
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2010

Building efficient wireless infrastructures for pervasive computing Building efficient wireless infrastructures for pervasive computing

environments environments

Bo Sheng
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons, Library and Information Science Commons, and the

Science and Technology Studies Commons

Recommended Citation Recommended Citation
Sheng, Bo, "Building efficient wireless infrastructures for pervasive computing environments" (2010).
Dissertations, Theses, and Masters Projects. Paper 1539623557.
https://dx.doi.org/doi:10.21220/s2-2wky-kp90

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=scholarworks.wm.edu%2Fetd%2F1539623557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.wm.edu%2Fetd%2F1539623557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-2wky-kp90
mailto:scholarworks@wm.edu

BUILDING EFFICIENT WIRELESS INFRASTRUCTURES FOR PERVASIVE
COMPUTING ENVIRONMENTS

Bo Sheng

Nanjing, Jiangsu, China

Bachelor of Science, Nanjing University, 2000

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
January, 2010

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Approved by the Committee, September 2009

~·
'Committee Chair

Associate Professor Qun Li, Computer Science
The College of William & Mary

Associate Professor Weizhen Mao, Computer Science
The College of William & Mary

Associate Professor Haining Wang, Computer Science
The College of William & Mary

Pro~a ?mTr"~mputer Science
The College of William & Mary

Assistant Professor Gexin Yu, Mathematics
The College of William & Mary

ABSTRACT PAGE

Pervasive computing is an emerging concept that thoroughly brings computing devices and
the consequent technology into people's daily life and activities. Most of these computing
devices are very small, sometimes even "invisible", and often embedded into the objects
surrounding people. In addition, these devices usually are not isolated, but networked with
each other through wireless channels so that people can easily control and access them.
In the architecture of pervasive computing systems, these small and networked computing
devices form a wireless infrastructure layer to support various functionalities in the upper
application layer.

In practical applications, the wireless infrastructure often plays a role of data provider in a
query I reply model, i.e., applications issue a query requesting certain data and the
underlying wireless infrastructure is responsible for replying to the query. This dissertation
has focused on the most critical issue of efficiency in designing such a wireless
infrastructure. In particular, our problem resides in two domains depending on different
definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can
be replied. Many applications, especially real-time applications, require prompt response to
a query as the consequent operations may be affected by the prior delay. The second
definition is energy efficiency which is extremely important for the pervasive computing
devices powered by batteries. Above all, our design goal is to reply to a query from
applications quickly and with low energy cost.

This dissertation has investigated two representative wireless infrastructures, sensor
networks and RFID systems, both of which can serve applications with useful information
about the environments. We have comprehensively explored various important and
representative problems from both algorithmic and experimental perspectives including
efficient network architecture design and efficient protocols for basic queries and
complicated data mining queries. The major design challenges of achieving efficiency are
the massive amount of data involved in a query and the extremely limited resources and
capability each small device possesses. We have proposed novel and efficient solutions
with intensive evaluation. Compared to the prior work, this dissertation has identified a few
important new problems and the proposed solutions significantly improve the performance
in terms of time efficiency and energy efficiency. Our work also provides referrable insights
and appropriate methodology to other similar problems in the research community.

Table of Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Research Scope and Background

1.1.1 Sensor Networks

1.1.2 RFID Systems

1.1.3 Summary . . .

1.2 Research Directions and Problems

1.2.1 Network Architecture .

1.2.2 Query Protocol

1.2.2.1 Basic Query

Range Query in Sensor Networks

Continuous Scans in RFID systems

1.2.2.2 Data Mining Query

iv

xii

xiii

XV

2

5

5

7

9

10

11

12

12

12

14

15

Detect Outliers in Sensor Networks .

Find Popular Items in RFID Systems

1.2.3 Summary

1.3 Contributions . .

1.3.1 Network Architecture .

1.3.2 Basic Query

1.3.3 Data Mining Query .

1.4 Organization

2 Network Architecture in Sensor Networks: Data Storage Placement

2.1 Related Work

2.2 Problem Formulation

2.3 Methodology

2.3.1 Fixed Tree Model .

2.3.1.1 Unlimited Number of Storage Nodes

2.3.1.2 Limited Number of Storage Nodes

2.3.2 Dynamic Tree Model

2.3.2.1 Outline of the Algorithm

2.3.2.2 Details of the Algorithm .

Step 1: Consolidating Demands

Step 2: Consolidating Storage Nodes

Step 3: Rounding

2.3.3 Stochastic Analysis for Random Deployment

2.3.3.1 Fixed Tree Model

v

16

17

18

19

19

20

21

23

24

27

30

34

34

36

42

51

55

56

56

59

64

66

67

2.3.3.2 Dynamic Tree Model 68

2.4 Performance Evaluation . . 74

2.4.1 Fixed Tree Model . 74

2.4.1.1 Simulation Settings 74

2.4.1.2 Random Deployment 76

2.4.1.3 Deterministic Deployment . 78

2.4.1.4 Network Life 80

2.4.2 Dynamic Tree Model . 81

2.5 Summary • 0 0 0 •••••• 0 82

3 Basic Query in Sensor Networks: Range Query 83

3.1 Related Work 84

3.2 Problem Formulation 86

3.2.1 System Model 86

3.2.2 Adversary Model and Security Goals 87

3.2.2.1 Compromised Storage Nodes 87

3.2.2.2 Compromised Sensors . 88

3.3 Methodology •••• 0 ••• 0 •• 0 • 0 89

3.3.1 Storage Scheme and Query Protocol . 89

3.3.1.1 Privacy-Preserving Storage 90

3.3.1.2 Verifiable Reply 91

3.3.1.3 Security Analysis 95

3.3.2 Finding the Optimal Parameters 97

3.3.2.1 System Performance Metrics 98

vi

4

3.3.2.2 Problem Formulation

3.3.2.3 Algorithm to Find the Optimal Parameters

3.3.3 Rare Event Detection with Abnormal Values

3.4 Performance Evaluation

3.4.1 Suggested Encoding Length

3.4.2 One Bit Encoding Numbers

3.4.3 Communication Cost .

3.4.4 Event Detection .

3.5 Summary

Basic Query in RFID Systems: Continuous Scans

4.1 Related Work ...

4.2 RFID Background .

4.2.1 Slotted ALOHA Protocol .

4.2.2 Modified ALOHA Protocol

4.2.3 Slot Timing

4.2.4 Optimal Frame Size for Collecting IDs

4.3 Problem Formulation

4.4 Methodology

4.4.1 Collect Unknown Tags

4.4.2 Detect Missing Tags

4.4.3 Extension

4.4.3.1 CU extension with estimating Umax

4.4.3.2 DM extension with estimating Mmax

vii

102

102

111

116

117

119

122

125

127

129

130

131

131

133

133

134

135

137

137

143

148

148

151

4.4.4 Improved DM Scheme

4.5 Performance Evaluation

4.6

4.5.1 Spatial Continuous Scanning .

4.5.1.1 Two overlapping sets

4.5.1.2 A series of scanning processes

4.5.1.3 CU Extension

4.5.2 Temporal Continuous Scanning

4.5.2.1 Two overlapping sets

4.5.2.2 DM Extension and Improved DM .

Summary ...

5 Data Mining Query in Sensor Networks: Detecting Outliers

5.1 Related Work

5.2 Problem Formulation

5.3 Methodology

5.3.1 Histogram Query

5.3.2 Outlier Detection for O(d,k)

5.3.2.1 Basic Scheme ..

5.3.2.2 Enhanced Scheme

5.3.3 Outlier Detection for O(n,k)

5.4 Performance Evaluation.

5.4.1 Real Data Trace.

5.4.1.1 O(d, k) Outlier Detection

5.4.1.2 O(n,k) Outlier Detection

viii

151

152

155

155

158

159

159

160

162

163

165

166

167

169

169

171

171

176

187

190

190

191

195

5.5

5.4.2 Synthetic Data Sets

5.4.2.1 O(d, k) Outlier Detection

5.4.2.2 O(n, k) Outlier Detection

Summary ...

6 Data Mining Query in RFID Systems: Finding Popular Categories

6.1 Related Work

6.2 Problem Formulation

6.3 Methodology

6.3.1 Simple Solutions

6.3.2 Threshold Checking Scheme (TCS)

6.3.3 Group Testing with TCS

6.3.4 Tree Traversal

6.3.5 Extension . . .

6.3.5.1 Without Knowledge of C

6.3.5.2 Continuous Monitoring

6.4 Performance Evaluation

6.4.1 Distribution Models for Data Sets

6.4.2 Alternative Solutions

6.4.2.1 Simple Solutions .

6.4.2.2 Sampling Scheme

6.4.3 Scanning Time

6.4.3.1 Varying Number of Tags .

6.4.3.2 Varying Number of Categories

ix

196

198

201

202

203

204

205

208

208

210

213

220

225

225

226

226

227

228

228

228

229

229

232

6.4.3.3 Comparing to Simple Solutions

6.4.4 Tightness of Bounds

6.4.5 Other Issues .

6.5 Summary

7 Conclusions and Future Work

7.1 Contributions

7.2 Future Work .

7.3 Final Remarks .

Bibliography

Vita

X

232

233

234

234

236

..... 236

239

242

244

256

To my parents, my wife Ningfang, and my son Anray.

xi

ACKNOWLEDGMENTS

When pursuing my Ph.D. at the College of William and Mary, I am fortunate to work with a

group of great people who have also contributed to this dissertation. The collaboration with them

is an enjoyable experience that I will cherish in my life.

My deepest gratitude goes to my adviser Dr. Qun Li. I still remember how unsure I felt about

research five years ago. It is Qun's supervising that has helped me mature towards a successful

researcher. I have learned a lot from his incredible understanding about how to do good quality

research. He has taught me to be confidant and persistent. In my view, Qun is the role model of

a knowledgeable and enthusiastic researcher. I have always been encouraged by his passion and

inspired by his keen wit.

I would also like to thank my dissertation committee including Dr. Qun Li, Dr. Weizhen

Mao, Dr. Raining Wang, Dr. Evgenia Smirni, and Dr. Gexin Yu. I really appreciate their time

and efforts reviewing my proposal, pre-defense and this dissertation. They have given a lot of

thoughtful comments and suggestions which have certainly helped improve this dissertation.

I would like to give special thanks to Dr. Weizhen Mao who I have worked with for a long

time. During our collaboration, I was greatly impressed by her solid theoretical knowledge, her

meticulous research style, her patience and kindness. I have learned a lot from her on algorithm

design and analysis. She has also given me many suggestions to help improve my writing skill.

In addition, I have collaborated with several excellent Ph.D. students, Dr. Haodong Wang,

Chiu C. Tan, Hao Han, and Dr. Heng Yin. I am grateful to them for their contributions to my

research work that makes this dissertation possible. I would also like to acknowledge Mengjun

Xie, Chuan Yue, Adam Wu, Lei Xie, and Fengyuan Xu for the discussions with them and their

feedback about my work.

Furthermore, I am thankful to the former and current staff in Computer Science Department,

Vanessa Godwin, Jacqulyn Johnson, Judy Fiorello, Lynn Miller, and the Techie support group, for

their various forms of support during my graduate studies.

Finally, none of this would be possible without the love and support from my family. Thanks

to my parents, Luqu and Weiguo, for their patience, trust, and understanding during all these years.

Thanks to my lovely wife Ningfang who has experienced every moment with me over the past five

years. Her warm support and encouragement always comfort me through this journey. Thanks to

my adorable son Anray who has made the last days of writing this dissertation full of sunshine.

xii

List of Tables

1.1 Specification . 6

3.1 Notations . 89

3.2 Each row represents the data sent by one sensor. We use 'X' to denote some data

with the tag is generated, otherwise, a three-bit encoding number is received. 94

3.3 An Example of Data Received by the Storage Node

3.4 An Example of Renumbering Blocks

3.5 The second row is the range partition of tags and the third row lists the probability

107

107

of each tag. 121

3.6 Confidence Comparison of 1-bit Encoding Numbers: The row (column) index is

the minimum (maximum) tag in the query. In each cell, the first value is simulation

result and the second value in the parenthesis is our estimation.

3. 7 Number of buckets (epoch=30min)

3.8 Number of Sample Nodes (v) and Encoding Length (D) .

4.1

4.2

Slot Timings .

Performance comparison in spatial continuous scans

121

123

126

134

159

5.1 Network Setup . 191

Xlll

5.2

5.3

5.4

Data Characteristics .

Network Setup . . .

Data Characteristics .

191

196

197

6.1 Summary of Notations . 208

xiv

List of Figures

1.1 A typical sensor ('Mote' manufactured by Crossbow)

1.2 Wireless Communication in a Sensor Network .

1.3 Typical RFID Hardware

1.4 Design Layers in Pervasive Computing Applications

1.5 An example of spatial continuous scanning

1.6 Summary of Research Work

2.1 Access Model with Storage Nodes

6

7

8

11

15

18

26

2.2 Data Access Model without Storage Nodes 31

2.3 Data Access Model with Storage Nodes . . 31

2.4 Deploy Storage Nodes in the Fixed Tree Model (storage nodes are black) 34

2.5 Deploy Storage Nodes in the Dynamic Tree Model (storage nodes are black) . 34

2.6 Energy Cost over a Path.

2.7 Illustration for Eq. (2.9) .

2.8 Performance of FT-RD

2.9 Performance of FT-RD

2.10 Performance of DT-RD

XV

44

71

76

76

77

2.11 Performance of DT-RD . .

2.12 Performance Comparison .

2.13 Comparison of FT-DD, FT-RD and Greedy: Energy cost with varying number of

77

79

storage nodes (k), n = 1000,rd = rq = sd = sq = 1, a= 0.5. 80

2.14 Comparison ofFT-DD, FT-RD and Greedy: The impact of data reduction rate (a),

n=1000,rd=rq=sd=sq=1,k=10. 80

2.15 Performance of Load-balancing 81

2.16 Performance of Lifetime 81

2.17 Performance of DT-DD . 82

3.1 Two-tiered System Model . 87

3.2 Example of event detection with range query: The sensors close to the passing

vehicle measure abnormally high noise or vibration ([90,110] in this example),

while the normal readings are much lower ([10-15]). Assume users know the

prior information that the noise generated by a sedan is usually between 80 and

120. Thus, users can obtain the information about the event by querying the data

in range [80-120]

3.3 Encoding length vs. PI; (n = 100, s = 10, a = 0.1, 8 = 0.9)

3.4 Encoding length vs. 8 (n = 100, s = 10, a= 0.1, PI;= 0.1)

3.5 Encoding length vs. a (n = 100, s = 10, 8 = 0.9, PI;= 0.1)

3.6 Encoding length vs. s (n = 100, a= 0.1, 8 = 0.9, PI;= 0.1)

3.7 Encoding length vs. n (s = 10, a= 0.1, 8 = 0.9, PI;= 0.1)

3.8 Confidence vs. n (s = 10, a= 0.1, 8 = 0.9, PI;= 0.1)

3.9 Confidence vs. PI; (n = 100, s = 10, a= 0.1, 8 = 0.9)

xvi

112

117

117

118

118

119

119

119

3.10 Confidence vs. 8 (n = 100, s = 10, a= 0.1, PT;_ = 0.1)

3.11 Confidence vs. a (n = 100, s = 10, 8 = 0.9, PT;_ = 0.1)

3.12 Confidence vs. s (n = 100, a= 0.1, 8 = 0.9, PT;_ = 0.1).

119

120

120

3.13 Confidence of 1-bit encoding number for single tag query, n = 100,s = 10, a= 0.1.120

3.14 Cost of encoding numbers vs. VARp (ENp = 1) .

3.15 Cost of encoding numbers vs. VARp (ENp = 1.5)

3.16 Cost of encoding numbers vs. VARp (ENp = 2)

3.17 False Positive vs. VARp (epoch=10min)

3.18 Probability of False Alarm in Event Detection: This figure illustrates the proba

bility that the number of sensors in the event proximity is less than the threshold

(1 - a) ·A. · S', in which case the storage node in charge of the area will be regarded

124

124

125

125

by the sink as a malicious storage node by mistake. 127

3.19 Confidence of Detecting a False Reply in Event Detection: This figure illustrates

the probability for the sink to detect a false reply with varying coverage areas. The

specified requirement for the confidence is 8 = 0.9. 127

4.1 State Diagram of an RFID tag

4.2 Modified Transition from 'Active' to 'Reply'

4.3 Example of Collecting Unknown Tags

4.4 Example of Detecting Missing Tags

4.5 Performance of the CU scheme .

4.6 Performance of the CU scheme .

4. 7 A series of spatial continuous scans

4.8 Performance of the CU extension scheme

xvii

132

133

139

146

157

158

159

160

4.9 Performance of the DM scheme

4.10 Performance of the DM extension scheme

5.1 Bounds on Dk(p) in Theorem 5.1 .

5.2 Bounds on Dk(p) in Theorem 5.2.

5.3 Data involved in identifying a non-outlier sub-bucket

5.4 Data involved in identifying an outlier sub-bucket

5.5

5.6

5.7

5.8

Number of Outliers in Datasets

Performance of Communication Costs

Number of Outliers in Datasets

Performance of Communication Costs

5.9 Values of Dk(Pn) for varying n (k = 100) .

5.10 Performance of Communication Costs

5.11 Number of Outliers in Datasets

5.12 Performance of Communication Costs

5.13 Number of Outliers in Datasets

5.14 Performance of Communication Costs

5.15 Values of Dk(Pn) for various n (k = 100) .

5.16 Performance of Communication Costs . .

6.1 An Example of Group Testing

6.2 An Example of Tree Traversal

6.3 The accuracy of the sampling scheme with different product distribution. Sample

161

163

169

170

181

181

192

192

194

195

195

195

199

199

200

200

201

201

215

221

size is set to 10% · n, 20% · n, and 50% · n. 228

xviii

6.4

6.5

6.6

6.7

6.8

6.9

Scanning time for the uniform distribution with varying n .

Scanning time for the M1 distribution with varying n .

Scanning time for the Zipf distribution with varying n .

Scanning time for the Zipf distribution with varying m

Scanning time for the uniform distribution with varying m

Scanning time for the M1 distribution with varying m . . .

xix

230

230

231

231

232

233

BUILDING EFFICIENT WIRELESS INFRASTRUCTURES FOR

PERVASIVE COMPUTING ENVIRONMENTS

Chapter 1

Introduction

The most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it.

Mark Weiser (1952- 1999)

Pervasive computing was first introduced by Mark Weiser in early 1990's described as "the

next stage of computing" after the mainframes and the evolution of personal computers. It repre

sents an emerging concept that thoroughly integrates computing devices into everyday objects and

activities, in short, "computers everywhere". Beyond that, pervasive computing also emphasizes

networks, applications, data, and services everywhere. A pervasive computing environment es

sentially consists of various connected devices that conduct diverse information processing tasks

on the behalf of users. IBM Chairman Lou Gerstneras once said the following about pervasive

computing environments, "Picture a day a billion people interacting with a million e-businesses

through a trillion interconnected intelligent devices."

Unlike desktop computers, pervasive computing devices are usually very tiny, sometimes even

"invisible", and can be carried by people or embedded into the surrounding objects in our daily

2

3

life. These small devices are networked through wireless channels so that they can easily interact

with people or other devices. Nowadays, technology development has substantially brought perva

sive computing into the mainstream. A lot of small pervasive computing devices have already been

manufactured. Computer chips are embedded into appliances, mobile phones, automobiles, digital

pens/desks, industrial machines, health care devices, or even on walls and floors. The presence

of these non-desktop computers and the associated applications or services has greatly changed

people's life styles from many aspects. In addition, a wide variety of wireless network protocols

have been developed providing strong connectivity to each device, e.g., cellular networks, 802.11

family, bluetooth, zigbee, WiMax, DSRC (Dedicated Short-Range Communications), IrDA (In

frared Data Association) and NFC (Near Field Communication). With these protocols, embedded

devices are seamlessly connected and data on any device is available to other entities across the

network. At this point, pervasive computing has never been closer to a reality with all available

resources. Although the development of pervasive computing is promising, some fundamental

issues still remain unsolved.

In this dissertation, we focus on the efficiency of the wireless infrastructure which is the un

derlying layer in the architecture of a pervasive computing system. This wireless infrastructure

is formed by the networked pervasive computing devices and plays the role of data provider to

support upper layer applications. In a typical pervasive computing system, data are provided in a

query I reply model, where applications generate queries to request certain data and the wireless in

frastructure transparently finds the desired data and returns them as the reply to the queries. As the

wireless infrastructure handles the data transmission, it becomes the key component for achieving

the efficiency. Designing an efficient wireless infrastructure has been one of the most fundamental

challenges for pervasive computing applications and the objective can be further defined in two

4

domains. The first is time efficiency which refers to a quick response to a query. Pervasive comput

ing applications, especially when involved in real time systems, require the wireless infrastructure

to reply to a query in a timely fashion. A long delay further postpones other consequent operations

and may make the application infeasible or dysfunctional. The second definition of efficiency con

siders energy consumption in the wireless infrastructure. This energy efficiency is more specific

to pervasive computing environments since a lot of small devices are powered by batteries and

they are often deployed for long-term tasks. For example, a sensor network is usually expected to

work solely on battery power for several months or even years. Therefore, conserving energy to

prolong the lifetime of each device and the whole system becomes mandatory for practical imple

mentation. With the above two definitions, the objective in this dissertation is to design efficient

wireless infrastructures that reply to queries quickly and with low energy consumption.

Developing such an efficient wireless infrastructure is challenging because of the unique char

acteristics of pervasive computing systems. First, pervasive computing devices are weak hard

wares with extremely limited resources and ability. These hardware constraints often demand

efficient designs, but they are also serious obstacles for achieving the efficiency. Second, as com

puting devices become tiny and ubiquitous, pervasive computing usually refers to a large scale

system with many devices. It implies a large amount of data in the system and numerous data

transmissions for a query leading to difficulties in efficiently delivering the reply. Some efficiency

problems encountered in this area have been studied in regular computer systems, but most of the

existing approaches cannot be directly applied because of the limited ability of pervasive comput

ing devices. Additionally, pervasive computing has opened a broad field of applications which

yield new efficiency problems that people have never experienced with regular computers. Recent

research work has spent much effort in addressing the efficiency issues in the wireless infrastruc-

5

ture, which include a list of fundamental questions, such as how to deploy pervasive computing

devices to help improve the efficiency, how to efficiently transfer data from one device to another,

what is the role of each device in data processing and delivery, and how to make devices collabo

rate for a task. More important, what are the proper methodologies that can be adopted to answer

these questions.

In this dissertation, we concretely investigate two important and representative instances of

wireless infrastructures, sensor networks and RFID systems. By exploring the efficiency problems

in both systems, we demonstrate how to design the infrastructure with general pervasive comput

ing devices. In the following sections, we first briefly introduce some background information

about theses two types of systems, and then we detail our target problems.

1.1 Research Scope and Background

Typical characteristics of pervasive computing environments include small-sized devices, wireless

connection, computing ability, and a large scale system. In the current stage of the development,

sensors and RFID tags are widely-used and representative hardwares for pervasive computing

applications as they possess all the above characteristics. Therefore, sensor networks and RFID

systems are selected to be the platforms for the research work in this dissertation. This section

presents basic information about sensor networks and RFID systems and their features are sum

marized at the end.

1.1.1 Sensor Networks

A sensor network consists of spatially distributed devices, called sensor nodes. Fig. 1.1 illustrates

a typical sensor hardware mote. Each sensor node contains one or more sensing devices, and is

6

able to monitor the physical or environmental conditions such as temperature, humidity, vibra

tion, pressure, and motion. In addition, sensors are powered by batteries and equipped with a

microcontroller, memory, and external storage. Furthermore, each sensor has a radio transceiver

for wireless communication. The following Table 1.1 shows the detailed specification of a typical

mote hardware.

Figure 1.1: A typical sensor ('Mote' manufactured by Crossbow)

Microcontroller ATMega128L, Up to 8 MIPS throughput at 8 Mhz

Memory 128-Kbyte Program Memory, 4-Kbyte SRAM, 4-Kbyte EEPROM

External Memory 512-Kbyte flash memory

Radio Transceiver 2.4 GHz IEEE 802.15.4, 250 kbps

Table 1.1: Specification

The major task of a sensor network is to collect data measured by every sensor. Usually, one

or more powerful computers, called sink or base station, are deployed as a gateway between the

sensor network and the end users, i.e., sensors will deliver their data to the sink while the end

users also send data requests to the sink. Because of the limited radio transmission range, it is

not practical for each sensor to reach the sink directly. Instead, the wireless communication in a

sensor network follows a hop-by-hop fashion, i.e., data from a sensor are sent to the sink through

multiple relay sensors. In practical applications, sensors often form a tree routing structure rooted

7

at the sink which enables data aggregation and filtering at non-leaf nodes further reducing the

energy consumption. We explain with more details in Chapter 2.

\ /6/L
....... ,, ~ 0 _>c_r-__,

"<"'·Y .. _ ... ····· ... ?.·_, s::· ~ .. o.
~-··'

0 Sensor Node

0 Gateway
Sensor Node

Figure 1.2: Wireless Communication in a Sensor Network

Sensor networks have been increasingly deployed in various civil and military applications,

and also highly desirable in many scientific research areas. Their major tasks are monitoring

environments and detecting special events. Typical applications include monitoring habitat of

animals, monitoring structures of buildings or bridges, monitoring agriculture growing conditions,

detecting or forecasting disasters such as forest fire and earth quack, and detecting vehicles or

enemy in a battlefield.

1.1.2 RFID Systems

The second infrastructure studied in this dissertation is RFID system. RFID, short for Radio

Frequency Identification, is a new technology and has attracted a lot of attention recently. An

RFID system consists of RFID readers and tags, where an RFID reader is a typical handheld

device such as PDA. The most common RFID tags are passive tags with no power supply. They

have certain memory space for storing data, usually tens of bytes. Each RFID tag contains an

integrated circuit that can process the data and the commands from RFID readers. In addition,

RFID tags have an antenna for communicating with RFID readers via wireless channels. The

8

latest generation of RFID tags can work at ultra high frequency range (860-960 MHz).

(a) An RFID reader (b) An RFID tag

Figure 1.3: Typical RFID Hardware

In an RFID system, there is no communication between different RFID tags. Data are trans

ferred only between an RFID reader and an RFID tag through wireless channels. The data trans

mission is conducted in a unique way due to the fact that an RFID tag has no power to transmit

anything. The RFID reader initializes the communication by broadcasting signals with certain

commands. The integrated circuit on the RFID tag is triggered by the incoming signals from

the RFID reader. Then, the RFID tag will process the commands and transmit data back to the

RFID reader by backscattering the received signals. The RFID reader is able to decode the useful

information from the reflected signals.

In RFID applications, every product or item is attached with an RFID tag, which stores some

data describing the product. This data on each tag is called tag ID which contains various useful

information about the affiliated product. People can use an RFID reader to remotely scan these

tags and fetch the ID information stored on them. Some important applications include inventory

control, supply chain management and product tracking. RFID tags are also used in other applica

tions such as electric passport, transportation payment, item management in a library or museum,

9

and animal identification.

1.1.3 Summary

Both sensor networks and RFID systems are representative wireless infrastructures in pervasive

computing applications as they provide useful information about the environment. Here we sum-

marize their common features and differences.

First, both systems consist of typical weak hard wares. Compared to a regular computer, sensor

devices have very limited resources in terms of power supply, CPU speed, storage capacity and

network bandwidth. RFID tags are even weaker devices than sensors. They can hardly handle any

computation and they have no power to communicate with each other. Therefore, studying these

I

two systems helps understand the design principles for weak hardwares.

Second, both systems represent large scale pervasive computing environments. Sensors are

usually densely deployed over a large field. A typical monitoring application involves hundreds or

thousands of sensors. RFID applications often target at large warehouse or shipping port, where

we may encounter a huge volume of items each attached with an RFID tag.

Third, the data carried by these two systems are different while they both provide information

about the environment. Sensors collect physical environmental data in an active means. These

data are dynamically changing over the time and locations. They are highly correlated in many

scenarios. For example, sensors in the same room may have similar temperature readings. Thus,

redundancy exists among the data collected by a sensor network. In an RFID system, people pre-

load data to each tag to annotate the objects. The data on each RFID tag is fixed and supposed to

uniquely represent an item.

Finally, these two systems represent different communication models. In a sensor network,

10

data are transferred from a sensor to the sink or another sensor in a multi-hop fashion. Data

aggregation, processing, and filtering are possible at the relay sensor nodes. In an RFID system,

however, there is only one-hop communication between the RFID reader and an RFID tag. RFID

tags can not communicate with each other.

In summary, sensor networks and RFID systems represent the most popular scenarios for

wireless infrastructures in a pervasive computing environment. Investigating these two systems

provides us with full understanding of the efficiency problems and the results in this dissertation

have a broad impact on this research community. The next section presents the research problems

examined in this dissertation.

1.2 Research Directions and Problems

Implementations of pervasive computing applications include layered components as shown in

Fig. 1.4. Each application task from users is first translated to one or more queries. The corre

sponding query protocols determine what information is needed for the reply and how to obtain

it. These query protocols are built on the physical network architecture which provides low-level

general functions. For example, a query protocol may need device A to transfer data to device B,

and the network architecture layer is responsible for a routing path from A to B according to the

topology.

In this dissertation, with the objective of achieving the efficiency, we focus on two research

directions of designing network architectures and query protocols. The first direction represents

underlying frameworks that can efficiently support different applications. The second direction ex

plores application-aware optimizations for the efficiency. We investigate representative efficiency

problems including some known problems with more practical settings and a few new challenging

11

problems. With the novel and substantial solutions, we demonstrate several useful techniques for

pervasive computing environments. In the rest of this section, we present the details about the

problems this dissertation addresses.

(au~ry3)
i

Network Architecture,

Figure 1.4: Design Layers in Pervasive Computing Applications

1.2.1 Network Architecture

In many applications, the performance of replying to queries is related to the network architecture

of the infrastructure referring to structural factors such as network topology, routing protocol,

and data flow. With general characteristics of queries, the underlying network architecture can

be optimized for the efficiency. A sensor network supports flexible configurations of the network

architecture leaving us the opportunity to improve the efficiency in this direction.

A major research trend in the literature is to deploy powerful sensors to build a hybrid network

with regular sensors to achieve more efficient performance. Powerful nodes have more enriched

resources, such as faster CPU, higher bandwidth, and more battery capacity. Different from the

prior work, we explore a novel idea of deploying powerful sensors with large storage capacity,

called storage nodes. Since flash memory becomes inexpensive, deploying storage nodes is more

practical compared to upgrading the CPU or antenna. We utilize storage nodes to form a two-tiered

sensor network and support in-network storage mechanism. Our research focuses on finding the

12

best locations to deploy storage nodes with the goal of improving the efficiency.

1.2.2 Query Protocol

The major research direction in this dissertation is to design efficient query protocols. Real ap

plications may issue various queries to extract different data information. There is no universal

solution that can achieve the efficiency in all queries. The most efficient solution is to specifically

optimize the query protocol for each particular query. In this dissertation, therefore, we investi

gate some representative queries in sensor networks and RFID systems. By exploring them, we

demonstrate the appropriate methodology for designing efficient query protocols and our solutions

can be easily extended to solve other similar queries.

1.2.2.1 Basic Query

Our work starts with the most basic and fundamental queries. These queries are frequently used

and they are often the building blocks of other complicated queries. Therefore, the efficiency of the

basic queries has been well studied in the literature. The prior work, however, mostly considers an

ideal problem setting ignoring practical requirements and constraints. The solutions for simplified

settings may not solve the efficiency problems in real implementations. Our work re-visits the

efficiency problems in these basic queries, and goes one step further with more realistic settings.

The details of the problems are presented in the next.

Range Query in Sensor Networks We first considers range query in sensor networks, which

requests the data in a specified value range [a, b]. Range query is a basic operation and widely used

in sensor network applications. Different from the prior work, we investigate range query with

security and privacy requirements which are the common concerns in real applications because

13

sensor networks are often deployed in an unttusted or even hostile environment. A compromised

sensor network may leak sensitive information to an unauthorized party, which leads to a privacy

breaching. In addition, it may also give false information about the collected data to a valid

query, misleading the application. In deploying such a realistic sensor network, a fundamental

question is how much one should trust a sensor network and how to prevent, or at least, detect

the misbehavior of the sensor network. Unfortunately, little research work has focused on these

privacy and security issues.

We consider a network model consisting of storage nodes and regular sensors, where storage

nodes are responsible of hosting raw data from nearby regular sensors and replying to the queries

from the sink. The role of a storage node implies that it has to gain some understanding about the

stored data for an energy-efficient data reply by avoiding sending all the collected data back. The

practice would not be a problem if the storage nodes are assumed to be trusted. It is not valid,

however, if the storage nodes are susceptible to compromise and the disclosure of the information

may endanger the crucial assignment for the users in the network. With more sensor networks

deployed for pervasive computing applications, this issue becomes even more serious if the user

information is leaked through the storage nodes, which breaches the privacy requirement.

Generally, an adversary is not able to compromise numerous sensors. The limited number of

compromised regular sensors do not affect the query reply seriously because of redundant sensor

deployment and limited coverage of the compromised sensors. The storage nodes, which hold

much data collected from many sensors, however, easily become the targets for compromise and

have to be a great concern when privacy related information is collected and query is imposed to

the collected data.

Two threats arise when storage nodes are compromised by the adversary. First, the compro-

14

mised storage nodes may disclose the data stored on them to the adversary. Thus, we would like

the storage nodes to reply to the range query without gaining too much information. Second, the

compromised storage nodes may send false information as the reply. It is difficult to prevent the

malicious storage nodes from cheating on data reply. But at least the user is entitled to know

whether the reply is intact. Therefore, our goal is to design a range query protocol that preserves

the data privacy and enables the sink to verify the reply.

Continuous Scans in RFID systems The second basic query examined in this dissertation is

to scan RFID tags and collect all tag IDs. It is the most fundamental query in an RFID system

and the major focus of all previous work. In this operation, time efficiency is of crucial impor

tance for many RFID applications, especially when they deal with a large volume of RFID tags.

For example, inventory management often requires an RFID reader to scan all the products in a

warehouse. This task usually involves tens of thousands of RFID tags, assuming every product is

attached with one tag, and mandates a quick scanning process.

The previous literature, however, has only focused on developing efficient protocols for a sin

gle scanning process. In fact, many tasks cannot be accomplished by a single scan. Instead,

multiple scanning processes have to be continuously launched. For example, to scan all the prod

ucts in a large warehouse for inventory management, it is impossible for an RFID reader to read

all the tags at one location due to the limited reading range. Usually a single mobile reader (or

multiple re~ders) has to launch multiple scanning processes at different locations to cover all the

tags in the entire warehouse (illustrated in Fig. 1.5). In this dissertation, we study this common

practice of continuous scanning, and aim at designing efficient protocols for it.

Continuous scanning is generally defined as a series of multiple scanning processes. This

work investigates continuous scanning in both spatial and temporal domains. The above example

15

.... -...... -.....
,: .. •· ·-~Reading Range

(/ · ·: r~)j~jfJ:(~~~~ii+~}-.. .--!-) -RFID Reader

\ : ' X : ; ;
' 1 I I I I ·----.... >< -~>::'. ______ .. /

Figure 1.5: An example of spatial continuous scanning

illustrates a spatial continuous scanning, where a series of scans are executed at different locations.

Namely, temporal continuous scanning represents a series of scans occurring at different time

points. It is often used for monitoring inventory update. For example, some applications may

want to keep track of the products stored at a certain location in a dynamic environment where

new products may be put on shelf and some existing products may be moved out. An RFID reader,

in this case, has to periodically scan all the present RFID tags to keep a fresh record. Therefore,

our goal is to develop efficient continuous scanning protocols that can quick detect the inventory

changes, i.e., collecting the tags newly added and remove the tags that are no longer present.

1.2.2.2 Data Mining Query

After exploring basic queries in pervasive computing systems, the natural next step is to investigate

some complicated queries. The most representative ones are data mining queries which have been

well studied in the database community. In a pervasive computing environment, the wireless

infrastructure can be treated as a large database since each device contains useful data. As data

mining queries have been shown important for applications in the database literature, little research

on data mining has been conducted in pervasive computing environments. Different from the

problems in the database area, data mining in pervasive computing is more challenging because

the target data set is distributed on each small device rather than collected at a central server which

16

is a common assumption in the database literature. In addition, energy efficiency, one of our major

goals, is not a concern for regular data mining in the prior work.

In this dissertation, we investigate two classic data mining queries. First, we study the problem

of finding outlier data in a sensor network. The definition of outlier data is determined not by a

single data value, but by the distribution of all data values. However, it is extremely hard for

a sensor network to efficiently obtain the global information about all data values. Our work

presents the first efficient solution to this outlier detection query. The second data mining query

we consider is to find popular categories of the items in an RFID system. The challenge is that

little computation and communication ability seriously impedes RFID tags to collaborate and

efficiently supply the requested information. Our work proposes efficient protocols that work with

the off-the-shelf RFID hardwares requiring no extra functionality. The details are introduced as

follows.

Detect Outliers in Sensor Networks As we mentioned earlier, sensor networks are usually large

scaled and expected to work for a long time, thus accumulate a large amount of data. Mining this

large data repository for useful information is crucial in many applications. In a simple solution,

data collected by sensors can be transmitted to the sink for data mining analysis. This method,

however, consumes too much energy because the data volume transferred can be extremely large.

Thus, the batteries of the sensors will be quickly depleted, leading to network partition and dys

function. Therefore, a desired method must be energy-efficient, while still be able to extract

information from the large amount of data distributed over the network.

In this work, we consider one of the most important data mining problems: outlier detection,

which defines a process to identify data points that are very different from the rest of the data

based on a certain measure. Outlier detection in a central database has been a hot topic in the data

17

mining community, but little work has been done in the context of a sensor network in which data

are distributed over thousands or tens of thousands of sensors.

Essentially, outliers represent a complex form of abnormal data which are critical in many

sensor network applications. Abnormal data is often a warning of suspicious events, and effective

detection schemes can trigger an alarm in the early stage and prevent serious consequences. Some

abnormal data can be easily defined and detected. For example, if a sensor network is deployed

to detect fire by monitoring temperature, then the very high temperature readings will be the

abnormal data which can be distinguished by a threshold for normal temperature. This kind of

abnormal data can be detected by just looking at the data values. Outliers, however, are defined

based on a global view of all the data and hard to be identified without knowledge of other data

values. For example, assume sensors are embedded on a bridge to monitor structural integrity

by measuring the vibration generated by the passing vehicles. Heavier cars will cause larger

vibrations and structural weakness may also yield larger than normal vibrations. When a sensor

measures a large vibration, it is difficult to determine whether it is abnormal by only considering

the data value. The large reading might be normal if it is caused by a heavy truck, but it also could

be an abnormal value if the passing car is a sedan. The only way to find out is to compare with the

data measured by other sensors. Thus, outlier detection represents a category of complicated data

mining queries that require the knowledge of all the data generated by every sensor. In practice,

however, gathering global information in a sensor network is extremely costly due to the network

wide transmission. Therefore, our goal here is to efficiently identify outlier data without collecting

all data at a central point.

Find Popular Items in RFID Systems The last query we examine is to find popular categories

in an RFID system. Many RFID applications involve a large amount of tags to be read, e.g., in a

18

shipping portal or warehouse, the items in pallets and cases are read together (i.e., in bulk). An

open question in RFID area is how to efficiently extract useful information from a large scale

RFID system considering the limited ability of each tag. Our work investigates a particular prob-

lem of finding the popular categories among these numerous items. The categories have flexible

definitions on different domains and granularity and we consider a user specific threshold to de-

fine 'popular', i.e., if the number of tags in a category exceeds the threshold, the category is called

popular. Finding popular items is important for tracking the most popular categories shipped in a

day, or the least consumed types of goods in a warehouse, or the most frequent values sensed by

RFID sensors when the values can be classified into categories.

In the prior work, all queries are answered by first collecting all tag IDs. However, when the

collection of tags is large, reading data from every tag is very time consuming. In addition, getting

all raw data is not necessary for this particular query. Therefore, our goal is to design an efficient

protocol to find the popular categories without scanning all RFID tags.

1.2.3 Summary

As a quick summary, the following Fig. 1.6 lists the research work in this dissertation. In the

direction of network architectures, we investigate data storage placement in sensor networks. Our

major work in this dissertation resides in designing efficient query protocols and we examine two

basic queries and two data mining queries in sensor networks and RFID systems.

Sensor Networks

RFI D Systems

Figure 1.6: Summary of Research Work

19

1.3 Contributions

This dissertation focuses on the fundamental efficiency problems in wireless infrastructure design

for pervasive computing environments. The contributions of this dissertation are:

• We have introduced a two-tiered hybrid network architecture composed of regular sensors

and special storage nodes. We have developed the optimal algorithms for deploying storage

nodes to reduce energy consumption.

• We have examined two basic queries, range query in sensor networks and continuous scans

in RFID systems. Our work has developed efficient query protocols for them with practical

problem settings.

• We have investigated the efficiency issues with complicated data mining queries. We have

developed efficient protocols for two representative queries of detecting outliers in sensor

networks and finding popular items in RFID systems.

1.3.1 Network Architecture

In the direction of network architecture, we have focused on the data storage placement in sensor

networks. Two typical network models are studied for achieving the efficiency. The first is the

fixed tree model, where we assume the sensor network has organized into a tree rooted at the sink.

The communication routes from sensors towards the sink are predefined by the tree. Our goal is

to select some of the nodes in the tree as storage nodes. The second model is called the dynamic

tree model, where the (optimal) communication tree is constructed after the storage nodes are

deployed. Specifically, each sensor selects a storage node in its proximity for its data storage with

the goal to minimize the energy cost of the resulting communication tree.

20

• For the fixed tree model, we have examined deterministic placement of storage nodes and

present the optimal algorithms based on dynamic programming. Our simulation results

show that our algorithms significantly reduce the total energy consumption in the sensor

network.

• The problem in the dynamic tree model is proven to be NP hard. We have first presented

a stochastic analysis for random deployment in the dynamic tree model which is a com

mon practice in sensor network applications. Our analysis provides a useful guideline and

accurate estimation of the performance.

• We have further developed an approximation algorithm for the dynamic tree model. From

the theoretical aspect, our problem is similar to the facility location problem, but in a more

complex form as defined with multiple levels and a in non-metric domain. Our algorithm

is the first constant approximation algorithm for this problem. Our evaluation shows the

proposed approximation algorithm is much more efficient than random deployment in terms

of energy consumption.

1.3.2 Basic Query

The representative basic queries investigated in this dissertation includes range query in sensor

networks and continuous scans in RFID systems. For the range query, we have focused on the

efficiency issue with security and privacy requirements, especially when a storage node is com

promised. Our goals are to prevent the compromised storage nodes from disclosing data stored

there and to enable the sink to verify the reply from storage nodes. For the continuous scans in

RFID systems, our design focus is how to avoid collecting all IDs at each scan and quickly finish

the whole process.

21

• To the best of our knowledge, our work is the first to consider privacy issue in sensor net

work data range query. Our work explores the privacy concerns in sensor networks in a

very general setting. We have developed a privacy-preserving storage scheme which uses

bucketization to obscure the view of the storage node to the data stored on it. Our scheme

satisfies the privacy requirements while storage nodes can still efficiently process the raw

data and reply to queries.

• We have also developed a scheme that enables the sink to verify the reply to a range query.

The major challenge here is how to prevent compromised storage nodes from dropping data.

Our solution is based on a novel encoding number scheme. We have developed the optimal

algorithm to derive the best parameters for the protocol considering both efficiency and

security. With our parameter setting, the proposed protocol is able to detect the false replies

with low energy overhead.

• We have designed two efficient algorithms for continuous scanning in RFID systems, one

to collect the 'new' tag IDs and the other to detect those 'old' RFID tags that have been

moved out. We have presented in-depth analysis to derive the proper parameters for the

proposed algorithms to achieve the efficiency and satisfy the accuracy requirements. In

addition, we have proposed an improvement for temporal continuous scanning based on a

pre-computation before scanning the RFID tags.

1.3.3 Data Mining Query

In this dissertation, we have worked on two classic data mining queries, detecting outliers in sensor

networks and finding popular categories in RFID systems. The prior work uses a simple but costly

22

solution that collects ALL data to reply to these queries. In this dissertation, we have proposed

more efficient solutions.

• We have developed an efficient outlier detection scheme based on histogram information

for sensor networks. To the best of our knowledge, this is the first histogram-based detec

tion approach to solving this problem. The propose~ scheme uses small-sized histogram

information to approximate the sensor data distribution and reduce the communication cost

under two different detection schemes. We have presented the theoretical analysis for the

communication cost incurred in the network.

• Additionally, we have proposed a multi-round histogram refinement technique for some

critical portion in the data distribution to gain more information about outliers. The finer

histogram information helps filter out more non-outliers, hence further reduce more commu

nication cost. Our trace-driven simulation has demonstrated that our approaches decrease

the communication cost dramatically compared to the prior work.

• We are the first to propose efficient solutions to data mining queries in RFID systems with

out collecting all tag IDs. We have proposed a simple and fast threshold checking scheme

(TCS), which accurately answers whether the number of involved tags exceeds a threshold

with high probability. Furthermore, we have designed two randomized algorithms based on

group testing and TCS to efficiently find popular categories. We have comprehensively eval

uated the proposed schemes and compare them against existing solutions. Our simulation

results show that our schemes significantly reduce the total scanning time.

• For both data mining queries, we have demonstrated appropriate methodologies and design

principals for such complicated queries in a pervasive computing environment. Particularly,

23

for a sensor network to handle complicated queries, protocols with multiple rounds of in

formation collection are suitable, where each round obtains small-sized information, such

as histogram in our problem, followed by rigorous analysis and estimation. In an RFID

system, we have shown randomized algorithm is an useful technique for solving compli

cated queries because compatible schemes are built on the slotted ALOHA protocol which

inherently cope with randomized algorithm. Our work can be easily extended to solve other

similar problems and has inspired other work in the research community.

1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present our work on the

network architecture design with the focus on data storage placement schemes. Chapter 3 and

Chapter 4 are our work on representative basic queries in sensor networks and RFID systems. In

Chapter 5 and Chapter 6, we propose efficient solution to the data mining queries. Finally, we

conclude in Chapter 7.

Chapter 2

Network Architecture in Sensor

Networks: Data Storage Placement

In this chapter, we present our work in the direction of network architecture, particularly, data stor

age placement in sensor network. We propose to deploy special storage nodes with large storage

capacity to support in-network storage and help reduce energy consumption. Structural optimiza

tion in a sensor network often surprisingly improves the efficiency for upper layer application

queries. In this work, we take general query characteristics as input and develop algorithms to

derive the best locations for storage nodes.

A sensor network deployed for pervasive computing applications, e.g., sensing environmental

conditions and monitoring people's behaviors, generates a large amount of data continuously over

a long period of time. This large volume of data has to be stored somewhere for future retrieval

and data analysis. One of the biggest challenges in these applications is how to store and search

the collected data.

