three possible configurations for the example query

set, Q1, Q2 and Q3 presented in Section 3.2.1. While the feeding graph is a DAG,

a configuration is always a tree, consistent with the path structure of the feeding

graph. If a relation in a configuration is directly fed by the stream, we call it a

raw relation. For example, ABC, BD, CD are raw relations in Figure 3.4(a); and

ABCD is the only raw relation in Figure 3.4(c). If a relation in a configuration has

no child, then it is called a leaf relation or just a leaf. Due to two reasons: i) early

73

data reduction is most efficient in exploiting the clusteredness of the network data

stream; ii) local probes in LFTA are much cheaper than data transfers between

LFTA and HFTA, user queries are always maintained in the LFTA, therefore only

queries are leaves. For all the configurations in Figure 3.4, queries AB, BC, BD

and CD are the leaves. Note that raw relations and leaf relations need not be

mutually exclusive. For example, BD and CD are both raw and leaf relations in

Figure 3.4(a).

We next develop our cost model, which determines the total cost incurred during

data stream processing of a configuration. We then formalize the optimization

problem studied in this chapter. For ease of reference, we summarize the symbols

used in this chapter in Table 3.1.

3.3.2 Cost model

Recall that aggregate queries usually include a specification of temporal epochs of

interest. For example, in the query “for every destination IP, destination port and

5 minute interval, report the average packet length”, the “5 minute interval” is the

epoch of interest (a window in the tumbling window query model). During stream

processing within an epoch (e.g., a specific 5 minute interval), the aggregate query

hash tables need to be maintained, for each record in the stream. At the end of an

epoch, all the hash tables of the user queries at the LFTA need to be evicted to the

HFTA to complete the user query computations. Thus, there are two components

to the cost: intra-epoch cost, and end-of-epoch cost. We discuss each of these next.

Intra-epoch cost

Let Em be the maintenance cost of all the hash tables during an epoch T . It includes

updating all hash tables for the raw relations when a new record in the stream is

74

Table 3.1: Symbols
Symbol Meaning
AR The set of ancestors of relation R
bk A bucket in a hash table
b The number of bucket of the hash table
Bk The number of buckets that k groups hash to
Bi Occupancy numbers
c Some constant denoting certain cost
e Per record cost
Em Intra-epoch cost
Eu End-of-epoch cost
f Number of relations a phantom feed (the fanout)
FR The number of tuples fed to relation R
gi The number of groups of relation i appearing in an epoch
I A configuration, which is a set of relations to be maintained
k The number of groups hashing to a hash table bucket
la Average length of network flows
M Memory constraint in LFTA
MR The size of the hash table for relation R
nT The number of tuples observed in an epoch
nQ The number of queries
Q A query
R A relation
S A set
T The time range of an epoch
W The set of all raw relations
x Collision rate
φ A user defined ratio used in space allocation of the GS

algorithm (see Section 3.5.1)

processed. If (and only if) there is collision in hash tables for the raw relations,

the hash tables of the relations they feed are updated. This process recurses until

the hash tables for the leaf level. A probe is defined as the process of checking a

{group, count} pair against a hash table, and then either increasing the count of

the entry or setting a new entry in the hash table due to collision. Every probe has

the cost of c1.

If there are collisions in the hash tables for the leaf (user) queries, evictions to

the HFTAs are incurred, each with the cost of c2. Therefore, the total maintenance

75

cost is

Em =
∑

R∈I

FRc1 +
∑

R∈L

FRxRc2 (3.4)

where I is a configuration, L is the set of all leaves in I, FR is the number of tuples

fed to relation R during epoch T , and xR is the collision rate of the hash table for

R. FR is derived as follows.

FR =











nT if R ∈ W

Fpxa else
(3.5)

where W is the set of all raw relations, nT is the number of tuples observed in T ,

Fp is the number of tuples fed to the parent of R in I, and xa is the collision rate

of the hash table for the parent of R in I. If we further define Fp = nT and xa = 1,

when R is a raw relation, Equation 3.4 can be rewritten as follows.

Em =

[

∑

R∈I

(
∏

R′∈AR

xR′)c1 +
∑

R∈L

(
∏

R′∈AR

xR′)xRc2

]

nT (3.6)

where AR is the set of all ancestors of R in I.

nT is determined by the data stream and is not affected by the configuration.

Hence, the per record cost is:

em =
∑

R∈I

(
∏

R′∈AR

xR′)c1 +
∑

R∈L

(
∏

R′∈AR

xR′)xRc2 (3.7)

where c1 and c2 are constants determined by the LFTA/HFTA architecture of the

DSMS. Therefore, the cost is only affected by the feeding relationship and collision

rates of the hash tables.

76

End-of-epoch cost

Denote the update cost at the end of epoch T as Eu. It includes the cost of the

following operations. From the raw level to the leaf level of the feeding graph of

the configuration, we scan each hash table and propagate each item in the hash

table to hash tables of the lower level relations they feed. Finally, we scan the leaf

level hash table and evict each item in it to the HFTA, MH . Using an analysis

similar to the one for intra-epoch costs, taking the possibilities of collisions during

this phase into account, the end-of-epoch cost Eu can be expressed as follows.

Eu =
∑

R∈I,R 6∈W [
∑

R′∈AR
(MR′ ∗ ∏

R′′∈AR′∪R′,R′′ 6∈W xR′′)]c1+
∑

R∈L[MR +
∑

R′∈AR
(MR′ ∗ ∏

R′′∈AR′∪R′,R′′ 6∈W xR′′)]c2

(3.8)

where MR is the size of the hash table of relation R, and W is the set of all raw

relations.

3.3.3 Our problem

Intuitively, the lower the average per-record intra-epoch cost, the lower is the load

at the LFTA, increasing the likelihood that records in the stream are not dropped

during query processing. We also want to ensure that the total cost of the end-

of-epoch processing is manageable. This leads to the multiple aggregation (MA)

optimization problem studied for the two-level LFTA/HFTA architecture in this

chapter.

Consider a set of aggregate queries over a data stream that differ only in their

group-by attributes1, SQ = {Q1, Q2, ..., QnQ
}, and memory limit M in ML. De-

termine the configuration I, of relations in the feeding graph of SQ to instantiate

1Our current work only considers group-by queries that differ in their group-by attributes,
that is, they must have the same time window size. Optimizing group-by queries with different
group-by attributes with different time window sizes is one direction of our future work.

77

in ML and also the allocation of the available memory M to the hash tables or

the relations so that the per-record intra-epoch cost (Equation 3.7) for answering

all the queries is minimized, subject to the end-of-epoch cost being less than peak

load cost Ep.

Our cost optimization problem consists of two sub-problems: how to choose

phantoms and how to allocate space. For any given configuration, there exists a

space allocation that has the lowest per-record intra-epoch cost (we simply say

cost in the sequel when the meaning is clear from the context). In Section 3.7, we

would show how to allocate the space in order to achieve the minimum cost. For

now, we first assume that we have a function to output the minimum cost given a

configuration as the input, and we give the hardness result of the phantom choosing

problem below.

Hardness of the problem

Phantom choosing is a minimization problem. To study its hardness, we first recast

it as a decision problem as follows:

PHANTOMCHOOSING=[Given a query set SQ = {Q1, Q2, ..., QnQ
}, a func-

tion that returns the cost of any configuration, does there exist a configuration of

cost less than or equal to cQ ?]

The hardness of the problem is given by the following theorem.

Theorem 1

The phantom choosing problem is NP-complete.

Proof We first show that PHANTOMCHOOSING ∈ NP. For a given configu-

ration, we simply calculate its cost and compare the cost with cQ, which takes

constant time. Therefore PHANTOMCHOOSING ∈ NP.

78

Next we show that PHANTOMCHOOSING is NP-hard by reducing the set

cover problem to it. The set cover problem, defined below, has been proven to be

NP-complete [144].

Given a universe U of nQ elements, a collection of subsets of U, S = {S1, S2, ..., SnS
},

and a cost function that turns the cost (a positive number) of any subset in S, find

a minimum cost subcollection of S that covers all elements of U.

The decision problem version of set cover is:

SETCOVER=[Given U, S and the cost function as above, does there exist a

subcollection of S that covers all elements of U and has the cost less than or equal

to cQ ?].

In the following, we construct a PHANTOMCHOOSING instance pc and form

a mapping from SETCOVER to pc. Given any U of SETCOVER, we define the

queries of pc as the elements of U. A subcollection of S consists of a number of

elements of S, denoted by S ′ = {Si1, Si2, ..., Sij}, where i1, i2, ..., ij ∈ {1, 2, ..., nS}.

If we view each subset as a relation in PHANTOMCHOOSING, then each sub-

collection corresponds to configuration in PHANTOMCHOOSING. We map each

subcollection S ′ that covers all elements of U to its corresponding configuration

and define the cost of the configuration as the sum of the cost of all the subsets

in S ′. The cost of the configuration corresponding to any other set in the power

set of U than those in S is defined as +∞. There are at most 2nS subcollections

of S. Since nS is a constant, the mapping algorithm can be run in constant time.

For any instance of SETCOVER, if there exists a subcollection of S that covers

all elements of U and has the cost of cQ, then its corresponding configuration for

PHANTOMCHOOSING also has the cost of cQ. Conversely, if there is a configu-

ration for PHANTOMCHOOSING having the cost of cQ, this configuration must

correspond to a subcollection of S, since all other sets in the power set of U has the

79

cost of +∞. Therefore SETCOVER is reduced to PHANTOMCHOOSING, and

PHANTOMCHOOSING is NP-hard.

PHANTOMCHOOSING ∈ NP and ∈ NP-hard, therefore, PHANTOMCHOOS-

ING is NP-complete. 2

To help understand the mapping algorithm, an example is given as follows. In

SETCOVER, let U be {A,B,C,D,E}, S be {{A}, {B,C}, {C,D}, {A,D,E}, {E}}

and the costs of the elements be {4, 8, 6, 10, 3}, each corresponding to the sub-

set at the same position in S. One subcollection that covers all elements of

U is {{A}, {B,C}, {C,D}, {E}}, hence we define the cost of the configuration

{A,BC,CD,E} as (4+8+6+3) = 21. Obviously this configuration does not have

the minimum cost since both BC and CD are feeding C, but this is still a valid

configuration for PHANTOMCHOOSING. Another subcollection that covers all

elements of U is {{B,C}, {A,D,E}}, hence we define the cost of the configuration

{BC,ADE} as (8+10) = 18. This is actually the configuration with minimum cost.

We can still find other subcollections that cover all elements of U by adding some

elements in S to the above two subcollections, such as {{A}, {B,C}, {A,D,E}},

but they have larger cost. Except the above mentioned configurations, any other

configuration that does not correspond to a subcollection of S, such as {AB,CDE},

would be defined to have the cost of +∞.

In our problem setting, we assume that user queries are always maintained in

the LFTA due to two reasons: i) early data reduction is most efficient in exploiting

the clusteredness of the network data stream; ii) local probes in LFTA are much

cheaper than data transfers between LFTA and HFTA. This variation of the phan-

tom choosing problem is still NP-complete. The proof is almost the same as above

except a small change in the mapping algorithm. In every PHANTOMCHOOSING

configuration we map to, all the elements of U must appear. We would change the

80

mapping algorithm as follows. We first map a subcollection of S to a configuration

for PHANTOMCHOOSING as described in the proof of theorem 1. If any element

of U is absent from the resultant configuration, we would add it to the configu-

ration while keeping the cost unchanged. Still use the example in the previous

paragraph, when we obtain the configuration {BC,ADE}, we would add all the

queries (which correspond to all the elements of U) to it and get the configura-

tion {A,B,C,D,E,BC,ADE}. The cost of this configuration is (8 + 10) = 18.

However, a problem arises here because {{A}, {B,C}, {A,D,E}} is also mapped

to {A,B,C,D,E,BC,ADE}, which means we should define the cost of this con-

figuration as (4 + 8 + 10) = 22. To solve this problem, we define the cost of a

configuration according to the subcollection of S with the least elements of U in

it (which is actually the one with the minimum cost among those mapped to the

same configuration for PHANTOMCHOOSING). Therefore in the above example,

both {BC,ADE} and {{A}, {B,C}, {A,D,E}} are mapped to the configuration

{A,B,C,D,E,BC,ADE}, which has the cost of 18. Note that multiple inputs in

SETCOVER being mapped to one input in PHANTOMCHOOSING still makes a

valid reduction, as long as the mapped input produces the same answer. It is easy

to see that the modified mapping algorithm still run in polynomial time.

Therefore, this variation of the phantom choosing problem that must instantiate

all queries in the LFTA (which is the one we study in this thesis) is also NP-

complete.

Since the phantom choosing problem is NP-complete, we would use heuristics,

specifically a greedy algorithm in this thesis, to solve it. We would describe cost

greedy algorithms to choose phantoms, based on the cost model presented in Section

3.5. The cost model critically depends on the collision rate model, which we discuss

in detail in Section 3.6. For a given configuration, we analyze which space allocation

81

gives the minimum cost, in Section 3.7.

3.4 Synopsis of our proposal

The multi-aggregation (MA) problem has similarities to the view materialization

(VM) problem [83]. They both have a feeding graph consisting of nodes some of

which can feed some others, and we need to choose some of them to instantiate.

So one possibility is to adapt the greedy algorithm developed for VM to MA. How-

ever, there are two differences between these two problems. First, instantiation of

any of the views in VM will add to the benefit; while in MA, instantiation of a

phantom is not always beneficial. Second, the space needed for instantiation of a

view is fixed but the hash table size is flexible. Therefore, in order to adapt the

VM greedy algorithm, we need to have a space allocation scheme that fixes the

hash table size and at the same time guarantees a low collision rate of the hash

table to make each maintained phantom beneficial. This adapted approach, called

greedy by increasing space, is discuss in Section 3.5.1. The greedy-by-increasing-

space approach has several drawbacks. First, it cannot apply the optimal space

allocation scheme as we would investigate in Section 3.6. Second, it depends on a

good choice of a parameter (φ as defined below) to yield good performance, but a

good value for the parameter is hard to determine in practice. Therefore we pro-

pose a new approach, called greedy by increasing collision rates, in Section 3.5.2.

In this approach we always use the whole available space and add the phantoms

one by one in a greedy fashion to the configuration. Initially, when there is a

small number of relations in the configuration, the collision rates are low and hence

adding phantoms reduce the cost. As more and more phantoms are added, the hash

table sizes become smaller and collision rates become higher. Until the point that

82

no phantom candidate can be added with a reduction to the cost, the algorithm

stops. This strategy does not need any tuning parameter, and also an optimal (or

heuristic approximating the optimal) space allocation scheme can be applied. How-

ever, the greedy-by-increasing-collision-rates approach requires an accurate model

to estimate the collision rate, which is investigated closely in Section 3.6.

3.5 Phantom choosing

We present the two phantom choosing strategies, both of which are greedy algo-

rithms in this section. The greedy-by-increasing-space approach is adapted from

the algorithm for the view materialization (VM) problem [83]. The greedy-by-

increasing-collision-rates approach is our proposed algorithm.

3.5.1 Greedy by increasing space

To adapt the greedy algorithm used in the view selection problem [83], we need

to have a space allocation scheme that fixes the hash table size and at the same

time guarantees a low collision rate of the hash table to make each maintained

phantom beneficial. Generally, the more space allocated to a hash table, the lower

the collision rate. On the other hand, the more groups a relation has for a fixed

sized hash table, the higher is the collision rate. Let g be the number of groups of a

relation and b be the number of buckets in a hash table. A straightforward way of

allocating hash table space to a relation is in proportion to the number of groups in

the table so as to make all the hash tables have similar collision rates. Specifically,

we can allocate space φg for a relation with g groups, where φ is a constant chosen

by the user and can be tuned. We set it large so that the hash table is guaranteed

to have a low collision rate. We will develop a model to estimate collision rate in

83

Section 3.6. We can then have a better sense of what value of φ might be good

according to the analysis there.

In order to allocate space to the hash tables of different relations, we need to

know the number of groups of the relations. As we process the queries in tumbling

time windows, and the time window size is small (usually one minute). We assume

that the data distribution does not change greatly from the last time window to

the current one. Therefore, we maintain the number of groups of all the relations

in the feeding graph (we can use sampling or sketch techniques described in Section

2.2.1 to efficiently maintain them) for every time window and use this information

at the beginning of the next time window to decide which phantoms to maintain

and how to allocate space.

Algorithm GS
1 choose a φ value;
2 I = SQ; SC = {R ∈ relations in the feeding graph ∧ R /∈ SQ};
3 M = M −

∑

R∈SQ

φR.g

4 Rm = 1
5 while M > 0 && SC 6= ∅ && Rm 6= NULL
6 β = −∞, Rm = NULL
7 for each R ∈ SC

8 if M > φR.g && (cost(I) − cost(R ∪ I))/(φR.g) > β
9 β = (cost(I) − cost(R ∪ I))/(φR.g)
10 Rm = R
11 if Rm 6= NULL
12 I = Rm ∪ I
13 SC = SC − Rm

14 M = M− φR.g
15 return I
End GS

Figure 3.6: Algorithm GS

Figure 3.6 shows the greedy algorithm by increasing space (Algorithm GS)

which goes as follows. Initially, the configuration I only contains the queries,

84

which must be maintained in the LFTA by our problem assumption. Then, for

each candidate phantom in the candidate set SC , we calculate its benefit (which

is the difference between the costs of the configurations with and with out this

phantom) according to the cost model. Then we divide the benefit by the relation

R’s number of groups R.g, to get the benefit per unit space for R. In the algorithm,

M denotes the size of the remaining memory and β denotes the benefit per unit

space. We choose the phantom with the largest benefit per unit space as the first

phantom to be added to I. For the other phantoms, this process is iterated. The

process ends when the space is exhausted, or all phantoms are maintained. When

the algorithm terminates, I contains the relations we should instantiate in the

LFTA.

This approach has two drawbacks: (1) φ needs to be tuned to find the best per-

formance. A bad choice can result in suboptimal performance. In practice, a good

choice is very hard to achieve. (2) By allocating space to a relation proportional to

the number of its groups, we make the collision rates of all the relations the same.

As we shall show later, this is not a good strategy.

3.5.2 Greedy by increasing collision rates

Here, we propose a different greedy algorithm for allocating space to hash tables

of the relations in the LFTA. Instead of allocating a fixed amount of space to

each phantom progressively, we always allocate all available space to the current

configuration (how to allocate space among relations in a configuration is analyzed

in Section 3.7). So as each new phantom is added to a configuration, what changes

is not the total space used, but the collision rate of each table. Since the more

the number of groups mapped to a fixed space, the higher the collision rate, the

collision rate would increase as new phantoms are maintained.

