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ABSTRACT PAGE 

Pervasive computing is an emerging concept that thoroughly brings computing devices and 
the consequent technology into people's daily life and activities. Most of these computing 
devices are very small, sometimes even "invisible", and often embedded into the objects 
surrounding people. In addition, these devices usually are not isolated, but networked with 
each other through wireless channels so that people can easily control and access them. 
In the architecture of pervasive computing systems, these small and networked computing 
devices form a wireless infrastructure layer to support various functionalities in the upper 
application layer. 

In practical applications, the wireless infrastructure often plays a role of data provider in a 
query I reply model, i.e., applications issue a query requesting certain data and the 
underlying wireless infrastructure is responsible for replying to the query. This dissertation 
has focused on the most critical issue of efficiency in designing such a wireless 
infrastructure. In particular, our problem resides in two domains depending on different 
definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can 
be replied. Many applications, especially real-time applications, require prompt response to 
a query as the consequent operations may be affected by the prior delay. The second 
definition is energy efficiency which is extremely important for the pervasive computing 
devices powered by batteries. Above all, our design goal is to reply to a query from 
applications quickly and with low energy cost. 

This dissertation has investigated two representative wireless infrastructures, sensor 
networks and RFID systems, both of which can serve applications with useful information 
about the environments. We have comprehensively explored various important and 
representative problems from both algorithmic and experimental perspectives including 
efficient network architecture design and efficient protocols for basic queries and 
complicated data mining queries. The major design challenges of achieving efficiency are 
the massive amount of data involved in a query and the extremely limited resources and 
capability each small device possesses. We have proposed novel and efficient solutions 
with intensive evaluation. Compared to the prior work, this dissertation has identified a few 
important new problems and the proposed solutions significantly improve the performance 
in terms of time efficiency and energy efficiency. Our work also provides referrable insights 
and appropriate methodology to other similar problems in the research community. 
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BUILDING EFFICIENT WIRELESS INFRASTRUCTURES FOR 

PERVASIVE COMPUTING ENVIRONMENTS 



Chapter 1 

Introduction 

The most profound technologies are those that disappear. They weave themselves into 

the fabric of everyday life until they are indistinguishable from it. 

Mark Weiser (1952- 1999) 

Pervasive computing was first introduced by Mark Weiser in early 1990's described as "the 

next stage of computing" after the mainframes and the evolution of personal computers. It repre

sents an emerging concept that thoroughly integrates computing devices into everyday objects and 

activities, in short, "computers everywhere". Beyond that, pervasive computing also emphasizes 

networks, applications, data, and services everywhere. A pervasive computing environment es

sentially consists of various connected devices that conduct diverse information processing tasks 

on the behalf of users. IBM Chairman Lou Gerstneras once said the following about pervasive 

computing environments, "Picture a day a billion people interacting with a million e-businesses 

through a trillion interconnected intelligent devices." 

Unlike desktop computers, pervasive computing devices are usually very tiny, sometimes even 

"invisible", and can be carried by people or embedded into the surrounding objects in our daily 

2 
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life. These small devices are networked through wireless channels so that they can easily interact 

with people or other devices. Nowadays, technology development has substantially brought perva

sive computing into the mainstream. A lot of small pervasive computing devices have already been 

manufactured. Computer chips are embedded into appliances, mobile phones, automobiles, digital 

pens/desks, industrial machines, health care devices, or even on walls and floors. The presence 

of these non-desktop computers and the associated applications or services has greatly changed 

people's life styles from many aspects. In addition, a wide variety of wireless network protocols 

have been developed providing strong connectivity to each device, e.g., cellular networks, 802.11 

family, bluetooth, zigbee, WiMax, DSRC (Dedicated Short-Range Communications), IrDA (In

frared Data Association) and NFC (Near Field Communication). With these protocols, embedded 

devices are seamlessly connected and data on any device is available to other entities across the 

network. At this point, pervasive computing has never been closer to a reality with all available 

resources. Although the development of pervasive computing is promising, some fundamental 

issues still remain unsolved. 

In this dissertation, we focus on the efficiency of the wireless infrastructure which is the un

derlying layer in the architecture of a pervasive computing system. This wireless infrastructure 

is formed by the networked pervasive computing devices and plays the role of data provider to 

support upper layer applications. In a typical pervasive computing system, data are provided in a 

query I reply model, where applications generate queries to request certain data and the wireless in

frastructure transparently finds the desired data and returns them as the reply to the queries. As the 

wireless infrastructure handles the data transmission, it becomes the key component for achieving 

the efficiency. Designing an efficient wireless infrastructure has been one of the most fundamental 

challenges for pervasive computing applications and the objective can be further defined in two 
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domains. The first is time efficiency which refers to a quick response to a query. Pervasive comput

ing applications, especially when involved in real time systems, require the wireless infrastructure 

to reply to a query in a timely fashion. A long delay further postpones other consequent operations 

and may make the application infeasible or dysfunctional. The second definition of efficiency con

siders energy consumption in the wireless infrastructure. This energy efficiency is more specific 

to pervasive computing environments since a lot of small devices are powered by batteries and 

they are often deployed for long-term tasks. For example, a sensor network is usually expected to 

work solely on battery power for several months or even years. Therefore, conserving energy to 

prolong the lifetime of each device and the whole system becomes mandatory for practical imple

mentation. With the above two definitions, the objective in this dissertation is to design efficient 

wireless infrastructures that reply to queries quickly and with low energy consumption. 

Developing such an efficient wireless infrastructure is challenging because of the unique char

acteristics of pervasive computing systems. First, pervasive computing devices are weak hard

wares with extremely limited resources and ability. These hardware constraints often demand 

efficient designs, but they are also serious obstacles for achieving the efficiency. Second, as com

puting devices become tiny and ubiquitous, pervasive computing usually refers to a large scale 

system with many devices. It implies a large amount of data in the system and numerous data 

transmissions for a query leading to difficulties in efficiently delivering the reply. Some efficiency 

problems encountered in this area have been studied in regular computer systems, but most of the 

existing approaches cannot be directly applied because of the limited ability of pervasive comput

ing devices. Additionally, pervasive computing has opened a broad field of applications which 

yield new efficiency problems that people have never experienced with regular computers. Recent 

research work has spent much effort in addressing the efficiency issues in the wireless infrastruc-
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ture, which include a list of fundamental questions, such as how to deploy pervasive computing 

devices to help improve the efficiency, how to efficiently transfer data from one device to another, 

what is the role of each device in data processing and delivery, and how to make devices collabo

rate for a task. More important, what are the proper methodologies that can be adopted to answer 

these questions. 

In this dissertation, we concretely investigate two important and representative instances of 

wireless infrastructures, sensor networks and RFID systems. By exploring the efficiency problems 

in both systems, we demonstrate how to design the infrastructure with general pervasive comput

ing devices. In the following sections, we first briefly introduce some background information 

about theses two types of systems, and then we detail our target problems. 

1.1 Research Scope and Background 

Typical characteristics of pervasive computing environments include small-sized devices, wireless 

connection, computing ability, and a large scale system. In the current stage of the development, 

sensors and RFID tags are widely-used and representative hardwares for pervasive computing 

applications as they possess all the above characteristics. Therefore, sensor networks and RFID 

systems are selected to be the platforms for the research work in this dissertation. This section 

presents basic information about sensor networks and RFID systems and their features are sum

marized at the end. 

1.1.1 Sensor Networks 

A sensor network consists of spatially distributed devices, called sensor nodes. Fig. 1.1 illustrates 

a typical sensor hardware mote. Each sensor node contains one or more sensing devices, and is 
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able to monitor the physical or environmental conditions such as temperature, humidity, vibra

tion, pressure, and motion. In addition, sensors are powered by batteries and equipped with a 

microcontroller, memory, and external storage. Furthermore, each sensor has a radio transceiver 

for wireless communication. The following Table 1.1 shows the detailed specification of a typical 

mote hardware. 

Figure 1.1: A typical sensor ('Mote' manufactured by Crossbow) 

Microcontroller ATMega128L, Up to 8 MIPS throughput at 8 Mhz 

Memory 128-Kbyte Program Memory, 4-Kbyte SRAM, 4-Kbyte EEPROM 

External Memory 512-Kbyte flash memory 

Radio Transceiver 2.4 GHz IEEE 802.15.4, 250 kbps 

Table 1.1: Specification 

The major task of a sensor network is to collect data measured by every sensor. Usually, one 

or more powerful computers, called sink or base station, are deployed as a gateway between the 

sensor network and the end users, i.e., sensors will deliver their data to the sink while the end 

users also send data requests to the sink. Because of the limited radio transmission range, it is 

not practical for each sensor to reach the sink directly. Instead, the wireless communication in a 

sensor network follows a hop-by-hop fashion, i.e., data from a sensor are sent to the sink through 

multiple relay sensors. In practical applications, sensors often form a tree routing structure rooted 
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at the sink which enables data aggregation and filtering at non-leaf nodes further reducing the 

energy consumption. We explain with more details in Chapter 2. 
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Figure 1.2: Wireless Communication in a Sensor Network 

Sensor networks have been increasingly deployed in various civil and military applications, 

and also highly desirable in many scientific research areas. Their major tasks are monitoring 

environments and detecting special events. Typical applications include monitoring habitat of 

animals, monitoring structures of buildings or bridges, monitoring agriculture growing conditions, 

detecting or forecasting disasters such as forest fire and earth quack, and detecting vehicles or 

enemy in a battlefield. 

1.1.2 RFID Systems 

The second infrastructure studied in this dissertation is RFID system. RFID, short for Radio 

Frequency Identification, is a new technology and has attracted a lot of attention recently. An 

RFID system consists of RFID readers and tags, where an RFID reader is a typical handheld 

device such as PDA. The most common RFID tags are passive tags with no power supply. They 

have certain memory space for storing data, usually tens of bytes. Each RFID tag contains an 

integrated circuit that can process the data and the commands from RFID readers. In addition, 

RFID tags have an antenna for communicating with RFID readers via wireless channels. The 
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latest generation of RFID tags can work at ultra high frequency range (860-960 MHz). 

(a) An RFID reader (b) An RFID tag 

Figure 1.3: Typical RFID Hardware 

In an RFID system, there is no communication between different RFID tags. Data are trans

ferred only between an RFID reader and an RFID tag through wireless channels. The data trans

mission is conducted in a unique way due to the fact that an RFID tag has no power to transmit 

anything. The RFID reader initializes the communication by broadcasting signals with certain 

commands. The integrated circuit on the RFID tag is triggered by the incoming signals from 

the RFID reader. Then, the RFID tag will process the commands and transmit data back to the 

RFID reader by backscattering the received signals. The RFID reader is able to decode the useful 

information from the reflected signals. 