The collected data can either be stored in the network sensors, or transmitted to the sink. Sev-

24

25

eral problems arise when data are stored in sensors. First, a sensor is equipped with only limited

memory or storage space, which prohibits the storage of a large amount of data accumulated for

months or years. Second, since sensors are battery operated, the stored data will be lost after

the sensors are depleted of power. Third, searching for the data of interest in a widely scattered

network field is a hard problem. The communication generated in a network-wide search is pro

hibitive. Alternatively, data can be transmitted back to the sink and stored there for future retrieval.

This scheme is ideal since data are stored in a central place for permanent access. However, the

sensor network's per-node communication capability (defined as the number of packets a sensor

can transmit to the sink per time unit) is very limited [43, 62]. A large amount of data cannot be

transmitted from the sensor network to the sink efficiently. Furthermore, the data communication

from the sensors to the sink may take long routes consuming much energy and depleting of the

sensor battery power quickly. In particular, the sensors around the sink are generally highly used

and exhausted easily, thus the network may be partitioned rapidly.

It is possible that, with marginal increase in cost, some special nodes with much larger per

manent storage (e.g., flash memory) and more battery power can be deployed in sensor networks.

These nodes back up the data for nearby sensors and reply the queries. The data accumulated

on each storage node can be transported periodically to a data warehouse by robots or traversing

vehicles using physical mobility as Data Mule [111]. Since the storage nodes only collect data.

from the sensors in their proximity and the data are transmitted through physical transportation

instead of hop-by-hop relay of other sensor nodes, the problem of limited storage, communication

capacity, and battery power is diminished.

In this storage model, where to deploy storage nodes is a critical issue for the performance

in terms of energy cost. The optimal solution depends on the characteristics of raw data genera-

26

Figure 2.1: Access Model with Storage Nodes

tion and user query as well as the network topology. As already mentioned, the most important

operation for sensor networks is the query because the purpose of a sensor network is to provide in

formation of the environment to the end users. A user query may take various forms; for example,

a user query may be how many nodes detect vehicle traversing events, and the average temperature

of the sensing field. In this scenario, each sensor, in addition to sensing, is also involved in routing

data for two network services: the raw data transmission to storage nodes and the transmission

for query diffusion and query reply. Two extreme approaches are to transmit all the data to the

sink and to store them on each sensor node locally. On one hand, data solely stored in the sink

is beneficial to the query reply incurring no transmission cost, but the data accumulation to the

sink is very costly. On the other hand, storing data locally incurs zero cost for data accumulation,

whereas the query cost becomes large because a query has to be diffused to the whole network

and each sensor has to respond to the query by transmitting data to the sink. The storage nodes

not only provide permanent storage as described previously, but also serve as a buffer between the

sink and the sensor nodes. The placement of the storage nodes can strike a balance between these

two schemes characterizing a tradeoff between data accumulation and data query. Therefore, our

work aims to achieve the energy efficiency in data accumulation and data query by judiciously

placing the storage nodes in the network.

27

2.1 Related Work

There has been a lot of prior research work on data querying models in sensor networks. In early

models [70, 71, 92, 93], query is spread to every sensor by flooding messages. Sensors return data

back to the sink in the reverse direction of query messages. Those methods, however, do not

consider the storage concern in sensor networks.

On the other hand, some new models introduce an intermediate tier between the sink and

sensors. LEACH [65] is a clustering-based routing protocol, in which cluster heads can fuse the

data collected from its neighbors to reduce communication cost to the sink. LEACH has a similar

structure to our scheme, having cluster heads aggregate and forward data to the sink. However,

LEACH aims to reduce data transmission by aggregating data; it does not address storage problem

in sensor networks. Data-centric storage schemes [44, 79, 102, 108, 113], as another category of

the related work, store data to different places in sensor networks according to different data types.

In [79, 108, 113], the authors propose a data-centric storage scheme for sensor networks based on

Geographic Hash Table, which inherits ideas from distributed hash table. The home site of data is

obtained by applying a hash function on the data type. Thus, queries for the same type of data can

be satisfied by contacting a small number of nodes. Another practical improvement is proposed

in [44] by removing the requirement of point-to-point routing. In [13], Ahn et al. analyze the

scaling behavior of data-centric query for both unstructured and structured (e.g., GHT) networks

and derive some key scaling conditions. GEM [102] is another approach that supports data-centric

storage. GEM applies graph embedding technique to map data to sensor nodes. In general, the

data-centric storage schemes assume some understanding about the collected data and store them

remotely for easy data access. Extra cost is needed to forward data to the corresponding keeper

nodes. Our work, however, does not assume any prior knowledge about the data: indeed in many

28

applications, raw data may not be easily categorized into different types. To transmit the collected

data to a remote location is also considered expensive in our work because the total collected data

may be in a very large quantity. To facilitate data query, Ganesan et al. (50-52] propose a multi

resolution data storage system, DIMENSIONS, where data are stored in a degrading lossy model,

i.e., fresh data are stored completely while long-term data are stored lossily. DIMENSIONS uses

wavelets to obtain temporal-spatial summarizations in a hierarchical structure, which helps locate

a subset of sensor nodes for range queries. Its performance is heavily dependent on the data

correlation because of the data summarization scheme. In comparison, our scheme is more general

in making no assumption about the data correlation. PRESTO [41, 90] is a research work on

storage architecture for sensor networks. A proxy tier is introduced between sensor nodes and

user terminals and proxy nodes can cache previous query responses. When a query arrives in a

proxy node, it first checks if the cached data can satisfy the query before forwarding the query

to other nodes. Compared with the storage nodes in our work, proxy nodes in PRESTO have

no resource constraints in term of power, computation, storage and communication. It is a more

general storage architecture that does not take the characteristics of data generation or query into

consideration. In the Cougar project [22, 40, 53], a data dissemination tree is built with data

sources as leaves. View nodes introduced in Cougar have similar functionality as storage nodes in

our work. Our scheme focuses more on how to optimize the placement of storage nodes, while

Cougar mainly focuses on how to implement data query in more details in a sensor network.

In [21, 119], operator placement for query processing is investigated. Srivastava et al. pro

posed an optimal algorithm to place a set of operators on a query tree. They considered both the

computational cost of executing filters and the transmission cost of data tuples, and the proposed

algorithm can find the best nodes to execute the operators so that the total cost is minimized.

29

In [21], Bonfils et al. presented a decentralized operator placement algorithm to adaptively adjust

the positions of the operators to improve the performance. Their solution suites for the scenario

where no global information is available and network conditions vary over the time. Our work

considers a large storage space as a requirement for holding data and processing data for queries,

while an operator/filter can be executed at any node. Additionally, placing storage nodes incurs

extra hardware cost and there is only a limited number of storage nodes available in our problem

formulation. Therefore, our problem is quite different from operator placement.

Data placement schemes in sensor networks are studied in [20, 78]. The authors consider a

scenario where multiple observers are interested in some data sources. Data are disseminated by

a multicast tree and may be cached to reduce the power consumption. Even though their scheme

is close to data storage, they are mainly concerned with data replication, which is quite different

from the scope of our work.

In addition, other research work has shown the feasibility of manufacturing storage nodes.

In [96], Mathur et al. investigate hardware supports to attach large capacity flash memory to

sensors. Their measurement study shows that access to large local storage is practical for sensors

in term of energy cost. On the other hand, storage nodes are also supported by the research on

software system. Zeinalipour-Yazti et al. propose Micra's [128] indexing structure to manage

external flash memory of sensors in order to efficiently look up the stored data. In [95], Mathur et

al. design Capsule system as a intermediate layer between flash memory and sensor applications.

Object-based primitives are implemented to enable applications to flexibly utilize flash storage.

In [16, 17], the authors introduce an approach to analyzing communication networks based

on stochastic geometry. They consider models built on Poisson processes and obtain formulas to

express the average cost in function of the intensity parameters of Poisson processes. Baek et al.

30

extend this work specifically to sensor networks in [18]. They consider a hierarchical architecture

with a compressor layer between sensor nodes and sinks. Data are aggregated at compressor nodes

before further relay. One part of our work also analyzes random placement of storage nodes. We

will use similar means with [16-18] to derive analytical formulas for the performance.

One part of storage placement problem with a general model is quite similar to the k-median

problem ([14, 15, 31, 32, 35, 73]) and the facility location problem ([47, 61, 72, 84, 85, 114]

). We design an approximation algorithm to solve it following the ideas in [32], which give an

approximation factor of 6t to the k-median problem. In our problem, however, the sink is a special

facility as the final destination of all data. From another aspect, our problem is similar to the two

level facility location problem ([3, 5, 27, 130]) with the sink as the only one level-2 facility.

However, in our problem, the cost triangle inequality does not always hold, which makes the

problem more complicated, as a special case of the non-metric two-level facility location problem.

No prior work guarantees a constant approximation factor for the general non-metric two-level

facility location problem. The best known solution has an approximation factor of O(ln(C)) (

[130]), where C is the number of clients.

2.2 Problem Formulation

We consider an application in which sensor networks provide real-time data services to users. A

sensor network is given with one special sensor identified as the sink (or base station) and many

normal sensors, each of which generates (or collects) data from its environment. Users specify

the data they need by submitting queries to the sink and they are usually interested in the latest

31

readings generated by the sensors1• To reply to queries, one typical solution, shown in Fig. 2.2, is

to let the sink have all the data. Then any query can be satisfied directly by the sink. This requires

each sensor to send its readings back to the sink immediately every time it generates new data.

Generally, transferring all raw data could be very costly and is not always necessary. Alternatively,

we allow sensors to hold their data and to be aware of the queries, then raw data can be processed

to contain only the readings that users are interested in and the reduced-size reply, instead of the

whole raw readings, can be transferred back to the sink. This scheme is illustrated in Fig. 2.3,

where the black nodes, called storage nodes, are allowed to hold data. The sink diffuses queries

to the storage nodes by broadcasting to the sensor network and these storage sensors reply to the

queries by sending the processed data back. Compared with the previous solution, this approach

reduces the raw data transfer cost (as indicated by the thick arrows in the figures), because some

raw data transmissions are replaced by query reply (as indicated by the thin arrows). On the other

hand, this scheme incurs an extra query diffusion cost (as indicated by the dashed arrows). In this

work, we are interested in strategically designing a data access model to minimize energy costs

associated with raw data transfers, query diffusion, and query replies.

Figure 2.2: Data Access Model (All data are
forwarded to the sink)

Figure 2.3: Data Access Model with Storage
Nodes

10ur algorithms also apply to the queries to the historic data. For the ease of presentation, we assume all queries

are corresponding to the latest generated data.

32

We now give formal definitions of two types of sensors (or nodes):

Storage nodes: This type of nodes store all the data it has received from other nodes or gen

erated by themselves. They do not send out anything until queries arrive. According to the query

description, they obtain the results needed from the raw data they are holding and then return the

results back to the sink. The sink itself is considered as a storage node.

Forwarding nodes: This type of nodes always forward the data received from other nodes or

generated by themselves along a path towards the sink. The outgoing data are kept intact and the

forwarding operation continues until the data reach a storage node. The forwarding operation is

independent of queries and there is no data processing at forwarding nodes.

Therefore, our goal is to design a centralized algorithm that can derive the best locations of the

storage nodes to guide the deployment of such a hybrid sensor network. We make the following

assumptions about the characteristics of data generation, query diffusion, and query replies. First,

for data generation, we assume that each node generates r d readings per time unit and the data

size of each reading is sd. Second, for query diffusion, we assume that r q queries of the same

type are submitted from users per time unit and the size of the query messages is sq. Third, for

query reply, we assume that the size of data needed to reply a query is a fraction a of that of the

raw data. Specifically, we define a data reduction function f for query reply. For input x, which

is the size of raw data generated by a set of nodes, function f(x) = ax for a E (0, I] returns the

size of the processed data, which is needed to reply the query. We do not restrict the types of

queries we impose on the sensor network in this work, but we assume that a can be obtained

through examining the historic queries to get an empirical value for this parameter. The parameter

a characterizes many queries satisfied by a certain fraction of all the sensing data, e.g., a range

query may be "return all the nodes that sense a temperature higher than 100 degree" and a can be

33

estimated based on the data distribution information.

The communication among all n nodes is based on a tree topology with the sink as the root.

Data are transferred along the edges in this communication tree. The communication tree can be

formed before or after storage node deployment. Accordingly, we will consider two models in

the rest of this chapter. In the fixed tree model, as illustrated in Fig. 2.4, we first deploy regular

sensors and construct a communication tree as usual. Based on the topology information, we

select some of the regular sensors to be storage nodes. We can attach large flash memory to

these selected sensors or replace them by more powerful storage nodes at the same locations. The

other model, the dynamic tree model, is illustrated in Fig. 2.5. In this model, storage nodes are

deployed before the communication tree is formed and their location information is broadcast to

nearby regular sensors. After that, all sensors organize themselves into a communication tree

according to the locations of the storage nodes. In both models, after tree construction and storage

node deployment, each storage node needs to send a notification towards the sink. In this way,

every sensor is aware of the existence of storage nodes among its descendants and when a query

arrives, it is able to determine whether to continue the diffusion or not. In both the fixed tree and

dynamic tree models, we aim to find the optimal locations for storage nodes in a deterministic

way. In reality, however, the storage nodes may not be deployed in a precise way. Instead, their

deployment may be random with a certain density A., e.g., the storage nodes are dispersed from

an airplane. We also evaluate the performance of random deployment of storage nodes in this

chapter.

0

0

0

0

0 0

lsinkl 0

0
0

0 0

(a) Step 1: Regular sensors are de-

ployed in a field.

34

(b) Step 2: A communication tree is (c) Step 3: Some regular sensors are

constructed to relay data. upgraded to or replaced by storage

nodes.

Figure 2.4: Deploy Storage Nodes in the Fixed Tree Model (storage nodes are black)

0 0 0 0 0 0 -• I sink I 0 • l)) (((~ l)) 0
0 0 - 0 - 0

0 = =o -
0 0 • 0 0 (((• l))

(a) Step 1: Regular sensors and stor- (b) Step 2: Each storage node (in- (c) Step 3: A communication tree is

age nodes are deployed in a field. eluding the sink) broadcasts its loca- constructed based on the locations of

tion information. storage nodes.

Figure 2.5: Deploy Storage Nodes in the Dynamic Tree Model (storage nodes are black)

2.3 Methodology

2.3.1 Fixed Tree Model

We first introduce the communication model in the fixed tree model as follows. To transmit one

data units, the energy costs of the sender and receiver are err and ere respectively, and err is also

relevant to the distance between the sender and receiver. To simplify the problem, we set the length

of each tree edge to one unit, which means that sensor nodes have a fixed transmission range and

the energy cost of transferring data is only proportional to the data size. Our algorithms can be

easily extended to non-uniform transmission ranges as long as topology information is available.

35

In our energy model, for simplicity of presentation, the receiving energy cost is assigned to the

sender without changing the total energy cost. When sensor i sends one data unit to j, the energy

cost of j is 0, and the energy consumed by i is

if j is i's parent;
if j is one of i's children,

where ci is the number of i's children. In the following discussion, we normalize the energy costs

by (err+ ere) for easy presentation. Thus, transferring one data unit from ito its parent consumes

one energy unit and to broadcast one data unit to its children, sensor i will consume bi energy

units, where

b
._ err+ere'Ci ,-

err +ere

Let i be any node in the communication tree and~ be the subtree rooted at i. We use 1~1 to

denote the number of nodes in~. We define e(i) to be the energy cost incurred at i per time unit,

which includes, the cost for raw data transfer from i to its parent if i is a forwarding node, the

cost for query diffusion if i has storage nodes as its descendants, and cost for query reply if i is

a storage node or has a storage descendant. To define e(i) mathematically we need to consider

several possible cases.

Case A. i is a forwarding node and there are no storage nodes in~. All raw data generated

by the nodes in ~ have to be forwarded to the parent of i and there is no query diffusion cost. So

Case B. i is a storage node and there are no other storage nodes in ~. The latest readings of

all raw data generated by the nodes in ~ are processed at node i and the reduced reply size will be

al~lsd. Node i sends the reply to its parent when queries arrive. So e(i) = rqal~lsd.

Case C. i is a storage node and there is at least one other storage node in ~. In addition

36

to the cost for query reply as defined in Case B, i also incurs a cost for query diffusion that is

implemented by broadcasting to its children. So e(i) = rqal1fisd+ birqsq.

Case D. i is a forwarding node and there is at least one storage node in 'Tj. This is the case

where all three types of cost (for raw data transfer, query diffusion, and query reply) are present.

Among the 11fl- 1 descendants of i, let dt be the number of forwarding descendants without any

storage nodes on their paths to i (the raw data generated at these d 1 nodes and at i itself will be

forwarded from ito its parent without reduction) and d2 be the number of storage descendant's

or forwarding descendants with at least one storage node on their paths to i (the last readings of

the raw data generated at these d2 nodes will have been processed and reduced before reaching i).

Obviously, dt + d2 = I'Tjl- 1. So e(i) = (dt + 1)rdsd + birqsq + rqad2sd.

Within the fixed tree model, we will consider two problems of storage node placement. Given

an undirected tree T with nodes labeled with 1,2, ... ,n. The length of each edge is 1. Let e(i)

be the energy cost of node i in one time unit as defined above. The objective is to place storage

sensors (and hence forwarding sensors) on nodes in T such that the total energy cost LiETe(i) is

minimized. In the case when there is no limit on the number of storage nodes that can be used to

minimize the energy cost, the problem is denoted with UNLIMITED. In the case when there is a

limited number of storage nodes, say k, to use, the problem is denoted with LIMITED.

2.3.1.1 Unlimited Number of Storage Nodes

We will present a linear-time algorithm for the problem UNLIMITED, where an unlimited number

of storage nodes are available to use to minimize the energy cost of a communication tree. Recall

that e(i) is the energy cost at node i. Let 'Tj be the subtree rooted at i. Then E(i) is the energy cost

of nodes in~. defined to be E(i) = LiET;e(i).

37

Our algorithm relies on the following lemma.

Lemma 2.1 Given a node i and its subtree T;.. If ar q 2: r d· then i must be a forwarding node to

minimize E(i). If arq < rd, then i must be a storage node to minimize E(i).

Proof: We compare the energy cost of two trees, which are identical in every aspect except that

the first tree's root is a forwarding node and the second tree's root is a storage node. Let £ 1 and £ 2

be the energy cost of these two trees, respectively. Comparing the energy cost of individual nodes,

one by one, in the two trees, we observe that any two non-root nodes in the same position of the

trees must have the same energy cost. The only difference is the energy cost of the roots. Let e1

and e2 be the energy cost of the roots in the two trees, respectively. Therefore, £ 1 - E2 = e1 - e2.

To prove the lemma, it suffices to prove that

We consider two cases. First, if both roots have no storage descendants, then according to the

four-case definition of energy cost given in the previous section (Cases A and B, specifically), we

have

Second, if both roots have at least one storage descendent, then according to the four-case defini-

38

tion of energy cost given in the previous section (Cases D and C, specifically), we have

In the first tree with a forwarding root, recall that d1 is the number of forwarding descendants of

the root without any storage nodes on their paths to the root and that d2 is the number of storage

descendants plus the number of forwarding descendants with at least one storage node on their

paths to the root. Also recall that dt + d2 = 11il- 1. •
From the above lemma, we can conclude that if arq 2 rd then every node (except for the

root/sink, which is always a storage node) in the sensor network must be a forwarding node to

minimize the energy cost. However, if ar q < r d, things are a little tricky. Although the root of

the tree, say i, must be a storage node, it may not be true that every node in the sensor network

must be a storage node to minimize the energy cost. One would think that in order for the tree to

incur a minimum energy cost, all of its subtrees should incur a minimum energy cost. However,

since arq < rd, these optimal subtrees all have storage nodes as their roots. This means that the

energy cost of root i will have to include the cost for query diffusion bir qSq since it has storage

children i.e., e(i) = rqal7iisd + birqsq. The cost for query diffusion, however, can be eliminated

if all subtrees of i has only forwarding nodes, i.e., e(i) = rqal7iisd. (See Cases C and B in the

four-case definition of e(i) in the previous section.) Thus, the minimum energy cost of the tree

rooted at i should be derived from the better of these two scenarios.

For a tree 7i rooted at i, let Ci be the set of children of i. Let E*(i) be the minimum (optimal)

energy cost of 7i. If Ci is empty, i.e., i is a leaf, then i must be a storage node to achieve its

39

minimum energy cost. So E*(i) = rqasd. If C; is not empty, then for any j E C;, let E1(j) be the

energy cost of Tj when all nodes in 1j are forwarding nodes. So

E*(i) =min { rqal1fisd + b;rqsq + L E*(j), rqal1flsd + L Et(j) }.
jEC; jEC;

Algorithm 1 given in pseudo-code finds the optimal placement of storage nodes in two cases:

(1) arq 2: rd. (2) arq <rd. where the first case is trivial and the second case is solved by dynamic

programming that works from the bottom to the top of the tree. We now explain how the dynamic

programming algorithm for the second case is set up. Assume that the n nodes in the tree T

are labeled using the post-order2. A table E*[l..n] is used to hold the minimum energy cost of all

subtrees rooted at node i = 1, ... , n. So at the end of the computation, E* [n] will hold the minimum

energy cost ofT (which is rooted at n according to the post-order labeling). We also maintain a

second table Et[l..n] which records the energy cost of all subtrees when all nodes in each subtree

are forwarding nodes. In the algorithm, lines 5-9 compute the E* and E f entries for all leaves and

lines 10-19 compute theE* and Et entries for the remaining nodes following our post-order.

2The post-order used in this work is slightly different from the textbook definition of post-order in that our post-order

requires all leaves to be listed first.

40

Algorithm 1 Place Unlimited Storage Nodes
1: make the root a storage node

2: if arq ~ rd then

3: make all non-root nodes forwarding nodes and return

4: end if

5: for all leaves i do

6: make i a storage node

9: end for

10: for all remaining nodes i, in post-order, do

11: make i a storage node

14: E*[i] = min{costl,cost2}

16: if costl ~ cost2 then

17: change each descendent of i that is a storage node to a forwarding node

18: end if

19: end for

41

There are only O(n) entries to compute in tables E* and E1 and to compute each entry that

corresponds to a node, only its children will have to be considered. Furthermore, each node starts

as a storage node. Once it is changed to a forwarding node by the algorithm, it will never be

changed back. Therefore, the time complexity of Algorithm 1 is O(n), where n is the number of

nodes.

Summarizing the discussion above, we have the following theorem.

Theorem 2.1 If arq 2 rd, then the optimal tree with the minimum energy cost contains only for

warding nodes (except for the root). If arq < rd, then the optimal tree can be constructed by a

dynamic programming algorithm in O(n) time.

·From the design of the algorithm, we also observe that every node starts as a storage node and that

once it is changed to a forwarding node, all of its descendants are changed to forwarding nodes

as well. Thus, it is impossible for a forwarding node to have a storage descendent. Likewise, it is

impossible for a storage node to have a forwarding ancestor. We then have the following corollary.

Corollary 1 In the optimal tree, if i is a forwarding node, all of its descendants are forwarding

nodes as well. If i is a storage node, all its ancestors are storage nodes as well.

In summary, this UNLIMITED problem refers to the scenario that the deployment budget

is sufficient to upgrade every sensor to be a storage node. However, simply making all sensors

storage nodes may not be the best strategy. The appropriate deployment still depends on the

characteristics of query and data generation. Intuitively, if there are a large volume of queries for

a certain set of data and the reduction function yields a large a, it would be better to transfer these

data to the sink. On the other hand, if queries are infrequent and the reply size is much less than

the raw data, it would be more efficient to hold the raw data locally. According to Theorem 2.1

42

and Corollary 1, the optimal deployment of storage nodes has a special property. For any path

from a leave to the root, there is a clear boundary that distinguish forwarding nodes from storage

nodes. The nodes below the boundary layer to leaves are forwarding nodes and the nodes above

the boundary towards the sink are storage nodes.

2.3.1.2 Limited Number of Storage Nodes

In the problem UNLIMITED discussed in the previous section, we assume that we have enough

storage nodes for the need to minimize the energy cost of the network. In reality, however, storage

nodes may come with a hardware cost. Considering a limited budget for deploying a sensor

network, there might be only a small portion of sensors as storage nodes. This is why we have

also defined the problem LIMITED, which is similar to UNLIMITED except that we have only

k storage nodes to deploy. Since the root (sink) is always a storage node, we assume that k 2: 1

and that k - 1 is the maximum number of storage nodes that may appear as descendants of the

root. Furthermore, from the discussion in the previous section, if arq 2: rd. the optimal tree has

no storage nodes at all except the root. In this case, we just do not deploy any of the k- 1 storage

nodes and we get an optimal tree. Our discussion in this section on LIMITED is for the case of

arq <rd. Since the number of storage nodes is limited, where to place them becomes a crucial

problem. A bad placement strategy may hardly improve the performance. Basically, there is a

tradeoff between two trends. On the one hand, if storage nodes are close to the sink, i.e., at a high

level in the tree structure, they can process more raw data, thus reduce the reply size from storage

nodes to the sink. However, the sensor network spends much energy in transferring the raw data

from low level forwarding nodes to the storage nodes. On the other hand, if the storage nodes

are far away from the sink, the raw data from their descendants can be processed earlier along

43

the path towards the sink. However, storage nodes may cover only a few regular sensors, which

leads to much raw data transferred to the sink without being processed. Besides this tradeoff, the

benefits from a storage node also depend on the locations of other storage nodes. Therefore, in

this section, we propose the optimal placement strategy in order to maximize the benefits from

deploying k storage nodes.

Assume that a communication tree T is given with up to k storage nodes already optimally

deployed. By definition, the energy cost ofT is LiETe(i). However, we are going to use a different

and unique method to calculate this cost, which works from the bottom of the tree towards the root.

Starting from the leaf nodes and following the post-order until the root is eventually reached, for

each node i, we compute the energy cost already incurred within the subtree ~ rooted at i, which is

E (i) by our notation, plus the energy cost contributed by the nodes in ~ to their ancestors, which

includes both raw data transmission cost and query reply cost according to the four-case definition

of the energy cost of an individual node. Specifically, if i is a forwarding node, it contributes a

raw data transmission cost of rdsd to each of its forwarding ancestors that lie between i and i's

closest storage ancestor (due to Cases A and D) and a query reply cost of rqasd to each of the

other ancestors (due to Cases Band D). If i is a storage node, however, it contributes a query reply

cost of rqasd to each of its ancestors (due to Cases C and D). Fig. 3 depicts the two scenarios. The

top path from node ito the root (sink) is when i is a forwarding node and the bottom path from i

to the root is when i is a storage node. Above each node (except i) is the contribution from ito the

energy cost incurred at the node.

Let l be the number of forwarding nodes between i and its closest storage ancestor, not includ

ing i. Let m be the upper bound on the number of storage nodes in ~- Then, we use Ei(m, l) for

the energy cost that includes E (i) and the amount contributed by the nodes in ~ to the energy cost

Forwarding Node Q
Storage Node •

rd*sd rd*sd rq*a *sd rq*a *sd rq*a *sd rq*a *sd rq*a *sd

o-o-o-e-o-e-o-~
rq*a *sd rq*a *sd rq*a *sd rq*a *sd rq*a *sd rq*a *sd rq*a *sd

e-o-o-e-o-e-o-~
Figure 2.6: Computing the contribution to the energy cost of all ancestors

44

of their ancestors. Note that 0 ~ m ~ k and 0 ~ l ~ n- 2. In the case that i is a storage node or

i's parent is a storage node, l becomes 0. Furthermore, if m = 0, no storage node is used in 1j and

if m 2:: 1, at least one but no more than m storage nodes are used in Tj. Therefore, En(k,O) is the

minimum energy cost of T with up to k storage nodes to deploy, assuming n is the label for the

root.

When traversing the nodes in post-order in the tree starting from the leaves, let i be the current

node being traversed. Let di be the depth of i in the tree, which is the number of edges on the path

from ito the root n. We can define Ei(m, l) recursively. For notational simplicity, we first define

Qo(m) and Q1 (m) as follows.

Qb(m) { 0 ifm=O;
birqsq if m 2:: 1.

Q\(m) { 0 ifm=l;
= if m 2:: 2. birqsq

If i is a leaf node, Ei(m, l) includes the energy cost of i and the pre-calculated amount con-

tributed by i to all of its di ancestors. Specifically, if i is a forwarding node, its own energy cost

is rdsd and its contribution to the energy cost of its ancestors is lrdsd + (di -l)rqasd. If i is a

storage node, its own energy cost is r qasd and its contribution to the energy cost of its ancestors

45

is dirqasd. Therefore,

If i is a forwarding non-leaf node with a child set of Ci, the upper bound m must be di-

vided among all of its children. Let P(m) be the set of all permutations p = (m~lj E Ci), where

LjEC; mj = m and mj denotes the upper bound on the number of storage nodes for subtree Tj in

permutation p. Then Ei(m, l) is defined to be the sum of the amount from all of its subtrees,

min { L Ej(mj,l + 1)},
'tlpEP(m) jEC;

the energy cost of i, rdsd + Qb(m), and the pre-calculated amount of energy cost contributed by i

to its ancestors,

So,

If i is a storage non-leaf and non-root node, the upper bound m- 1 must be divided among all

of its children. LetP(m-1) be the set of all permutations p = (m~lj E Ci), where LjEC; mj = m-1

and mj denotes the upper bound on the number of storage nodes for subtree 1j in permutation p.

Then Ei (m, l) is defined to be the sum of the amount from all of its subtrees,

min { L Ej(mj,O},
'tlpEP(m-1) jEC;

the energy cost of i, rqasd + Q\ (m), and the pre-calculated amount of energy cost contributed by

46

Algorithm 2 given here maintains a two-dimensional (k+ 1) x (n-1) table, Ei[m,l], at each

node i, where 0:::; m:::; k and 0:::; l:::; n- 2. Assume that a post-order traversal is done beforehand

and that the depth of each node is computed beforehand. Both the post-order and the depths can

be obtained in O(n) time. In the algorithm, lines 1-12 computes the Ei tables for all leaves i, lines

13-21 compute the Ei tables for the remaining non-root nodes i, and line 22-23 compute the entry

En [k, OJ for the root n. After all tables are constructed, the minimum energy cost of the tree with

up to k storage nodes can be found in the entry En[k,OJ. Note that instead of constructing a table

for the storage root n, we compute only the needed entry for n.

Algorithm 2 Place Limited Storage Nodes

1: for all leaves i do

2: form = 0 to k do

3: forl=Oton-2do

4: ifm = 0 then

5: Ei[m, l] = (l + 1)rdsd + (di -l)rqasd

6: end if

7: if m ;:::: 1 then

8: Ei[m,l] = (di+ l)rqasd

9: end if

10: end for

11: end for

12: end for

13: for all remaining non-root nodes i, in post-order, do

14: form=Otokdo

15: for l = 0 to n- 2 do

16: mini = minvpEP(m){LjEC;Ej[m~, l + 1]} + (l + l)rdsd + (di -l)rqasd + Qb(m)

17: min2 = minvpEP(m-I){LjEC;Ej[m~,O]} + (di + l)rqasd + Qi (m)

18: Ej[m,l] = min{minl,min2}

19: end for

20: end for

21: end for

22: En[k,O] = minvpEP(k-l){LjECn Ej[m~,O]} + rqasd + Qi (m)

23: return En[k,O]

47

48

Assume that every node in the tree has at most c children. To partition an upper bound m into

up to c upper bounds with the sum equal tom, there are at most (m+~- 1) = (m~_:} 1) .:::; (k~~} 1)

permutations. The algorithm constructs O(n) tables and each table consists of O(kn) entries. To

compute each entry, the time is

0(c)= O((k+c-1)c- c/(c-1)!) = O((max{k,c})c- 1). (
k+c-1) 1

c-1

Thus, the time complexity of the algorithm is 0(kn2 (max { k, c} y-1).

We summarize the discussion above in the following theorem.

Theorem 2.2 Given a communication tree with n nodes and at most c children for each parent.

Let k be the maximum number of storage nodes that may be deployed in the tree. Then the optimal

tree with the minimum energy cost can be constructed by a dynamic programming algorithm in

In the next, we consider a special case of LIMITED, where the given network is a regular tree

with exactly c children for each non-leaf node and all leaves at the same level. For such a c-ary

regular tree, we can modify Algorithm 2 to achieve a faster time complexity by making use of the

regularity of the tree structure.

Obviously, any subtree in a regular tree is also a regular tree and nodes at the same level have

the subtrees with the same topology. This suggests that instead of keeping a table for each node as

in Algorithm 2, we may keep just one table for each level. For easy discussion, we name the levels

from bottom to top, with all leaves at level 0, all parents of the leaves at level 1, and finally the

root at level llogc n J. For each level h, we define a two-dimensional table Eh [m, l] for 0 .:::; m .:::; k

and 0 .:::; l .:::; llogc n J - 1, which returns the energy cost incurred within the subtree rooted at level

h plus the contribution from the nodes in the subtree to their ancestors. As used previously, m is

49

still the maximum number of storage nodes to use in the subtree and l is the number of forwarding

nodes between the root of the subtree and the storage ancestor closest to the root of the subtree.

We first define Qo(m) and Q1 (m) as follows.

Qo(m) { 0 ifm= 0;
= e,,+c·e,, r s if m;::: 1. err+e,, q q

Q1(m) { 0 ifm= 1;
eu+c·e,, r s ifm;::: 2. err+e,, q q

Let H = llogcnJ. Algorithm 3 first computes the table Eo[m,l] for all leaves at level 0, for 0:::;

m :::; k and 0 :::; l :::; H- 1 in lines 2-11. Then it works its way up, level by level, until level H - 1 in

lines 12-20. The root, which is at level H, is treated in lines 21-22, differently from the other nodes

since it must be a storage node. By using one table for each level, our algorithm will construct

llogc n J tables. This will result in savings in both space and time, compared with our algorithm

for arbitrary trees, which needs to construct n tables. The modified Algorithm 3 for regular trees

has a time complexity of O(k(logn)2(max{k,c} y-1).

The result of the algorithm can be summarized in the following theorem.

Theorem 2.3 Given a c-ary regular tree with n nodes. Let k be the maximum number of storage

nodes that may be deployed in the tree. Then the optimal tree with the minimum energy cost can

be constructed by a dynamic programming algorithm in 0(k(log n)2 (max { k, c} y- 1) time.

Algorithm 3 c-ary Regular Tree

1: H = LlogcnJ

2: for m = 0 to k do

3: for l = 0 to H - 1 do

4: ifm = Othen

5: Eo[m,l] = (l + 1)rdsd + (H -l)rqCXsd

6: end if

7: ifm;:::: 1 then

8: Eo[m,l] = (H + 1)rqasd

9: end if

10: end for

11: end for

12: for h = 1 to H- 1 do

13: for m = 0 to k do

14: for l = 0 to H -1 do

15: mini = minvpEP(m){LJ=l Eh[m~, l + 1]} +(I+ l)rdsd + (H- h -l)rqCXSd + Qo(m)

16: min2 = minvpEP(m-l){L}=I Eh[m~,O]} + (H- h+ 1)rqCXSd + Qt(m)

17: Eh[m,l] = min{min1,min2}

18: end for

19: end for

20: end for

21: EH[k,O] = minvpEP(k-l){LJ=l EH-1 [m~,0]} + rqCXsd + Qt(m)

22: return EH[k,O]

50

51

2.3.2 Dynamic Tree Model

For the dynamic tree model, the storage node placement problem becomes how to place k given

storage nodes to form a communication tree with the minimum total energy cost. In the deploy

ment, we first deploy normal forwarding nodes. After collecting their location information, we

select at most k of them to be storage nodes. We can attach large flash memory to these selected

forwarding nodes or replace them by deploying more powerful storage nodes at the same loca

tions. We also associate each forwarding node with a storage node which will hold the raw data

from the forwarding node. We broadcast the association information to the network in the initial

phase. This problem is NP-hard since it is a general case of the minimum k-median problem. We

present a 1 0-approximation algorithm for the dynamic tree model in this subsection.

We consider multi-hop communication for relaying data. We assume the data routing between

a pair of sensors, e.g., a forwarding node and a storage node, or a storage node and the sink, follows

the geographic routing algorithm [76], which looks for the shortest path connecting them. Thus,

the energy cost model is simplified by the assumption that the transmission cost is proportional

to the data size and the hop distance between the sender and the receiver. In a densely deployed

sensor network, the hop distance between two sensors is proportional to the Euclidean distance

([38,46, 122]). Therefore, in this work, we use

Euclidean distance x Data size

to measure the energy consumed to send data.

Therefore, the problem in this work is to find the optimal placement of the storage nodes such

that the energy cost associated with raw data transfer and query reply is minimized. This problem

52

is a general case of the k-median problem3. Especially when there is no data transfer between

storage nodes and the sink, i.e. rq = 0, the problem becomes the classic k-median problem, which

has been proven to be NP-hard. In the following, we give an approximate algorithm for our optimal

storage node placement problem.

More specifically, given Las a set of locations of sensor nodes including the sink, the problem

is to select at most k sensors to be storage nodes such that the total energy cost is minimized.

Assume different nodes are placed at distinct locations, L can be also regarded as the set of sensor

nodes. All nodes/locations are labeled from 0 to n and node 0 is the sink. We define Yi as the type

flag of node i,

v· L . = { 1 if i is a storage node;
l E ,y1 0 if i is a forwarding node.

Let Cij be the Euclidean distance4 between node i and j and li be the Euclidean distance between

node i and the sink, i.e. h = CiQ. We use Xij as an indicator denoting if the raw data generated by

node j are sent to storage node i and stored there,

x·. = { 1 if Yi = 1 and node j forwards its raw data to i;
11 0 otherwise.

3Definition of k-median problem ([32]): Given n points, we must select k of them to be cluster centers, and then

assign each point j to the selected center that is closest to it. The goal is to minimize the sum of the distance between

each node and its associated center.
4We use the Euclidean distance to approximate the minimal number of communication hops between two nodes,

which translates to the total optimal power consumption of the nodes on the communication path between those two

nodes. This approximation is valid when a large number of nodes are deployed ([38, 46, 122]).

53

Thus, our problem can be formulated as an integer program,

IP: min L Xij(CtCij+c2h)
i,jEL

s.t. V j E L, L Xij = 1, (2.1)
iEL

LYi :::; k, (2.2)
iEL

Vi,j E L,yi ~ Xjj ~ 0, (2.3)

Vi, j E L,xij = {0, 1 },

ViE L,yi = {0, 1 },yo = 1.

where c1 = rdsd and c2 = rqasd. In the objective, the cost incurred by a node j includes two parts.

The first part (ctCij) is the cost for raw data transfer from node j to the associated storage node i.

The second part (c20 is the cost of sending the query reply, which is derived from the raw data

generated by j, from the storage node ito the sink. The first constraint requires every sensor to

send its data through a storage node. Since we treat the sink as a storage node, it includes the

case that sensors send data directly to the sink. The second constraint is for the number of storage

nodes, where k is given as a parameter of this problem. In the third constraint, if node j forwards

data to node i, node i must be a storage node. It shows the connection between variables x andy.

Since c1 and c2 are constants, the objective function is equivalent to

min L PijXij,
i,jEL

where Pi,. = ci1· + {3/i with {3 = £2. = !!!!!. . In the rest of this section, we will use the above objective
CJ rd

function for the IP problem. Its LP-relaxation is

LP: min L PijXij
i,jEL

s.t. \fj E L, L,xij = 1,
iEL

\fi, j E L,yi;:::: Xij ;:::: 0,

\fi,j E L,xij E [0, 1],

\fiE L,yi E (0, l],yo = 1.

54

Note that the difference between this LP and the k-median problem is that Pij is neither symmetric

nor proportional to the Euclidean distance between i and j, i.e., Pij f p ji and Cij > Cuv does not

imply Pij > Puv·

Theorem 2.4 If f3 ;:::: 1, there is no need to place storage nodes.

Proof: Assume node i is a storage node, and a node j (j may be equal to i) sends data via node

i. Recall that the cost incurred by node j is Pij = Cij + f3li. If j sends data directly to the sink, the

cost will be lj. According to the triangle inequality

It shows that when f3 ;:::: 1, there is no benefit from transmitting data through a storage node. Thus,

there is no need to deploy storage nodes. •
In the rest of this section, we only consider the scenario with f3 < 1.

55

2.3.2.1 Outline of the Algorithm

In the next, we propose an approximation algorithm to resolve the IP problem. We first express

the LP problem in a different but equivalent form by introducing a demand d i to every node.

Intuitively, dj can be regarded as the amount of the raw data generated by node j. We set dj set to

1 for any node j and keep the same constraints of the LP problem. But the objective function is

rewritten as

LP: min L djPijXij·
i,jEL

Initially, we obtain an optimal solution (i,y) to the LP problem. For any node j E L, we use

Cj to represent the cost of raw data transfer and query reply incurred by a data unit from node j in

solution (i,y):

Let CLP be the value of the objective of the LP problem, which represents the total cost.

CLp(i,y) = LdjCj.
jEL

(2.4)

(2.5)

Based on (i,Y), we use the following three steps to obtain an approximate solution to the IP

problem. Here we only summarize the basic intuitions. More details will be presented in the next

section.

Step 1: We modify the demand of every node by moving the demands of some nodes to the

others. We call this process consolidating demands. After this step, only some nodes hold positive

demands while the other nodes' demands become 0. We call the problem with new demand values

the new demand problem. Since we keep the same constraints in this step, (i,Y) is also feasible

to the new demand problem. In addition, our modification follows some rules such that an integer

56

solution to the new demand problem can be converted to an integer solution to the LP problem

with no more than 4CLP(i,y) extra cost.

Step 2: In solution (i,y), the values of the variables are not necessarily integers. We call node

i a fractional storage node if Yi E (0, 1). In this step, we simplify the problem by consolidating

fractional storage nodes, i.e., moving Yi of fractional storage nodes to other nodes. We modify

(x,y) to another solution (x',y'), such that non-zero values in x',y' reside in[!, 1] and the cost of

(x' ,y') is at most three times of the cost of (x,Y). We then further modify (x' ,y') to another{!, 1 }

integral solution (x'',y") (non-zero values in x'',y" are either! or 1) to the new demand problem,

which yields no more cost than (x',y').

Step 3: Finally, we apply a rounding algorithm to convert (x'' ,y") to a {0, 1 }-integral solution

to the new demand problem with at most twice the cost of (x'',y"). As we mentioned in Step 1, this

integer solution can be further converted to an integer solution to the LP problem with a bounded

cost. After all, we obtain an approximate solution to the IP problem.

2.3.2.2 Details of the Algorithm

Step 1: Consolidating Demands Originally, every node has demand of 1. In this step, we try to

reallocate demands from all nodes to fewer number of nodes such that for any pair of nodes i and

j with positive demands after this reallocation, their Euclidean distance c ij > 4max { Ci, C j}. The

following procedure is applied to consolidate the demands.

1. Were-index the nodes in an increasing order of Cj, i.e., Cr ~ C2 ~ ... ~ Cn.

2. We modify the demands of nodes in the new order. Let dj be the new demands. Initially,

dj = dj. For a node j, we check if there is another node i satisfying i < j, di > 0 and

Cij ~ 4max {Ci,Cj} = 4Cj. If there exists such a node i, we move the demand of j to node

57

i, i.e.,

d~ f- d~ +d'.·
I I J'

d'· 0 J f- .

After this process, a node still with a positive demand is called a demand node. Now we get a

new problem, called new demand problem, which has the same constraints as the LP problem, but

the objective becomes:

New Demand: min L d}PijXij.
i,jEL

In the process above, we only modify the demands, but nothing on the constraints. Thus, the

feasible solution (i, y) to the LP problem is also feasible to the new demand problem. Let CND be

the cost in the new demand problem,

CNv(i,y) = _Ld}Cj.
jEL

Theorem 2.5 After consolidating the demands, the cost of (i,y) in the new demand problem is

less than that in the original problem, i.e., CNv(i,y) < CLP(i,Y).

Proof: To see this, assume that during the consolidation, we move demands from j to i, i.e.,

dj f- di + d j, d} f- 0 and C j > Ci. Thus, the change of the total costs is:

58

•
Theorem 2.6 For any feasible integer solution (x1,y1) to the new demand problem, there is a

feasible integer solution (x2,y2) to the LP problem such that,

CLp(x2,y2) ~ CNv(x1,y1) +4CLP(x,y).

Proof: Let (x1,y1) be an integer solution to the new demand problem. We will convert it to an

integer solution (x2,y2) to the LP problem. Initially, we set y2 = y1, i.e., the solution to the LP

problem has the same set of storage nodes as the solution to the new demand problem. Then

we derive x2 according to the consolidating process for the new demand problem considering the

following two cases. If node j has positive demand after consolidation in the new demand prob

lem, we set Vi,x2ij = x1ij· In this case, no cost difference is introduced between CLp(x1,y1) and

CNv(x2,y2). In the other case, node j moves its demand to another node j' during the consol

idating process. Here we look at which storage node j' is associated with in solution (x1,y1),

assume it is node i, i.e., x1ij' = 1. Then, we also assign node j to the same storage node i in the

LP problem, i.e., x2ij = x1ij' = 1. The following analysis illustrates the cost difference between

CLP(x1,y1) and CNv(x2,y2) incurred by the second case.

In the LP problem, with solution (x2,y2), the cost of sending demand dj = 1 to the sink via i

becomes

Similarly, in the new demand problem, the cost of sending the same demand dj = 1, which is

actually a part of dj,, is

59

The difference is Pij- Pij' = cij- Cij'· According to the triangle inequality, Cij'- Cij < Cjf. Recall

the consolidating process, j moves its demand to j' only when j' < j and Cjf < 4max{Cj,Cj'} =

4Cj. Therefore, in the second case, Pij- Pij':::; 4Cj.

Therefore, summing up the cost difference for all j E L, the largest total difference is reached

when every node j E L falls in the second case. Thus, we have

CND(x2,y2)- CLp(x1,y1) < }:)PijX2ij- Pij'X1ij') = L (Pij- Pij')
jEL jEL

< L 4Cj = 4 L djCj = 4CLp(i,y).
jEL jEL

•
Step 2: Consolidating Storage Nodes The goal of this step is to modify the values of (i,Y) to

obtain a new solution (x',y') to the new demand problem, such that

'-0 Yi- ,

I> 1
Yi- 2'

Then, we will further modify (.x', y') to another {!, 1} solution (x'', y").

Starting with x' = i andy'= y, we modify (i,y) to (x',y') using the following consolidation

process: For each fractional storage node i, i.e., 1 > y; > 0, if d; = 0, then

1. We will move the value of y; to the closest demand node j(dj > 0) ,

2. Also, we need move the forwarding nodes assignments, for each j' E L

~J' t- ~J' +~}';

~J' t- 0.

60

After these changes, we obtain a new solution (.x',y') to the new demand problem. In the next,

we prove the two properties of y' mentioned in the beginning of this subsection. Following the

consolidation in this step, it is obvious to see the first property that if d; = 0 then y: = 0. We use the

following Lemma 2.2 and Theorem 2. 7 to prove the second property of y'. After that, Theorem 2.8

bounds the cost of the new solution after consolidation.

Lemma 2.2 For a demand node j, any node i satisfying Cij ~ 2Cj will move its value ofyi to yj

after the consolidation step presented earlier in this subsection.

