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ABSTRACT

Kernel smoothing provides a simple way of finding structures in data sets without

the imposition of a parametric model, for example, nonparametric regression and density

estimates. However, in many data-intensive applications, the data set could be large. Thus,

evaluating a kernel density estimate or kernel regression over the data set directly can be

prohibitively expensive in big data. This dissertation is working on how to efficiently find

a smaller data set that can approximate the original data set with a theoretical guarantee in

the kernel smoothing setting and how to extend it to more general smooth range spaces.

For kernel density estimates, we propose randomized and deterministic algorithms

with quality guarantees that are orders of magnitude more efficient than previous algo-

rithms, which do not require knowledge of the kernel or its bandwidth parameter and

are easily parallelizable. Our algorithms are applicable to any large-scale data processing

framework.

We then further investigate how to measure the error between two kernel density

estimates, which is usually measured either in L1 or L2 error. In this dissertation, we

investigate the challenges in using a stronger error, L• (or worst case) error. We present

efficient solutions for how to estimate the L• error and how to choose the bandwidth

parameter for a kernel density estimate built on a subsample of a large data set.

We next extend smoothed versions of geometric range spaces from kernel range spaces

to more general types of ranges, so that an element of the ground set can be contained in

a range with a non-binary value in [0, 1]. We investigate the approximation of these range

spaces through #-nets and #-samples.

Finally, we study coresets algorithms for kernel regression. The size of the coresets are

independent of the size of the data set, rather they only depend on the error guarantee, and

in some cases the size of domain and amount of smoothing. We evaluate our methods on

very large time series and spatial data, demonstrate that they can be constructed extremely

efficiently, and allow for great computational gains.
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CHAPTER 1

INTRODUCTION

1.1 Kernel Density Estimates and Kernel Regression
A kernel density estimate (KDE) is a statistically-sound method to estimate a con-

tinuous distribution from a finite set of points. This is an increasingly common task in

many areas, such as outlier detection [20, 21], human motion tracking [17], financial data

modeling [13], geometric inference [106] and anomaly detection [120]. In many scientific

computing and data-intensive applications, the input data set P is a finite number of

observations or measurements made for some real-world phenomena that can be best

described by some random variable V with an unknown probability distribution function

(pdf) f .

Given a data set P of size n consisting of values from a domain M, a kernel density

estimate is a function fP that for any input in M (not necessarily in P) describes the density

at that location. It is a fundamental data smoothing problem where inferences about the

population are made, based on a finite data sample. That said, we view P as a finite,

independent and identically distributed (iid) data sample drawn from a random variable

V that is governed by an unknown distribution f . We are interested in estimating the

shape of this function f . The kernel density estimate fP approximates the density of f at

any possible input point x 2M [100,116]. Figure 1.1 visualizes the kernel density estimate

(KDE) in both 1 and 2 dimensions, using real data sets (a web trace in 1D and a spatial

data set from openstreetmap in 2D). Black dots represent a subset of points from P, and

the blue curves or regions represent the KDE constructed from P.

We restrict the kernels Ks : Rd ⇥Rd ! R+ that satisfy the following properties:

(K1) symmetric and shift invariance: There exists a function k : R+ ! R+ such that for

any p, x 2 Rd, we have K(p, x) = K(x, p) = k(kp� xk), where kp� xk denotes the

`2 distance between p and x.
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(a) KDE in 1D. (b) KDE in 2D.

Figure 1.1. Kernel density estimate (KDE).

(K2) monotonicity: For z < z0 then k(z) > k(z0).

In addition to the above properties of the kernels, it is convenient to enforce one of two

other properties. A normalized kernel satisfies

Z

x2Rd
Ks(p, x)dx = 1, (1.1)

so that the kernel and the kernel density estimate are probability distributions. A unit

kernel satisfies

Ks(x, x) = 1 so that 0  Ks(p, x)  1, (1.2)

which ensures that KDEP(x)  1. Unlike normalized kernel, the changing of bandwidth

does not affect the coefficient of kernel function, so Ks(p, x) = k(kp � xk/s). In this

dissertation, we will enforce the kernel to be either normalized kernel or unit kernel in

different chapters.

Examples of kernels include (described here for Rd):

• Gaussian Kernel: Ks(p, x) = 1
sd(2p)d/2 exp(�kx� pk2/s2),

• Laplacian Kernel: Ks(p, x) = 1
sdcdd! exp(�kx� pk/s),

• Triangular Kernel: Ks(p, x) = d
sdcd�1

max{0, 1� kx� pk/s},

• Epanechnikov Kernel: Ks(p, x) = d+2
2sdcd

max{0, 1� kx� pk2/s2}, or

• Ball Kernel: Ks(p, x) = { 1
sdcd�1

if kp� xk  s; o.w. 0},
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where cd = rdp
d
2

G( d
2 +1)

is the volume of the unit d-dimensional sphere. These are shown as

normalized kernels; to make them unit kernels, the coefficient is simply set to 1.

We use the Gaussian kernel by default throughout the dissertation (the most widely

used kernel in the literature), although some scenarios favor the Epanechnikov kernel [122,

126]. All kernel definitions have a s term to controls the amount of data smoothing. Choos-

ing the appropriate s is an important problem and there is a large amount of literature on

doing so [77, 113, 132]. In Chapter 3, we will investigate how to choose the bandwidth

parameter for a kernel density estimate built on a subsample of a large data set.

• Kernel density estimate: Given such a kernel Ks and a point set P in d-dimensions, a

kernel density estimate is formally defined as a function KDEP that for any query x 2 Rd

evaluates as

KDEP(x) =
1
|P| Â

p2P
Ks(p, x). (1.3)

• Kernel distance: The kernel distance [52, 70, 78, 105] is a metric [95, 127] between two

point sets P, Q (as long as the kernel used is characteristic [127], a slight restriction of

being positive definite [6, 140], this includes the Gaussian and Laplace kernels). Define

a similarity between the two point sets as

k(P, Q) =
1
|P|

1
|Q| Â

p2P
Â

q2Q
Ks(p, q). (1.4)

Then the kernel distance between two point sets is defined as

DK(P, Q) =
q

k(P, P) + k(Q, Q)� 2k(P, Q). (1.5)

When we let point set Q be a single point x, then k(P, x) = KDEP(x).

If Ks is positive definite, it is said to have the reproducing property [6,140]. This implies

that Ks(p, x) is an inner product in some reproducing kernel Hilbert space (RKHS) HK.

Specifically, there is a lifting map f : Rd ! HK so that Ks(p, x) = hf(p), f(x)iHK , and

moreover, the entire set P can be represented as F(P) = Âp2P f(p), which is a single

element of HK and has a norm kF(P)kHK =
p

k(P, P). A single point x 2 Rd also has a

norm kf(x)kHK =
p

K(x, x) in this space.

• Kernel regression: Kernel regression [96, 142] is a powerful non-parametric technique

for understanding scalar-valued 1-dimensional (and higher dimensional) data sets. It
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has distinct advantages over linear or polynomial regression techniques in that it does

not impose a possibly restrictive or over-fitting model on the data. Rather it uses a

kernel similarity function to describe a smooth weighted average over the points. This

allows the predicted function to locally adapt to the values of the data. These advantages

have led to wide use of the kernel regression to predict, model, and visualize data from

stocks [144] to weather monitoring [124] to quantified self [131].

We now consider an input data set P ⇢ Rd+1. We decompose this into the first d

explanatory coordinates denoted Px ⇢ Rd and the last dependent one Py ⇢ R. Most

examples in this dissertation we discuss have d = 1 where it is common to think of these

data items Px as times, but many approaches generalize for larger values of d. Then each

data item p 2 P is also associated with a scalar data value py (the set of these comprises Py).

In this setting, Px is the same as P in the previous KDE definition. We will only consider

P ⇢ Rd+1 in the circumstance of kernel regression, mainly in Chapter 5, and keep P ⇢ Rd

in all the other chapters.

With the new setting, for any query point q 2 Rd,

KDEP(q) =
1
|P| Â

p2P
K(px, q). (1.6)

We say a weighted kernel density estimate (WKDE) replaces this with a weighted sum

WKDEP(q) =
1
|P| Â

p2P
K(px, q)py. (1.7)

Finally, the (Nadaraya-Watson) kernel regression function is defined for a query point q 2 Rd

as

KRP(q) =
Âp2P K(px, q)py

Âp2P K(px, q)
=

WKDEP(q)
KDEP(q)

. (1.8)

This maps each domain point in Rd to an estimate in the space R of scalar values;

it takes a weighted average (defined by kernel similarity) of the scalar values nearby.

Figure 1.2 visualizes the kernel regression and its original data of a synthetic data set with

bandwidth 50 and 200.

There are various other forms of kernel regression [112], but in this dissertation we

focus on the Nadaraya-Watson variety [96,142] as it has an important, long history and has

been widely used in areas such as image processing [129] and economics [12]. Moreover,
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Figure 1.2. Kernel regression of synthetic data with bandwidth 50 (left) and 200 (right).

since it does not try to pass through every data point, it is the most robust to outliers that

are pervasive in large data, which often by necessity cannot be carefully filtered.

1.2 Coresets
A coreset is a reduced data set that can be used as proxy for the full data set; the same

algorithm can be run on the coreset as the full data set, and the result on the coreset

approximates that on the full data set. It is often required or desired that the coreset is

a subset of the original data set, but in some cases, this is relaxed. A weighted coreset is

one where each point is assigned a weight, perhaps different than it had in the original

set. A strong coreset provides error guarantees for all queries. #-net and #-sample are two

examples of coresets defined in range space.

• Range space: A range space (P,A) consists of a ground set P and a family of ranges A of

subsets from P. In this dissertation, we consider ranges that are defined geometrically,

for instance when P is a point set and A are all subsets defined by a ball, that is any

subset of P which coincides with P \ B for any ball B. A can also be all subsets defined

by an axis-aligned rectangle or a half space (Figure 1.3(a)).

• #-approximation (or #-sample): Given a range space (P,A), it is a subset Q such that
�

�

�

|A\P|
|P| �

|A\Q|
|Q|

�

�

�

 # for any A 2 A.

• #-net: Given a range space (P,A), it is a subset Q ⇢ P, so for any A 2 A such that

|A \ P| � #|P|, then A \Q 6= ∆.

For instance, the data set P in Figure 1.3(b) may be a point set describing the location of
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(a) Different types of ranges.

A

(b) An example of #-sample, where the black
points are original data points and the set of red
points is an #-sample.

Figure 1.3. Range Spaces and an example of #-sample.

twitter users in Utah, and the family of subsets A may be all subsets of twitter users within

a fixed radius from a query point. Such a subset is shaded in green in Figure 1.3(a). An

#-sample is a subset Q ⇢ P of the ground set such that for any range A 2 A , the fraction

of points from Q in A is different from the fraction of points from P in A by at most #.

Thus if the set of red points in Figure 1.3(b) is an #-sample of twitter users in Utah, and we

ask what fraction of the twitter users in Utah are within 20 miles of Salt Lake City, we can

give an answer within # error using the set of red points. Furthermore, the same number

of samples would work for the entire state of Utah with the same guarantees and for any

query disk (e.g., the fraction of Utah twitter users within 40 miles of Provo).

For the case of #-net, P is still the point set describing the location of twitter users in

Utah. Now we care about large enough events with many tweets, the area A such that

|A \ P| � #|P|. Thus Q is a subset of twitter users that witness every large enough event.

1.3 Kernel Range Spaces and KDE Coreset
By smoothing out the boundary of the binary ranges, we introduce the smoother family

of range spaces called kernel range spaces to deal with noisy data. Thus we cannot simply

say a point is in a range or not; instead, we assign a value between [0, 1] to a point in a

range.
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• Kernel range space: A kernel range space [78] is an extension of the combinational

concept of a range space. (P,K) defined by a point set P ⇢ Rd and a set of kernels

K(x, ·) represented by a fixed kernel K and an arbitrary center point x 2 Rd.

In the binary range space, for a range A centered at x, the fraction of the points in A

is represented by |A\P|
|P| . In the kernel range space, it turns to be 1

|P| Âp2P Ks(p, x), where

Ks(x, ·) is the corresponding range centered at x with bandwidth s, which is exactly the

definition of KDEP(x). Thus the definition of #-sample of kernel density estimates (KDE

coreset) is the same as #-sample in kernel range spaces.

• #-sample in kernel range spaces (#-sample of kernel density estimates) [103]: Given a

kernel range space (P,K), it is a subset Q ⇢ P, such that

max
x2Rd

|KDEP(x)� KDEQ(x)| = kKDEP � KDEQk•  #, (1.9)

#-sample in kernel range spaces can be very useful in many data-intensive applica-

tions, since evaluating a kernel density estimate over P directly takes O(n), which can be

prohibitively expensive in big data. So #-sample in kernel range spaces gives us another

point set Q, such that KDEQ approximates KDEP well. The error is guaranteed within

user-defined parameter #.

1.4 KDE in Geometric Inference
As we discussed before, kernel density estimates can be used in many areas. Here we

give an example to show its power in geometric inference and topological data analysis.

Geometry and topology have become essential tools in modern data analysis: geom-

etry to handle spatial noise and topology to identify the core structure. Topological data

analysis (TDA) has found applications spanning protein structure analysis [46,86] to heart

modeling [51] to leaf science [110], and is the central tool of identifying quantities like

connectedness, cyclic structure and intersections at various scales. Yet it can suffer from

spatial noise in data, particularly outliers.

Given an unknown compact set S ⇢ Rd and a finite point cloud P ⇢ Rd that comes

from S under some process, geometric inference aims to recover topological and geometric

properties of S from P. The offset-based (and more generally, the distance function-based)

approach for geometric inference reconstructs a geometric and topological approximation

of S by offsets from P (e.g., [23–27]).
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Kernel density estimates were brought to geometric inference and TDA by paper [106];

as a coauthor of this paper, we first analyzed the stability of kernel density estimates and

the kernel distance in the context of geometric inference. We accomplished this by showing

that a similar set of properties hold for the kernel distance with respect to a measure µ, (in

place of distance to a measure dCCM
µ,m0

[25]), defined as

dK
µ (x) = DK(µ, x) =

q

k(µ, µ) + k(x, x)� 2k(µ, x). (1.10)

It satisfies all the distance-like properties and there are further advantages of the kernel

distance. (i) Its sublevel sets conveniently map to the superlevel sets of a kernel density

estimate. (ii) It is Lipschitz with respect to the smoothing parameter s when the input x

is fixed. (iii) As s tends to • for any two probability measures µ, n, the kernel distance

is bounded by the Wasserstein distance: lims!• DK(µ, n)  W2(µ, n). Here W2 is the

Wasserstein distance [137]: W2(µ, n) = infp2P(µ,n)

⇣

R

Rd⇥Rd ||x� y||2dp(x, y)
⌘1/2

between

two measures, where dp(x, y) measures the amount of mass transferred from location x to

location y and p 2 P(µ, n) is a transference plan [137].

Most importantly, it has a small coreset representation, which allows for sparse repre-

sentation and efficient, scalable computation. In particular, an #-sample in kernel range

spaces for a measure µ: Q of µ is a finite point set whose size only depends on # > 0,

such that maxx2Rd |KDEµ(x)� KDEQ(x)| = kKDEµ � KDEQk•  #. These coresets preserve

inference results, such as shapes, Betti numbers and persistence diagrams. Persistence

diagrams summarize the persistence of all homological features, such as connected com-

ponents, tunnels, voids, etc. of a topological space in a single diagram. The birth and death

times are the y- and x-coordinates of the persistence diagram, thus significant features

with high persistence are far from the diagonal. To calculate the persistent homology of

a space, the space should first be represented as a simplicial complex, which is very time

consuming. While there exist simplicial sparsification approaches, which reduce the size

akin to coresets, they still involve the complicated process of building a simplicial complex

of the full data set. Using KDE coresets is the first simplification result that preserves

topological features without constructing the simplicial complex on the full data set, and

thus can speed up TDA for large data significantly. Figure 1.4 give us such an example

with persistence diagrams generated by TDA package for R [49].



9

KDE Diagram

 

 

0 1 2 3

0
1

2
3

Death

B
irt
h

Distance Function Diagram

 

 

0.00 0.01 0.02 0.03

0.
00

0.
01

0.
02

0.
03

Birth

D
ea
th

KDE Diagram

 

 

0 1 2 3 4

0
1

2
3

4

Death

B
irt
h

Kernel Distance Diagram

 

 

0.96 0.97 0.98 0.99 1.00 1.01

0.
96

0.
97

0.
98

0.
99

1.
00

1.
01

Birth

D
ea
th

Figure 1.4. Example with 10,000 points in [0, 1]2 generated on a circle or line with
N(0, 0.005) noise; 25% of points are uniform background noise. The generating function
is reconstructed with KDE with s = 0.05 (upper left), and its persistence diagram based
on the superlevel set filtration is shown (upper middle). A coreset [149] of the same data
set with only 1,384 points (lower left) and persistence diagram (lower middle) are shown,
again using KDE. This associated confidence interval contains the dimension 1 homology
features (red triangles) suggesting they are noise; this is because it models data as iid –
but the coreset data is not iid, it subsamples more intelligently. We also show persistence
diagrams of the original data based on the sublevel set filtration of the standard distance
function (upper right, with no useful features due to noise) and the kernel distance (lower
right).

1.5 Outline
This dissertation improves on the construction of coresets in kernel density estimates

and kernel regression in several ways relevant to improve the efficiency and effectiveness.

It builds several algorithmic techniques that can be used for coreset construction problem

in kernel smoothing setting. It also illustrates these techniques on several large data sets.

Chapter 2 describes randomized and deterministic algorithms for computing #-samples

for kernel density estimates with quality guarantees that are orders of magnitude more

efficient than previous algorithms. These algorithms do not require knowledge of the

kernel or its bandwidth parameter and are easily parallelizable. We demonstrate how to
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implement our ideas in a centralized setting and in MapReduce, although our algorithms

are applicable to any large-scale data processing framework. Extensive experiments on

large real data sets demonstrate the quality, efficiency and scalability of our techniques.

This chapter is mainly based on [149] with Jeffery Jestes, Jeff M. Phillips and Feifei Li.

Chapter 3 is an extension of the problem described in Chapter 1, which investigates

the challenges in using L• (or worst case) error, a stronger measure than L1 or L2. This

chapter presents efficient solutions to two linked challenges: how to evaluate the L• error

between two kernel density estimates and how to choose the bandwidth parameter for

a kernel density estimate built on a subsample of a large data set. This chapter is based

on [150] with Jeff M. Phillips.

Chapter 4 extends smoothed versions of geometric range spaces to more general types

of ranges and then considers approximation of these range spaces through #-nets and #-

samples. We characterize when size bounds for #-samples on kernels can be extended to

these more general smoothed range spaces. We also describe new generalizations for #-nets

to these range spaces and show when results from binary range spaces can carry over to

these smoothed ones. This chapter is based on [107] with Jeff M. Phillips.

Chapter 5 describes coresets for kernel regression. Kernel regression is an essential and

ubiquitous tool for non-parametric data analysis, particularly popular among time series

and spatial data. The size of the coresets for kernel regression is also independent of the

raw number of data points, rather they only depend on the error guarantee, and in some

cases the size of domain and amount of smoothing. We evaluate our methods on very

large time series and spatial data, and demonstrate that they incur negligible error, can be

constructed extremely efficiently and allow for great computational gains. This chapter is

based on [151] with Jeff M. Phillips.

Chapter 6 concludes the dissertation by providing some applications and future direc-

tions.



CHAPTER 2

EFFICIENT CORESETS FOR KERNEL DENSITY

ESTIMATES

2.1 Background and Related Work
Around the 1980s, kernel density estimates became the defacto way in statistics to

represent a continuous distribution from a discrete point set [126], with the study initiated

much earlier [116]. However, this work often implied brute force (O(n) time) solutions to

most queries.

The problem of evaluating kernel density estimates is a central problem in statistical

physics and numerical analysis. These problems are often posed as n-body simulations

where the force-interactions between all pairs of points need to be calculated [4], and the

pairwise force is up to a constant described by the Gaussian kernel. This has resulted

in many indexing type techniques that up to constant precisions can evaluate the kernel

density estimate at all n points in roughly O(n) time. These techniques are sometimes

called fast multipole methods [19], and in practice these are typically implemented as quad

trees that calculate the distance to roots of subtrees instead of all pairs when the distance

becomes far enough. Numerical approximation techniques called the (Improved) Fast

Gauss Transform (IFGT) [56,114,145,146] can further improve these approaches. However,

the IFGT approach (in general fast multipole methods) is based on heuristics and does not

offer formal theoretical guarantees on the approximation-time trade-off.

In order to have a formal theoretical guarantee to derive an (#, d)-approximation, ran-

dom sampling is a baseline method, but it requires O( 1
#2 log 1

d ) samples to be included in

Q, which could lead to expensive query evaluations, especially for small # and/or d values.

A recent technique using discrepancy theory [103] creates a small representation of a

kernel density estimate (smaller than the random sampling approach) while still bound-

ing the `• error. It works by creating a min-cost matching of points in P; that is, P is

decomposed into |P|/2 pairs so that the sum over all distances between paired points is
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minimized. Then it randomly removes one point from each pair, reducing the size of P by

half. This process is repeated until either the desired size subset or the tolerable error level

is reached. However, computing the min-cost matching [48] is expensive, so this approach

is only of theoretical interest and not directly feasible for large data. Yet this will serve as

the basis for a family of our proposed algorithms.

A powerful type of kernel is a reproducing kernel [6, 101] (an example is the Gaussian

kernel) that has the property that K(p, q) = hp, qiHK ; that is, the similarity between objects

p and q defines an inner-product in a reproducing kernel Hilbert space (RKHS) HK. This

inner-product structure (the so-called “kernel trick”) has led to many powerful techniques

in machine learning; see [119, 125] and references therein. Most of these techniques are

not specifically interested in the kernel density estimate; however, the RKHS offers the

property that a single element of this space essentially represents the entire kernel density

estimate. Motivated by the task of constructing samples from Markov random fields, Chen

et al. [30] introduced a technique called kernel herding suitable for characteristic kernels

(including Gaussian and Laplace kernels). Bach et al. [7] showed that this algorithm can

be interpreted under the Frank-Wolfe framework [33]. Harvey and Samadi [68] further

revisited kernel herding in the context of a general mean approximation problem in Rd0 .

That is, consider a set P0 of n points in Rd0 , find a subset Q0 ⇢ P0 so that kP0 � Q0k  #,

where P0 and Q0 are the Euclidean averages of P0 and Q0, respectively.

Kernel density estimates have been used in the database and data mining community

for density and selectivity estimations, e.g., [61, 147]. However, the focus in these works

is how to use kernel density estimates for approximating range queries and performing

selectivity estimation, rather than computing approximate kernel density estimates for

fast evaluations. When the end-objective is to use a kernel density estimate to do density

or selectivity estimation, one may also use histograms [60, 75, 81, 109] or range queries

[54, 55, 71, 139] to achieve similar goals, but these do not have the same smoothness and

statistical properties of kernel density estimates [126]. Nevertheless, the focus of this work

is on computing approximate kernel density estimates that enable fast query evaluations,

rather than exploring how to use kernel density estimates in different application scenarios

(which is a well-explored topic in the literature).
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2.2 Warm-up: One Dimension
Efficient construction of approximate kernel density estimates in one dimension is

fairly straightforward. However, it is still worth investigating these procedures in more

detail since to our knowledge, this has not been done at truly large scale before, and the

techniques developed will be useful in understanding the higher dimensional version.

• Baseline method: random sampling (RS). A baseline method for constructing an ap-

proximate kernel density estimate in one dimension is random sampling. It is well

known that [30, 103] if we let Q be a random sample from P of size O((1/#2) log(1/d)),

then with probability at least 1� d, the random sample Q ensures that kKDEP� KDEQk• 

#.