In RFID applications, every product or item is attached with an RFID tag, which stores some 

data describing the product. This data on each tag is called tag ID which contains various useful 

information about the affiliated product. People can use an RFID reader to remotely scan these 

tags and fetch the ID information stored on them. Some important applications include inventory 

control, supply chain management and product tracking. RFID tags are also used in other applica

tions such as electric passport, transportation payment, item management in a library or museum, 
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and animal identification. 

1.1.3 Summary 

Both sensor networks and RFID systems are representative wireless infrastructures in pervasive 

computing applications as they provide useful information about the environment. Here we sum-

marize their common features and differences. 

First, both systems consist of typical weak hard wares. Compared to a regular computer, sensor 

devices have very limited resources in terms of power supply, CPU speed, storage capacity and 

network bandwidth. RFID tags are even weaker devices than sensors. They can hardly handle any 

computation and they have no power to communicate with each other. Therefore, studying these 

I 

two systems helps understand the design principles for weak hardwares. 

Second, both systems represent large scale pervasive computing environments. Sensors are 

usually densely deployed over a large field. A typical monitoring application involves hundreds or 

thousands of sensors. RFID applications often target at large warehouse or shipping port, where 

we may encounter a huge volume of items each attached with an RFID tag. 

Third, the data carried by these two systems are different while they both provide information 

about the environment. Sensors collect physical environmental data in an active means. These 

data are dynamically changing over the time and locations. They are highly correlated in many 

scenarios. For example, sensors in the same room may have similar temperature readings. Thus, 

redundancy exists among the data collected by a sensor network. In an RFID system, people pre-

load data to each tag to annotate the objects. The data on each RFID tag is fixed and supposed to 

uniquely represent an item. 

Finally, these two systems represent different communication models. In a sensor network, 
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data are transferred from a sensor to the sink or another sensor in a multi-hop fashion. Data 

aggregation, processing, and filtering are possible at the relay sensor nodes. In an RFID system, 

however, there is only one-hop communication between the RFID reader and an RFID tag. RFID 

tags can not communicate with each other. 

In summary, sensor networks and RFID systems represent the most popular scenarios for 

wireless infrastructures in a pervasive computing environment. Investigating these two systems 

provides us with full understanding of the efficiency problems and the results in this dissertation 

have a broad impact on this research community. The next section presents the research problems 

examined in this dissertation. 

1.2 Research Directions and Problems 

Implementations of pervasive computing applications include layered components as shown in 

Fig. 1.4. Each application task from users is first translated to one or more queries. The corre

sponding query protocols determine what information is needed for the reply and how to obtain 

it. These query protocols are built on the physical network architecture which provides low-level 

general functions. For example, a query protocol may need device A to transfer data to device B, 

and the network architecture layer is responsible for a routing path from A to B according to the 

topology. 

In this dissertation, with the objective of achieving the efficiency, we focus on two research 

directions of designing network architectures and query protocols. The first direction represents 

underlying frameworks that can efficiently support different applications. The second direction ex

plores application-aware optimizations for the efficiency. We investigate representative efficiency 

problems including some known problems with more practical settings and a few new challenging 
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problems. With the novel and substantial solutions, we demonstrate several useful techniques for 

pervasive computing environments. In the rest of this section, we present the details about the 

problems this dissertation addresses. 

(au~ry3) 
i 

Network Architecture, 

Figure 1.4: Design Layers in Pervasive Computing Applications 

1.2.1 Network Architecture 

In many applications, the performance of replying to queries is related to the network architecture 

of the infrastructure referring to structural factors such as network topology, routing protocol, 

and data flow. With general characteristics of queries, the underlying network architecture can 

be optimized for the efficiency. A sensor network supports flexible configurations of the network 

architecture leaving us the opportunity to improve the efficiency in this direction. 

A major research trend in the literature is to deploy powerful sensors to build a hybrid network 

with regular sensors to achieve more efficient performance. Powerful nodes have more enriched 

resources, such as faster CPU, higher bandwidth, and more battery capacity. Different from the 

prior work, we explore a novel idea of deploying powerful sensors with large storage capacity, 

called storage nodes. Since flash memory becomes inexpensive, deploying storage nodes is more 

practical compared to upgrading the CPU or antenna. We utilize storage nodes to form a two-tiered 

sensor network and support in-network storage mechanism. Our research focuses on finding the 
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best locations to deploy storage nodes with the goal of improving the efficiency. 

1.2.2 Query Protocol 

The major research direction in this dissertation is to design efficient query protocols. Real ap

plications may issue various queries to extract different data information. There is no universal 

solution that can achieve the efficiency in all queries. The most efficient solution is to specifically 

optimize the query protocol for each particular query. In this dissertation, therefore, we investi

gate some representative queries in sensor networks and RFID systems. By exploring them, we 

demonstrate the appropriate methodology for designing efficient query protocols and our solutions 

can be easily extended to solve other similar queries. 

1.2.2.1 Basic Query 

Our work starts with the most basic and fundamental queries. These queries are frequently used 

and they are often the building blocks of other complicated queries. Therefore, the efficiency of the 

basic queries has been well studied in the literature. The prior work, however, mostly considers an 

ideal problem setting ignoring practical requirements and constraints. The solutions for simplified 

settings may not solve the efficiency problems in real implementations. Our work re-visits the 

efficiency problems in these basic queries, and goes one step further with more realistic settings. 

The details of the problems are presented in the next. 

Range Query in Sensor Networks We first considers range query in sensor networks, which 

requests the data in a specified value range [a, b]. Range query is a basic operation and widely used 

in sensor network applications. Different from the prior work, we investigate range query with 

security and privacy requirements which are the common concerns in real applications because 
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sensor networks are often deployed in an unttusted or even hostile environment. A compromised 

sensor network may leak sensitive information to an unauthorized party, which leads to a privacy 

breaching. In addition, it may also give false information about the collected data to a valid 

query, misleading the application. In deploying such a realistic sensor network, a fundamental 

question is how much one should trust a sensor network and how to prevent, or at least, detect 

the misbehavior of the sensor network. Unfortunately, little research work has focused on these 

privacy and security issues. 

We consider a network model consisting of storage nodes and regular sensors, where storage 

nodes are responsible of hosting raw data from nearby regular sensors and replying to the queries 

from the sink. The role of a storage node implies that it has to gain some understanding about the 

stored data for an energy-efficient data reply by avoiding sending all the collected data back. The 

practice would not be a problem if the storage nodes are assumed to be trusted. It is not valid, 

however, if the storage nodes are susceptible to compromise and the disclosure of the information 

may endanger the crucial assignment for the users in the network. With more sensor networks 

deployed for pervasive computing applications, this issue becomes even more serious if the user 

information is leaked through the storage nodes, which breaches the privacy requirement. 

Generally, an adversary is not able to compromise numerous sensors. The limited number of 

compromised regular sensors do not affect the query reply seriously because of redundant sensor 

deployment and limited coverage of the compromised sensors. The storage nodes, which hold 

much data collected from many sensors, however, easily become the targets for compromise and 

have to be a great concern when privacy related information is collected and query is imposed to 

the collected data. 

Two threats arise when storage nodes are compromised by the adversary. First, the compro-
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mised storage nodes may disclose the data stored on them to the adversary. Thus, we would like 

the storage nodes to reply to the range query without gaining too much information. Second, the 

compromised storage nodes may send false information as the reply. It is difficult to prevent the 

malicious storage nodes from cheating on data reply. But at least the user is entitled to know 

whether the reply is intact. Therefore, our goal is to design a range query protocol that preserves 

the data privacy and enables the sink to verify the reply. 

Continuous Scans in RFID systems The second basic query examined in this dissertation is 

to scan RFID tags and collect all tag IDs. It is the most fundamental query in an RFID system 

and the major focus of all previous work. In this operation, time efficiency is of crucial impor

tance for many RFID applications, especially when they deal with a large volume of RFID tags. 

For example, inventory management often requires an RFID reader to scan all the products in a 

warehouse. This task usually involves tens of thousands of RFID tags, assuming every product is 

attached with one tag, and mandates a quick scanning process. 

The previous literature, however, has only focused on developing efficient protocols for a sin

gle scanning process. In fact, many tasks cannot be accomplished by a single scan. Instead, 

multiple scanning processes have to be continuously launched. For example, to scan all the prod

ucts in a large warehouse for inventory management, it is impossible for an RFID reader to read 

all the tags at one location due to the limited reading range. Usually a single mobile reader (or 

multiple re~ders) has to launch multiple scanning processes at different locations to cover all the 

tags in the entire warehouse (illustrated in Fig. 1.5). In this dissertation, we study this common 

practice of continuous scanning, and aim at designing efficient protocols for it. 

Continuous scanning is generally defined as a series of multiple scanning processes. This 

work investigates continuous scanning in both spatial and temporal domains. The above example 
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Figure 1.5: An example of spatial continuous scanning 

illustrates a spatial continuous scanning, where a series of scans are executed at different locations. 

Namely, temporal continuous scanning represents a series of scans occurring at different time 

points. It is often used for monitoring inventory update. For example, some applications may 

want to keep track of the products stored at a certain location in a dynamic environment where 

new products may be put on shelf and some existing products may be moved out. An RFID reader, 

in this case, has to periodically scan all the present RFID tags to keep a fresh record. Therefore, 

our goal is to develop efficient continuous scanning protocols that can quick detect the inventory 

changes, i.e., collecting the tags newly added and remove the tags that are no longer present. 

1.2.2.2 Data Mining Query 

After exploring basic queries in pervasive computing systems, the natural next step is to investigate 

some complicated queries. The most representative ones are data mining queries which have been 

well studied in the database community. In a pervasive computing environment, the wireless 

infrastructure can be treated as a large database since each device contains useful data. As data 

mining queries have been shown important for applications in the database literature, little research 

on data mining has been conducted in pervasive computing environments. Different from the 

problems in the database area, data mining in pervasive computing is more challenging because 

the target data set is distributed on each small device rather than collected at a central server which 
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is a common assumption in the database literature. In addition, energy efficiency, one of our major 

goals, is not a concern for regular data mining in the prior work. 