Proof: First, Vi, if Cij ~ 2Cj, the demand of i is 0, i.e., i is not a demand node. If node i was a

demand node, then as a result of Step 1 discussed in Section 2.3.2.2, Cij > 4max(Cj,C\) > 2Cj,

which is in contradiction to Cij ~ 2Cj.

Next, we prove that all these nodes will move their fractions to node j. Assume that there

exists node i with Cij ~ 2Cj that moves its Yi to another demand node j', which implies cij' < Cij·

According to the triangle inequality,

Since both node j and node j' are demand nodes, Step I in Section 2.3.2.2 would have guaranteed

CjJ' > 4max(Cj,CJ') ~ 4Cj, which is in contradiction to CjJ' < 4Cj. Thus, after modifying (x,y) to

(x' ,y'), all the nodes within distance of 2Cj to node j will have moved their values of y to yj. •

61

Theorem 2.7 After consolidation in this step,

I I 1 d·>O=?y.>-.
J J- 2

Proof: For each node j, recall Cj = LiELPijXij· we have

Cj ~ L PijXij > L 2CjXij =} L- Xij < ~.
Pij>2Cj p;p2Cj Pij>2Cj

Additionally, because Pii > cii, we have

Since node j is a demand node (d)> 0), by Lemma 2.2, all the nodes within 2Ci will have moved

their values of y to j after the consolidation in this step. Therefore, we get

•
Theorem 2.8 CNv(x ,y1

) :::; 3CNv(x,y).

Proof: Consider that a fractional storage node i has moved its Yi to node j during the consolidation.

For any demand node j', the previous association Xif is also transferred to j. Since j is the closest

demand node to i, we have Cij:::; Cij'· Recall Pii' = cii' + f3li, from the triangle inequality,

For the second term of Pi/•

Therefore,

Pi/= CJJ' + f3ZJ < 2cij' + Pij'::; 2Pij' + Pij' = 3pii'·

Considering all the consolidated fractional storage nodes, e.g., YiJ ,.Yi2 , ••• are moved to yj,

=

<

L dj'Pjj'(Xjj' +iii}' +ii2}' + ...)
j,j'EL

" d ·r (p · ·ri · ·r + 3p· ·fi· ·r + 3p· ·ri· ·r + • • •) £.... J }}]} II} II} 12] 12}

j,j'EL

< 3 L dfPJfXJf = 3CNv(i,Y).
j,j'EL

Therefore, the cost CNv(:i ,y') is at most triple of CNv(i,y).

62

•
Next, we will modify (x,y') to another feasible solution (x',y") to the new demand problem

subject to x', y" E { 1, 1}, and the cost of (x', y") is no more than the cost of (:X, y'). The condition

that y', y" 2::: ! implies that there are at most 2k nodes with positive demands in both solutions

(x,y') and (:i',y") because of the second constraint in the new demand problem formulation.

Initially, we assign x' = x and y'' = y'. At this point, when calculating the objective function of

cost, we only need consider demand nodes since the nodes with zero demand have no contribution

to the cost. For each demand node i, in order to reduce the cost, the best choice is to send data

through itself. However, considering the third constraint in the new demand problem, node i

cannot send all data through itself. In our solution x', we take the best case by setting

.JI II "fd1 Q
xii = Yi ' l i > '

63

i.e., y;' portion of demand d; is sent through node i itself. In addition, we assign the remaining

(1- y:') portion of d; to another demand node i', where Pi'i is the minimum among all demand

nodes. Let s(i) denote such node i'. The minimum cost associated with all demand nodes i is

Ldf(Pu~:+Ps(i)i(1-~;)) = L df (PuY:' + Ps(i)i(1 - y:'))
d!>O d!>O

=

where

L df (f3Zil + Ps(i)i- Ps(i)iY:')
d{>O

L dfPs(i)i- L dfy:' (Ps(i)i- f3Zi), (2.6)
d{>O d{>O

So far, we only modify x', but y" is still equal toy'. Since formula (2.6) only depends on y", we

can use f(y") to represent it.

Next, we will show that under the constraint ! :::; y;' :::; 1 for demand node i, we can obtain

a {!, 1 }-integral solution y" such that f(y") is the minimum. The first term of Eq. (2.6) is a

constant independent of y". To minimize the cost, we should maximize y:' for the nodes with

largest values of d;(Ps(i)i- f3li)· Let n' be the number of demand nodes, as we know, n' < 2k. We

reorder demand nodes according to d[(Ps(i)i- czh) decreasingly. We set y;' = 1 for the first 2k- n'

nodes andy:'= ! for the remaining 2(n'- k). It is actually a greedy algorithm to maximum the

second term of Eq. (2.6). Thus,

J(y") :::; J(y') :::; eND (x, y').

Accordingly, x' is also a {!, 1 }-integral solution. For a demand node i, if y:' = 1,

{

II 1 'f . •
X~·= Yi = 1 J = l;

Jl 0 otherwise.

0 h · "f II 1 t erwtse, 1 yi = 2,

Theorem 2.9 CND(x',y''):::; cND(x,y').

if j = i;
if j = s(i);
otherwise.

64

Proof: It is obvious because (x',y") yields the minimum value of the cost function f. •

Step 3: Rounding Finally, we apply a rounding algorithm to get a {0, 1} integer solution. First,

we place a storage node at node j if y'j = 1. For the remaining nodes with y~' = ! , half data is sent

via s(i). Consider a directed graph G consisting of the remaining demand nodes, where each edge

is from ito s(i).

Lemma 2.3 There is no loop of length more than 2 in G.

Proof: Assume there is a loopinG involving nodes n1 ,n2, · · · ,nm. where m > 2 and 'it:::; m there

is a directed edge from n1 to n(t mod m)+I" For each node n1, s(n1) = n(t mod m)+I" According to

the definition of s(n1) that Ps(n,)n, is the minimum, we have

Recall Pij = Cij + f3h, the conditions above become

65

Thus, the summation of the left side should be less than the summation of the right side. We

find by examining the inequalities, however, that the summation of both sides are equal. This

contradiction means that the series of conditions can not be held at a same time. •
Furthermore, if there are two edges between two nodes, i.e s(i) = j and s(j) = i, we arbitrarily

choose one of them as a root and eliminate the directed edge from the root to the other node.

Finally, G becomes a forest graph, which consists of multiple rooted trees. Additionally, we

assign every node a level value, which is the distance to the root of the tree that it belongs to. We

can divide these nodes into two sets based on odd and even level values and select the smaller set

of nodes to be storage nodes. Recall that {ily~' =!}has 2(n'- k) nodes. Thus, we place at most

n' - k storage nodes at this step. Plus the storage nodes set earlier in { ily~' = 1}, which has 2k- n'

nodes, the total number of storage nodes is at most 2..~' ::::; k. In addition, each unselected node i

in the tree will associate itself with s(i), which must be a storage node, i.e., (x;(i)i = 1). Finally, we

get an integer solution to the new demand problem from feasible solution (x,Y). Let CNv(INT) be

the cost of this integer solution in the new demand problem (found after rounding). We can prove

the following theorem.

Theorem 2.10 After rounding, the cost of the integer solution CNv(INT) is no more than double

the cost of (x'' ,y"), i.e., CNv(INT) ::::; 2CNv(x'' ,y").

Proof: In the routing process above, for j with y'j = !. the previous cost is !f3lj + !Ps(j)j and after

rounding, it becomes Ps(j)j or {3lj. Thus, the cost is at most doubled. •

Based on the previous theorems, therefore,

CNv(INT) < 2CNv(x",y")(Theorem 2.10)

< 2CNv(x',y')(Theorem 2.9)

< 6CNv(x,y)(Theorem 2.8).

66

As we mentioned in Theorem 2.6, we can derive an integer solution to the original problem

from an integer solution to the new demand problem. Let CLP(INT) denote the cost of this integer

solution in the LP problem,

CLP(INT) < CNv(INT) +4CLP(x,y)(Theorem 2.6)

< 6CNv(x,y) + 4CLP(x,y)

< 6CLP(x,y) +4CLp(x,y)(Theorem 2.5)

10CLP(x,y).

Since (x,y) is the optimal fractional solution, the cost of (x,y), CLp(x,y), must be no more than

the cost of the optimal integer solution. Therefore, combining three steps together, we get a 1 a

approximation (3 x 1 x 2 + 4) algorithm for this problem.

2.3.3 Stochastic Analysis for Random Deployment

The algorithms in the previous sections aim to find the optimal locations for storage nodes. In

reality, however, the storage nodes may not be deployed in a precise way. Instead their deployment

may be random, e.g., the storage nodes are dispersed from an airplane. In this section, we evaluate

the performance of random deployment of storage nodes in fixed and dynamic trees in which every

sensor node finds the best storage node for data storage.

67

2.3.3.1 Fixed Thee Model

Assume the forwarding nodes and storage nodes are randomly distributed to the field with density

A and As respectively. For simplicity, we consider a disk network field, where the sink is placed at

the center and R is the radius. In the fixed tree model, the network builds a communication tree in

which each node finds the shortest path to the sink by following the tree edges. Each forwarding

node sends its data to the first ancestor storage node on the path to the sink. As our simulation and

other previous research show, the radius (ri) of the area covered by the nodes that are i hops or

less from the sink is proportional to i. Let this ratio be c' = q, Thus, we can estimate the number

of nodes whose distances to the sink are between (t- 1)c' and tc', i.e., the nodes with depth t. Let

num(t) represent the total number of the nodes whose depth values are t,

For a node with depth t, let s(t) be the expected hop distance to its closest storage ancestor. The

cost caused by this node is

The probability that an individual node is a storage node is p = ~. Therefore,

s(t) p·O+p(1-p)·1+p(1-p)2 ·2+···+p(1-p/-1 ·(t-1)+(1-p)'·t

(.!._ -1)(1- (1- p)1
).

p

The total energy cost in the fixed tree model can be expressed as

R
-;;r

E = ,Lnum(t)(rdsds(t) + rqasd(t- s(t))) + Eq,
t=l

68

where Eq is the cost of query diffusion. The value of c' is related to the communication range and

node density. We can obtain the value from simulations.

Query messages are diffused from the sink to every storage node. For each storage node, it

incurs an extra query diffusion cost along the path to its closest storage ancestor. If we assume

there is no overlap among the paths connecting each storage node and its closest storage ancestor,

the total query diffusion cost Eq can be formulated as

R
?

Eq = :Lnum'(t)rqsqs(t),
t=l

(2.7)

where num' (t) = As1t'(2t- 1)c'2 is the number of storage nodes whose depth values are t and recall

s(t) is the expected distance to the closest storage ancestor.

2.3.3.2 Dynamic Tree Model

The fixed tree model assumes that the communication tree does not change according to the place-

ment of the storage nodes. In the dynamic tree model, after the storage nodes have been positioned,

each sensor node chooses the best storage node for storage with respect to the minimal communi-

cation cost for data forwarding and query diffusion and reply. The storage node placement in this

model is more complicated than that in the fixed tree model because we need to consider the in-

terplay between the storage node placement and the selection of the storage node for each sensor.

These two steps affect each other dynamically.

In the optimal solution, a storage node should send query reply to the sink by following the

shortest path because the data coming out of a storage node cannot be reduced any further ac-

cording to the definition of data reduction function. A forwarding node has to choose a storage

node for data storage to minimize the total communication cost for its data. Assume the sink is

69

located at the origin. Let Xi represent the location of sensor i. Additionally, we define fd(xi) as

the location ofthe forwarding destination (storage node) assigned to node i. If i is a storage nodes,

then fd(~) =~.The energy cost of sending raw data from Xi to fd(~) is rdsdJ~- fd(~)J. The

query reply cost for the data from forwarding node i is rqasdJfd(xi)J. In total, the cost generated

by a single node i in a time unit is:

To find the optimal solution, we need to minimize the cost for each sensor.

The total energy cost of the sensor network can be described as

(2.8)

where Eq is the cost of query diffusion. We find that Eq in this dynamic tree model is the same as

that in the fixed tree model. Because in both models, each storage node is connected to the sink

by the shortest path. Therefore, we can also use Eq. (2.7) to estimate Eq. In the following of this

section, we will analyze the rest part of Eq. (2.8), which is denoted by E'.

First, we define a function F(x,Y) as the energy cost caused by the sensor at location x where

y is the location of its forwarding destination.

Moreover, we define an area

G(x, U) = {yJF(x,Y) ~ U},

that is, if a sensor at x selects any storage node in that area, the energy cost for the data of that

sensor would be no more than U. Theoretically, the minimum reply cost with Poisson deployment

70

is

E' = A j j P(y E S)F (.X, y)P(G(x, F (.X, y)) n S = lf>)dydx,

where S is the set of all storage nodes including the sink. P(y E S) is the probability that there is a

storage node at location y.

PC E S) = { 1 if y is t?e origin;
y As otherwise.

F(x,Y) is the energy cost if a forwarding node at .X sends data through a storage node at Y, For a

fixed x,

P(G(x,F(x,Y)) ns = q,)

is the probability that its forwarding destination is at location y, i.e., no other storage node would

induce less energy cost than F (x,Y). G(x, F (x,Y)) n S = q, means that no other storage node is

more eligible than the one at y. According to Poisson processes,

P(G(x F(x -))nS= A>)= e , , I x,~ - x, ;
{

-A.,.IG(x F(x .Y))I 'f F(- -) < F(- O)
' ,y '~" 0 otherwise.

Unlike other nodes, the sink is deterministically fixed in the network. So if area G covers the sink,

there is no need to compute the probability. The forwarding node will definitely send data directly

to the sink.

However, IGI in the formula above, called the Cartesian Oval, cannot be expressed in a closed

form. To approximate the energy cost, we make each forwarding node simply choose the closest

storage node for data storage. The network field is then divided into Voronoi cells induced by

storage nodes. The energy cost of this topology is very close to the optimal case, especially when

71

Assume there is a forwarding node i at location x, the probability that i sends data through a

storage node at location y becomes

Thus,

E' = A j j F(x,Y)P(x ~ y)dydx

if lx-5il ~ lxl;
if y is the origin;

Otherwise.

A(JF(x,O)e-lls~r/.i'/2
dx+ j { F(x,Y)Ase-lls~r/x-.YF dydx)

1/x-.Y/</xl

= A jF(x,O)e-Aslr/.i'/2
dx+ A J r F(x,Y)Ase-Aslr/.i'-y/ 2

dydx. (2.9)
1/x-.Yl</.i'/

In the first term, F(x,O) = rdsdlxl. Therefore,

(2.10)

(2.11)

Figure 2. 7: A forwarding node at location x sends data via a storage node at y.

For the second term in Eq. (2.9), Fig. 2.7 shows the variables after coordination conversions,

where p = lx- 91 and p' = lxl- F(x,y) can be expressed by

72

Thus, the second term becomes:

(2.12)

Combining Eq. (2.10) and (2.12), the total energy cost except query diffusion is

We can further approximate E' by examining its two components separately. Let E fs be the

cost of transferring raw data between forwarding nodes and their closest storage nodes. Let Ess

be the cost to relay reply from storage nodes to the sink. For a forwarding node i , the expected

distance to the closest storage node is 2~. Thus,

(2.13)

'A nR2 is the total number of forwarding nodes and r dsd 2~ is the energy cost of transferring raw

data from an individual forwarding node to its closest storage node. On the other hand,

Ess = rqasd'L,(Di+ 1)Li,
iES

where Di is the total number of descendants and Li is the distance to the sink. Since each forward-

ing node chooses the closest storage node for data storage, the number of forwarding nodes that

73

each storage node is responsible for is approximately the same. If we replace Li by the mean value

L'
'

Ess = rqasdL'L(Di+ 1).
iES

In this equation, LiEs(Di + 1) represents the number of nodes which send data via storage

nodes to the sink. Let N' be the number of forwarding nodes that send data directly to the sink,

N' can be derived as

L(Di+ 1) = J..nR2 -N'.
iES

And L' can be simply approximated as

1 _ Asfl2nr·rdr _ ~R
L- AsnR2 -3 .

Therefore,

2 2 A -A. nR2
Ess=rqasd(-R(J..nR --;;---(1-e '))).

3 . 1\-s

Combining Eq.(2.13) and (2.14),

(2.14)

74

2.4 Performance Evaluation

2.4.1 Fixed Tree Model

We have implemented a simulator to simulate the deterministic storage node placement in the

fixed tree model by using dynamic programming. and the random storage node deployment in the

fixed tree and dynamic tree models. We evaluate the energy cost for various parameters.

2.4.1.1 Simulation Settings

In our simulation, we consider a network of sensors deployed on a disk of radius 5 with the sink

placed at the center. One thousand sensor nodes (n = 1000) are deployed to the field randomly

following 2-dimensional spatial Poisson process. Node transmission range is set to 0.65. After all

nodes are deployed, a routing tree rooted at the sink is constructed by flooding a message from

the sink to all the nodes in the network. The message carries the number of hops it travels at each

node so that each node chooses among its neighbors the node that has the minimum number of

hops to be its parent. This tree topology is needed in the simulation of the fixed tree model. This

step, however, can be skipped for the dynamic tree model.

In the rest of this section, we will present and compare the following algorithms.

• FT-DD: It represents the fixed tree model with deterministic deployment. In this algorithm,

the storage nodes are deployed by following the dynamic programming algorithm according

to the known tree topology.

• FT-RD: It represents the fixed tree model with random deployment. In this algorithm, we

randomly select a certain number of nodes in the network to be storage nodes.

75

• DT-RD: It represents the dynamic tree model with random deployment. In this algorithm,

the storage nodes are randomly deployed. After that, each forwarding node selects the best

storage node to deliver data and each storage node replies to query by following the shortest

path to the sink.

• ST-RD: It represents semi-dynamic tree model with random deployment which is enhanced

version of FT-RD with a local adjustment. When a sensor i is upgraded to storage node

in a tree structure, its siblings' children will try to set i as their parents if i is within their

communication range.

• Greedy: It represents a greedy algorithm where the most heavily loaded sensors will be

upgraded to storage nodes. Usually, those sensors close to the sink will become storage

nodes in this algorithm.

In addition, we use relative energy cost as performance metrics. We use the scenario that no

storage node except the sink is deployed as the baseline. Let the energy cost in this no storage

scenario be E1. And let the energy cost after the storage nodes are deployed be E. The relative

energy cost is defined as ~, represented as a percentage. In the rest, we simply use "energy cost"

for "relative energy cost".

Because of the randomness of our simulation environment, results from the same parameter

setting might vary a lot. Therefore, for a certain set of parameters, we conduct 100 independent

simulations and the average energy cost is used in the following analysis and comparison. Unless

otherwise stated, we set the following parameters in our simulations: rd = 1, rq = 1, sd = 1, sq = 1

and a= 0.5. We evaluate the energy cost by varying the number of storage nodes k and the data

reduction rate a. The density of storage nodes As can be derived by As=~· Note that the energy

76

cost is also related to r d, sd, r q and Sq. However, for comparison purpose, changing r q, sq, r d, sd

will be equivalent to changing a. To simplify the description, we fix rq = sq = rd = sd = 1 and

only vary a to examine different characteristics of data and queries.

2.4.1.2 Random Deployment

Fig. 2.8 shows the energy cost of random deployment in the fixed tree model. We compare our

theoretical estimation with simulation results. As we can see from the figure, the theoretical

estimation and the simulation match well. We have examined the simulation carefully and found

that many storage nodes are placed at the leaf nodes or have very few descendants. Therefore, the

data reduction for those descendants is negligible and less energy is saved compared to the case

that each node sends all the data to the sink.

99

'i J 98

~ 97
c:
w

_._Simulation Results
-<>-Theoretical Estimate
-Standard Deviation

5 10 15 20
Number of Storage Nodes

25

Figure 2.8: Ff-RD: Energy cost with varying
number of storage nodes (k), n = 1000, rd =
rq=sd=sq= l,a=0.5.

100.5.--~-~--~-~------.

100

99.5

~ 99
13
~ 98.5
!?'
~ 98

97.5

97

96·5oL--..,..o.-=-2 -~0.4-,----o~.a:-----:o:':.8----'
Reduction Rate

Figure 2.9: Ff-RD: The impact of data re
duction rate (a), n = IOOO,rd = rq = sd =
Sq= l,k= lOandA.s = fj.r =0.127.

In Fig. 2.9, we show the energy cost with respect to different data reduction rates a. We fix

the number of storage nodes (k = 10) and change the data reduction rate a from 0.1 to 0.9. In this

fixed tree model, decreasing data reduction rate cannot improve the performance too much. Even

when a is set to 0.1, we still have more than 96% energy cost with 10 storage nodes. The reason

is that data accumulation to the storage nodes from the forwarding nodes consumes most of the

77

energy with respect to the query diffusion and reply. Moreover, when a is 0.9, the energy cost is

even worse than the original cost, because the incurred query diffusion cost becomes larger than

the benefits obtained.

The energy cost of random deployment in the dynamic tree model is shown in Fig. 2.10. In

this model, the location of each storage node is broadcast to forwarding nodes so that they can

choose the proper storage nodes to deliver data for the energy concern. In this way, we take full

advantage of every storage node and maximize their contributions to the whole network. As shown

in Fig. 2.10, random deployment performs much better in this dynamic tree model. The energy

cost decreases very fast with increasing number of storage nodes, e.g., with 10 storage nodes (1%

of total nodes), we can save energy by approximately 20%. Fig. 2.11 illustrates the impact of data

reduction rate to the energy cost in the dynamic tree model. In this figure, a becomes an important

parameter, because every storage node is in charge of many forwarding nodes in the dynamic tree

model. A small decrease of a will reduce energy cost greatly. We also observe that our theoretical

estimation matches well with the simulation results. Although our stochastic analysis uses some

expected values and approximations, the maximum difference between the two curves is less than

5%.

100

95

l
90

1!i 85
(.)

"' !e' 80
41 c w

75

70

650

·'· ,l

i
_,._Simulation Results
--<>-Theoretical Estimate
-Standard Deviation

5 10 15 20 25
Number of Storage Nodes

Figure 2.10: DT-RD: Energy cost with
varying number of storage nodes (k), n =
1000,rd = rq = sd = sq = 1, a= 0.5.

100,---~-~--~-~----,

90

1ft
""' 80
8
~
" 70
Ji

60

50o'---~0.~2 -~0.-4 -~0.6,..----0~.8,--------'
Reduction Rate

Figure 2.11: DT-RD: The impact of data re
duction rate (a), n = 1000,rd = rq = sd =
sq = 1, k = 10 and As= -!}r = 0.127.

78

As shown above, with random deployment, the dynamic tree model has a significant perfor

mance improvement over the fixed tree model. However, the locations of storage nodes need to

be broadcast to all other nodes and the new tree is completely different from the originally con

structed tree one. We consider a semi-dynamic tree model, in which local adjustments are applied

to the originally constructed tree. For each storage node i, all the forwarding nodes within the

transmission range of i that have a depth no less than i's depth select i as parent. In result, each

storage node gains more descendants and accepts more raw data storage. Fig. 2.12 compares the

energy costs of random deployment in three models (fixed tree, dynamic tree and semi-dynamic

tree), as well as deterministic deployment in the fixed tree model. We use ST-RD to denote the

newly introduced semi-dynamic tree model with random deployment. As shown in Fig. 2.12, DT

RD achieves the best performance, while FT-RD has the worst performance. Local adjustment in

ST-RD improves the performance of the fixed tree model. In FT-RD, each storage node has no

control about how many descendants it can have. Many storage nodes are deployed with few de

scendants, which explains why FT-RD delivers the worst performance. ST-RD allows each storage

node to have some restrained flexibility in choosing its descendants, and has a better performance

than FT-RD. DT-RD has more flexibility in choosing descendants, and we see a much improved

performance.

2.4.1.3 Deterministic Deployment

Fig. 2.13 and Fig. 2.14 illustrate the performance of deterministic deployment in the fixed tree

model. In the simulation, the locations of the storage nodes are obtained by Algorithm 2. Com

pared to the random deployment (FT-RD) and greedy algorithm, deterministic deployment signif

icantly improve the performance by precisely computing the optimal positions to put the storage

95

~ 90

! >- 85
e>
Q)

ill 80

75 -FT-RD
-e-ST-RD
-a-DT-RD

5 10 15 20
Number of Storage Nodes

79

25

Figure 2.12: Comparison of energy costs with varying number of storage nodes (k), n = 1000, rd = rq =

sd = sq = 1, a= 0.5.

nodes.

In Fig. 2.13, we fix the reduction rate a = 0.5, and vary the number of storage nodes from 2

to 25. With a few storage nodes, the energy cost is sharply reduced in Fig. 2.13. When k becomes

larger, the slope gradually becomes flatter. As shown in the figure, we can save about 20% energy

cost with 10 storage nodes, and 30% with 25 storage nodes. In addition, Fig. 2.14 shows the

energy cost with varying reduction rate, when the number of storage nodes is fixed as 10. As we

can see, the energy cost is nearly linear to the reduction rate a.

Intuitively, the performance in the fixed tree model depends on which level of the tree the

storage nodes are deployed at. When storage nodes are close the the leaves, which often happens

in FT-RD, the benefit of data reduction is limited. On the other hand, when storage nodes are

deployed close to the sink as in the greedy algorithm, a large amount of raw data have to traverse a

long path to reach the storage nodes still yielding high energy cost. The locations derived from our

algorithm usually reside in the middle levels. Here is an example of the result. The following table

shows the depth distribution in a particular tree structure. The depth of the sink is 0. When we

'#: 90

~
(.) 85
e>
Q)

.J:j 80

5 10 15 20
Number of Storage Nodes

Figure 2.13: Comparison of Ff-DD, Ff-RD
and Greedy: Energy cost with varying num
ber of storage nodes (k), n = lOOO,rd = rq =
sd =sq = 1, a =0.5.

Depth 1 2 3 4

Number of sensors: 10 32 48 74

105.---~-~----~---,

100

95

~ 90
8
(.) 85
e>
1! 80
w

75

70

650
1
---«---FT-001

_-e-FT-AD

0.2 0.4 0.6 0.8
Reduction Rate

Figure 2.14: Comparison of Ff-DD, Ff-RD
and Greedy: The impact of data reduction
rate (a), n = 1000,rd = rq = sd = Sq = 1,
k= 10.

5 6 7 8 9 10 11

108 128 176 189 164 65 6

80

deploy 10 storage nodes in such a tree, the derived depths of storage nodes are 3,4,4,4,4,5,5,6,6,6.

2.4.1.4 Network Life

Finally, load distribution and network lifetime are shown in Fig. 2.15 and Fig. 2.16. We show the

workloads of the most heavily-loaded 50 nodes in Fig. 2.15. In Fig. 2.16, we define lifetime as the

time that 2% nodes are depleted of energy. In our setting, it means 20 sensors are out of operation.

According to our simulation, this scenario will usually cause disconnection in the sensor network.

As we can see in Fig. 2.15, FT-RD almost has no improvement on load-balancing and lifetime.

In contrast, FT-DD lengthens the lifetime a lot with a small number of storage nodes, although

the objective of our algorithm is to minimize the total energy cost. For example, with 15 storage

nodes, the lifetime is increased by more than 60%. DT-RD does not perform well with only a few

storage nodes because the sensors connecting storage nodes and the sink carry a lot of workloads

for both raw data transmission and reply collection. The greedy algorithm is superior to DT-RD

by specifically reducing the energy cost of the most heavy loaded nodes.

250,--~--~r============il
---No Storage Nodes
---<>--- FT -AD
---A-OT-RD
-···"--- FT -DO

50

~L---1~0-~20--~30--~40-~50
Rank of Workload

Figure 2.15: Comparison of load-balancing:
Workload is measured as the size of the mes
sage sent by each sensor per unit time, n =
lOOO,rd = rq = sd = sq = 1, k = 10 and a=
0.5.

2.4.2 Dynamic Tree Model

/
0·5'oL --s~--1~0 -~1s--~2o _ ___j2s

Number of Storage Nodes

Figure 2.16: Comparison of lifetime with
varying number of storage nodes (k): Values
are normalized by the lifetime without stor
age nodes, n = lOOO,rd = rq = sd = Sq = 1,
a=0.5.

81

We have implemented the approximation algorithm and compared the performance of the algo-

rithm with the optimal solution. We consider a network composed of 100 sensor nodes randomly

deployed in a 100 x 100 square field, where the sink is in the center. We vary the number of

storage nodes k (including the sink) from 2 to 15 with f3 taking 0.1,0.15, and 0.2 respectively. In

our approximation algorithm implementation, we use GLPK package (GNU Linear Programming

Kit [1]) to get the fractional solution in the first step of our algorithm. The optimal solution is done

by using integer linear programming, which is provided by MIP (mixed integer program).

Fig. 2.17 shows the simulation results when the parameter f3 is set to 0.1, 0.15 and 0.2. We first

calculate a maximum cost Cmox, which is the energy cost when there is no storage node and every

sensor sends data directly to the sink. The performance shown in the figures is the ratio over Cmox.

From the figures, we observe that our approximation algorithm achieves the optimal performance

when the number of storage nodes is small, which is a valid assumption since a storage node

82

is expected to be in charge of tens of regular sensor nodes. When the number of storage nodes

becomes larger, the disparity between the optimal solution and our approximation algorithm gets

bigger. Even though the approximation algorithm has a high competitive ratio, our simulation

shows that in practice, the algorithm performs well when the number of storage nodes is small.

~=0.1 p=0.15 ~=0.2

80 80 90
---Opt Oeptoyment -opt Deployment

7

\
---<r- Approximation Algorithm

80

\,
70

it so ~60 -..
~ ~70
oso () ()

~ ''a .. ~50
,a-~ ·4·-'(;l..,.,"s--o._-u-__ "1,'1.

~60
m 40 c: ~

w w

---e- Approximation Algorithm

30 40 50

202 4 6 8 10 12 14 302 4 6 8 10 12
40

14 2 4 6 8 10 12
Number of Storage Nodes(k) Number of Storage Nodes(k) Number of Storage Nodes(k)

Figure 2.17: Select k storage nodes from 100 randomly deployed sensors and f3 = 0.1 ,0.15,0.2.

2.5 Summary

In this chapter, we have presented our work in network architecture design which focuses on

storage placement in sensor networks. Our design improves the energy efficiency by deploying

special storage nodes to build a hybrid sensor network with regular sensors. We have proposed

the optimal algorithms for finding the best locations to place storage nodes in order to maximize

performance gain. Our evaluation shows that guided by our algorithms, this hybrid structure

significantly reduces the energy consumption in a sensor network.

Our solution in this chapter is a generic framework suitable for all queries. In fact, with more

knowledge about specific queries, we can customize the protocol to become more efficient in terms

of energy and time consumptions. Starting from the next chapter, we will focus on designing

efficient protocols for particular queries, which may be combined with our work in this chapter

depending on application models.

Chapter 3

Basic Query in Sensor Networks:

Range Query

The previous chapter has discussed general design of network architecture that support all queries.

From this chapter, we present upper layer protocol design for particular queries. We start with a

basic query in sensor networks, range query, which is adopted in many applications. As mentioned

in Chapter 1, we investigate this query with more practical settings. Generally, many sensor net

work applications may have other objectives or requirements besides efficiency. Multiple design

objectives in the same sensor network may not coincide with each other and there are often tradoffs

among them. It is challenging to optimize the query protocol with multiple conflicting objectives.

Our work in this chapter, therefore, shows how to design an efficient protocol for the range query

with other requirements that incur additional energy consumption. In particular, we focus on the

applications with security and privacy concerns. Our solution achieves two goals in range query,

protecting data privacy and verifying the reply, with low extra energy overhead.

83

84

3.1 Related Work

Data privacy and security have attracted lots of work in database system ([9-12, 63, 67, 131]).

The database server might not be trusted in "Database as a Service" model [63] or outsourced

database [67]. In [63], the authors considered privacy problems in a model, where the service

provider might not be trusted and thus the data owner encrypts the data before sending it out. The

authors proposed a data partitionlbucketization scheme to allow the service provider to process

queries without decryption. Finally, the results are decrypted and processed at the client site.

In another work, the privacy issues of outsourced database are also discussed in [67]. B. Hore

et al. investigated data bucketing scheme and analyzed the tradeoff between performance and

privacy. They further gave two measurements of privacy and designed an algorithm to optimize

the performance. Our work uses the same privacy metrics in [67] and [9], and apply them in

sensor networks. In prior work, however, data providers are assumed to be just curious about

sensitive data, but not to act in a malicious way. Our work, however, considers more powerful

malicious attacks to a sensor network deployed in a hostile environment. Preserving privacy and

detecting malicious behaviors are the two integral goals in our work. In addition, we consider

communication efficiency in sensor networks, which is not presented in [67] and [9].

Another related research is privacy protection of documents stored on untrusted sites ([30,

56, 118]). D. Song et al. [118] described several schemes for keyword searching on encrypted

data. Similarly, they considered the privacy issues with an untrusted storage server. The same

problem is also discussed in [30]. Y. Chang et al. resolved the problem by using a dictionary and

interactive protocol. In addition, P. Golle et al. proposed protocols particularly for conjunctive

keyword search in [56]. The work in this line considers keyword search in a setting where the data

provider is the one who issues the search operation. Our work considers a different application -

85

range query assuming the users query the data provided by sensors.

Prior research about privacy issue in sensor networks ([60, 75,123,132, 135]) focus on security

and privacy for the location of the source sensor, not the data information. In addition, M. Shao et

al. [112] and K. Ren et al. [109] apply cryptographic mechanism to provide security and privacy

protection for data centric sensor networks and pervasive computing environment respectively.

However, they do not consider data processing at storage sites.

In sensor networks, secure aggregation ([29, 68, 105, 125, 126]) is similar to our query reply

verification. L. Hu and D. Evans [68] proposed a protocol to prevent intermediate aggregators

transmitting false information by using MAC messages as a signature. In their design, one aggre

gator is able to verify the information from its children by the messages from its grandchildren.

This scheme, however, does not work for the case where multiple nodes are compromised. In

SIA [105], B. Przydatek et al. proposed an aggregate-commit-prove scheme to verify the aggre

gation result. Sampling theory is applied in the protocol, which enables the sink to estimate the

probability that the result is within a tolerant error range. H. Chan et al. [29] extended this work to

a hierarchical aggregation model with multihop communication. SDAP [125] is another solution

to secure aggregation in a multihop sensor network. The authors divide the aggregation tree into

groups and use a commit-and-attest scheme to enable the sink to verify the aggregates. However,

all these approaches are not designed for privacy-sensitive data. In addition, the goal of [68] is to

find malicious aggregators, not suspect data sources, and the schemes in [29, 105, 125] are designed

only for aggregation queries. Their basic goal is to prevent malicious aggregators from forging

the result. Our verification scheme, however, tries to detect the incorrect data from suspect data

sources, i.e., the compromised storage nodes. In addition, some of the prior work is not suitable

for range query, and some protocols release data information to other nodes, which breaches the

86

privacy in our problem.

3.2 Problem Formulation

3.2.1 System Model

We consider a sensor network consisting of storage nodes and regular sensors. The basic query

response model is illustrated in Fig. 3.1. We assume that every sensor generates environmental

data values in a fixed rate and periodically submits the collected data to the closest storage node.

For example, sensors monitor temperature every ten seconds and submit the data to storage nodes

every one minute. Thus, each submission contains six temperature readings. We define an epoch,

as the interval time between two consecutive submissions (one minute in the above example).

Assume all sensors are synchronized so that they have agreement on the beginning and end of

an epoch. After every epoch, the collected data is sent to the nearby storage nodes by sensors

and archived there for future queries. The data messages from sensor si contain the following

information:

si---t Storage Node: i,t, {datal,data2, ... },

where i is the sensor ID and t is the current value of the epoch counter. Data query from a user

is directed to the storage nodes through the sink. In this work, we consider range queries in the

following format RangeQuery = {t, [a, b]}, where tis the time slot (epoch) the user is interested in

and [a, b] is the specified data value range. For easy exposition, we only consider one-dimensional

data in this work. In some applications, sensors may generate data with multiple attributes, which

yield more complex range query. Our approach, however, can be easily extended to the query with

multiple data types.

87

Figure 3.1: 1\vo-tiered System Model (with two storage nodes)

3.2.2 Adversary Model and Security Goals

We assume that the adversary tries to launch the following two attacks. First, the adversary wants

to obtain the sensitive data information from the sensor network, which violates data privacy.

Leaking valuable data is a critical threat in many applications. The second attack is to breach data

fidelity. For a user's query, the adversary tries to reply with wrong information and convince the

user to accept it. We consider that both storage nodes and regular sensors might be compromised

in a hostile environment. We suppose that a compromised node is fully controlled by the adver-

sary. The adversary may utilize any compromised resource to launch attacks. In the rest of this

subsection, we discuss the impacts of the compromised storage nodes and regular sensors, and

propose our corresponding security goals.

3.2.2.1 Compromised Storage Nodes

Our major focus is on the compromised storage nodes. Since storage nodes host a lot of data

collected from other regular sensors, compromising storage nodes will cause great damage to

88

the system. First, once compromising a storage node, the adversary easily obtains the privacy

sensitive data stored on the storage node. Second, the compromised storage nodes can help the

adversary launch the data fidelity attack, because storage nodes are responsible for answering

queries from the sink. After receiving a query, the compromised storage nodes may return arbitrary

data as the reply. Therefore, the goal of this work is to protect data privacy and data fidelity. We

aim to protect data privacy by designing a storage scheme, such that little information is exposed

to storage nodes while fulfilling data queries. Data fidelity attack, however, is hard to prevent,

because the compromised storage nodes under the control of the adversary may behave arbitrarily.

Our countermeasure is an approach to enabling the sink to detect and reject the false reply so that

applications will not be affected by misleading data.

3.2.2.2 Compromised Sensors

Regular sensors are data source in this system. If one regular sensor is compromised, the readings

ofthe sensor will be exposed and the sensor may send forged data to storage nodes. Unfortunately,

it is hard to prevent the data privacy attack and data fidelity attack in this scenario. However, the

data from an individual sensor is minor in the whole network. Unless the adversary compromises

a lot of regular sensors, this kind of attack has a very limited impact.

Compromised sensors, however, may be helpful for the adversary who has also compromised

some storage nodes. The adversary may use the information from the compromised regular sen

sors to disclose other large amount of sensitive data, which are sent by other sensors or the compro

mised sensors in the past epochs. In addition, these information may help the adversary generate a

false reply to fool the sink. Therefore, when we design a protection scheme, we ought to minimize

the dependency among different sensors and epochs.

89

3.3 Methodology

3.3.1 Storage Scheme and Query Protocol

In this section, we propose our schemes to address the privacy and security issues discussed in the

previous section. Our solution includes two components. The first is a privacy-preserving storage

scheme for storage nodes to protect data privacy and the second is a query protocol to yield a

verifiable reply for the sink to enable data fidelity. We will describe the details in the rest of this

section. The following Table 3.1 lists some notations we will use in the rest of this chapter.

n/si the number of sensors I sensor i

t the epoch value

s the amount of data generated in each epoch

ki,t the secret key of sensor si at epoch t

H hash function

Qi the ith query in the query set

Vmox/Vmin the maximum I minimum data value

aj8 requirement of data lose ratio I confidence

VARp/ENp requirement of variance I entropy

PT; probability that a data is with tag Ti

dss distance between a storage node and the sink

davg average distance between a storage node and the associated sensors

Table 3.1: Notations

90

3.3.1.1 Privacy-Preserving Storage

We first discuss the protection of data privacy, i.e., preventing data from being disclosed to storage

nodes. For this purpose, storing plaintext data on storage nodes is not desirable. Instead, each

sensor must encrypt the data before sending them to the storage node. We assume that every

sensor shares a secret key with the sink for a certain epoch, which makes up a one-way key chain.

Let ki,t represent the secret key of sensor si at epoch t,

ki,t = hash(ki,t-d·

After an epoch, a new key is generated by the embedded hash function and the old key is erased

from the sensor. The initial key ki,O can be preloaded before deployment. Secure protocols for

key establishment such as MIB [86] can further protect the initial phase. Considering a long-term

application, the overhead of this initial phase is negligible. In addition, the epoch counter t keeps

increasing and will be reset to 0 periodically by applications. In the new cycle, the initial key will

be the hash value of the last key in the previous cycle. In our design, compromising a sensor si as

well as the nearby storage node does not lead to the disclosure of the data from si generated before

the compromise. Each sensor possesses a distinct key chain so that compromising one sensor

does not affect the security of another sensor's data. After the sink receives the query reply from

storage nodes, the shared key between the sink and the corresponding sensor assists to decrypt the

received data.

Leaking no information to the storage nodes provides good privacy, but does not help with

replying a range query: the storage nodes have to send all the stored data back to the sink for a

query request, which consumes too much energy. Our solution is to expose some information to

the storage nodes while a good level of privacy is still maintained. We adopt the bucketing scheme

91

in [63], and associate a tag with each encrypted data. In this approach, the value domain is assumed

to be discrete and divided into multiple buckets. There is no overlap or gap between consecutive

buckets, i.e., every value is covered by exactly one bucket, and each bucket is assigned with a tag.

Assume sensors and the sink have agreed on the same bucket partition in the initialization phase.

When sending data to the storage nodes, sensors attach the corresponding tag to every encrypted

data based on which bucket the data falls into. The data values with the same tag can be encrypted

as a block. For example, a sensor si may send the following to the storage node:

si---t Storage Node i,t,

{Tagl, {data1,data2}k;,, },

{Tag2, {data3}k;,, }, ... ,

where datal and data2 are in the same bucket with Tagl.

For a user query { t, [a, b]}, the sink first translates the value range into a list of tags which are

associated to the smallest set of buckets that cover the range [a,b]. Therefore, the query sent to

storage nodes is composed of this list of eligible tags, instead of a and b, for example:

Sink ---t Storage Node: t, {Tagl, Tag2, ... }.

Storage nodes will look up all the data generated in epoch t and return those whose tags are listed

in the query. We will discuss how to define each bucket in the next section.

3.3.1.2 Verifiable Reply

As we mentioned earlier, if storage nodes behave maliciously, they may send back arbitrary data

as the query reply. In this subsection, we discuss the counter schemes to detect the false reply

92

of a range query. More precisely, there are three possibilities for a storage node to cheat on a

range query reply. First, a storage node can forge a non-existent data value for the query reply.

The forged data can be easily detected because each valid data is encrypted by a key shared by

the sink and the sensor who generates the data. Second, the storage node may reply with a valid

encrypted data that is out of the required query range. The sink can also easily detect the cheating

by decrypting the data and comparing with the query range. Third, a storage node may return

partial portion of the requested data, which constructs an incomplete reply. In this work, we focus

on detecting the incomplete reply.

Assume there are m tags, labeled as T1, 12, · · · , Tm. Recall that when a sensor si sends data at

the end of an epoch, all the data with the same tag are encrypted in bulk. If a storage node wants

to drop the data with tag Ij, it has to drop the entire data block and pretends that no data with tag

Tj has been received from sensor si in the specified epoch. In the next, we propose to use encoding

number to detect the incomplete reply. We assume that the sink is aware of the association between

sensors and storage nodes, i.e., which storage nodes store the data from which regular sensors. Our

basic idea is to require a sensor to send the storage node an encoding number for a tag if the sensor

has no data associated with the tag. This encoding number shares a similar format as a HMAC

and is generated by a hash function on the secret key ki,t. The encoding number will be requested

by the sink, when the storage node claims that a sensor has no data with the tag. The sink is able

to verify the authenticity of the received secrets. In this way, if a compromised storage node drops

some data, it has to guess the encoding number to pass the verification at the sink. With careful

design, our scheme can detect a false reply with high confidence.

The details of our design are as follows. For each tag Tj. every sensor Si is able to generate a

Drbit encoding number based on a predefined hash function H. Here Dj is a system parameter

93

and we will discuss how to set this value in the next section. Let num(i, j, t) represent s/s encoding

number for tag Tj after epoch t. The encoding number is defined as

num(i,j,t) = H(jl/ki,t) mod 2Dj,

where II means concatenating operation. After sending all data gathered during the past epoch to

the storage node, each sensor also generates and sends the encoding numbers for those tags that

have no data associated with to the storage node. For example, assume si generates some data with

tag Tt, but no data with T2 during epoch t. It will send to the storage node data in the following

format:

si--+ Storage Node i,t,

{Tt, {datal,data2, · · · h;,,},

{Tz,num(i, 2,t)}, ...

To respond to a range query, in addition to finding all data matching the query range, a storage

node generates a digest to show that it knows all the received encoding numbers for the tags within

the query range. In fact, the storage node can send all received encoding numbers as a digest.

However, to reduce the message size, our scheme uses a hashed value of the encoding numbers

instead. First, for each encoding number in epoch t (num(i,j,t)), the storage node generates a

hash value

c(i,j,t) = H(iiUIItllnum(i,j,t)).

Then, the storage node concatenates these hash values c(i,j,t) in the order of (i,j) pairs. This

ordering is to enable the sink to reconstruct the digest later. Finally, the digest is obtained by

94

applying the hash function H on the concatenation of c(i, j,t), Digest= H(llc(i, j,t)). This digest

is included in the return message to the sink.

Tt Tz T3 T4

St X X 001 101

sz X X X 010

S3 101 X 011 X

S4 X 110 010 100

ss X 100 X X

Table 3.2: Each row represents the data sent by one sensor. We use 'X' to denote some data with the tag is
generated, otherwise, a three-bit encoding number is received.

For example, assume there are 5 sensors {st ,sz,s3,s4,s5} and 4 tags {Tt, Tz, T3, T4}. Table 3.2

details the data received by storage nodes at epoch t. Consider a query for { Tt , Tz, 13}, the digest

is constructed as follows. We first generate

c(1,3,t) = H(lll3lltii001) , c(3, l,t) = H(3IIIIItll101),

c(3,3,t) = H(3ll3lltll011) , c(4,2,t) = H(4ll2lltll110),

c(4, 3,t) = H(4ll3lltll010) , c(5,2,t) = H(5ll2lltll100).

Then, we apply H to obtain the digest.

Digest = H(c(1,3,t)llc(3, 1,t)llc(3,3,t)

llc(4, 2,t)llc(4, 3, t) llc(5, 2, t)).

95

After calculating the digest, the storage node returns the following message to the sink:

Storage Node -t Sink: Digest,

When the sink receives the reply, it can reconstruct the encoding numbers and the digest based

on the received data because it knows all secret keys. The sink compares it with the received digest

and the validity of the reply is verified if they match.

3.3.1.3 Security Analysis

In this subsection, we discuss some potential security issues if storage nodes are compromised and

how our protocols deal with them. It is possible that some regular sensors are also compromised

by the same adversary.

Beach data privacy: Once a storage node is compromised, all the data stored there are dis-

closed to the adversary. In our scheme, however, these data are encrypted by symmetric keys. The

adversary cannot obtain the data values unless they can break the symmetric key cryptosystem. In

a feasible attack, the adversary can guess the data value according to the tag associated to the en-

crypted data. After compromising the storage node, the adversary is aware of the bucket partition,

i.e., the value range each tag represents. Intuitively, for a tag representing a shorter value range,

the adversary's guess is more likely to be closer to the actual value. Whether or not this attack can

breach the privacy depends on the bucket partition and the application-specified requirements for

privacy. In the next section, we will present how to quantify the privacy requirements and how to

96

define the buckets to satisfy these requirements.