85

Algorithm GC
1 I = SQ; SC = {R ∈ relations in the feeding graph ∧ R /∈ SQ}
2 β = 1
3 while β > 0 && SC 6= ∅
4 β = 0, Rm = NULL
5 for each R ∈ SC

6 if cost(I) − cost(R ∪ I) > β
7 β = cost(I) − cost(R ∪ I)
8 Rm = R
9 if β > 0
10 I = Rm ∪ I
11 SC = SC − Rm

12 return I
End GC

Figure 3.7: Algorithm GC

Figure 3.7 shows the greedy algorithm by increasing collision rates (Algorithm

GC) which goes as follows. At first, the configuration I only includes all the queries.

Then, for each candidate phantom in the candidate set SC , we calculate its benefit

(which is the difference between the costs of the configurations with and with out

this phantom) according to the cost model, but note that different from algorithm

GS which allocate φR.g space, here we allocate space according to the scheme

devised in Section 3.7. Among all the candidate phantoms, we choose the one with

the largest benefit to be added to I. Note that here we are not using benefit per

unit space as the phantom choosing criteria because the effect of the space used

by the phantom is already reflected by the cost. (If the phantom needs too much

space, it would reduce the space other relations have and therefore has a negative

effect on the overall cost.) After we choose the first phantom to instantiate (that is,

added to I), we iterate the same process with the remaining candidate phantoms.

The process ends when no remaining candidate phantom produce a positive benefit,

or all phantoms are maintained. When the algorithm terminates, I contains the

86

relations we should instantiate in the LFTA.

A prerequisite of this algorithm is an accurate model to estimate the collision

rates. We derive such a model in Section 3.6.

3.5.3 An Example

We use an example to show the difference of the two algorithms GS and GC.

Suppose we have three queries, A, B and C. Possible phantoms for these queries

are AB, AC, BC and ABC. The feeding graph for these relations are shown in

Figure 3.8. The number of groups of each relation is written beside the relation.

Suppose the total space we have is 1000 hash table buckets (we simply use buckets

AB:250 BC:350

A:200 B:150 C:300

ABC:380

AC:360

Figure 3.8: Feeding graph of the example

as the unit of space here) and we choose the φ value 1 for algorithm GS. The

GS algorithm runs as follows. First all the queries are maintained, therefore 650

buckets are allocated to A, B and C. Then for all the phantoms, we check which

ones may be maintained in the remaining space. The remaining space, 350 buckets,

is only enough for relations AB or BC. For these two candidates, we compare their

per unit space benefit. Specifically, we calculate the cost of the configuration which

has only the queries, A, B and C according to Equation 3.7. Denote this cost by

cost1. We calculate the cost of the configuration which has the queries A, B, C and

87

phantom AB feeding A and B. Denote this cost by cost2. Then we obtain the per

unit space benefit of AB, β1 = (cost2 − cost1)/250. Similarly we can obtain the per

unit space benefit of BC, β2. Suppose β1 > β2, so we add AB to our configuration

and allocate 250 buckets to AB. The remaining space is 100 buckets, which is not

enough for any of the rest relations in the feeding graph, AC, BC or ABC, therefore

the algorithm GS stops. We allocate the rest 100 buckets to the relations in our

current configuration proportionally to the space already allocated to them. A gets

22 more buckets; B gets 17 more buckets; C gets 33 more buckets; AB gets 28 more

buckets. So the final configuration we obtain by the GS algorithm is A with 222

buckets, B with 167 buckets, C with 333 buckets and AB with 278 buckets.

The GC algorithm runs as follows. First all the queries are maintained. We

allocate all the 1000 buckets to the three queries A, B and C using our space allo-

cation scheme devised in Section 3.7 and we calculate the cost of the configuration

by Equation 3.7. Denote this cost by cost′1. For the rest relations in the feeding

graph, AB, AC, BC and ABC, we will try to add each of them to the configuration

and see how much cost is reduced. For example, suppose we add AB to the con-

figuration and get A, B, C and AB feeding A and B. We allocate all the buckets

to these relations using our space allocation scheme and calculate the cost of the

configuration, cost′2. Therefore we get the benefit of the phantom AB, which is

β′
1 = cost′2 − cost′1. Suppose we add ABC to the configuration and get A, B, C

and ABC feeding A, B and C. Then we calculate the benefit of ABC as the way

described above. Similarly we calculate the benefit of AC and BC, respectively.

Suppose ABC has the largest benefit among all the current candidates to be added

to the current configuration, and the benefit is positive, then we actually add ABC

to our configuration, which results the cost of cost′3. Now the remaining relations

of the feeding graph are AB, AC and BC. Again, we try to add them to the cur-

88

rent configuration and compare their benefits. Suppose AB has the largest benefit,

which is positive, therefore we actually add AB to the configuration, which results

in the cost of cost′4. The current configuration becomes A, B, C, AB feeding A

and B, and ABC feeding AB and C. Now the remaining relations of the feeding

graph are AC and BC. Again, we try to add them to the current configuration and

find out their benefits. This time, we find that their benefits are both negative,

therefore the GC algorithm stops. The final configuration we obtain by the GS

algorithm is A, B, C, AB feeding A and B, and ABC feeding AB and C. The space

is allocated according to our space allocation scheme described in Section 3.7.

3.6 The collision rate model

In this section, we develop a model to estimate the collision rate. We assume that

the hash function randomly hashes the data, so each hash value is equally possible

for every record. We first consider uniformly distributed data, and subsequently

consider when the data exhibits clusteredness.

3.6.1 Randomly distributed data

Let g be the number of groups of a relation and b the number of buckets in the hash

table. If k groups hash to a bucket, we say that this bucket has k groups. Let Bk be

the number of buckets having k groups. If the records in the stream are uniformly

distributed, each group has the same expected number of records, denoted by nrg.

So nrgk records will go to a bucket having k groups. Under the random hash

assumption, the collision rate in this bucket is (1 − 1/k). Therefore nrgk(1 − 1/k)

collisions happen in this bucket. The overall collision rate is obtained by summing

all the collisions and then dividing by the total number of records. Therefore, we

89

have collision rate

x =

g
∑

k=2

Bknrgk(1 − 1/k)

gnrg

=

g
∑

k=2

Bk(k − 1)

g
(3.9)

k begins from 2 because when 0 or 1 group hashes to a bucket, no collision happens.

In order to calculate it, we still need to know Bk. This problem belongs to a class

of problems called the occupancy problem.

As we know, the expectation of k for each bucket is g/b [57]. A rough estimation

of Bk based on expectation would be

Bk =











b k=g/b

0 k6= g/b

Substituting this for Bk in Equation 3.9, we get

x = 1 − b/g (3.10)

However, in a real random process, the probability of each bucket having the

same number of groups is small. In [63] (Chapter II.5), an example when g = b = 7

is given to calculate the probability of different distributions of groups. It is shown

that probability of each of the 7 buckets having exactly 1 group is 0.006120, which

makes it extremely unlikely. Therefore, we need a more accurate estimation of Bk

based on probability.

Bk can be estimated more accurately by the “multinomial allocations” model

[21] (Chapter 6.2). We sketch the derivation below. The probability of k groups

90

out of g hashed to a given bucket is

(

g

k

)

(1/b)k(1 − 1/b)g−k (3.11)

Note this holds for any bucket, which means each bucket has the chance of Equa-

tion 3.11 to have k groups. If we assume that all b buckets are independent of each

other, then statistically there are

b

(

g

k

)

(1/b)k(1 − 1/b)g−k (3.12)

buckets each of which has k groups. Substitute Equation 3.12 for Bk in Equation 3.9

we have

x =

b

g
∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−k(k − 1)

g
(3.13)

Our experiments on both synthetic and real data show that the actual distribu-

tion of Bk matches Equation 3.13 well, even though the buckets are not completely

independent (they satisfy the equation
∑b

k=1 Bk = b).

Thanks to Ted Johnson2, who points out that Equation 3.13 may be further

simplified. We show the simplification of the equation as follows.

x =

b

g
∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−k(k − 1)

g

=
b

g
[

g
∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−kk −
g

∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−k]

=
b

g
(Y − Z) (3.14)

2AT&T Labs-research

91

where

Y =

g
∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−kk (3.15)

Z =

g
∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−k (3.16)

let q = 1/b, then

Y =

g
∑

k=2

g!

(g − k)!k!
qk(1 − q)g−kk

=

g
∑

k=2

(g − 1)!g

(g − k)!(k − 1)!
qk−1(1 − q)g−1−(k−1)q

j=k−1
=

g−1
∑

j=1

g

(

g − 1

j

)

qj(1 − q)g−1−jq

= gq[

g−1
∑

j=0

(

g − 1

j

)

qj(1 − q)g−1−j − (1 − q)g−1]

= gq[(q + 1 − q)g−1 − (1 − q)g−1]

= gq[1 − (1 − q)g−1] (3.17)

Z =

g
∑

k=2

(

g

k

)

(q)k(1 − q)g−k

=

g
∑

k=0

(

g

k

)

(q)k(1 − q)g−k − (1 − q)g −
(

g

1

)

q(1 − q)g−1

= (q + 1 − q)g − (1 − q)g − gq(1 − q)g−1

= 1 − (1 − q)g − gq(1 − q)g−1 (3.18)

92

therefore,

x =
b

g
(Y − Z)

=
b

g
(gq[1 − (1 − q)g−1] − [1 − (1 − q)g − gq(1 − q)g−1])

= 1 − b

g
+

b

g
(1 − 1

b
)g (3.19)

3.6.2 Validation of collision rate model

We have measured experimentally the collision rates on both synthetic random

data sets and real data sets. The results on the synthetic and real data sets are

shown in Figure 3.9 and Figure 3.10, respectively.

The real data sets are extracted from the netflow data set as described in Sec-

tion 3.8.1. We have assumed random data distribution for the above analysis, while

the netflow data set has a lot of clusteredness due to multiple packets in a flow. In

order to validate our analysis using the real data, we grouped all packets of a flow

into a single record, eliminating the effect of clusteredness. (We consider clusterness

in a later subsection.) After eliminating clusteredness of the data, we extracted 4

data sets which have 1, 2, 3 and 4 attributes respectively. The number of groups

in these data sets are 552, 1846, 2117, 2837 respectively. For the synthetic data

sets, we generated data sets which have 500, 1000, and 2000 groups respectively.

All multi-attribute random data sets have the same data distribution and hence

the collision rates are the same as a one-attribute random data set. Therefore, we

do not specify number of attributes in Figure 3.9.

The “rough model” curve is plotted according to Equation 3.10 and the “precise

model” curve is plotted according to Equation 3.19. Collision rates of the real

data match the precise model very well. In all the observed collision rates, more

93

than 95% of the experimental results have less than 5% difference from the precise

model. The rough model differs greatly from the precise model when g/b is small

but becomes similar as g/b gets large. The reason is that the rough model only

captures the expected case, which occurs with low probability. When g becomes

larger, the behavior gets closer to the average case, therefore the rough model gets

close to the precise model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

rough model
precise model

random data, g=500
random data, g=1000
random data, g=2000

Figure 3.9: Collision rates of random data

For the rough model, the collision rate is only dependent on the ratio of g to

b as we can see from Equation 3.10. We will show in Section ?? that the precise

model is also dependent on g/b, though the function is different.

3.6.3 Clustered data

The above analysis was for randomly distributed data. However, real data streams,

especially the packets in netflow data (which have exactly the same values for

attributes such as source/destination IP/port), are clustered. Although packets

94

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

rough model
precise model

real data, 1 attribute
real data, 2 attributes
real data, 3 attributes
real data, 4 attributes

Figure 3.10: Collision rates of real data

from different flows are interleaved with each other in the stream, the likelihood of

these interleaved flows hashing to the same bucket is very small. Therefore we can

think of the packets in a flow going through a bucket without any collision until the

end of the flow. To analyze collision rate for such clustered distributions, we should

consider what happens at the per flow level. If we think of each flow as one record,

then we can use the same formula as in the random distribution (Equation 3.9) to

calculate the total number of collisions as follows.

nc =

g
∑

k=2

Bknfgk(1 − 1/k) (3.20)

where nfg is the number of flows in each group; Bk is still calculated by Equa-

tion 3.12. To obtain the collision rate, we divide nc by the total number of records,

gnfgla, where la is the average length of all the flows. Then we have the collision

rate for the data with a clustered distribution as follows.

95

x =

b

g
∑

k=2

(

g

k

)

(1/b)k(1 − 1/b)g−k(k − 1)

gla
= (1 − b

g
+

b

g
(1 − 1

b
)g)/la (3.21)

We can see that the difference of the collision rate on data with clusteredness

from that of the random data is a linear relationship over average flow length la.

We can view the collision rate of the random data as a special case of clustered

data with la = 1. The average flow length can be computed by maintaining the

number of times hash table bucket entries are updated before being evicted.

3.6.4 Approximating the low collision rate part

We can plot the collision rate as a function of g/b, which is shown in in Figure 3.11.

According to our previous analysis, the hash table must have a low collision rate

if we want to benefit from maintaining phantoms. Therefore, we examine the low

collision rate part of this curve closely. A zoom in of the collision rate curve when

collision rate is smaller than 0.4 as well as a linear regression of this part is shown

in Figure 3.12.

We observe that this part of the curve is almost a straight line and the linear

regression achieves an average error of 5%. The linear function for this part is

x = 0.0267 + 0.354 · (g/b) (3.22)

Expressing this part of the collision rate linearly is important for the space

allocation analysis as we will see in Section 3.7. In addition, since we now know

how the collision rate is determined, we can suggest values of φ to use in the adapted

greedy algorithm (by increasing space) of Section 3.5.1. For example, φ = 1 could

96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

co
lli

si
on

 r
at

e

g/b

Figure 3.11: The collision rate curve

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

co
lli

si
on

 r
at

e

g/b

Actual collision rate
Regression

Figure 3.12: The low collision rate part

97

be a good choice, since it corresponds to a collision rate of about 0.37.

3.7 Space allocation

In this section, we consider the problem of space allocation, that is, given a configu-

ration of certain relations (phantoms and queries) to be maintained, how to allocate

the available space M to their hash tables so that the overall cost is minimized. We

start with a simple two-level configuration in Section 3.7.1, and identify the diffi-

culties in analyzing more complex configurations. Heuristics for space allocation

are discussed in Section 3.7.4.

3.7.1 A case of two levels

We first study the case when there is only one phantom R0 and it feeds all f queries,

R1, R2, . . . , Rf . Let x0 be the collision rate of the phantom, x1, x2, . . . , xf be the

collision rate of the queries. In order to benefit from maintaining a phantom, its

collision rate must be low, therefore we only care about the low collision rate part

of the collision rate curve. According to Section 3.6.4, this part of the curve can be

expressed as a linear function x = α + µg/b, where α=0.0267 and µ=0.354.3 Since

α is small, here we make a further approximation to let x = µg/b. We will discuss

later how the results are affected when we consider α. Given the approximation,

xi = µgi/bi, i = 0, 1, ..., f . The total size is M , so M =
∑f

i=0 bi. The cost of this

configuration is

3Actually, even if the collision rate for the optimal allocation is a little higher than 0.4, we
can still use linear regression for that part. The values of α and µ would be a little different, but
experiments show that small variation in their values does not affect the result much.

98

e = c1 + fx0c1 + x0

f
∑

i=1

xic2

= fµ
g0

b0

c1 + µ
g0

b0

f
∑

i=1

µ
gi

bi

c2 + c1

= µ
g0

b0

(fc1 + µc2

f
∑

i=1

gi

bi

) + c1

=
µg0

M −
f

∑

i=1

bi

(fc1 + µc2

f
∑

i=1

gi

bi

) + c1

(3.23)

e is a function of multiple variables, b1, b2, ..., bf . To find out the minimum, we

equate the partial derivatives of e to 0. In the following, we calculate the partial

derivative of e over bi, i = 1, 2, ...f .

∂e

∂bi

=
µg0

(M −
f

∑

i=1

bi)2

(fc1 + µc2

f
∑

i=1

gi

bi

) +
µg0

M −
f

∑

i=1

bi

µc2gi(−
1

b2
i

)

Let ∂e
∂bi

= 0, then

µg0

M −
f

∑

i=1

bi















fc1 + µc2

f
∑

i=1

gi

bi

M −
f

∑

i=1

bi

− µc2gi

b2
i















= 0

µg0

M−
∑f

i=1
bi

is non-zero, so

fc1 + µc2

f
∑

i=1

gi

bi

M −
f

∑

i=1

bi

=
µc2gi

b2
i

(3.24)

for i = 1, 2, ..., f .

99

Observe that left hand side of the equation is the same for any i. So we have

g1

b2
1

=
g2

b2
2

= ... =
gf

b2
f

(3.25)

that is, bi is proportional to
√

g
i
.

Let bi =

√
g

i

ν
, i = 1, 2, ...f . Substituting this for bi in Equation 3.24, we have

µc2Mν2 − 2µc2

f
∑

i=1

√
giν − fc1 = 0 (3.26)

This is a quadratic equation over ν. Solving it we have

ν =

µc2

f
∑

i=1

√
gi ±

√

√

√

√µ2c2
2(

f
∑

i=1

√
gi)2 + fµc1c2M

µc2M

ν > 0, so only the one with “+” before the square root on the numerator is the

solution. So

bi =

√
gi

ν
=

µc2M
√

gi

µc2

f
∑

j=1

√
gj +

√

√

√

√µ2c2
2(

f
∑

j=1

√
gj)2 + fµc1c2M

=
M

f
∑

j=1

√
gj

√
gi

+

√

√

√

√

√

√

√

√

√

√















f
∑

j=1

√
gj

√
gi















2

+
fc1M

µc2gi

(3.27)

where i = 1, 2, ..., f .

100

b0 = M − ∑f
i=1 bi

= M −
M

f
∑

j=1

√
gj

f
∑

j=1

√
gj +

√

√

√

√(

f
∑

j=1

√
gj)2 +

fc1M

µc2

(3.28)

∂e
∂bi

= 0 is a necessary condition of e taking the maximum or minimum. From

the above analysis, we can see there is only one solution satisfying the necessary

condition. It is easy to test that a different group of bi values gives larger e than

the e given by the bi values in Equations 3.27 and 3.28. To show that bi values

in Equations 3.27 and 3.28 give the minimum of e, it is enough to show that the

minimum does not occur at the boundary of the domain of the variables b0, b1, ...bf .

bi satisfies that 0 < bi < M , i = 0, 1, ..., f and M =
∑f

i=0 bi. The boundary of

the domain has at least one bi approaching 0 from the right. When any of the bi

approaches 0 from the right, e approaches positive infinity. Therefore, the minimum

does not occur at the boundary of the domain. Therefore the bi values in Equations

3.27 and 3.28 gives the minimum of e. Here, we view bi as real numbers, but in

reality, they are integers, which may not take the exact values given by Equations

3.27 and 3.28. However, as M is a very large integer, typically 10,000 to 100,000

and hence bi is usually of magnitude of thousands. The fractional parts of the exact

values calculated from Equations 3.27 and 3.28 are negligible (less than 1/1000 of

the actual value). Therefore we can still safely use Equations 3.27 and 3.28 to

obtain the bi values to get the minimum e. As tested in the experimental study,

the cost of using this space allocation scheme always has less than 1% error from

the optimal cost for two-level cases.