That said, the first technique (RS) follows from this observation directly and just ran-

domly samples O((1/#2) log(1/d)) points from P to construct a set Q. In the centralized

setting, we can employ the one pass reservoir sampling technique [138] to implement RS

efficiently. For large data that is stored in distributed nodes, RS can still be implemented

efficiently using the recent results on generating random samples from distributed streams

[35].

The construction cost is O(n). The approximate KDE has a size O((1/#2) log(1/d)), and

its query cost (to evaluate KDEQ(x) for any input x) is O((1/#2) log(1/d)).

RS can be used as a preprocessing step for any other technique, e.g., for any technique

that constructs a KDE over P, we run that technique over a random sample from P instead.

This may be especially efficient at extremely large scale (where n � 1/#2) and where

sampling can be done in an efficient manner. This may require that we initially sample

a larger set Q than the final output to meet the approximation quality required by other

techniques.

• Grouping selection (GS). A limitation in RS is that it requires a large sample size (some-

times the entire set) in order to guarantee a desired level of accuracy. As a result, its size

and query cost becomes expensive for small # and d.

Hence, we introduce another method, called the grouping selection (GS) method. It

leverages the following lemma, known as the g-perturbation.

Lemma 1. Consider n arbitrary values {g1, g2, . . . , gn} such that kgik  g for each i 2 [n]. Then
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let Q = {q1, q2, . . . , qn} such that qi = pi + gi for all pi 2 P. Then kKDEP � KDEQk•  g/s.

Proof. This follows directly from the (1/s)-Lipschitz condition on kernel K (which states

that the maximum gradient of K is (1/s)), hence perturbing all points by at most g affects

the average by at most g/s.

Using Lemma 1, we can select one point q in every segment ` of length #s from P and

assign a weight to q that is proportional to the number of points from P in `, to construct

an #-sample KDE of P. Specifically, GS is implemented as follows. After sorting P if it is

not already sorted, we sweep points from smallest to largest. When we encounter pi, we

scan until we reach the first pj such that pi + #s < pj. Then we put pi (or the centroid of pi

through pj�1) in Q with weight w(pi) = (j� i)/n. Since Q constructed by GS is weighted,

the evaluation of KDEQ(x) should follow the weighted query evaluation as specified in

equation 1.7.

Theorem 1. The method GS gives an #-sample of kernel density estimate of P.

Proof. The weighted output of GS Q corresponds to a point set Q0 that has w(q) un-

weighted points at the same location of each q 2 Q; then KDEQ = KDEQ0 . We claim that Q0

is an #s-perturbation of P, which implies the theorem.

To see this claim, we consider any set {pi, pi+1, . . . , pj�1} of points that are grouped to a

single point q 2 Q. Since all of these points are within an interval of length at most #s, each

pi+` is perturbed to a distinct point q0i+` 2 Q (at location q) that is at distance gi+`  #s.

GS’s construction cost is O(n) if P is sorted, or O(n log n) otherwise. Its query cost is

O(|Q|), which in the worst case could be |Q| = |P|. And Q may be large depending on

how densely points in P are co-located and the values of # and s. However, GS can be used

as a postprocessing step on top of any other method, such as using GS over the output of

RS. This takes little overhead if the points are already sorted, such as in the output of SS

(see below).

• Sort-selection (SS). Our best method (SS) offers an #-sample of kernel density estimate

using only O( 1
# ) samples in one dimension, a significant improvement over random

sampling. Consider a one-dimensional sorted point set P = {p1, p2, . . . , pn} where pi 
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pi+1 for all i. Let Pj = {pi 2 P | (j� 1)#n < i  j#n} for integer j 2 [1, d1/#e] such that

P = [Pj. Then the coreset Q = {q1, q2, . . . , qd1/#e} such that each qj = pd(j� 1
2 )#ne from P.

With this coreset, it has the following result:

Lemma 2. The method SS gives an #-sample of kernel density estimate of P, such that kKDEP �

KDEQk•  #.

We now can construct the SS method. It simply selects pd(j� 1
2 )#ne from P into Q for

each j 2 [1, d1/#e]. This requires that P is sorted, and this can be done efficiently at

very large scale using external merge sort. However, we can do better. Note that #-

approximate quantiles for d1/#e quantile values are sufficient to construct Q, and we

can use an efficient streaming or distributed algorithm for computing these #-approximate

quantiles [34, 57, 74, 87, 88]. In particular, we only need to find the #n
2 th, 3#n

2 th, 5#n
2 th, . . . ,

(n� #n
2 )th quantile values from P. And it is easy to verify that #-approximations of these

quantiles are sufficient to establish the result in Lemma 2.

Using the #-approximate quantiles, SS has a construction cost of O(n log 1
# ); otherwise

its construction cost is O(n log n). In either case, its size is only O( 1
# ) and its query cost is

also just O( 1
# ).

2.2.1 Efficient Evaluation

Once we have obtained a set Q above so KDEQ approximates KDEP, we need to effi-

ciently answer queries of KDEQ(x) for any x 2 R. The first obvious choice is a brute force

computation (BF) where we directly calculate 1
|Q| Âq2Q K(q, x). This has little overhead and

its cost is obviously O(|Q|). It is most efficient if |Q| is particular small.

A second approach (MP) is to use the one-dimensional variant of multipole methods.

We build a B-tree (or binary tree if Q fits in memory) on Q. Each node v will store the

weight (or count) wv of all nodes in the subtree and the smallest vs and largest vl coordi-

nates of the subtree. We traverse the tree as follows, starting at the root. If x 2 [ws, wl ],

visit each child and return their sum to the parent. If |K(vs, x)� K(vl , x)|  #, then return

wvK((vl � vs)/2, x) to the parent. Else, visit each child and return their sum to the parent.

This approach may improve the query evaluation time in practice, especially when |Q| is

large.
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2.3 Two Dimensions
In R2, we first describe baseline methods from the literature or based on simple ex-

tensions to existing methods. We then introduce our new methods. The first uses a

randomized technique based on matchings, and the second is deterministic and based

on space-filling curves.

2.3.1 Baseline Methods

• Random Sampling (RS). The first baseline (labeled RS) is to simply random sample

a set Q from P. The same bound of O((1/#2) log(1/d)) on the sample size from one

dimension still holds in two-dimensions, although the constant in the big-Oh is likely

larger by a factor of about 2.

• Improved Fast Gauss Transform (IFGT). A class of methods is based on fast multipole

methods [19]. In practice in two dimensions these are implemented as quad trees which

calculate the distance to roots of subtrees instead of all pairs when the distance becomes

far enough. The Improved Fast Gauss Transform (IFGT) [56,114,145,146], is the state-of-

the-art for fast construction and evaluation of approximate kernel density estimates (al-

though only with Gaussian kernels). It improves multipole approaches by first building

a k-center clustering over the data set P, and then just retaining a Hermite expansion of

the kernel density estimates for the points associated with each k-centers. However, the

IFGT method is based on heuristics and does not offer any formal theoretical guarantees

on the approximation-size trade-off. As a result, it involves a number of parameters that

cannot be easily and intuitively set in order to derive a desired level of efficiency and

accuracy tradeoffs.

• Kernel herding (KH). Yet another possible approach is to explore the reproducing kernel

Hilbert space (RKHS). As discussed in Section 2.1, the technique “kernel herding” [7, 30,

68] showed that iteratively and greedily choosing the point p 2 P, which when added

to Q most decreases the quantity kKDEP � KDEQk in RKHS. However, this still takes

O(|Q|n) time to construct |Q| since at each step each point in P \Q needs to be evaluated

to determine how much it will decrease the error.



17

2.3.2 Randomized MergeReduce Algorithm

An interesting theoretical result built on discrepancy [28, 92] theory was recently pro-

posed in [103] for constructing a small set Q so KDEQ approximates KDEP. It extends

a classic method for creating #-approximations of Chazelle and Matousek [29] (see also

[28, 92]), to #-sample of kernel density estimates. These results are mostly of theoretical

interest, the straightforward adaption is highly inefficient. Next we explain and overcome

these inefficiencies.

2.3.2.1 The MergeReduce framework

Our algorithm leverages the framework of Chazelle and Matousek [29] and its gener-

alizations. We first describe our overall framework, and then elaborate the most critical

reduce step in further details. Roughly speaking, our algorithm repeatedly runs a merge-

then-reduce step. Hence, we denote this framework as the MergeReduce algorithm.

Suppose the desired size of the compressed set Q is |Q| = k. The framework proceeds

in three phases: an initialization phase, the combination phase, and the optional clean-up

phase. The first phase is implicit, and the last phase is of theoretical interest only.

In the initialization phase, we arbitrarily decompose P into disjoint sets of size k; call

these P1, P2, . . . , Pn/k. Since this is arbitrary, we can group data that is stored together

into the same partition. This works well for distributed data or streaming data where

consecutively encountered data are put in the same partition.

The combination phase proceeds in log(n/k) rounds. In each round, of the remaining

sets of size k, it arbitrarily pairs them together, which we dub the merge step. For each pair,

say Pi and Pj, it runs a reduce step on the union of 2k points to create a single set of size k. At

a high level, the reduce step has two parts. The first part is what we call a matching operation.

It produces k pairs of points in a certain fashion over the 2k input points. The second part

is trivial: it randomly selects one point from each pair to produce the final output of size k.

The merging operation is the most critical part in a reduce step, and we will elaborate after

presenting the overall MergeReduce framework.

That said, after i rounds of merge and reduce, there are (n/k)/2i sets of size k. This

continues until there is one set remaining. Note that again, the fact that we can pair sets

(Pi and Pj) arbitrarily in a merge step is extremely convenient in a distributed or streaming
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setting.

The clean-up phase is not needed if the combination phase is run as above; see Section

2.3.2.4 for remaining details.

Importantly, we also note that this entire MergeReduce framework can be preceded by

randomly sampling O(1/#2) points from P which are then treated as the input. Then only

log(1/#) merge-reduce rounds will be needed.

• The min-cost matching. The key part of this framework is to construct a matching in a

set of points P. Suppose |P| = n, a matching consists of n
2 pairs of points, and every point

in P belongs to exactly one pair in a matching.

The recent result from [103] implies that one can use the min-cost matching to derive

an #-sample of kernel density estimate. Note that a min-cost matching is a matching so

that the sum of distances between matched points is minimized. Unfortunately, by using

a min-cost matching, the algorithm in [103] is impractical. Here is why.

It is well known that a min-cost matching over n points can be done in O(n3) time

using Edmonds’ Blossom algorithm [48]. This quite complicated algorithm involves non-

regular recursion, and it is clearly not scalable for large data sets. We use the state-of-the-

art implementation [80] as a baseline for the matching operation and label it as Blossom-

MR (MergeReduce with Blossom min-cost matching). This implementation of the Blossom

algorithm requires first calculating K(p, p0) for all O(n2) pairs p, p0 2 P as input, which is

part of the overall cost (which is O(n3)).

There have been theoretical improvements [136] to Edmonds’ algorithm for points in

R2. These algorithms are considerably more complicated than that of Edmonds and no

known efficient implementation exists; most likely the improvements are theoretical in

nature only.

We have the following results concerning the Blossom-MR algorithm, and the Blossom-

MR+RS algorithm that first randomly samples O(1/#2) points.

Theorem 2. For a point set P ⇢ R2 with n points, we can construct Q giving an #-sample of KDE

(with constant probability) in

• O( n
#2 log2 n log 1

# ) time and |Q| = O( 1
# log n

q

log 1
# ) using Blossom-MR, and

• O(n + 1
#4 log3 1

# ) time and |Q| = O( 1
# log1.5 1

# ) using Blossom-MR+RS.
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Lastly, the following greedy algorithm provides a two-approximation to the cost of the

min-cost matching [42]. It finds the closest pair of points in P, matches them, removes them

from P, and repeats. This algorithm can be implemented in O(n2 log n) time as follows.

Calculate all O(n2) pairwise distances and place them in a priority queue. Repeatedly

remove the smallest pair from the queue (in O(log n) time). If both points are still in P,

match them and mark them as no longer in P. We refer to the merge-reduce framework

with this matching algorithm as the Greedy-MR method. Greedy-MR does improve the

running time over Blossom-MR, however, it is still quite expensive and not scalable for

large data. Furthermore, the result produced by Greedy-MR is not known to provide any

approximation guarantees on the kernel density estimate.

2.3.2.2 More Efficient Reduce Step

The Blossom-MR algorithm and its heuristic variant Greedy-MR are too expensive to

be useful for large data. Thus, we design a much more efficient matching operation, while

still ensuring an #-sample of kernel density estimate.

For any matching M, we produce an edge map EM of that matching M as EM = {e(p, q) |

(p, q) 2 M} where e(p, q) is an undirected edge connecting p and q. Given a disk B, for

e(p, q) 2 EM define e(p, q) \ B as follows.

• If both p and q are not covered by B, e(p, q) \ B = ∆.

• If both p and q are covered by B, e(p, q) \ B = e(p, q).

• If either p or q is covered by B but not both. Suppose p is covered by B, and e(p, q)

intersects the boundary of B at a point s, e(p, q) \ B = e(p, s).

Then, we define EM \ B as:

EM \ B = {e(p, q) \ B | e(p, q) 2 Em}. (2.1)

An example of EM \ B is shown in Figure 2.1. Essentially, we only want it to consider

edges with at least one endpoint within B, and only the subset of the edge that is within B.

We observe that in order to produce an #-sample of kernel density estimate, the property

the matching requires is in regards to any unit disk B. Specifically, we want

CM,B = Â
e(p,q)2EM\B

kp� qk2 (2.2)

to be small. Let CM = maxB CM,B.
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Figure 2.1. Intersection between a matching and a disk, solid red lines are included in
EM \ B. Left shows Grid matching and right shows Z-order with every other edge in a
matching.

The result in [103] says if M is the min-cost matching (minimizes Â(p,q)2M kp � qk),

then CM = O(1). But calculating the min-cost matching, both exactly and approximately,

is expensive as we have shown in Section 2.3.2.1.

• The grid matching. Here we present a novel solution which does have a bound on CM

and is efficient, including at very large scales. We progress in rounds until all points are

matched. Starting with i = 0, in round i, we consider a grid Gi on R2 where each grid cell

has edge length l#,i =
p

2s#2i�2. Define cell gr,c 2 Gi as [rl#,i, (r + 1)l#,i]⇥ [cl#,i, (c + 1)l#,i]

for integers r, c. Inside of each cell, match points arbitrarily. Only the unmatched points

(one from any cell with an odd number of points) survive to the next round. Each cell

in Gi+1 is the union of 4 cells from Gi, thus in rounds i > 0, it can have at most 4 points.

We refer to this matching algorithm as Grid; see an example in Figure 2.1. For simpler

analysis, we assume s > #c for some constant c � 1; typically s � # and # < 1, so

this assumption is very mild. Alternatively, if we do not know s ahead of time, we can

recursively divide points that fall in the same grid cell into smaller and smaller levels

until at most two are left in each cell (like a quad tree), and then move back up the

recursion stack only with unmatched points; a careful implementation can be done in

O(n log n) time [65]. Let P0 be unmatched points after round 0, let P0 = P \ P0, and Q
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the final output.

Lemma 3. Let M0(P0) be the matching on P0 in Grid. For each edge (p, q) 2 M0(P0), let P̂ be

where (w.l.o.g.) q is moved to location p. Then P̂ is a #s/2-perturbation of P0.

Proof. Since all points matched in round 0 are in a grid cell of size at most #s
p

2/4, the

point q in any edge is moved at most
p

2 · #s
p

2/4 = #s/2.

Lemma 4. Let M0(P0) be the matching by Grid on P0. Then CM0 = O(log(1/#)) and Grid runs

in O(n log 1
# ) time.

Proof. In each round, there are at most 2 matched pairs per grid cell. Each such pair has

edge length at most
p

2l#,i = s#2i�1, and there are at most (1/s#2i�5/2)2 grid cells that

intersect any unit ball. Thus the total squared-length of all matchings in round i is at

most ((1/s#2i�5/2)2 · (s#2i�1)2 = 2
p

2. After log(1/s#) + 1 rounds, the total length of all

matchings is at most 2
p

2(log(1/s#) + 1), and in any ball, there are at most 4 remaining

unmatched points. The last 4 points can each account for at most a squared-length of

4 within a unit ball B, so the total weight of edges in any unit ball B is at most CM 

2
p

2 log(1/s#) + 19 = O(log(1/#)). Each round takes O(n) time, and we can match points

arbitrarily in O(n) time after the log(1/s#) + 1 rounds.

We observe in most common scenarios CM is close to 1.

With the Grid matching algorithm, we can instantiate the MergeReduce framework to

get a Grid-MR algorithm, or if we first sample a Grid-MR+RS algorithm.

Theorem 3. For a point set P ⇢ R2 with n points, we can construct Q giving an #-sample of KDE

(with constant probability) in

• O(n log 1
# ) time and |Q| = O( 1

# log n log1.5 1
# ) using Grid-MR, and

• O(n + 1
#2 log 1

# ) time and |Q| = O( 1
# log2.5 1

# ) using Grid-MR+RS.

Since Grid takes only O(n log 1
# ) time, the benefit of the initialization phase to split

the data set into n/k pieces does not out-weigh its overhead in a centralized setting. In

particular, we just run Grid once on all ni points remaining in round i. This does not affect

the runtime or error bounds.
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Compared to the Blossom-MR and Greedy-MR algorithms, Grid-MR produces an #-

sample of kernel density estimate with about the same size, but with much cheaper con-

struction cost. Grid-MR’s running time only linearly depends on n, making it an ideal

candidate to scale out to massive data.

2.3.2.3 Streaming and Distributed MergeReduce

Since the reduce step (the key computational component of the MergeReduce frame-

work) is only run on select subsets, this allows the full framework to generalize to dis-

tributed and streaming settings.

• Streaming variant. The streaming algorithm follows techniques for approximate range

counting [8,128]. Consecutive points are assigned to the same partitions Pi, and we pair

and reduce partitions whenever there are two that represent the same number of points

(one that has been merged i times represents k2i points). This means we only need to

keep log n
k partitions, and thus only O(k log n

k ) points in memory at any given time. The

dependence on n can be completely removed by first randomly sampling.

The final structure of the streaming algorithm has weighted points, where if a point is in

a partition that has been reduced i times, its weight is 2i. These weights can be removed to

create just 5|Q| points instead of |Q| log |P|
|Q| by running the in memory matching algorithm

on weighted points [90].

In particular, we can modify a matching algorithm to work with weighted points,

specifically consider the Grid algorithm. In the 0th phase of Grid, a point with weight

2i represents 2i points that all fall in the same cell, and can be matched with themselves

(this can be done by ignoring this point until the ith phase when its weight is 1).

• Distributed variant. This framework is efficient on distributed data. Use the streaming

algorithm on each distributed chunk of data, and then pass the entire output of the

streaming algorithm to a central node, which can merge and reduce the union. The

error caused by reducing on the central node is already accounted for in the analysis.

Again, the dependence on |P| can be removed by first sampling.
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2.3.2.4 Other Extension

An alternative version of the combination phase is possible for the MergeReduce algo-

rithm. Specifically, it considers some reduce step that takes time O(nb) on a set of size n,

and instead sets k = 4(b + 2)|Q| (where |Q| is the desired size of the final output), and

on every (b + 3)th round, pairs sets but does not reduce them. Then the clean-up phase

is used to reduce the single remaining set repeatedly until it is of size |Q|. When b is a

constant, this saves a O(log n) from the size of the output Q (or O(log 1
# ) if we sampled

first) [29].

More specifically, the output of this MergeReduce variant is then a set of size |Q| =

O(CM
1
# log0.5 1

# ) for a reduce step that uses a matching algorithm which produces an out-

put with cost CM. If we use Grid, then Grid-MR produces an output of size |Q| = O( 1
# log1.5 1

# ).

And Blossom-MR outputs Q of size |Q| = O( 1
# log0.5 1

# ) in O( n
#2 log 1

# ) time.

But in practice, this variant is more complicated to implement and usually the overhead

out-weighs its benefit. Hence we do not use this variant in this paper.

2.3.3 Deterministic Z-Order Selection

Inspired by one-dimensional sort-section (SS) and randomized two-dimensional Grid-

MR algorithm, we propose a new deterministic two-dimensional technique based on space

filling curves. A space filling curve puts a single order on two- (or higher-) dimensional

points that preserves spatial locality. They have great uses in databases for approximate

high-dimensional nearest-neighbor queries and range queries. The single order can be

used for a (one-dimensional) B+ tree, which provides extremely efficient queries even on

massive data sets that do not fit in memory.

In particular, the Z-order curve is a specific type of space filling curve that can be

interpreted as implicitly ordering points based on the traversal order of a quad tree. That

is, if all of the points are in [0, 1]2, then the top level of the quad tree has four children over

the domains c1 = [0, 1
2 ]⇥ [0, 1

2 ], c2 = [ 1
2 , 1]⇥ [0, 1

2 ], c3 = [0, 1
2 ]⇥ [ 1

2 , 1], and c4 = [ 1
2 , 1]⇥ [ 1

2 , 1].

And each child’s four children itself divide symmetrically as such. Then the Z-order curve

visits all points in the child c1, then all points in c2, then all points in c3, and all points in c4

(in the shape of a backwards ‘Z’); and all points within each child are also visited in such

a Z-shaped order. See an example in Figure 2.1. Thus, this defines a complete order on
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them, and the order preserves spatial locality as well as a quad tree does.

The levels of the Z-order curve (and associated quad tree) are reminiscent of the grids

used in the matching technique Grid. This insight leads to the following algorithm.

Compute the Z-order of all points, and of every two points of rank 2i and 2i + 1,

discard one at random; repeat this discarding of half the points until the remaining set is

sufficiently small. This approach tends to match points in the same grid cell, as with Grid,

but is also algorithmically wasteful since the Z-order does not change between rounds.

Thus, we can improve the algorithm by using insights from SS. In particular, we just

run SS on the Z-order of points. So to collect k = |Q| points, let the ith point retained

qi 2 Q be the point in rank order d(i � 1
2 ) |P|k e. This selects one point from each set of |P|

k

points in the Z-order.

In fact, by setting k = O( 1
# log n log1.5 1

# ), if we randomly select one point from each

Z-order rank range [(i� 1) |P|k , i |P|k ] (call this algorithm Zrandom), then the resulting set Q

has about the same guarantees as the Grid-MR algorithm, including Zrandom+RS, which

preprocesses by random sampling.

Theorem 4. For a point set P ⇢ R2 with n points, we can construct Q giving an #-sample of KDE

(with constant probability) in

• O(n log n) time and |Q| = O( 1
# log n log1.5 1

# ) using Zrandom, and

• O(n + 1
#2 log 1

# ) time and |Q| = O( 1
# log2.5 1

# ) using Zrandom+RS.

Proof. We prove this result by imagining that Zrandom does something more complicated

than it actually does in order to relate it to Grid-MR. That is, we pretend that instead of

just selecting a single point at random from each range [(i � 1)|P|/|Q|, i|P|/|Q|] in the

Z-order rank, we proceed in a series of log(|P|/|Q|) rounds, and in each round, the set P

is reduced in size by half. Specifically, in each round, out of every two consecutive points

in the Z-order (rank 2i and 2i + 1), we retain one at random. Since the Z-order is consistent

across rounds, this results in a random point in the rank interval [(i� 1)|P|/|Q|, i|P|/|Q|]

as desired.