Obtain each sensor's secret key: In our scheme, the adversary cannot obtain the secret key

ki,t of sensor Si at epoch t through eavesdropping or compromising storage nodes. The possible

available information to the adversary is the encoding numbers for those tags the sensor has gen

erated no data with. In our scheme, these encoding numbers are generated by a hash function on

the secret ki,t· Since it is computationally infeasible to invert a hash function, the adversary cannot

derive the secret key from the encoding numbers.

Forge the digest: In order to launch an incomplete reply attack, the compromised storage node

has to drop some data and generate a digest to pass the verification at the sink side. In our scheme,

however, the adversary does not have enough information (all necessary encoding numbers) to

surely generate a valid digest for the incomplete reply. The adversary may know partial encoding

numbers for the digest. But it does not provide any clue about the valid digest generated by a hash

function. Thus, the adversary can only forge the digest by guessing. In our scheme, we set the

digest to be sufficiently long (e.g., 1 O-bit), so that a direct guess of the valid digest is very unlikely

to be correct (e.g., with probability of~< 0.1 %). Another alternative for the adversary to forge

the digest is to forge the missing encoding numbers and apply function H to generate a digest. We

will discuss it in the next.

Forge the encoding numbers: The compromised storage node may forge some encoding

numbers it has not received to generate a valid digest for an incomplete reply attack. In our scheme,

each encoding number num(i, j, t) is generated by a hash function and unique per sensor/tag/epoch.

The adversary may receive other encoding numbers with one or two identical parameters, but

cannot obtain any hints to derive the missing encoding number. Therefore, the encoding numbers

can only be forge by blindly guessing. We will discuss the possibility of successfully guessing the

97

encoding numbers in the next section.

Malicious regular sensors: It is possible that some regular sensors may be faulty, dysfunc

tional, or even malicious after being compromised. The encoding numbers from those sensors

may be incorrect or missing at storage nodes. In this case, storage nodes simply report to the sink

about those abnormal sensors when replying a query. Since the main objective of this work is to

detect malicious behavior, informing the sink of the faulty sensors is sufficient for further actions.

3.3.2 Finding the Optimal Parameters

In the previous section, we introduced a bucketing scheme to protect data privacy and encoding

numbers to verify a reply. How to divide the value range into buckets and determine the length for

encoding number is still a problem. In the rest of this section, we formulate the problem of setting

parameters as an optimization problem with three system performance metrics, and discuss how

to solve the problem in this setting.

Assume that a storage node is in charge of n sensors and each sensor generates s readings per

epoch. Every data value is considered discrete at some precision level. Also we assume that the

data generated by every sensor follows the same distribution F(x) (the probability that a certain

sensed value is x), which can be obtained from theoretical models or empirical data. In addition,

the query characteristics, i.e., range specification and query frequency, need to be accounted as

well to set the optimal parameters. We consider a complete range query set represented as {Qi},

where Vmin and Vmax are the minimum and maximum values of the collected data, and ti can be any

past epoch, and there does not exist another Qj. such that ai = aj and bi = bj. Let L be the value

98

range, L = Vmax- Vmin + 1. Thus, there are L(Lil) possible ranges in this set. For the purpose of a

generalized analysis, we assume that the sink has the same possibility to receive a query for any

range and it receives the queries to all possible ranges during c epochs.

3.3.2.1 System Performance Metrics

In this subsection, we introduce three performance metrics, which are crucial to the design of

our scheme. Privacy and security metrics describe the robustness to data privacy and data fidelity

attacks. Communication cost is the metric for energy efficiency. We define these metrics mathe

matically as follows.

Privacy Constraints: While bucketing scheme enables storage nodes to search data with tags,

it may potentially lead to privacy breach. For example, let's consider an extreme case in which

every distinct value has a unique tag. If a sensor is compromised, the value-tag mapping will be

exposed to the adversary. He can derive all data values stored on the compromised storage node,

even if the data is encrypted. Therefore, we should reduce this information leakage caused by the

value-tag mapping. To do that, we need a way to measure the level of privacy for a bucket scheme.

In this work, we use variance and entropy to measure the privacy protection of a bucket as

proposed in [67]. Essentially, we protect data against two types of privacy attacks. First, storage

nodes may guess the actual value of stored data from the associated tag. Variance of value distri

bution of the data with a certain tag represents the protection level of this attack, i.e., the hardness

to guess the data. Second, when query messages arrive, storage nodes may try to derive the ex

act value range (i.e., lower/upper bounds) from the list of tags in the query message. Entropy is

chosen to measure this query privacy. Larger variance and entropy indicate better protection of

privacy. In fact, our design does not restrict to these two measurements introduced in [67]. Some

99

applications may have different definitions of the privacy measurements and it is easy to modify

our scheme accordingly.

For a given tag Tj defined by range [h, hi], li :::; hi, the variance and entropy can be calculated

as follows. Let Ei be the expected value within this range and P'Tj be the probability that a value

belongs to this range,

h;

Ei = LF(x)·x, (3.1)
x=l;

h;

P'Tj LF(x). (3.2)
x=l;

According to the definitions of variance and entropy, we have

h;

variance = LF(x)(x-Ei)2
; (3.3)

x=l;

entropy = _I F(x) log F(x). (3.4)
x=l; p~ P'Tj

Applications may specify the requirements for these two metrics, indicated by VARp and ENp

respectively. In a valid bucketing plan, for any bucket, the variance and entropy must be greater

than V ARp and ENp respectively. Thus, ~ is valid if its variance > VARp and entropy > ENp.

Security Constraints: Encoding number scheme proposed earlier is not perfectly secure.

There is still a certain probability that the adversary can forge encoding numbers correctly to pass

the verification, in particular when the length of the encoding number is short (say one bit, or less

than one bit when multiple tags combined share one encoding number). We define the security

level of a set of encoding numbers as follows:

Definition 1 a-valid/false reply: We say a reply is a-valid if the dropped data is less than a

portion of the total expected data. A reply, which is not a-valid, is called a false reply.

100

Definition 2 (a, o)-secure encoding numbers: We say that a set of encoding numbers are (a, 8)-

secure, if the confidence of accepting an a-valid reply, i.e., the probability of detecting false reply,

is greater than 8.

The first parameter a defines data fidelity, which is the fraction of data loss we can tolerate

over the amount of data that should be returned for a range query. Data reply confidence o, is the

probability that we can detect a false reply. Given user specified a and o, our resulting encoding

numbers must be (a, o)-secure.

Communication Cost: With security protection, extra communication cost is incurred in data

collection and query reply. The objective in this problem is to minimize the communication cost

during c epochs, which includes the cost of transferring data from sensors to storage nodes and

from storage nodes to the sink. In this section, we analyze the costs and give an expression of the

objective function.

First, the bucketing scheme incurs a problem of false positive [67]. Some useless data are sent

back together with the desired data. We define false positive as the total amount of the useless

data received by the sink. Consider a tag 1i. defined by the range of [li, hi]. For a range query [a, b],

1i. yields no false positive if there is no overlap between [a, b] and [h, hi], i.e., b < li or a > hi.

However, if [j ::; b < hi, the data in the range of [b + 1, hi], which size is n · s · L.~~b+ 1 F (x), are also

returned. Considering the complete query set, for a certain b, a belongs to [vmin, b], which yields

b- vmin + 1 queries. Thus, the false positive in [li, hi] caused by the data out of a query's upper

bound (between band hi, (b,hi]) is

~-1 ~

L(b-Vmin+1)·n·s· L F(x).
b=l; x=b+1

Similarly, if [j < a ::; hi, the data in [h, a- 1] becomes false positive. In addition, we assume the

101

cost of transferring data is proportional to the data size and the distance between the sender and

receiver. Therefore, considering the complete query set, the total cost for transferring the false

positive incurred by Tj, denoted by CFj, is

~-l ~ ~ ~~

CFj=dss·n·s(L(j-Vmin+1) L F(x)+ L (vmax-J+1)LF(x)),
j=l; x= j+ I j=l;+ I x=l;

where dss is the distance between the storage node and sink.

Similar to privacy protection, encoding number scheme incurs extra costs, too. First, when

storage nodes reply to a query, a digest is attached to the message. The sensors relaying the

message will consume more costs. This cost, however, is constant in this scheme. We do not have

to consider it when determining buckets plan and encoding numbers. Second, when sensors send

data to storage nodes, they need send the encoding numbers for the tags with no data associated

as well. The cost of transferring encoding numbers depends on bucket partition, the length of

each encoding number, the number of sensors in the proximity, and the distance between sensors

and their closest storage nodes. For a tag Tj, the probability that one sensor has no data with 1i is

(1 - PTiY. Thus, the expected number of those sensors which have no data with 1i in an epoch is

n · (1- PTjy. This is the number of sensors that have to send the encoding number for 1i to storage

nodes. Therefore, for each epoch, the expected communication cost for transferring the encoding

numbers for 1i is

Di · n · (1 - PTiY · davg,

where davg is the average distance between sensors and the storage node and recall Di is the length

of the encoding number for Tj. Let CEi be the cost of transferring the encoding numbers of 1i

during c epochs,

(3.5)

102

The secure protocols we proposed may also incur extra cost for computation such as hash

operations. However, this extra cost for computation is negligible compared to the communication

cost.

3.3.2.2 Problem Formulation

Considering all the metrics discussed above, our problem is formally defined as follows:

Input: F, VARp,ENp, a, 8

Output: Bucket partition ('lj) & encoding numbers (Di)

Objective: min L,(CFi + CEi)

s.t. \i1j, variance> VARp and entropy> ENp;

{Di} is (a, 8)-secure.

(3.6)

That is, given the sensed data distribution F(x), privacy parameters VARp and ENp, and security

parameters a and 8, we aim to find the optimal bucket partition (1i) and encoding numbers (Di),

such that the communication cost <Ii(CFi + CEi)) is minimized while the privacy requirements

(in terms of variance and entropy) and the security requirement ((a, 8)-secure) are guaranteed.

3.3.2.3 Algorithm to Find the Optimal Parameters

As shown above, our problem boils down to determining the optimal bucket scheme and the

optimal length for each encoding number. We call the bit length of an encoding number encoding

length in the rest of this work. Our main algorithm uses dynamic programming to enumerate all

bucket partition schemes. For each bucket partition, we first check the privacy constraints and call

another algorithm to calculate the encoding lengths which can guarantee the security constraints.

103

Then, we can obtain the communication cost incurred by the bucket partition. After examining all

bucket partition plans, our algorithm can find the optimal one with the minimum communication

cost.

Main Algorithm: In this subsection, we describe the main algorithm to divide the value

range into buckets such that the communication cost is minimized while the security and privacy

constraints are satisfied. We use dynamic programming to resolve the problem in the following

Algorithm 4. It basically is composed of two phases. In the first phase (lines 1-7), we enumerate

all possible ranges [i, j] by two loops. We first check if each range is eligible to be valid buckets

according to the privacy constraints and store the results in a boolean array valid[i,j]. For each

valid range [i, j], i.e., valid[i, j] is true, we calculate an encoding length D[i, j] by another function

EncodingLength. We will discuss the details of this function in the next subsection. Basically,

for a given range, it returns the shortest encoding length that can guarantee the security constraint.

Then in line 7, we compute the communication cost incurred by this range for transferring false

positive data (Eq.(3.5)) and encoding numbers (Eq.(3.5)). The time complexity of this phase is

O(L2 · max{L2 ,s}), where Lis the value range as defined earlier. In the second phase, we define a

two dimensional matrix M, where each element M[i, j] stores the cost of the best solution to divide

range [i,j). We use dynamic programming to fill matrix M and finally M[vmin, vmax] is the cost of

the optimal bucket partition. We start from the smallest ranges with width 1 and calculate M[i, j]

in the ascending order of the range width w = j - i. Dividing [i, j] can be regarded as a two-step

process: defining the first bucket and recursively dividing the remaining range. Let [i, k] be the first

bucket. We enumerate all possible positions of k and M[i, j] is obtained by the following equation,

M[i,j] = min{CE[i,k] +CF[i,k] +M[k+ 1,j]},

104

where k E [i, j] and valid[i, k] = true. Additionally, another matrix P is used to record the pivot

points of range partition. By tracing back from P[vmin, vmax], we can obtain the optimal bucket

partition. The time complexity of the second step is O(L3). Therefore, the algorithm terminates

within O(L2 • max{L2 ,s}) steps.

105

Algorithm 4 Optimal Solution (F, VARp, ENp, a, 8)

1: for i = Vmin to Vmax do

2: for j = i to Vmax do

3: Calculate E[i, j] and PT[i, j] by Eq.(3.1) and Eq.(3.2)

4: Calculate variance and entropy by Eq.(3.3) and Eq.(3.4)

5: if variance > V ARp and entropy > ENp then

6: valid[i, j] =true, D[i, j] = EncodingLength([i, j])

7: COST[i,j] = Eq.(3.5)+Eq.(3.5)

8: end if

9: end for

10: end for

11: for w = 1 to Vmax - Vmin + 1 do

12: for i = 1 to Vmax - w do

13: if valid[i, i + w] then

14: M[i, i + w] = COST[i, j]

15: for j = 1 to w- 1 do

16: if valid[i, i + j] then

17: cost= COST[i,i + j] +M[i + j + 1,i + w]

18: if cost < M[i, i + w] then

19: M[i, i + w] = cost

20: P[i,i+w] = j

21: end if

22: end if

23: end for

24: end if

25: end for

26: end for

106

Optimal Encoding Length: Here we present the details of Encodinglength. Apparently,

a long bit length increases the communication cost, and this increase is non-negligible when a

large number of sensors send encoding numbers during many epochs. The security level, i.e., the

probability of detecting an incomplete reply, also increases with a long bit length, which hardens

the process for a storage node to forge the encoding numbers. In this sub-problem, therefore,

our goal is to find the optimal set of encoding lengths, which are (a, 8)-secure and yields the

minimum communication cost.

To resolve this sub-problem, we first analyze the behavior of a malicious storage node, and

then give an approximated estimation of the required encoding lengths. Essentially, malicious

storage nodes intend to drop enough data to form a false reply and forge the missing encoding

numbers to pass the verification at the sink. Let us consider a range query with a tag list TQ =

{Tq1 , Tq2 , • • • , Tqk} for the data collected in epoch t. Storage nodes are supposed to look up all data

generated during epoch t and return the data whose tag is in TQ. We define two 2-dimension

matrixes SD and N, where SDij represents the set of data from sensor si with tag 1j and Nij is the

Tr T2 ... Tm

St SDrr SD12 ... SDtm

S2 SD21 SD22 ... SD2m

..

Sn SDnt SDn2 ... SDnm

size of SDij, i.e., Nij = ISDijl· Thus, the size of reply data for TQ is

n

RN(TQ) = L L Nij.
i=l TjETQ

107

A successful attack requires a malicious storage node to drop at least a· RN(TQ) data and forge

the necessary encoding numbers to get approved. Consider the malicious storage node applies

the optimal way to achieve this goal, i.e., drop those data with the minimum probability being

detected. Let us regard all elements of SD as individual blocks and label those blocks which

should be returned for T Q as { b1, b2, · · · , br}. For example, assume there are 3 sensors and the

tags listed in TQ are T1 and T2. The following Table 3.3 illustrates the data received by the storage

node. In this case, we need consider 3 blocks as shown in Table 3.4. For a block bj with tag Tq,

T1 T2

S} X X

S2 0 0

S3 0 X

Table 3.3: 'X' means there are data in the block received by the storage node. '0' means no data are
received.

T1 T2

S! b1 = SD11 b2 = SD12

S2

S3 b3 = SD32

Table 3.4: Renumber the three blocks that should be returned for TQ.

we associate an encoding length dj with it, where dj = Dq. One block is the minimum bulk of

data the storage node can drop and if b j is removed, the probability of successfully forging the

encoding number is 2~j • Thus, given B = { b1, b2, .. · , br} and { d 1 , d2, .. · , dr}, the storage node

108

need find a subset B' of B to

. . rr 1 maxtmtze b;EB' 2!i

The objective is equivalent to maximize

1 1
log IT ([= :L log ([= - :L di.

b;EB' 2
I b;EB' 2

I b;EB'

This problem is reducible to the 0/1 knapsack problem, which is known to be NP-hard. We define

Thus, the objective will be

{
1 if bi (j. B';

Xi= 0 if bi E B'.

maximize(- L di) =?maximize L di =?maximize di ·Xi·
b;EB' b;f/.B'

The constraint can also be expressed in the following form,

L lbil ~a ·RN(TQ) =? L lbil < (1- a) ·RN(TQ)
b;EB' b;f/.B'

Then this problem is formulated as the 0/1 knapsack problem,

maximize di ·Xi

I09

where di is the value of item i, lbd is the weight of item i, and (I- a)· RN(TQ) is the capacity of

the bag.

To simplify the problem, we assume that the storage node applies a greedy algorithm as the

attack strategy to select victim blocks. It first orders all blocks according to the values of ~·

where lbil is the number of data in bi. In the ascending order, the storage node drops the blocks

with the smallest values until the total dropped data is larger than a· RN(TQ)

Next, we present our algorithm to determine the optimal encoding lengths that are (a, 8)

secure for any possible query. We first give an algorithm to determine the optimal encoding

lengths for a special category of queries, called single tag query, where the tag list in the query

contains only one tag. Later we extend it to more general queries with multiple tags. Recall tag

1j is defined by a range [li, hi] and Di denotes the encoding length of this tag. Algorithm 5 shows

the detailed function of deriving a proper value of Di. In the first step, we estimate the expected

number of sensors which have t number of data with 1j, where t E [1, s], and store them in an array

Ei. According to binomial distribution,

Ei[t] = n · (;) · PT/ ·(I- P1jy-r.

Also, we calculate the expected total number of data with 1j as sumi = n · s · P1j. Secondly, we

emulate the behavior of malicious storage nodes, dropping data by the greedy strategy. Since we

are considering single tag queries, the encoding length dj of every eligible block b j is the same

as Di. Thus, the dropping order only depends on v!JT. i.e., the block with the largest size lbjl will

be dropped first. We start with the sensors which haves data with 1j, because lbjl ~ s. Totally,

they contribute s · Ei [s] data, but to drop all of them, we have to forge Ei[s] encoding numbers. We

continue to drop the data from the sensors which have s- I data with 1j, and stop the procedure

Algorithm 5 EncodingLength (1j = [h,hi])

for t = 1 to s do

end for

sumi = n·s·P1j,drop = O,enum = 0

for t = s to 1 do

drop= drop+ Ei[t]· t

enum = enum + Ei[t]

if drop > a· sumi then

enum = enum- (drop- a · sumi) /t

break

end if

end for

r tu r-log(l-8)
1 e ml enum

110

when the dropped data is greater than a· sumi. During this process, variable drop indicates the

total amount of the dropped data, and variable enum records the number of encoding numbers the

adversary has to forge. Thus, the estimated confidence of detecting a false reply is 1 - 2vr~num. To

make it greater than 8, we have

1
1 ~ D _-_lo-=g:..:....(1_-_8_:..)

- >u::::} i>
2D;·enum enum

"' . . . h . . D r-log(I-8)1 h I . 1.0 mtmmtze t e commumcat10n cost, we set ito 1 enum . T e time comp extty of Algo-

rithm 5 is O(s).

For multiple tag queries, we can apply the similar analysis as above. However, this step can

Ill

be skipped because of the following lemma.

Lemma 3.1 If a set of encoding numbers are (a, 8)-secure for every single tag query, they are

also (a, 8)-secure for multiple tag queries.

Proof: Assume that a vector of encoding lengths D = {D1,D2 , ••• ,Dm} are (a,8)-secure for

any single tag query. Now let us consider a multiple tag query for a list of tags { 7f1 , 7f2 , ••• } •

As in Algorithm 5, we can estimate the expected total number of data for each tag, denoted by

{ sum11 , sum12 , ••• } • The summary L. sum1; will be the expected return size of this query. Then, we

will apply the greedy strategy to drop at least a · L. sum1; data. Meanwhile, we need count the

encoding numbers that have to be forged. Let enumr; be the number of dropped blocks of tag 'It;.

The confidence will be 1 - 0
2

v,)numr; . However, in this process, there must exist a tag 'Itj such that

the dropped data of 'ltj is greater than a· sum1j. We already know that D1j guarantee the confidence

of single tag query for 'ltj, which implies 1 -
2
v,j .! •• m,j > 8. Back to the confidence of this multiple

tag query,

Therefore, D can also guarantee the required confidence for multiple tag queries. •
Thus, for any given bucket, Algorithm 5 can find the optimal encoding length satisfying the

security constraint.

3.3.3 Rare Event Detection with Abnormal Values

In this part, we study event detection as a special application of range query. We consider a

scenario that an event can be detected by the sensors in the proximity. For example, a vehicle

traversing the field generates abnormal noise and vibration, which can be measured by nearby

112

sensors (illustrated in Fig. 3.2). Users can query the data in the range of abnormal values to detect

the event and collect the relevant information.

0 Field Area (S) 1 =-:,Coverage Area (S ')

/

I

I 100 \,
\

'

10 .,

'
100 \

#;
I

110 /

---~,- ~- --~
Storage Node

10 .,
10 .,

15 ,

Figure 3.2: Example of event detection with range query: The sensors close to the passing vehicle measure
abnormally high noise or vibration ([90,110] in this example), while the normal readings are much lower
([10-15]). Assume users know the prior information that the noise generated by a sedan is usually between
80 and 120. Thus, users can obtain the information about the event by querying the data in range [80-120].

The previously proposed schemes are suitable for general range query, but might be ineffi-

cient for detecting rare events. As we mentioned earlier, our schemes incur extra communication

costs for transferring false positive data and encoding numbers. Although we may carefully de-

sign a bucket partition to minimize the false positive, the cost for transmitting encoding numbers

inevitably escalates for rare events. Let us assume some tags are associated with abnormal value

ranges that represent certain rare events. In most epochs, no such event occurs and every sensor

has to send the corresponding encoding numbers for these tags to storage nodes. This extra cost

caused by sending encoding numbers could be extremely high when accumulated over time in a

large scale sensor network. Therefore, in this subsection, we propose an efficient encoding number

scheme for rare event detection. For simplicity, we assume that each type of event can be detected

by querying a special single tag. In reality, we may need query multiple tags for a certain event

depending on the bucket partition parameters. In this subsection, however, we will not discuss the

113

bucket partition, but focus on the encoding number scheme. Our solution can be easily extended

to the event covered by multiple tags.

The problem setting for event detection is slightly different from the previous problem in two

aspects. First, we need to consider the coverage of an event, i.e., the proximity area of the event

source where sensors can detect the event. This new parameter depends on the characteristics of

events and the sensitivity of sensors. A larger coverage area tends to have more sensors detect the

event. Second, in event detection applications, it is unnecessary for a storage node to send back all

the received data about the same event. Event detection applications often take advantage of data

redundancy in the sensed data among the sensors that detect the event to reduce the communication

cost. The data from multiple sensors may collaboratively detect a rare event. However, after

a certain threshold, obtaining more data does not yield much new information because of the

redundancy. This threshold depends on the characteristics of the event and the sensed data. For

example, the application may require the event data from five sensors no matter how many sensors

actually detect the event. The sink will specify this threshold in the query. After receiving the

query, a storage node will look up the hosted data and determine whether there exist data about

the event, the storage node will bundle five of them (from five sensors) as the reply and send them

back to the sink.

We modify the previous problem for this special case of rare event detection as follows. As

sume a storage node is in charge of a field with area S as illustrated in Fig. 3.2. Sensors are

randomly deployed on the field with a density A and can be modeled as points of a Poisson pro

cess. Assume a rare event is associated with tag T, i.e., querying the data with T can detect the

occurrence of this type of event. Let S' be the coverage area of an event. Here we use a simplified

model for the rare event. When this rare event is not present, no sensor will generate data with tag

114

T. When an event occurs, on average A· S' sensors will detect it. We assume that the application

requires event data from (1- a) ·A ·S' sensors if the event occurs. Note that parameter a here has

a different meaning from the tolerance parameter in the previous sections. We still use a to keep

consistent with our previous problem setting.

The adversary model in this problem is similar. A compromised storage node tries to drop

partial or all the event data when some events have occurred and return less than (1- a)· A· S'

(could be none) event data as a reply. Therefore, our security goal is still to enable the sink to

detect such kind of false reply with high probability.

In the rest of this subsection, we present a new encoding number scheme for rare event de

tection and derive the optimal parameters. Our scheme utilizes a sampling technique in order to

efficiently report events. Instead of requiring all the sensors to send the encoding numbers when

no event happens, we randomly choose a small set of v sensors as sample nodes to send the en

coding numbers of T in each epoch. We assume that every sensor is aware of all sensor IDs in

the field. In epoch t, each sensor calculates a pseudo-random function R(t,i) for every sensor Sj.

The top v sensors with the largest values of R(t, i) are selected as sample nodes. If no event is

detected in an epoch, each sample node will send out an encoding number to the storage node

while a non-sample node will not. To reply a query forT, storage nodes are supposed to return the

event data with tag T from (1 - a) · A · S' sensors. If there is no such data, i.e., no such event oc

curs, the storage node will send a digest generated by the encoding numbers received from sample

nodes. After receiving the digest, the sink can apply the same pseudo-random function to derive

the set of sample nodes and generate all the encoding numbers to verify the received digest. If the

sink receives less than (1 - a) · A · S' event data or an invalid digest, it will discard the reply and

consider the sending storage node as a malicious storage node for further investigation. Again,

115

remember we assume a simplified event model in which no sensor will generate data with tag T

when there is no rare event.

To verify a reply is valid when an event happens, we consider two attacks the adversary may

launch. First, the adversary may send partial event data (< (1 -a) ·A · S') back. According to

our policy for the sink, this reply will definitely be discarded. Second, the compromised storage

node may pretend that it has not received any data about the event. In our scheme, the compro-

mised storage node then has to send a digest back. If no sample sensor detects the event, this

attack is certainly successful because the compromised storage node has obtained all necessary

encoding numbers from sample nodes to generate a valid digest. However, if the storage node

receives event data from some sample nodes (i.e., does not receive the encoding numbers from

these sample nodes), it has to forge the encoding numbers to generate the digest for this attack to

pass the verification at the sink side. In the next, we focus on the second attack and discuss how

to determine the number of sample nodes v and the encoding length D for tag T such that the sink

has a high probability (> D) to detect it.

Since we randomly pick v sensors as the sample nodes, the density of sample sensors is As = ~.

Let p(x) be the probability that exactly x sample sensors detect the event, which means there are x

sample sensors in the area S'. Thus, according to Poisson process, we have

(As. S'Y. e-A.s·S'

p(x) = '
X.

In this case, to drop all the data, the adversary has to guess x encoding numbers with a success

probability of ~. Therefore, the probability we can detect the event by selecting v samples is

1-Ixi~~.

On the other hand, the communication cost for transmitting encoding numbers in each epoch

116

is v · D · davg. where davg is the average distance between a sensor and the storage node. Thus, we

can find the optimal parameters by solving the following problem,

s.t.

minimize v · D

1-~ p(x) > 8.
L..J 2X·D

X

Recall in our solution to this problem, the sink requires (1 - a) · A, • S' event data or a digest

from a storage node. It is possible that the actual number of sensors around the event source is

less than the threshold (1 -a) ·A · S', in which case a legitimate storage node can not provide

sufficient event data and maybe can not generate a valid digest either. The sink then may regard

this storage node as a malicious one and trigger a false alarm by mistake. The probability of the

such a mistake depends on the threshold defined by a. Assume X sensors detect an event. The

sink may trigger a false alarm if X :::; (1 - a) · A, • S', whose probability is

(1-a)·.lt·S' (A.. S')x. e-.it·S'
Pr(X:::;(l-a)·A.·S')= L

1 X=O X.

As we will show in the evaluation, this probability can be neglected with a reasonable parameter

setting.

3.4 Performance Evaluation

In this section, we evaluate our scheme based on simulation. We first evaluate the performance of

the scheme for generic range queries and then show the simulation result for rare event detection.

The generic privacy-preserving range query scheme is summarized in Algorithm 4, which calls

subroutine Algorithm 5. To show the performance of these two algorithms in more detail, we first

117

examine Algorithm 5 in A and B to show that the resulting encoding length is sufficient to protect

query reply, then in C we use real data sets to simulate Algorithm 4 and show the communication

cost incurred by this approach. Furthermore, we present the data for rare event detection in the

end.

3.4.1 Suggested Encoding Length

We first run Algorithm 5 to estimate the optimal encoding length for a single tag query. By default,

we set {n,s, a, 8,P1i} to {100, 10,0.1,0.9,0.1 }. In the simulation, we fix four of these parameters

and varies the remaining variable. The following figures (Fig. 3.3-Fig. 3.7) show the results of

the encoding lengths suggested by Algorithm 5. On the one hand, higher confidence obviously

requires longer encoding numbers, as shown in Fig. 3.4. On the other hand, the encoding length

is also related to the tolerant size of the data loss. The more data loss we can tolerate, the shorter

encoding length we require. To return a false reply, the adversary has to drop at least a · Ni data,

where Ni is the total number of data with tag 7j. We can use the expected value to express it,

Ni = P1j · n · s. Thus, the encoding length will be a non-increasing function over a· P1j · n · s,

which explains the trend of the curves in Fig. 3.3, Fig. 3.5, Fig. 3.6 and Fig. 3.7.

5.-----~----~----~-----.

0 0.05 0.1 0.15 0.2
Probability of Tag

Figure 3.3: Encoding length vs. P1i (n = 100,
s = 10, a= 0.1, o = 0.9)

4.-----~----~----~-----.

£3
Cl
c:
~
g>2

§
w 1+-------"""

0.8 0.85 0.9 0.95
Confidence Requirement (o)

Figure 3.4: Encoding length vs. 0 (n = 100, s =
10, a= 0.1, P7i = 0.1)

5.-----~----~----~-----.

4
.r:.
'&
c:
_33
Cl
c:
'g2
0 c:
w

0 0.05 0.1 0.15 0.2
Data Loss Ratio(a)

Figure 3.5: Encoding length vs. a (n = 100, s =
10, o = 0.9, P1; = 0.1)

5.-----~----~----~-----.

4
.r:.
'&
c:
_33
Cl
c:
'g2
0
c:
w

0 5 10 15 20
Data Rate(s)

118

Figure 3.6: Encoding length vs. s (n = 100, a =
0.1, o = 0.9, P1; = 0.1)

Next, we examine the accuracy of this algorithm. Let k be the suggested encoding length and

conf(i) be the confidence achieved by using i-bit encoding numbers. We evaluate it from two

aspects. First, we show the values of conf(k) based on simulations to examine if k is sufficiently

long to guarantee the security requirements, i.e., if conf(k) > 8. Second, we show the values of

conf(k- 1) if k > 1 to test whether k is optimal. If conf(k) > 8 and conf(k- 1) ::; 8, then k is a

perfect choice of the encoding length while k- 1 fails the security requirements.

In this simulation, we randomly generate data based on the data distribution P~ and simulate

the behaviors of a malicious storage node. We run 10000 independent tests, and calculate the

confidence, i.e., the probability of detecting a false reply at the sink. The simulation compares the

values of conf(k) and conf(k- 1) in Fig. 3.8-Fig. 3.12, where the dashed line without markers is

the confidence requirement 8. As we can see, conf(k) is always greater than 8 while conf(k-

1) is not in most cases, which indicates that k - 1 is not a proper encoding length for security

protection.

Therefore, we conclude that Algorithm 5 gives a good guideline of selecting appropriate en-

coding lengths. Simulations have shown that the suggested length value is sufficient for security

and also efficient in communication.

5.-------~------~---------

4

t
533

....1
Cl
c:

'82
u
&i

1

0 50 100 150
Number of Sensors(n)

Figure 3.7: Encoding length vs. n (s = 10, a=
0.1, o = 0.9, P1j = 0.1)

0.95

Q)

g 0.9
Q)

"0

~ 8 0.85

0.8
-a- Length = k
--•····-· Length = k-1

0.05 0.1 0.15 0.2
Probability of Tag

Figure 3.9: Confidence vs. P1j (n = 100, s = 10,
a= 0.1, o = 0.9)

3.4.2 One Bit Encoding Numbers

0.95

0.9

2l
53 0.85
"0

'§ 0.8
(.)

0.75

0.7

119

-a-Length = k
--+-Length = k-1

50 100 150
Number of Sensors (n)

Figure 3.8: Confidence vs. n (s = 10, a= 0.1,
o = 0.9, P1j = 0.1)

Q)
u
c:
Q)

0.95

/r
/ I

"0 0.9 'E ~--<r--e---<l
......,.., , ..:..,..., -+-,_" --..----<!!

8
0.85

1

-a- Length = k
_.,__Length = k-1

o.8l::.8'--~-~-----'==~~~ 0 0.85 0.9 0.95 1
Confidence Requirement (o)

Figure 3.10: Confidence vs. o (n = 100, s = 10,
a= 0.1, P1i = 0.1)

In this subsection, we are particularly interested in a special arrangement, where every encoding

length is set to the smallest value 1, because it is the best case for communication cost. Since

every encoding number has the same length, when the storage node drops data, it simply selects

the largest block, no matter which tag it is associated with. We make small modifications to

Algorithm 5 to estimate the confidence achieved by one bit encoding numbers.

We first examine the confidence for a single tag (Ii) query with varying P1;. The following

Fig. 3.13 shows the comparison of our estimation and simulation results. In this setting, our

0.95

g 0.9
.:g
'E
8 0.85

0.8
-e- Length = k
-<-Length = k-1

0.05 0.1 0.15 0.2
Data Loss Ratio (a)

0.95

CD g 0.9
CD

"C

'E 8 0.85

0.8

120

-e- Length = k
--Length = k-1

5 10 15 20
Data Rate (s)

Figure 3.11: Confidence vs. a (n = 100, s = 10,
o = 0.9, PJi = 0.1)

Figure 3.12: Confidence vs. s (n = 100, a = 0.1,
o = 0.9, Pii = 0.1)

estimation is very close to simulation when p 2: 0.08. The result is also consistent with Fig. 3.3,

in which 1-bit is suggested when p 2:0.12.

Q)
0

0.95

0.9

~ 0.85
-o
§ 0.8
(.)

0.75

-e- Theoretical Estimate
-Simulation Results

0.1 0.2 0.3 0.4 0.5
Probability of Tag

Figure 3.13: Confidence of 1-bit encoding number for single tag query, n = 100, s = 10, a = 0.1.

Furthermore, we consider multiple tag range query in a more practical simulation. We adopt

a data set with a normal distribution and find the optimal bucket partition which satisfies privacy

constraints and yield minimum communication cost for false positive. The following Table 3.5

shows the bucket partition and the corresponding probability for each bucket.

Then we enumerate all 28 possible range queries in the tests. For each query, we generate

121

Tt 12 13 T4 15 16 17

[20,30] [31,38] [39,46] [47,53] [54,60] [61,68] [69,80]

0.090 0.139 0.174 0.193 0.195 0.131 O.D78

Table 3.5: The second row is the range partition of tags and the third row lists the probability of each tag.

random data for every sensor and apply the greedy algorithm to drop data. Since the encoding

length is known as 1, we can easily derive a confidence of detecting the false reply. We repeat

this process and use the average value as the result. Table 3.6 compares the simulation results

with our algorithm. The cell in T;. row and Tj column represents the confidence for a query of

{T;., 1i+1, ... , 1j }. The values in parenthesis are our estimated confidence. As we can see, the esti-

mation is very accurate for both single tag and multiple tag queries, where the largest difference is

0.016. We observe that one bit encoding numbers work well for popular tags or mild security re-

T1 Tz T3 T4 Ts T6 T1

T! 0.884(0.875) 0.987(0.984) 0.999(0.999) 0. 999(0. 999) 0.999(0.999) 0.999(0.999) 0.999(0.999)

Tz - 0.930(0.938) 0.994(0.996) 0.999(0.999) 0.999(0.999) 0.999(0.999) 0.999(0.999)

T3 - - 0.947(0.938) 0.996(0.998) 0.999(0.999) 0.999(0.999) 0.999(0.999)

T4 - - - 0.953(0.969) 0.997(0.998) 0.999(0.999) 0. 999(0. 999)

Ts - - - - 0.954(0.969) 0.994(0.996) 0.998(0.999)

T6 - - - - - 0.925(0.938) 0.983(0.984)

T1 - - - - - - 0.868(0.875)

Table 3.6: Confidence Comparison of 1-bit Encoding Numbers: The row (column) index is the minimum
(maximum) tag in the query. In each cell, the first value is simulation result and the second value in the
parenthesis is our estimation.

quirements, and we can accurately estimate the confidence to determine whether one bit encoding

numbers are suitable for a certain scenario.

122

3.4.3 Communication Cost

In this subsection, we present the performance of communication cost. We begin with the intro

duction to the data set and other environment settings used in our simulation. Then, we illustrate

the two extra costs incurred by our protection scheme with varying parameters. First, during the

periodical data report, sensors need to send encoding numbers to storage nodes for verifying the

reply. Second, when storage nodes reply range queries, extra data (false positive) are transferred

to the sink following the bucketing scheme. As we will show later, both encoding number scheme

and bucket partition scheme are very efficient.

In this simulation, we use a real data set from Intel Lab [2], which is collected from 54 sensors

during a one-month period. The details of the data set can be found at Intel Lab's web site [2].

After filtering out the incomplete and abnormal data, we adopt the data from 44 nodes in our

simulation. We evenly divide the 40 sensors into 4 groups and place one storage node in each

group, i.e., n = 11 for each storage node. We also retain their location coordinates and calculate dss

and davg for Algorithm 4. We select the temperature data collected during 03/0112004-03/10/2004

as the sensitive information and we round the data points to the precision of 0.5. In addition, we

sample three different epoch lengths, 10 mirmtes, 20 minutes and 30 minutes and we assume that

the whole query set is received in 24 hours. In our scheme, privacy requirements (V ARp. ENp)

and security requirements (a, 8) also need to be specified. In this simulation, we fix security

requirements (a= 0.1, 8 = 0.9), set ENp to {1, 1.5,2}, and vary VARp from 0.4 to 1.2 with

an interval of 0.2 to examine the performance. The following Table 3.7 presents the number of

buckets our scheme derives for epoch=30min with different settings of the privacy requirements.

We first show the cost of transferring encoding numbers from sensors to storage nodes. For

each sensor, let CE be the cost of sending encoding numbers, and let CD be the cost of transferring

123

VARp =0.4 0.6 0.8 1.0 1.2

ENp = 1.0 13 8 6 5 4

1.5 8 8 6 5 4

2.0 5 5 5 5 4

Table 3.7: Number of buckets (epoch=30min)

the encrypted data to the storage node. We measure the ratio of g~ in our simulation, which

indicates the impact of sending encoding numbers. Since this ratio varies for different sensors, the

average values are illustrated in Fig. 3.14-Fig. 3.16.

We observe that the less strict privacy requirement leads to the higher cost of transferring

encoding numbers. Intuitively, the less strict privacy requirement allows smaller buckets, which

provide more accurate information and can reduce the false positive. However, smaller buckets

may increase the cost of sending encoding numbers because they yield a large number of buckets

and each sensor probably has to send more encoding numbers in each epoch. In our simulation

setting, every storage node is in charge of 11 sensors, which makes the false positive dominant

in the extra cost compared with the cost of sending encoding numbers. Therefore, in order to

minimize the total extra cost, our algorithm prefers to use fine-grained buckets in favor of reducing

false positive. When the privacy requirement becomes less strict, our bucket partition probably

will contain smaller buckets, which further increase the cost of sending encoding numbers. We

also observe that the cost of encoding numbers decreases when the length of epoch increases. In

a longer epoch, every sensor collects more data in each bucket following a certain distribution.

It decreases the probability for each bucket to have no data in an epoch. Thus, increasing epoch

length can reduce the number of non-data tags for each sensor, which require the sensor to send

encoding numbers. Therefore, by suppressing more encoding numbers, a longer epoch incurs less

124

communication cost.

As a summary, we find that the encoding number scheme does not incur too much extra cost.

Even for 10-minute epoch, the extra cost(CE) is less than 25% of CD in most cases. The perfor-

mance mainly benefits from short encoding numbers derived in our protocol. In all the tested case,

the length of an encoding number is no more than 4 bits. If we use the standard HMAC, e.g., 160

bits HMAC-SHAl, the cost of sending encoding numbers will be significantly increased (> 40

times).

The other extra cost in our scheme is the false positive. We measure the false positive as the

number of useless data received by the sink, represented by CF. We also count the total number

of data received by the sink, indicated as TN. The performance of the false positive is illustrated

by the ratio of ~~ in Fig. 3.17.

;?
~30
!!!
1l 25
E
:::J
c 20
C1l
c
'g 15
0 c
Q) 10
0
'lii 5
8

8.4

--epoch=1 Omin
-e- epoch=20min
-·H··- epoch=30min

0.6 0.8 1 1.2
Variance Requirement

Figure 3.14: Cost of encoding numbers vs. V ARp
(ENp = 1)

8.4 0.6 0.8 1 1.2
Variance Requirement

Figure 3.15: Cost of encoding numbers vs. VARp
(ENp = 1.5)

We observe that the false positive increases when the privacy requirements become more strict,

because each of the resulting buckets probably include more data in order to yield the required

variance and entropy. In our simulation, we also find that there is no big difference for varying

epoch lengths. The reason is that in our simulation setting (n = 11), the false positive (CF in

Eq.(3.6)) is much larger than the cost of encoding numbers (CE in Eq.(3.6)). Different epoch

l20
!!!
Q)

~ 15
:::l
c
Cl
c
'5 10
0 g
Q)

0 5
'lii
8

8.4

I ---epoch=10min
····-<>······ epoch=20min
-a- epoch=30min

~

0.6 0.8 1 1.2
Variance Requirement

Figure 3.16: Cost of encoding numbers vs. V ARp
(ENp = 2)

301r-----~----~------~--~

.4

=1
p

--<>-- ENP =1.5

_____ 0 .. ENP=2

0.6 0.8 1 1.2
Variance Requirement

125

Figure 3.17: False Positive vs.
(epoch=lOmin)

VARp

lengths do not change CF, which is the dominant factor of the objective function Eq.(3.6). Thus,

we obtain very similar bucket partitions for the varying epoch lengths. In Fig. 3.17, the epoch

length is set to 10 minutes.

Based on our simulation results, bucketing scheme is also an efficient protection against pri-

vacy breach. The false positive (CF) takes less than 28% of the total data (TN) in all cases.

3.4.4 Event Detection

In this subsection, we test the encoding number scheme with sampling for rare event detection

proposed in Section 3.3.3. In this setting, we randomly deploy 100 sensors in a 10 x 10 network

field, i.e., S = 100. Assume the coverage area of an event be S', for convenience, we assume it is a

vfSi x vfSi square area where the event source resides in the center. We set the coverage area from

15 to 50 with an interval 5. In addition, we set 8 = 0.9 and consider varying a at 0.4, 0.5 and

0.6 for defining the threshold of the desired event data. We first determine the number of sample

nodes v and the encoding length D based on the previous analysis and the results are shown in

Table 3.8.

Then, we randomly select v sensors and mark them as sample nodes. In the simulation, we

126

Coverage Area: 15 20 25 30 35 40 45 50

v: 30 23 18 15 13 11 10 9

D: 1 1 1 1 1 1 1 1

Table 3.8: Number of Sample Nodes (v) and Encoding Length (D)

randomly select a point as the event source. The sensors in the coverage area are supposed to

detect the event. For each parameter setting, we conduct 10000 independent tests and present the

average result in the following figures. Our evaluation considers three aspects. First, we consider

if a legitimate storage node can be verified with high probability. Second, we examine if our

encoding number scheme can detect a false reply with high probability. Finally, we evaluate the

efficiency of the communication cost with our sampling scheme.

We first examine the probability that the number of sensors in the coverage area of an event is

less than the specified threshold (1 - a) · A. · S'. This is also the probability that the sink triggers

a false alarm and regards a legitimate storage node as a malicious storage node by mistake. The

simulation result is presented in Fig. 3.18. As we can see, with a reasonable parameter setting,

this probability of false alarm is very close to 0, especially when the coverage area is large.

In addition, we illustrate the confidence of detecting a false reply in Fig. 3.19. As we men

tioned, this confidence is irrelevant to the threshold defined by a. According to Fig. 3.19, the

confidence is obviously higher than the requirement 8 = 0.9 in all cases. It indicates that the

derived v and D can guarantee the security requirement.

Moreover, we find this scheme significantly reduces the communication cost compared with

encoding number scheme. For instance, when the event coverage are is 25, we decide to select

v = 18 sample nodes to send encoding numbers (D = 1) every epoch. Thus, in this sampling

scheme, 18 x 1 = 18 bits encoding numbers are sent every epoch. Compared with normal en-

E 2.s
<ll

~ 2
(/)

a;
~ 1.5
0
>-= 1 :0
~
e o.s
a..

--<>-a=0.4
-+-a=0.5
--£>a=0.6

~
~~0----~~~,~20--~~-~-~-3·0~~~40~_.--5~0

Coverage Area

Figure 3.18: Probability of False Alarm in Event
Detection: This figure illustrates the probability
that the number of sensors in the event proximity
is less than the threshold (1 - ex) · A. · S', in which
case the storage node in charge of the area will be
regarded by the sink as a malicious storage node
by mistake.

0.92

Gl 0.915
0

53
~ 0 0.91
()

25 30 35 40 45 50
Coverage Area

127

Figure 3.19: Confidence of Detecting a False Re
ply in Event Detection: This figure illustrates the
probability for the sink to detect a false reply with
varying coverage areas. The specified require
ment for the confidence is o = 0.9.

coding number scheme, even if we use 1-bit length, there are 100 bits transmission per epoch.

Therefore, the sampling scheme helps us reduce much communication cost and also achieve a

desirable confidence.

3.5 Summary

Our work in this chapter considers a basic query in sensor networks, data range query, which

is the building block in many applications. We focus on the security and privacy issues in this

query which have been rarely discussed in the prior work. In particular, our solution preserves

the privacy of sensor data and enables the sink to verify the query reply. Additionally, we have

identified the trade-off between security protection and energy efficiency. Our solution satisfies

the given security constraints with a minimal extra energy cost. Furthermore, we have studied an

important application of event detection using our range query protocol with security mechanisms.

Finally, we have evaluated our solution with both synthetic and real trace data.

128

As shown in this chapter, practical settings, e.g., the security concerns discussed here, often

alter the protocol design for achieving efficiency. Our work on basic queries focuses on these

practical scenarios in a pervasive computing environment. In the next chapter, we continue to

discuss another basic query in RFID systems for practical applications.

Chapter 4

Basic Query in RFID Systems:

Continuous Scans

This chapter focuses on another basic query in RFID systems. Compared to sensor networks,

RFID is still in its infant stages of development. RFID applications are much less mature and

less diverse than sensor network applications. While the previous chapter targets the applications

with extra requirements, this chapter considers a general application model which is commonly

seen in the literature. However, the prior work usually simplifies the problem settings and ignores

practical constraints. In this chapter, we move a step forward by considering the basic RFID query

in a more realistic environment.