In this dissertation, we investigate two classic data mining queries. First, we study the problem 

of finding outlier data in a sensor network. The definition of outlier data is determined not by a 

single data value, but by the distribution of all data values. However, it is extremely hard for 

a sensor network to efficiently obtain the global information about all data values. Our work 

presents the first efficient solution to this outlier detection query. The second data mining query 

we consider is to find popular categories of the items in an RFID system. The challenge is that 

little computation and communication ability seriously impedes RFID tags to collaborate and 

efficiently supply the requested information. Our work proposes efficient protocols that work with 

the off-the-shelf RFID hardwares requiring no extra functionality. The details are introduced as 

follows. 

Detect Outliers in Sensor Networks As we mentioned earlier, sensor networks are usually large 

scaled and expected to work for a long time, thus accumulate a large amount of data. Mining this 

large data repository for useful information is crucial in many applications. In a simple solution, 

data collected by sensors can be transmitted to the sink for data mining analysis. This method, 

however, consumes too much energy because the data volume transferred can be extremely large. 

Thus, the batteries of the sensors will be quickly depleted, leading to network partition and dys

function. Therefore, a desired method must be energy-efficient, while still be able to extract 

information from the large amount of data distributed over the network. 

In this work, we consider one of the most important data mining problems: outlier detection, 

which defines a process to identify data points that are very different from the rest of the data 

based on a certain measure. Outlier detection in a central database has been a hot topic in the data 



17 

mining community, but little work has been done in the context of a sensor network in which data 

are distributed over thousands or tens of thousands of sensors. 

Essentially, outliers represent a complex form of abnormal data which are critical in many 

sensor network applications. Abnormal data is often a warning of suspicious events, and effective 

detection schemes can trigger an alarm in the early stage and prevent serious consequences. Some 

abnormal data can be easily defined and detected. For example, if a sensor network is deployed 

to detect fire by monitoring temperature, then the very high temperature readings will be the 

abnormal data which can be distinguished by a threshold for normal temperature. This kind of 

abnormal data can be detected by just looking at the data values. Outliers, however, are defined 

based on a global view of all the data and hard to be identified without knowledge of other data 

values. For example, assume sensors are embedded on a bridge to monitor structural integrity 

by measuring the vibration generated by the passing vehicles. Heavier cars will cause larger 

vibrations and structural weakness may also yield larger than normal vibrations. When a sensor 

measures a large vibration, it is difficult to determine whether it is abnormal by only considering 

the data value. The large reading might be normal if it is caused by a heavy truck, but it also could 

be an abnormal value if the passing car is a sedan. The only way to find out is to compare with the 

data measured by other sensors. Thus, outlier detection represents a category of complicated data 

mining queries that require the knowledge of all the data generated by every sensor. In practice, 

however, gathering global information in a sensor network is extremely costly due to the network

wide transmission. Therefore, our goal here is to efficiently identify outlier data without collecting 

all data at a central point. 

Find Popular Items in RFID Systems The last query we examine is to find popular categories 

in an RFID system. Many RFID applications involve a large amount of tags to be read, e.g., in a 



18 

shipping portal or warehouse, the items in pallets and cases are read together (i.e., in bulk). An 

open question in RFID area is how to efficiently extract useful information from a large scale 

RFID system considering the limited ability of each tag. Our work investigates a particular prob-

lem of finding the popular categories among these numerous items. The categories have flexible 

definitions on different domains and granularity and we consider a user specific threshold to de-

fine 'popular', i.e., if the number of tags in a category exceeds the threshold, the category is called 

popular. Finding popular items is important for tracking the most popular categories shipped in a 

day, or the least consumed types of goods in a warehouse, or the most frequent values sensed by 

RFID sensors when the values can be classified into categories. 

In the prior work, all queries are answered by first collecting all tag IDs. However, when the 

collection of tags is large, reading data from every tag is very time consuming. In addition, getting 

all raw data is not necessary for this particular query. Therefore, our goal is to design an efficient 

protocol to find the popular categories without scanning all RFID tags. 

1.2.3 Summary 

As a quick summary, the following Fig. 1.6 lists the research work in this dissertation. In the 

direction of network architectures, we investigate data storage placement in sensor networks. Our 

major work in this dissertation resides in designing efficient query protocols and we examine two 

basic queries and two data mining queries in sensor networks and RFID systems. 

Sensor Networks 

RFI D Systems 

Figure 1.6: Summary of Research Work 
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1.3 Contributions 

This dissertation focuses on the fundamental efficiency problems in wireless infrastructure design 

for pervasive computing environments. The contributions of this dissertation are: 

• We have introduced a two-tiered hybrid network architecture composed of regular sensors 

and special storage nodes. We have developed the optimal algorithms for deploying storage 

nodes to reduce energy consumption. 

• We have examined two basic queries, range query in sensor networks and continuous scans 

in RFID systems. Our work has developed efficient query protocols for them with practical 

problem settings. 

• We have investigated the efficiency issues with complicated data mining queries. We have 

developed efficient protocols for two representative queries of detecting outliers in sensor 

networks and finding popular items in RFID systems. 

1.3.1 Network Architecture 

In the direction of network architecture, we have focused on the data storage placement in sensor 

networks. Two typical network models are studied for achieving the efficiency. The first is the 

fixed tree model, where we assume the sensor network has organized into a tree rooted at the sink. 

The communication routes from sensors towards the sink are predefined by the tree. Our goal is 

to select some of the nodes in the tree as storage nodes. The second model is called the dynamic 

tree model, where the (optimal) communication tree is constructed after the storage nodes are 

deployed. Specifically, each sensor selects a storage node in its proximity for its data storage with 

the goal to minimize the energy cost of the resulting communication tree. 
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• For the fixed tree model, we have examined deterministic placement of storage nodes and 

present the optimal algorithms based on dynamic programming. Our simulation results 

show that our algorithms significantly reduce the total energy consumption in the sensor 

network. 

• The problem in the dynamic tree model is proven to be NP hard. We have first presented 

a stochastic analysis for random deployment in the dynamic tree model which is a com

mon practice in sensor network applications. Our analysis provides a useful guideline and 

accurate estimation of the performance. 

• We have further developed an approximation algorithm for the dynamic tree model. From 

the theoretical aspect, our problem is similar to the facility location problem, but in a more 

complex form as defined with multiple levels and a in non-metric domain. Our algorithm 

is the first constant approximation algorithm for this problem. Our evaluation shows the 

proposed approximation algorithm is much more efficient than random deployment in terms 

of energy consumption. 

1.3.2 Basic Query 

The representative basic queries investigated in this dissertation includes range query in sensor 

networks and continuous scans in RFID systems. For the range query, we have focused on the 

efficiency issue with security and privacy requirements, especially when a storage node is com

promised. Our goals are to prevent the compromised storage nodes from disclosing data stored 

there and to enable the sink to verify the reply from storage nodes. For the continuous scans in 

RFID systems, our design focus is how to avoid collecting all IDs at each scan and quickly finish 

the whole process. 
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• To the best of our knowledge, our work is the first to consider privacy issue in sensor net

work data range query. Our work explores the privacy concerns in sensor networks in a 

very general setting. We have developed a privacy-preserving storage scheme which uses 

bucketization to obscure the view of the storage node to the data stored on it. Our scheme 

satisfies the privacy requirements while storage nodes can still efficiently process the raw 

data and reply to queries. 

• We have also developed a scheme that enables the sink to verify the reply to a range query. 

The major challenge here is how to prevent compromised storage nodes from dropping data. 

Our solution is based on a novel encoding number scheme. We have developed the optimal 

algorithm to derive the best parameters for the protocol considering both efficiency and 

security. With our parameter setting, the proposed protocol is able to detect the false replies 

with low energy overhead. 

• We have designed two efficient algorithms for continuous scanning in RFID systems, one 

to collect the 'new' tag IDs and the other to detect those 'old' RFID tags that have been 

moved out. We have presented in-depth analysis to derive the proper parameters for the 

proposed algorithms to achieve the efficiency and satisfy the accuracy requirements. In 

addition, we have proposed an improvement for temporal continuous scanning based on a 

pre-computation before scanning the RFID tags. 

1.3.3 Data Mining Query 

In this dissertation, we have worked on two classic data mining queries, detecting outliers in sensor 

networks and finding popular categories in RFID systems. The prior work uses a simple but costly 
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solution that collects ALL data to reply to these queries. In this dissertation, we have proposed 

more efficient solutions. 

• We have developed an efficient outlier detection scheme based on histogram information 

for sensor networks. To the best of our knowledge, this is the first histogram-based detec

tion approach to solving this problem. The propose~ scheme uses small-sized histogram 

information to approximate the sensor data distribution and reduce the communication cost 

under two different detection schemes. We have presented the theoretical analysis for the 

communication cost incurred in the network. 

• Additionally, we have proposed a multi-round histogram refinement technique for some 

critical portion in the data distribution to gain more information about outliers. The finer 

histogram information helps filter out more non-outliers, hence further reduce more commu

nication cost. Our trace-driven simulation has demonstrated that our approaches decrease 

the communication cost dramatically compared to the prior work. 

• We are the first to propose efficient solutions to data mining queries in RFID systems with

out collecting all tag IDs. We have proposed a simple and fast threshold checking scheme 

(TCS), which accurately answers whether the number of involved tags exceeds a threshold 

with high probability. Furthermore, we have designed two randomized algorithms based on 

group testing and TCS to efficiently find popular categories. We have comprehensively eval

uated the proposed schemes and compare them against existing solutions. Our simulation 

results show that our schemes significantly reduce the total scanning time. 

• For both data mining queries, we have demonstrated appropriate methodologies and design 

principals for such complicated queries in a pervasive computing environment. Particularly, 
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for a sensor network to handle complicated queries, protocols with multiple rounds of in

formation collection are suitable, where each round obtains small-sized information, such 

as histogram in our problem, followed by rigorous analysis and estimation. In an RFID 

system, we have shown randomized algorithm is an useful technique for solving compli

cated queries because compatible schemes are built on the slotted ALOHA protocol which 

inherently cope with randomized algorithm. Our work can be easily extended to solve other 

similar problems and has inspired other work in the research community. 

1.4 Organization 

The rest of this dissertation is organized as follows. In Chapter 2, we present our work on the 

network architecture design with the focus on data storage placement schemes. Chapter 3 and 

Chapter 4 are our work on representative basic queries in sensor networks and RFID systems. In 

Chapter 5 and Chapter 6, we propose efficient solution to the data mining queries. Finally, we 

conclude in Chapter 7. 



Chapter 2 

Network Architecture in Sensor 

Networks: Data Storage Placement 

In this chapter, we present our work in the direction of network architecture, particularly, data stor

age placement in sensor network. We propose to deploy special storage nodes with large storage 

capacity to support in-network storage and help reduce energy consumption. Structural optimiza

tion in a sensor network often surprisingly improves the efficiency for upper layer application 

queries. In this work, we take general query characteristics as input and develop algorithms to 

derive the best locations for storage nodes. 