Now if we consider the levels of the implicit quad tree defining the Z-order, this is

equivalent to the grid used in Grid-MR. In each round, there are at most 3 edges within

grid cell at level j, but that are not entirely in levels smaller than j. Since we still only care
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about O(log(1/#)) levels of the grid, the squared distance of these edges in that cell level

accounts for at most O(1) inside a unit square. Thus, CM is still at most O(log(1/#)). The

remainder of the proof is the same as in Theorem 3.

However, we find the implementation of the following deterministic algorithm to be

more effective; but as the randomness is necessary for the proof, we do not provide bounds.

The construction of the Z-order can be done efficiently using its interpretation as bit-

interleaving. Specifically, the z-value of a point is calculated by interleaving bits from the

most significant bit to the least significant bit in the binary representation of a point’s coor-

dinates. For example, a two-dimensional point (3, 5) expressed in its binary representation

is (011, 101). Its z-value is then (011011)2 = 27.

Then we do not need to completely sort all points by z-value in order to select the

proper k points, we can just approximately do this so that we have one point selected

from each set of |P|
k points in the sorted order. This can be done using an #-approximate

quantiles algorithm that is accurate up to # = 1/k. This guarantees the existence in the

quantile structure and its identification of at least one point within every consecutive set

of |P|
k points. We can just return this point for each range [(i� 1) |P|k , i |P|k ] of ranks. We refer

to this method as Zorder. Note that, following the discussion for SS in Section 2.2, we can

use any of the existing efficient, large-scale #-approximate quantiles algorithms in either

the centralized or the distributed setting.

2.3.4 Efficient Query Evaluation

We can do efficient evaluations in R2 similar to BF and MP in R1, as discussed in Section

2.2.1. In fact, BF is exactly the same. MP uses a quad tree instead of a binary tree. It stores

a bounding box at each node instead of an interval, but uses the same test to see if the

difference between K(x, ·) is within # on the furthest and closest point in the bounding box

to decide if it needs to recur.

2.3.5 Parallel and Distributed Implementation

As with one-dimensional methods, our two-dimensional methods can be efficiently im-

plemented in distributed and streaming settings. Any algorithm using the MergeReduce

framework can run in distributed and parallel fashion. As a result, Grid-MR, Zrandom,

and Zorder are very efficient in any distributed and parallel environments, and they ex-
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tend especially well for the popular MapReduce framework where data in each split is

processed in a streaming fashion.

Among the baseline methods, RS can easily be implemented in any distributed and

parallel environments. It takes some effort to make IFGT run in distributed and parallel

fashion, but it is possible; we omit the details. Lastly, the KH can be approximated (without

any bounds) by running its greedy step in each local piece of data independently, and then

merging the results from local nodes.

2.3.6 Higher Dimensions

All two-dimensional algorithms described can be extended to higher dimensions. In

particular, KH, RS, Blossom-MR, Greedy-MR extend with no change, while Grid-MR and

Zorder-MR extend in the obvious way of using a d-dimension grid or space-filling curve.

In Rd, the theoretical size bounds for RS increases to O( 1
#2 (d + log 1

d )) [78]; Grid-MR,

and Zrandom-MR increases to O(dd/2/#2� 4
d+2 log1+ d

d+2 1
# log n) (and a log 1

# factor less for

Blossom-MR). The increase in the second set is due to only being able to bound

Cd
M = max

B
Â

e(p,q)2EM\B
kp� qkd

instead of equation (2.2) since the number of grid cells intersected by a unit ball now grows

exponentially in d, and thus we need to balance that growth with the dth power of the edge

lengths. The stated bounds, then results from [103] with an extra log n factor (which can

be turned into a log 1
# by first random sampling) because we do not use the impractical

process described in Section 2.3.2.4. In no case does the MergeReduce framework need to

be altered, and so the construction times only increase by a factor d.

2.4 Experiments
We test all methods in both the single-thread, centralized environment and the dis-

tributed and parallel setting. In the centralized case, we implemented all methods in

C++ and obtained the latest implementation of the IFGT method from the authors in

[114, 145, 146]. We then used MapReduce as the distributed and parallel programming

framework. In particular, we implemented and tested all methods in a Hadoop cluster

with 17 machines. The centralized experiments were executed over a Linux machine

running a single Intel i7 cpu at 3.20GHz. It has 6GB main memory and an 1TB hard
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disk. The distributed and parallel experiments were executed over a cluster of 17 machines

running Hadoop 1.0.3. One of the 17 machines has an Intel Xeon(R) E5649 cpu at 2.53 GHz,

100 GB of main memory, and a 2TB hard disk. It is configured as both the master node and

the name node of the cluster. The other 16 machines in the Hadoop cluster (the slave nodes)

share the same configuration as the machine we used for the centralized experiments.

One TaskTracker and DataNode daemon run on each slave. A single NameNode and

JobTracker run on the master. The default HDFS (Hadoop distributed file system) chunk

size is 64MB.

• Data sets. We executed our experiments over two large real data sets. In two dimen-

sions, we used the OpenStreet data from the OpenStreetMap project. Each data set

represents the points of interest on the road network for a US state. The entire data set

has the road networks for 50 states, containing more than 160 million records in 6.6GB.

For our experiments, we focus on only the 48 contiguous states, excluding Hawaii and

Alaska. Each record is a two-dimensional coordinate, represented as 2 4-byte floating

points. We denote this data as the US data set.

In one dimension, we employed the second real data set, Meme, which was obtained

from the Memetracker project. It tracks popular quotes and phrases which appear from

various sources on the Internet. The goal is to analyze how different quotes and phrases

compete for coverage every day and how some quickly fade out of use while others persist

for long periods of time. A record has 4 attributes, the URL of the website containing the

memes, the time Memetracker observed the memes, a list of the observed memes, and

links accessible from the website. We preprocess the Meme data set, and convert each

record to have an 8-byte double to represent the time of a single observed meme and the

URL of the website which published the meme, e.g. if an original record contained a list of

4 memes published at a given time at a website, 4 records would be produced in the new

data set. We view these records as a set of timestamps in 1d, reflecting the distribution

of the Meme’s publication time. After this preprocessing step, the Meme data set contains

more than 300 million records in 10.3GB.

In both 1d and 2d, whenever needed, we randomly sample records from the full US or

the full Meme data set to obtain a data set of smaller size. Figure 1.1 visualizes the kernel

density estimates built by our MergeReduce algorithms in 1d and 2d, over the full Meme
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and US data sets, respectively (but only very few data points were plotted, to ensure that

the figures are legible).

• General setup. In all experiments, unless otherwise specified, we vary the values of

one parameter of interest, while keeping the other important parameters at their default

values. Also by default, we randomly generate 5,000 test points to evaluate the accuracy

of an approximate kernel density estimate. Among these 5,000 points, 4,000 were ran-

domly selected from the data set P, and the other 1,000 were randomly selected from the

domain space M of P (but not from P itself). We use err to denote the observed `• error

from an approximate kernel density estimate Q, which is computed from the evaluations

of these 5,000 test points in KDEQ and KDEP, respectively. We try to compare different

methods by setting a proper # value (the desired error in theory) for each of them so that

they achieve the same observed error. All experiments report the average of 10 random

trials.

2.4.1 Two Dimensions: Centralized

• Default setup. Our default data set is a US data set with 10 million records. The default

failure probability d for the random sampling method (RS) is set to 0.001. To save space

in the legend in all figures, we used G-MR and Z to denote the Grid-MR and Zorder

methods, respectively, and method+RS to denote the version of running method over a

random sample of P (of size O( 1
#2 log 1

d )), instead of running method over P directly. The

default s value in any kernel density estimate is 200, on a domain of roughly 50,000⇥

50,000.

• Our method+RS. We first study the effect of running our methods over a random sam-

ple of P, when compared against the results from running them directly over P. Figure

2.2 shows the results when we vary the value of the common input parameter for all of

them, #. Not surprisingly, as shown in Figure 2.2(a), the observed errors in all methods

are smaller than the desired error #. All methods produce smaller observed errors when

smaller # values were used. Furthermore, under the same # value, G-MR+RS and Z+RS

produce higher errors than their respective counterpart does, namely, G-MR and Z.

However, the difference is fairly small. In fact, when err is about 10�2, there are almost

no difference between G-MR+RS (Z+RS) and G-MR (Z).
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(d) Communication.

Figure 2.2. Effect of guaranteed error # on the centralized G-MR, G-MR+RS, Z, Z+RS.

More importantly, however, running a method over a random sample of P saves valu-

able construction time as shown in Figure 2.2(b). Figure 2.2(c) indicates that the sizes of

the final approximate kernel density estimates constructed by different methods are almost

the same. This is because whether running a method over P or a random sample of P, the

final size of the kernel density estimate Q is largely determined by # only. This also means

that the query time of these methods is almost the same, since the query time depends on

only |Q|. Hence, we have omitted this figure.

Finally, we also investigate the impact to the communication cost if we run these meth-

ods in a cluster. Figure 2.2(d) shows that this impact is not obvious. Since G-MR and

Z are very effective in saving communication cost already, collecting a random sample

first does not lead to communication savings. In contrast, doing so might even hurt their

communication cost (if the sample size is larger than what they have to communicate in

our MergeReduce framework). Nevertheless, all methods are very efficient in terms of the

total bytes sent: a few megabytes in the worst case when # = 0.005 over a cluster for 10

million records in P.

In conclusion, these results show that in practice, one can use our method+RS to achieve

the best balance in construction time and accuracy for typically required observed errors.

• Our method vs. baseline methods. We first investigate the construction cost of different

alternatives in instantiating our MergeReduce framework, with a different algorithm for

the matching operation. We also include Kernel Herding (KH) as introduced in Section

2.3.1. In order to let these baseline methods complete in a reasonable amount of time,

we used smaller data sets here. From the analysis in Section 2.3.2, Blossom-MR (denoted

as B-MR, representing the theoretical algorithm [103]) with a O(nk2) cost for output size

k and Greedy-MR with a O(nk log n) cost are much more expensive than G-MR. Similarly,
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KH with a O(nk) cost is also much more expensive than G-MR which runs in roughly

O(n log k) time. This is even more pronounced in Figures 2.3(a) and 2.3(b), showing

the construction time of different methods when varying the observed error err and the

size of the data sets, respectively. G-MR is several orders of magnitude faster and more

scalable than the other methods.

So the only competing baseline methods we need to consider further are the RS and

IFGT methods. We compare these methods against our methods, G-MR+RS and Z+RS in

Figure 2.4, using the default 10 million US data set. Figure 2.4(a) indicates that, to achieve

the same observed error, RS is the most efficient method in terms of the construction time.

However, our methods G-MR+RS and Z+RS are almost as efficient. In contrast, IFGT is

almost one order of magnitude slower. In terms of the query time, Figure 2.4(b) shows

that all methods achieve a similar query time given the same observed error, though IFGT

does slightly better for very small err values. Note that we used the multipole (MP) query

evaluation method for the kernel density estimates built from RS, G-MR+RS, and Z+RS.

On the other hand, Figure 2.4(c) shows that the kernel density estimates built from both

IFGT and RS have much larger size than that produced in our methods G-MR+RS and

Z+RS, by 2 to 3, and 1 to 2 orders of magnitude, respectively. Finally, Figure 2.4(d) indicates

that all methods have very good scalability in their construction time when the data set size

increases from 1 million to 20 million, but G-MR+RS, Z+RS, and RS are clearly much more

efficient than IFGT.

In conclusion, our methods are almost as efficient as RS in terms of building a kernel
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Figure 2.3. Centralized G-MR, B-MR, Greedy-MR, KH.
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Figure 2.4. Effect of measured `• error err and N on centralized IFGT, RS, G-MR+RS,
Z+RS.

density estimate, and they are much more efficient than IFGT. Our methods also share

similar query time as IFGT and RS, while building much smaller kernel density estimates

(in size) than both IFGT and RS.

2.4.2 Two Dimensions: Parallel and Distributed

• Default setup. In this case, we change the default data set to a US data set with 50

million records, while keeping the other settings the same as those in Section 2.4.1.

Furthermore, since IFGT is much slower in building a kernel density estimate (even

more so for larger data sets), and it is also a heuristic without theoretical guarantees

(in contrast to the other 3 methods), in the distributed and parallel setting, we focus

on comparing our methods against the RS method. Moreover, IFGT works only for the

Gaussian kernel and needs to be provided the bandwidth s ahead of time, whereas our

methods and RS do not. For space, we omit experiments showing varying s has mild

effects on our algorithms and RS, but can lead to strange effects in IFGT.

• Our methods vs. RS. We compare the performance of our methods, G-MR+RS and

Z+RS, against RS on the aforementioned Hadoop cluster. Figure 2.5 reports the results

when we vary the observed error err for different methods (by adjusting their # values

properly so they output roughly the same err). Figure 2.5(a) shows that RS is the most

efficient method to construct an approximate kernel density estimate for small err val-

ues, but G-MR+RS and Z+RS become almost as efficient as RS once err is no smaller than

10�4 which is sufficient for many practical applications. In those cases, all three methods

take less than 40 seconds to construct an approximate KDE for 50 million records. All

methods are highly communication-efficient, as shown in Figure 2.5(b). There are almost
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Figure 2.5. Effect of measured `• error err on distributed and parallel G-MR+RS, Z+RS,
RS.

no difference among the 3 methods: they communicate only a few MBs over the cluster

to achieve an err of 10�4, and tens or hundreds of KBs for err between 10�2 and 10�3.

In terms of the size of the approximate KDEQ, not surprisingly, RS is always the largest.

By our analysis in Sections 2.3.2 and Sections 2.3.3, |Q| is O( 1
#2 log 1

d ) for RS, and only

O( 1
# log2.5 1

# ) for both G-MR+RS and Z+RS. This is clearly reflected in Figure 2.5(c),

where |Q| is 1-2 orders of magnitude larger from RS than from G-MR+RS and Z+RS.

Finally, we investigate the query time using Q in Figure 2.5(d). In general, the query

time should be linear to |Q|. But in practice, since we have used the fast query evaluation

technique, the multipole (MP) method as shown in Section 2.3.4, all three methods have

similar query time.

We thus conclude that our methods, G-MR+RS and Z+RS, perform better than RS.

More importantly, they also have much better theoretical guarantees (in order to achieve

to same desired error # in theory), which is critical in practice since users typically use a

method by setting an # value, and for the same # value, our methods will outperform RS by

orders of magnitude (O( 1
# log2.5 1

# ) vs. O( 1
#2 log 1

d )). Nevertheless, to be as fair as possible,

we experimentally compared methods by first running a few trials to set a proper # value

so each method has roughly the same observed error err.

We also study the scalability of these methods in Figure 2.6 by varying the size of

the data from 30 million to 100 million records. Not surprisingly, all three methods are

extremely scalable in both their construction time (almost linear to n) and communication

cost (almost constant to n). Communication only increases by 0.8⇥ 105 bytes when the

total communication is about 9� 10⇥ 105 bytes; such increase is due to the overhead in

Hadoop to handle more splits (as n increases), rather than the behavior of our algorithms,

which is independent from n in communication cost.
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Figure 2.6. Effect of n on G-MR+RS, Z+RS, RS.

2.4.3 Two Dimensions: Is RS Good Enough?

To show our advantages over random sampling, we provide more centralized experi-

ments here for higher precision. The trends in the parallel and distributed setting will be

similar.

Getting higher precision results from a kernel density estimate can be very desirable.

The error of kernel density estimates over samples is with respect to KDEP(x), but for

large spatial data sets, often only a small fraction of points have non-negligible effect on

a query x, so dividing by |P| can make KDEP(x) quite small. Here it can be of critical

importance to have very small error. Another use case of kernel density estimates is in

n-body simulations in statistical physics [4], where high precision is required to determine

the force vector at each step. Furthermore, note that a user typically uses these methods

with a desirable error as the input, which is set as the input error parameter, the # value;

even though the observed error err on a data set may be smaller than #. In that case, all of

our methods have (roughly) a O( 1
# / log 1

# ) factor improvement in the KDE size, which is a

critical improvement especially when # needs to be small (for high precision applications).

We observe experiments in Figure 2.7 which compares G-MR+RS and Z+RS with RS

in terms of construction time and size of the samples. (Note that figures for query time

were omitted for the interest of space; but not surprisingly, they are roughly linear to the

KDE size). We plot the figures based on input error parameter # and observed error err.

For the plot with respect to # (Figure 2.7(a), 2.7(c)), when # becomes smaller than 5 ⇤ 10�4,

the construction time and size for RS remain constant as the sample size needed for RS

becomes larger than the size of the original data set. Since we then don’t need to sample,
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Figure 2.7. Effect of # and `• error err on G-MR+RS, Z+RS, RS for high precision case.

the construction time and observed error for RS are 0. For small # values, G-MR+RS and

Z+RS are clever enough to test if random sampling is beneficial, and if not, the random

sampling step is bypassed.

For the higher precision observed error, the results (Figures 2.7(b), 2.7(d)) clearly demon-

strate the superiority of our proposed methods over RS, reducing both construction time

and saving orders of magnitude in terms of both query time and size. We cannot achieve

higher precision for RS when the observed error is smaller than 10�5, since in those cases,

# is small enough that the random sample size is as big as the size of the original data set

(i.e., KDE from a random sample consists of the entire original data set, leading to no error).

2.4.4 One Dimension: Parallel and Distributed

• Default setup. We now shift our attention in 1d. The default data set is Meme with 50

million records, d = 0.001, and s at 1 day, over 273 days of data. Since GS (grouping

selection) is a complementary technique that works with any other method, we focus on

RS and SS (sort selection). We only report the results from the parallel and distributed

setting. The trends in the centralized setting are similar.

• SS vs.RS. By varying the observed error err, Figure 2.8 compares the two methods across

different metrics. To achieve smaller observed errors in constructing KDEQ, SS is more

efficient as shown in Figure 2.8(a), but RS becomes faster for larger observed errors.

A similar trend is observed for the communication cost in Figure 2.8(b). In terms of

reducing the size of Q, SS does a much better job than RS as shown in Figure 2.8(c),

|Q| in SS is 1-4 orders of magnitude smaller than |Q| in RS, the gap is particularly large

for smaller observed errors. This translates to the query time in Figure 2.8(d), where

evaluating KDEQ(x) using Q produced by SS is much faster than doing so over Q from

RS for most observed errors. When err becomes large, around 10�2, the RS method
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Figure 2.8. Effect of varying measured err on RS, SS on one-dimensional data.

catches up, corresponding to the sizes of Q becoming closer.

In conclusion, SS in general performs better than or comparable to RS on observed

error. But it has much better theoretical guarantees in size and query time as shown

in Section 2.2 ( 1
# vs. O( 1

#2 log 1
d )), which is critical in practice since users generally use a

method by setting an # value.



CHAPTER 3

L• ERROR AND BANDWIDTH SELECTION

FOR KDES

In the second chapter, in order to speed up evaluating kernel density estimate, we

produce a coreset representation Q of the data which can be used as proxy for the true data

P while guaranteeing approximation error on size and runtime. The size of Q depends

only on the required error, not on any properties of P; these go beyond just randomly

sampling Q from P. Written concretely, given P, and some error parameter # > 0, the goal

is to construct a point set Q to ensure

L•(P, Q) = err(P, Q) = max
x2Rd

|KDEP(x)� KDEQ(x)|  #, (3.1)

or err(P, s, Q, w) if the bandwidths s and w for KDEP and KDEQ are under consideration.

This line of work shows that an L• error measure, compared with L1 or L2 error, is a more

natural way to assess various properties about kernel density estimates. They assume s

is given and w is always the same as s. However, this is not necessarily true. In this

chapter, we will investigate how to choose a bandwidth w for KDEQ(x) under L• error

given P, s, Q.

Thus, we empirically study two concrete problems:

1. Given two point sets P, Q ⇢ Rd and a kernel K, find the points x = arg minx err(P, Q).

2. Given two point sets P, Q ⇢ Rd, a kernel K, and a bandwidth s, estimate w =

arg minw err(P, s, Q, w).

It should be apparent the first problem is a key subproblem for the second, but it is also

quite interesting in its own right. We will observe L• is a strictly stronger measure than L1

or L2, yet can still be assessed. To the best of our knowledge, we provide the first rigorous

empirical study of how to measure this L• error in practice in an efficiently way, following

theoretical investigations demonstrating it should be possible.
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Bandwidth parameter is hugely important in the resulting KDE, and hence, there have

been a plethora of proposed approaches [15, 38, 40, 41, 45, 50, 62–64, 73, 76, 82, 89, 117, 118,

121–123, 126, 130, 141, 148] to somehow automatically choose the “correct” value. These

typically attempt to minimize the L2 [122, 126] or L1 error [40, 41] (or less commonly, other

error measures [89]) between KDEP and some unknown distribution µ that it is assumed

P is randomly drawn from. Perhaps unsurprisingly, for such an abstract problem, many

different methods can produce wildly different results. In practice, many practitioners

choose a bandwidth value in an ad-hoc manner through visual inspection and domain

knowledge.

In this chapter, we argue that the choice of bandwidth should not be completely uniquely

selected. Rather, this value provides a choice of scale at which the data is inspected, and

for some data sets, there can be more than one correct choice depending on the goal. We

demonstrate this on real and synthetic data in one and two dimensions. As an intuitive

one-dimensional example, given temperature data collected from a weather station, there

are very obvious modal trends at the scale of 1 day and at the scale of 1 year, and depending

on which phenomenon one wishes to study, the bandwidth parameter should be chosen

along the corresponding scale, so it is totally reasonable if we assume s for KDEP is given.

Via examinations of problem (2), we observe that in some cases (but not all), given

P, Q, and s, we can choose a new bandwidth w (with w > s) so that err(P, s, Q, w) is

significantly smaller than the default err(P, s, Q, s). This corresponds with fine-grained

phenomenon disappearing with less data (as |Q| < |P|), and has been prognosticated by

theory about L2 [126] or L1 [40] error where the optimal bandwidth for KDEQ is a strictly

shrinking function of |Q|. Yet we urge more caution than this existing bandwidth theory

indicates since we only observe this phenomenon in specific data sets with features present

at different scales (like the daily/yearly temperature data example in Section 3.4).

• Organization. Section 3.1 formalizes and further motivates the problem. Section 3.2

addresses problem (1), and Section 3.3 problem (2). Then Section 3.4 describes detailed

experimental validations of our proposed approaches. Finally, Section 3.5 provides some

concluding thoughts.
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3.1 Background and Motivation
3.1.1 Unit Kernels or Normalized Kernels?

Unit kernels are more natural to estimate the L• errors of kernel density estimates [103,

146] since the range of values are in [0, 1]. For normalized kernels as s varies, the only

bound in the range is [0, •).

Moreover, unit kernels, under a special case, correspond to the total variation distance

of probability measures. In probability theory, the total variation distance for two prob-

ability measures P and Q on a sigma-algebra F of subsets of sample space W is defined

as:

d(P, Q) = sup
A2F

|P(A)�Q(A)|. (3.2)

Terms P(A), resp. Q(A), refer to the probability restricted to subset A. If we use F as the

set of all balls of radius s, so A is one such ball, then P(A) is the fraction of points of P

falling in A. Hence P(A) can be viewed as the KDEP,s(x) under the ball kernel, where x

is the center of ball A. When Q is the coreset of P, then Q(A) is the fraction of points of

Q falling in A, so it can be viewed as the KDEQ,s(x) under the ball kernel. In this sense,

the total variance distance is the L•, specifically err(P, Q) where K is the ball kernel. The

total variation distance can also be mapped to other unit kernels if F can admit weighted

subsets, not just subsets.

However, normalized kernels are more useful in bandwidth selection. In this case,

there is a finite value for s 2 (0, •) which minimizes the L1 or L2 error between KDEP,s

and KDEQ,s, whereas for unit kernels, this is minimized for s! 0.

But recall unit and normalized kernels are only different in the scaling coefficient, so

given one setting, it is simple to convert to the other without changing the bandwidth.