In RFID systems, the most basic query is to collect all IDs from every RFID tag which has

been the primary focus of the prior research. However, all the previous work only considers a

single scanning process assuming all target RFID tags are within the reader's reading range at the

time of scanning. This ideal assumption is not true in some practical scenarios. We often need a

series of multiple scans to collect all the desired tags. In this chapter, as mentioned in Chapter 1,

129

130

we consider this continuous scan problem defined in both spatial and temporal domains.

In continuous scanning, an important property is that each individual scan usually is not in

dependent. Some of the scanning processes may involve overlapping RFID tags. In the example

illustrated in Fig. 1.5, the processes at adjacent locations inevitably have some tags in common

in the reading ranges. Similarly, in temporal continuous scanning, some products may stay in the

reading range for a long time, thus can be read by several consecutive scans. According to the

above property, therefore, the simple solution that scans all the RFID tags in the reading range

is inefficient In a series of continuous scanning processes, a lot of RFID tags may be present in

multiple scans. This implies that each scan in the simple solution may collect a lot of redundant

information which has already been gathered in the previous scans.

In this work, we propose algorithms to efficiently detect inventory changes for continuous

scanning without collecting all the IDs. Our solution takes advantage of the information previously

gathered about the inventory and only collects the IDs of the newly added tags, and removes the

IDs that are no longer present.

4.1 Related Work

As mentioned, most of the previous research in RFID systems focused on the anti-collision pro

tocols. For the problem of continuous scanning, however, collision is not the key crux. In the

evaluation, we will show that typical anti-collision protocols are not suitable for this problem. Our

solutions are still based on the ALOHA protocol, but specifically designed for continuous scan

ning. Adaptive splitting proposed in [101] is the only existing approach that can be applied to our

problem. We will compare it with our solution in the evaluation and show that tree traversal is

time consuming in a large scale system with long IDs (e.g., 96bit ID). Furthermore, some work

131

has extracted useful information based on the typical ALOHA scheme, e.g., counting the number

of RFID tags [82, 83, 106]. However, this paper considers a more general task of collecting tag

IDs. The intuition behind our scheme of checking the existing tags in Section 4A.2 is similar to

the Bloom filter, which has been well studied in the literature [10,23,35,64,99, 130]. However, our

algorithm has a different goal of minimizing the scanning time with a certain accuracy require

ment. The protocol and the corresponding analysis are quite different. In addition, [64] proposed

a method to build high accuracy bloom filter based on selectively choosing hash functions. In our

improved scheme in Section 4.4.3, the pre-computation is motivated by a similar idea. Again, our

problem has different goals and metrics.

4.2 RFID Background

An RFID system consists of RFID readers and RFID tags. An RFID tag contains an integrated

circuit for storing and processing data, and an antenna for receiving and transmitting data. The

most common passive RFID tags have no battery supply, and transmit data by backscattering the

received signals from RFID readers.

4.2.1 Slotted ALOHA Protocol

Slotted ALOHA is a popular anti-collision protocol implemented by major RFID manufactures.

We briefly review the protocol in this subsection because our design is built upon it. In this

protocol, the RFID reader first broadcasts a number f to all tags indicating the following time is

divided to f slots. These f slots form aframe and f is called the frame size. After receiving f,

each tag will randomly pick a slot index from 0 to f -1 and load the index into a slot counter (sc).

Usually, RFID tags use a pseudo-random number generator, which takes a random seed from the

132

reader and hashes the random seed with tag IDs to a slot index. Let r be the random seed sent by

the reader, x be the tag ID, the slot index and the initial value of sc will be hash(xllr) mod f. In

the rest of this paper, we use hJ(x, r) to represent this operation. In practice, this hash function is

often implemented using the CRC checksum operation.

After sending the initial message with f and r, the reader then orderly scans every slot in

the frame. The reader uses a 'slot end' command to close the current slot and start the next slot,

which also triggers every tag to decrease its slot counter (sc) by one. If a tag's sc becomes zero, it

will backscatter its ID in the coming slot. From the RFID reader's view, there are three possible

scenarios for each slot. First, if only one tag T replies in a slot (the slot is called single-reply slot),

the reader will send an acknowledgment of success (ACKS) to notify T that the data is successfully

received. Tag Twill then keep silent (inactive) in the rest of the session. Second, if multiple tags

respond in the same slot, the reader will detect a signal collision (the slot is called collision slot).

The reader will then send an acknowledgment of failure (ACKF) to notify the responding tags

(> 1) that it has failed to receive the data. These tags will keep active. Third, if no tag responds

in a slot (called empty slot), the reader will close the slot immediately. At the end of a frame, if

collisions have occurred in this frame, the reader will start a new frame, in which only the active

tags will participate. Fig. 4.1 illustrates the state diagram of an RFID tag in the slotted ALOHA

protocol.

Query : sc = hr (x,r)
Slot end : sc = sc·l

ACKF

Figure 4.1: State Diagram of an RFID tag with ID x: There are three states and each directional edge
is annotated by the transition condition or a pair of 'condition: action'. 'sc' denotes the slot counter and
'Query' includes the frame size f and random seed r.

133

4.2.2 Modified ALOHA Protocol

In this paper, we make a minor modification to the slotted ALOHA protocol, so that we can use it

not only to collect IDs from RFID tags, but also to efficiently select a set of tags as details will be

explained later. The only difference with the typical protocol is the transition from state 'Active'

to state 'Reply'. In our design, when sc = 0, the tag has three options for the action, which is

controlled by the reader. In the 'slot end' command, the reader adds two bits as an opcode, which

instructs each tag with sc = 0 to act accordingly as follows. (1) no reply: If the opcode is 0, the

tag will not reply anything. (2) short reply: If the opcode is 1, the tag will reply a random short

binary string. The length can be as short as possible as long as the reader can detect the collision

while more than one tag respond. Usually, the short reply is less than 10 bits. (3) reply ID: If the

opcode is 2, the tag will reply its ID as the typical protocol. The modified state diagram of a tag

is illustrated in Fig. 4.2. Note extra hardware design is needed to support this modified protocol.

However, based on the functionality of current RFID tags, this modification is definitely feasible

and can be easily implemented.

"-""""'"""",_g sc = 0 : opcode action --'---+----
0 no reply

short reply

2 reply ID x

Figure 4.2: Modified Transition from 'Active' to 'Reply': The transition action when sc = 0 depends on
the opcode in the previous 'slot end' command.

4.2.3 Slot Timing

In the slotted ALOHA protocol, timing of each slot, which is the time duration of the slot, is an

important parameter for calculating total scanning time. In our algorithms, there are different slot

134

timings in accordance with three possible actions of RFID tags as mentioned earlier. First, for

the action of 'no reply', we use tnr to denote the slot timing. Second, for the action of 'short

reply', we may have three different scenarios, empty slot, single-reply slot and collision slot. The

timings of single-reply and collision slot are the same, indicated as fsr. and the timing of an empty

slot is shorter, indicated as fem· Third, 'reply ID' action results in the same three scenarios as

'short reply'. The timing for an empty slot is fem and the timing for single-reply and collision slot

is tw. Table 4.1 summarizes the notations of slot timing used in this paper. These timings are

hardware-dependent parameters, which will be quantified in the evaluation. A principal rule is

tnr < fem < tsr << tw.

Empty Single-Reply Collision

No Reply fnr

Short Reply fem fsr fsr

Reply ID fem tw tw

Table 4.1: Slot Timings

4.2.4 Optimal Frame Size for Collecting IDs

A part of our schemes also uses the typical slotted ALOHA protocol to collect IDs from all active

RFID tags. Thus, we need set an appropriate frame size in order to achieve time efficiency. As

we mentioned in the related work, a lot of previous work has derived the 'optimal' frame size

for slotted ALOHA protocol. However, they all regard the number of slots as the measurement

of scanning time, ignoring the varying timings for different types of slots. In this subsection, we

analyze the optimal frame size used in our schemes.

Assume there are n active tags, and we use frame size f in the typical ALOHA. We will

135

successfully collect an ID only in a single-reply slot. For a certain slot, the probability of being an

a single-reply slot is

Thus, there is a single-reply slot every ;
1

slots expectedly. Considering empty and non-empty

slots have different time durations, these _!_ slots take a time of
Pt

1
-(po · tem + (1- Po)· tiD),
PI

where Po is the probability for a slot to be an empty slot, p0 = (1 - J)n = e -j. The optimal f

minimizes the above formula, which indicates the minimum scanning time per ID collected. The

above formula can be regarded as a function of 7 denoted as g(7). Once tem and tiD are set, we

can derive the optimal f by solving g' (7) = 0, where g' represents the derivative.

4.3 Problem Formulation

our objective is to efficiently scan RFID tags in a series of continuous scanning processes. In

spatial continuous scanning, the objective is to efficiently collect the newly introduced RFID tags

at each location. In temporal continuous scanning, besides collecting 'new' tags, the objective also

includes efficiently detecting the RFID tags that have been moved away. Collecting all the tags in

the reading range is definitely feasible, but very time-consuming especially in a setting of massive

RFID tags. Our solutions utilize the previously gathered information to achieve the continuous

scanning without collecting all IDs from every RFID tag.

In this problem, continuous scanning boils down to a general task with two overlapped sets

of RFID tags S and S at each scanning location/time-point. One set (S) is the RFID tags in the

136

reading range we are about to scan. The other set (S) is the previously gathered RFID tags that

overlap with present set of tags S. Thus, assume we have scanned all the tags inS, our problem is

to scan the RFID set S. We first define two important types of tags for this problem as follows:

• Unknown tags: the present RFID tags whose IDs have not been collected in the previous

scanning processes, i.e., S- S. Let U =IS- Sj.

• Missing tags: the tags that have been previously scanned, but no longer exist, i.e., S- S.

LetM= JS-Sj.

Therefore, our goal is to efficiently collect IDs from unknown tags and for some applications

(temporal continuous scanning), remove missing tags from the current inventory.

In this paper, we propose probabilistic solutions to the problem, which can not guarantee

perfect accuracy. Some unknown tags may not be collected by our schemes and some missing tags

may not be detected either. Additionally, for any accuracy requirement, a deterministic guarantee

can not be provided. Therefore, we describe the accuracy constraint as follows. Let U' and

M' respectively be the number of unknown tags and missing tags after applying our schemes. We

quantify the accuracy by making them upper bounded by two requirements Ru and RM respectively

with more than a probability.

To summarize, given the previously obtained inventory S, two upper bounds Ru and RM, and

a probability a E (0, 1], we would like to use the minimal time to scanS, such that

Pr(U' :S Ru) >a and Pr(M' :S RM) >a.

In addition, our schemes are based on an assumption that the difference between S and S,

characterized by U and M, is bounded. We use Umax and Mmax to denote the bounds, i.e., U =

137

IS- Sl :::; Umax and M = IS- Sl :::; Mmax. Note Umax and Mmax could be loose estimations. We will

show the impacts of their accuracy in evaluation. We also try to relax this assumption and discuss

a more general setting without prior knowledge about the difference between the two overlapped

sets.

4.4 Methodology

Clearly, to achieve our objective, we need accomplish the following two tasks with a probability

of at least a

1. to collect 2 U - Ru unknown tags from S- S;

2. to detect 2 M- RM missing tags from S- S.

The rest of the section describes two algorithms, one for each task of the problem.

4.4.1 Collect Unknown Tags

The hurdle to efficiently collecting the unknown tags is that the tags in S n S, which have already

been read previously, will interfere and make the responses from the unknown tags buried in

overwhelming "noises". Once we can suppress the known tags from responding while keeping

the unknown tags active, applying the typical slotted ALOHA protocol would efficiently collect

the unknown tags with no interference. Therefore, we propose a two-phase algorithm consisting of

the selecting phase and the collecting phase. In the selecting phase, we select only unknown tags

and keep them active. Note that the selected unknown tags could be a subset of S- S. Meanwhile,

we suppress and inactivate other tags including all the known tags in S n S and some unknown

tags. In the collecting phase, we simply use the typical slotted ALOHA to scan all active tags.

138

The selecting phase is the key step in our algorithm and we still use the slotted ALOHA to

select unknown tags. As we mentioned, in the slotted ALOHA, each tag randomly picks a slot in

a frame based on the hashed value of its ID with a random seed sent by the reader. Since we know

the set S, the random seed r, and the hash function, it is straightforward to determine whether a

particular slot would be occupied by a known tag. When checking the slots one by one, we signal

the tags replying in those slots to be silent and keep the tags replying in other slots active. It is true

that some slots may possibly be occupied by both known and unknown tags and our method will

mistakenly miss the unknown tags. To counteract this, therefore, we run the two-phase algorithm

using different random seeds for a number of rounds so that all unknown tags may be exposed.

Algorithm 6 (called the CU scheme) illustrates the protocol taking two parameters f and 8.

How to determine the parameters is discussed later in this subsection. I is the resulting inventory

which is expected to include sufficient unknown tags. The protocol first sets I = S and iteratively

update I in the successive rounds. Inside the while loop, lines 3-15 present the selecting phase

and line 16 is for the collecting phase with details omitted. In the selecting phase, the reader first

generates a random seed r and broadcasts f and r. Each tag takes f as the frame size and picks

the slot (from slot 0 to slot f- 1) to respond denoted by the hashed value of its ID and r (line 7).

A slot is called a pre-empty slot if no known tag responds in that slot. We use PE(I,J, r) to denote

the number of pre-empty slots after hashing all tag IDs in I with r onto f slots, that is,

PE(I,J,r) = I{JIJ E [O,J),Vx E I,hJ(x,r) "I J}l.

Being aware of the known tags, the reader can emulate the hashing for each known tag ID in S

and determine if a particular slot is pre-empty. The reader then sends commands to make the tags

replying in the pre-empty slots stay active in the following stage while other tags are kept silent.

139

In the collecting phase, the reader simply collects the IDs of all active tags via typical slotted

ALOHA protocol and adds them to /. In Algorithm 6, since an unknown tag randomly picks a

slot to respond in each round, it has PE(j1,r) probability to be collected. We use a variable p to

keep track of the probability that an unknown tag will not be identified after the current round

(line 5). Obviously, p becomes smaller as the reader applies more rounds of queries. The process

terminates when p < 8. Fig. 4.3 illustrates an example.

S = I A, B, C, D, E) , S = I D, E, F, G, H)

Round 1: I= I A, B, C, D, E)

Selecting Phase 0 G DGJ 0

Collecting Phase D 0 D

Round 2 : I= I A, B, C, D, E, F)

Selecting Phase 0 0 DLJG

Collecting Phase EJ D D

000
Figure 4.3: Example of Collecting Unknown Tags (/ = 5): In this figure, each rectangle represents a slot
and the dark rectangle indicates the pre-empty slot. In round 1, we first check 2 pre-empty slots and F
will be the only active tag at the end of the selecting phase. We then apply the typical slotted ALOHA
protocol (the frame size is set to 3) and successfully collect the unknown tag F. In round 2, we also check
2 pre-empty slots in the selecting phase. Note we do not select the third slot because F is already a known
tag. Then, we apply the slotted ALOHA and collect IDs from G and H.

The protocol is heavily dependent on the parameters f and 8. The following theorems show

how to choose these two parameters to achieve time efficiency and satisfy the accuracy require-

ment. Note the total scanning time includes the time spent in the selecting phase and the collecting

phase. However, the settings off and 8 only affect the selecting phase, while the scanning time

in the collecting phase depends on the number of newly collected RFID tags, which is related to

the requirement parameter Ru. Therefore, in the following analysis, our objective is to minimize

Algorithm 6 CU (!, 8): Collect Unknown Tags

1: It-S, p t- 1

2: while p 2: 8 do

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

Reader powers on and generates a random seed r

Reader calculates PE(I,J, r)

(1 PE(I,J,r)) pt--p· - f

Reader broadcasts f and r to tags

Each tag with ID x responds in slot h t(x, r)

for sloti = 0 to f - 1 do

Reader sets opcode = 0 at the end of slot i- 1

if slot i is a pre-empty slot then

Reader sends ACKF

else

Reader sends ACKS

end if

end for

140

16: Reader collects active tags by the typical slotted ALOHA (opcode = 2) and adds their IDs

to I

17: Reader powers off

18: end while

19: Return I

141

the scanning time in the selecting phase. Theorem 4.1 gives the condition that guarantees the ac-

curacy requirement. Theorem 4.2 provides a bound for the expected number of the iterations in

Algorithm 6 and Theorem 4.3 bounds the scanning time in the selecting phase by a function of the

frame size. The results are utilized to find the optimal parameter f in Theorem 4.4 ..

Theorem 4.1 After running Algorithm 6, we can guarantee Pr(U' ~ Ru) >a if we set

8 < Ru+a
- 2a+Umox

Ja· (a· Umox+2Umax·Ru -2Rb)

.;u;;;;;; · (2a + U mox)

where a= (4>- 1(a))2 and 4> is the standard normal CDF.

Proof: Recall that U and U' respectively represent the number of unknown tags before and after

running Algorithm 6. For each unknown tag before running Algorithm 6, the event that it will not

be collected by Algorithm 6 is independent and the probability of the event is p < 8 according

to the algorithm. Therefore, U' follows a binomial distribution U' "'B(U,p). Consider another

binomially distributed random variable z"' B(Umox, 8). Since p < 8 and U ~ Umox, Pr(U' < Ru) >

Pr(z < Ru). When Umox is large, z is approximated by a normal distribution1, z "'N(J.L, a 2), where

J1 = 8 · Umox, a 2 = 8 · (1- 8) · Umox. Therefore, based on the property of normal distribution,

Ru-J.L
Pr(z < Ru) = 4>(J2).

20'

After plugging 8 in the hypothesis, we have Pr(z < Ru) 2': a. Thus, Pr(U' < Ru) >a. •

ISI+Umax
Theorem 4.2 Algorithm 6 is expected to terminate after k = In 8 /In(1 - e- t) rounds.

Proof: In each round (loop variable in line 2) in Algorithm 6, the set of currently known tags is

I, and each slot (loop variable in line 8) in the frame is a pre-empty slot if no tags in I selects the

1The purpose of this approximation is to quickly calculate the CDF.

file:///fUmax

142

slot, which has a probability of (1- J)111. Thus, the expected value of PE(I,J, r) is f · (1- J)111.

Since III ~ lSI + Umax in any round, the expected value of PE(jf,r) is

After k rounds, the value of p in Algorithm 6 will be

Thus, the algorithm will terminate after k rounds. •
Theorem 4.3 The expected scanning time of the selecting phase in Algorithm 6 is bounded by

STc = k · f · tnr, where k is the number of rounds in Algorithm 6.

Proof: Apparently, Algorithm 6 spends totally k · f slots in the selecting phase. In each slot, the

reader sets the opcode to 0 in the 'slot end' command. Thus, the timing of each slot in the selecting

phase is tnr· •
Theorem 4.4 The optimal value of the frame size is f = 1.443 · (lSI + Umax).

Proof: With Theorem 4.2 and Theorem 4.3, the expected scanning time of the selecting phase is

bounded by

ln8
STc= ~ ·f·tnr·

ln(1-e- t)

By solving affl = 0, we obtain the optimal value of the frame size, f = 1.443 ·(lSI+ Umax)· •

143

4.4.2 Detect Missing Tags

As we mentioned earlier, temporal continuous scanning may need remove the missing tags from

the inventory. In this subsection, we propose a scheme to detect missing tags and analyze the

parameter setting.

To detect the missing tags, besides collecting all the present tags, another simple alternative is

to check the existence of each tag in S by broadcasting its ID as a 'select' mask and listen to the

response. If there is no response, the tag can be removed from the inventory. However, it is also

inefficient to transmit all the IDs in S one by one, because the bit length of the data could be very

long, e.g., a 96-bit ID in Gen2 standard [45] plus a 16-bit CRC checksum. Our solution is still

based on tag replying in a certain slot according to the hashed value of the tag ID. Provided that

a slot that should be occupied by a known tag becomes empty, we know the tag corresponding to

that slot is missing. Similar to the previous problem of collecting unknown tags, some missing

tags may be mapped to a slot with other present tags, and thus will not be detected. In this scheme,

we also repeat the process for multiple rounds to achieve the accuracy requirement.

Our solution is illustrated in Algorithm 7 (called the DM scheme). I represents the returned

inventory which is supposed to have removed the missing tags after Algorithm 7. I' represents

the set of known tags we have not checked yet. Initially, both I and I' are set to S. In each round

inside the while loop, the reader first generates a random seed r and broadcasts f and r to tags.

Each tag randomly picks a slot to respond according to the hash value of its ID. A slot is called an

pre-single slot if only one tag in I' responds in the slot. With the knowledge of the known tags, the

reader can calculate the indexes of the pre-single slots. The reader then checks each pre-single slot

to determine if the known tag mapping to the slot is still present (x in line 9). If the pre-single slot

is empty, the corresponding known tag ID x will be removed from I. If there is a reply, the reader

144

Algorithm 7 DM(f): Detect Missing Tags

1: I+-- S, I' +-- s

2: Reader powers on

3: while /I'/ > 0 do

4: Reader ge·nerates a random number r

5: Reader broadcasts f and r to tags

6: Each tag with ID x responds at slot ht(x, r)

7: for slot i = 0 to f- 1 do

8: if slot i is a pre-single slot then

9: Reader sets opcode = 1 at the end of slot i- 1

10: Find x E I such that ht(x, r) = i

11: I'+-- I'- {x}

12: if no tags respond then

13: 1+--1-{x}

14: else

15: Reader sends ACKS

16: end if

17: else

18: Reader sets opcode = 0 at the end of slot i -1

19: Reader sends ACKF

20: end if

21: end for

22: end while

23: Return/

145

will make no change on the inventory I and send ACKS to keep the responding tags silent in the

following steps. Let PS(I',J,r) be the number of pre-single slots yielded by I',J, and r. Thus,

in each round, we check the existence of PS(I' ,J, r) known tags. The whole algorithm terminates

when II' I = 0, i.e., we have checked all the known tags. Fig. 4.4 shows an example of checking

pre-single slots.

In Algorithm 7, only one parameter j, the frame size, needs to be determined to optimize the

performance. To find the optimal value for f, we make use of the following results. Theorem 4.5

presents the condition that guarantees the accuracy requirement for the number of the undetected

missing tags (M'). The scanning time in this algorithm, however, cannot be expressed by f in a

closed form. Therefore, we present in Lemma 4.1 a program to estimate the number of iterations

executed by Algorithm 7, and then the number of iterations can be used to express the scanning

time in Theorem 4.6. By enumerating all possible values off, we can find a suitable f to optimize

the overall performance.

Theorem 4.5 After running Algorithm 7, we can guarantee Pr(M' :s; RM) > a, iff > -In0~a),

where

(} = RM+a
2a+Mmax

Ja· (a·Mmax+2Mmax·RM-2R~)
v'Mmax · (2a + Mmax)

a= (<1>- 1 (a))2 and <I> is the standard normal CDF.

Proof: In Algorithm 7, a missing tag is not detected only if some unknown tags respond in the

pre-single slot it belongs to. Let q be the probability for this scenario,

S = { A, B, C, D, E } , S = { D, E, F, G, H }

Round 1: I= { A, B, C, D, E}, I' = { A, B, C, D, E}
active tags= { D, E, F, G, H}

CQGJ~~GJ
Round 2: I= { A, B, C, D, E}, I' = { A, B, D, E }

active tags = { D, E, F, H }

GJGJCQEJ~
Round 3: I= { B, C, D, E}, I' = { B}

active tags = { H }

~CQ~GJCQ
return I= { C, D, E}

146

Figure 4.4: Example of Detecting Missing Tags (f = 5): In this figure, each rectangle represents a slot
and the dark rectangle indicates the pre-single slot. I is the current inventory and I' represents the set of
unchecked known tags. We also show the set of active tags in this figure. In round 1, there is only one
pre-single slot. The reader supposes that the missing tag C is still present by mistake because the unknown
tag G responds at the pre-single slot. In round 2, the reader checks 3 pre-single slots. ·We then remove A
from I and confirm that D and E are still present. In the last round, the reader detects the missing tag B.

Recall M and M' are the number of missing tags before and after running Algorithm 7 respectively.

Since detecting each missing tag is independent, M' follows a binomial distribution M' f'"o.J B(M, q).

Consider another binomially distributed random variable z f'"o.J B(Mmax, e). Since q < e and M ~

Mmax, Pr(M' < RM) > Pr(z < RM)· When Mmax is large, z is approximated by a normal distribu-

tion, z f'"o.J N(Jl, a-2), where Jl = e ·M, a-2 = e · (1- e) ·Mmax. Therefore, based on the property of

normal distribution,

Thus, Pr(M' < RM) >a. •
Lemma 4.1 Given f, we can estirrulte the number of iterations executed in Algorithm 7.

147

Proof: Let ni be the number of unchecked known tags after round i. In round i, for each slot, the

probability that only one known tag in I selects the slot is

Thus, the expected value of ni is

ni-l- PS(I',J, r)
ni-l -ni-l

ni-l -f. f . e t

We iteratively calculate ni until ni < 1, and k is estimated as min{ilni < 1 }. •
Theorem 4.6 Assume Algorithm 7 terminates after k round, the scanning time of Algorithm 7 is

bounded by

STd = ISI·tsr+ (k· f -lSI) ·tnr·

'
Proof: Given k and f, the expected total number of slots is k ·f. Since every known tag is checked

in a pre-single slot, there are lSI pre-single slots and the rest k · f -lSI slots are no reply slots (lines

18-19 in Algorithm 7) each with duration tnr· For each pre-single slot, there might be a response

(with duration tsr) or no response (with duration tem < tsr). Therefore, the expected total scanning

time is bounded by STd. •
Finally, based on the analysis above, we can enumerate all possible values off (f is a bounded

value in practice), and find the optimal value with the minimum scanning time STd.

148

4.4.3 Extension

Our previous analysis is based on two parameters Umax and Mmax. In some applications, however,

it may not be easy to estimate these two bounds or the estimations could be too loose to be mean

ingful. In this section, we present extensions to our schemes without the assumption of knowing

Umax and Mmax. Additionally, we propose an improved scheme for detecting missing tags based

on pre-computation.

4.4.3.1 CU extension with estimating Umax

As we described earlier, our CU scheme is an iterative process and we collect some unknown tags

in each round. In this extension, we utilize these information of the collected unknown tags to

estimate Umax. Thus, our basic idea is to first set a rough estimation for Umax. and then iteratively

revise it as our scheme proceeds. We expect the estimation of Umax converges towards the tighter

bound as more iterations are executed.

The details of this extension is presented in Algorith 8. Initially, we set Umax to lSI, the total

number of present tags, assuming all the tags are unknown tags. This number lSI can be obtained

by the previous work [83] with a small overhead. We define another variable t to count how many

unknown tags have been collected since the algorithm starts.

In line 3, we set the frame size f as we discussed in Theorem 4 and keep updating p as in

Algorithm 6. Recall that p is the probability for an unknown tag not to be collected after the

current round. The selecting phase and collecting phase are the same as in Algorithm 6. We use

variable c to denote the number of newly collected unknown tags and correspondingly update t in

line 6. Lines 7-12 are the key part for this extension, which derives a new value for Umax based on

the observations.

149

Algorithm 8 Collect Unknown Tags (Extension)

1: Umox ~ ISI,t ~ O,p ~ 1

2: while Umox- t > Ru do

3: f ~ 1.443 ·(lSI+ Umax)

4: Use f in the selecting phase and execute lines 6-16 in Algorithm 1

5: Assume we collect c unknown tags in this round

6: p ~ p· (1- PE(jf,r)), t ~ t+c, tolp ~ 0

7 sum~ L~! 1 (:) p'-'(1- p)', x ~I
8: while tolp < a do

9• tolp ~ tolp+ (:) p'-'(1- p)' /sum

10: x~x+ 1

11: end while

13: end while

150

The following Theorem 4. 7 and Theorem 4.8 guarantee the accuracy requirement after running

Algorithm 8.

Theorem 4.7 At any iteration, Pr(U::::; Umnx) >a.

Proof: At the beginning of the algorithm, there are U unknown tags. In each iteration, variable

p records the probability that a certain unknown tag will have not been collected after the current

iteration. Thus, the probability of collecting t unknown tags is

(~) Pu-t (1 _ P)t.

In line 7, variable sum is the summary of the probability of collecting t unknown tags considering

all possible values of U. We use sum as a normalizer in the following analysis. Basically, based

on the observation oft,

Pr(U=x)= (~)~-t(l-p)'jsum.

In lines 8-12, we set the new value for Umnx and guarantee that it satisfies the condition

L Pr(U = x) > a,
x<Umax

which is equivalent to Pr(U < Umnx) > a. •
Theorem 4.8 After running Algorithm 8, we can guarantee Pr(U' ::; Ru) > a.

Proof: Recall U' is defined as the number of remaining unknown tags, thus U' = U - t. According

to Theorem 4.7, Pr(U::::; Umnx) > a, then we have Pr(U' ::::; Umnx- t) > a. Since Algorithm 8

terminates when Umnx- t::::; Ru, Pr(U'::::; Ru) 2: Pr(U'::::; Umnx- t) >a. •

151

4.4.3.2 DM extension with estimating Mmax

The similar idea can be also applied to DM scheme while Mm£/x is not known. Initially, we set

Mmax to lSI, assuming all the previously collected tags are missing. We define another variable t

to count the number of missing tags that have been detected since the algorithm starts. According

to the observation oft, we analyze if the current value of Mm£/x is too loose. Basically, given a

value of Mmax, we derive the probability that such a value can yield the observation oft. If the

probability is less than a small constant e (e.g., 0.01), the value of Mmax is considered too loose to

be possible. The details are presented in Algorithm 9.

Algorithm 9 Detect Missing Tags (Extension)

1: If- S, I' f- S, Mmax t-ISI, P f- 1

2: while II' I > 0 do

3: Derive the optimal frame size fusing Mmax

4: Execute lines 2-21 in Algorithm 7

5: p f- p · (1- PS(~('r)), t f- lSI-III

6 M_ ~ max{xl (:) p'-'(1- p)' >E)

7: end while

8: Return/

4.4.4 Improved DM Scheme

Our basic DM scheme relies on the pre-single slots to detect the missing tags. The number of pre-

single slots (PS) per round in DM is critical to the performance. Previously, we blindly choose

the random numbers/seeds for the hash function and give the probabilistic performance analysis.

It is easy to observe that some random numbers may result in more pre-single slots, which in tum

152

may improve the performance. This subsection discusses an improved DM scheme that inserts,

between two consecutive scanning, a pre-computation step that searches for good random numbers

for the next scanning.

Assume that RFID tags use 16-bit random numbers. Given a frame size f, the general opti

mization problem is to find the best set of random numbers from all possible random numbers, i.e.,

[0, 216), with the minimum scanning time while satisfying the accuracy constraints. This problem

can be formulated as an integer programming and reducible to 0/1 knapsack problem. Due to

the page limit, we omit the formal description here. Basically, the optimization is NP-hard and

even approximation algorithms are not helpful because of the large size of the possible random

numbers. Therefore, we present a heuristic solution based on greedy algorithm.

Our metric of the random number r is PS(S,J, r). We prefer to use the random number with the

largest value of PS because DM can check more known tags in one round. In this pre-computation,

however, PS(S,J, r) is dependent on the random numbers applied before r. Thus, we iteratively

apply greedy algorithm to find a set of random numbers. The details are proposed in Algorithm 10.

We consider the returned set BSR has a limited size maxsize. U represents the set of unchecked

tags and Nr denotes the number of selected random numbers. We examine every possible random

number and pick the one with the largest PS. flag[i] records the number of tags responding at slot

i, and id[i] tracks the ID of the last tag replying at slot i. At the end of each iteration, we remove

from U the tag IDs, which can be checked by the selected random number (lines 18-20), before

continuing to select the next random number.

4.5 Performance Evaluation

Our evaluation is based on simulation. Here are some general parameter settings.

Algorithm 10 Finding the best set of random numbers for the improved DM

1: Calculate the frame size f and initialize BSR[maxsize]

2: u +--- S, N, +--- 0

3: while U i= <I> and N, < maxsize do

4: for r = 0 to 216 - 1 do

5: reset array flag[f] and id[f]

6: for each Xi E U do

7: idx = hash(xd lr) mod f

8: flag[idx] +--- flag[idx] + 1, id[idx] +---Xi

9: end for

10: ps +--- 0

11: for i = 0 to f- 1 do

12: if flag[i] = 1 then ps +--- ps+ 1

13: end for

14: if ps >max then

15: max+--- ps, r' +--- r, flag' +---flag, id' +--- id

16: end if

17: end for

18: fori= 0 to f- 1 do

19: if flag'[i] = 1 then U +--- U- id'[i]

20: end for

21: BSR[N,] +--- r', N, +--- N, + 1

22: end while

23: Return BSR

153

154

Slot Timings: For slot timings, we keep the following ratios based on hardware and protocol

specifications from major RFID manufactures,

tnr : tern : tsr : tw = 1 : 1.5 : 3 : 30.

We set the unit time above to 0.25ms according to I-CODE description [103]. This unit time may

vary for different hardware, but usually appears in the same scale.

Optimal Frame Size for Collecting IDs: As mentioned in Section 4.2.4, we need determine

the optimal frame size when applying the typical slotted ALOHA protocol. According to the slot

timing above and the analysis in Section 4.2.4, the optimal frame size for collecting n active tags

is f = 3.48n. In the collecting phase of our CU scheme, n is estimated as the expected number of

the selected unknown tags n = PJ · Uma.x.

Accuracy Confidence: The parameter a in our problem formulation is set to 0.99 in all our

simulation. It indicates that our schemes must guarantee the accuracy specified by Ru and RM

with more than 0.99 probability.

Other Solutions for Comparison: We consider the following three solutions for comparison.

• Collect All (CA): In this solution, the reader collects all RFID tags via the typical slotted

ALOHA protocol, ignoring the knowledge of 1. The initial frame size is set to lSI. The

scanning time of this solution is proportional to the number of tags (lSI). We use CA to

denote this solution.

• Suppress Known (SK): In this solution, the reader first broadcasts the known tag IDs one

by one. The tag whose ID matches the broadcast ID will be suppressed to keep silent. The

reader then uses the ALOHA protocol to collect the remaining active tags, which are all

unknown tags. We use SK to denote this solution.

155

• Adaptive Query Splitting (AQS): This solution is proposed in [101] based on tree traversal

scheme. The basic idea is to record the results when traversing the ID tree in the previous

scanning. For the current scanning, instead of traversing the whole tree, AQS only checks

those nodes where no collision has occurred in the previous scanning. We refer readers to

[101] for details.

In the rest of this section, we present the scanning time of our schemes and compare with other

solutions with different parameter settings. Spatial and temporal continuous scanning are sepa

rately evaluated. We conduct 100 independent trials for each parameter setting in the simulation,

and illustrate the average values. The scanning time deviations of our schemes (< 0.2 second)

and other solutions (< 0.5 second) are very small and omitted in the figures. In addition, in all

our tested cases, the resulting inventories obtained by our algorithms always satisfy the accuracy

requirement defined by Ru, RM and a. In the rest of this section, the results about the accuracy

are not explicitly presented. Instead, we focus on the performance of the scanning time.

4.5.1 Spatial Continuous Scanning

In this subsection, we present the performance results for spatial continuous scanning. First, we

consider the scenario with two overlapping sets of tags. Then, we simulate a more complete

case involving a series of continuous scanning processes. Finally, we examine the CU extension

scheme proposed in Section 4.4.3.

4.5.1.1 Two overlapping sets

In this simulation, we consider two overlapped sets of tags S and S. Recall that we have collected

the tags in S and try to collect the unknown tags in S. The default parameter setting is as follows.

156

There are 5000 tags in both sets, i.e., JSJ = JSJ = 5000. The number of unknown tags U is set to

U = 0.1 ·JSJ, which means 10% of current tags are unknown tags. For a certain value of U, the

accuracy requirement Ru is set to Ru = 0.1 · U, i.e., keeping 10% unknown tags uncollected is

tolerated. In addition, Umox (the upper bound of U) is set to 1.2 · U, i.e., 20% more than the actual

value of U. In the next, we vary one of these parameters while the other parameters are the same

as in the default setting, and present the corresponding performance results.

Varying U: We first examine the performance with different number of unknown tags, which

indicates the difference between the current set of RFID tags and that in the previous scanning.

Fig. 4.5(a) compares our CU scheme with other three solutions. horizontal axis represents the

. fu ratio o]Sf·

In Fig. 4.5(a), the CA scheme keeps the same performance for all the cases, since the total

number of tags (JSJ) does not change. The other three schemes all yield a linearly increasing per-

formance when U increases. The performance of our CU scheme is superior to all other solutions.

For example, in the default setting with fsr = 0.1, CU needs less than 13 seconds to finish while

SK and CA need 46 and 53 seconds respectively. In the worst tested case with fsr = 0.5, CU still

saves more than 40% scanning time compared with the CA scheme.

Fig. 4.5(b) further illustrates the scanning time of the CU scheme spent in the selecting phase

and the collecting phase. The collecting phase consumes more time when U increases because it

need collect more unknown tags. On the other hand, the scanning time of the selecting phase does

not change too much ranging from 7 to 9 seconds. It is interesting to observe that the scanning

time of the selecting phase is not monotonously increasing with U. Sometimes, when U increases,

our scheme can select more unknown tags in a shorter time.

Varying JSJ and JSJ: In our simulation, we always set JSJ = JSJ. Both JSJ and JSJ indicate

80.---~--~----~----~--~-.

70

60

E so (.}"'. ..---..... -
t= .. ---_......---
0> 40 c: ·c:
c: 30
~

20

10

-CA
····•····SK
-e-AQS
··f.J··CU

oL---~--~--~~--~==~~
0.1 0.2 0.3 0.4 0.5

Percentage of Unknown Tags

(a) Overall Scanning Time

157

0.1 0.2 0.3 0.4 0.5
Percentage of Unknown Tags

(b) Detailed Scanning Time

Figure 4.5: Varying U: (a) The overall scanning time (b) The scanning time spent on the selecting phase
and the collecting phase. In our settings, lSI = 5000, U /lSI = { 5%, 10%, · · · , 50%}

the scale of the RFID tags in the simulated scenarios. In this part, we present and compare the

performance with varying number of RFID tags. We test four cases, where the number of RFID

tags ranges from 2500 to 10000 with 2500 as the interval. Other parameters are derived by keeping

the same ratio as in the default setting. We compare the scanning time in Fig. 4.6(a).

The performance of all schemes is proportional to the number of RFID tags. In all four cases,

the scanning time of the CU scheme is less than 24% of that consumed by the CA scheme. The

simulation results indicate that the CU scheme can significantly improve the performance in terms

of scanning time, especially when dealing with a large amount of RFID tags. For example, when

lSI= 10000, theCA scheme needs 104 seconds to finish. By contrast, the scanning time of CU is

about 24 seconds.

Varying Umnx: Our problem formulation assumes that Umnx is the estimated bound for the

actual number of the unknown tags (U). We also test the impact of Umnx on the performance. In

the default setting, the actual number of unknown tags is 500. We vary Umax in our tests from

550 (10% more than the actual number) to 1000 (100% more than the actual number). The results

150

:§: 100
Q)

E
i=
Cl c: ·c:
c:
~ 50

c::::::JCA
E:]SK
CJAOS
CJcu

lnnnn 0
2500

I"
d~

I~ n In 11
5000 7500

Number of Tags

(a) Varying !SI(!SI)

f
~
!

;

~';
I''

In

I
10000 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Estimation of U max (U max I U)

(b) Varying estimations of Umax

158

Figure 4.6: The scanning time of spatial continuous scanning with different varying parameters. (a) The
performance of theCA scheme is also presented as a comparison. JSJ = JSJ = {2500,5000, 7500, 10000}.
(b) U = 500 and the ratio of Umax/ M is set to 1.1, 1.2, ... ,2.

are illustrated in Fig. 4.6(b), where the horizontal axis is the value of u'ba.x ranging from 1.1 to 2.

We observe that a more accurate estimation slightly improves the performance, essentially in the

selecting phase. The difference between the best case and worst case in Fig. 4.6(b) is less than 4

second. Therefore, our CU scheme can perform well even with a rough estimation of Umax.

4.5.1.2 A series of scanning processes

In the next, we simulate the scenario that a series of continuous scanning processes are needed to

cover a large warehouse. We consider a simple floor plan with a straight aisle and stocking shelves

beside it. A person carrying an RFID reader will move along the aisle and stop at certain locations

to turn on the reader and scan the tags. Fig. 4.7 illustrates the setting in our simulation. Assume

the reader will stop at 10 locations, {L1,L2, ... ,LlO}. The reading range of a reader is considered

as a circle with radius R. The interval distance between any two consecutive scanning locations is

set to ~. For simplicity, we assume that the density of the products is a constant in the whole area,

i.e., at any location, the number of the tags in the reading range is the same. With this setting, at

159

each location, there are about 30% unknown tags in the reading range. The total scanning time

in the whole process is compared in Table 4.2. Compared with the CA scheme, the CU scheme

dramatically reduces the scanning time by almost 50% .

.... --
Figure 4.7: R is the reading range of the RFID reader, which moves towards a straight line and stop at
10 locations, {Ll,L2, · · · ,LlO}, to launch the scanning process. The interval distance between any two
consecutive locations is R/2.

CA SK AQS cu

528s 562s 628s 265s

Table 4.2: Total scanning time for a series of scanning processes

4.5.1.3 CU Extension

Finally, we evaluate the CU extension scheme, which only affects the selecting phase in the CU

scheme. We present the performance in Fig. 4.8. Compared to the default CU scheme, the CU

extension only incurs a small overhead in the selecting phase. Its performance is very close to the

CU scheme when U is small. Even in the worst case in Fig. 4.8, the extra time spent by the CU

extension is less than 3 seconds.

4.5.2 Temporal Continuous Scanning

We assume that temporal continuous scanning need not only collect the unknown tags, but also

detect the missing tags. Thus, the implementation combines the CU and DM schemes. In our

121r2==~~==~~--~~~--~~~

~ ~-cu I
5l

11
CJ CU Extension I

ra
.s:::
a..
g> 10

~
(jj
fJ) 9
0
G)

E
F 8
Cl c
'§ 7
ra
0
fJ)

6UUULML~LL~~~-MULBL~LL~~~

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Percentage of Unknown Tags

160

Figure 4.8: Selecting Phase in the CU Extension: This figure illustrate the scanning time spent on the
selecting phase in the CU extension scheme with different number of unknown tags (U). The perfor
mance of the selecting phase in the CU scheme is also displayed as a comparison. (lSI = 5000, U /lSI =
{5%, 10%, ... ,50%})

simulation, we first apply the CU scheme and then the DM scheme in each scanning process. In

the next, we first present the simulation results when considering two overlapping sets. Then, we

discuss the performance of the DM extension scheme and the improved DM scheme. We do not

consider a series of scanning in an explicit section because its performance can be easily derived

from the simple case with two overlapping sets.

4.5.2.1 Two overlapping sets

In the simulation, the default parameter setting is the same as that in spatial continuous scanning

except that we need consider parameters for the missing tags. We set /S/ = /S/ = 5000. Thus, the

number of missing tags is the same as the unknown tags. We set M = U = 0.1 · /S/ by default.

The requirement for missing tags RM is also set in the same way as Ru, RM = Ru = 0.1 ·M. In

addition, the estimation of Mmnx is to Mmnx = 1.2 · M. Similar to spatial continuous scanning, in

the next, we vary one of these parameters and examine the performance.

161

Varying M: We first test the impact of the number of missing tags M. Fig. 4.9(a) shows

the simulation results. The horizontal axis represents the ratio of fir ranging from 0.05 to 0.5

with an interval of 0.05. We separately display the scanning time consumed by the CU and DM

schemes. The summary of both parts is the total scanning time in temporal continuous scanning.

The performance of other three schemes is the same as that in Fig. 4.5(a). In Fig. 4.9(a), we only

compare our scheme with the CA scheme whose performance appears as a flat line.

According to Fig. 4.9(a), we observe that our scheme for temporal continuous scanning is also

very efficient. For example, in the default setting with fir = 0.1, our scheme consumes around 20

seconds, which is 37% of the time caused by the CA scheme. In addition, we find that the process

of detecting missing tags is much shorter than collecting unknown tags and that increasing M does

not incur too much time in the DM scheme. For example, the difference of DM's scanning time

between fir= 0.05 and fir= 0.5 is less than 3 seconds.

2500 5000 7500 10000
Number Of Tags

··==-------,
g14

" Q

~oM

<>····CU

012 o···

~
F
e' 10

L

_.-.r·"
_....,-·-·e.·

..a·""

AJ-•_ • ...0'~--·

6
, 1.2 1.4 1.e 1.a

Estimation ot Mmax (Mmax I M)

(a) Varying M(U): The flat line rep- (b) Varying jSj(jSI): The perfor- (c) Varying estimations of Mmax: In

resents the performance of the CA mance of the CA scheme is also pre- our settings, M = 500 and the ratio

scheme. (jSj = 5000,M = U, and sented as a comparison. (jSj = jSj = of Mmax/M is set to {1.1, 1.2, .. · ,2}.

M/jSj = {5%, 10%,··· ,50%}) {2500,5000,7500,10000})

Figure 4.9: The scanning time of temporal continuous scanning with different varying parameters.

Varying lSI and lSI: Similar to spatial continuous scanning, we consider 4 cases with 2500,

5000, 7500 and 10000 RFID tags respectively. We compare our scheme with theCA scheme in

162

Fig. 4.9(b). The performance of the other two schemes (SK and AQS) is the same as in Fig. 4.6(a).

In Fig. 4.9(b), we also separately illustrate the scanning time spent on the DM scheme. As we can

see from Fig. 4.9(b), the scanning time of the DM scheme is a small overhead compared with the

CU scheme and only slightly increases with the number of tags. Thus our scheme that combines

CU and DM together is still much more efficient than the CA scheme, especially in a large scale

system. When lSI = 10000, our scheme consumes less than 30% time required by the CA scheme.

Varying Mmox: Finally, we evaluate how the value of Mmox affects the performance. The

simulation results are presented in Fig. 4.9(c). The horizontal axis is the ratio of M;:r ranging

from 1.1 to 2 with an interval of 0.1. As a comparison, the performance of the CU scheme is

also displayed in the same figure. Similarly, we find that more accurate estimation of Mmox leads

to a better performance. Although the absolute difference of performance is not large, e.g., the

difference is less than 7 seconds between MX:r = 1.1 and M;:r = 2, the DM scheme is obviously

more sensitive to Mmox compared with the CU scheme.

4.5.2.2 DM Extension and Improved DM

The performance of the DM extension and improved DM for varying M is illustrated in Fig. 4.10.

We observe that the DM extension is slightly slower than the DM scheme with a difference less

than 1 second. On the other hand, the improved DM scheme saves the scanning time by at least

1.4 seconds. In the best case when ~ = 0.5, the improved DM scheme reduces the scanning time

by 41% compared with the DM scheme.