A sensor network deployed for pervasive computing applications, e.g., sensing environmental 

conditions and monitoring people's behaviors, generates a large amount of data continuously over 

a long period of time. This large volume of data has to be stored somewhere for future retrieval 

and data analysis. One of the biggest challenges in these applications is how to store and search 

the collected data. 

The collected data can either be stored in the network sensors, or transmitted to the sink. Sev-

24 
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eral problems arise when data are stored in sensors. First, a sensor is equipped with only limited 

memory or storage space, which prohibits the storage of a large amount of data accumulated for 

months or years. Second, since sensors are battery operated, the stored data will be lost after 

the sensors are depleted of power. Third, searching for the data of interest in a widely scattered 

network field is a hard problem. The communication generated in a network-wide search is pro

hibitive. Alternatively, data can be transmitted back to the sink and stored there for future retrieval. 

This scheme is ideal since data are stored in a central place for permanent access. However, the 

sensor network's per-node communication capability (defined as the number of packets a sensor 

can transmit to the sink per time unit) is very limited [43, 62]. A large amount of data cannot be 

transmitted from the sensor network to the sink efficiently. Furthermore, the data communication 

from the sensors to the sink may take long routes consuming much energy and depleting of the 

sensor battery power quickly. In particular, the sensors around the sink are generally highly used 

and exhausted easily, thus the network may be partitioned rapidly. 

It is possible that, with marginal increase in cost, some special nodes with much larger per

manent storage (e.g., flash memory) and more battery power can be deployed in sensor networks. 

These nodes back up the data for nearby sensors and reply the queries. The data accumulated 

on each storage node can be transported periodically to a data warehouse by robots or traversing 

vehicles using physical mobility as Data Mule [111]. Since the storage nodes only collect data. 

from the sensors in their proximity and the data are transmitted through physical transportation 

instead of hop-by-hop relay of other sensor nodes, the problem of limited storage, communication 

capacity, and battery power is diminished. 

In this storage model, where to deploy storage nodes is a critical issue for the performance 

in terms of energy cost. The optimal solution depends on the characteristics of raw data genera-
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Figure 2.1: Access Model with Storage Nodes 

tion and user query as well as the network topology. As already mentioned, the most important 

operation for sensor networks is the query because the purpose of a sensor network is to provide in

formation of the environment to the end users. A user query may take various forms; for example, 

a user query may be how many nodes detect vehicle traversing events, and the average temperature 

of the sensing field. In this scenario, each sensor, in addition to sensing, is also involved in routing 

data for two network services: the raw data transmission to storage nodes and the transmission 

for query diffusion and query reply. Two extreme approaches are to transmit all the data to the 

sink and to store them on each sensor node locally. On one hand, data solely stored in the sink 

is beneficial to the query reply incurring no transmission cost, but the data accumulation to the 

sink is very costly. On the other hand, storing data locally incurs zero cost for data accumulation, 

whereas the query cost becomes large because a query has to be diffused to the whole network 

and each sensor has to respond to the query by transmitting data to the sink. The storage nodes 

not only provide permanent storage as described previously, but also serve as a buffer between the 

sink and the sensor nodes. The placement of the storage nodes can strike a balance between these 

two schemes characterizing a tradeoff between data accumulation and data query. Therefore, our 

work aims to achieve the energy efficiency in data accumulation and data query by judiciously 

placing the storage nodes in the network. 
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2.1 Related Work 

There has been a lot of prior research work on data querying models in sensor networks. In early 

models [70, 71, 92, 93], query is spread to every sensor by flooding messages. Sensors return data 

back to the sink in the reverse direction of query messages. Those methods, however, do not 

consider the storage concern in sensor networks. 

On the other hand, some new models introduce an intermediate tier between the sink and 

sensors. LEACH [65] is a clustering-based routing protocol, in which cluster heads can fuse the 

data collected from its neighbors to reduce communication cost to the sink. LEACH has a similar 

structure to our scheme, having cluster heads aggregate and forward data to the sink. However, 

LEACH aims to reduce data transmission by aggregating data; it does not address storage problem 

in sensor networks. Data-centric storage schemes [44, 79, 102, 108, 113], as another category of 

the related work, store data to different places in sensor networks according to different data types. 

In [79, 108, 113], the authors propose a data-centric storage scheme for sensor networks based on 

Geographic Hash Table, which inherits ideas from distributed hash table. The home site of data is 

obtained by applying a hash function on the data type. Thus, queries for the same type of data can 

be satisfied by contacting a small number of nodes. Another practical improvement is proposed 

in [44] by removing the requirement of point-to-point routing. In [13], Ahn et al. analyze the 

scaling behavior of data-centric query for both unstructured and structured (e.g., GHT) networks 

and derive some key scaling conditions. GEM [102] is another approach that supports data-centric 

storage. GEM applies graph embedding technique to map data to sensor nodes. In general, the 

data-centric storage schemes assume some understanding about the collected data and store them 

remotely for easy data access. Extra cost is needed to forward data to the corresponding keeper 

nodes. Our work, however, does not assume any prior knowledge about the data: indeed in many 
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applications, raw data may not be easily categorized into different types. To transmit the collected 

data to a remote location is also considered expensive in our work because the total collected data 

may be in a very large quantity. To facilitate data query, Ganesan et al. (50-52] propose a multi

resolution data storage system, DIMENSIONS, where data are stored in a degrading lossy model, 

i.e., fresh data are stored completely while long-term data are stored lossily. DIMENSIONS uses 

wavelets to obtain temporal-spatial summarizations in a hierarchical structure, which helps locate 

a subset of sensor nodes for range queries. Its performance is heavily dependent on the data 

correlation because of the data summarization scheme. In comparison, our scheme is more general 

in making no assumption about the data correlation. PRESTO [41, 90] is a research work on 

storage architecture for sensor networks. A proxy tier is introduced between sensor nodes and 

user terminals and proxy nodes can cache previous query responses. When a query arrives in a 

proxy node, it first checks if the cached data can satisfy the query before forwarding the query 

to other nodes. Compared with the storage nodes in our work, proxy nodes in PRESTO have 

no resource constraints in term of power, computation, storage and communication. It is a more 

general storage architecture that does not take the characteristics of data generation or query into 

consideration. In the Cougar project [22, 40, 53], a data dissemination tree is built with data 

sources as leaves. View nodes introduced in Cougar have similar functionality as storage nodes in 

our work. Our scheme focuses more on how to optimize the placement of storage nodes, while 

Cougar mainly focuses on how to implement data query in more details in a sensor network. 

In [21, 119], operator placement for query processing is investigated. Srivastava et al. pro

posed an optimal algorithm to place a set of operators on a query tree. They considered both the 

computational cost of executing filters and the transmission cost of data tuples, and the proposed 

algorithm can find the best nodes to execute the operators so that the total cost is minimized. 
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In [21], Bonfils et al. presented a decentralized operator placement algorithm to adaptively adjust 

the positions of the operators to improve the performance. Their solution suites for the scenario 

where no global information is available and network conditions vary over the time. Our work 

considers a large storage space as a requirement for holding data and processing data for queries, 

while an operator/filter can be executed at any node. Additionally, placing storage nodes incurs 

extra hardware cost and there is only a limited number of storage nodes available in our problem 

formulation. Therefore, our problem is quite different from operator placement. 

Data placement schemes in sensor networks are studied in [20, 78]. The authors consider a 

scenario where multiple observers are interested in some data sources. Data are disseminated by 

a multicast tree and may be cached to reduce the power consumption. Even though their scheme 

is close to data storage, they are mainly concerned with data replication, which is quite different 

from the scope of our work. 

In addition, other research work has shown the feasibility of manufacturing storage nodes. 

In [96], Mathur et al. investigate hardware supports to attach large capacity flash memory to 

sensors. Their measurement study shows that access to large local storage is practical for sensors 

in term of energy cost. On the other hand, storage nodes are also supported by the research on 

software system. Zeinalipour-Yazti et al. propose Micra's [128] indexing structure to manage 

external flash memory of sensors in order to efficiently look up the stored data. In [95], Mathur et 

al. design Capsule system as a intermediate layer between flash memory and sensor applications. 

Object-based primitives are implemented to enable applications to flexibly utilize flash storage. 

In [16, 17], the authors introduce an approach to analyzing communication networks based 

on stochastic geometry. They consider models built on Poisson processes and obtain formulas to 

express the average cost in function of the intensity parameters of Poisson processes. Baek et al. 
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extend this work specifically to sensor networks in [18]. They consider a hierarchical architecture 

with a compressor layer between sensor nodes and sinks. Data are aggregated at compressor nodes 

before further relay. One part of our work also analyzes random placement of storage nodes. We 

will use similar means with [16-18] to derive analytical formulas for the performance. 

One part of storage placement problem with a general model is quite similar to the k-median 

problem ( [14, 15, 31, 32, 35, 73] ) and the facility location problem ( [47, 61, 72, 84, 85, 114] 

). We design an approximation algorithm to solve it following the ideas in [32], which give an 

approximation factor of 6t to the k-median problem. In our problem, however, the sink is a special 

facility as the final destination of all data. From another aspect, our problem is similar to the two

level facility location problem ( [3, 5, 27, 130] ) with the sink as the only one level-2 facility. 

However, in our problem, the cost triangle inequality does not always hold, which makes the 

problem more complicated, as a special case of the non-metric two-level facility location problem. 

No prior work guarantees a constant approximation factor for the general non-metric two-level 

facility location problem. The best known solution has an approximation factor of O(ln( C)) ( 

[ 130] ), where C is the number of clients. 

2.2 Problem Formulation 

We consider an application in which sensor networks provide real-time data services to users. A 

sensor network is given with one special sensor identified as the sink (or base station) and many 

normal sensors, each of which generates (or collects) data from its environment. Users specify 

the data they need by submitting queries to the sink and they are usually interested in the latest 
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readings generated by the sensors1• To reply to queries, one typical solution, shown in Fig. 2.2, is 

to let the sink have all the data. Then any query can be satisfied directly by the sink. This requires 

each sensor to send its readings back to the sink immediately every time it generates new data. 