A key consequence of our analysis is that we should allocate space proportional

to the square root of the number of groups in order to achieve the minimum cost.

101

R1 R2 Rf

R0

R1dR12R11

Figure 3.13: A case of three levels

Another interesting point is that b0 (the space allocated to the hash table of the

phantom) always takes more than half the available space.

3.7.2 A case of three levels

In this subsection, we consider a simple case of three levels. In this case, one

phantom R0 feeds R1, R2, ... Rf ; where R1 is a phantom and R2, R3, ... Rf

are queries. R1 feeds d queries R11, R12, ... R1d. Figure 3.13 shows the feeding

relationship of this configuration.

Let xi be the collision rate of Ri, i = 0, 1, ...f ; and x1i be the collision rate of

R1i, i = 0, 1, ...d. Similar to the notation in the previous subsection, xi = µgi/bi,

i = 0, 1, ..., f , x1i = µg1i/b1i, i = 1, 2, ...d. The total size is M , so M =
∑f

i=0 bi +
∑d

i=1 b1i. The cost of this configuration is

102

e = c1 + fx0c1 + dx0x1c1 + x0x1

d
∑

i=1

x1ic2 + x0

f
∑

i=2

xic2

= x0(fc1 + dx1c1 + x1c2

d
∑

i=1

x1i + c2

f
∑

i=2

xi) + c1

= µ
g0

b0

(fc1 + dc1µ
g1

b1

+ µ2c2
g1

b1

d
∑

i=1

g1i

b1i

+ µc2

f
∑

i=2

gi

bi

) + c1

=

µg0(fc1 + dc1µ
g1

b1
+ µ2c2

g1

b1

d
∑

i=1

g1i

b1i

+ µc2

f
∑

i=2

gi

bi

)

M −
f

∑

i=1

bi −
d

∑

i=1

b1i

+ c1

(3.29)

e is a function of multi-variables, b1, b2, ..., bf , b11, b12, ...b1d. Similarly, we find

the partial derivatives and let them equal to 0, and we obtain the following two

equations:

dµg1c1 + µ2g1c2

d
∑

i=1

g1i

b1i

b2
1

=
µc2gj

b2
j

=
µ2g1g1mc2

b1b2
1m

(3.30)

where j = 2, 3, ...f , m = 1, 2, ...d.

fc1 + dc1µ
g1

b1
+ µ2c2

g1

b1

d
∑

i=1

g1i

b1i

+ µc2

f
∑

i=2

gi

bi

M −
f

∑

i=1

bi −
d

∑

i=1

b1i

=
µc2gj

b2
j

(3.31)

We have the following observations. First, relations at the same level with no

children still have hash table size proportional to square root of the number of

groups. So we let bi =

√
g

i

ν
, i = 2, 3, ...f , and b1i =

√
g

1i

ρ
, i = 1, 2, ...d, substitute

them in Equation 3.30, we have

b1 = µg1
ρ2

ν2
(3.32)

103

ν2(dc1 + µc2

d
∑

i=1

√
g1iρ) = c2µ

2g1ρ
4 (3.33)

Substitute them in Equation 3.31. The result is an equation of order 8 in which

the coefficients of the variable are parameters such as c1, c2, gi, f , d in the above

equations. Equations of order higher than 4 cannot be solved by radicals according

to Galois’ Theory, that is, we do not have a closed form solution for the equation.

In addition, because the coefficients are parameters which can take wide range of

values that we do not know in advance, we cannot determine whether the equation

is solvable in advance. More general multiple-level configurations would result in

even higher order equations which cannot be solved algebraically and we cannot

determine whether they can be solved in advance, either. Therefore, we call config-

urations with more than three levels (inclusive) “untractable” configurations and

propose heuristics to decide space allocation for them based on the analysis results

we have for the two-level configuration. We understand that these equations can

be solved numerically. However, numerical methods are iterative methods. They

attempt to solve the equation by finding successive approximations to the solution

from an initial guess such as the Newton’s method. There is no guarantee on the

number of iterations needed to find the solution and the speed of finding the so-

lution depends on a good initial guess. Numerical methods may be too expensive

computationally for our application where efficiency of the algorithm is essential.

Therefore, we do not use numerical methods in our algorithm.

3.7.3 Other cases

In the previous subsections, we have obtained result of a simple two-level case and

shown that three- or more than three-level cases cannot be solved. There are still

other cases with less than two levels we haven’t considered, yet. We give the results

104

of these cases as follows while omitting the analysis details since they follow similar

derivations as in the cases discussed above.

1. The configuration has no phantom but only leaves, that is, this is a one-level

case. This case can be solved. To achieve minimum cost, allocate space

proportional to the square root of the number of groups.

2. The configuration has one phantom, but it does not feeds all queries, that is,

some queries are fed from the stream directly. This is a two-level case, and

it results in an equation of order 6, which cannot be solved.

3. The configuration has two phantoms, each of which feed some queries but

they do not feed each other. Together they feed all queries. This is also a

two-level case and it results in an equation of order 8, which cannot be solved.

In short, only the case with no phantom or the case with one phantom feeding

all queries can be solved. Any other case cannot be solved.

3.7.4 Heuristics

For untractable configurations, we propose heuristics to allocate space based on the

analysis of the solvable cases and partial results we can get from the untractable

cases. Experimental results in Section 3.8 show that our proposed heuristics based

on the analysis are very close to optimal and better than other heuristics.

In the analysis on the two-level case in Section 3.7.1, we observe from Equation

3.25 that the square of the number of buckets assigned to a relation, b2
i (Ri is a

leaf relation), should be proportional to the number of groups of that relation, gi,

compared to other leaf relations at the same level. In the analysis on the three-level

case in Section 3.7.2, we can observe similar behavior on relations at the same level

105

from Equation 3.30, that is, bj of relations at the same level is proportional to
√

g
j
.

However, b2
1 (R1 is a non-leaf relation) is proportional to dµg1c1 + µg1c2

∑d
i=1 x1i

(note that µg/b = x), where x1i are the collision rates of tables for the children of

b1. b1 is affected not only by its own number of groups, but also its children’s. From

these observations, we gain the intuition that, generally, the number of buckets al-

located to a relation at the same level should be proportional to the square root

its number of groups. Moreover, if a relation feeds some other relations, we should

add some weight to this relation according to the number of groups of the relations

being fed. Having this intuition, we consider the following space allocation scheme

(heuristic 1) which adds some weight to a relation when it has children to feed.

Heuristic 1: Supernode with Linear Combination (SL).

We only have the optimal solution for the two-level case, but not for a general

case where we have more levels of relations in the configuration. Therefore, we

introduce the concept of “supernode” so that we can use the two-level space alloca-

tion scheme recursively to solve the general case. Specifically, we start from the leaf

level of the configuration. Each relation right above the leaf level together with all

its children are viewed as a supernode. The number of groups of this supernode is

the sum of the number of groups of the relations that compose this supernode, that

is, the phantom and the queries it feeds. Then we view the supernode as a query

and do the above compaction recursively until the configuration contains only two

levels. For a two-level configuration, we can allocate space optimally according to

the analysis of Section 3.7.1. After the first space allocation, each query (some may

be supernodes) is assigned some space. Then, we decompose each supernode to a

two-level configuration and allocate the space of this supernode to the phantom and

queries optimally inside the supernode again, that is, allocate space proportional

106

(b)

A:200 B:150 C:300 D:400

ABC:380

AB:250

ABCD:500

C:300 D:400

ABC:380

ABCD:500

D:400

ABCD:500

AB’:600 ABC’:1280

(a) (c)

Figure 3.14: Heuristic SL

to the square root of the number of groups. We do this decomposition recursively

until no supernode exists.

Figure 3.14 shows an example of how heuristic SL works. Figure 3.14 (a) is the

configuration that needs to allocate space. This configuration has four queries: A,

B, C, D, and three phantoms: AB, ABC, ABCD. The number of groups of each

relation is written beside the relation. According to heuristic SL, relations A, B

and AB are first combined into a supernode AB’, whose number of groups is the

sum of the number of groups of A, B and AB. The first combination results in

Figure 3.14 (b). We still have more than two levels, so we continue to combine

AB’, C and ABC to a supernode, which results in a the two-level configuration as

shown in Figure 3.14 (c). Now we can allocate space according to the analysis on

the two-level configuration and unfold the supernodes one level after another until

the original configuration.

We also try another heuristic described below (heuristic 2) which is the same

as SL except the way we obtain the number of groups of the supernode.

Heuristic 2: Supernode with Square Root Combination (SR). Since in

107

the two-level case we see that the space should be proportional to the square root

of the number of groups, we may also let the square root of the number of groups

of the supernode be the sum of the square roots of all its relations, while the other

steps are the same as in heuristic 1.

Note that both SL and SR give the optimal result for the case of one phantom

feeding all queries. We will also try two other simple heuristics (heuristic 3 and

4) which are not based on our analysis as a comparison to the above two more

well-founded heuristics.

Heuristic 3: Linear Proportional Allocation (PL). This heuristic simply

allocates space to each relation proportional to the number of groups of that rela-

tion.

Heuristic 4: Square Root Proportional Allocation (PR). This heuristic

allocates space to each relation proportionally to the square root of the number of

groups of that relation.

Although we cannot obtain the optimal solution for space allocation of some

cases through analysis, there does exist a space allocation which gives the minimum

cost for each configuration. One way to find this optimal space allocation is to try

all possibilities of allocation of space at certain granularity. For example, suppose

the configuration has three relations, AB, A and B, where AB feeds A and B.

The total space is 10. We can first allocate 1 to AB, 1 to A, and 8 to B. Then

we try 1 to AB, 2 to A, and 7 to B, and so on. By comparing the cost of all

these space allocation choices we will find the optimal one. We call this method

108

the exhaustive space allocation (ES). Obviously this strategy is too expensive

to be practical, but we use it in our experiments to compare with the four space

allocation schemes and see how much the heuristics differ from the optimal choice.

The results of ES are affected by the granularity of varying the space allocation.

In our experiments, we found that using a granularity of 1% of M is small enough

to provide accurate results.

The space allocation schemes are independent of the phantom choosing strate-

gies, that is, given a configuration, a space allocation scheme will produce a space

allocation no matter in what order the relations in the configuration are chosen.

Therefore we will evaluate space allocation schemes and phantom choosing strate-

gies independently.

3.7.5 Revisiting simplifications

From the beginning of the analysis on space allocation, we have made an approx-

imation on the linear expression of the collision rate, that is, we let x equal µg/b

instead of α+µg/b. We also did the analysis when we let x = α+µg/b. The result

of the case with no phantom is the same. The case with one phantom feeding

all queries results in a quartic equation which can be solved, so we can still get

an optimal solution for this case. However, because solving a quartic equation is

much more complex than a quadratic equation and it is more involved to decide

which solution of the quartic equation is the one we want, we use the approximated

linear expression, that is, x = µg/b for space allocation in our experiments. The

experimental study shows that even with this approximation, the results are still

very accurate.

We have also tried other ways of approximating Equation 3.19 such as: (1)

(1− 1
b
)g

≈ e−
g

b ; (2) taking the first few terms of the binomial expansion. However,

109

for alternative (1), the result is an even more complicated equation system, which is

of higher degree and has variables in exponents. For alternative (2), if we take the

first 3 terms of the binomial expansion, it’s nearly a linear approximation, but with

much worse accuracy; if we take more terms of the binomial expansion, the result

is a much more complicated equation system than using our linear approximation

and the accuracy is no better than our linear approximation.

We have made another simplification on the size of each hash table bucket entry

in the analysis for ease of exposition. By using M =
∑

bi, we have assumed that

a hash table entry has the same size for all relations in the LFTA. Actually, the

size of a hash table entry for different relations can vary a lot. Suppose we use an

int (4 byte) to represent each attribute or a counter. Then a bucket for relation

A takes 8 bytes and a bucket for ABCD takes 20 bytes. If we denote the bucket

entry size of relation i as hi, then M =
∑

bihi. In this case, the results of the

analysis are similar. Instead of allocating space proportional to
√

g, we should

allocate space proportional to
√

gihi. We have used such variable sized buckets in

our implementation, and experimental study, discussed next.

For clustered data, collision rates should be divided by the average flow length

la. To consider this in space allocation, we should allocate space proportional to
√

gihi/li, where li is the average flow length of relation i.

3.8 Experiments

3.8.1 Experimental setup and data sets

We prototyped this framework in C in order to evaluate the different techniques we

developed. We use 4 bytes as our unit of space allocation. Each attribute value and

counter we instantiate has this size. As explained in Section 3.1.1, LFTAs are run

110

on a Network Interface Card with a memory constraint and use a small memory

size to fit into L2 cache of the CPU, typically several hundred KB of memory is

allowed. In accordance to operational streaming data managers [46], we consider

M between 20,000 and 100,000 units of space (4 bytes each). The ratio of eviction

cost to probe cost c2/c1 is is modeled as 50 in our experiments, which is also a ratio

measured in operational data stream management systems [46].

We used both synthetic and real data sets in our evaluation. The real data set

is obtained by tcpdump on a network server of AT&T. We extracted TCP headers

obtaining 860,000 records with attributes source IP, destination IP, source port

and destination port, each of size 4 bytes. The duration of all these packets is 62

seconds. There are 2837 groups in this 4-attribute relation. For other relations

we extracted in this way, the number of groups varies from 552 to 2836. For the

synthetic data sets, we generated 1,000,000 3 and 4 dimensional tuples uniformly at

random with the same number of groups as those encountered in real data. All the

experiments are run on a desktop with Pentium IV 2.6GHz CPU and 1GB RAM.

We adopt the following way to specify a configuration. “AB(A B)” is used to

denote a phantom AB feeding A and B. We use this notation recursively. For ex-

ample, the configuration in Figure 3.4(c) can be expressed as (ABCD(AB BCD(BC

BD CD))).

3.8.2 Evaluation of space allocation strategies

Our first experiment aims to evaluate the performance of various space allocation

strategies. In these experiments we derive our parameters from the real data set.

Our observations were consistent across a large range of real and synthetic data

sets. We vary M from 20,000 to 100,000 at steps of 20,000 and the granularity

for increasing space while executing ES is set at 1% of M . In all experiments we

111

compute the cost using Equation 3.7 with a suitable model for collision rate, as

described below.

Solvable configurations

We first experimentally validate the results of our analysis for the case of configu-

rations for which we can analytically reason about the goodness of space allocation

strategies.

For the case with no phantoms, (assuming x = µg/b as collision rate) we com-

pared the cost of the exhaustive space allocation (ES) with a scheme that allocates

space according to our analytical expectations, namely, allocating space propor-

tional to the square root of number of groups. We tested all possible configurations

with no phantoms on the real data. The cost obtained by the scheme perform-

ing space allocation as dictated by our analytical derivations incurred a difference

less than 1% compared to the optimal cost (obtained by ES). The small difference

comes from our approximation to the collision rate, especially the value of µ, which

can be slightly different from the value the optimal solution assumes.

For the case with only one phantom feeding all queries, we use our optimal space

allocation scheme derived based on the approximation of collision rate x by µg/b.

We again compare the accuracy of the space allocation scheme allocating space

according to our analysis, to that of ES and test all possible configurations for on

the real data set. The average relative difference between the cost obtained from

our scheme and the optimal cost is usually less than 1% and the maximum observed

was 2%. Therefore even with this approximation (x = µg/b) to the collision rate,

the results are still quite accurate.

112

Untractable configurations

For untractable configurations, we evaluated several heuristics. We compared SL,

SR, PL, PR as described in Section 3.7.4 and ES. We evaluated all possible config-

urations on the real data set (four attributes). The relative costs of the heuristics

compared to the optimal cost (obtained by ES) are shown in Figures 3.15 to 3.18

for 4 representative configurations. The average relative costs of the heuristics

compared to the optimal cost of all configurations are summarized in Table 3.2.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

SL
SR
PL
PR

Figure 3.15: Space allocation for (ABC(AC(A C) B))

We observe that generally SL and SR are better than PL and PR. Thus, heuris-

tics inspired by our analytical results appear beneficial. Except one case in Fig-

ure 3.17 when M = 20, 000, SL is always the best. Relative costs of PL and PR

can be as large as 35% more than the optimal cost. The cost of SR is smaller than

those of PL and PR, but it is always more than the cost of SL. From Table 3.2,

which shows the average relative costs of the four different heuristics compared to

the optimal cost, we observe that SL is the best for all values of M . Therefore,

SL may be a good choice of space allocation. To verify this, we further accumu-

113

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

SL
SR
PL
PR

Figure 3.16: Space allocation for AB(A B) CD(C D)

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

SL
SR
PL
PR

Figure 3.17: Space allocation for (ABCD(ABC(A BC(B C)) D))

114

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

SL
SR
PL
PR

Figure 3.18: Space allocation for (ABCD(AB BCD(BC BD CD)))

M (thousand) 20 40 60 80 100
SL 1.060 1.030 1.022 1.032 1.023
SR 1.062 1.053 1.053 1.090 1.094
PL 1.158 1.142 1.146 1.214 1.234
PR 1.101 1.114 1.124 1.197 1.227

Table 3.2: Average relative costs of the four heuristics

late statistics in order to see in all configurations tested how frequently SL is the

heuristic yielding the minimum cost.

In Table 3.3, we present the percentage of configurations tested in which SL

yields minimum cost among the four heuristics, as well as for the cases that SL

does not yield the minimum cost, how far its cost is from the cost of the best

heuristic. These results (which are representative of a large set of experiments

conducted) attest that SL behaves very well across a wide range of configurations.

Even in the cases that it is not the best it remains highly competitive to the best

solution. Therefore we would choose SL for space allocation in our algorithms.

115

M (thousand) 20 40 60 80 100
SL being best (%) 44 89 89 89 100

Relative difference from the best (%) 2.2 0.006 0.15 0.6 0

Table 3.3: Statistics on SL

3.8.3 Evaluation of the greedy algorithms

We now turn to the evaluation of algorithms to determine beneficial configurations

of phantoms. We will evaluate the greedy algorithm GS and our proposed greedy

algorithm GC. GC makes use of the SL space allocation strategy; we refer to this

combination as GCSL (algorithm GC using SL space allocation). For GS, we would

add space of φg each time a phantom is added in the current configuration under

consideration until there is not enough space for any additional phantom to be

considered. At this point we allocate the remaining space to relations already

in the configuration proportional to their number of groups. We also consider

the following method to obtain the optimal configuration cost. We explore all

possible combinations of phantoms and for each configuration we use exhaustive

space (ES) allocation to calculate the cost, choosing the configuration with the

minimum overall cost. We will refer to this method as EPES in the sequel. Costs

are computed using Equation 3.7 and our approximation to the collision rate.