Hence we use both types of kernels in different scenarios: unit kernels for choosing the

coresets, and normalized kernel for problem (1) and problem (2).

3.1.2 Why s Is Given?

Recall that problem (2) takes as given two point sets P and Q as well as a bandwidth

s associated with P, and then tries to find the best bandwidth w for Q so that KDEP,s is

close to KDEQ,w. This is different from how the “bandwidth selection problem” is typically

posed [40, 126] : a single point set Q is given with no bandwidth, and it is assumed that Q
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is drawn randomly from an unknown distribution.

We break from this formulation for two reasons. First, we often consider the point

set Q chosen as a coreset from P, and this may not be randomly from P; in fact, more

intricate techniques [103, 149] can obtain the same error with much smaller size sets Q.

These non-random samples break most modeling assumptions essential to the existing

techniques.

Second, the choice of bandwidth may vary largely within the same data set, and these

varied choices may each highlight a different aspect of the data. As an extended example,

consider temperature data (here we treat a reading of 50 degrees as 50 data points at

that time) from a MesoWest weather station KSLC read every hour in all of 2012. This

results in 8760 total readings, illustrated in Figure 3.1. For three bandwidth values of

3, 72, and 1440, KDEs are shown to represent daily, weekly, and yearly trends. All are

useful representations of the data; there is no “one right bandwidth.”. Section 3.4 shows a

two-dimensional example of population densities where similarly there are several distinct

reasonable choices of bandwidths.

3.1.3 Why L• Error?

As mentioned, the most common error measures for comparing KDEs are the L1 or L2

error defined for p = {1, 2} as

Lp(P, Q) = kKDEP � KDEQkp =

✓

Z

x2Rd
|KDEP(x)� KDEQ(x)|p

◆1/p
. (3.3)

Figure 3.1. KDEs with different bandwidths showing daily, weekly, and yearly trends. Left
shows a full year of data, and right shows one week of data.
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Although this integral can be reasoned about, it is difficult to estimate precisely. Rather

many techniques only evaluate at the points P and simply calculate

⇣ 1
|P| Â

q2P
|KDEP(p)� KDEQ(p)|p

⌘1/p
. (3.4)

These average over the domain or P; hence if |KDEP(x) � KDEQ(x)|  # for all x, then

Lp(P, Q) is also at most #. That “for all” bound is precisely what is guaranteed by L•(P, Q),

hence it is a stronger bound.

Another reason to study L• error is that it preserves the worst case error. This is

particularly important when KDEP(x) values above a threshold trigger an alarm. For

instance in tracking densities of tweets, too much activity in one location may indicate

some event worth investigating. L1 or L2 errors from a baseline may be small, but still

have high error in one location either triggering a false alarm, or missing a real event.

3.1.4 Computing Coreset Q of P

In this chapter, we define the coreset as a point set Q the same as 1.9, such that for any

query point x, evaluating KDEQ(x) is much faster than evaluating KDEP(x) and KDEQ(x)

can approximate KDEP(x) very well based on L2 [31] and L• [149] [103].

In Chapter 2, we summarized the approaches to finding such a coreset in one and

two dimensions. For a point set P with n points, in one dimension, random sampling

method can give us a size O((1/#2) log(1/d) coreset with construction cost O(n); sort-

selection method can construct a coreset |Q| = O(#) with the cost is O(n log 1
# ) if using

#-approximation quantiles, or O(n log n) otherwise.

In two dimension, random sampling gives the same bound on the sample size and the

cost as in one dimension; kernel herding takes O(|Q|n) time to construct Q and claims

they need O(1/#) steps; min-cost matching with merge reduce framework and random

sampling as preprocessing step can be constructed in O(n + 1
#4 log3 1

# ) time and |Q| =

O( 1
# log1.5 1

# ); both Grid matching and Z-order selection methods with merge reduce frame-

work give us a coreset with |Q| = O( 1
# log2.5 1

# ) in O(n + 1
#2 log 1

# ) time by using random

sampling as the preprocessing step.

In high dimensions, Phillips [103] states that one can construct Q in O(n/#2) time of

size O((1/#)2d/(d+2) logd/(d+2)(1/#)) with bounded L• error.
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3.1.5 Related Work on Bandwidth Selection

There is a vast literature on bandwidth selection under the L1 [40, 41] or L2 [122, 126]

metric. In these settings, Q is drawn, often at random, from a unknown continuous

distribution µ (but µ can be evaluated at any single point x). Then the goal is to choose w

to minimize kµ� KDEQ,wk{1,2}. This can be conceptualized in two steps as kµ� KDEµ,wk

and kKDEµ,w � KDEQ,wk. This first step is minimized as w ! 0 and the second step is

minimized as w ! •. Together, there is a value w{1,2} 2 (0, •) that minimizes the overall

objective.

The most common error measure for w under L2 are Integrated Squared Errors (ISE)

ISE(w) =
R

x2Rd(KDEQ,w � µ)2dx and its expected value, the Mean Integrated Squared

Error (MISE) MISE(w) = EQ⇠µ[
R

x2Rd(KDEQ,w � µ)2dx]. As MISE is not mathematically

tractable, often approximations such as the Asymptotic Mean Squared Error (AMISE) or

others [126, 130] are used. Cross-validation techniques [15, 45, 62, 117, 118, 123] are used to

evaluate various parameters in these approximations. Alternatively, plug-in methods [76,

121,141] recursively build approximations to µ using KDEQ,wi , and then refine the estimate

of wi+1 using KDEQ,wi . A series of Bayesian approaches [16,38,50,73,82,148] build on these

models and select w using MCMC approaches.

An alternative to these L2 approaches is using an L1 measure, like integrated absolute

error (IAE) of KDEQ,w is IAE(w) =
R

x2Rd |KDEQ,w � µ|dx, which has simple interpretation

of being the area between the two functions. Devroye and Györfi [40] describe several ro-

bustness advantages (better tail behavior, transformation invariance) to these approaches.

Several of the approximation approaches from L2 can be extended to L1 [64].

Perplexingly, however, the bandwidths generated by these methods can vary quite

drastically! In this chapter, we assume that some bandwidth is given to indicate the

intended scale, and then we choose a bandwidth for a sparser point set. Hence the methods

surveyed above are not directly comparable to our proposed approaches. But we still

include the experiment results from some of the above methods to show that different

approaches give quite different “optimal” bandwidth, which in another way shows us

there are more than one correct bandwidth for some data set.
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3.2 Computing err(P, Q) Error
The goal of this section is to calculate

err(P, Q) = max
x2Rd

|KDEP(x)� KDEQ(x)|. (3.5)

For notational convenience

G(x) = |KDEP(x)� KDEQ(x)|. (3.6)

We focus on the case where K is a unit Gaussian. Since even calculating maxx2Rd KDEP(x)

(which is a special case of err(P, Q) where Q is empty) appears hard, and only constant

factor approximations are known [1, 106], we will not calculate err(P, Q) exactly. Unfortu-

nately, these approximation techniques [1, 106] for maxx2Rd KDEP(x) do not easily extend

to estimating err(P, Q). They can focus on dense areas of P, since the maximum must occur

there, but in err(P, Q), these dense areas may perfectly cancel out. These approaches are

also much more involved than the strategies we will explore.

3.2.1 Approximation Strategy

Towards estimating err(P, Q), which is optimized over all of Rd, our strategy is to

generate a finite set X ⇢ Rd, and then return errX(P, Q) = maxx2X G(x). Our goal in the

generation of X is so that in practice, our returned estimate errX(P, Q) is close to err(P, Q),

but also so that under this process as |X| ! • then formally errX(P, Q) ! err(P, Q). We

say such a process converges.

We formalize this in two steps. First we show that G(x) is Lipschitz-continuous, hence

a point x̂ 2 Rd close to the point x⇤ = arg maxx2Rd G(x) will also have error value close to

x⇤. Then given this fact, we will need to show that our strategy will, for any radius r, as

|X| ! • generate a point x̂ 2 X so that kx⇤ � x̂k  r. This will be aided by the following

structural theorem on the location of x⇤. (M is illustrated in Figure 3.2.)

Theorem 5. For Ks a unit Gaussian kernel, and two point sets P, Q 2 Rd, M is the Minkowski

sum of a ball of radius s and the convex hull of P [ Q, then x⇤ = arg maxx2Rd G(x) must be in

M.

We want to prove Theorem 5 in one and two dimensions. For simplicity, we assume

Q ⇢ P so P = P [Q.
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�

p1

Figure 3.2. Illustration of the Minkowski sum of a ball of radius s and convex hull of P[Q.

First, we work on the weighted one-dimensional data, and extend to two dimensions

using that the cross section of a two-dimensional Gaussian is still a one-dimensional Gaus-

sian. We focus on when P and Q use the same bandwidth s, and a unit kernel Ks. We start

to examine two points in one dimension, and without loss of generality, we assume p1 = d

and p2 = �d for d � 0, and that the coreset of P is Q = {p2}. We assign the weight

for p1 as w1 and the weight for p2 as w2. Plug in P, Q, and the weight for each point,

G(x) = |KDEP(x)� KDEQ(x)| is expanded as following:

G(x) =

�

�

�

�

1
2

w1 exp
�

� (x� d)2

2s2

�

� 1
2

w2 exp
�

� (x + d)2

2s2

�

�

�

�

�

.

We assume w1 � w2, the largest error point must be closer to p1. So we only need to

discuss when x � 0, then 1
2 w1 exp

�

� (x�d)2

2s2

�

� 1
2 w2 exp

�

� (x+d)2

2s2

�

, thus

G(x) =
1
2

w1 exp
�

� (x� d)2

2s2

�

� 1
2

w2 exp
�

� (x + d)2

2s2

�

.

Lemma 5. For Ks a unit Gaussian kernel, P = {p1, p2} and Q = {p2} where p1 = d and

p2 = �d, when x � 0, function G(x) has only one local maximum, which is between d and d + s

and G(x) is decreasing when x > d.

Proof. By taking the derivative of G(x), we can get

dG(x)
dx

=
1
2

w2 exp
�

� (x + d)2

2s2

� x + d
s2

� 1
2

w1 exp
�

� (x� d)2

2s2

� x� d
s2 .

When 0  x < d, both 1
2 w2 exp

�

� (x+d)2

2s2

� x+d
s2 and � 1

2 w1 exp
�

� (x�d)2

2s2

� x�d
s2 > 0, thus

dG(x)
dx > 0, so G(x) is always increasing.
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When x = d,

dG(x)
dx

=
1
2

w2 exp
�

� 2d2

s2

�2d
s2 � 0.

To understand x > d we examine the ratio function

r(x) =
1
2 w2 exp

�

� (x+d)2

2s2

� x+d
s2

1
2 w1 exp

�

� (x�d)2

2s2

� x�d
s2

=
w2

w1
exp

�

� 2xd
s2

� x + d
x� d

.

Since both exp
�

� 2xd
s2

�

and x+d
x�d are decreasing and positive, r(x) and thus dG(x)

dx is decreas-

ing when x > d.

When x = d + s, the ratio function is

r(d + s) =
w2

w1
exp(�2sd + 2d2

s2 )
s + 2d

s
.

We can view the above equation as a function of variable d.

r(d) =
w2

w1
exp(�2sd + 2d2

s2 )
s + 2d

s
,

and take the derivative of r(d):

dr(d)
dd

= �4d(d + s)
s3

w2

w1
exp(�2sd + 2d2

s2 )  0.

With d � 0 then dr(d)
dd  0, and thus r(d) is a decreasing function which attains maximum

w2
w1
 1 when d = 0; thus r(d)  1. So when x = d + s, dG(x)

dx  0. Due to the fact that
dG(x)

dx � 0 when x = d and dG(x)
dx is decreasing when x > d, there is only one point between

d and d + s making dG(x)
dx = 0. When 0  x < d, then dG(x)

dx > 0. There is only one

maximum point of G(x) between d and d + s when x � 0.

From Lemma 5, we show that the evaluation point having largest error is between d

and d + s. Due to the symmetry of p1 and p2, when w1  w2 , G(x) gets its largest error

between �d and �d� s.

With the results on both sides, we now show the maximum value point of G(x) can’t

be outside s distance of Conv(P).

Now we discuss the case for n points in one dimension.

Lemma 6. For Ks a unit Gaussian kernel, P has n points and |Q| = |P|/2, arg maxx2R1 G(x)

for one-dimensional data is within s distance of Conv(P).
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Proof. Suppose n = 2k, P = {p1, p2, p3, p4, ..., p2k�1, p2k}, choose any k points in Q. Then

pair any point in Q with any point in P not in Q, so each point in P is in exactly one pair. For

simplicity we set Q = {p1, p3, ..., p2k�1} and the pairs are {p1, p2}, {p3, p4}, ..., {p2k�1, p2k}.

Suppose e1 = arg maxx2R1 G(x) is not within s distance of Conv(P) and p1 is the point

closest to e1. Based on Lemma 5, for P has only two points, function G(x) is decreasing as a

point outside s moves away from p1. So if we choose another point e2 infinitesimally closer

to p1, and we set P1 = {p1, p2}, Q1 = {p1} , GP1,Q1(e2) has larger value than GP1,Q1(e1).

Since p1 is the closest point in P, for any other set P2 = {p3, p4}, Q2 = {p3}, e2 is closer

to P2 than e1 is to P2, hence GP2,Q2(e2) is also larger than GP2,Q2(e1). The same result holds

for all pairs {p2i�1, p2i}, where i is from 1 to k. So G(e2) > G(e1), which contradicts the

assumption that e1 = arg maxx2R1 G(x). So the largest error evaluation point should be

within s distance of Conv(P).

In two dimensions we show a similar result. We illustrate the Minkowski sum M of a

set of points P with a ball of radius s in Figure 3.2.

Theorem 6. For Ks a unit Gaussian kernel, and two point sets P, Q 2 R2, |Q| = |P|/2,

arg maxx2R2 G(x) should be within the Minkowski sum M of a ball of radius s and Conv(P).

Proof. Suppose the largest error position e1 = arg maxx2R2 G(x) 62 M, then for some

direction v, no point in the convex hull of P is closer than s to e1 after both are projected

onto v. Then since any cross section of a Gaussian is a one-dimensional Gaussian (with

reduced weight), we can now invoke the one-dimensional result in Lemma 6 to show

that e1 is not the largest error position along the direction v, thus e1 6= arg maxx2R2 G(x).

So arg maxx2R2 G(x) should be within the Minkowski sum M of a ball of radius s and

Conv(P).

We will not focus on proving theoretical bounds on the rate of convergence of these

processes since they are quite data dependent, but will thoroughly empirically explore this

rate in Section 3.4. As |X| grows, the max error value in X will consistently approach some

error value (the same value for several provably converging approaches), and we can then

have some confidence that as these processes plateau, they have successfully estimated

err(P, Q). Our best process WCen6 converges quickly (e.g., |X| = 100); it is likely that the

maximum error is approximately achieved in many locations.
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Now, as a basis for formalizing these results, we first show G(x) is Lipschitz continu-

ous. Recall a function f : Rd ! R is Lipschitz continuous if there exists some constant

b such that for any two points x, y 2 Rd that | f (x) � f (y)|/kx � yk  b. This result

follows from the Gaussian kernel (as well as all other kernels except the Ball kernel) also

being Lipschitz continuous. Then, since the function f (x) = KDEP(x)� KDEQ(x) is a finite

weighted sum of Gaussian kernels, each of which is Lipschitz continuous, so is f (x). Since

taking absolute value does affect Lipschitz continuity, the claim holds.

3.2.2 Generation of Evaluation Points

We now consider strategies to generate a set of points X so that errX(P, Q) is close to

err(P, Q). Recall that M, the Minkowski sum of a ball of radius s with the convex hull of

P[Q, must contain the point x⇤ which results in err(P, Q). In practice, it is typically easier

to use B, the smallest axis-aligned bounding box that contains M. And for discussion, we

assume Q ⇢ P so P = P [Q.

• Rand: Choose each point at random from B.

Since x⇤ 2 M ⇢ B, eventually some point x 2 X will be close enough to x⇤, and this

process converges.

• Orgp: Choose points randomly from P.

This process does not converge since the maximum error point may not be in P. How-

ever, section 3.4 shows that this process converges to its limit very quickly. So many of the

following proposed approaches will attempt to adapt this approach while still converging.

• Orgp+N: Choose points randomly from the original point set P then add Gaussian noise with

bandwidth s, where s is the bandwidth of K.

Since the Gaussian has infinite support, points in X can be anywhere in Rd, and will

eventually become close enough to x⇤. So this process converges.

• Grid: Place a uniform grid on B (we assume each grid cell is a square) and choose one point in

each grid. For example, in two dimension, if four evaluation points are needed, the grid

would be 2⇥ 2 and if nine points are needed, it would be 3⇥ 3. So with this method,

the number of evaluation points is a non-prime integer.

Since x⇤ 2 B, and eventually the grid cell radius is arbitrarily small, then some point

x 2 X is close enough to x⇤. Thus, this process converges.
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• Cen{E[m]}: Randomly select one point p1 from the original point set P and randomly choose m

neighbor points of p1 within the distance of 3s. m is chosen through a Exponential process with

rate 1/E[m]. Then we use the centroid of the selected neighbor points as the evaluation point.

This method is inspired by [47], which demonstrates interesting maximums of KDEs at

the centroids of the data points.

Since P is fixed, the centroid of any combination of points in P is also finite, and the set

of these centroids may not include x⇤. So, this process does not converge. We next modify

it in a way so it does converge.

• WCen{E[m]}: Randomly select one point p1 from the original point set P and select the neighbor

point pn 2 P as candidate neighbor proportional to exp(� ||pn�p1||2
2s2 ), where s is the bandwidth

for K. The smaller the distance between pn and p1, the higher probability it will be the chosen.

Repeat to choose m total points including p1, where again, m is from an Exponential process

with rate 1/E[m]. Now refine the m neighbor points so with probability 0.9, it remains the

original point pn 2 P, with the remaining probability it is chosen randomly from a ball of radius

s centered at pn. Next, we assign each point a random weight in [0, 1] so that all weights add to

1. Then finally, the evaluation point is the weighted centroid of these points.

This method retains much of the effectiveness of Cen, but does converge. Without

the 0.1 probability rule of being in a ball of radius s around each point, this method can

generate any points within the convex hull of P. That 0.1 probability allows it to expand to

M, the Minkowski sum of the convex hull of P with a ball of radius s. And since x⇤ 2 M,

by Theorem 5 then this process converges.

• Comb: Rand + Orgp: The combination of method Rand and Orgp, of which 20% points

generated from B and 80% points generated from original points.

The 20% of points from Rand guarantees convergence, but retain most empirical prop-

erties of Orgp. This was used before [149] with little discussion.

Section 3.4 describes extensive experiments on both synthetic and real data to evaluate

these methods. The weighted centroid method WCen{E[m]} with large parameter (e.g.,

E[m] = 6) works very well for one and two dimensions, and also converges.
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3.3 Bandwidth Selection
In this section, we consider being given two point sets P, Q ⇢ R2, a kernel K, and a

bandwidth s associated with P. We consider K as a normalized Gaussian kernel, and the

case where Q is a coreset of P. The goal is to find another bandwidth w to associate with

Q so that err(P, s, Q, w) is small.

3.3.1 Refining the Bandwidth for Coresets

These coresets are constructed assuming that KDEQ uses the same bandwidth s as

KDEP. But can we improve this relationship by using a different bandwidth w for Q? The

theory for L1 and L2 error (assuming Q is a random sample from P) dictates that as |Q|

decreases, the bandwidth w should increase. This intuition holds under any error measure

since with fewer data points, the KDE should have less resolution. It also matches the L•

theoretical error bounds described above.

We first reinforce this with a simple two-dimensional example. Consider point set P =

[{P1, P2, P3, P4} in Figure 3.3(a), the radius of the circle represents the bandwidth s for

P. Figure 3.3(b) gives the coreset Q of P: Q = [{Q1, Q2, Q3, Q4}, each Qi contains only

one black point. Now suppose our evaluation point is point e. If we use the original

bandwidth s, KDEQ,s(e) = 0 with ball kernel, but if we use w, which is the radius of a

larger circle centered at e, then KDEQ,w(e) > 0, so the error is decreased. But, we do not

want w too large, as it would reach the points in other Qi, which is not the case for s in P,

so the error would be increased again. Thus, there seems to be a good choice for w > s.

But the situation of finding the wopt that minimizes h(w) = err(P, s, Q, w) is more

P1 P2

P3 P4

e

(a) Original data set.

Q1 Q2

Q3 Q4

e

(b) Coreset.

Figure 3.3. Example with need for larger w for coreset Q.



49

complicated. For each w it is itself a maximization over x 2 Rd. There may in fact be more

than one local minimum for w in h(w).

However, equipped with the WCen6 procedure to evaluate err(P, Q), we propose a

relatively simple optimization algorithm. We can perform a golden section search over

w, using WCen6 to obtain a set X and evaluate errX(P, s, Q, w). Such a search procedure

requires a convex function for any sort of guarantees, and this property may not hold.

However, we show next that h(w) has some restricted Lipschitz property, so that with

random restarts it should be able to find a reasonable local minimum. This is illustrated

in Figure 3.4, where the curve that is Lipschitz either has a large, relatively convex region

around the global minimum, or has shallow local minimums. The other curve without a

Lipschitz property has a very small convex region around the global maximum, and any

search procedure will have a hard time finding it.

3.3.2 Lipschitz Properties of h

In general, however, h(w) is not Lipschitz in w. But, we can show it is Lipschitz over a

restricted domain, specifically when w > s and when 1/s  A for some absolute constant

A. Define y(w, a) = 1
2pw2 exp(�a2/(2w2)).

Lemma 7. For any w � s and 1/s  A, y(w, a) is b-Lipschitz with respect to w, with b =

|a2 � 1/p|A3.

Proof. By taking the first derivative of y(w), we have

dy(w, a)
dw

= (a2 � 1
p

)w�3 exp(�a2/(2w2)).

And thus

�

C2

C1

�opt �

Figure 3.4. Two curves, one of which is Lipschitz.
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dy(w, a)
dw

�

�

�

�

= |a2 � 1/p|w�3 exp(�a2/(2w2))

 |a2 � 1/p|s�3  |a2 � 1/p|A3.

So, the absolute value of largest slope of function y(w, a) is b = |a2� 1/p|A3, thus y(w, a)
is b-Lipschitz continuous on w.

Theorem 7. For any w � s and 1/s  A, h(w) is b-Lipschitz with respect to w, for b =

1
|Q| Âq2Q |(x⇤ � q)2 � 1/p|A3 where x⇤ = arg maxx2R2 |KDEP,s(x)� KDEQ,w(x)|.

Proof. If KDEP,s(x⇤) � KDEQ,w(x⇤) then

h(w) = |KDEP,s(x⇤)� KDEQ,w(x⇤)|

= KDEP,s(x⇤)� 1
|Q| Â

q2Q

1
2pw2 exp

✓

�(x⇤ � q)2

2w2

◆

= KDEP,s(x⇤)� 1
|Q| Â

q2Q
y(w, (x⇤ � q))).

Since h(w) is a linear combination of |Q| functions of y(w, a) plus a constant and y(w, a)

is Lipschitz continuous, based on the Lemma 7 h(w) is Lipschitz continuous on w. We can

get the same result if KDEP,s(x⇤)  KDEQ,w(x⇤). In both directions, the first derivative of

the function is bounded, so h(w) is bounded.

3.3.3 Random Golden Section Search

From the above properties, we design a search procedure that will be effective in find-

ing the bandwidth w minimizing err(P, s, Q, w). The random golden section search is based

on the golden section search [79], a technique to find extremum in a strictly unimodal

function. To find a minimum, it successively narrows a range [`, r] with known function

values h(`), h(m1), h(m2), and h(r) with ` < m1 < m2 < r and with both h(m1), h(m2) less

than h(`) and h(r). If h(m1) < h(m2) the new search range is [`, m2], otherwise, it is [m1, r].