Generally, transferring all raw data could be very costly and is not always necessary. Alternatively, 

we allow sensors to hold their data and to be aware of the queries, then raw data can be processed 

to contain only the readings that users are interested in and the reduced-size reply, instead of the 

whole raw readings, can be transferred back to the sink. This scheme is illustrated in Fig. 2.3, 

where the black nodes, called storage nodes, are allowed to hold data. The sink diffuses queries 

to the storage nodes by broadcasting to the sensor network and these storage sensors reply to the 

queries by sending the processed data back. Compared with the previous solution, this approach 

reduces the raw data transfer cost (as indicated by the thick arrows in the figures), because some 

raw data transmissions are replaced by query reply (as indicated by the thin arrows). On the other 

hand, this scheme incurs an extra query diffusion cost (as indicated by the dashed arrows). In this 

work, we are interested in strategically designing a data access model to minimize energy costs 

associated with raw data transfers, query diffusion, and query replies. 

Figure 2.2: Data Access Model (All data are 
forwarded to the sink) 

Figure 2.3: Data Access Model with Storage 
Nodes 

10ur algorithms also apply to the queries to the historic data. For the ease of presentation, we assume all queries 

are corresponding to the latest generated data. 
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We now give formal definitions of two types of sensors (or nodes): 

Storage nodes: This type of nodes store all the data it has received from other nodes or gen

erated by themselves. They do not send out anything until queries arrive. According to the query 

description, they obtain the results needed from the raw data they are holding and then return the 

results back to the sink. The sink itself is considered as a storage node. 

Forwarding nodes: This type of nodes always forward the data received from other nodes or 

generated by themselves along a path towards the sink. The outgoing data are kept intact and the 

forwarding operation continues until the data reach a storage node. The forwarding operation is 

independent of queries and there is no data processing at forwarding nodes. 

Therefore, our goal is to design a centralized algorithm that can derive the best locations of the 

storage nodes to guide the deployment of such a hybrid sensor network. We make the following 

assumptions about the characteristics of data generation, query diffusion, and query replies. First, 

for data generation, we assume that each node generates r d readings per time unit and the data 

size of each reading is sd. Second, for query diffusion, we assume that r q queries of the same 

type are submitted from users per time unit and the size of the query messages is sq. Third, for 

query reply, we assume that the size of data needed to reply a query is a fraction a of that of the 

raw data. Specifically, we define a data reduction function f for query reply. For input x, which 

is the size of raw data generated by a set of nodes, function f(x) = ax for a E (0, I] returns the 

size of the processed data, which is needed to reply the query. We do not restrict the types of 

queries we impose on the sensor network in this work, but we assume that a can be obtained 

through examining the historic queries to get an empirical value for this parameter. The parameter 

a characterizes many queries satisfied by a certain fraction of all the sensing data, e.g., a range 

query may be "return all the nodes that sense a temperature higher than 100 degree" and a can be 
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estimated based on the data distribution information. 

The communication among all n nodes is based on a tree topology with the sink as the root. 

Data are transferred along the edges in this communication tree. The communication tree can be 

formed before or after storage node deployment. Accordingly, we will consider two models in 

the rest of this chapter. In the fixed tree model, as illustrated in Fig. 2.4, we first deploy regular 

sensors and construct a communication tree as usual. Based on the topology information, we 

select some of the regular sensors to be storage nodes. We can attach large flash memory to 

these selected sensors or replace them by more powerful storage nodes at the same locations. The 

other model, the dynamic tree model, is illustrated in Fig. 2.5. In this model, storage nodes are 

deployed before the communication tree is formed and their location information is broadcast to 

nearby regular sensors. After that, all sensors organize themselves into a communication tree 

according to the locations of the storage nodes. In both models, after tree construction and storage 

node deployment, each storage node needs to send a notification towards the sink. In this way, 

every sensor is aware of the existence of storage nodes among its descendants and when a query 

arrives, it is able to determine whether to continue the diffusion or not. In both the fixed tree and 

dynamic tree models, we aim to find the optimal locations for storage nodes in a deterministic 

way. In reality, however, the storage nodes may not be deployed in a precise way. Instead, their 

deployment may be random with a certain density A., e.g., the storage nodes are dispersed from 

an airplane. We also evaluate the performance of random deployment of storage nodes in this 

chapter. 
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(b) Step 2: A communication tree is (c) Step 3: Some regular sensors are 

constructed to relay data. upgraded to or replaced by storage 

nodes. 

Figure 2.4: Deploy Storage Nodes in the Fixed Tree Model (storage nodes are black) 
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(a) Step 1: Regular sensors and stor- (b) Step 2: Each storage node (in- (c) Step 3: A communication tree is 

age nodes are deployed in a field. eluding the sink) broadcasts its loca- constructed based on the locations of 

tion information. storage nodes. 

Figure 2.5: Deploy Storage Nodes in the Dynamic Tree Model (storage nodes are black) 

2.3 Methodology 

2.3.1 Fixed Tree Model 

We first introduce the communication model in the fixed tree model as follows. To transmit one 

data units, the energy costs of the sender and receiver are err and ere respectively, and err is also 

relevant to the distance between the sender and receiver. To simplify the problem, we set the length 

of each tree edge to one unit, which means that sensor nodes have a fixed transmission range and 

the energy cost of transferring data is only proportional to the data size. Our algorithms can be 

easily extended to non-uniform transmission ranges as long as topology information is available. 
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In our energy model, for simplicity of presentation, the receiving energy cost is assigned to the 

sender without changing the total energy cost. When sensor i sends one data unit to j, the energy 

cost of j is 0, and the energy consumed by i is 

if j is i's parent; 
if j is one of i's children, 

where ci is the number of i's children. In the following discussion, we normalize the energy costs 

by (err+ ere) for easy presentation. Thus, transferring one data unit from ito its parent consumes 

one energy unit and to broadcast one data unit to its children, sensor i will consume bi energy 

units, where 

b
._ err+ere'Ci ,-

err +ere 

Let i be any node in the communication tree and~ be the subtree rooted at i. We use 1~1 to 

denote the number of nodes in~. We define e(i) to be the energy cost incurred at i per time unit, 

which includes, the cost for raw data transfer from i to its parent if i is a forwarding node, the 

cost for query diffusion if i has storage nodes as its descendants, and cost for query reply if i is 

a storage node or has a storage descendant. To define e(i) mathematically we need to consider 

several possible cases. 

Case A. i is a forwarding node and there are no storage nodes in~. All raw data generated 

by the nodes in ~ have to be forwarded to the parent of i and there is no query diffusion cost. So 

Case B. i is a storage node and there are no other storage nodes in ~. The latest readings of 

all raw data generated by the nodes in ~ are processed at node i and the reduced reply size will be 

al~lsd. Node i sends the reply to its parent when queries arrive. So e(i) = rqal~lsd. 

Case C. i is a storage node and there is at least one other storage node in ~. In addition 
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to the cost for query reply as defined in Case B, i also incurs a cost for query diffusion that is 

implemented by broadcasting to its children. So e(i) = rqal1fisd+ birqsq. 

Case D. i is a forwarding node and there is at least one storage node in 'Tj. This is the case 

where all three types of cost (for raw data transfer, query diffusion, and query reply) are present. 

Among the 11fl- 1 descendants of i, let dt be the number of forwarding descendants without any 

storage nodes on their paths to i (the raw data generated at these d 1 nodes and at i itself will be 

forwarded from ito its parent without reduction) and d2 be the number of storage descendant's 

or forwarding descendants with at least one storage node on their paths to i (the last readings of 

the raw data generated at these d2 nodes will have been processed and reduced before reaching i). 

Obviously, dt + d2 = I'Tjl- 1. So e(i) = (dt + 1 )rdsd + birqsq + rqad2sd. 

Within the fixed tree model, we will consider two problems of storage node placement. Given 

an undirected tree T with nodes labeled with 1,2, ... ,n. The length of each edge is 1. Let e(i) 

be the energy cost of node i in one time unit as defined above. The objective is to place storage 

sensors (and hence forwarding sensors) on nodes in T such that the total energy cost LiETe(i) is 

minimized. In the case when there is no limit on the number of storage nodes that can be used to 

minimize the energy cost, the problem is denoted with UNLIMITED. In the case when there is a 

limited number of storage nodes, say k, to use, the problem is denoted with LIMITED. 

2.3.1.1 Unlimited Number of Storage Nodes 

We will present a linear-time algorithm for the problem UNLIMITED, where an unlimited number 

of storage nodes are available to use to minimize the energy cost of a communication tree. Recall 

that e(i) is the energy cost at node i. Let 'Tj be the subtree rooted at i. Then E(i) is the energy cost 

of nodes in~. defined to be E(i) = LiET;e(i). 
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Our algorithm relies on the following lemma. 

Lemma 2.1 Given a node i and its subtree T;.. If ar q 2: r d· then i must be a forwarding node to 

minimize E(i). If arq < rd, then i must be a storage node to minimize E(i). 

Proof: We compare the energy cost of two trees, which are identical in every aspect except that 

the first tree's root is a forwarding node and the second tree's root is a storage node. Let £ 1 and £ 2 

be the energy cost of these two trees, respectively. Comparing the energy cost of individual nodes, 

one by one, in the two trees, we observe that any two non-root nodes in the same position of the 

trees must have the same energy cost. The only difference is the energy cost of the roots. Let e1 

and e2 be the energy cost of the roots in the two trees, respectively. Therefore, £ 1 - E2 = e1 - e2. 

To prove the lemma, it suffices to prove that 

We consider two cases. First, if both roots have no storage descendants, then according to the 

four-case definition of energy cost given in the previous section (Cases A and B, specifically), we 

have 

Second, if both roots have at least one storage descendent, then according to the four-case defini-
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tion of energy cost given in the previous section (Cases D and C, specifically), we have 

In the first tree with a forwarding root, recall that d1 is the number of forwarding descendants of 

the root without any storage nodes on their paths to the root and that d2 is the number of storage 

descendants plus the number of forwarding descendants with at least one storage node on their 

paths to the root. Also recall that dt + d2 = 11il- 1. • 
From the above lemma, we can conclude that if arq 2 rd then every node (except for the 

root/sink, which is always a storage node) in the sensor network must be a forwarding node to 

minimize the energy cost. However, if ar q < r d, things are a little tricky. Although the root of 

the tree, say i, must be a storage node, it may not be true that every node in the sensor network 

must be a storage node to minimize the energy cost. One would think that in order for the tree to 

incur a minimum energy cost, all of its subtrees should incur a minimum energy cost. However, 

since arq < rd, these optimal subtrees all have storage nodes as their roots. This means that the 

energy cost of root i will have to include the cost for query diffusion bir qSq since it has storage 

children i.e., e(i) = rqal7iisd + birqsq. The cost for query diffusion, however, can be eliminated 

if all subtrees of i has only forwarding nodes, i.e., e(i) = rqal7iisd. (See Cases C and B in the 

four-case definition of e(i) in the previous section.) Thus, the minimum energy cost of the tree 

rooted at i should be derived from the better of these two scenarios. 