Phantom choosing process

We first look at the query set {A, B, C, D} on a 4-dimensional uniform random data

set with M set as 40,000. Figure 3.19 presents the cost of the different algorithms.

The costs are normalized by the cost of EPES (the optimal cost). Algorithm GS

has a parameter φ. Since a good value of φ is not known a priori, we vary it and

observe the trend of the cost resulted from different φ values. The cost of GS first

decreases and then increases, as φ increases. If φ is too small, each phantom is

116

0

0.5

1

1.5

2

2.5

3

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

re
la

tiv
e

co
st

φ

GCSL
GCPL

GS

Figure 3.19: Comparison of phantom choosing algorithms

allocated a small amount of space, at the expense of high collision rate. On the

other hand, if φ is too large, each phantom has low collision rate, but each phantom

takes too much space and prohibits addition of further phantoms, which could be

beneficial. This alludes to a knee in the cost curve signifying the existence of an

optimum value. Algorithms GCSL and GCPL do not have the parameter φ, so

their costs are constant in the Figure. For the GCSL algorithm, cost is lower than

the cost of GS for any φ, because when we adjust the space allocation and calculate

the cost each time a phantom is added, we are essentially adapting φ to a better

value. The gap between the minimum point of the GS curve and GCSL is due to

the space allocation scheme. Using GC in conjunction with PL space allocation,

yields a curve which precisely lower bounds GS. Thus, GCSL benefits from both

the way we choose phantoms and the way space is allocated in these phantoms.

Figure 3.20 presents the change in the overall cost in the above scenario as

each phantom is chosen. We observe that the first phantom introduces the largest

decrease in cost. The benefit decreases as more phantoms are added and for GS

with φ = 0.6, the cost goes up when adding the third phantom. Note that the third

117

0

0.5

1

1.5

2

2.5

3

0 1 2 3

re
la

tiv
e

co
st

phantoms chosen

GCSL
GCPL

GS phi=0.6
GS phi=0.8

GS phi=1
GS phi=1.1
GS phi=1.2
GS phi=1.3

Figure 3.20: Phantom choosing process

phantom added by GS with φ = 0.6 is different from the third phantom added by

GCSL due to the differences in space allocation. For GS with φ = 1.2, 1.3 there is

no space to add more than one phantom.

We conducted an additional experiment by varying M and observing the re-

sulting cost. We use synthetic data with four attributes comparing GCSL and GS.

We normalize their respective costs by the cost of EPES. For GS, it’s impossible to

vary φ for a single query window as this is fixed at the start of the window. There-

fore we set φ = 0.8 for these experiments. The results are shown in Figure 3.21.

GCSL always has a cost lower than 1.1 of the optimal. The cost of GS has a drop

at M=40,000 because the φ value we used is based on the optimal φ value at this

point. We can see that GCSL is always better than GS for all M values.

Validating cost estimation framework

With our next experiment we wish to validate our cost estimation framework

against the real measured errors. We implemented the hash tables and we let

a uniform random data set pass through the phantoms and queries computing the

118

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

GCSL
GS

Figure 3.21: Cost comparison

desired aggregates. The phantoms are chosen and the corresponding space alloca-

tion is conducted, using our heuristics. We count the collisions in the hash tables

and calculate the true cost of this configuration. We normalize the actual cost

of GCSL and GS by the actual cost of the optimal (according to our cost model)

configuration obtained by EPES; the relative actual costs are shown in Figure 3.22.

For GS, we tried different φ values, and only the one with the lowest cost at each

value of M is presented in the figure.

We can see that the actual cost of GCSL is always much lower than that of GS,

even we could always choose the best φ for GS (which is impossible in practice).

When M=60,000, the cost of GCSL is as low as 26% of the cost of GS. While GS

can have cost as high as 6 times the optimal cost, GCSL is always within 3 times the

optimal cost. The reason that GCSL does not achieve the optimal cost perfectly

is as follows. When we have a phantom feeding other relations, the data in the

phantom and the data fed to its children are correlated. We have assumed random

data distribution in the collision rate model. The correlation between the data

makes the collision rate model less accurate and therefore causes some error in the

119

0

1

2

3

4

5

6

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

GCSL
GS

Figure 3.22: Comparison on synthetic data set: GCSL vs. GS

1

10

100

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

GCSL
no phantom

Figure 3.23: Comparison on synthetic data set: GCSL vs. no phantom

120

space allocation. However, from the result we can see the error is not that big and

GCSL still obtains good approximation of the optimal cost, especially compared

with GS.

We conducted a large set of experiments quantifying the accuracy of our esti-

mation framework against actual measurements. In general, difference between the

predictions of the cost model and the actual cost becomes large as M increases.

The relative cost difference of GCSL compared to the optimal cost also increases

as M increases. This is due to two factors: first when M is very large then colli-

sion rates are very small and become increasingly difficult to capture analytically.

Second, for large M there are many phantom levels and as a result errors accu-

mulate across multiple levels. However, despite certain inaccuracy, our technique

results in a reasonable low cost compared to the optimal cost and outperforms GS

considerably, for a variety of data sets, especially for low values of M (which is the

common case in practice).

In order to validate the effectiveness of phantoms for computing multiple aggre-

gates, we conducted the following experiment. We run the same queries without

maintaining any phantoms and we compare the cost with the cost of GCSL. The

results are presented in Figure 3.23. It is evident that maintaining phantoms does

reduce the cost greatly (more than an order of magnitude).

Experiments with real data

We repeated our validation experiment using real data this time and the query set

{AB, BC, BD, CD}. Again we let the real data set stream by the configuration we

have obtained using our algorithms and report the resulting actual costs incurred.

Once again actual costs are normalized by the actual cost incurred by the EPES

strategy. Flow length is derived temporally.

121

0

1

2

3

4

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

GCSL
GS

Figure 3.24: Comparison on real data set: GCSL vs. GS

1

10

100

20 40 60 80 100

re
la

tiv
e

co
st

M (thousand)

GCSL
no phantom

Figure 3.25: Comparison on real data set: GCSL vs. no phantom

122

Figure 3.24 presents the results. It is evident that GCSL outperforms GS. Once

again we compare the cost of GCSL and the cost incurred without the maintenance

of any phantoms. GCSL offers an improvement up to about 100 compared to the

cost incurred without the use of phantoms as shown in Figure 3.25.

Peak load constraint

The update cost at the end of epoch as described in Section 3.3.2 can be calculated

according to Equation 3.8. This update cost must be within the peak load con-

straint Ep. If the update cost Eu exceeds Ep, we can use two methods to resolve it:

shrink and shift. The shrink method shrinks the space of all hash tables propor-

tionally. The shift method shifts some space from queries to phantoms since c2 is

much larger than c1 and a major part of the update cost is incurred by queries. For

the real data set and the query set {AB, BC, BD, CD}, given a space allocation,

we calculate its Eu; then we set Ep to a percentage of Eu and use the two methods

to reallocate space. After the reallocation, we run the data through the configura-

tion and we compute the cost when M = 40, 000. The results are in Figure 3.26.

When Ep is not much smaller than Eu, the shift method performs better; while

when Eu is much larger than Ep, the shrink method performs better. The reason

is that when Eu is close to Ep, a small shift to reduce Eu suffices. When Eu and Ep

differ by much, a major shift in space results in non optimal space allocation and

thus shrink is better. Similar behavior is observed when M is set as other values.

3.25. In terms of the performance of our algorithms, the running time of GCSL

in all configurations we tried is sub-millisecond, which is negligible compared to a

time window of one minute. While typically we just have a few aggregate queries

running together, our algorithm has good scalability since the computation cost is

linear to the number of relations in the feeding graph.

123

0

0.5

1

1.5

2

2.5

3

82 84 86 88 90 92 94 96 98

re
la

tiv
e

co
st

peak load constraint (%)

shrink
shift

Figure 3.26: Peak load constraint

3.9 Summary

In this chapter, we attacked the problem of efficient aggregation over network data

streams. Our work is based on the architecture of Gigascope and our focus is an

optimization problem when faced with multiple aggregations. We first reviewed

how a single aggregation is processed in Gigascope. Then we examined the prob-

lem of multiple aggregations and introduced our insight of maintaining additional

queries, called phantoms, to facilitate sharing among queries. We formalized our

problem which consists of two sub-problems, phantom choosing and space alloca-

tion. We showed that the phantom choosing problem is NP-complete and therefore

we proposed a greedy algorithm to solve it. An existing algorithm allocates space

proportionally to the number of groups of relations and greedily chooses phantoms

with the maximum benefit until the total available space runs out. Our greedy

algorithm is new in the sense that we always allocate all the available space to the

phantoms optimally so as to obtain the optimal cost given the phantoms. We keep

adding phantoms greedily with the maximum cost reduction until no additional

124

phantom can reduce the cost. To obtain the optimal cost given a configuration

(a set of queries and phantoms to maintain), we have to estimate collision rates

of hash tables accurately and allocate space to relations optimally. Subsequently,

we did in-depth mathematical analysis on these two issues. We showed that the

space allocation problem can be solved for very limited cases while the other cases

can not be solved generically, therefore we proposed heuristics for space allocation

based on our analysis. We also derived a model to estimate the collision rate of the

hash tables, which is a key component in the space allocation scheme. Finally, we

presented our experimental study, which showed that our proposed space alloca-

tion heuristic yields costs very close to the optimal cost and our proposed phantom

choosing heuristic beats existing algorithms. Furthermore, we demonstrated that

maintaining phantoms has huge benefit over the scheme without phantoms.

125

CHAPTER 4

Approximate Nearest Neighbor Search

Over Data Streams

As discussed in Section 1.2, network security applications such as intrusion de-

tection and virus detection need to perform similarity search, which translates to

(approximate) nearest neighbor queries over the network data streams. In this

chapter, we present a technique to process approximate nearest neighbor queries

over data streams. While this technique is applicable to general data stream appli-

cations such as those described in Section 4.1, we can fit it into the two-level query

processing architecture of Gigascope fairly well.

The rest of the chapter is organized as follows: Section 4.1 gives the motivation

for approximate nearest neighbor search over data streams by some example ap-

plications including network monitoring. We introduce a new type of approximate

nearest neighbor query, the e-approximate k nearest neighbor (ekNN) query in Sec-

tion 4.2. Section 4.3 gives a synopsis for our proposal to process the ekNN query.

126

In Section 4.4, we propose a general framework to reduce information while still

answering the ekNN problem with some error bound. A brute-force method based

on this framework is also presented in this section. Then we present a technique

called aDaptive Indexing on Streams by space-filling Curves (DISC) to efficiently

process ekNN queries from the maintained data in Section 4.5. Section 4.6 shows

how to process the sliding window version of the ekNN query by DISC and Section

4.7 shows how to deploy DISC in the two-level query processing architecture of

Gigascope. Section 4.8 reports the results of our experimental studies.

4.1 Motivation and applications

In many applications, including geographic information systems, content-based re-

trieval and data mining, finding the k Nearest Neighbors (kNN) to a query ob-

ject is one of the most frequent operations. The database research community

has in recent years provided several novel solutions to efficient kNN processing

[154, 24, 146]. The kNN problem can be defined as follows: Given a set of points

S = {P0, P1, ..., Pn} in a d-dimensional space V , and a query point Q ∈ V , find a

set kNN which contains k points in S such that, for any P ∈ kNN and for any

P ′ ∈ S − kNN , dist(Q,P) ≤ dist(Q,P ′), where dist() is a function to return the

distance between two points.

To further improve performance, the (1 + ε)-approximate nearest neighbors

problem (ε ≥ 0) [10, 106] has been introduced which is defined as follows: Find a

point P ∈ S that is an (1 + ε)-approximate nearest neighbor of the query point

Q, so that for any point P ′ ∈ S, dist(P,Q) ≤ (1 + ε)dist(P ′, Q). The k (1 + ε)-

approximate nearest neighbors problem can be similarly defined [11]. Here ε is in

fact a bound for the relative error of the k-th nearest neighbor distance, which is

127

specified by the users before the query.

KNN queries over multi-dimensional data streams is a pressing concern when

mining streams for unknown patterns. For example, in computer aided manufactur-

ing (CAM) systems, sensors are used to monitor the position, shape1, size, surface

characterization, material properties, etc, of parts passing through on a production

line. The data are collected and sent to a control system. The control system ana-

lyzes the feedback information and then adjusts the parameters of the production

line so as to control the quality of the parts. Often, we tend to identify parts with

similar shape to a given part in order to discover patterns of other features. In

highway traffic monitoring, sensors are embedded on highways to observe the pass-

ing vehicles. Estimates of vehicle speed and length can be obtained and utilized

to provide useful traffic related information. Similarly in network traffic monitor-

ing, network traffic streams (IP traffic) are usually logged using special programs,

such as CISCO’s netflow. The network management system will monitor the net-

work packet header information to obtain information on traffic flow patterns as

discussed in Section 1.2.

In addition, data stream applications typically operate in an environment where

memory is limited (relative to the size of the stream) so that it is not feasible

to work with the entire data set in memory. For this reason, one has to resort

to approximate kNN answers in the case of continuously evolving data streams.

All previous proposals for approximate kNN queries require the user to specify

a relative error bound ε (ε ≥ 0) beforehand. However, in certain applications,

absolute error bounds are more critical and preferable. In the CAM example, a

query typically specifies absolute errors: “Identify 10 parts that are most similar in

size to a given part A. The query specifies that as long as a part’s resultant error

1Even parts on a same production line have slightly different shapes and sizes due to manu-
facturing errors.

128

(that is, the root-sum-square of the errors in width and length) to those of the

10 most similar parts is not more than 0.1mm the answer is acceptable.” In the

highway traffic monitoring example, it may also be more intuitive to specify errors

by absolute bounds: “Find the 20 vehicles that are close to position A. An answer

is acceptable as long as its distance to A is not larger than say 10 meters than

that of the 20 closest vehicles.” Similar examples can be drawn from the field of

network monitoring and other engineering applications, in which users have good

knowledge of the absolute errors acceptable.

4.2 Problem formulation

Motivated by such applications, we introduce a new type of approximate nearest

neighbor query, called the e-approximate k nearest neighbor (ekNN) query,

in which the answers are bounded by absolute value instead of relative one. The

data stream records have multiple attributes and we can represent them as a multi-

dimensional point in a multi-dimensional space. In this chapter, a point means a

data record. Formally, we define the ekNN query as following:

Definition 1 (ekNN) Given a data set S and a query point Q, find a set ekNN

which contains k points in S such that for any P ∈ ekNN there exists a point

P ′ ∈ kNN (the actual kNN set of Q) and dist(Q,P) ≤ dist(Q,P ′) + e, where e is

a bound for the absolute error of the k-th nearest neighbor distance.

Subsequently, we define the e-approximate kNN query over data streams as

follows:

Definition 2 (ekNN over data streams) Let X be a sequence of points (P0, P1, P2, ...).

X can be either finite or infinite. Each element Pi(i = 0, 1, 2, ...) of X is a point

in d-dimensional space and is allowed to be read for at most once in the order of

129

the sequence. Let St be the set of points of X that have been read at time t. At any

time t and for any query point Q, find the ekNN of Q from the elements of St.

In particular, we identify and provide solutions to the following ekNN problems on

data streams:

1. memory optimization for a given error bound: given an error bound

e, use as little memory as possible to answer ekNN queries.

2. error minimization for a given memory size: given a fixed amount of

memory, achieve the best accuracy for ekNN queries.

4.3 Synopsis of our proposal

We first propose a general framework which aims to reduce the amount of infor-

mation to be stored while guaranteeing a provable error bound. Specifically, we

partition the underlying data space into equal square-shaped cells, and then we

prove that in each cell we only need to store at most G (for a user specified value

G) points2 to guarantee some error bound. We will prove that the error bound is

guaranteed for any ekNN query where k ≤ G. Next, to facilitate efficient main-

tenance of G points in each cell, we propose a technique called aDaptive Indexing

on Streams by space-filling Curves (DISC), in which points are stored in the leaf

nodes of the B∗-tree with the Z-values [126] of their cells as keys. DISC has two

important properties: first, it only allocates memory for those points that are nec-

essary to guarantee the error bound; second, by merging cells, DISC can adjust the

structure to meet the memory constraint. These two properties make it adaptive

to different data distributions. In addition, being a B∗-tree based indexing struc-

ture, DISC provides fast access to a given cell. This facilitates efficient updates

2“A point in a cell” means “a point spatially contained in a cell”.

130

and query processing. Overall, DISC can achieve our goals of minimizing mem-

ory usage for a given error bound or obtaining best accuracy for a given memory

constraint while retaining efficient updates and query processing. We present the

ekNN search algorithm based on DISC and also show how to modify DISC to sup-

port sliding window ekNN queries. Extensive performance studies using synthetic

and real data sets were conducted, and the results demonstrate that DISC is both

query and memory efficient. Note that since DISC is essentially a B∗-tree based

technique, it can also be used as a disk-based structure.

4.4 The framework

In this section, we propose a framework towards solving the ekNN problem with

a guaranteed error bound. As we shall see, this scheme provides possibility to

reduce the information to be stored, however, the scheme in itself does not guar-

antee achieving the goal of memory optimization or error minimization. The data

structure used to implement it is also critical to achieve these two optimizations.

Therefore we will first present the scheme, followed by analysis on adopting the

most suitable structure to realize it.

Our overall approach consists of segmenting the underlying space into a number

of cells and identifying dynamically a number of points to be stored in each cell

(called the footprints of the data) as data stream passes by. We observe that, in

order to guarantee the error bound e, which is the largest distance between two

points in a cell, for kNN queries, we only need to maintain at most k points in each

cell. In the case of data streams, the number of data is very large so that usually

exceeds k in many cells. Therefore, by maintaining only k points, we can reduce

the data to be stored. In the following, our scheme based on this observation is

131

formally presented.

4.4.1 Capturing the footprints

We consider the problem in a d-dimensional metric space V , which is a set of

points with an associated distance function dist. The distance function dist has

the following properties for any points P1, P2, P3 in V :

1. dist(P1,P2)=dist(P2,P1)

2. dist(P1,P2)>0 (P1 6=P2) and dist(P1,P2)=0 (P1=P2)

3. dist(P1,P2)≤ dist(P1,P3)+dist(P2,P3)

We divide the data space into a number of square-shaped cells and maintain

at most G (G is a user specified constant) points in each cell. Specifically, as data

stream passes by, each data point is placed in the cell it belongs to. If a cell already

contains G points, there would be G + 1 points including the new one. Then, we

discard a point according to some discarding policy. The discarding policy is clearly

application dependent. For example, if the most recent information is of interest

we will always delete the oldest point. When processing ekNN queries, we invoke

an exact kNN query on the set of points maintained, that is, the footprints of the

stream data. Contrasting the kNN answers obtained from the footprints of the data

set and on the original data set, we prove that the difference of their k-th nearest

neighbor distance is within e, which equals the largest distance between two points

in a cell. So the kNN on the footprints is an approximate answer for the kNN query

on the original data set with error bound e. We start by defining some functions

necessary for the derivations that follow and formalize the scheme for capturing the

footprints. Some commonly used symbols in this chapter are summarized in Table

4.1. As we are dealing with a totally different problem in this chapter from the one

132

studied in Chapter 3, the symbol meanings listed below are only valid within this

chapter.