The improved DM scheme requires pre-computations which include numeric CRC16 oper

ations. We examine the feasibility by implementing the pre-computation on a HP iPAQ pocket

PC with a CPU running at 520MHz frequency. Our results show that each CRC16 takes 2.5ms

163

with 0.1ms derivation. With our default setting with lSI= 5000, the pre-computation requires at

most 130 seconds. With a reasonable scan frequency, it can definitely be completed between two

consecutive scans.

12~~~====~~--~----~----~

11 -1 ~ ~~ Extension I

10

~ 9
i=
Cl 8
c: ·c:
lii 7
0 en

6

5

0.1 0.2 0.3 0.4 0.5
Percentage of Missing Tags

Figure 4.10: Scanning Time of the DM Extension and Improved DM Schemes: This figure compares
DM extension schemes with the DM scheme for varying number of missing tags M. (lSI = 5000, M /lSI =
{0.05,0.1,··· ,0.5})

4.6 Summary

This chapter focuses on a fundamental and practical query of continuously collecting all tag IDs

via multiple scans. We have defined the problem in both spatial and temporal domains according to

different application scenarios. In this problem, the key challenge is to deal with the overlapping

RFID tags involved in multiple scans. Launching each scan from scratch is inefficient because

redundant information is repeatedly collected. We have proposed efficient solutions based on

randomized algorithm that utilizes the information obtained from previous scans to reduce the

scanning time of the posterior scans. Our simulation results have shown a great improvement on

the scanning time compared to the simple solution of collecting all IDs in each scan.

164

This work extends the scope of the previous research to a more practical environment. It shows

the challenges and difficulties to design efficient query protocols with such weak pervasive devices

as RFID tags. Meanwhile, it demonstrates that randomized algorithm is an effective tool for RFID

systems because of the random selection in the slotted ALOHA scheme. In the following two

chapters, we present our work on more complicated and challenging data mining queries in sensor

networks and RFID systems. Randomized algorithm will also be applied to solve data mining

query in RFID systems.

Chapter 5

Data Mining Query in Sensor

Networks: Detecting Outliers

In the previous two chapters, we have discussed two basic queries that have been studied in the

literature and our work has addressed the efficiency issues in these two queries with more prac

tical settings. From this chapter, we present our work on data mining queries which are more

complicated. However, the efficiency in data mining queries is valuable because the wireless in

frastructure is treated as a database and data mining queries can extract useful information, thus

can be widely used in applications. Therefore, efficient solutions for data mining queries are

necessary to complete efficient design for the wireless infrastructure.

In this chapter, we focus on a classic data mining query of outlier detection in sensor networks.

We consider two popular definitions of outliers in the database literature and develop efficient so

lutions to detect them. Different from research work in the database community, outlier detection

in sensor networks is more challenging because the target data set is sparsely distributed on each

sensor and gathering them at a central place is costly in terms of the energy consumption. In the

165

166

rest of this chapter, we present our efficient solutions based on histogram information.

5.1 Related Work

Outlier detection has been well studied in the database research community ([7, 8, 19, 26, 80,

81, 88, 107]) and there are several different definitions of outliers in the literature. Our work

considers two popular distance-based definitions proposed in [80] and [107], where outliers are

identified by examining data points' nearest neighbors. One major research goal of this problem

in the database community is to efficiently detect outliers in a large-scale database ([80, 81, 1 07]

and [19]). In sensor networks, however, data are generated by scattered nodes and transferred

via wireless channels. The proposed approaches in the previous work can not be directly applied

unless all data are gathered at one node, which is very costly in transmission. Another hot spot

for database researchers is high dimensional outlier detection ([7, 8, 88] and [6]). This issue is not

covered in our work, because sensor networks usually only generate low dimensional data, and

different attributes, such as temperature and sound, may not be correlated to define outliers, thus

can be considered separately as one-dimensional data.

Sensor networks are often treated as databases and SQL queries are common ways to collect

data ([94] and [49]). A lot of research work ([34, 59, 70, 92, 115-117]) has been proposed to

handle different types of queries efficiently. However, the distance-based outlier detection has

been seldom discussed in this area. As close work, T. Palpanas et al. [104] study a model-based

outlier detection in sensor networks. Normal behaviors are first characterized by predictive mod

els and outliers are detected as the deviations. In [25], J. Branch et al. propose an in-network

scheme for detecting outliers based on data exchanges among neighbors. However, their goal is

to reveal outliers to every sensor and the cost is very expensive for common parameter settings in

167

the database literature. In [120], S. Subramaniam et al. present an online outlier detection scheme

for sensor networks. Every sensor keeps a sliding window of the historic data and estimates the

data distribution to detect the outliers. This method, however, consumes a lot of memory space

and may not find all outliers.

Some queries of detecting outliers in our solution have a similar form as general range queries.

Previous work in [92] and [70] has provided typical models, in which users can easily specify a

range query and obtain the result in an efficient and reliable way. On the other hand, top-k query

([116] and [127]) and order statistical query ([115] and [59]) are similar to finding the rank

based outliers, which is a part of our work. However, none of these approaches is applicable to

our problem, because the range parameter and the order of data in our problem do not depend

on the data value, but the distance to neighboring data points. In addition, our problem requires

outliers to be exactly returned without approximation.

5.2 Problem Formulation

An outlier represents a data point that is very different from the others. It has been defined in

different ways in the database literature. In this work, we consider two popular definitions based

on distance, which is defined as the the absolute difference between two data points. For each data

point p, we can sort all the rest of the data points according to their distances to p in an ascending

order. Suppose the sorted list is PI, P2, · · · , Pk, · · ·. We have !PI -PI ~ !P2- PI ~ · · · ~ !Pk- PI ~

···.Let Dk(p) = !Pk- pj represent the distance between data point p and its k-th nearest neighbor

(KNN) (pk). We can define two types of outliers as follows:

Definition 3 A data point p is called an 0(d, k) outlier if Dk (p) 2:: d.

168

Definition 4 A data point pis called an O(n,k) outlier if there are no more than n- 1 other data

points q, such that Dk(q) > Dk(p).

We are particularly interested in outlier detection in a sensor network composed of N sen

sors. The sensor network monitors the environment or any object and periodically generates data.

Among all the data generated by the sensors, we would like to find all the outliers. We assume that

a routing tree rooted at the sink has been constructed by using some simple routing algorithm, in

which each sensor is linked to an up-stream and a down-stream node. An outlier detection algo

rithm will be built on this underlying communication tree. Depending on the choices of outliers,

we aim to design efficient algorithms to respond to a query for outliers with parameters d and k

for Definition 1 or n and k for Definition 2.

It is possible that the tree topology might be broken or updated due to the wireless link failures.

This work considers a common practice that, when building the tree, only stable links are selected

such that errors in transmission due to poor link quality can be reduced and the tree topology

can be robust for a long time. We also assume that the communication cost of sending a packet

between two nodes with a direct link is proportional to the packet size. For easy exposition, we

make an assumption that each data point is represented as an integer with precision to the last

digit. It is easy to transform any real data to this format, e.g., 12.34 will be converted to 1234 for

precision 0.01. Our algorithms focus on the data points and return all the outliers, although many

applications may require the algorithm to return the sensor ID or location of the outliers. An easy

solution is, after running our algorithm and obtaining all the outliers, to let the sink diffuse the

outlier data points to the sensor network so that the sensors holding the outlier data points will

reply with their IDs or locations.

169

5.3 Methodology

5.3.1 Histogram Query

In this section, we introduce the motivation of using histogram information to identify outliers.

We observe that both definitions are based on the value of Dk(p), the distance between p and its

KNN. In this section, we show that the histogram provides useful information to estimate Dk (p)

for each data point p, which helps identify outliers.

In this work, we use the equi-width histogram, because it is easy to aggregate equi-width

histograms in sensor networks. We assume that the value range for all data points is uniformly

divided into buckets with width w, and each bucket is assigned an ID, consecutively from 1 to the

number of buckets. We define bucket i by a value range [mini,maxi), thus w =maxi- mini and

mini = maxi-l· After collecting the histogram, the sink will know the total number of data points

in each bucket i, indicated by /;.. For any data point p in bucket i, we can estimate the bounds on

Dk (p) based on the histogram information. The following theorems aim to find a pair of values h

and ui for any bucket i, such that V p in bucket i, Dk (p) E (li, ui].

Theorem 5.1 If fi > k, then li = 0 and Ui = w-1 are the lower and upper bounds for Dk(p),

where p is any data point in bucket i.

Proof: We prove it by contradiction. Referring to Fig. 5.1, assume there exists a data point p

k
D(p)-

p-w+l p p+w-1
----------- ---- ·------·-----· ---------------

Figure 5.1: Bounds on Dk(p) in Theorem 5.1

in bucket i, such that Dk (p) > w - 1. Let Q = { xlx E (p - Dk (p), p + Dk (p))}. On one hand,

170

according to the definition of Dk(p), IQI :S k. On the other hand,

indicates that Q must include all data points in bucket i. Thus, JQI 2: fi > k is a contradiction to

IQI :s; k. •
Theorem 5.2 We define a function as

i+t

F(t,i) = L /j.
j=i-t

If fi :S k, we can find an integer s 2: 0, such that F (s, i) :S k and F (s + 1, i) > k. Then, li =

s· wand Ui = (s+2) · w-1 are the lower and upper bounds for Dk(p), where pis any data point

in bucket i.

Proof: According to the condition F(s, i) :S k, there are at most k data points from bucket i-s to

--- sw--- ---sw---
p

~ - - - - - _[- - -- - _[- - - - - _[- - - ._ _[- - - - - _[-- - - - _[- - - - - _L____j
L_ __________ <=k------------~

'------------ > k ------------------'

Figure 5.2: Bounds on Dk (p) in Theorem 5.2

bucket i + s inclusively. With the condition F (s + 1, i) > k, we can derive that the KNN of data

point p must be in either bucket i - s - 1 or bucket i + s + 1. Without loss og generality, assume

data point q is the KNN of p and q is in bucket i-s-1, i.e., Dk(p) = Jp-qJ = p-q. Thus, we

have

p- q > mini- ma:x:i-s-1 = s · w;

p- q < (maxi -1)- mini-s-1 = (s+ 2) · w-1.

171

Therefore, we can derive the bounds for Dk(p) as

Dk(p) E (s·w,(s+2) ·w-1].

•
As shown above, the histogram information helps us derive lower and upper bounds on Dk (p)

for any data point p. We will utilize these theorems in our outlier detection schemes.

5.3.2 Outlier Detection for 0(d, k)

In this section, we propose a histogram-based protocol for detecting outliers defined by Defini

tion 3. Our approach includes two stages. In the first stage, we divide the data value range into

uniform buckets and collect equi-width histogram information. The histogram provides us with

useful information to identify data points as outliers or non-outliers. However, the histogram in

formation may not be sufficient to identify every data point. We call those data points potential

outliers if they cannot be identified by the histogram. In the second stage, the sink gathers the

potential outliers from the sensor network and checks their distance to the KNN. Eventually, the

sink will identify all outliers.

In the rest of this section, we introduce a basic scheme which uses a single-round histogram

information collection and an enhanced scheme which refines the histogram through multiple

round histogram collections.

5.3.2.1 Basic Scheme

In this subsection, we present a basic scheme for 0(d, k) outlier detection with a single-round of

histogram collection.

172

Obtain Vmin and vmax: In the first step, the sink queries for the minimum and maximum

data values in the sensor network in order to calculate the value range. Let Vmin and Vmax be the

minimum and maximum values received by the sink. In this step, every sensor sends at most

log(vmin · vmax) bits of information.

Collect Histogram: In the second step, the sink collects the histogram from the sensor net

work. To obtain the histogram, every sensor and the sink have to agree on the same bucket par

tition, which can be specified by the bucket width wand the value range [vmin, Vmax + 1) 1. For an

easy exposition, we fix the bucket width w to d. We will explain why we set this width rather than

other values in the next step. In this step, the sink diffuses a query to the sensor network including

d, Vmin and Vmax, as well as the other parameter, k. Every non-leaf node sends log(k · d · Vmax · Vmin)

bits of information to forward the query to its children. Let 1 be the width of [vmin, Vmax + 1)

defined as 1 = Vmax - Vmin + 1. Sensors divide the value range [Vmin, Vmax + 1) into f £ l uniform

buckets with width d after they receive the histogram query, i.e., the ith bucket is defined by

[Vmin + (i - 1) · d, Vmin + i · d). Starting from the leaf nodes, each sensor aggregates the number of

data points in each bucket from all its descendants. Let gf be the number of data points generated

by sensor j in bucket i, and J/ be the histogram summary of bucket i sent by sensor j. For a leaf

node j, J/ = gf. For a non-leaf node j, assume it receives summaries from its children c1 , c2 , · · ·.

All these summaries are aggregated as well as its own summary,

Finally, the aggregated number of data points in each bucket is forwarded to j's parent. In this

step, we do not have to maintain the exact histogram as long as we can apply Theorems 5.1 and 5.2

I We use an inclusive lower bound and exclusive upper bound to define a value range.

173

later. Therefore, if J/ > k+ 1, we will reset it ask+ 1 in order to reduce communication costs. In

this way, every node transfers at most r ~ l ·log(k + 1) bits of data back and the sink finally obtains

the value of fi.

Collect Outliers and Potential Outliers: In the third step, the sink applies Theorem 5.1 and

Theorem 5.2 on every bucket i based on fi to assign li and ui. If Ui is set by Theorem 5.1, we will

get ui = w- 1 <d. On the other hand, if li is set by Theorem 5.2 and greater than 0, we must

have h = sw 2:: d. Based on the definition of O(d,k), the sink analyzes the received histogram

information as follows:

• Case 1: If Ui < d, all data points in bucket i are non-outliers and bucket i is called a non

outlier bucket;

• Case 2: If li 2:: d, all data points in bucket i are outliers and bucket i is called an outlier

bucket;

• Case 3: Otherwise, bucket i is called a potential outlier bucket and the data points in it are

called potential outliers.

As we mentioned earlier, w can be set to other values. If w > d, however, Theorem 5.1 will not

help us identify non-outlier buckets because there is no derivation from Ui = w-1 to Ui <d. On the

other hand, if w < d, more detailed information is obtained and more outlier buckets are identified.

However, smaller buckets incur more communication costs and some non-outlier buckets might

be overlooked. Therefore, without any prior knowledge of the data, d is a conservative value for

w to achieve good performance.

The non-outliers identified in Case 1 can be ignored, because they should not be returned in

the result. For Case 2, the sink can send another query to indicate the outlier buckets and collect

174

all the identified outliers from every sensor. To process the potential outliers in Case 3, we use a

simple method to first obtain all potential outliers and then, in the next step, find the distance to

their individual KNNs to determine whether each potential outlier is actually an outlier or not.

Considering all three cases above, the sink diffuses a query, which includes a vector of length

where qi is a one-bit flag satisfying

qi = { 0
1

if bucket i is a non-outlier bucket;
otherwise.

In other words, qi = 1 indicates that all data points in bucket i need to be returned, because they

are either outliers or potential outliers. After receiving this query, every sensor will scan its own

data set and return all data points in the marked buckets along the routing tree. The query diffusion

cost for each non-leaf sensor is f £ l bits. However, the cost of collecting potential data depends on

the histogram obtained in the previous steps. Suppose N0 is the number of the identified outliers

and Npo is the number of the potential outliers. Thus, the number of data points needed in this step

is N0 + Npo· We assume the communication cost is proportional to the data size and the distance

between the sender and receiver. Therefore, the cost of collecting data in this step is estimated as

(N0 + Npo) · log Vma.x · avgDist,

where avgDist is the average hop distance between the sink and sensors.

Diffuse Potential Outliers and Count the Number of Neighbors within d: In the last step,

the sink combs through the collected data points in the potential outlier buckets. Some data points

175

may be immediately identified as outliers or non-outliers.For example, data points in a potential

outlier bucket will be identified if the data points in the two neighboring buckets are also collected.

Unfortunately, some data points remained can not be identified as either outliers or non-outliers.

The sink sends those remaining potential outliers to the sensor network in order to find the actual

outliers among them. The query is formed as {PI , P2, ... , } , which includes all the remaining

potential outliers. Every sensor will forward the query to its children until the query reaches the

leaf nodes. To answer such a range query, starting from the leaf nodes, every sensor sends a vector

of summaries, one for each data point, to its parent, {!{, f~, ... , } , where f{ is the number of the

data points within [pi -d,pi +d], i.e., the number of p/s neighbors within distance d. A non-leaf

sensor will sum up the summaries from its children as well as the summary of its own data set and

forward the aggregated summaries to its parent. Similar to the second step, iff{> k+ 1, we will

reset it to k + 1.

This step can be optimized by filtering out some unnecessary diffusion at each node based on

the histogram obtained previously. For example, consider a potential outlier p, which belongs to

bucket i = f p-v,;t+ 1l If a sensor j finds tf_ 1 + J/+ 1 = 0, according to the previous histogram,

there is no need to diffuse Pi to its children, because all possible neighbors of Pi in the subtree

rooted at this sensor are in bucket j, so we can immediately set the summary for p to J/.

Eventually, the sink receives a value for each potential outlier, which represents the number

of data points within distanced of Pi· The sink may simply scan the summary list and determine

whether the ith potential outlier is actually an outlier by determining if f{ :::; k.

In this final step, the sink diffuses all the potential outliers collected to every sensor. The

diffusion cost is at most Nnl · Npo ·log Vmax, where Nnl is the number of non-leaf nodes. The cost of

transferring the return summaries is bounded by N · N po · log (k + 1). To summarize, the total cost

176

of the basic scheme, denoted by Cbasic• is estimated as

I
N ·log(Vmin · Vma.x) + Nnt ·log(k · d · Vmin · Vma.x) + N · f d l ·log(k + 1)

I
+Nnt · f d l +(No+ Npo) ·logvma.x · avgDist

+Nnt·Npo ·logvma.x+N ·Npo ·log(k+ 1). (5.1)

5.3.2.2 Enhanced Scheme

A drawback of the basic scheme is that if there are many potential outliers, i.e., Npo in Eq.(5.1)

is very large, collecting and diffusing them will incur a large communication cost. In this sec-

tion, we propose an enhanced scheme that refines some of the histogram before we query for the

potential outliers. We expect that more rounds of histogram queries can help us prune out more

data points, i.e., the number of potential outliers can be further reduced. In the following, our

enhanced scheme only considers at most one extra round of histogram collection. The algorithm

and analysis, however, can be used for more rounds of histogram collection in the same manner.

The first two steps of the enhanced scheme are quite similar to the basic scheme. After receiv-

ing the histogram in step 2, however, the sink has two options. First, the sink can follow step 3 in

the basic scheme, collecting the potential outliers. In the other option, the sink can send a query

for another histogram with a new bucket width w = d' < d and then continue step 3 in the basic

scheme. One more histogram with a smaller bucket width leads to more accurate information that

helps to reduce ambiguous potential outliers. However, collecting more detailed histogram incurs

extra communication cost. Thus, we need to determine if refining histogram is worthwhile and if

so what is the appropriate bucket width for the new query. According to Eq.(5.1), if we do not

177

query for more histogram, the estimated cost of the remaining steps, denoted by Cost', is

Cost'
l

= Nnt· r d 1 +(No +Npo) ·logvmax · avgDist

+Nnt·Npo ·logvmax +N ·Npo ·log(k+ 1). (5.2)

In the following, we analyze the cost of collecting more histogram and propose an algorithm to

determine the optimal value of the new width d'. The minimum cost achieved by using d' will be

compared with Cost' to determine which option is better.

In this enhanced scheme, we keep the first two steps of the basic scheme with the following

changes:

• In the first step, besides Vmin and Vmax, the sink also queries for the total hop distance to the

sink and the number of non-leaf nodes. These two values can be aggregated at each node

and we use tolDist and Nnt to represent the results received by the sink respectively.

• In the second step of collecting the histogram, the upper limit of data points count f/ is set

to k · d, instead of k + 1. We will explain it in the analysis later.

After step 2, we set avgDist = tolzist and estimate Cost' as defined in Eq.(5.2).

Next, we estimate the cost after step 2 if we send one more histogram query. Essentially,

the extra round of histogram query only targets at potential outlier buckets as well as their related

neighboring buckets. Assume the new bucket width is set to d' = ~ for the next round of histogram

query. To reuse the previously collected histogram information, we choose B to be an integer. The

query sent by the sink includes B and a vector of bits which mark the potential outlier buckets

identified by Theorems 5.1 and 5.2,

178

where qi = 1 if bucket i is a potential outlier bucket. Thus, the cost of query diffusion is Nnz ·

(log B + r ~ l). After receiving the query message, each sensor will know the new bucket width

d' and the potential outlier buckets. The sensors divide each of potential outlier buckets and their

neighboring buckets into B uniform sub-buckets. Similarly, every sensor generates a histogram

for the new sub-buckets. This information is aggregated bottom-up along the routing tree and

finally reaches the sink. One optimization that each sensor can apply is to transfer the first B - 1

summaries for each target bucket i instead of B summaries, because its parent already knows

the total number of data points in bucket i, the last summary can be derived from the available

information. The number of buckets involved in the reply can be easily counted as follows:

Count t-- 0

if q1 + qz > 0 then Count t-- Count+ 1

if qr £1_1 + qr£1 > 0 then Count t-- Count+ 1

for i = 2 to r ~ l - 1 do

if qi-1 + qi + qi+ 1 > 0 then Count t-- Count + 1

In the return stage, each sensor transfers at most B ·Count ·log(k + 1) bits of information.

Therefore, the total cost of querying and collecting the refined histogram is

l
Nnz· (IogB+ r d l) +N ·B ·Count ·log(k+ 1). (5.3)

Assume after obtaining more histogram information, we identify EN0 outliers and ENpo po-

tential outliers. Following step 3 in the basic scheme, we need collect outlier data and further

179

check potential outliers. Similar to Eq.(5.2), the estimated cost of the remaining steps is,

I .
Nnt · f d 1 + (ENo + ENpo) ·logvmax · avgDzst

+Nnt·ENpo ·logvmax +N ·ENpo ·log(k+ 1). (5.4)

Therefore, the total cost incurred by refining histogram and its consequence after step 2 is

estimated as

Cost(d') = Eq.(5.3)+Eq.(5.4).

In this problem, we aim to find the optimal d' such that Cost(d') is minimized and compare it with

Cost' to decide if refining histogram is worthwhile.

In order to calculate Cost(d'), we first estimate EN0 and ENno in Eq.(5.4) based on the his-

togram information collected in step 2. We assume that data are randomly distributed in each

bucket. Let us take a close look at a potential outlier bucket i. After the refined histogram query,

we will get B summaries for bucket i as well as bucket i - 1 and i + 1. Each new summary is

responsible for a sub-bucket of the original buckets. Let us label the jth sub-bucket of the original

bucket i as bucket b(i-I)B+j· Let fj, be the number of data points in sub-bucket bj'. In the fol-

lowing, we estimate the probabilities that a sub-bucket j' is a non-outlier bucket or outlier bucket,

indicated by PnoU') and P0 (j') respectively. The probability of being a potential outlier bucket is

1-PnoU')- P0 (j'). Thus, EN0 and ENpo can be derived as

ENo = Lf},Po(j'),
b/

ENpo Lf},(1-PnoU') -Po(j')).
b/

180

To ensure b(i-I)B+j(1:::; j:::; B) is a non-outlier bucket, we must have

(i-I)B+j+B-1

:L I;>k.
q=(i-I)B+j-B+I

As illustrated in Fig. 5.3, the left side can be derived as

iB+j-1 (i-2)·B+B (i-I)·B+B i·B+ j-1

:L I; :L I;+ :L 1;+ :L 1;
q=(i-2)B+j+l q=(i-2)·B+j+l q=(i-I)·B+I q=i·B+I

(i-l)B iB+j-1

!i+ :L I;+ :L 1;.
q=(i-2)B+j+l q=iB+l

Thus, a sub-bucket b(i-I)B+j is a non-outlier bucket if

(i-l)B iB+j-1

:L 1;+ :L 1; >k-fi.
q=(i-2)B+ j+l q=iB+ I

Let a be the first term (the number of the data points in the rightmost B- j sub-buckets of bucket

i- 1) and b be the second term (the number of the data points in the leftmost j- 1 sub-buckets of

bucket i + 1). Thus, Pno ((i - 1)B + j) is the probability that a + b > k - fi. We define a function

P(x,y,z) to be the probability that the number of data points in the leftmost or rightmost y sub-

buckets of bucket x is z. Based on the assumption of random data distribution in every bucket,

Thus, Pno ((i - 1)B + j) can be calculated as

.[;_, /;+!

L (P(i- 1,B- j,a) · L P(i+ 1,j -1,b)).
a=O b=k- f;-a+ 1

181

---d---

rj-1-----
---d---

Bucket i-1 Bucket i Bucket i+l

Figure 5.3: Data involved in identifying a non-outlier sub-bucket

On the other hand, we can claim that b(i-t)B+j is an outlier bucket if the following condition

is satisfied:

(i-l)B+j+B

:L ~~~k.
q=(i-l)B+j-B

By similar analysis as above, it becomes

(i-l)B iB+j

:L !~+ :L ~~~k-Ji,
q=(i-2)B+j q=iB+l

as shown in Fig. 5.4. Let a be the first term and b be the second term. Then, P0 ((i- 1)B + j) can

---d---,-j--
---d---

Bucketi-1 Bucket i Bucket i+l

Figure 5.4: Data involved in identifying an outlier sub-bucket

be calculated as

h-i k-/;-a

L(P(i-1,B-j+1,a)· L P(i+1,j,b)).
a=O b=O

Besides the above analysis, we use a short-cut estimation if a potential bucket i's neighboring

buckets reach the histogram limit k ·d. Assume fi+l = k · d, expectedly, the frequency of each value

in bucket i + 1 is k. Thus, every data point in bucket i has a high probability to be a non-outlier.

For such a bucket i, we skip the probabilistic analysis and directly increase EN0 by fi.

182

Algorithm 11 determines the optimal bucket width d' for the second round of histogram query.

Initially, we scan every bucket and use an array M to mark the potential outlier buckets,

M[i] = { ~ if bucket i is a potential outlier bucket;
otherwise.

The algorithm is constructed by two embedded loops. In the outer loop (lines 7-22), we try

different bucket width d' = ~ by testing all possible B. For each B, we estimate the cost incurred

by this round of refined query and the subsequent steps for raw data collection. The optimal width

yields the minimum value of Cost, which is tracked by the variables optB and min in Algorithm 11.

If the final value of min is no less than Cost', there is no need to conduct an extra round of

histogram query. Otherwise, we set d' = o~B and do the refined histogram query.

The inner loop of this algorithm (lines 9-17) checks every bucket to estimate the cost. There

will be B sub-buckets for each requested bucket and reporting a histogram of them needs B ·

log(k + 1) bits of data. A bucket i will be involved only if it is a potential outlier bucket or one of

its neighboring buckets is a potential outlier bucket. Additionally, EN0 and ENpo are accumulated

in the inner loop when checking potential outlier buckets.

The implementation of EstNO used in Algorithm 11 is shown in Algorithm 12. Basically, for

every sub-bucket, we calculate its probability of being a non-outlier bucket. The loop variable j

set from 2 to B - 1 is the index of sub-buckets. The first and last sub-buckets are special cases,

which are handled in lines 16-22. For each sub-bucket j, q1 is the probability that a data point

in bucket i - 1 resides in the rightmost B - j sub-buckets of bucket i - 1 and q2 is the probability

that a data point in bucket i + 1 is within the leftmost j - 1 sub-buckets of bucket i + 1. In this

algorithm, a represents the number of data points in the rightmost B - j sub-buckets of bucket

i - 1 and b is the number of data points in the rightmost j - 1 sub-buckets of bucket i + 1. We

183

enumerate all possible combinations of a and b, which satisfy a+ b > k- Ji., and calculate the

probabilities for values a and b, indicated by p 1 and P2 respectively. The sum of the product

PIP2 for all possible cases becomes the probability that sub-bucket j is a non-outlier bucket. This

value is recorded in variable p. On average, there are ~ data points in sub-bucket j, sop~ is the

expected number of non-outliers in sub-bucket j. After checking every bucket, we store the total

number of non-outliers in r and return it as the result.

Algorithm 13 shows the details of EstO used in Algorithm 11. It has a quite similar structure

to Algorithm 12. In this algorithm, we have the same definition of variables p 1,p2 ,a, and b.

However, a sub-bucket is estimated as an outlier bucket if a+ b ::; k- Ji..

184

Algorithm 11 Find the Optimal Bucket Width

1: for i = 1 to r £ l do

2: if/;, ::; k and .fi-1 + /;, + li+ 1 > k then

3: M[i] = 1, Npo = Npo + /;,

4: end if

5: end for

6: min= Cost' = Eq.(5.2)

7: forB = 2 to d do

8: Cost= N ·(1ogB+ I £)1

9: for i = 1 to r £ l do

10: if M[i-1] +M[i] +M[i+ 1] > 0 then

11: Cost= Cost +N · (B -1) log(k+ 1)

12: end if

13: if M[i] = 1 then

14: e = EstO(B, i), EN0 = EN0 + e

15: ENpo = ENpo + /;,- EstNO(B, i) - e

16: end if

17: end for

18: Cost= Cost+ EN0 ·avgDist ·log Vmax + ENpo · (avgDist ·log Vmax + Nnt·log Vmax + N ·log(k+

1))

19: if Cost <min then

20: optB = B, min =Cost

21: end if

22: end for

23: if min = Cost' then

24: there is no need for more histogram query

?'I· else

185

Algorithm 12 EstNO(B, i)

1: t=k-.fi

2: for j = 2 to B - 1 do

3: - B-j - J.:::..! -0 q1 - !J• qz- B • P-

4: for a= 0 to .fi-1 do

5: (fi-t) P1 = a if1(1- q1)fi-t-a

6: if a > t then pz = 1

7: else if t + 1 - a > .fi+1 then pz = 0

8: else

9: for b = t + 1 - a to fi+ 1 do

10: (fi+I) pz=pz+ b q~(l-qz)fi+t-b

11: end for

12: p= P+P1P2

13: end for

14: r= r+p~

15: end for

16: if .fi-1 or .fi+1 > t then

17: p=O

18: for a = t + 1 to .fi-1 or fi+ 1

e-1 or fi+I) 19: p=p+ (B];1)a

a

20: end for

21: r=r+p~

22: end if

186

Algorithm 13 EstO(B, i)

1: t=k-fi

2: for j = 2 to B - 1 do

3: _ B-j _ j-1 _ O
q1- /J• qz- 8• P-

4: for a = 0 to t do

5:

6: for b = 0 to t - a do

7:

8: end for

9: p= P+ P1P2

10: end for

11: r=r+p~

12: end for

13: p=O

14: for a= 0 tot

15: (fi-t) e+l) p = p + (a + a) . (BB 1)a

16: end for

17: r=r+p~

18: return r

187

5.3.3 Outlier Detection for 0(n, k)

In this section, we present a solution to detect the outliers defined by Definition 4. Given k and n,

we sort all data points according to the distances to their KNNs. Let the sorted points be PI, p2 , •.• ,

where Dk(Pi) 2 Dk(Pj) fori< j. The first n data points, PI, ... ,pn, are all the O(n,k) outliers we

are looking for.

Our approach is still based on equi-width histogram. The sink sends histogram queries for

multiple iterations and tries to find a suitable cut -off value c that separates Dk (Pn) and Dk (Pn+ I).

The histogram collected in each iteration gives us an estimation for the range of c and helps filter

out the buckets that are out of our interests. Then we use the next query to obtain more detailed

histogram of the buckets that possibly hold outliers. This query process is repeated till we find

all outliers. Note this approach does not fetch and check potential outliers as in the last step of

finding the 0(d, k) outliers. Checking a potential outlier in this problem is very costly when k is

large, because every sensor has to send k data values (k nearest neighbors of the potential outlier).

In the following, we first show that we can estimate bounds for the cut-off value c based on the

histogram information. We try to find a pair of values Lc and Uc, such that c E (Lc, Uc]. Suppose

the sink sends a histogram query with bucket width w. After receiving the histogram, we first

apply Theorem 5.1 and Theorem 5.2 on every bucket ito calculate li and ui. Then we calculate Lc

and Uc according to the following theorems.

Theorem 5.3 Consider the histogram collected with bucket width w. We have

Lc = max {xi L J;. > n,x is multiple ofw} <c.
l;?:x

Proof: In the above equation, the condition, Lt;?:x J;. > n, means that there are more than n data

points (p) satisfying Dk(p) 2 x. Based on the definition of the cut-off value c, x <c. Thus, any x

188

satisfying the condition can be an exclusive lower bound of c. •
Theorem 5.4 Consider the histogram collected with bucket width w. We have

Uc = min {xi L fi:::; n, x+ 1 is multiple ofw} 2: c.
u;"2_x

Proof: The condition, Lu;"2.xh:::; n, means that the number of all possible data points (p) satisfying

Dk(p) 2: xis less than or equal ton. According to the definition of c, x 2: c. Thus, any x satisfying

the condition can be an inclusive upper bound of c. •
Our solution is shown in Algorithm 14. We start a histogram query with an initial bucket width

Winit· Based on the received histogram, we obtain l; and u; for each bucket i and calculate Lc and

Uc (lines 4-6). Then, we categorize buckets as follows:

• Case 1: If u;:::; Ld, bucket i is a non-outlier bucket;

• Case 2: If l; 2: Ud, bucket i is an outlier bucket;

o Case 3: Otherwise, bucket i is a potential outlier bucket.

Similar to the O(d,k) outlier detection, we ignore the non-outliers in case 1 and send another

query to collect the data values in the outlier buckets (lines 7-10). For case 3, we query for more

histogram information of potential outlier buckets, which are marked by the variable q; (lines

12-16). The bucket width of the new query is set to the half of the current bucket width. Upon

receiving the query, sensor nodes calculate the histogram of the marked buckets (by q;) with new

bucket width, and send it back to the sink in a bottom-up direction. We repeat this process until

all outliers are found. In the worst case, we need log Winit iterations.

189

Algorithm 14 Find O(n,k) Outliers

1: w = Winit• hasPO =true, q1 = q2 = · · · = 1'

2: while w > 1 and hasPO do

3: Send a query with< w,q1q2 ···>and collect the

histogram with bucket width w

4: Calculate li and ui for each bucket i

5: Ld = max {xl'Lt;~xfi > n}

6: ud = min {xl'Lu;~xfi ~ n}

7: fori= 1 to r 61 do

8: qi = (h 2: Ud)

9: end for

10: Send a query with { qi} and collect the outliers

11: hasPO =false

12: fori= 1 to r 61 do

13: if li < ud and Uj > Ld then

14: qi = 1, hasPO =true

15: else qi = 0

16: end for

17: w= ~

18: end while

190

5.4 Performance Evaluation

Our evaluation is based on simulations. We conduct examinations on both real data trace and

synthetic datasets. In the following, we will show the performance results separately.

5.4.1 Real Data Trace

In the first simulation, we use real datasets from Intel Lab [2]. The data were collected from 54

sensors during a one-month period. The details of the dataset can be found at Intel Lab's web

site [2]. We consider a 100 x 100 network field, where the sink is placed in the center. We deploy

54 sensor nodes randomly in the field and assume sensors communicate in a multi-hop fashion.

The communication range is set to 18 for good connectivity in a random topology. Two important

parameters used in our algorithms, the number of non-leaf nodes and the average hop distance, are

shown in Table 5.1. The values are average measurements of 1000 connected random topologies.

In this simulation, we select the entire temperature records on two dates (03/01 and 03/20) as

two datasets. The dataset for 03/01 represents a regular temperature distribution with mean value

around 24 degrees. The dataset for 03/20, however, displays a large deviation from the average

value. In this dataset, for some reason, 50 degrees is reported for many times, and a lot of data are

sparsely scattered between 35 degrees and 50 degrees. We use precision 0.01 to round temperature

values and scale them by 100 times in order to obtain integer values. The relevant parameters are

also listed in Table 5.1 and Table 5.2.

In the following, we show the performance of our algorithms in terms of the total communi

cation cost for finding all the outliers, which is the sum of all sensors' communication costs. We

assume that the cost of transferring a message is proportional to the payload size, which includes

the actual data size and necessary control information, e.g., the message type. Thus, in the fol-

191

Table 5.1: Network Setup

Number of Sensors (N) 54

Number of Non-leaf Nodes (Nnt) 25.7

Radio Range 18

Average Hop Distance (avgDist) 4.26

Table 52· Data Characteristics ..
03/01 Dataset 03/20 Dataset

Number of Data Points 91468 76871

Maximum Value 3424 5008

Minimum Value 1499 363

Value Range (vmax- Vmin) 1926 4646

lowing, the total communication cost is measured by the total size of the messages transferred in

the whole network. We first measure the communication costs for the centralized scheme through

1000 independent simulation runs and use the average value as the baseline. In the centralized

scheme, the whole network transfers 575K bytes data for the 03/01 dataset on average and 514K

bytes for the 03/20 dataset. The deviations for two datasets are 119K bytes and 113K bytes respec-

tively. In addition, to evaluate our algorithms, we conduct 100 independent simulations for each

parameter setting. We normalize the average communication costs in our algorithms against the

baselines of the centralized scheme and show them as percentage values in the rest of this section.

5.4.1.1 O(d,k) Outlier Detection

To compare the basic scheme and enhanced scheme with different parameters, we vary d and k

separately. First, we fix k = 100 and vary d from 20 to 70 for the 03/01 dataset and from 50 to

192

450 for the 03/20 dataset. Fig. 5.5 shows the numbers of outliers with various d. We find the two

datasets differ dramatically. For the 03/01 dataset, when we set d = 70 (i.e., 0.7 degree in original

data), no outlier exists in the entire set. For the 03/20 dataset, however, when we use a large

distance with d = 100 (1 degree in the original data), 126 outliers appear. We keep increasing d to

400 (4 degree), we still find one outlier. This figure indicates that the 03/20 dataset contains more

scattered data points and yields more outliers for a certain (d, k) setting.

03/01 Dataset
25,o.---~-~--~-~----,

~
~
8 150

~ 100
E
::> z

50

70

~
~
::;
0
0
Q;
.0
E
::> z

03/20 Dataset
1000

BOO

600

400

200

00 100 200 300
Distance Parameter (d)

Figure 5.5: Number of outliers for varying d (k = 100)

400

The performance of basic and enhanced schemes is illustrated in Fig. 5.6. First, as shown, the

enhanced scheme is always superior to the basic scheme. Secondly, both schemes greatly reduce

communication costs. In the worst case in Fig. 5.6, the basic scheme consumes less than 5.5% of

the cost of the centralized scheme.

03/01 Dataset
6,---~--~r=~==7===~

-<-Basic Scheme
-<>--- Enhanced Scheme

~0 30 40 50 60
Distance Parameter (d)

03/20 Dataset
5,-~--~~r=~~77==~

-<-Basic Scheme
····-<>--·Enhanced Scheme

Figure 5.6: Communication costs for varying d (k = 100)

193

In the following, we will analyze and compare the performance of the basic and enhanced

schemes. The communication cost in both schemes is comprised of histogram collection and raw

data transfer (collection and diffusion). Considering the same value range defined by [vmin, Vmax +

1), larger bucket width yields smaller number of buckets and less cost in histogram collection.

On the other hand, larger bucket width provides less detailed histogram information, which may

increase the number of potential outliers and the cost in transferring raw data.

In the 03/01 dataset, when we query for outliers, most non-outliers are identified after the first

round of histogram collection, and the number of potential outliers is limited. Thus, the cost of

histogram collection is the dominant factor compared with the raw data transfer. As shown in

Fig. 5.6, the performance keeps decreasing along the increasing d. In the 03/20 dataset, a lot of

data are sparsely distributed over an abnormal range and the number of outliers is dramatically

larger than that in the 03/01 dataset. Since we set larger bucket width for the 03/20 dataset,

the cost of histogram collection is less than that in the 03/01 dataset. On the other hand, as we

mentioned above, larger bucket width may increase the cost of raw data transfer due to insufficient

histogram information. Therefore, the cost of histogram collection is no longer dominant as the

difference with the cost of raw data transfer is alleviated. Sometimes, raw data transfer is even

more significant than histogram collection. These two types of cost interact with each other and

show unstable curves for the 03/20 dataset in Fig. 5.6. The enhanced scheme outperforms the

basic scheme in both datasets by filtering out more potential outliers.

In our simulation, we also fix d and study the performance on variable k. Fig. 5.7 shows the

change of the number of outliers and Fig. 5.8 is the performance comparisons. Similarly, we find

that the enhanced scheme is better than the basic scheme and both schemes are very efficient. In

this case, the cost of histogram collection is fixed for basic scheme and the communication cost

194

03/01 Dataset 03/20 Dataset
600 100

500 80
~ ~

:§ 400 .l!!
:;

60 0 0
0 300 0
Gi Gi 40 .0 .0
E 200 E
::l ::l z z

100 2

100 150 200 250 ~0 100 150 200 250
Nearest Neighbors Parameter (k) Nearest Neighbors Parameter (k)

Figure 5.7: Number of outliers for varying k (d = 40 for the 03/01 dataset and d = 200 for the 03/20
dataset)

only depends on the number of potential outliers. For a given k, the data points with roughly k

neighbors within distance d, have a high probability to be potential outliers, because it is hard

to distinguish these data points by coarse histogram information. Thus, the trend of the curves

in Fig. 5.7, which indicates the number of nearby potential outliers, has an impact on the com-

munication cost. As we can see, for the 03/01 dataset, there is a sharp increase of outliers when

k E [150,250], which means that many potentialoutliers will be transferred as raw data when we

search for outliers. Correspondingly, we see an increase of communication cost around that range

in Fig. 5.8. Additionally, in the 03/20 dataset, the number of outliers has a jump from k = 100 to

k = 150. It also yields an increased cost of basic scheme in Fig. 5.8. For both datasets, the en-

hanced scheme smooths the impact of the increased potential outliers and significantly improves

the performance.

As a summary, in this trace-driven simulations, our proposed approaches are very efficient

for the 0(d, k) outlier detection. The enhanced scheme consumes less than 4% of the cost of the

centralized scheme in most cases.

03/01 Dataset
Brr=~==~==~,---------.

----+--- Basic Scheme
-&-Enhanced Scheme

~0 100 150 200 250
Nearest Neighbors Parameter (k)

03/20 Dataset
6rr=~==~====~----~----,

----+--- Basic Scheme
-<>---Enhanced Scheme

~0 100 150 200 250
Nearest Neighbors Parameter (k)

195

Figure 5.8: Communication costs for varying k (d = 40 for the 03/01 dataset and d = 200 for the 03/20
dataset)

5.4.1.2 O(n,k) Outlier Detection

In this simulation, we set k = 100, and vary n from 10 to 80 for both datasets. The initial bucket

width is set to a large value of 1500, i.e., Winit = 1500 in Algorithm 14. Fig. 5.9 shows the values

for Dk(Pn) and the communication cost is presented in Fig. 5.10.

The simulation results show that our approach is cost-efficient for the O(n, k) outlier detection.

Compared with the centralized scheme, our approach significantly reduces the communication

cost. For the abnormal 03/20 dataset, it takes less than 1% of the cost to find all top-80 outliers.

For the normal 03/01 dataset, our scheme consumes less than 1.5% of the cost in all the cases.

400,-~----~---,==:::::::r:=:::====il

1

-+-03101 Dataset!
-<>- 03/20 Dataset I

o~~2o---4~o---s~o--~eo

Top-n Rank

Figure 5.9: Values of Dk(Pn) for varying n
(k = 100)

1.5rr===:===:==~==:::.:::;---~~--~~
-+-03101 Dataset l -<>-- 03/20 Dataset

(ij

8 1
c
0

~ ·c:
~ 0.5

E
8

~0 20 30 40 50 60 70 80
Top-n Rank

Figure 5.10: Communication costs for vary
ing n (k = 100)

In details, we observe that the communication cost is related to the value of Dk(Pn). When the

196

value of Dk(Pn) drops greatly, the communication cost is small. On the contrary, when the curve

of Dk(Pn) becomes fiat, the corresponding communication cost is increased. This relationship

can be explained from two perspectives. First, our scheme tries to estimate a range for the cutoff

value in each round, thus when the algorithm terminates, the estimated range must reside between

Dk(Pn) and Dk(Pn+I), i.e., Lc > Dk(Pn+I) and Uc < Dk(Pn). Therefore, if Dk(Pn) and Dk(Pn+I)

are very close, the final estimated range will be very small. To obtain such accurate estimation,

we have to use a small bucket width, which requires a large number of iterations. Second, if the

value of Dk(Pn) changes dramatically, it is easy to distinguish the non-outlier data points around

the cut-off value. Thus, in each round, the number of the potential outlier buckets, which actually

contain no outlier, will become small. This further decreases the cost of collecting histogram.

5.4.2 Synthetic Data Sets

Our second set of simulations uses synthetic data. Again we consider a 100 x 100 square network

field, where the sink is placed in the center. We deploy 100 sensor nodes randomly in the field and

the communication range is set to 14 for good connectivity in a random topology. The number of

non-leaf nodes and the average hop distance are shown in Table 5.3. The numbers are averaged

over 1000 connected random topologies.

Table 5.3: Network Setup

Number of Sensors (N) 100

Number of Non-leaf Nodes (Nnt) 46.65

Radio Range 14

Average Hop Distance (avgDist) 5.32

This simulation is performed on two synthetic data sets, denoted by Dataset! and Dataset2.

197

Each data set contains 10 ranges with dense data distribution {[0, 1000), [1500, 2500), [3000,

4000), · · ·, [13500, 14500)} and 10 ranges with sparse data distribution {[1000, 1500), [2500,

3000), [4000, 4500), · ··, [14500, 15000)}. As we can see, the dense and sparse ranges alternate

with each other, and the widths of each dense range and sparse range are 1000 and 500 respectively.

We randomly distribute 10000 data points into each dense range. In addition, we generate a small

number of data for sparse range. We intend to inject outliers among these data, especially the data

in the central area of the sparse range. The number of sparse data is 1000 in Dataset! and 100

in Dataset2. The parameters of the two data sets are listed in Table 5.4. For each data set, we

randomly distribute the data to sensors and let every sensor hold the same amount of data.

Table 5 4· Data Characteristics ..
Dataset I Dataset2

Number of Sparse Data 1000 100

Number of Dense Data 100000

Number of Clusters 10

Width of Each Cluster 1000

Width of Sparse Area 500

Maximum Value 14999

Minimum Value 0

In the following, we show the performance of this set of simulations and discuss the results.

The communication costs are also normalized against the cost of centralized scheme and appear

as percentage values.

198

5.4.2.1 O(d,k) Outlier Detection

Similar to the previous evaluation, we first fix k = 100 and vary d from 50 to 450 at an interval of

50. Fig. 5.11 shows the numbers of outliers with various d in Datasetl and Dataset2. The curves

are nearly linear with a turning point at d = 250.