For a tree 7i rooted at i, let Ci be the set of children of i. Let E*(i) be the minimum (optimal) 

energy cost of 7i. If Ci is empty, i.e., i is a leaf, then i must be a storage node to achieve its 



39 

minimum energy cost. So E*(i) = rqasd. If C; is not empty, then for any j E C;, let E1(j) be the 

energy cost of Tj when all nodes in 1j are forwarding nodes. So 

E*(i) =min { rqal1fisd + b;rqsq + L E*(j), rqal1flsd + L Et(j) }. 
jEC; jEC; 

Algorithm 1 given in pseudo-code finds the optimal placement of storage nodes in two cases: 

(1) arq 2: rd. (2) arq <rd. where the first case is trivial and the second case is solved by dynamic 

programming that works from the bottom to the top of the tree. We now explain how the dynamic 

programming algorithm for the second case is set up. Assume that the n nodes in the tree T 

are labeled using the post-order2. A table E*[l..n] is used to hold the minimum energy cost of all 

subtrees rooted at node i = 1, ... , n. So at the end of the computation, E* [n] will hold the minimum 

energy cost ofT (which is rooted at n according to the post-order labeling). We also maintain a 

second table Et[l..n] which records the energy cost of all subtrees when all nodes in each subtree 

are forwarding nodes. In the algorithm, lines 5-9 compute the E* and E f entries for all leaves and 

lines 10-19 compute theE* and Et entries for the remaining nodes following our post-order. 

2The post-order used in this work is slightly different from the textbook definition of post-order in that our post-order 

requires all leaves to be listed first. 
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Algorithm 1 Place Unlimited Storage Nodes 
1: make the root a storage node 

2: if arq ~ rd then 

3: make all non-root nodes forwarding nodes and return 

4: end if 

5: for all leaves i do 

6: make i a storage node 

9: end for 

10: for all remaining nodes i, in post-order, do 

11: make i a storage node 

14: E*[i] = min{costl,cost2} 

16: if costl ~ cost2 then 

17: change each descendent of i that is a storage node to a forwarding node 

18: end if 

19: end for 
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There are only O(n) entries to compute in tables E* and E1 and to compute each entry that 

corresponds to a node, only its children will have to be considered. Furthermore, each node starts 

as a storage node. Once it is changed to a forwarding node by the algorithm, it will never be 

changed back. Therefore, the time complexity of Algorithm 1 is O(n), where n is the number of 

nodes. 

Summarizing the discussion above, we have the following theorem. 

Theorem 2.1 If arq 2 rd, then the optimal tree with the minimum energy cost contains only for

warding nodes (except for the root). If arq < rd, then the optimal tree can be constructed by a 

dynamic programming algorithm in O(n) time. 

·From the design of the algorithm, we also observe that every node starts as a storage node and that 

once it is changed to a forwarding node, all of its descendants are changed to forwarding nodes 

as well. Thus, it is impossible for a forwarding node to have a storage descendent. Likewise, it is 

impossible for a storage node to have a forwarding ancestor. We then have the following corollary. 

Corollary 1 In the optimal tree, if i is a forwarding node, all of its descendants are forwarding 

nodes as well. If i is a storage node, all its ancestors are storage nodes as well. 

In summary, this UNLIMITED problem refers to the scenario that the deployment budget 

is sufficient to upgrade every sensor to be a storage node. However, simply making all sensors 

storage nodes may not be the best strategy. The appropriate deployment still depends on the 

characteristics of query and data generation. Intuitively, if there are a large volume of queries for 

a certain set of data and the reduction function yields a large a, it would be better to transfer these 

data to the sink. On the other hand, if queries are infrequent and the reply size is much less than 

the raw data, it would be more efficient to hold the raw data locally. According to Theorem 2.1 
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and Corollary 1, the optimal deployment of storage nodes has a special property. For any path 

from a leave to the root, there is a clear boundary that distinguish forwarding nodes from storage 

nodes. The nodes below the boundary layer to leaves are forwarding nodes and the nodes above 

the boundary towards the sink are storage nodes. 

2.3.1.2 Limited Number of Storage Nodes 

In the problem UNLIMITED discussed in the previous section, we assume that we have enough 

storage nodes for the need to minimize the energy cost of the network. In reality, however, storage 

nodes may come with a hardware cost. Considering a limited budget for deploying a sensor 

network, there might be only a small portion of sensors as storage nodes. This is why we have 

also defined the problem LIMITED, which is similar to UNLIMITED except that we have only 

k storage nodes to deploy. Since the root (sink) is always a storage node, we assume that k 2: 1 

and that k - 1 is the maximum number of storage nodes that may appear as descendants of the 

root. Furthermore, from the discussion in the previous section, if arq 2: rd. the optimal tree has 

no storage nodes at all except the root. In this case, we just do not deploy any of the k- 1 storage 

nodes and we get an optimal tree. Our discussion in this section on LIMITED is for the case of 

arq <rd. Since the number of storage nodes is limited, where to place them becomes a crucial 

problem. A bad placement strategy may hardly improve the performance. Basically, there is a 

tradeoff between two trends. On the one hand, if storage nodes are close to the sink, i.e., at a high 

level in the tree structure, they can process more raw data, thus reduce the reply size from storage 

nodes to the sink. However, the sensor network spends much energy in transferring the raw data 

from low level forwarding nodes to the storage nodes. On the other hand, if the storage nodes 

are far away from the sink, the raw data from their descendants can be processed earlier along 
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the path towards the sink. However, storage nodes may cover only a few regular sensors, which 

leads to much raw data transferred to the sink without being processed. Besides this tradeoff, the 

benefits from a storage node also depend on the locations of other storage nodes. Therefore, in 

this section, we propose the optimal placement strategy in order to maximize the benefits from 

deploying k storage nodes. 

Assume that a communication tree T is given with up to k storage nodes already optimally 

deployed. By definition, the energy cost ofT is LiETe(i). However, we are going to use a different 

and unique method to calculate this cost, which works from the bottom of the tree towards the root. 

Starting from the leaf nodes and following the post-order until the root is eventually reached, for 

each node i, we compute the energy cost already incurred within the subtree ~ rooted at i, which is 

E ( i) by our notation, plus the energy cost contributed by the nodes in ~ to their ancestors, which 

includes both raw data transmission cost and query reply cost according to the four-case definition 

of the energy cost of an individual node. Specifically, if i is a forwarding node, it contributes a 

raw data transmission cost of rdsd to each of its forwarding ancestors that lie between i and i's 

closest storage ancestor (due to Cases A and D) and a query reply cost of rqasd to each of the 

other ancestors (due to Cases Band D). If i is a storage node, however, it contributes a query reply 

cost of rqasd to each of its ancestors (due to Cases C and D). Fig. 3 depicts the two scenarios. The 

top path from node ito the root (sink) is when i is a forwarding node and the bottom path from i 

to the root is when i is a storage node. Above each node (except i) is the contribution from ito the 

energy cost incurred at the node. 

Let l be the number of forwarding nodes between i and its closest storage ancestor, not includ

ing i. Let m be the upper bound on the number of storage nodes in ~- Then, we use Ei(m, l) for 

the energy cost that includes E ( i) and the amount contributed by the nodes in ~ to the energy cost 
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Figure 2.6: Computing the contribution to the energy cost of all ancestors 
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of their ancestors. Note that 0 ~ m ~ k and 0 ~ l ~ n- 2. In the case that i is a storage node or 

i's parent is a storage node, l becomes 0. Furthermore, if m = 0, no storage node is used in 1j and 

if m 2:: 1, at least one but no more than m storage nodes are used in Tj. Therefore, En(k,O) is the 

minimum energy cost of T with up to k storage nodes to deploy, assuming n is the label for the 

root. 

When traversing the nodes in post-order in the tree starting from the leaves, let i be the current 

node being traversed. Let di be the depth of i in the tree, which is the number of edges on the path 

from ito the root n. We can define Ei(m, l) recursively. For notational simplicity, we first define 

Qo(m) and Q1 (m) as follows. 

Qb(m) { 0 ifm=O; 
birqsq if m 2:: 1. 

Q\(m) { 0 ifm=l; 
= if m 2:: 2. birqsq 

If i is a leaf node, Ei(m, l) includes the energy cost of i and the pre-calculated amount con-

tributed by i to all of its di ancestors. Specifically, if i is a forwarding node, its own energy cost 

is rdsd and its contribution to the energy cost of its ancestors is lrdsd + (di -l)rqasd. If i is a 

storage node, its own energy cost is r qasd and its contribution to the energy cost of its ancestors 
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is dirqasd. Therefore, 

If i is a forwarding non-leaf node with a child set of Ci, the upper bound m must be di-

vided among all of its children. Let P(m) be the set of all permutations p = (m~lj E Ci), where 

LjEC; mj = m and mj denotes the upper bound on the number of storage nodes for subtree Tj in 

permutation p. Then Ei(m, l) is defined to be the sum of the amount from all of its subtrees, 

min { L Ej(mj,l + 1)}, 
'tlpEP(m) jEC; 

the energy cost of i, rdsd + Qb(m), and the pre-calculated amount of energy cost contributed by i 

to its ancestors, 

So, 

If i is a storage non-leaf and non-root node, the upper bound m- 1 must be divided among all 

of its children. LetP(m-1) be the set of all permutations p = (m~lj E Ci), where LjEC; mj = m-1 

and mj denotes the upper bound on the number of storage nodes for subtree 1j in permutation p. 

Then Ei ( m, l) is defined to be the sum of the amount from all of its subtrees, 

min { L Ej(mj,O}, 
'tlpEP(m-1) jEC; 

the energy cost of i, rqasd + Q\ (m), and the pre-calculated amount of energy cost contributed by 
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Algorithm 2 given here maintains a two-dimensional (k+ 1) x (n-1) table, Ei[m,l], at each 

node i, where 0:::; m:::; k and 0:::; l:::; n- 2. Assume that a post-order traversal is done beforehand 

and that the depth of each node is computed beforehand. Both the post-order and the depths can 

be obtained in O(n) time. In the algorithm, lines 1-12 computes the Ei tables for all leaves i, lines 

13-21 compute the Ei tables for the remaining non-root nodes i, and line 22-23 compute the entry 

En [k, OJ for the root n. After all tables are constructed, the minimum energy cost of the tree with 

up to k storage nodes can be found in the entry En[k,OJ. Note that instead of constructing a table 

for the storage root n, we compute only the needed entry for n. 