Table 4.1: Symbols
Symbol Meaning
c A cell
d Dimensionality
dist(P1, P2) Function that returns the distance

between the two points P1 and P2

e The error bound of the k-th nearest
neighbor distance

far(S, P) Function that returns the farthest
point in set S to point P

kNN The set of the k nearest neighbors
ekNN The set of the e-approximate k

nearest neighbors
m The order of the Z-curve
P A data record, which is viewed as a

multi-dimensional point
pi The i-th coordinate of point P
Q A query point
S A set of points
t Current time
T Some period of time
u The number of segments a dimension

is divided to
V A metric data space
W A query window
Ws The smallest query window that

contains ekNN

We assume that the data space is normalized to a unit hypercube. Each of

the d dimensions of V is divided equally into u segments (therefore V is divided

into ud cells). Let S be a set of points in V and c a cell in V . Define S(c) as

{P ∈ S|P ∈ c}, that is, the subset of S that is in the cell c.

Let M be a mapping on S which is defined as follows:

for each cell c of V , if |S(c)| > G, image of S(c) is the set of any G points in S(c);

133

if |S(c)| ≤ G, image of S(c) is S(c). S is the union of S(c) for all the cells, and

hence the image of S is the union of the image of S(c) for all the cells.

Let S ′ be the image set of S under mapping M . Formally, the points in S ′ are

the footprints of the points in S. For any query point Q ∈ V , kNN is the set

of k nearest neighbors of Q in S and kNN ′ is the set of k nearest neighbors of Q

in S ′. Let far(S,Q) be the function returning the point in S, which is of largest

distance to Q among all the points of S.

P
1

c0

c1

P

Q

2

Figure 4.1: Diagram to explain Theorem 2

Theorem 2

For any positive integer k ≤ G,

dist(far(kNN ′, Q), Q) ≤ dist(far(kNN,Q), Q) + dM

and the bound is tight, where dM is the maximum possible distance of any two points

(not necessarily data points) within a cell.

134

Proof Suppose query point Q is in cell c0 as Figure 4.1 shows. If all points in

kNN are in S ′, then kNN ′=kNN , and far(kNN ′, Q) = far(kNN,Q), therefore

dist(far(kNN ′, Q), Q) ≤ dist(far(kNN,Q), Q) + dM

holds.

If any point in kNN is not in S ′, say P1 ∈ kNN and P1 /∈ S ′. Suppose P1 ∈ c1

(note that c1 could be the same cell as c0). P1 /∈ S ′ means |S(c1)| > G, and then

S ′ must have G points in c1. Let P2 = far(S ′(c1), Q), then

dist(far(KNN ′, Q), Q) ≤ dist(P2, Q)

G ≥ k, therefore

dist(far(kNN ′, Q), Q) ≤ dist(P2, Q) (4.1)

According to the triangle inequality

dist(P2, Q) ≤ dist(P1, Q) + dist(P1, P2) (4.2)

P2 and P1 are in the same cell, therefore

dist(P1, P2) ≤ dM (4.3)

P1 ∈ kNN , therefore

dist(P1, Q) ≤ dist(far(kNN,Q), Q) (4.4)

From inequalities 4.1, 4.2, 4.3 and 4.4, we obtain

dist(far(kNN ′, Q), Q) ≤ dist(far(kNN,Q), Q) + dM

135

d
M

Q

hs
2

hs1

c
0

Figure 4.2: A example of the tight bound

Next we show that the bound is tight by constructing a scenario where the

equality holds. The scenario is described as follows. Let k = G, and the query point

Q be at the center of a cell as shown in Figure 4.2. A hypersquare hs1 centered at

Q contains k − 1 points and hypersquare hs2 is the minimum hypersquare larger

than hs1. Among the cells outside hs1 and inside hs2, only cell c0 at the corner of

hs2 contains points. As shown in Figure 4.2, let the corner of c0 which is also a

corner of hs1 be point P1, and let another corner of c0 which is also a corner of hs2

be point P2. There are k + 1 cells falling in c0, one at P1 shown as a circle (we let

this point be within c0), and the other k points at P2 shown as a black dot (we let

these points be within c0). The one point at P1 is discarded and the k points at P2

are maintained. Since there are less than k points in hs1, all of the points in hs1

are maintained. When we search kNN based on the maintained points, we would

search to the hypersquare hs2. The real k-th nearest neighbor is the point at P1,

but since it gets discarded, we would instead get a point at P2 as the k-th nearest

neighbor as the approximate answer. QP2 = QP1 + dM , therefore this is the case

136

where dist(far(kNN ′, Q), Q) = dist(far(kNN,Q), Q) + dM 2

According to the theorem, if we divide the data space into ud equal cells and

use the above scheme to process the ekNN problem, then e equals dM . In addition,

if the maximum number of points maintained in a cell is G, for any ekNN query

where k ≤ G, the above error bound is guaranteed. For example, if we maintain

at most 5 points in a cell, then we can also search for 2NN with an error bounded

by e = dM . Note that dM is determined by the distance function. Without loss

of generality, we use the Euclidean distance function in the following discussions

and our experimental studies. For the Euclidean metric, the maximum distance of

two points within a cell is the length of the diagonal,
√

d/u, and therefore the error

bound is e =
√

d/u.

4.4.2 An array-based method

A first method to implement this general scheme would be to organize the data in

memory as a big d-dimensional array. Each element of the array represents a cell

in the space. We may store at most G points in each cell, so each array element is a

structure consisting of G d-dimensional points. Stream data elements are placed in

cells on demand as data stream passes by. If there are already G points, we discard

one of them based on the discarding policy. Processing of ekNN queries using the

array is straightforward. We just need to calculate the borders of the square which

encloses the ekNN query sphere and check all the elements within the borders. In

what follows, we refer to this method as the array-based method.

For the array-based method, we can calculate the memory size needed by the

following equation:

Memarray = ud · G · d · sizeof(attribute) (4.5)

137

The array-based method is straightforward, and its processing is simple and

fast in terms of memory accesses (reads/writes) and processor time. However, the

memory required is proportional to ud, which is very large when u is large. This

static memory allocation strategy can cause excessive memory usage, especially for

small error bounds, which implies a large value of u. Real data are often skewed

and may be sparse; most cells contain much fewer than G points or even none

at all, resulting in poor utilization of the statically allocated memory space. It is

obvious that a structure capable of adapting to different data distributions is more

desirable.

4.5 The DISC method

To better utilize memory, cells that do not contain data points should not be

explicitly maintained as opposed to the array-based method. Even within one cell,

the number of points may be different, so space usage is different. This calls for a

smart strategy to allocate space to each cell.

Besides the central objective of minimizing memory usage, the method should

also provide fast updates and query processing. For the error minimization problem,

the method may need some self-adjusting mechanism to achieve smallest error.

As discussed in the previous section, the array-based method needs too much

memory despite its fast updates and query processing. Or we can organize the cells

by a linked list and dynamically allocate only necessary space for each cell. The

memory size problem is solved largely (we still have some extra cost due to the

links), but the number of node accesses for update and query processing is linear

to the number of points. On average, half the size of the linked list is accessed to

locate a point. This is prohibitive for data stream applications.

138

A third way is to use a dynamic indexing structure such as an R-tree or a B-

tree. On one hand, it dynamically allocates space in the unit of a leaf node so as

to avoid excessive memory overheads as in the array-based method. This means

we don’t maintain cells explicitly; we only maintain the footprints of the data, that

is, the data necessary to guarantee the error bound for the queries. On the other

hand, the index provides fast access to the entries in the nodes. It is not as fast

as the array-based method, but typically several node accesses are enough, which

is much more efficient than linked lists in terms of updates and query processing.

A dynamic index is in fact a compromise of the above two, and therefore it avoids

the deficiency of either one.

A straightforward structure for multi-dimensional data is the R-tree or some of

its variants. A point is stored as a leaf node entry. Since we need to differentiate

between points from different cells, an identifier, id, is stored along with each point.

An alternative approach, which we adopt in this thesis, is to employ a B∗-

tree3 [101] together with a space-filling curve mechanism. Space-filling curves have

been used to linearize multi-dimensional data spaces. Various types of space-filling

curves exist in the literature; without loss of generality we adopt the Z-curve [126].

Efficient algorithms to compute Z-values can be found in [126]. Each cell corre-

sponds to a Z-value. Footprints of the data stream are stored in the leaf nodes

of a B∗-tree using their corresponding cell Z-values as keys. Such an approach is

expected to be more efficient than the R-tree scheme for the following reasons.

Although a point is the unit of storage, a cell is the unit most of our operations

deal with as we will see later in the algorithms. To locate a cell by the Z-value in a

B∗-tree, for each level of the tree, we only need to compare the search key with one

value, since there is no overlap in the Z-values. In an R-tree, we need to compare

3We employ the B∗-tree for indexing (instead of B+-tree) as its node utilization is about 85%
or higher.

139

the coordinates of the cell with 2d values (lower bound and upper bound for each

dimension) for each level of the tree and there is overlap between the MBRs of the

R-tree, which translates to more node accesses to update and search the R-tree.

In addition, since the R-tree stores more information as keys, the fan-out of the

R-tree nodes becomes lower and the height larger.

Another advantage of organizing the footprints in the Z-order is that cells can

be arranged in a total order while maintaining cell proximity. The R-tree also keeps

the points belonging to the same cell spatially close, but it still happens that they

scatter in nearby MBRs. In DISC, points in the same cell are always consecutively

stored in the leaf nodes. This property facilitates accesses on the cell level and

make possible a very fast merge-cells operation, which is required for the error

minimization problem and described in Section 4.5.2. We will also compare DISC

to the R-tree in our experimental study. Since several points may belong to the

same cell and have the same key in DISC, our B∗-tree is designed to accommodate

entries with equal keys. For the R-tree method, we have used the R*-tree [23]

variant, which has a higher node utilization (about 73%). Moreover, we have also

used the Z-values as the id’s of cells for the R*-tree method.

Since we are utilizing space-filling curves, each dimension of the data space is

partitioned into a number of intervals equal to an integral power of 2, the same for

all dimensions. Let m denote the order of the Z-curve, then u = 2m.

4.5.1 Index creation

We begin by considering the first problem, namely the memory optimization prob-

lem for a given error bound e. To guarantee that this error bound is met by our

query answers, we calculate the order of the Z-curve me according to Theorem 2

as follows.

140

√
d/2me ≤ e

Then

me ≥ log2(
√

d/e) (4.6)

The larger the value of me, the more memory is required; we let me be the smallest

integer that can satisfy inequality 4.6.

me = dlog2(
√

d/e)e (4.7)

Algorithm Build Index, shown in Figure 4.4, describes how the index is con-

structed. In the algorithm, we initialize the value of m to me.

Before we discuss the algorithm, let us consider the second optimization prob-

lem, namely error minimization given a specific memory size constraint. The basic

idea of the algorithm is to adjust the order of the Z-curve, m, to achieve the best

accuracy while satisfying the constraint. Our aim is to minimize the error bound

e in the ekNN search. Since the larger the value of m, the smaller the error bound

e, and the data distribution is not known apriori, we start with a sufficiently large

value for m, which can be set from the domain knowledge; the exact value depend-

ing on the arithmetic precision we are working with. As data arrive, it may turn

out that m is too large and hence memory is exhausted; in this case, we merge

small cells into a larger one, discard some points and still maintain at most G

points in the larger cell. As a result some memory is freed, and processing of the

stream continues. The Z-curve properties enable us to merge cells efficiently. In

particular, a Z-value for a cell can be mapped efficiently (using simple bitwise oper-

ations) to Z-values corresponding to a curve of different order. For brevity, we omit

the details which can be found in [126]. Related properties hold for other curves

141

as well. Each time we need to perform cell merging, we will combine 2d adjacent

small cells into a larger cell as shown in Figure 4.3, in which cells c0, c1, c2, c3 are

combined to form cell c
′

0. The larger cell is still square-shaped. After merging the

cells, the order of the Z-curve becomes m − 1. The index construction algorithm

for this case is similar to that for the memory minimization problem; the difference

lies in the merging phase. For brevity, we include this phase in the description of

algorithm Build Index.

c10 c

c

c14 c15
c’2 c’3

c’0 c’1

11

0 c1

c2 c3

c4

c6

c5

c7

c8 c9 c12 c13

Figure 4.3: Cell Merging

We are now ready to look at algorithm Build Index (see Figure 4.4). In line

1, we let m = me for the memory optimization problem and let m be a large

enough integer for the error minimization problem. In line 5, we should determine

which point to discard according to the discarding policy. In our realization of the

algorithm, we simply discard the new point P .

In the analysis of Section 4.4.1 we have assumed the data space is normalized

to a unit hypercube. This may have difficulty when the maximum and minimum

of the data are unknown. In DISC, we would set the maximum/minimum to

safely large/small values. For example, we can use 10 times (suppose the data are

positive) the observed maximum value in the history as the maximum value of the

142

Algorithm Build Index
1 Initialize m
2 Read data from the stream, denote the point read in as P ,

calculate the Z-value of P , and we know which cell it
belongs to, denote it as c

3 Search the B∗-tree and obtain the number of points that
also belong to cell c, denote the number as Nc

4 If Nc < G
Insert P to the B∗-tree

5 Else
Among P and the G points in c, discard 1 and keep
the other G points in the B∗-tree

6 If memory runs out /*This only happens for the error
minimization problem*/
Merge cells and let m = m − 1.
/* The merge cells algorithm is presented
in the next subsection. */

7 Go to 2
End Build Index

Figure 4.4: Algorithm Build Index

143

data space. This may result in most of the data gathered at the center of the data

space. It will not cause a problem for DISC, because no memory would be wasted

for the empty space. And this just shows the advantage of DISC’s adaptation to

the data distribution.

4.5.2 Algorithms to merge cells

For the error minimization problem, we adopted an adaptive approach that consists

of merging 2d adjacent cells to form a larger one in order to meet the memory

constraint. Figure 4.3 shows a 2-dimensional example where the order of the Z-

curve m equals 2 before merging. c0 to c15 are the cells before merging. c′0 to c′3 are

the cells after merging. The subscripts are the Z-values of the cells. Let us denote

the larger cell as M(c) if it contains c before merging, then M(c0) = M(c1) =

M(c2) = M(c3) = c′0. In general,

M(czv) = c′bzv/2dc (4.8)

where zv is the Z-value of the cell. Let S be a point set. We refer to the cells before

merging as old cells and to the larger cells after merging as new cells. We present

two algorithms to merge cells. The first cell merging algorithm applies to any

index structure (including DISC and R-tree) that adopts our general scheme, that

is, to maintain at most G points in each cell. The second cell merging algorithm

is specially designed to exploit DISC’s special property that the points are ordered

according to the value of the Z-curve (versus the R-tree where points have no

ordering). The latter scheme, referred to as the bulk cell merging scheme, scans

all the leaf nodes once, and hence is expected to be more efficient than the former

general cell merging algorithm.

144

Algorithm General Merge-Cells (GMC)
1 For i from 0 to 2m−1 − 1
2 Search the index and obtain the number of points

in the new cell c′i, denote the number as Nc′i

3 If Nc′i
> G

Discard Nc′i
− G points according to the

discarding policy
End General Merge-Cells

Figure 4.5: Algorithm GMC

In the first algorithm General Merge-Cells (GMC), we examine each new

cell in the order of the Z-curve. For each new cell, we search the index and find all

points belonging to this cell. If there are at most G points in the cell, we will leave

them in the index; otherwise, we delete some of them according to the discarding

policy and retain only G points. Algorithm GMC is presented in Figure 4.5.

While the GMC algorithm is straightforward and applies to any structure, it is

quite expensive since it searches the index 2m−1 times.

The second algorithm Bulk Merge-Cells (BMC), utilizes the property that

the points in the leaf nodes of the B∗-tree are ordered according to the Z-values.

The 2d adjacent points which will form a larger cell are adjacent in the leaf nodes,

so we only need to scan all the leaf nodes once and merge the points in adjacent 2d

old cells into a new cell. Difference to an R-tree, the entries with close keys in the

B∗-tree are adjacent to each other, therefore in addition to deleting extra points

in a new cell, we also need to move the remaining G points into the same cell.

We use a write cursor pointing to the place where we would store the next points.

Algorithm BMC is presented in Figure 4.6. The BMC algorithm requires the cells

to be merged into a larger one stored adjacent to each other. This is not the case

with the R-tree, therefore we can not use the BMC algorithm on an R-tree.

In line 16 of BMC (Figure 4.6), rebuilding internal nodes based on existing leaf

145

Algorithm Bulk Merge-Cells (BMC)
1 Free all the internal nodes
2 Let ln be the first leaf node. Set write cursor at

the beginning of ln. Let point set S be empty.
3 While (ln) //when ln is not NULL
4 For each point P in ln
5 If this is the first point in the first leaf node
6 c′ = M(c), where c is the cell P belongs to

S = S ∪ P
7 Else if P ∈ c′

S = S ∪ P
8 Else if P /∈ c′ //We entered the next cell
9 If |S| > G

Discard |S| − G points from S
10 Write the points in S to the position of

write cursor and move the write cursor
forward accordingly

11 Let S = ∅
12 S = S ∪ P
13 c′ = M(c), where c is the cell P belongs to
14 ln = right neighbor of ln
15 Free all the leaf nodes after the write cursor
16 Rebuild internal nodes of the B∗-tree based on the

leaf nodes
End Bulk Merge-Cells

Figure 4.6: Algorithm BMC

nodes is very similar to bulk loading of a B+-tree. We do not discuss the details

here for brevity.

Comparing the two merging algorithms, we note that BMC scans the leaf nodes

only once, while GMC entails many searches and updates for each new cell. So BMC

is expected to be faster than GMC. We will compare them in the experiments.

We note that the merge-cells operation is expensive compared to other opera-

tions, especially when the memory is large. As it may take a while to reduce the

order of the curve by 1, stream processing may be disrupted. Fortunately, it is not

necessary to finish merging all cells at once. Cell merging can be performed incre-

146

mentally. When the system load is heavy, say, there is a burst of incoming data or

many queries, we stop the merge operation at the current new cell we are working

on and record this stop position. If the update or the query accesses the points

before that stop position, we process them assuming the order of the Z-curve to be

m − 1; if data belonging to cells after the stop position are required, we process

them assuming the order of the Z-curve to be m. If the search involves more than

one cell, some of which may be old and some are new, query processing is performed

assuming the order of the Z-curve in the new cells , m − 1. Old cells that are ac-

cessed in the search are temporarily combined to form larger new cells, but they are

in fact merged later as cell merging resumes. The error bound returned with the

query results in this case, is the one associated with the order m−1. Both GMC

and BMC can be performed incrementally. However, it is important to complete

the operation fast.