In either case, a new fourth point is chosen according to the golden ratio in such a way that

the interval shrinks by a constant factor on each step.

However, h(w) in our case can be a multimodal function, thus golden section search

is not guaranteed to work. We apply random restarts as follows. Starting with a range

[` = s, r = 10s], we choose one middle point at m = ls for l ⇠ Unif(1, 10). If h(m) > h(r),

we increase r by a factor 10 until it is (e.g., r = 100s). Then the second middle point
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is chosen using the golden ratio, and the search is run deterministically. We repeat with

several random values l.

3.4 Experiments
Here we run an extensive set of experiments to validate our techniques. We compare

KDEP with kernel density estimate under smaller coreset KDEQ for both synthetic and real

data in one and two dimensions. To show our methods work well in large data sets, we

use the large synthetic data set (0.5 million) and real data set (1 million) in two dimension.

3.4.1 Data Sets

We consider data sets that have different features at various scales, so that as more

data are present using a small bandwidth more fine-grain features are brought out, and a

larger bandwidth only shows the coarse features. Our real data set in one dimension is the

temperature data in Figure 3.1, with default s = 72 (3 days). We use parameter # = 0.02 to

generate a coreset Q with the Sort-selection technique [149].

We can simulate such multiscale features more precisely. On a domain [0, 1] we gener-

ate P recursively, starting with p1 = 0 and p2 = 1. Next we consider the interval between

[p1, p2] and insert two points at p3 = 2/5 and p4 = 3/5. There are now 3 intervals

[p1, p3], [p3, p4], and [p4, p2]. For each interval [pi, pj] we recursively insert 2 new points

at pi + (2/5) · (pj � pi) and at pi + (3/5) · (pj � pi), until |P| = 19684. The KDE of this data

set with s = 0.01 is shown in Figure 3.5(d), along with that of a coreset Q of size |Q| = 100.

We construct the two-dimensional synthetic data set in a similar way. The data are in

[0, 1]2 starting with four points p1 = (0, 0), p2 = (0, 1), p3 = (1, 0), p4 = (1, 1). We recurse

on this rectangle by adding 4 new points in the middle m: the x-coordinates are either at the

0.5-quantile or 0.8-quantile of the x-coordinates, and it is the same for new y-coordinates.

These 4 new points create 9 smaller empty rectangles. We further recurse on each of these

rectangles until |P| = 532900. The KDEP with s = 0.01 is shown in Figure 3.6(a). We use

Grid matching [149] to generate a coreset Q with # = 0.1 and size |Q| = 1040. Under the

original bandwidth s, the KDEQ is shown in Figure 3.6(b); due to a small bandwidth this

KDE has many more modes than the original, which motivates the larger bandwidth KDE

shown in Figure 3.6(c).

For real data with multiple scales in two dimension we consider OpenStreetMap data
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(a) Centroid method. (b) Weighted centroid method.

(c) Compare with all the other methods. (d) KDEP,s and KDEQ,w with original and best
bandwidth.

Figure 3.5. Results on one-dimensional synthetic data to choose best evaluating point
generation techniques.

(a) KDEP,s=0.01. (b) KDEQ,w=0.01. (c) KDEQ,w=0.013.

Figure 3.6. Visualization of KDEP and KDEQ for two-dimensional synthetic data using
different bandwidth.
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from the state of Iowa. Specifically, we use the longitude and latitude of all highway data

points, then rescale so it lies in [0, 1]⇥ [0, 1]. It was recognized in the early 1900s [133] that

agricultural populations, such as Iowa, exhibited population densities at several scales.

For ease of experiments, we use the original data of size |P| = 1155102 with s = 0.01, and

Q as a smaller coreset with # = 0.1 and |Q| = 1128. These are illustrated in Figure 3.7.

3.4.2 Evaluating Point Generation for errX

To find the best evaluation point generation techniques, we compare the various ways

to generate a set X to evaluate errX(P, Q). The larger numbers are better, so we want to

find point sets X so that errX(P, Q) is maximized with |X| small. As most of our methods

are random, five evaluation point sets are generated for each method and the average

errX(P, Q) is considered.

We start in one dimension, and investigate which parameter of the Cen and WCen

methods work best. We will then compare the best in class against the remaining ap-

proaches. Recall the parameter E[m] determines the expected number of points (under a

Exponential process) chosen to take the centroid or weighted centroid of, respectively. We

only show the test result with E[m] from 2 to 7, since the results are similar when E[m]

is larger than 7, and the larger the parameter the slower (and less desirable) the process.

The results are plotted in Figure 3.5 on the one-dimensional synthetic data. Specifically,

Figure 3.5(a) shows the Cen method and Figure 3.5(b) the WCen method. Both methods

plateau, for some parameter setting, after around |X| = 100, with WCen more robust to

parameter choice. In particular, both WCen converges slightly faster but with not much

pattern across the choice of parameter. We use Cen6 and WCen6 as representatives. We

next compare these approaches directly against each other as well as Rand, Orgp, Orgp+N,

Grid, and Comb in Figure 3.5(c). WCen6 appears the best in this experiment, but it has

been selected as best WCen technique from random trials. The Rand and Grid techniques

which also converge perform well, and are simpler to implement.

Similar results are seen on the real one-dimensional data in Figure 3.8. We can take

best in class from Cen and WCen parameter choices, shown as Cen6 and WCen6 in Figure

3.8(a) and Figure 3.8(b). These perform well and similar to the simpler Rand, Grid, and

Orgp in Figure 3.8(c). Since Rand and Grid also converge, in one dimension we would
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(a) KDEP,s=0.01. (b) KDEQ,w=0.01. (c) KDEQ,w=0.032.

Figure 3.7. Visualization of KDEP and KDEQ for two-dimensional real data using different
bandwidth.

(a) Centroid method. (b) Weighted centroid method.

(c) Compare with all the other methods. (d) KDEP,s and KDEQ,w with original and best band-
width.

Figure 3.8. Results on one-dimensional real data to choose the best evaluating point
generation techniques.
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recommend one of these simple methods.

For two-dimensional data, the techniques perform a bit differently. We again start

with the Cen and WCen methods as shown in Figure 3.9 on real and synthetic data.

The convergence results are not as good as in one dimension, as expected, and it takes

roughly |X| = 1000 points to converge. All methods perform roughly the same for various

parameter settings, so we use Cen6 and WCen6 as representatives. Comparing against all

techniques in Figure 3.9, most techniques perform roughly the same relative to each other,

and again WCen6 appears to be a good choice to use. The notable exceptions is that Grid

and Rand perform worse in two dimension than in one dimension; likely indicating that

the data dependent approaches are more important in this setting.

3.4.3 Choosing New Bandwidth Evaluation

We now apply a random golden section search to find new bandwidth values for

coresets on one-dimensional and two-dimensional synthetic and real data. In all random

trials, we always find the same local minimum, and report this value. We will see that a

value w > s can often give better error results, both visually and empirically, by smoothing

out the noise from the smaller coresets.

Figures 3.10(a) and 3.10(b) show evaluation of errX(P, s, Q, w) for various w values cho-

sen while running the random golden section search on synthetic and real one-dimensional

data. In both cases, setting w = s (as w = 0.01 and w = 72, respectively) gives roughly

twice as much error as using an omega roughly twice as large (w = 0.017 and w = 142,

respectively).

We can see even more dramatic results in the two-dimensional data in Figure 3.11. We

observe in Figure 3.11(a) on synthetic data that with the original w = s = 0.01 that the

error is roughly 3.6, but by choosing w = 0.013 we can reduce the error to roughly 2.7.

This is also shown visually in Figure 3.6 where a small coreset Q is chosen, and in Figure

3.6(b) the large-scale pattern in KDEP,s is replaced by many isolated points; KDEQ,w=0.013

increases the bandwidth and the desired visual pattern re-emerges. On real data, a similar

pattern is seen in Figure 3.11(b). The original w = s = 0.01 has error roughly 3.0, and

an w = 0.032 (more than 3 times larger) gives error about 1.1. This extra smoothing is

illustrated in Figure 3.7.
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(a) Centroid methods. (b) Centroid method.

(c) Weighted centroid method. (d) Weighted centroid method.

(e) All methods. (f) All methods.

Figure 3.9. Choosing the best evaluation set X for on two-dimensional synthetic (left) and
real (right) data.
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(a) Synthetic data (b) Real data

Figure 3.10. w⇤ = arg minw errX(P, s, Q, w) in R1.

(a) Synthetic data (b) Real data

Figure 3.11. w⇤ = arg minw expX(P, s, Q, w) in R2.

Thus, we see that it is indeed useful to increase the bandwidth of kernel density es-

timates on a coreset, even though theoretical bounds already hold for using the same

bandwidth. We show that doing so can decrease the error by a factor of 2 or more. Since

we consider w = s, and only decrease the error in the process, we can claim the same

theoretical bounds for the new w value. It is an open question of whether one can prove

tighter coreset bounds by adapting the bandwidth value.
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3.4.4 Compare with the Traditional Bandwidth Selection Method

In this section, we include some bandwidth selection results for the two-dimensional

synthetic and real data using the traditional bandwidth selection method surveyed in

Section 3.1.5, including biased cross-validation (BCV) bandwidth selection method, least-

squares cross-validation (LSCV) bandwidth selection method, plug-in (PI) bandwidth se-

lection method and smoothed cross-validation (SCV) bandwidth selection method.

We use the kernel smoothing R package(ks), which was originally introduced by Duong

(2007) [44] and improved in 2014. In the experiment, our data set is normalized and

we assume data in each dimension are independent and share the same bandwidth, so

we use larger value from the main diagonal of bandwidth matrix computed from the

R package. For the two-dimensional synthetic data set, we use the same coreset with

|Q| = 1040, the bandwidth using the above four methods are wBCV = 0.0085, wLSCV =

0.024, wPI = 0.0036, wSCV = 0.0043. For the two-dimensional real data set, with the coreset

Q = 1128, the bandwidth chosen from the four methods are wBCV = 0.0078, wLSCV =

0.0003, wPI = 0.0029, wSCV = 0.004. The corresponding error trends compared to our

method for these two data sets are shown in Figure 3.12, where wOPT denotes the optimal

bandwidth from our method. Both of these figures show our method can achieve the

smallest error comparing to the baseline methods and all the baseline methods tend to

give smaller bandwidth and not stable for different data sets.

(a) Synthetic data (b) Real data

Figure 3.12. w⇤ = arg minw expX(P, s, Q, w) in R2.
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3.5 Conclusion
This chapter considers evaluating kernel density estimates under L• error, and how to

use these criteria to select the bandwidth of a coreset. Since L• error is stronger than the

more traditional L1 or L2 errors, it provides approximation guarantees for all points in the

domain, and aligns with recent theoretical results [103] of kernel range space, it is worth

rigorously investigating.

We propose several methods to efficiently evaluate the L• error between two kernel

density estimates and provide a convergence guarantee. The method Grid works well, and

is very simple to implement in R1. In R2, methods that adapt more to the data perform

much better, and our technique WCen is shown to be accurate and efficient on real and

synthetic data. We then use these technique to select a new bandwidth value for coresets

that can improve the error by a factor of 2 to 3. We demonstrate this both visually and

empirically on real and synthetic data sets.



CHAPTER 4

GENERALIZED KERNEL RANGE SPACE AND

(#, t)-NET

This chapter considers traditional sample complexity problems but adapts to when the

range space (or function space) smoothes out its boundary. This is important in various

scenarios where either the data points or the measuring function are noisy. Similar prob-

lems have been considered in specific contexts of functions classes with a [0, 1] range or

kernel density estimates. We extend and generalize these results, motivated by scenarios

such as the following.

(S1) Consider maintaining a random sample of noisy spatial data points (say twitter users

with geo-coordinates), and we want this sample to include a witness to every large

enough event. However, because the data coordinates are noisy, we use a kernel

density estimate to represent the density. And moreover, we do not want to consider

regions with a single or constant number of data points which only occur due to

random variations. In this scenario, how many samples do we need to maintain?

(S2) Next, consider a large approximate (say high-dimensional image feature [2]) data set,

where we want to build a linear classifier. Because the features are approximate (say

due to feature hashing techniques), we model the classifier boundary to be randomly

shifted using Gaussian noise. How many samples from this data set do we need to

obtain a desired generalization bound?

(S3) Finally, consider one of these scenarios in which we are trying to create an infor-

mative subset of the enormous full data set, but have the opportunity to do so in

ways more intelligent than randomly sampling. On such a reduced data set one may

want to train several types of classifiers, or to estimate the density of various subsets.

Can we generate a smaller data set compared to what would be required by random

sampling?
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The traditional way to study related sample complexity problems is through range

spaces (a ground set X, and family of subsets A) and their associated dimension (e.g., VC-

dimension [135]). We focus on a smooth extension of range spaces defined on a geometric

ground set. Specifically, consider the ground set P to be a subset of points in Rd, and let

A describe subsets defined by some geometric objects, for instance, a halfspace or a ball.

Points p 2 Rd that are inside the object (e.g., halfspace or ball) are typically assigned a

value 1, and those outside a value 0. In our smoothed setting, points near the boundary

are given a value between 0 and 1, instead of discretely switching from 0 to 1.

In learning theory, these smooth range spaces can be characterized by more general

notions called P-dimension [108] (or Pseudo-dimension) or V-dimension [134] (or “fat”

versions of these [3]) and can be used to learn real-valued functions for regression or

density estimation, respectively.

In geometry and data structures, these smoothed range spaces are of interest in study-

ing noisy data. Our work extends some recent work [78,103] which examines a special case

of our setting that maps to kernel density estimates, and matches or improves on related

bounds for non-smoothed versions.

We next summarize the main contributions in this chapter.

• We define a general class of smoothed range spaces (Section 4.2.1), with application to

density estimation and noisy agnostic learning, and we show that these can inherit

sample complexity results from linked non-smooth range spaces (Corollary 4.3.1).

• We define an (#, t)-net for a smoothed range space (Section 4.2.3). We show how

this can inherit sampling complexity bounds from linked non-smooth range spaces

(Theorem 9), and we relate this to non-agnostic density estimation and hitting set

problems.

• We provide discrepancy-based bounds and constructions for #-samples on smooth

range spaces requiring significantly fewer points than uniform sampling approaches

(Theorems 11 and 12), and also smaller than discrepancy-based bounds on the linked

binary range spaces.
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4.1 Definitions and Background
Recall that we will focus on geometric range spaces (P,A) where the ground set P ⇢ Rd

and the family of ranges A are defined by geometric objects. It is common to approximate

a range space in one of two ways, as an #-sample (aka #-approximation) or an #-net as we

defined in Chapter 1. Given a range space (P,A) where |P| = m, then pA(m) describes

the maximum number of possible distinct subsets of P defined by some A 2 A. If we can

bound, pA(m)  Cmn for absolute constant C, then (P,A) is said to have shatter dimension

n.

For instance, the shatter dimension of H halfspaces in Rd is d, and for B balls in Rd is

d + 1. For a range space with shatter dimension n, a random sample of size O((1/#2)(n +

log(1/d))) is an #-sample with probability at least 1� d [85, 135], and a random sample of

size O((n/#) log(1/#d)) is an #-net with probability at least 1� d [69, 98].

An #-sample Q is sufficient for agnostic learning with generalization error #, where

the best classifier might misclassify some points. An #-net Q is sufficient for non-agnostic

learning with generalization error #, where the best classifier is assumed to have no error

on P.

The size bounds can be made deterministic and slightly improved for certain cases. An

#-sample Q can be made of size O(1/#2n/(n+1)) [91] and this bound can be no smaller [92]

in the general case. For balls B in Rd which have shatter-dimension n = d + 1, this can

be improved to O(1/#2d/(d+1) logd/(d+1)(1/#)) [10,92], and the best-known lower bound is

O(1/#2d/(d+1)). For axis-aligned rectangles R in Rd which have shatter-dimension n = 2d,

this can be improved to O((1/#) logd+1/2(1/#)) [84].

For #-nets, the general bound of O((n/#) log(1/#)) can also be made deterministic [91],

and for halfspaces in R4 the size must be at least W((1/#) log(1/#)) [99]. But for halfspaces

in R3 the size can be O(1/#) [67,93], which is tight. By a simple lifting, this also applies for

balls in R2. For other range spaces, such as axis-aligned rectangles in R2, the size bound is

Q((1/#) log log(1/#)) [5, 99].

4.1.1 Kernels

A kernel is a bivariate similarity function K : Rd ⇥Rd ! R+, which can be normalized

so K(x, x) = 1 (which we assume through this chapter).
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A kernel range space [78, 103] (P,K) is an extension of the combinatorial concept of a

range space (P,A) (or to distinguish it we refer to the classic notion as a binary range space).

It is defined by a point set P ⇢ Rd and a kernel K. An element Kx of K is a kernel K(x, ·)

applied at point x 2 Rd; it assigns a value in [0, 1] to each point p 2 P as K(x, p). If we

use a ball kernel, then each value is exactly {0, 1} and we recover exactly the notion of a

binary range space for geometric ranges defined by balls.

A binary range space (P,A) is linked to a kernel range space (P,K) if the set {p 2

P | K(x, p) � t} is equal to P \ A for some A 2 A, for any threshold value t. [78]

showed that an #-sample of a linked range space (P,A) is also an #-kernel sample of a

corresponding kernel range space (P,K). Since all range spaces defined by symmetric,

shift-invariant kernels are linked to range spaces defined by balls, they inherit all #-sample

bounds, including that random samples of size O((1/#2)(d + log(1/d)) provide an #-kernel

sample with probability at least 1� d. Then [103] showed that these bounds can be im-

proved through discrepancy-based methods to O(((1/#)
p

log(1/#d))2d/(d+2)), which is

O((1/#)
p

log(1/#d)) in R2.

A more general concept has been studied in learning theory on real-valued functions,

where a function f as a member of a function class F describes a mapping from Rd to

[0, 1] (or more generally R). A kernel range space where the linked binary range space

has bounded shatter-dimension n is said to have bounded V-dimension [134] (see [3]) of

n. Given a ground set X, then for (X,F) this describes the largest subset Y of X which

can be shattered in the following sense. Choose any value s 2 [0, 1] for all points y 2 Y,

and then for each subset of Z ⇢ Y, there exists a function f 2 F so f (y) > s if y 2 Z

and f (y) < s if y /2 Z. The best sample complexity bounds for ensuring Q is an #-sample

of P based on V-dimension are derived from a more general sort of dimension (called a

P-dimension [108] where in the shattering definition, each y may have a distinct s(y) value)

requires |Q| = O((1/#2)(n + log(1/d))) [85]. As we will see, these V-dimension-based

results are also general enough to apply to the to-be-defined smooth range spaces.

4.2 New Definitions
In this chapter, we extend the notion of kernel range spaces to other smoothed range

spaces that are “linked” with common range spaces, e.g., halfspaces. These inherit the
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construction bounds through the linking result of [78], and we show cases where these

bounds can also be improved. We also extend the notion of #-nets to kernels and smoothed

range spaces, and show linking results for these as well.

4.2.1 Smoothed Range Spaces

Here, we will define the primary smoothed combinatorial object that we will examine,

starting with halfspaces, and then generalizing. Let Hw denote the family of smoothed

halfspaces with width parameter w, and let (P,Hw) be the associated smoothed range space

where P ⇢ Rd. Given a point p 2 P, then smoothed halfspace h 2 Hw maps p to a value

vh(p) 2 [0, 1] (rather than the traditional {0, 1} in a binary range space).

We first describe a specific mapping to the function value vh(p) that will be sufficient for

the development of most of our techniques. Let F be the (d� 1)-flat defining the boundary

of halfspace h. Given a point p 2 Rd, let pF = arg minq2F kp� qk describe the point on F

closest to p. Now we define

vh,w(p) =

8

>

>

>

>

<

>

>

>

>

:

1 p 2 h and kp� pFk � w
1
2 + 1

2
kp�pFk

w p 2 h and kp� pFk < w
1
2 �

1
2
kp�pFk

w p /2 h and kp� pFk < w
0 p /2 h and kp� pFk � w.

These points within a slab of width 2w surrounding F can take on a value between 0 and

1, where points outside of this slab revert back to the binary values of either 0 or 1.

We can make this more general using a shift-invariant kernel k(kp � xk) = K(p, x),

where kw(kp � xk) = k(kp � xk/w) allows us to parameterize by w. Define vh,w(p) as

follows.

vh,w(p) =

(

1� 1
2 kw(kp� pFk) p 2 h

1
2 kw(kp� pFk) p /2 h.

For brevity, we will omit the w and just use vh(p) when clear. These definitions are equiv-

alent when using the triangle kernel. But, for instance, we could also use a Epanechnikov

kernel or Gaussian kernel. Although the Gaussian kernel does not satisfy the restriction

that only points in the width 2w slab take non {0, 1} values, we can use techniques from

[103] to extend to this case as well. This is illustrated in Figure 4.1. Another property

held by this definition that we will exploit is the slope V of these kernels is bounded by

V = O(1/w) = c/w, for some constant c; the constant c = 1/2 for triangle and Gaussian,

and c = 1 for Epanechnikov.
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kp� pFk ?(p 2 h) vh(p)
p1 3w/2 TRUE 1
p2 3w/4 TRUE 7/8
p3 w/2 FALSE 1/4

Figure 4.1. Illustration of the smoothed halfspace, and smoothed polynomial surface, with
function value of three points {p1, p2, p3} defined using a triangle kernel.

Finally, we can further generalize this by replacing the flat F at the boundary of h with

a polynomial surface G. The point pG = arg minq2G kp � qk replaces pF in the above

definitions. Then the slab of width 2w is replaced with a curved volume in Rd; see Figure

4.1. For instance, if G defines a circle in Rd, then vh defines a disc of value 1, then an

annulus of width 2w where the function value decreases to 0. Alternatively, if G is a single

point, then we essentially recover the kernel range space, except that the maximum height

is 1/2 instead of 1. We will prove the key structural results for polynomial curves in Section

4.4, but otherwise focus on halfspaces to keep the discussion cleaner. The most challenging

elements of our results are all contained in the case with F as a (d� 1)-flat.

4.2.2 #-Sample in a Smoothed Range Space

It will be convenient to extend the notion of a kernel density estimate to these smoothed

range space. A smoothed density estimate SDEP is defined for any h 2 Hw as

SDEP(h) =
1
|P| Â

p2P
vh(p). (4.1)

An #-sample Q of a smoothed range space (P,Hw) is a subset Q ⇢ P such that

max
h2Hw

|SDEP(h)� SDEQ(h)|  #. (4.2)

Given such an #-sample Q, we can then consider a subset H̄w of Hw with bounded

integral (perhaps restricted to some domain like a unit cube that contains all of the data

P). If we can learn the smooth range ĥ = arg maxh2H̄w
SDEQ(h), then we know SDEP(h⇤)�

SDEQ(ĥ)  #, where h⇤ = arg maxh2H̄w
SDEP(h), since SDEQ(ĥ) � SDEQ(h⇤) � SDEP(h⇤)�

#. Thus, such a set Q allows us to learn these more general density estimates with general-

ization error #.
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We can also learn smoothed classifiers, like scenario (S2) in the introduction, with

generalization error #, by giving points in the negative class a weight of �1; this requires

separate (#/2)-samples for the negative and positive classes.