Algorithm 2 Place Limited Storage Nodes 

1: for all leaves i do 

2: form = 0 to k do 

3: forl=Oton-2do 

4: ifm = 0 then 

5: Ei[m, l] = (l + 1 )rdsd + (di -l)rqasd 

6: end if 

7: if m ;:::: 1 then 

8: Ei[m,l] = (di+ l)rqasd 

9: end if 

10: end for 

11: end for 

12: end for 

13: for all remaining non-root nodes i, in post-order, do 

14: form=Otokdo 

15: for l = 0 to n- 2 do 

16: mini = minvpEP(m){LjEC;Ej[m~, l + 1]} + (l + l)rdsd + (di -l)rqasd + Qb(m) 

17: min2 = minvpEP(m-I){LjEC;Ej[m~,O]} + (di + l)rqasd + Qi (m) 

18: Ej[m,l] = min{minl,min2} 

19: end for 

20: end for 

21: end for 

22: En[k,O] = minvpEP(k-l){LjECn Ej[m~,O]} + rqasd + Qi (m) 

23: return En[k,O] 

47 
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Assume that every node in the tree has at most c children. To partition an upper bound m into 

up to c upper bounds with the sum equal tom, there are at most (m+~- 1 ) = (m~_:} 1 ) .:::; (k~~} 1 ) 

permutations. The algorithm constructs O(n) tables and each table consists of O(kn) entries. To 

compute each entry, the time is 

0( c)= O((k+c-1)c- c/(c-1)!) = O((max{k,c})c- 1). (
k+c-1) 1 

c-1 

Thus, the time complexity of the algorithm is 0( kn2 (max { k, c} y-1). 

We summarize the discussion above in the following theorem. 

Theorem 2.2 Given a communication tree with n nodes and at most c children for each parent. 

Let k be the maximum number of storage nodes that may be deployed in the tree. Then the optimal 

tree with the minimum energy cost can be constructed by a dynamic programming algorithm in 

In the next, we consider a special case of LIMITED, where the given network is a regular tree 

with exactly c children for each non-leaf node and all leaves at the same level. For such a c-ary 

regular tree, we can modify Algorithm 2 to achieve a faster time complexity by making use of the 

regularity of the tree structure. 

Obviously, any subtree in a regular tree is also a regular tree and nodes at the same level have 

the subtrees with the same topology. This suggests that instead of keeping a table for each node as 

in Algorithm 2, we may keep just one table for each level. For easy discussion, we name the levels 

from bottom to top, with all leaves at level 0, all parents of the leaves at level 1, and finally the 

root at level llogc n J. For each level h, we define a two-dimensional table Eh [m, l] for 0 .:::; m .:::; k 

and 0 .:::; l .:::; llogc n J - 1, which returns the energy cost incurred within the subtree rooted at level 

h plus the contribution from the nodes in the subtree to their ancestors. As used previously, m is 
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still the maximum number of storage nodes to use in the subtree and l is the number of forwarding 

nodes between the root of the subtree and the storage ancestor closest to the root of the subtree. 

We first define Qo(m) and Q1 (m) as follows. 

Qo(m) { 0 ifm= 0; 
= e,,+c·e,, r s if m;::: 1. err+e,, q q 

Q1(m) { 0 ifm= 1; 
eu+c·e,, r s ifm;::: 2. err+e,, q q 

Let H = llogcnJ. Algorithm 3 first computes the table Eo[m,l] for all leaves at level 0, for 0:::; 

m :::; k and 0 :::; l :::; H- 1 in lines 2-11. Then it works its way up, level by level, until level H - 1 in 

lines 12-20. The root, which is at level H, is treated in lines 21-22, differently from the other nodes 

since it must be a storage node. By using one table for each level, our algorithm will construct 

llogc n J tables. This will result in savings in both space and time, compared with our algorithm 

for arbitrary trees, which needs to construct n tables. The modified Algorithm 3 for regular trees 

has a time complexity of O(k(logn)2(max{k,c} y-1 ). 

The result of the algorithm can be summarized in the following theorem. 

Theorem 2.3 Given a c-ary regular tree with n nodes. Let k be the maximum number of storage 

nodes that may be deployed in the tree. Then the optimal tree with the minimum energy cost can 

be constructed by a dynamic programming algorithm in 0( k(log n )2 (max { k, c} y- 1) time. 



Algorithm 3 c-ary Regular Tree 

1: H = LlogcnJ 

2: for m = 0 to k do 

3: for l = 0 to H - 1 do 

4: ifm = Othen 

5: Eo[m,l] = (l + 1)rdsd + (H -l)rqCXsd 

6: end if 

7: ifm;:::: 1 then 

8: Eo[m,l] = (H + 1)rqasd 

9: end if 

10: end for 

11: end for 

12: for h = 1 to H- 1 do 

13: for m = 0 to k do 

14: for l = 0 to H -1 do 

15: mini = minvpEP(m){LJ=l Eh[m~, l + 1]} +(I+ l)rdsd + (H- h -l)rqCXSd + Qo(m) 

16: min2 = minvpEP(m-l){L}=I Eh[m~,O]} + (H- h+ 1)rqCXSd + Qt(m) 

17: Eh[m,l] = min{min1,min2} 

18: end for 

19: end for 

20: end for 

21: EH[k,O] = minvpEP(k-l){LJ=l EH-1 [m~,0]} + rqCXsd + Qt(m) 

22: return EH[k,O] 

50 
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2.3.2 Dynamic Tree Model 

For the dynamic tree model, the storage node placement problem becomes how to place k given 

storage nodes to form a communication tree with the minimum total energy cost. In the deploy

ment, we first deploy normal forwarding nodes. After collecting their location information, we 

select at most k of them to be storage nodes. We can attach large flash memory to these selected 

forwarding nodes or replace them by deploying more powerful storage nodes at the same loca

tions. We also associate each forwarding node with a storage node which will hold the raw data 

from the forwarding node. We broadcast the association information to the network in the initial 

phase. This problem is NP-hard since it is a general case of the minimum k-median problem. We 

present a 1 0-approximation algorithm for the dynamic tree model in this subsection. 

We consider multi-hop communication for relaying data. We assume the data routing between 

a pair of sensors, e.g., a forwarding node and a storage node, or a storage node and the sink, follows 

the geographic routing algorithm [76], which looks for the shortest path connecting them. Thus, 

the energy cost model is simplified by the assumption that the transmission cost is proportional 

to the data size and the hop distance between the sender and the receiver. In a densely deployed 

sensor network, the hop distance between two sensors is proportional to the Euclidean distance 

( [38,46, 122] ). Therefore, in this work, we use 

Euclidean distance x Data size 

to measure the energy consumed to send data. 

Therefore, the problem in this work is to find the optimal placement of the storage nodes such 

that the energy cost associated with raw data transfer and query reply is minimized. This problem 
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is a general case of the k-median problem3. Especially when there is no data transfer between 

storage nodes and the sink, i.e. rq = 0, the problem becomes the classic k-median problem, which 

has been proven to be NP-hard. In the following, we give an approximate algorithm for our optimal 

storage node placement problem. 

More specifically, given Las a set of locations of sensor nodes including the sink, the problem 

is to select at most k sensors to be storage nodes such that the total energy cost is minimized. 

Assume different nodes are placed at distinct locations, L can be also regarded as the set of sensor 

nodes. All nodes/locations are labeled from 0 to n and node 0 is the sink. We define Yi as the type 

flag of node i, 

v· L . = { 1 if i is a storage node; 
l E ,y1 0 if i is a forwarding node. 

Let Cij be the Euclidean distance4 between node i and j and li be the Euclidean distance between 

node i and the sink, i.e. h = CiQ. We use Xij as an indicator denoting if the raw data generated by 

node j are sent to storage node i and stored there, 

x·. = { 1 if Yi = 1 and node j forwards its raw data to i; 
11 0 otherwise. 

3Definition of k-median problem ( [32] ): Given n points, we must select k of them to be cluster centers, and then 

assign each point j to the selected center that is closest to it. The goal is to minimize the sum of the distance between 

each node and its associated center. 
4We use the Euclidean distance to approximate the minimal number of communication hops between two nodes, 

which translates to the total optimal power consumption of the nodes on the communication path between those two 

nodes. This approximation is valid when a large number of nodes are deployed ( [38, 46, 122] ). 
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Thus, our problem can be formulated as an integer program, 

IP: min L Xij(CtCij+c2h) 
i,jEL 

s.t. V j E L, L Xij = 1, (2.1) 
iEL 

LYi :::; k, (2.2) 
iEL 

Vi,j E L,yi ~ Xjj ~ 0, (2.3) 

Vi, j E L,xij = {0, 1 }, 

ViE L,yi = {0, 1 },yo = 1. 

where c1 = rdsd and c2 = rqasd. In the objective, the cost incurred by a node j includes two parts. 

The first part (ctCij) is the cost for raw data transfer from node j to the associated storage node i. 

The second part (c20 is the cost of sending the query reply, which is derived from the raw data 

generated by j, from the storage node ito the sink. The first constraint requires every sensor to 

send its data through a storage node. Since we treat the sink as a storage node, it includes the 

case that sensors send data directly to the sink. The second constraint is for the number of storage 

nodes, where k is given as a parameter of this problem. In the third constraint, if node j forwards 

data to node i, node i must be a storage node. It shows the connection between variables x andy. 

Since c1 and c2 are constants, the objective function is equivalent to 

min L PijXij, 
i,jEL 

where Pi,. = ci1· + {3/i with {3 = £2. = !!!!!. . In the rest of this section, we will use the above objective 
CJ rd 



function for the IP problem. Its LP-relaxation is 

LP: min L PijXij 
i,jEL 

s.t. \fj E L, L,xij = 1, 
iEL 

\fi, j E L,yi;:::: Xij ;:::: 0, 

\fi,j E L,xij E [0, 1], 

\fiE L,yi E (0, l],yo = 1. 
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Note that the difference between this LP and the k-median problem is that Pij is neither symmetric 

nor proportional to the Euclidean distance between i and j, i.e., Pij f p ji and Cij > Cuv does not 

imply Pij > Puv· 

Theorem 2.4 If f3 ;:::: 1, there is no need to place storage nodes. 