4.5.3 Query processing

In this section, we present the ekNN query processing algorithm. The input of an

ekNN query is a query point Q and an integer k. As analyzed in Section 4.4.1,

an ekNN query on the original data set, is a kNN query on footprints of the data.

Figure 4.7 gives detailed steps of the algorithm KNN search, which we use to

perform the kNN search on the footprints of the data.

Let cQ be the cell Q belongs to. Denote as Q′ the center point of cQ and

as W a query window which is a d-dimensional interval [wl1, wh1], [wl2, wh2], ...,

[wld, whd]. First, we initiate a square-shaped window query centered at Q′ with an

initial side length of 1/u and then increase it gradually. We maintain a k candidate

answer set which always contains the nearest k points to Q within the current query

window. The function near(W,Q) returns the distance between Q and W ’s nearest

147

Algorithm KNN Search
1 S = ∅
2 For i from 1 to d

wli = q′i − 1
2u

; whi = q′i + 1
2u

3 WindowQuery(W). From the points in W , get the k
nearest points to Q and put them in S; if there are
less than k points in W , put all of them in S.

4 if |S| < k or near(W,Q) < far(S,Q)
5 for i from 1 to d

wli = wli − 1
u
; whi = whi + 1

u

6 Go to 3
7 return S
End KNN Search

Figure 4.7: Algorithm KNN Search

side (or nearest hyperplain when we have more dimensions) to Q. The algorithm

terminates when near(W,Q) is larger than or equal to the k-th nearest point in

the candidate answer set. All the points outside the query window are farther

from Q than near(W,Q). So when the algorithm terminates, the farthest point in

the candidate set is the k-th nearest point to Q among all the points inside and

outside the query window. To avoid searching cells which are already visited in the

previous iteration, we maintain a list of addresses of the B∗-tree leaf nodes visited.

WindowQuery(W) is a function to retrieve all the points in window query W . In

DISC, each leaf node of the B∗-tree corresponds to a continuous segment of the

Z-curve. An efficient window query algorithm proposed in [22] accesses only those

nodes with their corresponding Z-curve segments intersecting the query window.

We use this algorithm for our WindowQuery() function. In our implementation,

we have used 1/u as the initial side length of the window query. Sometimes, this

may not be optimal if the final query window is large. We may consider estimating

the kNN distance from some query history to optimize this initial query window.

Next we show an example of the Algorithm KNN Search. Suppose G=2, and we

148

are searching 2NN. Suppose the data we have maintained are as shown in Figure

4.8, where the black dots are data points and the circle is the query point. We can

see u=8, and since G=2, we maintain at most 2 points in each cell. Figure 4.9

k=2

Q

1/u

G=2

Figure 4.8: An example of KNN search

shows a closer look at the nine cells surrounding Q. Q is in the cell ABCD(we

represent the cell by its four corners here). To perform the KNN search, we first

initiate the window query ABCD (we represent the window by its four corners

here), which is centered at the center of the cell ABCD and with the side length

of 1/u. We denote this window query by W . Within W , we find the two nearest

candidates to Q, that is, points X and Y . Among the four sides of W , the nearest

side to Q is AB, so near(W,Q) returns the distance between Q and the side AB.

The 2nd nearest candidate to Q is X, and we can see QX is larger than near(W,Q),

therefore we enlarge W by adding a lane of cells around it. By this means the side

length of W becomes 3/u and now W becomes the square HIJK. We still obtain

149

H

Q

X

Z

A B

CD

I

JK

Y

Figure 4.9: An example of KNN search (close look)

the nearest two data points to Q within W , which are Z and Y . Now near(W,Q)

is the distance between Q and the side HI. It is larger than the distance between

Q and its 2nd nearest candidate Z, therefore the search terminates and we get the

approximate 2NN, which are Y and Z.

For continuous ekNN queries, we maintain the ekNN set as follows. Let Ws be

the smallest window centered at Q′ that contains all the points in ekNN . When a

new data point P comes and P ∈ Ws, we may need to discard some points according

to the discarding policy (for example, in the sliding window query discussed in the

next subsection, points older than Tsw are discarded). If a point in ekNN is

discarded, the ekNN set would have fewer than k points at the moment. After

discarding, there are 3 cases to consider: 1)There are still k points in ekNN . If P

is nearer to Q than the farthest point in ekNN , then P will replace the farthest

point; otherwise ekNN is kept unchanged. 2)There are fewer than k points in

ekNN and P is nearer to Q than the farthest point in ekNN before discarding.

We add P to ekNN and start kNN search as in the one-time search algorithm, but

150

we set the initial search window as Ws. 3)There are fewer than k points in ekNN

and P is not nearer to Q than the farthest point in ekNN before discarding. We

just start kNN search as in the one-time search algorithm with the initial search

window Ws. The proof of the above algorithm is straightforward and we omit it

here due to the limitation of space.

4.6 Processing sliding window queries by DISC

All the DISC algorithms discussed so far work on the entire data stream. In cer-

tain applications, recent stream data are of greater interest. In this section, we

study how the algorithms can be modified to process sliding window ekNN queries.

Specifically, we hope to identify the ekNN of a query point Q among all data

stream elements arriving in the last Tsw time units.

DISC is capable of supporting such sliding window ekNN queries by simply

employing a time-based discarding policy. Let t be the current time. Assume that

each arriving stream record is tagged with a timestamp signifying its arrival time.

Algorithm Build Index can be modified for the sliding window model as follows.

When inserting a point P to a cell c, we first check the timestamp of existing

points in c. We then delete the stale points, that is, the points that arrived earlier

than t − Tsw. Finally, we insert P . For algorithm KNN Search, we only place

points arriving later than t − Tsw to the candidate answer set S. At any time,

if we encounter stale points (during index building or kNN searching), we delete

them immediately. Such modifications enable DISC to answer sliding window ekNN

queries correctly. However, if there are records in the index that are older than

t − Tsw, but no incoming record is added to the cells the old ones belong to,

such stale data will remain in the index, occupy space and affect space utilization.

151

To avoid this, we need an operation to eliminate such stale data. This can be

accomplished by scanning all the points and deleting stale data from the index.

However, such an operation is expected to be time consuming. Again, like the

cell merging process, this stale data elimination process can be done incrementally.

There exists a tradeoff between memory utilization and processing capability. To

achieve best accuracy when addressing the error minimization optimization problem

in the sliding window model, we eliminate stale data before each call to the Merge-

Cell operations. This way, some additional space becomes available and it may be

possible to avoid cell merging.

We should take care when processing continuous ekNN queries over sliding

windows. Even no new points come in Ws, there still could be stale data due

to time. Therefore, in this case we need to check whether the set contains stale

data in each time unit to guarantee the correctness of the ekNN set. Or if the

ekNN answers are not requested all the time, we can check for stale data when

we retrieve answers from the maintained ekNN set. If there were stale records, we

discard them and invoke the kNN search on the footprints with the initial search

window Ws. This is still much faster than invoking the search from scratch.

4.7 Deploying DISC in Gigascope

To deploy DISC in Gigascope, we need to decompose the processing into LFTA

and HFTA components. Recall that the LFTA should filter out most traffic to

reduce the data volume passed to the HFTA, while those complex operations can

be performed by the HFTA. In case of DISC, we would let the indexing algorithm

be run at the LFTA and the kNN search algorithm be run at the HFTA which are

described in detail in the following.

152

During an epoch (a tumbling time window), algorithm Build Index is run at

LFTA to maintain the footprints of this epoch. Let n be the number of records

that arrive in this epoch. We estimate the computation needed at LFTA as follows.

In algorithm Build Index, step 2 calculate the Z-value of a record, which involves

some bit operations and is very efficient. Step 3 searches the B∗-tree and count

the number of points belonging to the cell that the new point belong to, which

takes O(log(n)) time and O(1) time, respectively. Then step 4 and 5 insert the

new point and may discard one point, which takes constant time when no node

overflow happens. Therefore the whole procedure takes O(log(n)) time, which can

be efficiently done at LFTA. If we are dealing with the error minimization problem,

we may need to merge cells (step 6), which is a rather expensive operation. We

can take two measures to alleviate this problem. First, as discussed in Section

4.5.2, we can perform the cell merge incrementally. Second, we try to use a good

choice of the order of the Z-curve, m, so that cell merge happens rarely. This good

choice can be made according to the previous m value, since each epoch is a short

time (e.g., 1 minute) and data distribution of adjacent epochs should not change

greatly. This may result in an underestimate of m and hence a larger error bound

than what could be achieved if choosing the right m, but we would expect the

underestimation to be small due to the time locality. If we have chosen a small m

according to the previous epoch, we need to know when to increase m. We use the

memory usage to decide this. If the memory usage is below some threshold, the

current m value may be too small and we increase it by 1 in the next epoch.

At the end of the current epoch, everything maintained in the B∗-tree is passed

to the HFTA. As we only need the maintained data in the leaf nodes of the B∗-tree

to answer the queries, we only need to copy all the leaf nodes to the HFTA. We

always remember the address of the first leaf node of the B∗-tree while building

153

it. When we copy the leaf nodes, we first copy the first leaf node; then we follow

the pointer from one leaf node to the next leaf node to get all the other leaf nodes

repeatedly. Because we would build a new B∗-tree in the next epoch, we have to

free the space used by the B∗-tree of this epoch. To free them one by one following

the downward pointers may be too expensive. We can use a memory object for the

B∗-tree here, which can free all the memory allocated to the B∗-tree at once. After

the B∗-tree (which contains the “footprints” of the data stream in this epoch) is

copied to the HFTA, we can run algorithm KNN Search to process queries over

the data. As the data volume has been greatly reduced, the HFTA should have

enough computation power to process the queries. The time period we can pose

query upon is any epoch before the current one.

4.8 Experiments

In this section, we present the results of an extensive experimental study using

DISC. While we have implemented and worked with an in-memory version of DISC,

DISC is also applicable for secondary storage. The experiments are performed

on a desktop computer with Pentium IV 2.6G CPU and 1G RAM. In our study

we employed both synthetic and real data sets. We generated exponentially and

normally distributed data sets of varying dimensionality. Figure 4.10 shows 2-

dimensional images of the two data distributions. The real data set is still the

one obtained by tcpdump on a network server of AT&T as described in Section

3.8.1. We have extracted certain fields (source IP, destination IP, source Port and

destination Port) from all the records to form data sets of different dimensionalities.

Such logs were aggregated temporally and ekNN queries were issued using the total

number of bytes and associated packet rate attributes. All the data are normalized

154

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)Exponential distribution (b) Normal distribution

Figure 4.10: Data distributions

in the range of [0,1]. By default, we let G equal 20 and we set the order of the

Z-curve as 10, which implies an error bound of 0.00138 in a 2-dimensional space.

For the in-memory B∗-tree, we used a default node size of 1024 bytes. First, we

focus our experiments on a 2-dimensional space examining DISC’s memory usage

and accuracy and compare the two cell merging algorithms. Then we examine the

behavior of DISC on higher dimensions.

4.8.1 Memory usage of DISC

In a first series of experiments, we study the memory usage of DISC as data stream

passes by. No existing structures or algorithms were proposed to process (approx-

imate) kNN queries over streams as discussed in the related work 2.5.2. Therefore

we would compare DISC with the R*-tree [23] indexing under our general scheme

to see which one is more efficient. Figures 4.11 to 4.13 present the memory used by

DISC and the R*-tree as a function of the observed data stream size (in number of

points) on 2-dimensional exponentially distributed and normally distributed data

sets and the real data set.

155

0

1

2

3

4

5

0 100 200 300 400 500 600

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Number of points that arrived (thousand)

DISC
R*-tree

Data size

Figure 4.11: Memory Usage of DISC: Exponentially distributed data

0

1

2

3

4

5

0 100 200 300 400 500 600

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Number of points that arrived (thousand)

DISC
R*-tree

Data size

Figure 4.12: Memory Usage of DISC: Normally distributed data

156

0

1

2

3

4

5

0 100 200 300 400 500 600

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Number of points that arrived (thousand)

DISC
R*-tree

Data size

Figure 4.13: Memory Usage of DISC: Netflow data

As the data continually arrive and their cumulative size increases, the memory

usage of DISC increases also at first, but the increase slows down soon as more

data arrive. At first, all the cells are empty and therefore all of the data are

stored as footprints. But as more data come in, more and more cells become full

(containing up to G points) so that memory usage almost remains constant. When

600K data points have arrived, the memory used by DISC is 10∼25% of the size

of the data. Using Equation 4.5, we calculate, for this setting that the amount

of memory needed for the array based method is 41943040 bytes, which is more

than 8 times the data size. These results show that DISC does adapt to different

data distributions because it only stores necessary cells and in each cell, necessary

points to guarantee the error bound, while the array-based method suffer from the

static memory allocation greatly. The huge space cost of the array-based method

make it not applicable in stream applications. In all the following experiments, the

array-based method always needs at least several times the space of the original

data to operate, therefore we will not compare DISC with it again. We also observe

that the memory usage of the R*-tree is always a little higher than DISC. This is

157

because while the R*-tree also allocates space only to the points requiring explicit

storage, the leaf node utilization rate of the R*-tree (about 73%) is lower than

that of the B∗-tree (about 85%).

To see how how some parameters such as the node size of the B*-tree or the

R*-tree and G affect the memory usage of DISC, we varied the node size and G

respectively while maintaining other parameters constant. The memory usage for

different node sizes when 600K netflow data points have arrived is presented in

Figure 4.14. The memory usage decreases slightly as the node size increases. This

is because for larger nodes, higher node utilization rate can be achieved because we

have less internal nodes. However, the effect of node size is small compared to the

total data size. In the remainder of the experiments, we used 1024 as the default

node size.

0

1

2

3

4

5

25
6

51
2

10
24

20
48

30
72

40
96

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Node size (byte)

DISC
Data size

Figure 4.14: Effect of Node Size

Figure 4.15 presents memory usage as a function of G for netflow data. Memory

usage increases as G increases in an almost linear fashion, according to expectation.

158

0

1

2

3

4

5

10 15 20 25 30 35 40

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

G

DISC
Data size

Figure 4.15: Effect of G

This demonstrates that DISC handles the allocation of the available memory in

a space efficient fashion. Experiments over the synthetic data sets show similar

behavior. It is expected that the memory usage of DISC would reach the size of

the stream data if G is too large, but it will not be too much beyond the stream size.

In the worst case that G is infinite, all the stream data are maintained. The memory

usage of DISC would be a little more than the stream size considering the space

utilization of the B∗-tree, but it will not grow excessively as the array-based method,

which may use many times the size of the stream. In many applications, tens of

nearest neighbors are enough and G can be determined from domain knowledge

or query history. In these cases, DISC is still quite useful. In the remainder of

the experiments, we have used 20 as the default value of G, which is a reasonable

number used in data mining applications.

159

4.8.2 Accuracy of DISC

While DISC can guarantee a theoretical error bound of e, we run experiments to

assess the actual errors. We generated 200 queries following the same distribution

as the data. We scan the original data to find the exact kNN to each query and also

employ DISC to identify the ekNN . We then compare the exact kNN distance and

the ekNN distance to obtain the actual error. The results are presented as averages

over the 200 queries in Figure 4.16. The figure shows the comparison between the

error bound e and the actual error for the (exponentially distributed, normally

distributed and netflow) data streams as the data arrive. We observe that the

average actual errors are less than one third of the theoretical error bound. These

results demonstrate the accuracy of DISC. In all our experiments, we have also

observed that the maximum actual errors are smaller than the theoretical error

bounds, which further confirms the effectiveness of DISC.

0

2

4

6

8

10

12

14

200 300 400 500 600

E
rr

or
 (

 1
0^

{-
4}

)

Number of points that arrived (thousand)

Actual error (Exp. data)
Actual error (Nor. data)
Actual error (Net. data)

Error bound e

Figure 4.16: Accuracy vs. Arrived Data Size

In our next experiment we evaluate the impact of the order of the space-filling

curve on our scheme. We vary the order of the Z-curve from 8 to 11 and see how it

160

0

0.001

0.002

0.003

0.004

0.005

0.006

8 9 10 11

E
rr

or

Order of the Z-curve

Actual error (Exp. data)
Actual error (Nor. data)
Actual error (Net. data)

Error bound e

Figure 4.17: Accuracy vs. Order of the Z-curve

0

1

2

3

4

5

8 9 10 11

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Order of the Z-curve

DISC (Exp. data)
DISC (Nor. data)
DISC (Net. data)

Data size

Figure 4.18: Memory Usage vs. Order of the Z-curve

161

0

1

2

3

4

5

0 5 10 15 20 25

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Actual error (10-4)

DISC (Exp. data)
DISC (Nor. data)
DISC (Net. data)

Data size

Figure 4.19: Memory Usage vs. Accuracy

affects the actual errors and the memory usage. The error bound and actual errors

for different orders of the Z-curve are shown in Figure 4.17. The memory usage

for different orders of the Z-curve are shown in Figure 4.18. As the Z-curve order

increases, the error bound e and the actual errors decrease, while the actual errors

are always much smaller than e. On the other hand, as the Z-curve order increases,

the memory usage also increases. This is because we have more cells and we need

maintain more points in total.

To see the relationship between the memory usage and the accuracy, we present

for different error bounds, their corresponding memory usage versus the correspond-

ing actual errors when 600K data points have arrived in Figure 4.19. The memory

usage increases as actual errors decrease. This shows that DISC can easily trade

error for memory space by suitably setting the order of the Z-curve.

To show that the above absolute errors are reasonably small, we also present

the relative kNN distance errors they correspond to in Figure 4.20. For the netflow

data, ekNN has a relative error of 5% when the memory usage is about 1MB,

which is less than 1/4 of the original data size. Even when the memory usage is

162

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Relative error

DISC (Exp. data)
DISC (Nor. data)
DISC (Net. data)

Data size

Figure 4.20: Memory Usage vs. Relative Error

only 200KB, which is less than 5% of the original data size, ekNN has a relative

error of 1.6. For the exponentially and normally distributed data sets, ekNN also

has small relative errors while use much less memory size than the data size.