4.2.3 (#, t)-Net in a Smoothed Range Space

We now generalize the definition of an #-net. Recall that it is a subset Q ⇢ P such that

Q “hits” all large enough ranges (|P \ A|/|P| � #). However, the notion of “hitting” is

now less well-defined since a point q 2 Q may be in a range but with value very close to 0;

if a smoothed range space is defined with a Gaussian or other kernel with infinite support,

any point q will have a nonzero value for all ranges! Hence, we need to introduce another

parameter t 2 (0, #), to make the notion of hitting more interesting in this case.

A subset Q ⇢ P is an (#, t)-net of smoothed range space (P,Hw) if for any smoothed range,

h 2 Hw such that SDEP(h) � #, then there exists a point q 2 Q such that vh(q) � t.

The notion of #-net is closely related to that of hitting sets. A hitting set of a binary range

space (P,A) is a subset Q ⇢ P so every A 2 A (not just the large enough ones) contains

some q 2 Q. To extend these notions to the smoothed setting, we again need an extra

parameter t 2 (0, #), and also need to only consider large enough smoothed ranges, since

there are now an infinite number even if P is finite. A subset Q ⇢ P is an (#, t)-hitting set

of smoothed range space (P,Hw) if for any h 2 Hw such that SDEP(h) � #, then SDEQ(h) � t.

In the binary range space setting, an #-net Q of a range space (P,A) is sufficient to learn

the best classifier on P with generalization error # in the non-agnostic learning setting, that

is assuming a perfect classifier exists on P from A. In the density estimation setting, there

is not a notion of a perfect classifier, but if we assume some other properties of the data,

the (#, t)-net will be sufficient to recover them. For instance, consider (like scenario (S1) in

the introduction) that P is a discrete distribution so for some “event” points p 2 P, there is

at least an #-fraction of the probability distribution describing P at p (e.g., there are more

than #|P| points very close to p). In this setting, we can recover the location of these points

since they will have probability at least t in the (#, t)-net Q.
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4.3 Linking and Properties of (#, t)-Nets
First we establish some basic connections between #-sample, (#, t)-net, and (#, t)-hitting

set in smoothed range spaces. In binary range spaces, an #-sample Q is also an #-net, and a

hitting set is also an #-net; we show a similar result here up to the covering constant t.

Lemma 8. For a smoothed range space (P,Hw) and 0 < t < # < 1, an (#, t)-hitting set Q is also

an (#, t)-net of (P,Hw).

Proof. The (#, t)-hitting set property establishes for all h 2 Hw with SDEP(h) � #, then also

SDEQ(h) � t. Since SDEQ(h) = 1
|Q| Âq2Q vh(q) is the average over all points q 2 Q, then it

implies that at least one point also satisfies vh(q) � t. Thus Q is also an (#, t)-net.

In the other direction, an (#, t)-net is not necessarily an (#, t)-hitting set since the (#, t)-

net Q may satisfy a smoothed range h 2 Hw with a single point q 2 Q such that vh(q) � t,

but all others q0 2 Q \ {q} having vh(q0)⌧ t, and thus SDEQ(h) < t.

Theorem 8. For 0 < t < # < 1, an (#� t)-sample Q in smoothed range space (P,Hw) is an

(#, t)-hitting set in (P,Hw), and thus also an (#, t)-net of (P,Hw).

Proof. Since Q is the (#� t)-sample in the smoothed range space, for any smoothed range

h 2 Hw we have |SDEP(h)� SDEQ(h)|  #� t. We consider the upper and lower bound

separately.

If SDEP(h) � #, when SDEP(h) � SDEQ(h), we have

SDEQ(h) � SDEP(h)� (#� t) � #� (#� t) = t.

And more simply, when SDEQ(h) � SDEP(h) and SDEP(h) � # � t, then SDEQ(h) � t.

Thus, in both situations, Q is an (#, t)-hitting set of (P,Hw). And then by Lemma 8, Q is

also an (#, t)-net of (P,Hw).

4.3.1 Relations between Smoothed Range Spaces and Linked Binary Range
Spaces

Consider a smoothed range space (P,Hw), and for one smoothed range h 2 Hw,

examine the range boundary F (e.g. a (d � 1)-flat, or polynomial surface) along with a

symmetric, shift invariant kernel K that describes vh. The superlevel set (vh)t is all points

x 2 Rd such that vh(x) � t. Then recall a smoothed range space (P,Hw) is linked to a
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binary range space (P,A) if every set {p 2 P | vh(p) � t} for any h 2 Hw and any t > 0,

is exactly the same as some range A \ P for A 2 A. For smoothed range spaces defined by

halfspaces, then the linked binary range space is also defined by halfspaces. For smoothed

range spaces defined by points, mapping to kernel range spaces, then the linked binary

range spaces are defined by balls.

Joshi et.al. [78] established that given a kernel range space (P,K), a linked binary range

space (P,A), and an #-sample Q of (P,A), then Q is also an #-kernel sample of (P,K). An

inspection of the proof reveals the same property holds directly for smoothed range spaces,

as the only structural property needed is that all points p 2 P, as well as all points q 2 Q,

can be sorted in decreasing function value K(p, x), where x is the center of the kernel. For

smoothed range space, this can be replaced with sorting by vh(p).

Corollary 4.3.1 ( [78]). Consider a smoothed range space (P,Hw), a linked binary range space

(P,A), and an #-sample Q of (P,A) with # 2 (0, 1). Then Q is an #-sample of (P,Hw).

We now establish a similar relationship to (#, t)-nets of smoothed range spaces from

(#� t)-nets of linked binary range spaces.

Theorem 9. Consider a smoothed range space (P,Hw), a linked binary range space (P,A), and

an (#� t)-net Q of (P,A) for 0 < t < # < 1. Then Q is an (#, t)-net of (P,Hw).

Proof. Let |P| = n. Then, since Q is an (# � t)-net of (P,A), for any range A 2 A, if

|P \ A| � (#� t)n, then Q \ A 6= ∆.

Suppose h 2 Hw has SDEP(h) � # and we want to establish that SDEQ(h) � t. Let

A 2 A be the range such that (# � t)n points with largest vh(pi) values are exactly the

points in A. We now partition P into three parts (1) let P1 be the (#� t)n� 1 points with

largest vh values, (2) let y be the point in P with (#� t)nth largest vh value, and (3) let P2

be the remaining n� n(#� t) points. Thus, for every p1 2 P1 and every p2 2 P2 we have

vh(p2)  vh(y)  vh(p1)  1.

Now using our assumption n · SDEP(h) � n# we can decompose the sum

n · SDEP(h) = Â
p12P1

vh(p1) + vh(y) + Â
p22P2

vh(p2) � n#,

and hence using upper bounds vh(p1)  1 and vh(p2)  vh(y),
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vh(y) � n#� Â
p12P1

vh(p1)� Â
p22P2

vh(p2)

� n#� (n(#� t)� 1) · 1� (n� n(#� t))vh(y).

Solving for vh(y) we obtain

vh(y) � nt + 1
n� n(#� t) + 1

� nt

n� n(#� t)
� nt

n
= t.

Since (P,A) is linked to (P,Hw), there exists a range A 2 A that includes precisely

P1 [ y (or more points with the same vh(y) value as y). Because Q is an (# � t)-net of

(P,A), Q contains at least one of these points, lets call it q. Since all of these points have

function value vh(p) � vh(y) � t, then vh(q) � t. Hence, Q is also an (#, t)-net of (P,Hw),

as desired.

This implies that if t  c# for any constant c < 1, then creating an (#, t)-net of a

smoothed range space, with a known linked binary range space, reduces to computing

an #-net for the linked binary range space. For instance, any linked binary range space

with shatter-dimension n has an #-net of size O( n
# log 1

# ), including halfspaces in Rd with

n = d and balls in Rd with n = d + 1; hence there exists (#, #/2)-nets of the same size. For

halfspaces in R2 or R3 (linked to smoothed halfspaces) and balls in R2 (linked to kernels),

the size can be reduced to O(1/#) [67, 93, 111].

4.4 Min-Cost Matchings within Cubes
Before we proceed with our construction for smaller #-samples for smoothed range

spaces, we need to prepare some structural results about min-cost matchings. Following

some basic ideas from [103], these matchings will be used for discrepancy bounds on

smoothed range spaces in Section 4.5.

In particular, we analyze some properties of the interaction of a min-cost matching M

and some basic shapes ( [103] considered only balls). Let P ⇢ Rd be a set of 2n points.

A matching M(P) is a decomposition of P into n pairs {pi, qi} where pi, qi 2 P and each

pi (and qi) is in exactly one pair. A min-cost matching is the matching M that minimizes

cost1(M, P) = Ân
i=1 kpi � qik. The min-cost matching can be computed in O(n3) time

by [48] (using an extension of the Hungarian algorithm from the bipartite case). In R2, it

can be calculated in O(n3/2 log5 n) time [136].
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Following [103], again we will base our analysis on a result of [11] which says that if

P ⇢ [0, 1]d (a unit cube) then for d a constant, costd(M, P) = Ân
i=1 kpi � qikd = O(1), where

M is the min-cost matching. We make no attempt to optimize constants, and assume d is

constant.

One simple consequence, is that if P is contained in a d-dimensional cube of side length

`, then costd(M, P) = Ân
i=1 kpi � qikd = O(`d).

We are now interested in interactions with a matching M for P in a d-dimensional cube

of side length ` C`,d (call this shape an (`, d)-cube), and more general objects; in particular

Cw a (w, d)-cube and, Sw a slab of width 2w, both restricted to be within C`,d. Now for

such an object Ow (which will either be Cw or Sw) and an edge {p, q} where line segment

pq intersects Ow define point pB (resp. qB) as the point on segment pq inside Ow closest to

p (resp. q). Note if p (resp. q) is inside O then pB = p (resp. qB = q), otherwise, it is on the

boundary of Ow. For instance, see C20w in Figure 4.2.

Define the length of a matching M restricted to an object Ow ⇢ Rd as

r(Ow, M) = Â
(q,p)2M

min
n

(2w)d, kpB � qBkd
o

.

Note this differs from a similar definition by [103] since that case did not need to consider

when both p and q were both outside of Ow, and did not need the min{(2w)d, . . .} term

because all objects had diameter 2.

20w

p�

qq�

20w

w

p

q�
B qB

pB p�
B

Figure 4.2. (T3) edges.
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Lemma 9. Let P ⇢ C`,d, where d is constant, and M be its min-cost matching. For any (w, d)-cube

Cw ⇢ C`,d we have r(Cw, M) = O(wd).

Proof. We cannot simply apply the result of [11] since we do not restrict that P ⇢ Cw. We

need to consider cases where either p or q or both are outside of Cw. As such, we have

three types of edges we consider, based on a cube C20w of side length 20w, and with center

the same as Cw.

(T1) Both endpoints are within C20w of edge length at most
p

d20w.

(T2) One endpoint is in Cw, the other is outside C20w.

(T3) Both endpoints are outside C20w.

For all (T1) edges, the result of Bern and Eppstein can directly bound their contribution

to r(Cw, M) as O(wd) (scale to a unit cube, and rescale). For all (T2) edges, we can also

bound their contribution to r(Cw, M) as O(wd), by extending an analysis of [103] when

both Cw and C20w are similarly proportioned balls. This analysis shows there are O(1)

such edges.

We now consider the case of (T3) edges, restricting to those that also intersect Cw. We

argue there can be at most O(1) of them. In particular, consider two such edges {p, q}

and {p0, q0}, and their mappings to the boundary of C20w as pB, qB, p0B, q0B; see Figure 4.2. If

kpB � p0Bk  10w and kqB � q0Bk  10w, then we argue next that this cannot be part of a

min-cost matching since kp� p0k+ kq� q0k < kp� qk+ kp0 � q0k, and it would be better

to swap the pairing. Then it follows from the straight-forward net argument below that

there can be at most O(1) such pairs.

We first observe that kpB� p0Bk+ kqB� q0Bk  10w + 10w < 20w + 20w  kpB� qBk+

kp0B � q0Bk. Now we can obtain our desired inequality using that kp � qk = kp � pBk +

kpB � qBk + kqB � qk (and similar for kp0 � q0k) and that kp � p0k  kp � pBk + kpB �

p0Bk+ kp0B � p0k by triangle inequality (and similar for kq� q0k).

Next, we describe the net argument that there can be at most O(d2 · 22d) = O(1) such

pairs with kpB� p0Bk > 10w and kqB� q0Bk > 10w. First place a 5w-net N f on each (d� 1)-

dimensional face f of C20w so that any point x 2 f is within 5w of some point h 2 N f .

We can construct N f of size O(2d) with a simple grid. Then let N =
S

f N f as the union
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of the nets on each face; its size is O(d · 2d). Now for any point p /2 C20w let h(p) =

arg minh2N kpB � hk be the closest point in N to pB. If two points p and p0 have h(p) =

h(p0) then kp � p0k  10w. Hence, there can be at most O((d · 2d)2) edges with {p, q}

mapping to unique h(p) and h(q) if no other edge {p0, q0} has kpB � p0Bk  10w and

kqB � q0Bk  10w.

Concluding, there can be at most O(d2 · 22d) = O(1) edges in M of type (T3), and the

sum of their contribution to r(Cw, M) is at most O(wd), completing the proof.

Lemma 10. Let P ⇢ C`,d, where d is constant, and let M be its min-cost matching. For any width

2w slab Sw restricted to C`,d we have r(Sw, M) = O(`d�1w).

Proof. We can cover the slab Sw with O((`/w)d�1) (w, d)-cubes. To make this concrete, we

cover C`,d with d`/wed cubes on a regular grid. Then in at least one basis direction (the one

closest to orthogonal to the normal of F), any column of cubes can intersect Sw in at most 4

cubes. Since there are d`/wed�1 such columns, the bound holds. Let Cw be the set of these

cubes covering Sw.

Restricted to any one such cube Cw, the contribution of those edges to r(Sw, M) is at

most O(wd) by Lemma 9. Now we need to argue that we can just sum the effect of all

covering cubes. The concern is that an edge goes through many cubes, only contributing

a small amount to each r(Cw, M) term, but when the total length is taken to the dth power

it is much more. However, since each edge’s contribution is capped at (2w)2, we can say

that if any edge goes through more than O(1) cubes, its length must be at least w, and its

contribution in one such cube is already W(w), so we can simply inflate the effect of each

cube towards r(Sw, M) by a constant.

In particular, consider any edge pq that has p 2 Cw. Each cube has 3d � 1 neighboring

cubes, including through vertex incidence. Thus, if edge pq passes through more than 3d

cubes, q must be in a cube that is not one of C0w’s neighbors. Thus, it must have length

at least w; and hence its length in at least one cube C0w must be at least w/3d, with its

contribution to r(C0w, M) > wd/(3d2
). Thus, we can multiply the effect of each edge in

r(Cw, M) by 3d22d = O(1) and be sure it is at least as large as the effect of that edge in

r(Sw, M). Hence
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r(Sw, M)  3d2
2d Â

Cw2Cw

r(Cw, M)

 O(1) Â
Cw2Cw

O(wd)

= O((`/w)d�1) · O(wd)

= O(`d�1w).

We can apply the same decomposition as used to prove Lemma 10 to also prove a

result for a w-expanded volume Gw around a degree g polynomial surface G. A degree

g polynomial surface can intersect a line at most g times, so for some C`,d the expanded

surface Gw \ C`,d can be intersected by O(g(`/w)d�1) (w, d)-cubes. Hence, we can achieve

the following bound.

Corollary 4.4.1. Let P ⇢ C`,d, where d is constant, and let M be its min-cost matching. For any

volume Gw defined by a polynomial surface of degree g expanded by a width w, restricted to C`,d we

have r(Gw, M) = O(g`d�1w).

4.5 Constructing #-Samples for Smoothed Range Spaces
In this section, we build on the ideas from [103] and the new min-cost matching results

in Section 4.4 to produce new discrepancy-based #-sample bounds for smoothed range

spaces. The basic construction is as follows. We create a min-cost matching M on P,

then for each pair (p, q) 2 M, we retain one of the two points at random, halving the

point set. We repeat this until we reach our desired size. This should not be unfamiliar

to readers familiar with discrepancy-based techniques for creating #-samples of binary

range spaces [28, 92]. In that literature similar methods exist for creating matchings “with

low-crossing number”. Each such matching formulation is specific to the particular com-

binatorial range space one is concerned with. However, in the case of smoothed range

spaces, we show that the min-cost matching approach is a universal algorithm. It means

that an #-sample Q for one smoothed range space (P,Hw) is also an #-sample for any other

smoothed range space (P,H0w), perhaps up to some constant factors. We also show how

these bounds can sometimes improve upon #-sample bounds derived from linked range

spaces; herein the parameter w will play a critical role.
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4.5.1 Discrepancy for Smoothed Halfspaces

To simplify arguments, we first consider P ⇢ R2 extending to Rd in Section 4.5.4.

Let c : P ! {�1, +1} be a coloring of P, and define the discrepancy of (P,Hw) with

coloring c as discc(P,Hw) = maxh2Hw |Âp2P c(p)vh(p)|. Restricted to one smoothed

range h 2 Hw this is discc(P, h) = |Âp2P c(p)vh(p)|. We construct a coloring c using

the min-cost matching M of P; for each {pi, qi} 2 M we randomly select one of pi or qi to

have c(pi) = +1, and the other c(qi) = �1. We next establish bounds on the discrepancy

of this coloring for a V-bounded smoothed range space (P,Hw), i.e., where the gradient of

vh is bounded by V  c1/w for a constant c1 (see Section 4.2.1).

For any smoothed range h 2 Hw, for each pair {pj, qj} in the matching M, we can

now define a random variable Xj = c(pj)vh(pj) + c(qj)vh(qj). This allows us to rewrite

discc(P, h) = |Âj Xj|. We can also define a variable Dj = 2|vh(pj) � vh(qj)| such that

Xj 2 {�Dj/2, Dj/2}. Now, following the key insight from [103], we can bound Âj D2
j using

results from Section 4.4, which shows up in the following Chernoff bound from [43]: Let

{X1, X2, . . .} be independent random variables with E[Xj] = 0 and Xj = {�Dj/2, Dj/2}

then

Pr
h

discc(P, h) � a
i

= Pr
h

�

�

�Â
j

Xj

�

�

�

� a
i

 2 exp

 

�2a2

Âj D2
j

!

. (4.3)

Lemma 11. Assume P ⇢ R2 is contained in some cube C`,2, and with min-cost matching M

defining c, and consider a V-bounded smoothed halfspace h 2 Hw associated with slab Sw. Let

r(Sw, M)  c2(`w) for constant c2 (see definition of r in Section 4.4). Then Pr


discc(P, h) >

C
q

`
w log(2/d)

�

 d for any d > 0 and constant C = c1
p

2c2.

Proof. Using the gradient of vh is at most V = c1/w and |vh(pj)� vh(qj)|  V max{2w, kpj�

qjk} we have

Â
j

D2
j = Â

j
4(vh(pj)� vh(qj))

2  4V2r(Sw, M)  4c2
1/w2 · c2`w = 4c2

1c2`/w,

where the second inequality follows by Lemma 10 which shows that r(Sw, M) = Âj max

{(2w)2, kpj � qjk2}  c2(`w).

We now study the random variable discc(P, h) = |Âi Xi| for a single h 2 Hw. Invoking

(4.3) we can bound Pr[discc(P, h) > a]  2 exp(�a2/(2c2
1c2`/w)). Setting C = c1

p
2c2 and
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a = C
q

`
w log(2/d) reveals Pr



discc(P, h) > C
q

`
w log(2/d)

�

 d.

4.5.2 From a Single Smoothed Halfspace to a Smoothed Range Space

The above theorems imply small discrepancy for a single smoothed halfspace h 2 Hw,

but this does not yet imply small discrepancy discc(P,Hw), for all choices of smoothed

halfspaces simultaneously. And in a smoothed range space, the family Hw is not finite,

since even if the same set of points have vh(p) = 1, vh(p) = 0, or are in the slab Sw,

infinitesimal changes of h will change SDEP(h). So in order to bound discc(P,Hw), we

will show that there are polynomial in n number of smoothed halfspaces that need to be

considered, and then apply a union bound across this set. The proof is deferred to the full

version.

Theorem 10. For P ⇢ R2 of size n, for Hw, and value Y(n, d) = O
�

q

`
w log n

d )
�

for d > 0, we

can choose a coloring c such that Pr[discc(P,Hw) > Y(n, d)]  d.

4.5.3 #-Samples for Smoothed Halfspaces

To transform this discrepancy algorithm to #-samples, let f (n) = discc(P,Hw)/n be

the value of # in the #-samples generated by a single coloring of a set of size n. Solving

for n in terms of #, the sample size is s(#) = O( 1
#

q

`
w log `

w#d ). We can then apply the

MergeReduce framework [29]; iteratively apply this random coloring in O(log n) rounds on

disjoint subsets of size O(s(#)). Using a generalized analysis (c.f., Theorem 3.1 in [102]),

we have the same #-sample size bound.

Theorem 11. For P ⇢ C`,2 ⇢ R2, with probability at least 1� d, we can construct an #-sample of

(P,Hw) of size O( 1
#

q

`
w log `

w#d ).

To see that these bounds make rough sense, consider a random point set P in a unit

square. Then setting w = 1/n will yield roughly O(1) points in the slab (and should

roughly revert to the non-smoothed setting); this leads to discc(P,Hw) = O(
p

n
p

log(n/d))

and an #-sample of size O((1/#2)
p

log(1/#d)), basically the random sampling bound. But

setting w = # so about #n points are in the slab (the same amount of error we allow in

an #-sample) yields discc(P,Hw) = O((1/
p

#n) ·
p

log(n/d)) and the size of the #-sample
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to be O( 1
#

p

log(1/#d)), which is a large improvement over O(1/#4/3), and the best bound

known for non-smoothed range spaces [92].

4.5.4 Generalization to d Dimensions

We now extend from R2 to Rd for d > 2. Using results from Section 4.4 we implicitly get

a bound on Âj Dd
j , but the Chernoff bound we use requires a bound on Âj D2

j . As in [103],

we can attain a weaker bound using Jensen’s inequality over at most n terms
 

Â
j

1
n

D2
j

!d/2

Â
j

1
n

⇣

D2
j

⌘d/2
so Â

j
D2

j  n1�2/d

 

Â
j

Dd
j

!2/d

. (4.4)

Replacing this bound and using r(Sw, M)  O(`d�1w) in Lemma 11 and considering V =

c1/w for some constant c1 results in the next lemma. Its proof is deferred to the full version.

Lemma 12. Assume P ⇢ Rd is contained in some cube C`,d and with min-cost matching M,

and consider a V-bounded smoothed halfspace h 2 Hw associated with slab Sw. Let r(Sw, M) 

c2(`d�1w) for constant c2. Then Pr
⇥

discc(P, h) > Cn1/2�1/d(`/w)1�1/d
p

log(2/d)
⇤

 d for

any d > 0 and C =
p

2c1(c2)1/d.

For all choices of smoothed halfspaces, applying the union bound, the discrepancy is

increased by a
p

log n factor, with the following probabilistic guarantee,

Pr[discc(P,Hw) > Cn1/2�1/d(`/w)1�1/d
q

log(n/d)]  d.

Ultimately, we can extend Theorem 11 to the following.

Theorem 12. For P ⇢ C`,d ⇢ Rd, where d is constant, with probability at least 1� d, we can

construct an #-sample of (P,Hw) of size O
⇣

(`/w)2(d�1)/(d+2) ·
⇣

1
#

q

log `
w#d

⌘2d/(d+2)⌘

.

Note this result addresses scenario (S3) from the introduction where we want to find a

small set (the #-sample) so that it could be much smaller than the d/#2 random sampling

bound, and allows generalization error O(#) for agnostic learning as described in Section

4.2.2. When `/w is constant, the exponents on 1/# are also better than those for binary

ranges spaces (see Section 4.1).