Fig. 5.12 illustrates the performance comparison between the basic scheme and the enhanced

scheme. In this outlier detection, most data in the dense ranges appear as non-outliers after the

first histogram query, so the performance basically depends on identifying those data in the sparse

ranges. As we mentioned, both schemes incur two types of costs, for histogram collection and raw

data transfer. For a fixed value range [Vmin, Vmax + 1), large bucket costs less in histogram collec

tion, but it may increase the number of potential outliers. When analyzing the histogram of bucket

i, we check h-I + /;, + h+ 1 to determine if bucket i is an outlier bucket. If the neighboring buckets

overlap with the dense range, bucket i probably will become a potential outlier bucket. Thus, as

d increases, more data in sparse ranges are marked as potential outliers after the first query. For

example, in Datasetl, when d =50, we can estimate that every sparse data point, whose distance

to a dense range is less than 100, will become a potential outlier. Since we randomly distribute the

sparse data, expectedly, there are ~gg ·100 · 9 + ~gg · 100 = 380 potential outliers. When d = 100,

this number is doubled to 760. At the same time, the cost of histogram query decreases very

slowly. When d changes from 50 to 100, the number of buckets is only reduced from 300 to

150. So the raw data transfer dominates. Fig. 5.12 shows the increasing communication cost. The

basic scheme reaches the maximum cost when d = 250, where every data point in sparse ranges

becomes potential outliers. After the point of d = 250, as we continue increasing d, more sparse

data will be identified as non-outliers after the first query, which reduces the number of potential

outliers. Compared with the basic scheme, the enhanced scheme uses another histogram query to

199

reduce the number of outliers. As our simulation shows, the performance gain is much more than

the cost incurred.

Dataset1 Dataset2
1000 100

[1.! 800 [1.! 80
Q) Q)

~
600

s
60 0 0

0 0
a; 400 a; 40 .c .c
E E
::I ::I z 200 z 20

00 100 200 300 400 500 00 100 200 300 400 500
Distance Parameter(d) Distance Parameter(d)

Figure 5.11: Number of outliers for varying d (k = 100)

Dataset1
20.---~----~--~----~---.

;;:
0

1r 15
8

i10 ~~~
::I ./"/l)

~ 5 ,,_.---'~

8 _,_Basic Scheme
---<>-Enhanced Scheme ---e---.,

1 00 200 300 400 500
Distance Parameter(d)

Dataset2
3.5.-----~----~----~-----.

?1 3

~~ u 2.5
c
0

)': ~~;,_:.~
--<>-- Enhanced Scheme ---.

0
·
5o 100 200 300 400

Distance Parameter(d)

Figure 5.12: Communication costs for varying d (k = 100)

In Dataset2, due to the smaller number of sparse data, the costs are much lower than Dataset!.

Using similar analysis mentioned earlier, when d =50, the expected number of potential outliers

is 38. Compared with the histogram of 300 buckets, raw data transfer is no longer dominant. As a

result, we see a decreasing trend along increasing bucket size because histogram collection costs

less for larger bucket. The costs of histogram collection and raw data transfer interact with each

other and show an unstable curve for Dataset2. For example, when d = 250, we will have 100

potential outliers while the number of buckets is 60. Therefore raw data transfer becomes a major

factor again. Also the enhanced scheme outperforms the basic scheme except when d = 150. This

200

abnormality is due to the fact that our cost estimations of fetching raw data and conducting more

histogram queries are not accurate. When the actual costs of these two options are close, we may

have chosen sending another histogram query by mistake, which causes the enhanced scheme to

yield a little more cost than the basic scheme.

Dataset1
350.---~-~-~-~-~----,

300
!!?
11 250
'5
0 200
0
Q; 150
..c
§ 100
z

50

0o 50 100 150 200 250 300
Nearest Neighbors Parameter(k}

Dataset2
45.----~--~--~--~

Q;
~ 35
::::J z

30o 100 200 300 400
Nearest Neighbors Parameter(k}

Figure 5.13: Number of outliers for varying k (d = 200)

Dataset1
20.--~-~-~-~-~----,

---Basic Scheme
---&-Enhanced Scheme

0o 50 100 150 200 250 300
Nearest Neighbors Parameter(k}

Dataset2
3,---~----r===========~

\
_,_Basic Scheme I

~2.8
~ 8 2.6

§ 2.4
~
.!.? 2.2
c:
::::J
E 2
E
81.8

---&-Enhanced Scheme I

1
·
6o 100 200 300 400

Nearest Neighbors Parameter(k}

Figure 5.14: Communication costs for varying k (d = 200)

In our simulation, we also set d = 200 and study the performance on variable k. Fig. 5.13

shows the change of outliers and Fig. 5.14 is the performance comparison. Similarly, the com-

munication costs depend on the number of potential outliers. For a given k, the data points with

roughly k neighbors within distance d, have a high probability to be potential outliers, so the tan-

gents of the curves in Fig. 5.13 indicate the trend of communication costs. As we can see, for

Datasetl, there is a sharp increase of the number of outliers when k E [70,90], which means many

201

potential outliers appear when we search for outliers. Correspondingly, we see a burst of com-

munication cost around that range in Fig. 5.14. When k > 100, the number of outliers increases

steadily, which incurs an almost constant cost shown in Fig. 5.14. On the other hand, in Dataset2,

the number of outliers grows in a steady and linear fashion. It yields a very low communication

cost and a flat curve in Fig. 5.14. In both data sets, we observe, the enhanced scheme significantly

improves the performance.

5.4.2.2 O(n,k) Outlier Detection

In this simulation, we set k = 100, and vary n from 5 to 1000 for Dataset!, from 5 to 100 for

Dataset2. Fig. 5.15 shows the values for Dk(Pn) and the performance is presented in Fig. 5.16.

Dataset1 Dataset2
500 300

400 250

Q) -~ 200 ~ 300 (/)

a; a; 150
.>t! .>t!
g 200 u

::I
Ill Ill 100

100 50

00 200 400 600 BOO 00 20 40 60 BO 100
Top-n Rank Top-n Rank

Figure 5.15: Values of Dk(Pn) for various n (k = 100)

Dataset1 Dataset2
40 40

?;?35 ?;?35

~ 30 ! 30 u
§ 25
~
.!.2 20
c
::I
E 15
E
810

200 400 600 BOO 1000
Top-n Rank

Figure 5.16: Communication costs of O(n, k) outlier detection (normalized against the centralized scheme).
We set k to 100 and vary n from 5 to 1000 for Datasetl, from 5 to 100 for Dataset2.

202

Using an analysis similar to the real data trace, we find that when the curve's tangent is sharp

in Fig. 5.15, the communication cost remains low. For Dataset1, the initial phase in Fig. 5.15 is

steep and the communication cost is very low. But after the point of n = 60, the curve becomes

less steep, which leads to an increase of communication cost in Fig. 5.16. In Dataset2, the value

curve of Dk(Pn) drops constantly and faster than that in Datasetl. It results in a much lower

communication cost in Fig. 5.16. Both data sets have a huge cost increase at the end of the curve.

The reason is that, when n is large, we have to count the densely packed data points, whose Dk(p)

values are very close to each other.

5.5 Summary

Outlier data represents a complex form of abnormal data which is extremely important in many

applications. Outlier detection has been well studied in the database community, but the existing

solutions cannot be applied in sensor networks unless all the data from every sensor is gathered at

a central place which is a costly process in practice. Our solutions utilize small-sized histogram in

formation to analyze the data set and filter out undesired data without collecting them. According

to our simulation, the proposed solutions accurately find all outliers with low energy consumption.

From this work, we have demonstrated an appropriate way to handle complicated queries in a sen

sor network. Compared to collecting all the raw data, it is more efficient to collect a small amount

of rough information first and analyze it to reduce further energy consumption. This process can

be repeated for multiple rounds if applicable. This method, however, requires some information

processing and data relaying on each device, thus only works with sensors, but not RFID tags.

In the next chapter, we present our work on a data mining query in RFID systems which is more

challenging because of the hardware limitation.

Chapter 6

Data Mining Query in RFID Systems:

Finding Popular Categories

Similar to sensors, RFID tags also contain useful data information and data mining queries are

desirable in RFID systems too. In the previous chapter, our solution to the data mining query in

sensor networks relies on each sensor's ability of data processing and transmission. RFID tags,

however, represent a category of even weaker pervasive computing devices that do not hold the

same ability as sensors. They can hardly process data and there is no communication between

RFID tags. Therefore, data mining queries with RFID tags are more challenging and need a

completely different design from the previous chapter to achieve efficiency.

In the literature, there is very little work on complicated queries in RFID systems. Most of the

prior work collects all tag IDs before replying to any query. This universal solution, however, may

not be efficient for a particular query. In this chapter, we investigate a typical data mining query

of finding popular items and develop efficient algorithms without collecting all IDs.

203

204

6.1 Related Work

For a reader to successfully receive data from multiple tags, anti-collision protocols must be de

signed so that replied data from multiple tags will not be garbled because of collision. In gen

eral, two approaches are used to regulate collision. The first is based on the ALOHA proto

col [24, 28, 45, 48, 66, 89, 97, 110, 121, 124, 129, 133]. A representative protocol used in RFID

systems is the framed ALOHA [97], a variation of ALOHA [4]. In this protocol, a frame is di

vided into multiple time slots. The communication is initialized when the reader broadcasts a

frame size, i.e., the number of slots in the frame. Every RFID tag responds only in a particular

slot in the current frame. The reader can successfully receive data in a certain slot if only one tag

picks the slot for transmission. This process is repeated until all tag data are collected. The second

approach uses the tree traversal technique [33, 36, 69, 87, 98, 100, 101, 134]. The reader broadcasts

an ID prefix, and those tags whose IDs match the prefix will respond. If a collision is detected, the

reader will append '0' or '1' to the prefix and send new prefixes again. It is equivalent to traversing

a binary tree, where each tag's ID is a leaf node. The expansion of prefix stops if only one tag re

sponds. The goal of the above anti-collision protocols is to collect all the IDs, which can definitely

solve our problem of finding popular categories. However, as we will show in evaluation, they are

not efficient. Interestingly, we do use the framed ALOHA and a tree-traversal-like method in this

work, but with a totally different purpose.

In the database community, mining RFID data has drawn considerable attention [57,58, 74,91].

Their problems are formulated at a high level, where all RFID data are already stored in a central

database. Our work considers the problem where none of the RFID data has been collected.

The research work in [83] is the closest to this work. The authors consider the problem of

estimating the number of tags without collecting the tag IDs. Based on the framed ALOHA, their

205

algorithms analyze the numbers of empty slots, single-reply slots and collision slots to obtain ap

proximated information. By carefully tuning the parameters for multiple iterations, their solutions

can quickly estimate the number of RFID tags with high accuracy. [82] uses a similar analysis

for anonymous tracking in RFID systems. In this work, our TCS scheme is based on a similar

analysis. However, we consider a more complex problem of finding popular categories. Directly

applying the algorithms in [83] cannot efficiently resolve it.

Another relevant research is finding popular items in streaming data [37,39,54,55, 77]. Similar

ideas of group testing [42] are adopted in [37] to maintain a small set of counters to find frequent

items in data streams, thus achieving memory efficiency. In this work, our goal is to reduce

the scanning time and the assumption of scanning all the data in one pass in the data streaming

algorithms is impossible.

6.2 Problem Formulation

We consider that, within the reading range of a reader, there are n products each of which is

attached with an RFID tag, that is, n tags Ctt, ... , tn) in total. Every RFID tag contains a unique

ID represented by a bit string, which consists of several fields [45]. We assume that one of the

fields specifies the category the product belongs to. The bit string in the field is called category

!D. Depending on the applications, a category ID can be as generic as the origin of country, or as

specific as a brand and model number. We assume that we know the set of distinct category IDs

of the tags considered in this scenario, denoted as C = {C1, ... ,Cm}· For each tag tj. we use Cj to

represent its category ID. We will also discuss the scenario without knowing C in an extension of

our scheme.

In this work, popular categories are defined by an application specific threshold. Let Fi be the

206

number of products in category Ci.

Definition 5 Given a threshold a E (0, 1), Ci is a popular category if Fi ;::: a· n.

Our goal is to find a category set R, which contains popular categories of products in the ware

house. To this end, we are going to design randomized algorithms. This requires us to slightly

modify the problem in the randomized setting as follows. Given a, f3 ::; a, and 8 E (0, 1), we

would like to minimize the scanning time and find a category set R such that with probability

larger than 1 - 8, the following two accuracy constraints are satisfied:

1. Completeness Constraint: { Ci lEi ;::: a · n} ~ R;

2. Population Constraint: '1/Ci E R,F;_;::: f3 ·n.

We name the first constraint completeness constraint, since it requires returning all popular cate

gories. The second constraint is called population constraint, as it defines the lower bound of the

population of any returned category.

Here we briefly explain the rationale of this problem formulation. Ideally, we would like to

return all popular categories, i.e., { CiiFi ;::: a· n} ~ R, and only the popular categories. However,

our randomized setting may return some unpopular categories. To control what extraneous cat

egories may be returned, we introduce another parameter f3 ::; a, which defines a lower bound

for the population of any returned category. It requires that any Ci E R must have no fewer than

f3 · n products, i.e., '1/Ci E R, Fi ;::: f3 · n. A strict requirement may set f3 = a. In practice, however,

applications usually tolerate a certain level of inaccuracy. For example, it is meaningful to return a

category with fewer than a · n products as a popular category. With the requirement of f3, the pop

ulation of each resulting category, although maybe less than a · n, is confined to be close to a · n.

Furthermore, to save scanning time, the number of products in each category is estimated by a

207

probabilistic algorithm. Thus, we can not provide deterministic guarantee for the two constraints.

Instead, another parameter ~ E (0, 1) is defined as a probabilistic guarantee which specifies the

maximum allowed probability that our returned results fail to satisfy the two constraints.

In the rest of this chapter, our schemes often use a 'select' operation: the tags satisfying a

certain condition will stay active while the others will keep silent. In a 'select' command, two

types of conditions can be specified. First, the reader can broadcast a prefix bit string mask and

each tag tj will check if its category ID matches the received prefix, i.e., if the first jmaski bits of

c j is the same as mask, where I mask I is the bit length of mask. Second, the reader can broadcast

three numbers, r, u, and v, and each tag tj will check the following condition, h(r,cj) mod u = v,

where his a hash function. We use hu(r,x) to indicate h(r,x) mod u in the rest of this chapter. In

both cases, an RFID tag will keep active only when the specified condition holds.

Our communication model is based on the framed ALOHA. We assume that an RFID reader

is able to distinguish the slots with no reply, single reply, or multiple replies. We define these slots

as empty slot, single-reply slot, or collision slot respectively. In the typical ALOHA scheme, the

duration of a non-empty slot (single-reply or collision) is much longer than that of an empty slot,

because tags transfer the whole ID with CRC (Cyclic Redundancy Check) in a non-empty slot.

In our approaches, every tag does not transfer the long ID, but a short random bit string (usually

< 10 bits [83]), as long as the RFID reader can detect the presence of the signal. Thus, all slots

in our approaches have similar durations. In the rest of this chapter, we call an empty slot or a

slot transferring short bit strings as short slot, and a slot transferring IDs as long slot. We use S

and L to denote the lengths of a short slot and long slot respectively. In addition, our schemes

use the algorithm presented in [83] to estimate the total number of active tags. For total n' active

tags, the algorithm, denoted as Q(a,b) for a,b E (0, 1), gives an estimation of ii1 for n', such that

208

with probability larger than a, 1- ~ ~ ~ ~ 1 + ~· Let 101 be the scanning time of n. As claimed

in [83], 101 is independent of n. Table 6.1 lists some notations used in the following sections.

n/ii number of tags I estimation of n

n' /ii' number of active tags/ estimation of n'

Ci/Fi category ID I number of products in Ci

tj/Cj RFID tag I t / s category ID

Table 6.1: Summary of Notations

6.3 Methodology

We propose and compare different solutions in this section. First, we describe three straight

forward, but impractical solutions. Then, we introduce the Threshold Checking Scheme (TCS),

which is an important component in our solutions. Finally, we propose our schemes, group testing

with TCS and tree traversal with TCS.

6.3.1 Simple Solutions

The first simple solution is to collect all tag IDs by using the framed ALOHA. Then, we can scan

the data and find all popular categories. We call this solution identification scheme. In this solution,

we have to use long slots to correctly receive the IDs. As analyzed in the prior work [28,48, 110],

the number of slots needed is proportional to the number of tags n. It is inefficient when n is very

large.

Alternatively, we can use Q to resolve the problem. The algorithm is described in Algo

rithm 15. For each category, the reader broadcasts the category ID so that the tags in the category

209

stay active while the other tags keep silent. Then, we apply 0 to estimate the number of active

tags and compare the result with the threshold. Since 0 can obtain a good estimation with a

Algorithm 15 Check Each Category

1: Run 0 to obtain ii

2: for i = 1 to m do

3: Reader broadcasts Ci

4: Tag fJ stays active if Cj = ci

5: Run 0 to obtain ii'

6: ifii'~a·iithenR=RU{Ci}

7: return R

certain setting, Algorithm 15 is able to find all popular categories with a very high probability

and the scanning time is m(L+ /0/). In practice, this solution is not efficient either, because we

may have hundreds of categories (large m) and /0/ could be thousands of short slots for a certain

accuracy [83].

Another alternative solution is the sampling scheme. We can randomly select a set of sample

RFID tags, and collect all IDs from them. Then we can easily determine the popular categories

in this small set. Assuming these samples effectively reflect the whole set of RFID tags, the

popular categories found in samples can be returned as the results. The details are presented in

Algorithm 16. The performance of this scheme heavily depends on the sample size and has a

tradeoff with the accuracy. We will evaluate this scheme in Section 6.4.

The probability that this sampling scheme can identify a popular category is

an'-1 ck . p.k. (n _ F)n'-k
}- " n

1
I I

£.J n'
k=O n

210

Algorithm 16 Sampling Scheme

1: Randomly select a set S' of RFID tags from n tags

2:n'= IS'I

3: for i = 1 tom do

5: ifF/ 2:: a ·n' then R = RU {Ci}

6: end for

7: return R

h ck,.F((n-F;)n'-k . h b b'l' h k f c I d UT 'II h w ere nn' ts t e pro a 1 tty t at tags rom a category i are samp e . vve wt s ow

in the evaluation that this probability of identifying a popular category becomes low when F; is

close to a· nand the sample rate (n' jn) is low.

6.3.2 Threshold Checking Scheme (TCS)

Our algorithms are based on a scheme that estimates whether the number of currently active tags

(n') exceeds a given threshold. We call this scheme Threshold Checking Scheme (TCS). The

details are presented in Algorithm 17. The input includes a frame size f and other two parame-

ters 't't, 't'2 ::; f. The reader first broadcasts the frame size f. RFID tags follow the basic framed

ALOHA protocol and respond at a random time slot. During this frame, the reader keeps counting

the numbers of empty slots and collision slots, recorded in No and Nc respectively._ In the end, the

reader will compare No and Nc with 't't and 't'2 to determine the returned value of TCS. We inten-

tionally avoid using the number of slots for single tag reply (N1) because N1 is not a monotonous

function of the number of tags. No and Nc, however, are monotonous decreasing and increasing

211

Algorithm 17 TCS(f, 't'1, -r2)

1: Reader broadcasts f

2: Each tag randomly picks a time slot to reply

3: Reader obtains No and Nc

4: if (No :::; -ri) and (Nc > 't'2) then return true

5: else return false

functions of the number of tags respectively. This gives us a simple way to check if n' is greater

than the given threshold. We omit the detailed analysis here and refer the interested reader to [83].

By carefully choosing f, -r1, and -r2, we can have a high confidence that if the number of active

tags exceeds a given threshold the protocol returns true. In the following lemmas and theorems,

we give the analysis for the protocol assuming there are n' active RFID tags. More specifically,

we show the results on Suc(n'), which is defined as the probability that TCS(j, -r1, 't'2) returns true

when applied to n' active tags. These lemmas and theorems are crucial for the analysis of our

algorithms which will be presented later.

Lemma 6.1 When n' and f are large1, No and Nc approximately follow a normal distribution ,

No"' N(}.l{J, CTo), and Nc "'N(J.Lc, CTc), where }.l{J, CTo,Jlc and CTc are defined as follows.

}.1{J (n' ,f)

crJ(n',J)
n1 n' n1

f-e-7(1-(1+ f)e-7);

J.Lc(n',J)
n' n'

= f(I- (I+ f)e-7);

n1 n' 2n' n' n' n'

f·e-7((1+
1
)-(I+f+(f)2 +(!)3)e-7).

1 We consider general rules of thumb for approximating a binomial distribution to a normal distribution.

212

Proof: Refer to [83]. •
Theorem 6.1 When n' and fare large,

1 ~-~ ~-g
Suc(n') = -

4
(1 +erf(v'2)) · (1-erf(v'2 c)),

2cro 2CTc

where er f is the error function of the standard normal distribution2, and variables ~. CTo, f..Lc and

CTc are defined in lemma 6. 1.

Proof: Based on the properties of normal distributions,

Pr(No ~ 'CJ)

Therefore,

1 'CJ - ~ 'Cz - f..Lc
Suc(n')=Pr(No~'Ct)·Pr(Nc2::'Cz)=-4 (1+erf(v'2))·(1-erf(v'2)).

2cro 2CTc

•
Theorem 6.2 Suc(n') is an increasing function ofn', i.e., ifn; 2:: n~, Suc(n;) 2:: Suc(n~).

Proof: Obviously, compared with a group with n~ tags, a group with n; tags tends to have less

empty slots and more collision slots. •
Theorem 6.3 Given a list {ut, ... , uq} and a number v > 0, if 'Lui= z, then

~ z z £..Suc(ui) ~ - + (q--)Suc(v).
v v

2In our implementations, continuity correction is applied.

213

Proof: We divide the list into two sets, St = {ilui ~ v} and S2 = {ilui < v}. Obviously, at most~

elements belong to S I· Therefore,

:Lsuc(ui) = L Suc(ui) + L Suc(ui)
iESt iES2

< 1Stl·1 + (q-IStl) ·Suc(v)

= IStl· (1-Suc(v)) +q·Suc(v)

z z < - + (q--)Suc(v).
v v

•
6.3.3 Group Testing with TCS

In this section, we propose a solution based on group testing with TCS. We first divide the tags

into groups according to their category IDs. The tags with the same category ID belong to the

same group and each group may contain the tags in multiple categories. We then apply TCS

to check the number of tags in each group. The intuition is that many categories with few tags

may be grouped together and thus can be easily identified as unpopular categories in a simple

group test. The groups with sufficient tags are labeled as potential popular groups, which may

include popular categories or have no popular categories (when a certain number of unpopular

categories contribute adequate number of tags). Our algorithm continues to shuffle all categories

into different groups and apply the TCS tests to the new groups again. This process is repeated

for a prescribed number of rounds and in the end, the testing history is able to reveal all popular

categories.

The details of our protocol are illustrated in Algorithm 18. The whole process consists ofT

rounds (line 3) and in each round all tags are distributed into W groups by a hash function h(r,C),

214

Algorithm 18 Group Testing
1: Run Q to obtain fi

2: Calculate parameters T, W, j, !t, and !2

3: fork= 1 toT do

4: for g = 0 to W - 1 do

5: Reader broadcasts a random seed rb W, and g

6: Tag tj stays active if hw(rk,cj) = g

7: M[k, g] = TCS(f, !t, r2)

8: end for

9: end for

10: forCi ECdo

11: check=true

12: for k = 1 to T do

13: if (notM[k,hw(rk,Ci)]) then

14: check=false

15: end if

16: end for

17: if check then

19: end if

20: end for

21: return R

215

where r is a random seed and C is a category ID. A tag t j is in group g if hw (r, c j) = g (recall

hw(r,cj) denotes h(r,cj) mod W). We use a different random seed to shuffle the categories in

each round. Thus, Algorithm 18 totally generates T random seeds, denoted by {r1, r2 , ... , ry }.

Throughout the algorithm, all tags form T x W groups, labeled as G(k, g) for k E [1, T] and g E

[0, W -1], such that

In the rest of this chapter, we use IG(k,g)l to denote the number of the tags whose category IDs

belong to G(k,g). In round k, the reader broadcasts rk. W, and g (line 5) to select the RFID tags

mapping to group G(k, g). We then run TCS(f, 'rt, 'r2) to examine the number of RFID tags in

G(k,g). We record the results in a matrix M: M[k,g] =true means that there might be popular

categories in group G(k,g). Otherwise, if M[k,g] =false, all the categories in G(k,g) are consid-

ered as unpopular categories. Thus, as shown in lines 8-15, a category will be returned, only if the

group it belongs to in every round passes the test. Fig. 6.1 illustrates an example of group testing

with 10 categories.

W=4

0(1,1) 0(1,2)

~ ~ (c4 c1 c9J 6

[;]
0(2,1)

~
[C1 C2CsC9 J II

E-i
7 0

~
0(3,1) 0(3,2) 0(3,3)

9 [C2 C3 Cs c6 J CJ
0Pass 0Fail

Figure 6.1: There are 10 category IDs, with parameters W = 4 and T = 3. Based on the test results, c, and
c4 will be returned as popular categories.

In the following, we show how to choose these parameters to minimize the scanning time

216

while the constraints are satisfied. Theorem 6.4 and Theorem 6.5 give the conditions that provide

the probabilistic guarantee for the completeness constraint and population constraint (stated in

Section 3) respectively. Theorem 6.6 expresses the scanning time by the parameters. Combining

them, we can find the optimal parameters with the minimum scanning time while satisfying the

two constraints.

Specify the constraints: Since TCS is probabilistic and group testing is essentially a ran-

domized algorithm, a popular category may be filtered out of the resulting set and an unpopular

category may survive all tests and be present in R. The following two theorems specify the condi-

tions for the parameters to satisfy the accuracy constraints.

Theorem 6.4 The completeness constraint is satisfied with more than 1 - 8 probability if (1 - 8 ·

a)~ Sue(a ·nf.

Proof: Consider a popular category ci. assume ci belongs to G(k,g). Lett= IG(k,g)l ~ Fi ~

a· n. G(k,g) will pass the TCS test with probability of Pr(M[k,g] =true) = Suc(t). According to

Theorem 5.2,

Pr(M[k,g] =true)~ Sue(a ·n).

The probability that any of the T groups that Ci belongs to will fail in the TCS test is at most

1 -Sue(a· n) T ~ 8 ·a. Based on the definition of a popular category, there are at most ~ popular

categories. Thus, by union bound, the probability that no popular category is missing (all popular

categories pass all the T tests) is greater than 1 - 8 · a · ~ = 1 - 8. •
Theorem 6.5 The population constraint is satisfied with more than 1 - 8 probability if there exists

u, such that

(~ - f3 ~ n) (1 - Sue(u)) +Sue(u) f ~ 8.
W u- ·n

217

Proof: We prove the theorem by showing that for any unpopular category Ci, i.e., Fj < f3 · n, the

probability to be returned in R is less than 8. Assume in a certain round, Ci belongs to a group G

and lett= IGI. The probability that group G passes a TCS test is Suc(t). For any given u,

Suc(t) = Pr(t 2: u)Suc(t) + Pr(t < u)Suc(t)

< Pr(t 2: u) + (1- Pr(t 2: u))Suc(u).

Let X denote the number of tags in group G which do not belong to category Ci, i.e., X= t- Fj.

The expectation of X is E(X) = nvJi. According to Markov's inequality,

Therefore,

Pr(t 2: u)

Suc(t) < Pr(t 2: u)(1-Suc(u)) +Suc(u)

n-f3·n
< W(u-f3·n)(1-Suc(u))+Suc(u).

Considering T rounds of tests, Ci will be returned in R with probability of Suc(t) T < 8. •

Express the scanning time: Here we express the scanning time used in Algorithm 18. In a

simple estimation, we need test T · W groups and each test consumes one long slot and f short

slots. Thus, in total, Algorithm 18 takes T · W · (L+ f ·S). We find, however, that it is not necessary

to check all groups. In every round, we recognize some unpopular categories, thus the remaining

218

possible popular categories become fewer and fewer. If one group contains only known unpopular

categories, we can skip the TCS test for it. We analyze the scanning time in the following series of

theorems and lemmas. Theorem 6.6 bounds the expected scanning time utilizing the result from

Lemma 6.3. Lemma 6.2 is an auxiliary lemma that helps prove Lemma 6.3.

Lemma 6.2 Given a E (0, 1), x < b < n, and c ~ 1, (a+ (1-a)w~b~x)Y is a convex function of

X.

Proof: Let g = (a+ (1 -a) w ~b~x) Y. The lemma is proved if the second derivative of g is positive.

Let h = W~b~x) > 0. We have

, n-b 11 2(n-b)
h =w.(b-x)2 >O,h =w·(b-x)3 >O.

The first derivative of g is g' = c · (1 -a) · (a+ (1 -a)h y-1 h', and the second derivative is

g" =c. (1- a). (((c -1)(1- a)(a+ (1- a)hr-2h'). h' +(a+ (1- a)hr- 1h") > 0.

•
Lemma 6.3 Let mk be the expected number of possible popular categories after the k-th iteration

in line 3 of Algorithm 18 and mo = m. Given u > 0 and v $ ~~-t, then 'r/k E [1, T], mk is bounded

by

n n n-1 k
~ + (m- ~)(Suc(u) + (1-Suc(u))W(u _

1
)) .

Proof: For a category Ci, let Pi,k be the probability that Ci will still be considered as a possible

popular category after the k-th iterations, mk = LiPi,k· Similar to Theorem 6.5, for any given u,

219

We divide all categories into two sets, St = {Cdfi > v} and S2 = {CiiFi ~ v}. We have,

LPi,k L Pi,k+ L Pi,k
C;ESt C;ES2

n-F.-
< IStl+ L (Suc(u)+(1-Suc(u)) (1)t

C;ES2 W u-Fj

According to Lemma 6.2, the right side of the above inequality is a convex function of fi.

To maximize the right hand side, for each category Ci E Sz, fi takes value of either 1 or v, by

the property of a convex function. Suppose t1 = I{CdFi = v}l and tz = I{Cilfi = 1}1 when the

maximization is achieved. Therefore, "i.Pi,k is bounded by

n-v n-1
1St! +tt · (Suc(u) + (1- Suc(u))W())k + tz · (Suc(u) + (1- Suc(u)) ())k

u-v W u-1

n-1 k
=1Sd+tt+tz·(Suc(u)+(1-Suc(u)) ()) .

W u-1

Let A= (Suc(u) + (1- Suc(u)) w(;:-! 1))k ~ 1, we have

= m·A-+(1Stl+tt)·(1-A.).

Since the right side of the above inequality is an increasing function of IStl + ft (the number of

categories with no less than v tags) and IS 11 + ft is at most ~, we have

n n n-1 k
LPik~-+(m--)(Suc(u)+(1-Suc(u)) ()) .

' v v W u-1

•

220

Theorem 6.6 The expected scanning time is bounded by

T 1
ST = (L + J · S) · W · L (1 - (1 - ,---)mk-1) ,

k=1 w
(6.1)

where mk-1 is expressed by the bound derived in Lemma 6.3, replacing k with k- 1.

Proof: Let Xk be the number of groups we need check in the k-th iteration. For a certain group,

the probability that all the tags in it belong to known unpopular categories is (1 - .W)mk- 1 . Thus,

the expected value of Xk is E(Xk) = W(1- (1- .W)mk-1). Obviously, it is an increasing function

of mk_ 1• Thus, ST bounds the expected scanning time when we express it with the upper bound

ofmk-I· •

Solve the optimization problem: In summary, given a,{3,8,n and m, our problem is to

determine the values ofT, W,J, -r1 and -r2 in the following optimization problem.

minimize ST (Eq.(6.1))

s.t. (1- 8 ·a)::; Suc(a ·nf;

3u,(~-{3pn)(1-Suc(u))+Suc(u)l ::::;8.
W u- ·n

Since all these parameters are bounded integers, we can find the optimal set of parameters by

discretizing them and enumerating all possible values. The process basically includes five loops

to enumerate all possible discrete values for the five parameters. We also apply some optimization

strategy to speed up the process.

6.3.4 Tree Traversal

Group testing can be applied differently. In this sub-section, we combine group testing with

divide-and-conquer. We first divide all tags into W groups based on their category IDs and run

221

TCS for each group, which is the same as the first round in the previous solution. However, in this

scheme, we do not shuffle all categories into groups in each of the remaining rounds. We ignore

those groups that fail to pass the TCS tests and suppose there are no popular categories in them.

Each of the groups which pass the test is further divided into W sub-groups and we apply TCS

to each sub-group. This dividing process is repeated recursively until TCS test fails or there is

only one category in the group, in which case that category will be returned as a popular category.

Fig. 6.2 illustrates an example.

All Categories

Levell

Level3

Level4 0Pass 0 Fail

Figure 6.2: In this example, there are 10 categories with parameter W = 2. Based on the test results, C1
and C4 will be returned as popular categories.

Conceptually, this scheme is equivalent to a depth-first tree traversal on a W-ary tree, where

each leaf is a category and each non-leaf node represents a group of categories that appear as

leaves of the subtree rooted at it. Different from the previous scheme, this scheme uses multiple

random seeds and group indices to define a group. For example, a node at level 1 (a direct child

of the root) is defined by a pair composed of a random seed and a group index as in the previous

scheme. However, to select a group represented by a level 2 node, we need first select the tags

belonging to its parent node, and then divide them into W sub-groups by another random seed.

Thus, we need two pairs of random seeds and group indices to define a level 2 node. Inductively,

222

for a node at levell, the group it represents is defined by l pairs of random seeds and group indices.

Thus, we denote a node by a vector of random seeds {rk} and a vector of group indices { vk},

Since passive RFID tags are memoryless devices, when visiting a node on the tree, the reader has

to provide all random seeds and group indices to select the corresponding group. Algorithm 19

presents the details of traversing a node. The first call is to traverse the root (level 0), where both

{rk} and { vk} are empty.

Algorithm 19 Traverse Node ({rk}, { vk}) at Levell
1: for k = 1 to l do

2: Reader broadcasts W, vk, and rk

3: Each tag fj stays active if hw(rk,cj) = vk

4: end for

5: if TCS(f, 't"t, 't"2) =true then

6: Reader generates a new random seed r

7: for v = 0 to W - 1 do

8: Traverse Node ({rk}U{r},{vk}U{v}).

9: end for

10: end if

Specify the constraints: Similar to the previous sub-section, the following Theorem 6. 7 and

Theorem 6.8 give the conditions that guarantee the completeness constraint and population con-

straint. Lemma 6.4 is needed by the proof of Theorem 6. 7.

Lemma 6.4 Consider a leaf node at Ievell. Given u ;:::: 1,

1
Pr(l::; u) = (1- wJm- 1

•

223

Proof: For a certain category Ci, the probability that a different category falls in the same group at

Ievell is ~~ . The probability that none of the other m - 1 categories share the same hashed values

•
Theorem 6. 7 The completeness constraint is satisfied with more than 1 - 8 probability if there

exists u, such that

Proof: Assume a popular category is represented by a leaf node at level/. It must pass l TCS

tests to be returned, which has a probability of at least Sue(a · n)1• Given a parameter u ;:::: 1, the

probability that a popular category will be returned is more than Pr(I ::; u) ·Sue(a · n) u. Applying

Lemma 6.4 and union bound, this theorem can guarantee the ;tccuracy requirement. •
Theorem 6.8 The population constraint is satisfied with more than 1 - 8 probability if Suc(/3 ·

n) < 8.

Proof: Any returned category in this scheme must pass the test as a leaf node, i.e., without tags in

any other category in the same group. Therefore, Suc(/3 · n) < 8 guarantees that with more than

1 - 8 probability, an unpopular category will not pass the test by its own. •
Express the scanning time: In this tree traversing process, when visiting a node at level/, we

need /long slots to transmit the random seeds and group indices which define the node. Then we

need f short slots for each TCS test. Theorem 6.9 bounds the expected scanning time.

224

Theorem 6.9 Given u, the expected scanning time of the tree traversal scheme is bounded by

logwm-1 n 1 n
ST=W· L ((l+1)·L+f·S)·(-+(W --)Suc(u)).

1=0 u u
(6.2)

Proof: Assume a node i is at Ievell + 1. Let Ni be the number of tags whose category IDs belong

to the group represented by i. The probability that i is visited is less than Suc(Nj), where j is i's

parent at Ievell.

Let us consider a balanced W-ary tree, with W1 nodes at Ievell. The expected number of nodes

visited at Ievell + 1 is at most W · LjSuc(Nj)· According to Theorem 6.3

n 1 n
L,Suc(Nj) ::; - + (W --)Suc(u).

u u

Visiting node i requires l + 1 long slots for the reader to broadcast random numbers and group

indices and f short slots for the TCS test. Thus, considering all levels, the expected scanning time

is bounded by ST. •
Therefore, our goal is to find the optimal parameters to

minimize ST (Eq.(6.2))

s.t. :Ju 1- (1- -
1
-)m-Isuc(a ·n)u < 8 ·a· ' wu - '

Suc({3 ·n) < 8.

Similar to the previous scheme, all the involved parameters are integers and bounded. Thus, we

are able to enumerate all possible values and find the optimal parameters.

225

6.3.5 Extension

6.3.5.1 Without Knowledge of C

All previous solutions are based on the assumption that the set of present category IDs is known.

In fact, with minor modifications, our schemes are also suitable for the scenario where category

IDs are unknown.

Obtain m: In our schemes, m is an important factor in setting other parameters. In this

extension, our first step is to use n to estimate m. We can let the reader send a random seed r and

a frame size f as usual and have each tag fj respond at slot ht(r,cj)· In this way, all the tags in a

group will reply at the same slot, acting as a single tag. Thus, we can count the number of empty

slots and use n to estimate the number of distinct categories.

Group Testing: If we use group testing, the analysis of the scanning time will be different.

Without the category ID information, we have to exam all T · W group. We can easily find the

optimal parameter setting with this modified objective. For each group that passes a TCS test, we

need use a simple query tree scheme to find the category IDs in the group. For each category ID,

we check the other groups it belongs to. If all of them pass the tests, we return this category as a

popular category.

Tree Traversal: We can also use the tree traversal scheme in this extension. Without the

category ID information, however, we have to determine if the traversing process reaches leaf

nodes. An effective way is to observe the number of empty sub-groups of a node. If all sub

groups but one are empty, then with more than 1 - -J, probability, the node is a leaf node. If this

scenario has occurred for several times (k times) while we keep dividing the non-empty sub-group,

then with probability more than 1 - ~k, the node is a leaf node. With a heuristic value of k, we

can confirm a leaf node with high probability in this means. After locating a leaf node, we can

226

easily obtain the category ID by using a prefix mask to query each bit. Assume the category ID is

represented by B bits. We can locate it in B slots.

6.3.5.2 Continuous Monitoring

A unique advantage of group testing method is that it can be used for continuous online popular

categories discovery. For example, in a shipping port monitoring system, goods may come through

the monitoring gate in bulk and bursty fashion, or in a large warehouse, a reader cannot reach all

the tags in stock. In both scenarios, finding the popular categories is different from the case that all

tags are within the range of a reader, in which case the tag information can be retrieved any time.

Group testing approach can conform to this dynamic environment so that the popular categories

can be found by only estimating the number of tags that fall in each of the predetermined number

of groups. Our algorithm can be slightly modified to suit this case.

6.4 Performance Evaluation

We evaluate the performance of our schemes via simulations. By default, we set n = 10000,

m = 100, a= 0.1, f3 = 0.05, and 8 = 0.01. In addition, IO(a,b)l is estimated as 2000 short slots

for a= 0.99 and b = 0.05% according to [83], and we assume that the duration of a long slot is

5 times that of a short slot, i.e., L = 5S. For the rest of the evaluation, we denote group testing

with TCS as GT, and tree traversal with TCS as TT. All results are the averaged results of 1000

independent trials.

227

6.4.1 Distribution Models for Data Sets

The performance of our schemes is heavily dependent on the product distribution in all categories.

The following distribution models are considered in our evaluation.

• Uniform Distribution: In this distribution, we intentionally introduce some popular cate-

gories, and uniformly distribute the remaining tags to the other unpopular categories. We

use UD(k) to denote the uniform distribution with exactly k popular categories. For this

distribution, each popular category is assigned a · n tags, and other m - k categories have

• Max/1 Distribution: We denote this distribution as M1 (X), where X is the maximum number

of tags in one category. In this distribution, each category has either X tags or only 1 tag.

Since the total number of tags is n, there are L~-=-~ J categories with X tags and m- l~-=-~ J

categories with 1 tag.

• Zipf Distribution: We also consider the Zipf distribution, which is commonly found in the

real world. This distribution, denoted as ZD(n,Z), is specified by two parameters. The first

parameter is the total number of tags and the second parameter Z defines the upper bound

of the population for each category, i.e., the number of tags in each category ranges from

1 to Z. For each category, the probability of having i E [1,Z] tags is fe. where c is the

normalization constant and 8 characterizes the distribution. In our data set ZD(n,Z), we

tune the value of 8 such that the total number of tags is n.

228

6.4.2 Alternative Solutions

6.4.2.1 Simple Solutions

We begin with presenting the performance of the simple solutions mentioned in Section 6.3.1.

For the first identification scheme, we conduct 1000 simulations with an initial frame size f =

10000. At the end of each frame, the new frame size is set to the number of the tags which

have not been collected. With the default setting, the time consumed in our simulations is about

122k short slots on average and the deviation is less than 2k short slots. For the other simple

scheme (Algorithm 15), the scanning time is estimated based on !O! = 2000. Checking each

category needs 2000 short slots to finish n. Thus, with the default setting, Algorithm 15 requires

100 x 2000 = 200k short slots. These two simple solutions are both very costly, as we will show

later when comparing with our schemes.

6.4.2.2 Sampling Scheme

In the sampling scheme, we collect all IDs from every sample RFID tags. Thus, similar to the

identification scheme, the scanning time of the sampling scheme is proportional to the sample

size. For example, with our default setting of n = 10000, if the sample size is 10%, i.e., 1000

RFID tags, the scanning time will be roughly 10% of 122k short slots. Therefore, if the sample

size is small, the sampling scheme can be very efficient.

Uniform Distribution

0.8

0.2

0
0123456789

Number of Popular Categories

Max/1 Distribution

0.15

Figure 6.3: The accuracy of the sampling.scheme with different product distribution. Sample size is set to
10% · n, 20% · n, and 50% · n.

229

However, the major problem of the sampling scheme is the accuracy. When using a small

sample size, the sampling scheme can hardly guarantee the accuracy. It may miss some popular

categories with more than a · n tags and report some categories with less than f3 · n tags. Fig. 6.3

illustrates the accuracy of the sampling scheme under different workloads. We conducted 1000

tests for each parameter setting, and the accuracy represents the percentage of correct results.

As we can see, the sampling scheme is extremely sensitive to the product distribution and its

accuracy dramatically vary with different parameters. Even with a sample size of 50% of all tags,

the sampling scheme still cannot guarantee a high accuracy as our schemes. In practice, therefore,

the sampling scheme may not be a feasible alternative to accurately finding popular items.

6.4.3 Scanning Time

6.4.3.1 Varying Number of Tags

We first evaluate our schemes by varying the number of RFID tags n. Fig. 6.4, Fig. 6.5 and

Fig. 6.6 present the performance of GT and TT under the uniform, Max/1 and Zipf distributions

respectively.

We observe that, when n increases, TCS tests in both GT and TT require larger frame sizes.

This is because the number of tags involved in TCS test cases for GT and TT increases, i.e., each

group in GT and each node in TT contain more tags. It is intuitive that, for TCS to achieve the

same accuracy, a test case with more tags requires a larger frame size. If the frame size remains

the same, the increased number of tags will overwhelm most slots in the frame with collisions

engendering an inaccurate estimation.

Under the uniform distribution (Fig. 6.4), the average number of tags in one category (< 15)

is far less than the threshold (a· n = 500, 1000 and 1500). Both schemes can efficiently identify

Group Testing

--n=5k
---<>-n=10k
-<>--n=15k

2 4 6 8
Number of Popular Categories

1l
§ 0.5
2

Tree Traversal

-
---n=5k
---e- n=1 Ok
-a-n=15k

2 4 6 8
Number of Popular Categories

Figure 6.4: Scanning time for the uniform distribution with varying n

230

the groups with popular categories. In the GT scheme, the scanning time is approximately pro-

portional to the number of popular categories. However, the scanning time of the TT scheme does

not change much along axis x. In both schemes, a larger n yields more scanning time primarily

because of the increase of the frame size in TCS.

4

2
_
5

x 10 Group Testing

OL-----------~--------~
0.05 0.1 0.15

Maximum Value (X/n)
c?.o5

Tree Traversal

---n=5k
o--n=10k

-a-n=15k

0.1
Maximum Value (X/n)

0.15

Figure 6.5: Scanning time for the Ml distribution with varying n

For the Ml (X) distribution (Fig. 6.5), we vary the maximum value X from 0.05n to 0.15n. Let

us call a category with X tags a large category, and a group containing at least 1 large category a

large group. Basically, a large group has a higher probability to pass the TCS tests. The value of

X has two impacts on the performance. On the one hand, the growth of X increases the probability

that a large group can pass the TCS tests. The consequence is that we have to apply more TCS tests

to eliminate the unpopular categories. On the other hand, when X increases, there are fewer large

231

categories and groups in the protocol, which helps filter out the unpopular categories quickly. In

Fig. 6.5, both schemes are fast at the starting phase, because when X is small, all categories (even

large categories) are unpopular and every group has a small probability to pass the TCS tests.

Thus, both schemes quickly eliminate all categories and return no popular category. When X

grows, the first impact becomes visible, and a sharp increase appears for both schemes, though the

peak values are reached at different values of X. We also observe there is a slight decline for GT

before the peak value because of the second impact. When X keeps increasing, the second impact

becomes dominant and both schemes show a decreasing scanning time after the peak values. For

a fixed value of X jn, the scanning time is nearly proportional ton.

Fig. 6.6 presents the performance under the Zipf distribution. In our data sets, there are usually

one or two popular categories. Most categories are unpopular with the number of tags scattered

between 1 and a· n. Since a considerable number of unpopular categories have tags close to the

threshold, our schemes take more time to identify them as unpopular compared to the uniform

distribution (UD(1) or UD(2)), in which the sizes of the unpopular and popular categories diverge

dramatically.

"' .2 1 en
t::
0
.t: en
0
(j)
.c
E
::I z

O ZD{5k,1k) ZD{10k,1.5k) ZD{15k,2k)
Zipf Distribution

Figure 6.6: Scanning time for the Zipf distri
bution with varying n

"' 0
(i5 1.5
t::
0
.t: en 1
0
(j)
.c
§ 0.5
z

Figure 6.7: Scanning time for the Zipf distri
bution with varying m

232

6.4.3.2 Varying Number of Categories

We also evaluate the performance of the GT and TT schemes with a varying number of categories

m. The results are illustrated in Fig. 6.8, Fig. 6.9 and Fig. 6.7.

In Fig. 6.8 and Fig. 6.9, we find that with other parameters fixed, the scanning time is increas-

ing when m increases. However, the curves form= 500 and m = 1000 are quite close. In Fig. 6.7,

the performance of TT for varying m is almost the same, and the scanning time of GT is slightly

increased when m increases.