4.8.3 GMC vs. BMC

In this experiment, we evaluate the two merge-cell algorithms. We have imple-

mented the GMC algorithm for both DISC and the R*-tree. We also implemented

the BMC algorithm, which only applies to DISC. We trigger the Merge-cell opera-

tion when 200K, 400K and 600K data points have arrived. (In fact, the merge-cell

operation should be invoked in the case of the error minimization problem only

when available memory runs out. Here we call it explicitly to observe its behavior

under varying data size.) We calculate the number of node accesses and response

time as measures of their performance. The results for the real data set are shown

in Figure 4.21 and 4.22. We can see that under the DISC scheme, GMC needs

much more node accesses than BMC (about 300 to 600 times). This is because

163

in GMC, we need to traverse the tree for each new cell. To support a reasonably

small error bound, usually the order of the Z-curve is large, which is 10 in our ex-

periments. So we have to traverse the tree 29×2 = 262144 times, and each traversal

incurs several node accesses (descend the tree and locate the points to the new

cell). While in BMC, we only scan all the leaf nodes once (which ranges from hun-

dreds to a few thousand in our experiments). GMC for the R*-tree turns out to be

marginally better than its DISC counterpart. This is because in the R*-tree, when

some points are discarded from a cell, we are not required to move the remaining

points together while in the B∗-tree this is necessary. The response time has similar

trend. In the experiments, the GMC algorithm takes several minutes to finish while

the BMC algorithm takes only 1 or 2 seconds. So clearly, only the BMC algorithm

is applicable in practice. This is an additional reason that makes DISC preferable

over other approaches. Despite its efficiency, we can still perform incremental cell

merging with BMC as described in Section 4.5.2 in case the memory is very large

and the system load is heavy.

10^{3}

10^{4}

10^{5}

10^{6}

200 300 400 500 600

N
od

e
ac

ce
ss

es

Number of points that arrived (thousand)

DISC BMC
DISC GMC

R*-tree GMC

Figure 4.21: Node accesses of GMC and BMC

164

10^{2}

10^{3}

10^{4}

10^{5}

10^{6}

200 300 400 500 600

R
es

po
ns

e
tim

e
(m

ill
is

ec
)

Number of points that arrived (thousand)

DISC BMC
DISC GMC

R*-tree GMC

Figure 4.22: Response time of GMC and BMC

4.8.4 Updates and query processing

To evaluate the update and query processing performance of DISC, we measured

the number of node accesses of updates, one-time ekNN query and continuous ekNN

query processing for DISC and the R*-tree4. The cost of a continuous ekNN query

consists of the cost of the initial one-time ekNN query and the cost of maintaining

the ekNN set continuously. The maintenance cost is the possible search cost when

a point in Ws arrives as described in the continuous ekNN algorithm. Specifically,

maintaining the ekNN set involves possible kNN search during the insertion of

new points. Therefore, the update cost with continuous ekNN queries running is

expected to be higher than the usual update cost.

In our experiments, the query costs of the one-time ekNN queries are averaged

from 200 queries which follow the same distribution as the real data set. For

continuous ekNN queries, we use the same queries but run 10 continuous queries

simultaneously each time. The update costs are averaged from the 600K points

4Usually we don’t have updates in network data streams. DISC is applicable to general data
streams where we may have updates in other applications such as moving object data, therefore
we also evaluate the update operation for completeness.

165

40

32

24

16

8

0

DISC R*−tree

One time
ekNN

Update with
con. ekNN

N
od

e
ac

ce
ss

es

Usual
update

Figure 4.23: Update and Query Cost

inserted. G is still set as 20. The results on the netflow data set are shown in

Figure 4.23. First we observe that for all the operations, DISC has much lower

node access cost than the R*-tree. The reason is that in DISC we only store the Z-

value as the key, but in the R*-tree we need to store 2d values as keys so the fan-out

of the tree is lower and hence the height of the tree larger. In addition, there are

overlaps between the MBRs of the R*-tree, which also incurs more node accesses.

We also notice that the query processing cost is not large in terms of node accesses.

This is largely due to the Z-order keeping the proximity of the spatial points and

the efficient WindowQuery() algorithm. In addition, in two-dimensional space, the

points are dense. For skewed data, most points are clustered at a relatively small

region and so do the queries. So for most queries, after locating the cell the query

belongs to, we need only a few number of node accesses to retrieve near points.

The cost of the continuous ekNN is mainly expressed in the additional part of the

update cost. We can see that, update with continuous ekNN queries running costs

a little more than the usual update, but the increase is not great. Therefore, the

continuous ekNN query processing is still quite efficient.

166

4.8.5 DISC on data sets of other dimensions

We study the behavior of DISC when the number of attributes of interest in the

record increases (and as a result the dimensionality of stream elements increases as

well). Figure 4.24. shows the memory usage of DISC as 3-dimensional synthetic

data stream passes by. We still set G as 20 and the order of the Z-curve as 10,

which corresponds to an error bound of 0.00169 in 3-dimensional space.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

M
em

or
y

us
ag

e
(M

eg
a

by
te

s)

Number of points that arrived (thousand)

DISC (Exp. Data)
DISC (Nor. Data)

Data Size

Figure 4.24: Memory usage of DISC on 3D data sets

The results are similar to those of 2-dimensional data (compare with Figures

4.11 and 4.12). DISC uses much less memory compared to the original data size

and its memory usage does not increase significantly as the number of arriving

data elements increases. As dimensionality increases, DISC tends to occupy more

memory than in the 2-dimensional case; this is expected as in higher dimensions,

points become relatively sparse and therefore distributed in more cells, which have

to be maintained. Similar to the experiments on 2-dimensional data, the average

actual errors are much lower than the error bounds as shown in Figure 4.25.

167

0

2

4

6

8

10

12

14

16

18

200 300 400 500 600

E
rr

or
 (

 1
0-4

)

Number of points that arrived (thousand)

Actual error (Exp. data)
Actual error (Nor. data)

Error bound e

Figure 4.25: Accuracy of DISC on 3D data sets

4.9 Summary

In this chapter, we attacked the problem of efficiently processing nearest neighbor

queries over network data streams. We approached this problem by introducing

the e-approximate k nearest neighbor (ekNN) query, which specifies the error bound

as an absolute error e. We proposed a framework that makes it possible to reduce

the information needed to answer ekNN queries with a guaranteed error bound.

Specifically, we divide the data space in to cells and only need to maintain at

most G records in each cell in order to guarantee some error bound, where G

is a user defined parameter. Under this framework, we further proposed a novel

technique called aDaptive Indexing on Streams by space-filling Curves (DISC),

under our proposed framework, to efficiently maintain data and process queries

from the maintained data. DISC has efficient insertion, deletion and kNN search

operations. We also proposed an efficient merge-cell algorithm for DISC, which is

essential to adjust DISC to the data distribution of the data stream. By DISC,

we attain two optimization goals: memory optimization for a given error bound,

168

and error minimization for a given memory size. We also discussed sliding window

query processing and how to deploy DISC in the Gigascope DSMS. Finally, we

presented our experimental study, which shows that DISC can achieve the goal

of memory optimization or error minimization while having efficient updates and

query processing.

169

CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

In recent years, the emergence of a class of new applications, where the data input

is of a very large volume (possibly infinite) and arrives at the system at a very high

speed, has come to the attention of the database research community. Applications

are real, such as sensor networks, web based services, and especially network moni-

toring tasks. Two basic network monitoring tasks, traffic management and security,

call for efficient processing of two types of queries: aggregate queries and nearest

neighbor queries. In this thesis, we have tackled these two types of queries under

the data stream model. We summarize our contributions and results on these two

problems below.

For aggregate queries, our goal has been to achieve minimum overall cost when

multiple aggregate queries are given. The cost reduction relies on sharing computa-

tion among queries. We have based our study on the two-level (LFTA and HFTA)

170

query processing architecture of the Gigascope DSMS. Our first contribution to the

problem is the insight that when computing multiple aggregate queries that differ

only in their grouping attributes, it is often beneficial to additionally compute and

maintain phantoms at the LFTA. Phantoms are fine-granularity aggregate queries

that, while not of interest to the user, allow for shared computation between multi-

ple aggregate queries over a high speed data stream. Next, we have formulated the

multiple aggregation problem. Specifically, user queries and phantoms that could

be beneficial are organized as a feeding graph. We need to choose phantoms from

this feeding graph to form a configuration, which consists of relations to be instan-

tiated in the LFTA. For a given configuration, we have formulated the intra-epoch

and end-of-epoch costs. The problem is to achieve minimum intra-epoch cost (the

cost for simplicity) while satisfying the constraint imposed by the end-of-epoch

cost. As Gigascope adopts a subaggregate and superaggregate paradigm in data

cube computation, and uses hash tables to maintain the computation for aggre-

gations, how to allocate space to the hash tables of the instantiated relations is

also a problem since the hash table size is flexible. Accordingly, we have identified

two sub-problems for the multiple aggregation problem here: phantom choosing

and space allocation. We have proven that the phantom choosing problem is NP-

complete; hence, we have chosen to use a greedy algorithm. The view selection

problem shares certain similarities with our problem but also exhibits differences.

Adapting the greedy algorithm used in the view selection problem to our problem

has proven cumbersome and impractical, and we have proposed a novel greedy

algorithm that can fully utilize the given memory space. However, a prerequisite

of our proposed greedy algorithm is an accurate estimation of the collision rate of

the hash table, given the number of groups of the relation and the hash table size.

We have derived such a collision rate model and validated its accuracy by both

171

synthetic and real data streams. Next, we have also attacked the space allocation

problem through an in-depth mathematical analysis, and found that configurations

with no phantom or with only one phantom feeding all queries can be solved al-

gebraically (“solvable”), but all other cases cannot (“unsolvable”). Therefore, we

have further proposed heuristics to process unsolvable configurations based on the

analysis of the solvable cases and the partial results we can get from the unsolvable

ones.

Through an extensive experimental study using both synthetic and real data

sets, we have shown that our proposed heuristic results in near optimal configura-

tions (within 15-20% most of the time). Overall, our algorithm always outperforms

the algorithm adapted from the view selection problem, and through maintaining

phantoms, we achieve performance gain more than an order of magnitude.

On nearest neighbor queries, we have observed that many applications can

tolerate an absolute error bound of the answers. Thus we have introduced the

e-approximate k nearest neighbor (ekNN) query, a new type of approximate nearest

neighbor queries that specifies the error bound as an absolute value instead of a

relative one. We have focused our study on this type of queries over data streams

in this thesis. Towards efficient processing of ekNN queries over data streams, we

have first proposed a framework which partitions the data space into regular cells

and maintains in each cell at most G data points. We have proven that processing

kNN queries based on the maintained data points (called “footprints”) for any

k ≤ G can guarantee answers with error less than the length of the diagonal of one

cell. However, implementing this framework in a straightforward manner does not

generate good performance. We have further proposed using space-filling curves

(the Z-curve is used in our study without loss of generality) to order the cells, and

then a B∗-tree to maintain the points which are clustered according to the Z-values

172

of the cells they belong to. The whole scheme, called aDaptive Indexing on Streams

by space-filling Curves (DISC), has several virtues such as efficient maintenance of

data and query processing, and more importantly, it can adapt itself to minimize

memory usage or error through adjusting the order of the Z-curve (that is, size of

the cells).

We have also conducted extensive experiments using both synthetic and real

data sets to study the performance of DISC. DISC outperforms its competitor,

an R∗-tree based implementation, in both memory usage and query processing.

Moreover, its bulk merge cell operation for adjusting the order of the Z-curve is by

far more efficient than the alternatives, which makes the technique feasible for data

stream applications.

5.2 Future work

There are several directions we could extend the work of multiple aggregations.

Currently, our technique only works for traditional aggregate queries such as SUM,

COUNT, AVG, etc. However, there is more interest on holistic aggregates (quan-

tiles and heavy hitters). An immediate question, therefore, is whether we can

process these holistic aggregates via the same idea. Another limitation of our tech-

nique is that it only provides sharing among queries that are grouped in tumbling

windows of the same size. One extension is to apply our techniques to queries that

vary not only in grouping relations, but also time window sizes. Our technique

relies on the two-level query processing architecture of Gigascope. We may also

consider whether it can be applied to more general DSMSs, and be modified to

work in a sliding window query model.

On the DISC technique for ekNN queries, one improvement we could make is to

173

vary the cell sizes for different locations of the data space. Locations with denser

data points could have smaller cells and locations with sparser data points could

have larger cells. By this means, we are able to meet various error requirements of

the user while further reducing space usage.

In terms of practice, we are considering deploying both techniques in a real

DSMS. This raises important research questions at the system level, in terms of

interactions of such algorithms with the current system, and issues related to adap-

tivity and frequency of execution, etc.

BIBLIOGRAPHY

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,

and S. B. Zdonik. The design of the borealis stream processing engine. In

Conference on Innovative Data Systems Research (CIDR), pages 277–289,

Asilomar, USA, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin,

E. F. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker,

N. Tatbul, Y. Xing, R. Yan, and S. B. Zdonik. Aurora: A data stream

management system. In ACM International Conference on Management of

Data (SIGMOD), page 666, San Diego, USA, 2003.

[3] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for ap-

proximate answering of group-by queries. In ACM International Conference

on Management of Data (SIGMOD), pages 487–498, Dallas, USA, 2000.

[4] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join

sizes in limited storage. In ACM SIGACT-SIGMOD-SIGART Symposium

174

175

on Principles of Database Systems (PODS), pages 10–20, Philadephia, USA,

1999.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-

ing the frequency moments. In ACM Symposium on Theory of Computing

(STOC), pages 20–29, Philadephia, USA, 1996.

[6] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosen-

stein, and J. Widom. Stream: The stanford stream data manager. In ACM

International Conference on Management of Data (SIGMOD), page 665, San

Diego, USA, 2003.

[7] A. Arasu, S. Babu, and J. Widom. An abstract semantics and concrete

language for continous queries over streams and relations. Technical report,

Stanford University Database Group, 2002.

[8] A. Arasu and G. Manku. Approximate counts and quantiles over sliding

windows. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS), pages 286–296, Paris, France, 2004.

[9] A. Arasu and J. Widom. Resource sharing in continuous sliding-window

aggregates. In International Conference on Very Large Data Bases (VLDB),

pages 336–347, Toronto, Canada, 2004.

[10] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An op-

timal algorithm for approximate nearest neighbor searching. In ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 573–582, Arlington, USA,

1994.

176

[11] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An opti-

mal algorithm for approximate nearest neighbor searching fixed dimensions.

Journal of ACM, 45(6):891–923, 1998.

[12] R. Avnur and J.M. Hellerstein. Eddies: Continuously adaptive query process-

ing. In ACM International Conference on Management of Data (SIGMOD),

pages 261–272, Dallas, USA, 2000.

[13] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain : Operator schedul-

ing for memory minimization in data stream systems. In ACM International

Conference on Management of Data (SIGMOD), pages 253–264, San Diego,

USA, 2003.

[14] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and

issues in data stream systems. In ACM SIGACT-SIGMOD-SIGART Sympo-

sium on Principles of Database Systems (PODS), pages 1–16, Madison, USA,

2002.

[15] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over

streaming data. In ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 633–634, San Francisco, USA, 2002.

[16] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation

queries over data streams. In International Conference on Data Engineering

(ICDE), pages 350–361, Boston, USA, 2004.

[17] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining vari-

ance and k-medians over data stream windows. In ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS), pages 234–

243, San Diego, USA, 2003.

177

[18] B. Babcock and C. Olston. Distributed top-k monitoring. In ACM Inter-

national Conference on Management of Data (SIGMOD), pages 28–39, San

Diego, USA, 2003.

[19] S. Babu, K. Munagala, J. Widom, and R. Motwani. Adaptive caching for con-

tinuous queries. In International Conference on Data Engineering (ICDE),

pages 118–129, Tokyo, Japan, 2005.

[20] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD

Record, 30(3):109–120, 2001.

[21] A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation. Oxford

Science Publications, 1992.

[22] R. Bayer. The universal B-tree for multidimensional indexing: General con-

cepts. World-Wide Computing and Its Applications 97, pages 10–11, 1997.

[23] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree:

An efficient and robust access method for points and rectangles. In ACM

International Conference on Management of Data (SIGMOD), pages 322–

331, Atlantic City, USA, 1990.

[24] S. Berchtold, C. Böhm, H.V. Jagadish, H.-P. Kriegel, and J. Sander. Inde-

pendent quantization: An index compression technique for high-dimensional

data spaces. In International Conference on Data Engineering (ICDE), pages

577–588, San Diego, USA, 2000.

[25] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An index structure

for high-dimensional data. In International Conference on Very Large Data

Bases (VLDB), pages 28–39, Bombay, India, 1996.

178

[26] M.W. Bern. Approximate closest-point queries in high dimensions. Informa-

tion Processing Letters, 45(2):95–99, 1993.

[27] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.

In International Conference on Mobile Data Management, pages 3–14, Hong

Kong, China, 2001.

[28] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,

M. Stonebraker, N. Tatbul, and S.B. Zdonik. Monitoring streams - a new

class of data management applications. In International Conference on Very

Large Data Bases (VLDB), pages 215–226, Hong Kong, China, 2002.

[29] D. Carney, U. Çetintemel, A. Rasin, S. B. Zdonik, M. Cherniack, and

M. Stonebraker. Operator scheduling in a data stream manager. In In-

ternational Conference on Very Large Data Bases (VLDB), pages 838–849,

Berlin, Germany, 2003.

[30] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-

stein, S. Krishnamurthy W. Hong, S. Madden, V. Raman, F. Reiss, and

M. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain

world. In Conference on Innovative Data Systems Research (CIDR), Asilo-

mar, USA, 2003.

[31] S. Chandrasekaran and M. J. Franklin. Streaming queries over streaming

data. In International Conference on Very Large Data Bases (VLDB), pages

203–214, Hong Kong, China, 2002.

[32] S. Chandrasekaran and M. J. Franklin. Remembrance of streams past:

Overload-sensitive management of archived streams. In International Con-

179

ference on Very Large Data Bases (VLDB), pages 348–359, Toronto, Canada,

2004.

[33] U. Charkravarthy and J. Minker. Processing multiple queries in database

systems. IEEE Database Engineering Bulletin, 5(3):38–44, 1982.

[34] D. Chatziantoniou, M. O. Akinde, T. Johnson, and S. Kim. The MD-join:

An operator for complex OLAP. In International Conference on Data Engi-

neering (ICDE), pages 524–533, Heidelberg, Germany, 2001.

[35] S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-based

approach for approximate answering of aggregate queries. In ACM Interna-

tional Conference on Management of Data (SIGMOD), pages 295–306, Santa

Barbara, USA, 2001.

[36] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Random sampling for

histogram construction: How much is enough? In ACM International Con-

ference on Management of Data (SIGMOD), pages 436–447, Seattle, USA,

1998.

[37] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random sampling over

joins. In ACM International Conference on Management of Data (SIGMOD),

pages 263–274, Philadelphia, USA, 1999.

[38] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and evaluation of al-

ternative selection placement strategies in optimizing continuous queries. In

International Conference on Data Engineering (ICDE), pages 345–356, San

Jose, USA, 2002.

180

[39] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable contin-

uous query system for internet databases. In ACM International Conference

on Management of Data (SIGMOD), pages 379–390, Dallas, USA, 2000.

[40] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel,

Y. Xing, and S. B. Zdonik. Scalable distributed stream processing. In Con-

ference on Innovative Data Systems Research (CIDR), Asilomar, USA, 2003.