CHAPTER 5

CORESETS FOR KERNEL REGRESSION

5.1 Basic Definitions
5.1.1 Coresets for Kernel Regression

The brute force solution of kernel regression is time consuming as each computation

calculates KDE and WKDE, which takes O(|P|) time. In this chapter, we show how to

scalably apply kernel regression to massive scalar-valued data sets. The main idea is to

approximate P with a coreset S where Sx ⇢ Px, and in some cases, this can be relaxed, but

each s 2 S can potentially be given a scalar value sy different from the associated original

point. In particular, the coreset S should act as a proxy for P, so that for any q the value

KRS(q) should approximate KRP(q).

The coreset S should be substantially smaller than P, while also preserving the strong

approximation guarantees. Any query to KRS takes time at most proportional to |S| instead

of |P|, so the size of S directly impacts the efficiency of interacting with KRS. Moreover, if

the construction of S is efficient (and ours is roughly as fast as reading the data, or sorting

if needed), then the time to compute m values of the kernel regression (common for say

visualization) is also reduced by |P|/|S|, after factoring the build time. Here are a list of

scenarios where such coresets are essential.

• The data are too big to store. For example, Square Kilometer Array, the world’s

largest radio telescope, receives several terabytes of data per second. Most of the

data are in scalar values, such as baseline-corrected power flux density, sensitivity,

and receiver temperature, so kernel regression is a good way to track those scalar

values over time. However storing all of these data is a challenging problem, let

alone analyzing them. Instead of storing all of it, a coreset for kernel regression

would keep relevant data that provably behaves like the original data, but needs

much less space.
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• The data are large and the older parts requires less accuracy. For instance, in an-

alyzing trends in system log data, we want more accurate recent data, but allow

more imprecision in historical data. For example, in the CloudLab [115] central

power database, power data serve as a way to monitor the cloud performance. They

have scalar values and change gradually overtime but may have noisy fluctuations.

Kernel regression is a good way to track this, and older data can be kept with less

precision.

• These data are for interactive analysis. To interact with very large data stored on

disk one can first analyze a small coreset, and then refine to a larger coresets with

more accuracy as more precision is needed; this is much more efficient than bringing

all relevant data to disk for each query. Instead, we can maintain several layers of

different sized coresets. For instance, in spatial data systems, such as Mesowest [72],

temperature is connected with each geo-coordinate, to show temperature across the

United States, a coarse level coreset is sufficient. But to zoom the map to see the

temperature at the state or city level, then a more detailed coreset is required.

5.1.2 Our Approach

To formalize the meaning of KRS(q) is “close” to KRP(q), we focus on worst-case error

guarantees (L• as opposed to L2 or L1 more common to KDEs); this ensures we do not

have any spurious regression values. This is essential for data analysis, since we want

to be able to find important trends and detect outlier points, and also not be fooled into

thinking we observe a nonexistent trend or a nonexistent outlier.

Beyond that, the error function should not be affected by either a shift or a scaling of a

scalar value, since this is equivalent to changing the units (e.g., Celsius to Fahrenheit). As

such a natural bound will be absolute error difference with the bound depending on some

quantity that depends on the scaling. We will use M = maxp,p02P |py � p0y|, the maximum

difference between scalar values, so as the scale of the units on py changes, M does at the

same rate. In particular, we are interested in a coreset S of a data set P such that for some

domain U ⇢ Rd that

max
q2U

|KRP(q)� KRS(q)|  #M.
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Our coresets S have size depending linearly on 1/# and sometimes D = maxp,p02P kpx �

p0xk/s.

It is worth noting that in setting U = Rd, such a result may not be possible. The kernel

regression definition KRP(q) has in its denominator KDEP(q), so when KDEP(q) is very

close to 0, then KRP(q) is very unstable. So, we consider a domain U which is defined by a

mild condition on KDEP(q); in particular that KDEP(q) is above some very small value r.

To further put this error bound in perspective, consider the relative error maxq2U
KRS(q)
KRP(q)

instead. This is unstable whenever KRP(q) is close to 0. And, furthermore, the q where

KRP(q) is small, depends entirely on the units chosen for the py values. For instance, we

could have py = 32� Fahrenheit (not be close to 0) or py = 0� Celsius, which is exactly 0

and makes any relative error requirement imply no error at all. Since the change of units is

meaningless, this error measure is not feasible.

5.1.3 Our Results

Our results focus mainly on Px ⇢ R1 and Px ⇢ R2 (so the x-coordinate(s) naturally

represent time or spatial coordinates), although many aspects extend naturally to high

dimensions.

We first bound the accuracy of a kernel regression coreset formed by random sampling;

these are the first known bounds for the sample complexity of kernel regression. It is of

particular interest since in many cases the data set provided on input is itself a random

sample from some much larger data set or distribution we do not have access to (e.g., a

1% stream from Twitter). So if the input data are indeed sampled, our bounds measure the

error present before any analysis is applied. However, random sampling performs poorly

compared to most other methods we consider, so it makes sense to further compress them.

We analyze (theoretically and empirically) several straight-forward aggregation tech-

niques to construct coresets. These are of particular interest since they mimic common

online aggregation techniques [18]. We also propose some modifications which demon-

strate sizable empirically improvements. Interestingly, effective coresets for KDEs [149],

do not perform the best for kernel regression.

In particular, our recommended method G-Aggregate for Px ⇢ R1, carefully aggre-

gates data over a fixed size nonempty grid cells; it takes O(|P|) after sorting the data. For



80

Algorithm 1: Z-order (Z)
1: Sort data Px in Z-order; set h = |P|/|S|
2: Choose a random number in r = [0, h� 1]
3: for i 1 to |S| do
4: Put Pr+h·(i�1) into S
5: return S

Algorithm 2: Z-Aggregate (ZA)
1: Sort data Px in Z-order; set h = |P|/|S|
2: for i 1 to |S| do
3: Pi = [Ph·(i�1), · · · , Ph·i]
4: Put average of all the points in Pi into S
5: return S

Px ⇢ R2, we recommend Aggregate-Neighbor, which carefully adds a few points to the

coreset from G-Aggregate. For a data sets Px ⇢ Rd, these both produce a coreset S of

size O(D/#r)d, where D = maxp,p02P kpx � p0xk/s, and guarantees for any q 2 Rd with

KDEPx(q) > r that |KRP(q) � KRS(q)|  #M, where M = maxp,p02P |py � p0y|. Moreover,

these methods are simple to implement and work extremely well on real and synthetic

data sets.

5.1.4 Related Work

This is the first work to address sample complexity and coreset size for Nadaraya-

Watson kernel regression. There is an enormous body of work on other types of coresets,

see the recent survey on coresets [104], including many for parametric regression variants

like least-square regression [14] and lp regression [37].

The only nonparametric regression coreset we are aware of is a form of kernel regres-

sion [143] related to the smallest enclosing ball. It predicts the value at a point q 2 Rd

as f (q) = b + Âp2P apK(px, q) with loss function Âp2P max{0, | f (px) � py| � #̄}, for a

parameter #̄. Then it finds a set of O(1/#) nonzero ap parameters (corresponding with

points in the coreset) so many points satisfy | f (px)� py|  #̄(1 + #). No implementations

were attempted.

Rather, we believe the most related work involves coresets for kernel density esti-

mates [9, 78, 103, 149] as mentioned above. We extend some of these results and show
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others do not work well when translated to the regression variant of this problem.

5.2 Subset Selection Methods
We next describe several natural approaches to compress scalar-valued spatial data.

Some of these are likely in use in existing data aggregation frameworks (e.g., RFF [18]),

but as far as we know have not been analyzed in how they preserve kernel regression

values.

• Random sampling (RS): This method simply draws a uniform random sample S from

the data set P. This is probably the most common data aggregation method anywhere.

In other cases, it is often assumed that even before aggregating data, the data is only a

random sample of some unseen larger “true” data set. This is known to approximate

kernel density estimates [9, 58, 78], and we will show extends to kernel regression.

Algorithm 3: G-Aggregate (GA)
1: Map Px into grid Gg

2: for g 2 Gg(P) do
3: Put average of all the points in Pg into S
4: return S

Algorithm 4: Aggregate-Neighbor (AN)
1: Map Px into grid Gg

2: for g 2 Gg(P) do
3: Put average of all the points in Pg into S
4: for g 2 Gg(P̄) adjacent to Gg(P) do
5: For center c of g, put (c, KRP(c)) in S
6: return S

• k-Center (kCen): This method creates a k-center clustering of Px using the greedy Gon-

zalez algorithms [53]; that finds a set of k center points which (with a factor 2) minimizes

the distance to the furthest data point. This is inspired by both a recent way to approxi-

mate the kernel mean (equivalent to the KDE) [36] and also the initial step in (improved)

fast Gauss transforms [146]. It takes O(kn) time to find the center set, and then data

points can be aggregated to the closest center in as much time.
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• Sorting-based approaches: For Px ⇢ R1, these methods just sort the points, and choose

S as evenly spaced points in the sorted order. Inspired by the KDE coreset algorithm

in Chapter 1, we can extend to higher dimensions using the Z-order space-filling curve

to implicitly define a single ordering over the data points which attempts to preserve

spatial locality. Hence, we refer to it as Z-order (Z). Also, inspired by this approach we

take a random point from each block in the sorted order instead of the first or last of

each block deterministically.

As an extension, we propose Z-Aggregate (ZA) which is more careful on how it repre-

sents each interval. It again sorts the x-coordinate(s) of P by Z-order, and then for a set of

consecutive points Pi of size h, [h(i� 1), hi) for i = 1, 2, . . . , k, choose sx = 1
|Pi | Âp2Pi

px and

sy = 1
|Pi | Âp2Pi

py as the ith point in S.

• Grid-based approaches: Define a grid Gg into square grid cells (intervals for Px ⇢ R) of

side length g. It will be convenient to designate Gg(P) as the nonempty grid cells, and

Gg(P̄) as the empty grid cells. For a grid g, define Pg ⇢ P = {p 2 P | px 2 g}, the points

which fall in g. In the basic method Grid (G), for each g 2 Gg(P), randomly place one

point from Pg into S, and give it a weight |Pg|.

In an extension G-Aggregate (GA), for each g 2 Gg(P) we create a new point to place

in S as (sx, sy) defined sx = 1
|Pg| Âp2Pg px and sy = 1

|Pg| Âp2Pg py.

The above algorithms can be subtly further improved by adding extra points in the

empty grids with nonempty grids as neighbors, we call this Aggregate-Neighbor (AN).

Specifically, these empty but adjacent cells generate a point at the cell center c with value

equal to the kernel regression value KRP(c). This takes a bit longer than just performing

an aggregate, but these empty but adjacent cells are few so the time burden is negligible.

This is inspired by the work [22] and the illustrative toy example in Figure 5.1. We will see

the improvement is especially significant for Px ⇢ R2.

5.2.1 Progressive Grid-Based Approaches

In many scenarios, Px ⇢ R and this coordinate represents time. Let the current time

tNOW : x = 0, and so all other values are negative (say 5 hours ago is x = �5). In these

settings, we might only examine windows of the data over x 2 [�T, 0], that is including

now, and up to T time units into the past. Further, we can assume over any view we
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Figure 5.1. Example improvement of Aggregate-Neighbor (right) over G-Aggregate (left).
Input P = {(1 100), (2 40), (3 0), (15 50), (16 50), (17 50)}. With G-Aggregate with g = 2,
the coreset Q = {(1.5 70), (3 0), (15.5 50), (17 50)}. The largest errors occur at x < 0 and
around x = 9. If we add the extra points at the empty grid cells with nonempty neighbor
grids, i.e., Aggregate-Neighbor, then L• is significantly reduced. We add three points
(�1 98.3124), (5 3.2559), and (13 50).

would set the bandwidth s so that D = maxp,p02P kpx � p0xk/s = T/s is upper bounded;

otherwise, the smoothing is below the resolution of the what can fit in a view window (its

too noisy).

For these scenarios, we design a progressive approach where we allow more errors

for older data points. Extending the grid-based approaches, as data becomes older (new

points arrive) we increase the grid resolution g, and further compress the data. Specifically,

we divide P into regions R1, . . . , Rr so the resolution gi used in region Ri is gi = ai�1g1,

where a is a constant (we use a = 1.5 in our experiments). Setting the width of region

width(Ri) = ai�1width(R1) ensures that there are the same number of grid cells in each

region. Then, for a fixed resolution in the first region, the size of the coreset will grow only

logarithmically with time.

5.3 Analysis
We start by providing some structural lemmas that relate approximations of kernel

density estimates and weighted kernel density estimates to kernel regression. Then we

will use these results to bound the accuracy of specific techniques.

Our goal in each case is to show that the coreset S approximates the full data set P in

the following sense for parameters r, # 2 (0, 1). For any q 2 Rd such that KDEP(q) > r,
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then

|KRP(q)� KRS(q)|  #M,

where M = maxp,p02P |py � p0y|. Then call S an (r, #)-coreset of P.

We believe such strong worst case bounds should be surprising. If we revisit Figure 5.1

we can observe that removing one point can cause error in KRP(q)� KRS(q) on the order

of M (in this case M/4).

• Structural results: We need a few definitions and previous results before we can begin

stating our new structural tools. Recall in Chapter 4, a data set X and a family of subsets

A define a range space (X,A), and the range space’s VC-dimension (informally) describes

the combinatorial complexity of the ranges.

A relative (r, #)-approximation of (X,A) is a set Y

max
A2A

�

�

�

�

|A \ X|
|X| � |A \Y|

|Y|

�

�

�

�

 # max
⇢

|A \ X|
|X| , r

�

.

Similarly, define a relative (r, #)-approximation of (P, K) for kernel K as a set S such that

max
x2Rd

|KDEP(x)� KDES(x)|  # max{KDEP(x), r}.

Define a (r, #)-approximation for kernel regression of P as a set S such that KDEP(q) � r, then

|KRS(q)� KRP(q)|  #M,

where M = maxp,p02P |py� p0y|. Define a (non-relative) #-approximation Y of a range space

(X,A), so

max
A2A

�

�

�

�

|A \ X|
|X| � |A \Y|

|Y|

�

�

�

�

 #.

It is know an #-approximation can be constructed, with probability at least 1� d via a

random sample S of size O((1/#2)(n + log 1/d)), and a relative (r, #)-approximation with

size O((1/r#2)(n log(1/r) + log(1/d))) [66, 85]. Given an #-approximation S of a range

space linked to K, then it is known [78] that it is also a (non-relative) #-approximation of

(P, K). In the Appendix, we generalize this linking result (roughly following the structure

of the proof in [78]) to relative (r, #)-approximations.

Theorem 13. For any kernel K : Rd⇥Rd ! R+ linked to a range space (Rd,A), a relative (r, #)-

approximation S of (P,A) is a (rK+, 2#)-approximation of (P, K), where K+ = maxp,q2P K(p, q).
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Next we provide a sufficient condition for (r, #)-approximation for kernel regression.

Lemma 13. For error parameters a, b, r > 0, with a  1/2, consider a point set P ⇢ Rd+1. Let

S be a coreset of P so that for any query point q 2 Rd, both

|KDEP(q)� KDES(q)| < a max{KDEP(q), r}

|WKDEP(q)�WKDES(q)| < bM.

Then for any q 2 Rd such that KDEP(q) � r, then |KRS(q)� KRP(q)|  4(a + b/r)M.

Proof. Change the units of py so all values lie between 1 and 2. The shifting of these values

does not change the approximation factor bM, but the rescaling of the range changes the

bound to |WKDEP(q)� WKDES(q)|  b, and also ensures 1  KRP(q)  2. And recall, py

values have no bearing on KDEP(q).

By using the Gaussian kernel we have KDES(q) > 0 and also 0  WKDEP(q)  2. Thus,

we can consider relative error bounds, using KDEP(q) > r, and hence also WKDEP(q) > r.

KRS(q)
KRP(q)

=
WKDES(q)
WKDEP(q)

KDEP(q)
KDES(q)

�
✓

1� b

WKDEP(q)

◆✓

1� a

1 + a

◆

= 1� b

WKDEP(q)
� a

1 + a
+

ab

(1 + a)WKDEP(q)

� 1� b

r
� a

Next, we see the relative error bound is slightly different in the other direction.

KRS(q)
KRP(q)

=
WKDES(q)
WKDEP(q)

KDEP(q)
KDES(q)


✓

1 +
b

WKDEP(q)

◆✓

1 +
a

1� a

◆

= 1 +
b

WKDEP(q)
+

a

1� a
+

ab

(1� a)WKDEP(q)

 1 +
b

r
+

a

1� a
+

ab

(1� a)r

= 1 +
b

(1� a)r
+

a

1� a

 1 +
2b

r
+ 2a
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Together these imply KRS(q)
KRP(q) 2 [1 � b/r � a, 1 + 2b/r + 2a]. This translates to the

following additive error

|KRP(q)� KRS(q)|  2(b/r + a)KRP(q)

 2(b/r + a)2M = 4(a + b/r)M.

We also need another property about the slope of the Gaussian kernel. This is the only

bound specific to the Gaussian kernel, so for any other kernels with a similar bound (e.g.,

Triangle, Epanechnikov) the remaining analysis and algorithms can apply.

Lemma 14. A unit Gaussian kernel K(x) = exp(�x2/2s2) is 1/s-Lipschitz.

Proof. By taking the first derivative of K with respect to x, we have dK(x)
dx = exp(� x2

2s2 )(� x
s2 ).

Take the second derivative d2K(x)
dx2 = exp(� x2

2s2 )(
x2

s4 � 1
s2 ) and set d2K(x)

dx2 = 0. We get x = ±s,

and thus | dK(x)
dx | has the maximum values on x = ±s, equals to exp(� 1

2 )( 1
s )  1/s. So a

unit Gaussian kernel is 1/s-Lipschitz.

5.3.1 Accuracy of Random Sampling

We start by analyzing how kernel regression is preserved under random sampling. In

many cases the “input” data to a problem should actually be modeled as a random sample

of some much larger set, or it may be done as a first pass on data to reduce its complexity.

The key structural result will be on sampling weighted sets.

Lemma 15. For a weighted point set (P, w) with P ⇢ Rd of size n, then a random sample of

points Q ⇢ P of size s = O((1/#2)(d + log(1/d))), with probability at least 1� d, satisfies for

any B 2 B
�

�

�

�

�

1
n Â

p2P\B
w(p)� 1

s Â
p2Q\B

w(p)

�

�

�

�

�

 #M,

where M = maxp2X w(p)�minp2X w(p).

Proof. First assume maxp2X w(p) = 1 and that minp2X w(p) = 0; then M = 1. Otherwise,

we can simply “change the units” by uniformly shifting and scaling all w values to reach

this scenario.
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We first consider (X, w) as a point set P ⇢ Rd+1, where the y-coordinate is w(p). Then,

we consider the range space (P,A) where A defines the set of subsets induced by ranges

which are balls in the first d coordinates, and an interval in the y-coordinate; we refer to

them as hypercylinders. The range space has VC-dimension O(d). For a given query B 2 B

on X (B is the ball in Rd on the x-coordinates), we are interested hypercylinders A 2 A so

that the x-coordinates are restricted to those in our query choice of B.

In fact, we can break the hypercylinder R, which implicitly has a y-interval of [0, 1],

up into h = c/# disjoint hypercylinders (design constant c so that c/# is an integer), each

with the same ball B in x-coordinates and a y width of #/c. Let Pi be the set P restricted

to ith such y interval. We can round all values within the interval to a value vi = i · (c/#),

incurring at most #/c error. Then if each ith piece’s sample Qi is off in count by ai and

|Âi ai|  #n/2, then we can say the total error is at most |P|#/c + n#/2. Setting c � 2,

ensures the total as is at most #n as desired.

However, individually bounding each ai to be small is hard. If there are few points in

one of the levels, then we get a poor estimate on the count in Qi using standard techniques.

Instead we can bound Âi ai in aggregate. By the definition of #-samples, if Q is an #/2-

sample of (P,A), then |Âj
r=i ai|  #/2 · n for all i, j 2 [1, h]. And this holds by our random

sample with probability at least 1� d.

Now we can write the total error from (P, w) to (Q, w) in an ball B 2 B as

1
n Â

p2P\I
w(p) =

1
n

h

Â
i=1

Â
p2Pi\B

w(p)

 1
n

h

Â
i=1

Â
p2Pi\B

(vi + #/c)

=
#

c
+

1
n

h

Â
i=1

vi|Pi \ B|

 #

c
+

1
n

h

Â
i=1

vi

⇣

ai +
n
s
|Qi \ B|

⌘

=
#

c
+

1
n

h

Â
i=1

viai +
1
s

h

Â
1=1

Â
p2Qi\B

vi

 #

c
+

1
n

h

Â
i=1

ai +
1
s

h

Â
i=1

Â
p2Qi\B

(w(p) + #/c)

 2#

c
+

#

2
+

1
s Â

p2Q\B
w(p).
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Setting c � 4, and repeating the argument symmetrically to show the lower bound, we

obtain that for any B 2 B

�

�

�

�

�

1
n Â

p2P\B
w(p)� 1

s Â
p2Q\B

w(p)

�

�

�

�

�

 #.

These results generalize to weighted kernel density estimates, for centrally-symmetric

and non-increasing (as function of distance from center) kernels, following [78]. The only

change is using the weighted bound in Lemma 15, in place of where Joshi et.al. used the

unweighted bound in the definition of a ball-range space linked with the aforementioned

kernels.

Theorem 14. Consider any kernel K : Rd ⇥Rd ! R+ linked to (Rd,B). For a weighted point

set (X, w) with X ⇢ Rd, then a random sample Q ⇢ X of size s = O((1/#2)(d + log(1/d))),

with probability at least 1� d, for any x 2 Rd satisfies

|WKDEX,w(x)�WKDEQ,w(x)|  #M,

where M = maxp2X w(p)�minp2X w(p).

Now we are ready to show the main result.

Theorem 15. Consider a point set P ⇢ Rd+1 of arbitrary size, and parameters r, # 2 (0, 1). If S

is a uniform sample from P of size O( 1
#2r2 (d log(1/r) + log(2/d))), then with probability at least

1� d, the set S is a (r, #)-approximation for kernel regression on P.

Proof. For a binary range space (such as (P,B)) with constant VC-dimension [135] n, a

random sample S of size k = O( 1
(#0)2r

(n log(1/r) + log(2/d))) provides an (r, #0)-sample

with probability at least 1 � d/2 [66, 85]. Theorem 13 gives a linking result for kernel

density estimate, implying that this is also a relative (r, 2#0)-coreset for a kernel where

K(x, x) = 1. This satisfies the first condition of Lemma 13 with a = 2#0.

Second, we invoke Theorem 14 so that we have with probability at least 1� d/2 that

|WKDEP(q) � WKDES(q)|  (#0r)M, hence satisfying the second condition of Lemma 13

with b = #0r.
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Setting #0 = #/16 invoking Lemma 13, then with probability at least 1� (d/2 + d/2) =

1� d, for any q 2 Rd that |KRS(q)� KRP(q)|  4(#/8 + (#r/16)/r)M  #M.

5.3.2 Accuracy of Grid-Based Approaches

We first bound the error in Grid. This implies other related algorithms (G-Aggregate,

Aggregate-Neighbor) will have the same asymptotic error bounds for d constant.

Theorem 16. Grid with g = #sr

8
p

d
produces S, a (r, #)-coreset for the kernel regression of P ⇢

Rd+1.

Proof. We will prove bounds on both error in KDEP and WKDEP separately, then combine

them with Lemma 13. This algorithm maps all points Pg for a grid cell g 2 Gg to a

single point, and by reweighting, changes each points location by at most g
p

d. Using

that K is (1/s)-Lipschitz, this changes KDEP by at most g
p

d/s in KDES. Only considering

KDEP(q) � r, then |KDEP(q)� KDES(q)|  g
p

d
rs max{r, KDEP(q)}.