Group Testing Tree Traversal

---m=100
~ 2.5 -<>-- m=500
u; --e-m=1k

!.: ~~~
il 1 p _.,r
E "yz-~~

~ 0.5

0o 2 4 6 8
0o 2 4 6 8

Number of Popular Categories (k) Number of Popular Categories (k)

Figure 6.8: Scanning time for the uniform distribution with varying m

In all three distributions, the number of popular categories in each tested case is primarily

determined by other parameters rather than m. Thus, with all other parameters fixed, the case with

a larger m has almost the same number of popular categories and more unpopular categories which

have to be filtered out. Thus, our schemes need run more TCS tests to identify these unpopular

categories. However, unlike n, the impact of m is not proportional to the value of m.

6.4.3.3 Comparing to Simple Solutions

Both GT and TT are very efficient in finding the popular categories. Recall that simple solutions

in Section 6.3.1 need at least 122k short slots with our default setting. We use 122k as a baseline to

Group Testing

OL-----------~--------~
0.05 0.1 0.15

Maximum Value (X/n)
0~05

Tree Traversal

0.1
Maximum Value (X/n)

Figure 6.9: Scanning time for the Ml distribution with varying m

233

0.15

compare with our schemes. In most of the tested cases, the scanning time of our schemes with the

default setting is less than 15k short slots, which is about 12% of the baseline. In the scenario that

only a few popular categories exist, e.g., UD(1), UD(2), our schemes only require < 4% of the

baseline to finish. We also observe that the group testing scheme is superior to the tree traversal

scheme in most cases, especially when the number of tags in some unpopular categories is close

to the threshold.

6.4.4 Tightness of Bounds

Our analysis in Theorem 6.5 uses Markov inequality, a loose bound that holds for arbitrary random

variables. Theorem 6.5 is further referred in Lemma 6.3 and Theorem 6.6 to derive a upper bound

of the expected scanning time. Thus, inherently the bound in Theorem 6.6 is relatively loose for

any specific case. To understand how well the theoretical bound matches the reality, we compare

our estimated scanning time with the simulation results in this subsection.

In the default setting, our algorithm estimates that the expected scanning time of the GT

scheme is fewer than 14516 short slots. We compare this estimation with the results (mean scan-

ning time) found in our simulations in the following table. For each distribution, we select the

worst observed performance. According to the results, our estimation is very close to the actual

234

performance (the worst case is UD(9) with 12734 short slots).

Our Bound UD Ml ZD

Number of short slots 14516 12734 11615 9196

6.4.5 Other Issues

This subsection covers the discussions on some other issues:

1. Accuracy requirements: In all our simulations, both the completeness constraint and pop

ulation constraint always hold with more than 1 - 8 probability.

2. Other varying parameters: When examining the scanning time, we also vary the param

eters a and {3, and find two basic trends. First, if a and {3 become closer, our schemes

need more time to find popular categories. Second, if we keep their difference constantly,

increasing one of them reduces the scanning time.

3. Compare TCS with Q: Group testing can also be combined with algorithm n, because Q

obtains more accurate estimation than our TCS test. However, in the tested cases, the frame

size for TCS is between 115 to 247 slots, much less than 101 = 2000. Based on the results

in [37], group testing with n will use smaller parameters T and W. The scanning time,

however, is still much larger than that in our schemes with TCS.

6.5 Summary

In this chapter, we have discussed a data mining query of finding popular categories in RFID

systems. It is difficult for weak devices like RFID tags to efficiently respond to such a complicated

query because of the lack of processing and coordinating ability. Similar to our work in Chapter 4,

we have adopted randomized algorithm in our solution. Combined with group testing technique,

235

we have proposed efficient protocols to reply to this complicated query. This work includes several

novel means of analyzing the accuracy of the results and the scanning time, which can be applied

to other similar problems. More importantly, the combination of randomized algorithm and group

testing has been first introduced to accomplish complicated tasks in RFID systems.

Chapter 7

Conclusions and Future Work

This chapter concludes the dissertation by summarizing the contributions and proposing several

future research directions.

7.1 Contributions

When Mark Weiser first introduced the concept of pervasive computing in the early 1990s, he was

describing computers on pens or pads, and imaging a room with hundreds of wireless computing

devices. Around twenty years later, technology has already caught up with his description and

gone further towards his imagination. Computer hardware has evolved over the years, becoming

more powerful, less expensive and smaller. The most importantly, computers have been pervasive

devices in our daily life. Consumer electronics such as PDA, cell phone, media player, and calcu

lator, are carried by people all the time. A lot more computing devices are weaved in our working

and living space. For example, the modem kitchen appliances are configured by computer chips.

Sensors are deployed to monitor machine status in a factory, the structural conditions on a bridge,

and to detect wide fire in a forest. Computer-based medical devices have been equipped to help

236

237

health care. Many more pervasive computing devices and applications are being developed every

day. Following this trend of development, we are substantially moving closer to the new era of

pervasive computing referring to 'many computers per person'.

Besides the hardware devices, pervasive computing applications heavily rely on a wireless

infrastructure that connects all the devices and delivers various useful data information. This in

frastructure transparently links pervasive computing devices with each other and serves the upper

application layer with the requested data across the whole environment. For designing such a

wireless infrastructure, the most fundamental goal is to achieve efficiency, in particular, to save

energy and time consumption in data provision. Most of pervasive computing devices are powered

by batteries and saving energy is critical for prolonging their life time for service. Quick response

to a query is also a highly desirable feature for pervasive computing applications, especially those

with real-time requirements.

Designing an efficient wireless infrastructure, however, is challenging because of the hardware

limitations. In practice, most pervasive computing devices are inexpensive, but weak in ability.

There is a big gap between pervasive computing devices and regular computers in terms of all

computation and communication resources. With this characteristic, many existing approaches

designed for traditional computer systems can hardly be applied in pervasive computing environ

ments. In addition, researchers encounter new problems and challenges that have never occurred

in regular computer systems.

The main contribution of this dissertation is to solve critical efficiency problems in designing

the wireless infrastructure and to explore appropriate methodologies for achieving efficiency with

weak pervasive computing devices. This dissertation has investigated two representative infras

tructures, sensor networks and RFID systems, both of which generate a large amount of data in

238

applications. To achieve efficiency, we have presented novel techniques for organizing network

architecture and optimizing query protocols. Specifically, we have designed optimal algorithms

for deploying storage sites in a sensor network and we have proposed efficient protocols for basic

and complicated queries in sensor networks and RFID systems. We have developed solutions to

address these representative and important problems in designing the wireless infrastructure.

First, we have proposed a novel two-tiered hybrid sensor network with special storage nodes

to support in-network storage model and reduce the energy cost. In this storage model, we have

worked on the problem of determining the locations of storage nodes, which is critical to the

energy efficiency. Two practical models are considered, fixed tree model and dynamic tree model.

We have developed optimal algorithms for the first model and an approximation algorithm for the

second one. In addition, our work has presented performance analysis for a common practice of

random deployment in both models.

Second, we have developed efficient protocols for two basic queries, range query in sensor

networks and continuous scans in RFID systems. We have presented the first solution to provide

security and privacy protection in range query. Particularly, we have developed a privacy pre

serving storage scheme and a range query protocol that enables the sink to verify the reply to the

query. Our solutions satisfy the given security requirements with the minimum energy overhead.

Additionally, we have proposed the first solution to launch continuous multiple scans in RFID

systems without collecting all IDs in each scan. The key idea is to apply randomized algorithm

to identify and avoid collecting the redundant RFID tags that have been previously gathered. We

have discussed continuous scans in spatial and temporal domains and developed efficient solutions

for both scenarios.

Finally, we have investigated complicated data mining queries in pervasive computing envi-

239

ronments. We have first designed efficient outlier detection algorithms in sensor networks based

on histogram information. The basic idea is to collect small-sized histogram and apply analysis

on it to filter unnecessary data transmission. In addition, we have developed the first protocol to

efficiently find popular categories in an RFID system. Our solution includes a quick protocol for

estimating the number of RFID tags based on randomized algorithm and a group testing scheme

combined with the estimation protocol. The intuition is still to avoid collecting all RFID tags when

responding to this complicated query.

7.2 Future Work

Following the work in this dissertation, there are several clear directions for future work. We start

with two general directions and propose some particular problems later.

• Complex data formats: While demonstrating the methodology and design principles for

addressing efficiency issue, this dissertation mainly considers simple data format, e.g., sin

gle dimensional sensor data and one RFID tag per item. In practice, some applications

involve more complicated data formats. For example, sensors may measure data with mul

tiple attributes and in an RFID system, each item may contain several tags. This reflects

more complex problem settings for the topics discussed in the dissertation. For example,

the range query may contain several value ranges each for a data attribute, outliers may be

defined in the basis of multiple dimensional data, and categories in RFID systems may be

classified by the combined information from several tags in an item. All these new settings

raise new challenges and issues. Our work in this dissertation can be extended to solve some

of the new problems. For the others, we need to explore new solutions.

240

• System implementations: Most of this dissertation focuses on theoretical and algorithmic

design. It is a natural enhancement to consider system implementations in the future work

which imply two aspects of efforts. First, we need to consider complete protocols that are

compatible with the current hardware and software systems. For example, our work on

sensor networks has focused on the data flow in the protocols, but ignored low level com

munication stacks such as duty-cycle MAC protocol, and packet coding and retransmission.

To develop a complete protocol considering all these factors, our work needs to be further

refined for achieving efficiency. Second, w~ need to consider practical issues for system

implementation. For example, there might be signal loss in some RFID systems, i.e., the

command from an RFID reader and the response from RFID tags cannot be successfully re

ceived. It leads to inaccurate or even misleading results in our solutions. In the future work,

we need to first model and characterize the signal loss, and then integrate it into algorithm

design as an input parameter.

Besides the above two general directions, there are some concrete new problems we can con

sider in the future work.

• Multi-tier storage in sensor networks: This is a follow-up problem from our work on

storage placement in sensor networks, where we introduced storage nodes and built a two

tier network structure. In the future development, it is likely to build a multi-tier storage

system in a sensor network, where each tier represents different storage hardware in terms

of storage capacity, hardware cost and other functionalities. The applications benefit from

this multi-tier structure by carefully assigning diverse data on these storage sites. Sensor

data may have different types/sizes, e.g., small single-value data vs. large media data. Some

data may be frequently queried while others may not. Some data may be more important

241

and some may be out-dated. Considering the diversity of sensor data, it is more appropriate

to utilize a multi-tier storage system than a two-tier system. In this problem, the location

of each storage site in each tier is still important to the efficiency performance. We are

interested in investigating the storage placement problem in this direction.

• Continuous /local outlier detection in sensor networks: The outlier detection protocols

in this dissertation only consider one-time detection. In practice, some applications need to

continuously monitor the outlier data. To solve this problem, we can periodically launch our

one-time detection protocols. However, it is inefficient to start from scratch every time be

cause there might be minor change on the outlier data and histogram information compared

to the previous runs. The better solution should utilize all available information from the

last run and focus on the new data since then to identify new outliers or the existing outliers

which are no longer abnormal. In addition, this dissertation has solved outlier detection

with a global setting, i.e., all data form the target data set. However, some applications are

interested in local outliers, i.e., the outliers are defined by the sensor data within a physi

cal region. For example, if a sensor network is deployed to monitor the temperature in a

building. Most of the rooms are kept in 75F. But one room's is configured to control the

temperature at 68F. If a sensor in that special room reports a temperature reading of 75F, it

is normal if we consider the global data set. However, when comparing to the readings from

local sensors nearby, it becomes a outlier data. In practice, there is often no clear boundary

for defining the desired region, e.g., in an open field. It is challenging and interesting to

gradually expand the target set of sensors to identify a meaningful region and detect the

outlier data at the same time.

242

• Efficiently identify a group of items in RFID systems with security requirements: This

problem is about how an RFID reader can determine whether the RFID tags in the reading

range contain a certain group of IDs. In the traditional solution, the reader broadcasts each

ID in the group one by one and the tags matching the IDs will respond. By gathering the

responses, the reader is able to determine the result. This solution, however, is not secure in

a hostile environment because the adversary can easily eavesdrop the tag IDs. In the future

work, we are looking for a solution based on randomized algorithm. The basic intuition is

that since we are aware of the group of IDs, we can deterministically predict their responding

behaviors (i.e., how to choose slot to reply) if they are present. Therefore, we may seek a

certain pattern from all the slots to identify the group. However, the challenge is that we

need to consider other tags in the reading range that may introduce noises to obstruct the

solution.

7.3 Final Remarks

This dissertation focuses on the critical efficiency problems, particularly time efficiency and en

ergy efficiency, in building wireless infrastructures for pervasive computing environments. In a

general framework, we have found a system can be more efficient by a better strategy of organizing

the underlying network architecture. We have proposed a new hybrid structure for sensor networks

with special storage nodes and developed optimal algorithms for placing storage nodes to improve

efficiency. In addition, we have realized that each particular query ought to be treated differently

with a specially designed protocol in order to achieve more efficiency. We have investigated rep

resentative basic queries and data mining queries in sensor networks and RFID systems. For basic

queries, this dissertation enhances the prior work by considering more practical problem settings.

243

In particular, we have shown for a sensor network with multiple objectives besides efficiency, how

to design a query protocol to strike the tradeoff between them. We have further identified that

the prior work on the basic query in RFID systems is inefficient in realistic scenarios. Using ran

domized algorithm, we have developed compatible RFID protocols for the basic query with much

reduced scanning time. Finally, this dissertation has explored data mining queries which are use

ful in applications, but rarely discussed in pervasive computing environments. According to the

different characteristics of sensors and RFID tags, we have demonstrated different techniques to

efficiently process data mining queries. In sensor networks, we have proposed multiple round pro

tocols that gradually collect coarse but small-sized information with corresponding analysis. With

a careful design, it is an efficient way to handle complicated queries by filtering out redundancy

and unnecessary data transmissions. In RFID systems, we have found that randomized algorithm

is also an appropriate tool to deal with data mining queries. Combining with other techniques

such as probability analysis, group testing, and combinational optimization, we have developed

protocols that work with weak RFID tags to efficiently respond to the complicated data mining

query.

Bibliography

[1] GLPK (GNU Linear Programming Kit), available [online]
http://www.gnu.org/software/glpk/glpk.html.

[2] Intel Lab Data, avilable [online] http://berkeley.intel-research.net/labdata/, April 2004.

[3) KAREN AARDAL, F. A. CHUDAK, AND DAVID B. SHMOYS. A 3-approximation al
gorithm for the k-level uncapacitated facility location problem. Inf. Process. Lett., 72(5-
6):161-167, 1999.

[4] N. ABRAMSON. The ALOHA system- another alternative for computer communications.
In Proceedings of the AFIPS Conference, volume 37, pages 295-298, 1970.

[5] ALEXANDER A. AGEEV. Improved approximation algorithms for multilevel facility lo
cation problems. In APPROX '02: Proceedings of the 5th International Workshop on Ap
proximation Algorithms for Combinatorial Optimization, pages 5-13, London, UK, 2002.
Springer-Verlag.

[6] C. AGGARWAL AND S. Yu. An effective and efficient algorithm for high-dimensional
outlier detection. The VLDB Journal, 14(2):211-221, 2005.

[7] CHARU C. AGGARWAL. Re-designing distance functions and distance-based applications
for high dimensional data. SIGMOD Rec., 30(1):13-18, 2001.

[8) CHARU C. AGGARWAL AND PHILIPS. YU. Outlier detection for high dimensional data.
In Proceedings of the 200I ACM SIGMOD International Conference on Management of
Data, pages 37-46, New York, NY, USA, 2001. ACM Press.

[9) DAKSHI AGRAWAL AND CHARU C. AGGARWAL. On the design and quantification of pri
vacy preserving data mining algorithms. In Symposium on Principles of Database Systems,
2001.

[10) RAKESH AGRAWAL, ALEXANDRE EVFIMIEVSKI, AND RAMAKRISHNAN SRIKANT. In
formation sharing across private databases. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages 86-97, New York, NY, USA,
2003. ACM Press.

[11) RAKESH AGRAWAL, JERRY KIERNAN, RAMAKRISHNAN SRIKANT, AND YIRONG XU.
Order preserving encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 563-574, New York, NY, USA,
2004. ACM Press.

244

http://www.gnu.org/software/glpk/glpk.html
http://berkeley.intel-research.net/labdata/

245

[12] RAKESH AGRAWAL, RAMAKRISHNAN SRIKANT, AND DILYS THOMAS. Privacy pre
serving OLAP. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, pages 251-262, New York, NY, USA, 2005. ACM Press.

[13] JOON AHN AND BHASKAR KRISHNAMACHARI. Fundamental scaling laws for energy
efficient storage and querying in wireless sensor networks. In MobiHoc '06: Proceedings
of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pages 334-343, New York, NY, USA, 2006. ACM Press.

[14] SANJEEV ARORA, PRABHAKAR RAGHAVAN, AND SATISH RAO. Approximation
schemes for euclidean k-medians and related problems. In STOC '98: Proceedings of
the thirtieth annual ACM symposium on Theory of computing, pages 106-113, New York,
NY, USA, 1998. ACM Press.

[15] VIJAY ARYA, NAVEEN GARG, ROHIT KHANDEKAR, KAMESH MUNAGALA, AND
VINAYAKA PANDIT. Local search heuristic fork-median and facility location problems. In
STOC 'OJ: Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 21-29, New York, NY, USA, 2001. ACM Press.

[16] F. BACCELLI, M. KLEIN, M. LEBOURGES, AND S. ZUYEV. Stochastic geometry and
architecture of communication networks. J. Telecommunication Systems, 7:209-227, 1997.

[17] FRANCOIS BACCELLI AND SERGEI ZUYEV. Poisson-Voronoi spanning trees with appli
cations to the optimization of communication networks. Operations Research, 47(4):619-
631, 1999.

[18] SEUNG }UN BAEK, GUSTAVO DE VECIANA, AND XUN SU. Minimizing energy consump
tion in large-scale sensor networks through distributed data compression and hierarchical
aggregation. IEEE JSAC Special Issue on Fundamental Peiformance Limits of Wireless
Sensor Networks, 22(6): 1130-1140, August 2004.

[19] STEPHEN D. BAY AND MARK SCHWABACHER. Mining distance-based outliers in near
linear time with randomization and a simple pruning rule. In KDD '03: Proceedings of the
ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 29-38, New York, NY, USA, 2003. ACM Press.

[20] SAGNIK BHATTACHARYA, HYUNG KIM, SHASHI PRABH, AND TAREK ABDELZAHER.
Energy-conserving data placement and asynchronous multicast in wireless sensor networks.
In Proceedings of the 1st International Conference on Mobile Systems, Applications and
Services, pages 173-185, New York, NY, USA, 2003. ACM Press.

[21] BORIS JAN BONFILS AND PHILIPPE BONNET. Adaptive and decentralized operator place
ment for in-network query processing. In IPSN '03: Proceedings of Information Processing
in Sensor Networks, 2003.

[22] PHILIPPE BONNET, JOHANNES GEHRKE, AND PRAVEEN SESHADRI. Towards sensor
database systems. In Proceedings of the Second International Conference on Mobile Data
Management (MDM 'OJ), pages 3-14, London, UK, 2001. Springer-Verlag.

246

[23] FLAVIO BONOMI, MICHAEL MITZENMACHER, RINA PANIGRAH, SUSHIL SINGH, AND
GEORGE VARGHESE. Beyond bloom filters: from approximate membership checks to
approximate state machines. SIGCOMM Comput. Commun. Rev., 36(4):315-326, 2006.

[24] MAURIZIO A. BONUCCELLI, FRANCESCA LONETTI, AND FRANCESCA MARTELLI.
Tree slotted ALOHA: a new protocol for tag identification in RFID networks. In WOW
MOM '06, 2006.

[25] JOEL BRANCH, BOLESLAW SZYMANSKI, CHRIS GIANNELLA, RAN WOLFF, AND
HILLOL KARGUPTA. In-network outlier detection in wireless sensor networks. In ICDCS
'06: Proceedings of the 26th IEEE International Conference on Distributed Computing
Systems, Lisboa, Portugal, July 2006. IEEE Computer Society.

[26] MARKUS M. BREUNIG, HANS-PETER KRIEGEL, RAYMOND T. NG, AND J6RG
SANDER. LOF: identifying density-based local outliers. In SIGMOD '00: Proceedings
of the 2000 ACM SIGMOD International Conference on Management of Data, pages 93-
104, New York, NY, USA, 2000. ACM Press.

[27] ADRIANA BUMB AND WALTER KERN. A simple dual ascent algorithm for the multilevel
facility location problem. In APPRO X 'OJ/RANDOM 'OJ: Proceedings of the 4th Interna
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
and 5th International Workshop on Randomization and Approximation Techniques in Com
puter Science, pages 55-62, London, UK, 2001. Springer-Verlag.

[28] JAE-RYONG CHA AND JAE-HYUN KIM. Novel anti-collision algorithms for fast object
identification in RFID system. In ICPADS '05, 2005.

[29] HAOWEN CHAN, ADRIAN PERRIG, AND DAWN SONG. Secure hierarchical in-network
aggregation in sensor networks. In CCS '06: Proceedings of the 13th ACM Conference
on Computer and Communications Security, pages 278-287, New York, NY, USA, 2006.
ACMPress.

[30] YAN-CHENG CHANG AND MICHAEL MITZENMACHER. Privacy preserving keyword
searches on remote encrypted data. In Proceedings of the 3rd Applied Cryptography and
Network Security, New Yrok, USA, June 2005.

[31] MOSES CHARIKAR AND SUDIPTO GUHA. Improved combinatorial algorithms for the
facility location and k-median problems. In FOCS '99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, page 378, Washington, DC, USA, 1999.
IEEE Computer Society.

[32] MOSES CHARIKAR, SUDIPTO GUHA, EVA TARDOS, AND DAVID B. SHMOYS. A
constant-factor approximation algorithm for the k-median problem (extended abstract). In
STOC '99: Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 1-10, New York, NY, USA, 1999. ACM Press.

[33] Ho-SEUNG CHOI, JAE-RYON CHA, AND JAE-HYUN KIM. Fast wireless anti-collision
algorithm in ubiquitous ID system. In Vehicular Technology Conference, pages 4589-4592,
2004.

247

[34] DAVID CHU, AMOL DESHPANDE, JOSEPH M. HELLERSTEIN, AND WEI HONG. Ap
proximate data collection in sensor networks using probabilistic models. In ICDE '06:
Proceedings of the 22nd International Conference on Data Engineering, page 48. IEEE
Computer Society, 2006.

[35] JULIA CHUZHOY AND YUVAL RABANI. Approximating k-median with non-uniform ca
pacities. In SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 952-958, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics.

[36] I. CIDON AND M. SIDI. Conflict multiplicity estimation and batch resolution algorithms.
IEEE Trans. Inf Theor., 34(1):101-110, 1988.

[37] GRAHAM CORMODE AND S. MUTHUKRISHNAN. What's hot and what's not: tracking
most frequent items dynamically. ACM Trans. Database Syst., 30(1):249-278, 2005.

[38] SWADES DE. On hop count and euclidean distance in greedy forwarding in wireless ad hoc
networks. IEEE Communication Letters, 9, 2005.

[39] ERIK D. DEMAINE, ALEJANDRO LEORTIZ, AND J. IAN MUNRO. Frequency estimation
of internet packet streams with limited space. In ESA '02, 2002.

[40] ALAN DEMERS, JOHANNES GEHRKE, RAJMOHAN RAJARAMAN, NIKI TRIGONI, AND
YONG YAO. The cougar project: a work-in-progress report. SIGMOD Rec., 32(4):53-59,
2003.

[41] PETER DESNOYERS, DEEPAK GANESAN, HUAN LI, MING LI, AND PRASHANT
SHENOY. PRESTO: A predictive storage architecture for sensor networks. In Proceed
ings of the lOth Workshop on Hot Topics in Operating Systems (BotOS X), Santa Fe, New
Mexico, June 2005.

[42] DINGZHU Du AND F. HWANG. Combinatorial Group Testing and Its Applications. World
Scientific Publishing Company, 1993.

[43] E. J. DUARTE-MELO AND M. LIU. Data-gathering wireless sensor networks: organization
and capacity. Computer Networks (COMNET), 43(4):519-537, Nov. 2003.

[44] CHENG TIEN EE, SYLVIA RATNASAMY, AND SCOTT SHENKER. Practical data-centric
storage. In Proceedings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI '06), San Jose, CA, USA, May 2006.

[45] EPCGLOBAL. Class 1 generation 2 UHF air interface protocol standard version 1.0.9.

[46] QING FANG, JIE GAO, LEONIDAS GUIBAS, VIN DE SILVA, AND LI ZHANG. GLIDER:
Gradient landmark-based distributed routing for sensor networks. In INFOCOM '05: Pro
ceedings of the 24th Conference of the IEEE Communication Society, volume 1, pages
339-350, March 2005.

[47] ABRAHAM D. FLAXMAN, ALAN M. FRIEZE, AND JUAN C. VERA. On the average
case performance of some greedy approximation algorithms for the uncapacitated facility
location problem. In STOC '05: Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pages 441-449, New York, NY, USA, 2005. ACM Press.

248

[48] CHRISTIAN FLOERKEMEIER AND MATTHIAS WILLE. Comparison of transmission
schemes for framed ALOHA based RFID protocols. In SAINT-W '06, 2006.

[49] WAI Fu FUNG, DAVID SUN, AND JOHANNES GEHRKE. COUGAR: the network is the
database. In SIGMOD '02: Proceedings of the 2002 ACM SIGMOD International Confer
ence on Management of Data, pages 621-621, New York, NY, USA, 2002. ACM Press.

[50] DEEPAK GANESAN, DEBORAH ESTRIN, AND JOHN HEIDEMANN. Dimensions: why
do we need a new data handling architecture for sensor networks? SIGCOMM Comput.
Commun. Rev., 33(1):143-148, 2003.

[51] DEEPAK GANESAN, BEN GREENSTEIN, DEBORAH ESTRIN, JOHN HEIDEMANN, AND
RAMESH GOVINDAN. Multiresolution storage and search in sensor networks. Trans. Stor
age, 1(3):277-315, 2005.

[52] DEEPAK GANESAN, BEN GREENSTEIN, DENIS PERELYUBSKIY, DEBORAH ESTRIN,
AND JOHN HEIDEMANN. An evaluation of multi-resolution storage for sensor networks. In
Proceedings of the 1st International Conference on Embedded Networked Sensor Systems,
pages 89-102, New York, NY, USA, 2003. ACM Press.

[53] JOHANNES GEHRKE AND SAMUEL MADDEN. Query processing in sensor networks. IEEE
Pervasive Computing, 03(1):46-55, 2004.

[54] ANNA C. GILBERT, SUDIPTO GUHA, PIOTR INDYK, YANNIS KOTIDIS, S. MUTHUKR
ISHNAN, AND MARTIN STRAUSS. Fast, small-space algorithms for approximate histogram
maintenance. In STOC, pages 389-398, 2002.

[55] ANNA C. GILBERT, YANNIS KOTIDIS, S. MUTHUKRISHNAN, AND MARTIN STRAUSS.
How to summarize the universe: Dynamic maintenance of quantiles. In VLDB '02, 2002.

[56] P. GOLLE, J. STADDON, AND B. WATERS. Secure conjunctive keyword search over en
crypted data. In Proceedings of the 2004 Applied Cryptography and Network Security
Conference, pages 31-45. LNCS 3089, 2004.

[57] HECTOR GONZALEZ, JIAWEI HAN, AND XIAOLEI LI. Flowcube: constructing RFID
flowcubes for multi-dimensional analysis of commodity flows. In VLDB '06, 2006.

(58] HECTOR GONZALEZ, JIAWEI HAN, AND XIAOLEI LI. Mining compressed commodity
workflows from massive RFID data sets. In CIKM '06, 2006.

[59] MICHAEL B. GREENWALD AND SANJEEV KHANNA. Power-conserving computation of
order-statistics over sensor networks. In PODS '04: Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 275-
285, New York, NY, USA, 2004. ACM Press.

[60] M. GRUTESER, G. SCHELL, A. JAIN, R. HAN, AND D. GRUNWALD. Privacy-aware
location sensor networks. In Proceedings of Workshop on Hot Topics in Operating Systems
(BotOS), 2003.

249

[61) SUDIPTO GUHA AND SAMIR KHULLER. Greedy strikes back: improved facility location
algorithms. In SODA '98: Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pages 649-657, Philadelphia, PA, USA, 1998. Society for Industrial
and Applied Mathematics.

[62] P. GUPTA AND P. R. KUMAR. The capacity of wireless networks. Information Theory,
IEEE Transactions on, 46(2):388-404, 2000.

(63] HAKAN HACIGUMUS, BALAKRISHNA R. IYER, CHEN LI, AND SHARAD MEHROTRA.
Executing SQL over encrypted data in the database service provider model. In Proceedings
of the 2002 ACM SIGMOD International Conference on Management of Data, 2002.

[64] FANG HAO, MURAL! S. KODIALAM, AND T. V. LAKSHMAN. Building high accuracy
bloom filters using partitioned hashing. In SIGMETRICS '07, 2007.

[65) WENDI HEINZELMAN, ANANTHA CHANDRAKASAN, AND HARI BALAKRISHNAN.
Energy-efficient communication protocols for wireless microsensor networks. In Proceed
ings of International Conference on System Sciences, Maui, HI, USA, Jan 2000.

[66) P. HERNANDEZ, J.D. SANDOVAL, F. PUENTE, AND F. PEREZ. Mathematical model for
a multiread anticollision protocol. In IEEE Pacific Rim Conference on Communications,
Computers and signal Processing, Aug. 2001.

[67) BIJIT HORE, SHARAD MEHROTRA, AND GENE TSUDIK. A privacy-preserving index for
range queries. In Proceedings of the 30th International Conference on Very Large Data
Bases, 2004.

[68] L. Hu AND D. EVANS. Secure aggregation for wireless networks. In Proceedings of
Workshop on Security and Assurance in Ad hoc Networks, Jan. 2003.

[69] D. HUSH AND C. WOOD. Analysis of tree algorithms for RFID arbitration. In !SIT, 1998.

[70) CHALERMEK lNTANAGONWIWAT, RAMESH GOVINDAN, AND DEBORAH ESTRIN. Di
rected diffusion: a scalable and robust communication paradigm for sensor networks. In
Proceedings of the 6th Annual International Conference on Mobile Computing and Net
working, pages 56-67, New York, NY, USA, 2000. ACM Press.

[71) CHALERMEK INTANAGONWIWAT, RAMESH GOVINDAN, DEBORAH ESTRIN, JOHN
HEIDEMANN, AND FABIO SILVA. Directed diffusion for wireless sensor networking.
IEEE/ACM Trans. Netw., 11(1):2-16, 2003.

[72) KAMAL JAIN, MOHAMMAD MAHDIAN, AND AMIN SABERI. A new greedy approach
for facility location problems. In STOC '02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 731-740, New York, NY, USA, 2002. ACM
Press.

[73) KAMAL JAIN AND VIJAY V. VAZIRANI. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and lagrangian relaxation.
J. ACM, 48(2):274-296, 2001.

250

[74] SHAWN R. JEFFERY, MINOS GAROFALAKIS, AND MICHAEL J. FRANKLIN. Adaptive
cleaning for RFID data streams. In VLDB'2006, 2006.

[75] PANDURANG KAMAT, YANYONG ZHANG, WADE TRAPPE, AND CELAL 0ZTURK. En
hancing source-location privacy in sensor network routing. In Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems, pages 599--608, Washington,
DC, USA, 2005. IEEE Computer Society.

[76] BRAD KARP AND H. T. KUNG. GPSR: greedy perimeter stateless routing for wireless
networks. In MobiCom '00: Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking, pages 243-254, New York, NY, USA, 2000. ACM
Press.

[77] RICHARD M. KARP, SCOTT SHENKER, AND CHRISTOS H. PAPADIMITRIOU. A simple
algorithm for finding frequent elements in streams and bags. ACM Trans. Database Syst.,
28(1):51-55, 2003.

[78] HYUNG SEOK KIM, TAREK F. ABDELZAHER, AND WOOK HYUN KWON. Minimum
energy asynchronous dissemination to mobile sinks in wireless sensor networks. In Pro
ceedings of the 1st International Conference on Embedded Networked Sensor Systems,
pages 193-204, New York, NY, USA, 2003. ACM Press.

[79] YOUNG-JIN KIM, RAMESH GOVINDAN, BRAD KARP, AND SCOTT SHENKER. Geo
graphic routing made practical. In Proceedings ofthe 2nd USENIX Symposium on Net
worked Systems Design and Implementation (NSDI '05), Boston, MA, USA, May 2005.

[80] EDWIN M. KNORR AND RAYMOND T. NG. Algorithms for mining distance-based outliers
in large datasets. In VLDB '98: Proceedings of the 24rd International Conference on Very
Large Data Bases, pages 392-403, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[81] EDWIN M. KNORR AND RAYMOND T. NG. Finding intensional knowledge of distance
based outliers. In VLDB '99: Proceedings of the 25th International Conference on Very
Large Data Bases, pages 211-222, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[82] M. KODIALAM, THYAGA NANDAGOPAL, AND WING CHEONG LAU. Anonymous track
ing using RFID tags. In INFOCOM '07, 2007.

[83] MURAL! KODIALAM AND THYAGA NANDAGOPAL. Fast and reliable estimation schemes
in RFID systems. In MobiCom '06, 2006.

[84] MADHUKAR R. KORUPOLU, C. GREG PLAXTON, AND RAJMOHAN RAJARAMAN. Anal
ysis of a local search heuristic for facility location problems. In SODA '98: Proceedings of
the ninth annual ACM-SIAM symposium on Discrete algorithms, pages 1-10, Philadelphia,
PA, USA, 1998. Society for Industrial and Applied Mathematics.

[85] DENIS KRIVITSKI, ASSAF SCHUSTER, AND RAN WOLFF. A local facility location algo
rithm for sensor networks. In DCOSS '05: First IEEE International Conference Distributed
Computing in Sensor Systems, pages 368-375, 2005.

251

(86] CYNTHIA KUO, MARK LUK, ROHIT NEGI, AND ADRIAN PERRIG. Message-in-a-bottle:
user-friendly and secure key deployment for sensor nodes. In SenSys '07: Proceedings of
the 5th international conference on Embedded networked sensor systems, pages 233-246,
New York, NY, USA, 2007. ACM.

(87] CHING LAW, KAYI LEE, AND KAI-YEUNG Sm. Efficient memoryless protocol for tag
identification. In Proceedings of the lth International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pages 75-84. ACM, August
2000.

(88] ALEKSANDAR LAZARE VIC AND VIPIN KUMAR. Feature bagging for outlier detection. In
KDD '05: Proceeding of the eleventh ACM SIGKDD International Conference on Knowl
edge Discovery in Data Mining, pages 157-166, New York, NY, USA, 2005. ACM Press.

[89] SU-RYUN LEE, SUNG-DON Joo, AND CHAE-WOO LEE. An enhanced dynamic framed
slotted ALOHA algorithm for RFID tag identification. In MOBIQUITOUS '05, 2005.

(90] MING LI, DEEPAK GANESAN, AND PRASHANT SHENOY. PRESTO: Feedback-driven
data management in sensor networks. In Proceedings of the 3rd USENIX Symposium on
Networked Systems Design and Implementation (NSDI '06), San Jose, CA, USA, May
2006.

(91] YUNHAO LIU, LEI CHEN, JIAN PEl, QIUXIA CHEN, AND YIYANG ZHAO. Mining
frequent trajectory patterns for activity monitoring using radio frequency tag arrays. In
PerCom '07: Proceedings of the 5th Annual IEEE International Conference on Pervasive
Computing and Communications, 2007.

(92] SAMUEL MADDEN, MICHAEL J. FRANKLIN, JOSEPH M. HELLERSTEIN, AND WEI
HONG. TAG: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Opererating
System Review, 36(SI):131-146, 2002.

(93] SAMUEL MADDEN, MICHAEL J. FRANKLIN, JOSEPH M. HELLERSTEIN, AND WEI
HONG. The design of an acquisitional query processor for sensor networks. In SIGMOD
'03: Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, pages 491-502, New York, NY, USA, 2003. ACM.

(94] SAMUEL R. MADDEN, MICHAEL J. FRANKLIN, JOSEPH M. HELLERSTEIN, AND WEI
HONG. TinyDB: an acquisitional query processing system for sensor networks. ACM Trans.
Database Syst., 30(1):122-173, 2005.

(95] GAURAV MATHUR, PETER DESNOYERS, DEEPAK GANESAN, AND PRASHANT
SHENOY. CAPSULE: An energy-optimized object storage system for memory-constrained
sensor devices. In SenSys '06: Proceedings of the 4th International Conference on Embed
ded Networked Sensor Systems, Boulder, Colorado, USA, 2006. ACM Press.

(96] GAURAV MATHUR, PETER DESNOYERS, DEEPAK GANESAN, AND PRASHANT
SHENOY. Ultra-low power data storage for sensor networks. In Proceedings of the 5th
International Conference on Information Processing in Sensor Networks, pages 374-381,
New York, NY, USA, 2006. ACM Press.

252

[97] BOB METCALFE. Steady-state analysis of a slotted and controlled ALOHA system with
blocking. SIGCOMM Comput. Commun. Rev., 5(1):24-31, 1975.

[98] A. MICIC, A. NAYAK, D. SIMPLOT-RYL, AND I. STOJMENOVIC. A hybrid randomized
protocol for RFID tag identification. In IEEE International Workshop on Next Generation
Wireless Networks, 2005.

[99] MICHAEL MITZENMACHER. Compressed bloom filters. IEEE!ACM Trans. Netw.,
10(5):604-612, 2002.

[100] J. MYUNG AND W. LEE. An adaptive memoryless tag anti-collision protocol for RFID
networks. In IEEE ICC, 2005.

[101] JIHOON MYUNG AND WONJUN LEE. Adaptive splitting protocols for RFID tag collision
arbitration. In MobiHoc '06: Proceedings of the 7th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, 2006.

[102] JAMES NEWSOME AND DAWN SONG. GEM: graph embedding for routing and data-centric
storage in sensor networks without geographic information. In SenSys '03: Proceedings of
theIst International Conference on Embedded Networked Sensor Systems, pages 76-88,
New York, NY, USA, 2003. ACM Press.

[103] NXP SEMICONDUCTORS. !-code smart label RFID tags.

[104] THEMISTOKLIS PALPANAS, DIMITRIS PAPADOPOULOS, VANA KALOGERAKI, AND
DIMITRIOS GUNOPULOS. Distributed deviation detection in sensor networks. SIGMOD
Rec., 32(4):77-82, 2003.

[105] BARTOSZ PRZYDATEK, DAWN SONG, AND ADRIAN PERRIG. SIA: secure information
aggregation in sensor networks. In Proceedings of the I st International Conference on
Embedded Networked Sensor Systems, pages 255-265, New York, NY, USA, 2003. ACM
Press.

[106] CHEN QIAN, HOILUN NGAN, AND YUNHAO LIU. Cardinality estimation for large-scale
RFID systems. In PerC om '08: Proceedings of the Sixth Annual IEEE International Confer
ence on Pervasive Computing and Communications, pages 30-39, Washington, DC, USA,
2008. IEEE Computer Society.

[107] SRIDHAR RAMASWAMY, RAJEEV RASTOGI, AND KYUSEOK SHIM. Efficient algorithms
for mining outliers from large data sets. In SIGMOD '00: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, pages 427--438, New York,
NY, USA, 2000. ACM Press.

[108] SYLVIA RATNASAMY, BRAD KARP, SCOTT SHENKER, DEBORAH ESTRIN, RAMESH
GOVINDAN, LI YIN, AND FANG YU. Data-centric storage in sensomets with GHT, a
geographic hash table. Mobile Networks and Applications, 8(4):427--442, 2003.

[109] KUI REN, WENJING LOU, KWANGJO KIM, AND ROBERT DENG. A novel privacy pre
serving authentication and access control scheme for pervasive computing environment.
IEEE Transactions on Vehicular Technology, 2006.

253

[110] F. C. SCHOUTE. Dynamic frame length ALOHA. IEEE Transactions on Communications,
31:565-568, April1983.

[111] RAHUL C SHAH, SUMIT ROY, SUSHANT JAIN, AND WAYLON BRUNETTE. Data MULEs:
Modeling a three-tier architecture for sparse sensor networks. In Proceedings of the 1st
IEEE International Workshop on Sensor Network Protocols and Applications (SPNA), An
chorage, AK, USA, May 2003.

[112] M. SHAO, S. ZHU, W. ZHANG, AND G. CAO. pDCS: Security and privacy support for
data-centric sensor networks. In INFOCOM '07: Proceedings of the 26th IEEE Interna
tional Conference on Computer Communications, Anchorage, Alaska, USA, 2007. ACM
Press.

[113] SCOTT SHENKER, SYLVIA RATNASAMY, BRAD KARP, RAMESH GOVINDAN, AND DEB
ORAH ESTRIN. Data-centric storage in sensomets. SIGCOMM Computer Communication
Review, 33(1):137-142, 2003.

[114] DAVID B. SHMOYS, E. TARDOS, AND KAREN AARDAL. Approximation algorithms for
facility location problems (extended abstract). In STOC '97: Proceedings of the twenty
ninth annual ACM symposium on Theory of computing, pages 265-274, New York, NY,
USA, 1997. ACM Press.

[115] NISHEETH SHRIVASTAVA, CHIRANJEEB BURAGOHAIN, DIVYAKANT AGRAWAL, AND
SUBHASH SURI. Medians and beyond: new aggregation techniques for sensor networks.
In SenSys '04: Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems, pages 239-249, New York, NY, USA, 2004. ACM Press.

[116] ADAM SILBERSTEIN, REBECCA BRAYNARD, CARLA ELLIS, KAMESH MUNAGALA,
AND JUN YANG. A sampling-based approach to optimizing top-k queries in sensor net
works. In ICDE '06: Proceedings of 22nd International Conference on Data Engineering.
IEEE Computer Society, 2006.

[117] ADAM SILBERSTEIN, KAMESH MUNAGALA, AND JUN YANG. Energy-efficient monitor
ing of extreme values in sensor networks. In SIGMOD '06: 2006 ACM SIGMOD Interna
tional Conference on Management of Data, Chicago, Illinois, USA, June 2006.

[118] DAWN XIAODONG SONG, DAVID WAGNER, AND ADRIAN PERRIG. Practical techniques
for searches on encrypted data. In Proceedings of the 2000 IEEE Symposium on Security
and Privacy, page 44, Washington, DC, USA, 2000. IEEE Computer Society.

[119] UTKARSH SRIVASTAVA, KAMESH MUNAGALA, AND JENNIFER WIDOM. Operator
placement for in-network stream query processing. In PODS '05: Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys
tems, pages 250-258, New York, NY, USA, 2005. ACM.

[120] S. SUBRAMANIAM, T. PALPANAS, D. PAPADOPOULOS, V. KALOGERAKI, AND
D. GUNOPULOS. Online outlier detection in sensor data using non-parametric models.
In VLDB '2006: Proceedings of the 32nd International Conference on Very Large Data
Bases, pages 187-198. VLDB Endowment, 2006.

254

[121] HARALD VOGT. Efficient object identification with passive RFID tags. In International
Conference on Pervasive Computing, LNCS. Springer-Verlag, 2002.

[122] SERDAR VURAL AND EYLEM EKICI. Analysis of hop-distance relationship in spatially
random sensor networks. In MobiHoc '05: Proceedings of the 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 320-331, New York,
NY, USA, 2005. ACM Press.

[123] YAWEN WEI, ZHEN Yu, AND YONG GUAN. Location verification algorithms for wireless
sensor networks. In ICDCS '07: Proceedings of the 27th International Conference on
Distributed Computing Systems, Toronto, Canada, 2007. ACM Press.

[124] J.E. WIESELTHIER, A. EPHREMIDES, AND L.A. MICHAELS. An exact analysis and
performance evaluation of framed ALOHA withcapture. IEEE Transactions on Communi
cations, pages 125-137, Feb. 1989.

[125] YI YANG, XINRAN WANG, SENCUN ZHU, AND GUOHONG CAO. SOAP: a secure hop
by-hop data aggregation protocol for sensor networks. In MobiHoc '06: Proceedings of the
7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2006.

[126] FAN YE, HAIYUN LUO, SONGWU LU, AND LIXIA ZHANG. Statistical en-route detection
and filtering of injected false data in sensor networks. In INFOCOM '04: Proceedings of
the 23th IEEE International Conference on Computer Communications, Hong Kong, 2004.
ACMPress.

[127] D. ZEINALIPOUR-YAZTI, Z. VAGENA, D. GUNOPULOS, V. KALOGERAKI, V. TSOTRAS,
M. VLACHOS, N. KOUDAS, AND D. SRIVASTAVA. The threshold join algorithm for top-k
queries in distributed sensor networks. In DMSN '05: Proceedings of the 2nd International
Workshop on Data Management for Sensor Networks, pages 61-66, New York, NY, USA,
2005. ACM Press.

[128] DEMETRIOS ZEINALIPOUR-YAZTI, SONG LIN, VANA KALOGERAKI, DIMITRIOS
GUNOPULOS, AND WALID A. NAJJAR. MicroHash: An efficient index structure for flash
based sensor devices. In Proceedings of the FAST '05 Conference on File and Storage
Technologies, San Francisco, California, USA, December 2005. USENIX.

[129] JIA ZHAI AND GI-NAM WANG. An anti-collision algorithm using two-functioned estima
tion forRFID tags. IniCCSA (4), pages 702-711. Springer, 2005.

[130] JIAWEI ZHANG. Approximating the two-level facility location problem via a quasi-greedy
approach. In SODA '04: Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 808-817, Philadelphia, PA, USA, 2004. Society for Industrial
and Applied Mathematics.

[131] NAN ZHANG AND WEI ZHAO. Distributed privacy preserving information sharing. In
Proceedings of the 31st International Conference on Very Large Data Bases, pages 889-
900. VLDB Endowment, 2005.

[132] YANCHAO ZHANG, WEI LIU, YUGUANG FANG, AND DAPENG Wu. Secure localization
and authentication in ultra-wideband sensor networks. IEEE Journal on Selected Areas in
Communications, 2006.

255

[133] BIN ZHEN, MAMORU KOBAYASHI, AND MASASHI SHIMIZU. Framed ALOHA for mul
tiple RFID objects identification. In IEICE TRANSACTIONS on Communications, 2005.

[134] FENG ZHOU, CHUNHONG CHEN, DAWEI JIN, CHENLING HUANG, AND HAO MIN. Eval
uating and optimizing power consumption of anti-collision protocols for applications in
RFID systems. In ISLPED '04, 2004.

[135] JIANMING ZHOU, WENSHENG ZHANG, AND DAJI QIAO. Protecting storage location
privacy in sensor networks. In QShine '07: Proceedings of the 4th International Conference
on Heterogeneous Networking for Quality, Reliability, Security and Robustness, Vancouver,
Canada, 2007. ACM Press.

256

VITA

Bo Sheng

Bo Sheng received his Bachelor of Science degree in Computer Science from Nanjing University

(Nanjing, China) in 2000. He was admitted to the Ph.D. program in Computer Science Depart

ment at the College of William and Mary in 2004, and became a Ph.D. candidate in 2005. His

major research interests include wireless networks and embedded systems with an emphasis on

the efficiency and security problems.

	Building efficient wireless infrastructures for pervasive computing environments
	Recommended Citation

	ProQuest Dissertations