[41] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for

similarity search in metric spaces. In International Conference on Very Large

Data Bases (VLDB), Athens, Greece, 1997.

[42] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data

streams using hamming norms (how to zero in). In International Conference

on Very Large Data Bases (VLDB), pages 335–345, Hong Kong, China, 2002.

[43] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and

D. Srivastava. Holistic UDAFs at streaming speeds. In ACM International

Conference on Management of Data (SIGMOD), pages 35–46, Paris, France,

2004.

[44] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: track-

ing most frequent items dynamically. In ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS), pages 296–306, San

Diego, USA, 2003.

[45] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: a language for

extracting signatures from data streams. In ACM International Conference

on Knowledge Discovery and Data Mining (KDD), pages 9–17, Boston, USA,

2000.

181

[46] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope: A

stream database for network applications. In ACM International Conference

on Management of Data (SIGMOD), pages 647–651, San Diego, USA, 2003.

[47] C. D. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gi-

gascope: high performance network monitoring with an SQL interface. In

ACM International Conference on Management of Data (SIGMOD), page

623, Madison, USA, 2002.

[48] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. The gigascope

stream database. IEEE Data Engineering Bulletin, 26(1):27–32, 2003.

[49] M. Datar and S. Muthukrishnan. Estimating rarity and similarity on data

stream windows. In European Symposium on Algorithms, pages 323–334,

Rome, Italy, 2002.

[50] A. Deligiannakis and N. Roussopoulos. Extended wavelets for multiple mea-

sures. In ACM International Conference on Management of Data (SIGMOD),

pages 229–240, San Diego, USA, 2003.

[51] E. D. Demaine, A. López-Ortiz, and J. Ian Munro. Frequency estimation

of internet packet streams with limited space. In European Symposium on

Algorithms, pages 348–360, Rome, Italy, 2002.

[52] A. Deshpande and J. M. Hellerstein. Lifting the burden of history from

adaptive query processing. In International Conference on Very Large Data

Bases (VLDB), pages 948–959, Toronto, Canada, 2004.

[53] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A

query languagage for XML. http://www.w3.org/TR/NOTE-xml-ql.

182

[54] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex

aggregate queries over data streams. In ACM International Conference on

Management of Data (SIGMOD), pages 61–72, Madison, USA, 2002.

[55] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-based multi-

query processing over data streams. In International Conference on Extending

Database Technology (EDBT), pages 551–568, Heraklion, Greece, 2004.

[56] N. Duffield, C. Lund, and M. Thorup. Learn more, sample less: control

of volume and variance in network measurement. IEEE Transactions on

Information Theory, 51(5):1756–1775, 2005.

[57] M. Dwass. Probability and statistics: an undergraduate course. W. A. Ben-

jamin, 1970.

[58] A. Arasu et al. STREAM: The stanford stream data manager. IEEE Data

Engineering Bulletin, 26(1):19–26, 2003.

[59] F. Fabret et al. Filtering algorithms and implementation for very fast pub-

lish/subscribe. In ACM International Conference on Management of Data

(SIGMOD), pages 115 – 126, Santa Barbara, USA, 2001.

[60] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman.

Computing iceberg queries efficiently. In International Conference on Very

Large Data Bases (VLDB), pages 299–310, New York, USA, 1998.

[61] A. Faradjian, J. Gehrke, and P. Bonnet. GADT: A probability space ADT

for representing and querying the physical world. In International Conference

on Data Engineering (ICDE), pages 201–211, San Jose, USA, 2002.

[62] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approx-

imate L1-difference algorithm for massive data streams. In Symposium on

183

Foundations of Computer Science (FOCS), pages 501–511, New York, USA,

1999.

[63] W. Feller. An introduction to probability theory and its applications, volume I.

John Wiley & Sons, Inc, 1968.

[64] R. F. S. Filho, A. Traina, and C. Faloutsos. Similarity search without tears:

The omni family of all-purpose access methods. In International Conference

on Data Engineering (ICDE), pages 623–630, Heidelberg, Germany, 2001.

[65] S. Finkelstein. Common expression analysis in database applications. In

ACM International Conference on Management of Data (SIGMOD), pages

235–245, Orlando, USA, 1982.

[66] P. Flajolet. Approximate counting: A detailed analysis. BIT, 25(1):113–134,

1985.

[67] P. Flajolet and G. Martin. Probabilistic counting. In Symposium on Foun-

dations of Computer Science (FOCS), pages 76–82, Tucson, USA, 1983.

[68] L. Fu and S. Rajasekaran. Evaluating holistic aggregators efficiently for very

large data sets. VLDB Journal, 13(2):148–161, 2004.

[69] L. Gao and X. S. Wang. Continually evaluating similarity-based pattern

queries on a streaming time series. In ACM International Conference on

Management of Data (SIGMOD), pages 370–381, Madison, USA, 2002.

[70] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates

over continual data streams. In ACM International Conference on Manage-

ment of Data (SIGMOD), pages 13–24, 2001.

184

[71] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and

M. Strauss. Fast, small-space algorithms for approximate histogram mainte-

nance. In ACM Symposium on Theory of Computing (STOC), pages 389–398,

Montreal, Canada, 2002.

[72] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets

on streams: One-pass summaries for approximate aggregate queries. In Inter-

national Conference on Very Large Data Bases (VLDB), pages 79–88, Roma,

Italy, 2001.

[73] J. Goldstein and R. Ramakrishnan. Contrast plots and P-Sphere trees: Space

vs. time in nearest neighbour searches. In International Conference on Very

Large Data Bases (VLDB), pages 429–440, Cairo, Egypt, 2000.

[74] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: a relational

aggregation operator generalizing group-by, cross-tab, and sub-totals. In In-

ternational Conference on Data Engineering (ICDE), pages 152–159, New

Orleans, USA, 1996.

[75] M. Greenwald and S. Khanna. Space-efficient online computation of quan-

tile summaries. In ACM International Conference on Management of Data

(SIGMOD), pages 58–66, Santa Barbara, USA, 2001.

[76] S. Guha and B. Harb. Wavelet synopsis for data streams: Minimizing non-

euclidean error. In ACM International Conference on Knowledge Discovery

and Data Mining (KDD), pages 88–97, Chicago, USA, 2005.

[77] S. Guha, C. Kim, and K. Shim. Xwave: Approximate extended wavelets

for streaming data. In International Conference on Very Large Data Bases

(VLDB), pages 288–299, Toronto, Canada, 2004.

185

[78] S. Guha and N. Koudas. Approximating a data stream for querying and esti-

mation: Algorithms and performance evaluation. In International Conference

on Data Engineering (ICDE), pages 567–576, San Jose, USA, 2002.

[79] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In ACM

Symposium on Theory of Computing (STOC), pages 471–475, Crete, Greece,

2001.

[80] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems,

techniques and applications. IEEE Data Engineering Bulletin, Special Issue

on Materialized Views and Data Warehousing, 18(2):3–18, 1995.

[81] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

ACM International Conference on Management of Data (SIGMOD), pages

47–57, Boston, USA, 1984.

[82] P. A. V. Hall. Optimization of single expressions in a relational data base

system. IBM Journal of Research and Development, 20(3):244–257, 1976.

[83] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently. In ACM International Conference on Management of Data (SIG-

MOD), pages 205–216, Montreal, Canada, 1996.

[84] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hil-

drum, S. Madden, V. Raman, and M. A. Shah. Adaptive query processing:

Technology in evolution. IEEE Data Engineering Bulletin, 23(2):7–18, 2000.

[85] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.

Technical Report 1998-011, Digital Equipment Corporation, System Research

Center, May 1998.

186

[86] J. Hershberger and S. Suri. Adaptive sampling for geometric problems over

data streams. In ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems (PODS), pages 13–18, Paris, France, 2004.

[87] G.R. Hjaltason and H. Samet. Ranking in spatial databases. In Symposium

on Large Spatial Databases (SSD), pages 83–95, Portland, USA, 1995.

[88] Traderbot home page. http://www.traderbot.com.

[89] M. Horton, D. Culler, K. PIster, J. Hill, R. Szewczyk, and A. Woo. Mica,

the commercialization of microsensor motes. Sensors, 19(4):40–48, 2002.

[90] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker, and

S. B. Zdonik. High-availability algorithms for distributed stream processing.

In International Conference on Data Engineering (ICDE), pages 779–790,

Tokyo, Japan, 2005.

[91] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In ACM Symposium on Theory of Computing

(STOC), pages 604–613, Dallas, USA, 1998.

[92] Y. E. Ioannidis and S. Christodoulakis. Optimal histograms for limiting

worst-case error propagation in the size of join results. ACM Transactions

on Database Systems (TODS), 18(4):709–748, 1993.

[93] Y. E. Ioannidis and V. Poosala. Balancing histogram optimality and practi-

cality for query result size estimation. In ACM International Conference on

Management of Data (SIGMOD), pages 233–244, San Jose, USA, 1995.

[94] Y. E. Ioannidis and V. Poosala. Histogram-based solutions to diverse

database estimation problems. IEEE Data Engineering Bulletin, 18(3):10–18,

1995.

187

[95] iPolicy Networks home page. http://www.ipolicynetworks.com.

[96] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,

and T. Suel. Optimal histograms with quality guarantees. In International

Conference on Very Large Data Bases (VLDB), pages 275–286, New York,

USA, 1998.

[97] H.V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An

adaptive b+-tree based indexing method for nearest neighbor search. ACM

Transactions on Database Systems (TODS), 30(2):364–397, 2005.

[98] T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Sampling algorithms in a

stream operator. In ACM International Conference on Management of Data

(SIGMOD), pages 1–12, Baltimore, USA, 2005.

[99] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spatscheck. A heart-

beat mechanism and its application in Gigascope. In International Conference

on Very Large Data Bases (VLDB), pages 1079–1088, Trondheim, Norway,

2005.

[100] N. Katayama and S. Satoh. The SR-tree: an index structure for high-

dimensional nearest neighbor queries. In ACM International Conference on

Management of Data (SIGMOD), pages 369–380, Tucson, USA, 1997.

[101] D. E. Knuth. The Art of Computer Programming, Volume 3. Addison Wesley,

2002.

[102] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor

aggregates over data streams. In International Conference on Very Large

Data Bases (VLDB), pages 814–825, Hong Kong, China, 2002.

188

[103] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang. Approximate NN queries on

streams with guaranteed error/performance bounds. In International Con-

ference on Very Large Data Bases (VLDB), pages 804–815, Toronto, Canada,

2004.

[104] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Madden, F. Reiss, and M. A. Shah.

TelegraphCQ: An architectural status report. IEEE Data Engineering Bul-

letin, 26(1):11–18, 2003.

[105] S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein, and G. Jacobson. The

case for precision sharing. In International Conference on Very Large Data

Bases (VLDB), pages 972–986, Toronto, Canada, 2004.

[106] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate

nearest neighbor in high dimensional spaces. In ACM Symposium on Theory

of Computing (STOC), pages 614–623, Dallas, USA, 1998.

[107] Per-Ake Larson and H. Z. Yang. Computing queries from derived relations. In

International Conference on Very Large Data Bases (VLDB), pages 259–269,

Stockholm, Sweden, 1985.

[108] C. Li, E. Y. Chang, H. Garcia-Molina, and G. Wiederhold. Clustering for

approximate similarity search in high-dimensional spaces. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 14(4):792–808, 2002.

[109] L. Liu, W. Han, D. Buttler, C. Pu, and W. Tang. An XML-based wrap-

per generator for web information extraction. In ACM International Con-

ference on Management of Data (SIGMOD), pages 540–543, Philadelphia,

USA, 1999.

189

[110] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled wrapper construction

system for web information sources. In International Conference on Data

Engineering (ICDE), pages 611–621, San Diego, USA, 2000.

[111] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven

information delivery. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 11(4):610–628, 1999.

[112] L. Liu, C. Pu, W. Tang, D. Buttler, J. Biggs, T. Zhou, P. Benninghoff,

W. Han, and F. Yu. CQ: A personalized update monitoring toolkit. In

ACM International Conference on Management of Data (SIGMOD), pages

547–549, Seattle, USA, 1998.

[113] S. Madden and M. J. Franklin. Fjording the stream: An architecture for

queries over streaming sensor data. In International Conference on Data

Engineering (ICDE), pages 555–566, San Jose, USA, 2002.

[114] S. Madden, M.A. Shah, J.M. Hellerstein, and V. Raman. Continuously adap-

tive continuous queries over streams. In ACM International Conference on

Management of Data (SIGMOD), pages 49–60, Madison, USA, 2002.

[115] G. Manku and R. Motwani. Approximate frequency counts over data streams.

In International Conference on Very Large Data Bases (VLDB), pages 346–

357, Hong Kong, China, 2002.

[116] G. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and

other quantiles in one pass and with limited memory. In ACM Interna-

tional Conference on Management of Data (SIGMOD), pages 426–435, Seat-

tle, USA, 1998.

190

[117] G. Singh Manku, S. Rajagopalan, and B. G. Lindsay. Random sampling tech-

niques for space efficient online computation of order statistics of large data

sets. In ACM International Conference on Management of Data (SIGMOD),

pages 251–262, Philadelphia, USA, 1999.

[118] Y. Matias, J. Vitter, and M. Wang. Dynamic maintenance of wavelet-based

histograms. In International Conference on Very Large Data Bases (VLDB),

pages 101–110, Cairo, Egypt, 2000.

[119] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet denial of service

: attack and defense mechanisms. Prentice Hall, 2005.

[120] R. Morris. Counting large numbers of events in small registers. Communica-

tions of the ACM, 21(10):840–842, 1978.

[121] R. Motwani and D. Thomas. Caching queues in memory buffers. In ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 541–549, New Or-

leans, USA, 2004.

[122] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Singh

Manku, C. Olston, J. Rosenstein, and R. Varma. Query processing, approxi-

mation, and resource management in a data stream management system. In

Conference on Innovative Data Systems Research (CIDR), Asilomar, USA,

2003.

[123] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis,

J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy, J. Shanmu-

gasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson,

A. Gupta, and R. Chen. The niagara internet query system. IEEE Data

Engineering Bulletin, 24(2):27–33, 2001.

191

[124] S. Northcutt, M. Cooper, M. Fearnow, and K. Frederick. Intrusion signatures

and analysis. New Riders, 2001.

[125] S. Northcutt and J. Novak. Network intrusion detection : an analyst’s hand-

book. New Riders, 2000.

[126] J. A. Orenstein and T. H. Merrett. A class of data structures for associative

searching. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems (PODS), pages 181–190, Waterloo, Canada, 1984.

[127] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, hands-off stream

mining. In International Conference on Very Large Data Bases (VLDB),

pages 560–571, Berlin, Germany, 2003.

[128] P.Gibbons. Distinct sampling for highly-accurate answers to distinct values

queries and event reports. In International Conference on Very Large Data

Bases (VLDB), pages 541–550, Roma, Italy, 2001.

[129] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of

tuples satisfying a condition. In ACM International Conference on Manage-

ment of Data (SIGMOD), pages 256–276, Boston, USA, 1984.

[130] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved his-

tograms for selectivity estimation of range predicates. In ACM International

Conference on Management of Data (SIGMOD), pages 294–305, Montreal,

Canada, 1996.

[131] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state modules for

adaptive query processing. In International Conference on Data Engineering

(ICDE), pages 353–364, Bangalore, India, 2003.

192

[132] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance

and integrity constraint checking: Trading space for time. In ACM Inter-

national Conference on Management of Data (SIGMOD), pages 447–458,

Montreal, Canada, 1996.

[133] N. Roussopoulos. View indexing in relational databases. ACM Transactions

on Database Systems (TODS), 7(2):256–290, 1982.

[134] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In

ACM International Conference on Management of Data (SIGMOD), pages

71–79, San Jose, USA, 1995.

[135] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: an

index structure for high-dimensional spaces using relative approximation. In

International Conference on Very Large Data Bases (VLDB), pages 516–526,

Cairo, Egypt, 2000.

[136] T. Sellis. Multiple query optimization. ACM Transactions on Database Sys-

tems (TODS), 13(1):23–52, 1998.

[137] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux:

An adaptive partitioning operator for continuous query systems. In Inter-

national Conference on Data Engineering (ICDE), pages 25–36, Bangalore,

India, 2003.

[138] A. Siegel. On universal classes of fast high performance hash functions, their

time-space tradeoff, and their applications. In Symposium on Foundations

of Computer Science (FOCS), pages 20–25, Research Triangle Park, North

Carolina, USA, 1989.

[139] The JPEG 2000 standard. http://www.jpeg.org/jpeg2000/index.html.

193

[140] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases

of network traffic. In USENIX Technical Conference, New Orleans, USA,

1998.

[141] FAQ: Network Intrusion Detection Systems. http://www.ticm.com/kb/faq/.

[142] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker.

Load shedding in a data stream manager. In International Conference on

Very Large Data Bases (VLDB), pages 309–320, Berlin, Germany, 2003.

[143] W.-G. Teng, M.-S. Chen, and P.S. Yu. A regression-based temporal pattern

mining scheme for data streams. In International Conference on Very Large

Data Bases (VLDB), pages 93–104, Berlin, Germany, 2003.

[144] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[145] J. Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-

matical Software (TOMS), 11(1):37–57, 1985.

[146] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In Interna-

tional Conference on Very Large Data Bases (VLDB), pages 194–205, New

York, USA, 1998.

[147] K.-Y. Whang, B. T. Vander-Zanden, and H.M. Taylor. A linear-time proba-

bilistic counting algorithm for database applications. ACM Transactions on

Database Systems (TODS), 15(2):208–229, 1990.

[148] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Interna-

tional Conference on Data Engineering (ICDE), pages 516–523, New Orleans,

USA, 1996.

194

[149] E. Wong and K. Youssefi. Decompositiona strategy for query processing.

ACM Transactions on Database Systems (TODS), 1(3):223–241, 1976.

[150] Z. Xiang, K. Ramchandran, M. T. Orchard, and Y. Q. Zhang. A comparative

study of dct- and wavelet-based image coding. IEEE Transactions on Circuits

and Systems for Video Technology, 9(5):692C695, 1999.

[151] Y. Xing, S. B. Zdonik, and J.-H. Hwang. Dynamic load distribution in the

borealis stream processor. In International Conference on Data Engineering

(ICDE), pages 791–802, Tokyo, Japan, 2005.

[152] Y. Yao and J. Gehrke. The Cougar approach to in-network query processing

in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

[153] Y. Yao and J. Gehrke. Query processing in sensor networks. In Conference

on Innovative Data Systems Research (CIDR), Asilomar, USA, 2003.

[154] C. Yu, B.C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the distance:

An efficient method to knn processing. In International Conference on Very

Large Data Bases (VLDB), pages 421–430, Roma, Italy, 2001.

[155] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggregations

over data streams. In ACM International Conference on Management of Data

(SIGMOD), pages 299–310, Baltimore, USA, 2005.