For WKDEP the analysis is similar, but we may also replace py for a point p 2 Pg with a

different sy. We can bound |py � sy|  M = maxp,p02P |py � p0y|. Hence for all q 2 Rd, then

|WKDEP(q)�WKDES(q)|  g
p

dM/s.

Combining these two bounds together with Lemma 13 we obtain (for q with KDEP(q) �

r) that |KRP(q)� KRS(q)|  4(g
p

d
rs + g

p
d

s /r)M = 4( #
8 + #r

8 /r)M = #M.

We bound coreset size with D = maxp,p02P kpx � p0xk/s.

Corollary 5.3.1. For P ⇢ Rd+1 for constant d, methods Grid, G-Aggregate, and Aggregate-

Neighbor, run in O(|P|) time, and return S a (r, #)-coreset for kernel regression of P of size at

most O((D/#r)d).

• Accuracy of progressive grid-based methods If the size width(R1) of the first region

in the progressive methods is a constant, there are at most O(log D) regions. Set g =

#sr/8 · ai�1, so each region has a grid with O(1/#r) cells.

Corollary 5.3.2. For P ⇢ R2, under any allowable view window of size T and scaling so T/s is

fixed, then the progressive Grid approach achieves an (r, #)-coreset for kernel regression of P of size

at most O((1/#r) log D).
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• Accuracy bounds for other methods Despite bounds for |KDEP(q)� KDES(q)| for other

methods (e.g., Z-order) we are not able to show these for WKDEP and, hence KRP.

5.4 Experiments
Here we run an extensive set of experiments to validate our methods. We compare KRP

where Px ⇢ R1, Px ⇢ R2, and Px ⇢ R6 with kernel regression under smaller coreset KRS

for both synthetic and real data. To show our methods work well in large data sets, we

use large real data set (n = 2 million and 24 million) and synthetic data (n = 1 million) for

Px ⇢ R1, and real data set (n = 1 million) for Px ⇢ R2. Our algorithms scale well beyond

these sizes, but evaluating error was prohibitive.

5.4.1 Data Sets

For real data, we consider “Individual Household Electric Power Consumption” data

set on UCI Machine Learning Repository. The number of instances is 2,075,259, we use the

first three attributes to do kernel regression. Date, time (together for x-value), and global

active power (for y-value): household global minute-averaged active power (in kilowatt).

This data set has gaps on the x-axis, and kernel regression does a nice job of interpolating

those gaps.

To demonstrate the effectiveness of progressive grids, we use a ”CloudLab” data set.

CloudLab [115] is cloud computing platform, and we have obtained a trace of power usage

from the Utah site with 400 million values. We use the most recent 10-month window

which has size 24,351,363.

The time series synthetic data Px ⇢ R1 is generated using formula: yi = c + fyi�1 +

N(0, s), where the x-coordinates are i = 1, 2, · · · and yi is the corresponding y coordinates.

It mimics a stock price so the next data depends on the previous one plus some random

noise. In the experiment, we set c = 0, f = 1, y0 = 10, s = 1 and generate 1 million points.

The original data and regression based on the first 10,000 points with bandwidth 50 and

200 is shown on Figure 1.2.

For Px ⇢ R2 real data set, we consider OpenStreetMap data from the state of Iowa.

Specifically, we use the longitude and latitude of all highway data points as Px and time

stamp as Py. Kernel regression on this data set can give a good approximation of when the

highway data point is added.
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For the high-dimensional experiment, we consider two data sets. One is house price

data set (CAD) in StatLib [97] and the other is Physicochemical Properties of Protein Ter-

tiary Structure Data set (CASP) from UCI machine learning repository. CAD data set

contains 20,640 observations on housing prices with 9 economic covariates and CASP data

set has 45,730 data points for 10 random variables. For both data sets, we use the first 6

features to do the kernel regression.

5.4.2 Effectiveness of Coresets

Coresets guarantee that kernel regression error is bounded for all values of q 2 R (as

long as the data are not too sparse). But evaluating at all of these points, is by definition,

impossible. As a result, we evaluate over a very fine covering of evaluation points (in our

case 128,000 for Px ⇢ R1 and 512,000 for Px ⇢ R2). We have plotted error as the number of

evaluation points increase and observed that all methods clearly converge well before this

many samples.

In more detail, we randomly generate a evaluation point q in the domain R for Px ⇢ R

and q in the domain R2 for Px ⇢ R2, without the restriction KDEP(q) > r. With fixed core-

set size 64,000, we experiment on the number of evaluation points from 1,000 to 128,000 for

Px ⇢ R and 1,000 to 512,000 for Px ⇢ R2 in Figure 5.2. As the number of evaluation points

increases, the value of maximum error in the domain will consistently approach some error

value and we can then have some confidence that we have the correct worst case error as

this processes plateaus. Under all the subset selection methods (Figure 5.2), the errors are

steady at size 128,000 for Px ⇢ R and 512,000 for Px ⇢ R2, so we use evaluation points of

size 128,000 for Px ⇢ R and 512,000 for Px ⇢ R2 in the following experiments.

Since all the methods are randomized algorithms, we run all the subset selection meth-

ods ten times and use the average errors as the final results. The bandwidth is set to 400

for the real data set in R1, 50 for the synthetic data set in R1, and 50 for real data in R2;

other bandwidths have similar performance.

Figure 5.3 shows all the methods converge as the size of the coreset increases. The

exception is Z-Aggregate on real data in R; on inspection, the problem occurs in sparse

regions, similar to Figure 5.1. G-Aggregate and Aggregate-Neighbor (and sometimes

Z-Aggregate) work significantly better compared to all the other methods in all data sets
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Figure 5.2. The maximum L• error found based on the number of evaluation points on
real (left) and synthetic data (middle) when Px ⇢ R1, and real data (right) when Px ⇢ R2.

Figure 5.3. L• error for coresets when also testing sparse regions on real data(left) and
synthetic data(middle) when Px ⇢ R, and real data(right) when Px ⇢ R2.

with Px ⇢ R. They consistently decrease, at certain sizes have one or two orders of

magnitude less error, and obtain virtually no error at size about 50,000. Even when the

size of the coreset is small, G-Aggregate and Aggregate-Neighbor have very small errors

and converge very fast when the size increases. For Px ⇢ R2, Aggregate-Neighbor achieve

noticeably smaller error, but G-Aggregate (and Grid) perform well and are simpler.

In particular, G-Aggregate and Aggregate-Neighbor stay at least one order of magni-

tude smaller in error than Random Sampling. This indicates it is much better to aggregate

based on x-value than just randomly sample. It also justifies further thinning the data with

these methods if the data should be modeled as a random sample since the additional

error introduced would be negligible compared to what was already present due to the

sampling.

The grid-based methods also consistently outperform the (z-order) sorting-based meth-

ods, so it is better to compress based on the x-coordinate change, rather than on the number

of points.

Filling in a few neighbor values (the -Neighbor method) can also result in significant
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gains in accuracy for Px ⇢ R2, but for Px ⇢ R, it does not show much improvement, and

sometimes performs worse. The larger error per points (Figure 5.3, real data) is mainly due

to the extra points added without much error reduction. It seems just aggregating does a

good enough job for Px ⇢ R, but for Px ⇢ R2 more complicated situations arise where this

extra step is helpful.

5.4.3 Efficiency of Coresets

To show the efficiency of our methods, we compare the construction time and query

time based on the coreset compared to the original data set (denoted Org) for the data set

Px ⇢ R. For both comparisons, inspired by the Improved Fast Gauss Transform [146] and

other fast kernel evaluation methods, for each query point, only the neighbor points within

ten bandwidth are queried to calculate the kernel regression values. The construction time

includes building the tree structure for the local data query, plus the time to generate the

coreset. The query time are based on 128,000 evaluation points.

From Figure 5.4 for Px ⇢ R , Grid, G-Aggregate, Random Sample, Z-order, and

Z-Aggregate have the most efficient construction times, roughly as fast as just reading

the data. Note that k-Center becomes quite slow for large coreset size. Similarly, Grid,

G-Aggregate, and Random Sample are very efficient for Px ⇢ R2 (Figure 5.5), but Z-order

and Z-Aggregate have noticeable overhead compared to the grid-based methods (and

have no accuracy or analysis advantage). In both settings, there is also considerable time

overhead to running Aggregate-Neighbor, which has a slight accuracy advantage for

Px ⇢ R2 – thus, it is probably only worth it if preprocessing time on these scales are not of

much importance but accuracy for Px ⇢ R2 is.

For the query time, all the methods improve at least 2 orders of magnitude over using

the original data. Their query times are all about the same; this is as expected since they

all produce a coreset of the same size, which can be used as proxy for the full data set in

precisely the same way.

• Main take-away In conclusion, G-Aggregate is the best algorithm in terms of effec-

tiveness and efficiency for Px ⇢ R, with Aggregate-Neighbor has better accuracy in

Px ⇢ R2, but has some increased overhead in construction time. They are orders of

magnitude faster than using the original data (and best among all proposed methods)
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Figure 5.4. Comparison of construction time and query time for real data set with Px ⇢ R.

Figure 5.5. Comparison of construction time and query time for real data set with Px ⇢ R2.

and have extremely small error even for small coreset sizes (again the best among all

proposed methods). For data sets of size 1 or 2 million, they achieve very small error

using only 10,000 points and almost no error around 100,000 points. They (especially

G-Aggregate) are very simple to implement, and about as fast to construct as reading

the data. As we have seen in Section 5.3, we are also able to prove very strong error

guarantees for these methods.

5.4.4 Consistency with Bandwidth

In Figure 5.6, we test the consistency of the algorithms by varying the bandwidth. We

fix the number of evaluation point as 128,000 and the coreset size 62,499. By varying

the bandwidth from 40 to 800 for real data (left) of Px ⇢ R, 10 to 160 for synthetic data

(middle) for Px ⇢ R and real data (right) for Px ⇢ R2, the errors are decreasing for all

the methods. This matches with our analysis in Section 5.3 and aligns with the notion

that the more we smooth the data, the more stable it is, and the fewer data points we
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Figure 5.6. The relation between L• error and bandwidth for real data (left), synthetic data
(middle) for Px ⇢ R and real data (right) for Px ⇢ R2.

actually need. Again, G-Aggregate consistently performs the best or among the best of our

methods. The exception is the real data in R2 (right), where for very large bandwidths, the

simple methods Z-order and Random Sample dominate. In this setting, these data are so

smoothed that these methods exactly or roughly amount to a random sample, and work

better than trying to fit gridded data to circularly smoothed estimates. Note, we do not

attempt to automatically choose the bandwidth, as this should be a choice of the user to

determine the scale they examine the data [150].

5.4.5 Progressive Grid-Based Approaches

We evaluate the progressive grid-based approach on the CloudLab data. The total

coreset size is 316,485, using G-Aggregate in each region. And we use 256,000 evaluation

points. We evaluate the algorithm at four smoothing choices s = {10, 15, 30, 45}. For each

s, we gradually increase the window size T, starting at 1 day (86,400), up to 10 months

(2.5 · 107), as shown in Figure 5.7. We see that as a new region is reached, and the grid size

enlarges, then so does the error. Also, as long as T/s is bounded by 4 · 104, the error stays

under 0.01.

Figure 5.7. The relation between window size and L• error for progressive G-Aggregate
method.
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5.4.6 High Dimension

For simplicity, we only compare G-Aggregate and Random Sampling. When increas-

ing the grid size, the number of empty grid increases as well, so we observe that the size

of coreset does not increase exponentially. By increasing the number of grids cells from 10

to 20, that is a factor 2 in each dimension, the average number of nonempty grids for CAD

data set are {902, 1367, 1863, 2538, 3150, 3791} and for CASP data set are {1034, 1554, 2122,

2742, 3543, 4342}. The relationship of L• error and coreset size is shown in the Figure

5.8(left), using bandwidths 3 and 3.8, respectively. The error decreases when the size of

coreset increases for both methods. For the same coreset size, Random Sampling perform

better than G-Aggregate, and its running time (right figure in Figure 5.8) is much less.

This aligns with our theoretical bounds. For example, for grid size 206, the G-Aggregate

method takes about 250s, while the Random Sampling takes only around 3s. So we

recommend the simple and fast method Random Sampling to generate coreset for kernel

regression for high dimension data sets.

5.5 Conclusion
We describe several algorithms for coresets for kernel regression. Many (random sam-

pling, order-based thinning, and grid-based thinning) are common heuristics. As we

demonstrate on data sets with millions of points, those based on grids work much better,

and that small modification of aggregating and sometimes filling in sparse-neighborhood

boundaries can make large difference in error reduction. With our best methods, massive

data sets can be drastically reduced in size and have negligible error.

Find our code and data at: http://www.cs.utah.edu/~yanzheng/kernel-reg/.

Figure 5.8. Left: L• error for coresets of high dimensional data sets. Right: Running time
to generate the coresets.
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CONCLUSION

The rate at which scientists and businesses are producing data is increasing at an un-

stoppable rate. The advancement of science and industry becomes heavily dependent

on understanding these data sets. Kernel smoothing provides a simple way of finding

structures in data sets without the imposition of a parametric model, in this dissertation,

we consider kernel regression and kernel density estimates. However, the enormity of

the data size precludes brute force approaches of analyzing it. Thus, data summarization

is an important tool for dealing with massive data. Coresets enable accurate query an-

swering while requiring much lower resources, and can be much faster. In Chapter 2 and

Chapter 5, we have demonstrated that the effectiveness of coresets in data size reduction,

and thus reduce the computation time of kernel density estimates and kernel regression

significantly.

As we have seen an example of applying KDE coreset in topological data analysis, there

are numerous other challenges to apply KDE coreset. For example, in [107], we propose

a new definition of #-net under kernels, called (#, t)-net of kernel range space. It tries to

answer questions of what is the sample size we need to maintain to include a significant

witness for every large enough event of noisy spatial data points, for example, twitter users

with geo-coordinates. Putting this result to visualization purpose, we get a very quick way

to visualize the large twitter data without looking at the whole data set: we only need one

witness point for each large enough event, and do not need to care about the small events

or outlier. By tuning the parameter # and t, we can control how much outlier we want to

filter out. This method gives users a freedom to decide how much outlier we want to filter

out and only keep visually curious regions.

Another challenge is applying kernel smoothing technique into other applications. For

instance, spatial scan statistics [83], as a effective anomaly detection method, computes the

maximum discrepancy region obtained by scanning the spatial region under study with
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a set of circular regions of various radii. The discrepancy score for each region is based

on a likelihood ratio test statistic constructed to detect significant over density under the

Poisson or Bernoulli model. Putting kernel in the classic spatial scan statistics setting, the

circular regions or other hard boundary geometric regions turn to be smooth ranges, the

value of each point in each range relates how close it is to the kernel center, and thus

statistically robust to spatial noise.

As discussed in [36], kernel density estimates is a kernel mean that estimates the den-

sity of the data. The kernel mean embedding (KME) is another form of kernel mean that

maps the probability distribution into a reproducing kernel Hilbert space. Since some

of the kernels discussed in this dissertation, for example, Gaussian kernel and Laplacian

kernel, are also symmetric positive definite kernels, our methods can apply to both kernel

means, which have many applications in machine learning. For example, anomaly detec-

tion [39] and mean-shift clustering [32] for KDE, kernel two sample test [59] and support

measure machines [94] for KME.

In summary, this dissertation provides a contribution to the problem of creating core-

sets for kernel smoothing with approximation guarantees. There is still plenty of work left

to be done in this area in order to be able to understand the kernel smoothing and how

to use it in various applications. This is becoming a central problem to large noisy data

analysis, and the techniques presented herein will hopefully be used as building blocks

for future progress in this direction.



APPENDIX

PROOFS FOR CORESET ANALYSIS

A.1 Linking and (r, #)-Approximations for Kernel Regression
Theorem 17. For any kernel K : Rd ⇥ Rd ! R+ linked to a range space (Rd,A), a (r, #)-

approximation S of (P,A) for S ⇢ Rd is a (rK+, 2#)-approximation of (P, K), where K+ =

maxp,q2P K(p, q).

Proof. We first give the definition of k. For two point sets P, S, define a similarity between

the two point sets as

k(P, S) =
1
|P|

1
|S| Â

p2P
Â
s2S

K(p, s),

and when the pointset S only contains one single point s and a subset P0 ⇢ P, we have

kP(P0, s) = (1/|P|) Âp2P0 K(p, s).

Then we follow the same technique in proof of Theorem 5.1 in [78], suppose q is any

query point, we can sort all pi 2 P in similarity to q so that pi < pj (and by notation i < j)

if K(pi, q) > K(pj, q). Thus any super-level set containing pj also contains pi for i < j. We

can now consider the one-dimensional problem on this sorted order from q.

We now count the deviation D(P, S, q) = KDEP(q) � KDES(q) from p1 to pn using a

charging scheme. That is each element sj 2 S is charged to g = |P|/|S| points in P. For

simplicity we will assume that g is an integer, otherwise we can allow fractional charges.

We now construct a partition of P slightly differently, for positive and negative D(P, S, q)

values, corresponding to undercounts and overcounts, respectively.

• Undercount of KDES(q): For undercounts, we partition P into 2|S| sets {P01, P1, P02, P2, ..., P0|S|,

P|S|} of consecutive points by the sorted order from q. Starting with p1, we place points

in set P0j or Pj following their sorted order. Recursively on j and i, starting at j = 1 and

i = 1, we place each pi in P0j as long as K(pi, q) > K(sj, q)(this may be empty). Then we

place the next g points pi into Pj. After g points are placed in Pj, we begin with P0j+1,

until all of P has been placed in some set. Let t  |S| be the index of the last set Pj
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such that |Pj| = g. Note that for all pi 2 Pj(for j  t) we have K(sj, q) � K(pi, q), thus

kS({sj}, q) � kP(Pj, q). We can now bound the undercount as

D(P, S, q) =
|S|

Â
j=1

�

kP(Pj, q)
�

� kS({sj}, q) +
|S|

Â
j=1

kP(P0j , q)


t+1

Â
j=1

kP(P0j , q)

since the first term is at most 0 and |P0j | = 0 for j > t + 1. Now consider a super-level

set H 2 A containing all points before st+1; H is the smallest range that contains every

non-empty P0j . Because (for j  t) each set Pj can be charged to sj, then Ât
j=1 |Pj \ H| =

g|S \ H|. And because S is an (r, #)-approximation of (P,A), then

|P \ H|
|P| � |S \ H|

|S|  # max
n |P \ H|

|P| , r
o

1
|P|

t+1

Â
j=1

|P0j | =
1
|P|

t+1

Â
j=1

|P0j \ H|

=
1
|P| (

t+1

Â
j=1

|P0j \ H| +
t

Â
j=1

|Pj \ H|� g|S \ H|)

=
|P \ H|
|P| � |S \ H|

|S|  # max
n |P \ H|

|P| , r
o

We can now bound

D(P, S, q) 
t+1

Â
j=1

kP(P0j , q) =
t+1

Â
j=1

Â
p2P0j

K(p, q)
|P|

When |P\H|
|P| � r, and r � Âp2P01

K(p,q)
|P|

.

#,

D(P, S, q) 
t+1

Â
j=1

Â
p2P0j

K(p, q)
|P|

 #

|P| Â
p2P

K(p, q) + Â
p2P01

K(p, q)
|P|

 #KDEP(q) + #r  2# max{KDEP(q), r}.

The second inequality is because, all the points in Pj has larger K(·, q) values than the

points in P0j+1 and 1
|P| Ât+1

j=1 |P0j |  # |P\H|
|P| .
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When |P\H|
|P|  r,

D(P, S, q) 
t+1

Â
j=1

Â
p2P0j

K(p, q)
|P|

 1
|P|

t+1

Â
j=1

|P0j |K+  #rK+.

• Overcount of KDES(q): The analysis for overcounts is similar to undercounts, but we

partition the data in a reverse way: we partition P into 2|S| sets {P1, P01, P2, P02, ..., P|S|, P0|S|}

of consecutive points by the sorted order from q (some of the sets may be empty).

Starting with pn (the furthest point from q) we place points in sets P0j or Pj following

their reverse-sorted order. Recursively on j and i, starting at j = |S| and i = n, we place

each pi in P0j as long as K(pi, q) < K(sj, q) (this may be empty). Then we place the next

g points pi into Pj. After g points are placed in Pj, we begin with P0j�1, until all of P has

been placed in some set. Let t  |S| be the index of the last set Pj such that |Pj| = g (the

smallest such j). Note that for all pi 2 Pj (for j � t) we have K(sj, q)  K(pi, q), thus

kS({sj}, q)  kP(Pj, q). We can now bound the (negative) overcount as

D(P, S, q) =
t

Â
j=|S|

�

kP(Pj, q)
�

� kS({sj}, q)

+
1

Â
j=t�1

�

kP(Pj, q)
�

� kS({sj}, q) +
|S|

Â
j=1

kP(P0j , q)

� kP(Pt�1, q)�
1

Â
j=t�1

kS({sj}, q)

since the first full term is at least 0, as is each kP(Pj, q) and kP(P0j , q) term in the second

and third terms. We will need the one term kP(Pt�1, q) related to P.

Now using that S is an (r, #)-sample of (P,A), we will derive a bound on t. We consider

the maximal super-level set H 2 A such that no points H 2 P are in P0j for any j. This is

the largest set where each point p 2 P can be charged to a point s 2 S such that K(p, q) >

K(s, q), and thus presents the smallest (negative) overcount. In this case, H \ P = \w
j=1Pj

for some w and H \ S = \w
j=1{sj}. Since t  w, then |H \ P| = (w� t + 1)g + |Pt�1| =

(w� t + 1)|P|/|S| + |Pt�1| and |H \ S| = w. With the definition of (r, #)-sample,
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|S \ H|
|S| � |P \ H|

|P|  # max
n |P \ H|

|P| , r
o

|S \ H|
|S| � |P \ H|

|P|

=
w
|S| �

(w� t + 1)|P|/|S|
|P| � |Pt�1|

|P|

� t� 1
|S| �

|Pt�1|
|P|

If |P\H|
|P| � r, t�1

|S| �
|Pt�1|
|P|  # |P\H|

|P| , the same as |Pt�1|
|P| �

t�1
|S| � �# |P\H|

|P| , then

D(P, S, q) � kP(Pt�1, q)�
1

Â
j=t�1

kS({sj}, q)

=
k(Pt�1, q)

|P| �
Â1

j=t�1 K(sj, q)
|S|

� �#
Â1

j=w k(Pj, q)
|P| � �#KDEP(q)

The second inequality is because |Pt�1|
|P| �

t�1
|S| � �# |P\H|

|P| and for each sj with j  w, for

any p 2 Pj, K(sj, q)  K(p, q).

If |P\H|
|P|  r, t�1

|S| �
|Pt�1|
|P|  #r, the same as t � 2  #r|S| + |S||Pt�1|

|P| � 1. Letting pi =

mini02Pt�1 K(p0i, q)

D(P, S, q)

� kP(Pt�1, q)� kS({st�1}, q) +
1

Â
j=t�2

kS({sj}, q)

=
k(Pt�1, q)

|P| � K(st�1, q)
|S| � (#r|S| + |S||Pt�1|

|P| � 1)
K+

|S|

� �#rK+ + K+
⇣ g� |Pt�1|

|P|

⌘

� g · K(st�1, q)� k(Pt�1, q)
|P|

� �#rK+ + K+
⇣ g� |Pt�1|

|P|

⌘

� K(pi, q)
⇣ g� |Pt�1|

|P|

⌘

� �#rK+

So when |P\H|
|P| � r, S is an (r, 2#)- approximation of (P,K), and when |P\H|

|P|  r, it is a

(#rK+)-approximation of (P,K).
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