Proof: Assume node i is a storage node, and a node j (j may be equal to i) sends data via node 

i. Recall that the cost incurred by node j is Pij = Cij + f3li. If j sends data directly to the sink, the 

cost will be lj. According to the triangle inequality 

It shows that when f3 ;:::: 1, there is no benefit from transmitting data through a storage node. Thus, 

there is no need to deploy storage nodes. • 
In the rest of this section, we only consider the scenario with f3 < 1. 
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2.3.2.1 Outline of the Algorithm 

In the next, we propose an approximation algorithm to resolve the IP problem. We first express 

the LP problem in a different but equivalent form by introducing a demand d i to every node. 

Intuitively, dj can be regarded as the amount of the raw data generated by node j. We set dj set to 

1 for any node j and keep the same constraints of the LP problem. But the objective function is 

rewritten as 

LP: min L djPijXij· 
i,jEL 

Initially, we obtain an optimal solution (i,y) to the LP problem. For any node j E L, we use 

Cj to represent the cost of raw data transfer and query reply incurred by a data unit from node j in 

solution (i,y): 

Let CLP be the value of the objective of the LP problem, which represents the total cost. 

CLp(i,y) = LdjCj. 
jEL 

(2.4) 

(2.5) 

Based on (i,Y), we use the following three steps to obtain an approximate solution to the IP 

problem. Here we only summarize the basic intuitions. More details will be presented in the next 

section. 

Step 1: We modify the demand of every node by moving the demands of some nodes to the 

others. We call this process consolidating demands. After this step, only some nodes hold positive 

demands while the other nodes' demands become 0. We call the problem with new demand values 

the new demand problem. Since we keep the same constraints in this step, (i,Y) is also feasible 

to the new demand problem. In addition, our modification follows some rules such that an integer 
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solution to the new demand problem can be converted to an integer solution to the LP problem 

with no more than 4CLP(i,y) extra cost. 

Step 2: In solution (i,y), the values of the variables are not necessarily integers. We call node 

i a fractional storage node if Yi E (0, 1). In this step, we simplify the problem by consolidating 

fractional storage nodes, i.e., moving Yi of fractional storage nodes to other nodes. We modify 

(x,y) to another solution (x',y'), such that non-zero values in x',y' reside in[!, 1] and the cost of 

(x' ,y') is at most three times of the cost of (x,Y). We then further modify (x' ,y') to another{!, 1 }

integral solution (x'',y") (non-zero values in x'',y" are either! or 1) to the new demand problem, 

which yields no more cost than (x',y'). 

Step 3: Finally, we apply a rounding algorithm to convert (x'' ,y") to a {0, 1 }-integral solution 

to the new demand problem with at most twice the cost of (x'',y"). As we mentioned in Step 1, this 

integer solution can be further converted to an integer solution to the LP problem with a bounded 

cost. After all, we obtain an approximate solution to the IP problem. 

2.3.2.2 Details of the Algorithm 

Step 1: Consolidating Demands Originally, every node has demand of 1. In this step, we try to 

reallocate demands from all nodes to fewer number of nodes such that for any pair of nodes i and 

j with positive demands after this reallocation, their Euclidean distance c ij > 4max { Ci, C j}. The 

following procedure is applied to consolidate the demands. 

1. Were-index the nodes in an increasing order of Cj, i.e., Cr ~ C2 ~ ... ~ Cn. 

2. We modify the demands of nodes in the new order. Let dj be the new demands. Initially, 

dj = dj. For a node j, we check if there is another node i satisfying i < j, di > 0 and 

Cij ~ 4max {Ci,Cj} = 4Cj. If there exists such a node i, we move the demand of j to node 
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i, i.e., 

d~ f- d~ +d'.· 
I I J' 

d'· 0 J f- . 

After this process, a node still with a positive demand is called a demand node. Now we get a 

new problem, called new demand problem, which has the same constraints as the LP problem, but 

the objective becomes: 

New Demand: min L d}PijXij. 
i,jEL 

In the process above, we only modify the demands, but nothing on the constraints. Thus, the 

feasible solution (i, y) to the LP problem is also feasible to the new demand problem. Let CND be 

the cost in the new demand problem, 

CNv(i,y) = _Ld}Cj. 
jEL 

Theorem 2.5 After consolidating the demands, the cost of (i,y) in the new demand problem is 

less than that in the original problem, i.e., CNv(i,y) < CLP(i,Y). 

Proof: To see this, assume that during the consolidation, we move demands from j to i, i.e., 

dj f- di + d j, d} f- 0 and C j > Ci. Thus, the change of the total costs is: 



58 

• 
Theorem 2.6 For any feasible integer solution (x1,y1) to the new demand problem, there is a 

feasible integer solution (x2,y2) to the LP problem such that, 

CLp(x2,y2) ~ CNv(x1,y1) +4CLP(x,y). 

Proof: Let (x1,y1) be an integer solution to the new demand problem. We will convert it to an 

integer solution (x2,y2) to the LP problem. Initially, we set y2 = y1, i.e., the solution to the LP 

problem has the same set of storage nodes as the solution to the new demand problem. Then 

we derive x2 according to the consolidating process for the new demand problem considering the 

following two cases. If node j has positive demand after consolidation in the new demand prob

lem, we set Vi,x2ij = x1ij· In this case, no cost difference is introduced between CLp(x1,y1) and 

CNv(x2,y2). In the other case, node j moves its demand to another node j' during the consol

idating process. Here we look at which storage node j' is associated with in solution (x1,y1), 

assume it is node i, i.e., x1ij' = 1. Then, we also assign node j to the same storage node i in the 

LP problem, i.e., x2ij = x1ij' = 1. The following analysis illustrates the cost difference between 

CLP(x1,y1) and CNv(x2,y2) incurred by the second case. 

In the LP problem, with solution (x2,y2), the cost of sending demand dj = 1 to the sink via i 

becomes 

Similarly, in the new demand problem, the cost of sending the same demand dj = 1, which is 

actually a part of dj,, is 
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The difference is Pij- Pij' = cij- Cij'· According to the triangle inequality, Cij'- Cij < Cjf. Recall 

the consolidating process, j moves its demand to j' only when j' < j and Cjf < 4max{Cj,Cj'} = 

4Cj. Therefore, in the second case, Pij- Pij':::; 4Cj. 

Therefore, summing up the cost difference for all j E L, the largest total difference is reached 

when every node j E L falls in the second case. Thus, we have 

CND(x2,y2)- CLp(x1,y1) < }:)PijX2ij- Pij'X1ij') = L (Pij- Pij') 
jEL jEL 

< L 4Cj = 4 L djCj = 4CLp(i,y). 
jEL jEL 

• 
Step 2: Consolidating Storage Nodes The goal of this step is to modify the values of (i,Y) to 

obtain a new solution (x',y') to the new demand problem, such that 

'-0 Yi- , 

I> 1 
Yi- 2' 

Then, we will further modify (.x', y') to another {!, 1} solution (x'', y"). 

Starting with x' = i andy'= y, we modify (i,y) to (x',y') using the following consolidation 

process: For each fractional storage node i, i.e., 1 > y; > 0, if d; = 0, then 

1. We will move the value of y; to the closest demand node j(dj > 0) , 



2. Also, we need move the forwarding nodes assignments, for each j' E L 

~J' t- ~J' +~}'; 

~J' t- 0. 
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After these changes, we obtain a new solution (.x',y') to the new demand problem. In the next, 

we prove the two properties of y' mentioned in the beginning of this subsection. Following the 

consolidation in this step, it is obvious to see the first property that if d; = 0 then y: = 0. We use the 

following Lemma 2.2 and Theorem 2. 7 to prove the second property of y'. After that, Theorem 2.8 

bounds the cost of the new solution after consolidation. 

Lemma 2.2 For a demand node j, any node i satisfying Cij ~ 2Cj will move its value ofyi to yj 

after the consolidation step presented earlier in this subsection. 

Proof: First, Vi, if Cij ~ 2Cj, the demand of i is 0, i.e., i is not a demand node. If node i was a 

demand node, then as a result of Step 1 discussed in Section 2.3.2.2, Cij > 4max(Cj,C\) > 2Cj, 

which is in contradiction to Cij ~ 2Cj. 

Next, we prove that all these nodes will move their fractions to node j. Assume that there 

exists node i with Cij ~ 2Cj that moves its Yi to another demand node j', which implies cij' < Cij· 

According to the triangle inequality, 

Since both node j and node j' are demand nodes, Step I in Section 2.3.2.2 would have guaranteed 

CjJ' > 4max(Cj,CJ') ~ 4Cj, which is in contradiction to CjJ' < 4Cj. Thus, after modifying (x,y) to 

(x' ,y'), all the nodes within distance of 2Cj to node j will have moved their values of y to yj. • 
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Theorem 2.7 After consolidation in this step, 

I I 1 d·>O=?y.>-. 
J J- 2 

Proof: For each node j, recall Cj = LiELPijXij· we have 

Cj ~ L PijXij > L 2CjXij =} L- Xij < ~. 
Pij>2Cj p;p2Cj Pij>2Cj 

Additionally, because Pii > cii, we have 

Since node j is a demand node (d)> 0), by Lemma 2.2, all the nodes within 2Ci will have moved 

their values of y to j after the consolidation in this step. Therefore, we get 

• 
Theorem 2.8 CNv(x ,y1

) :::; 3CNv(x,y). 

Proof: Consider that a fractional storage node i has moved its Yi to node j during the consolidation. 

For any demand node j', the previous association Xif is also transferred to j. Since j is the closest 

demand node to i, we have Cij:::; Cij'· Recall Pii' = cii' + f3li, from the triangle inequality, 



For the second term of Pi/• 

Therefore, 

Pi/= CJJ' + f3ZJ < 2cij' + Pij'::; 2Pij' + Pij' = 3pii'· 

Considering all the consolidated fractional storage nodes, e.g., YiJ ,.Yi2 , ••• are moved to yj, 

= 

< 

L dj'Pjj'(Xjj' +iii}' +ii2}' + ... ) 
j,j'EL 

" d ·r (p · ·ri · ·r + 3p· ·fi· ·r + 3p· ·ri· ·r + • • •) £.... J }} ]} II} II} 12] 12} 

j,j'EL 

< 3 L dfPJfXJf = 3CNv(i,Y). 
j,j'EL 

Therefore, the cost CNv(:i ,y') is at most triple of CNv(i,y). 
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• 
Next, we will modify (x,y') to another feasible solution (x',y") to the new demand problem 

subject to x', y" E { 1, 1}, and the cost of (x', y") is no more than the cost of (:X, y'). The condition 

that y', y" 2::: ! implies that there are at most 2k nodes with positive demands in both solutions 

(x,y') and (:i',y") because of the second constraint in the new demand problem formulation. 

Initially, we assign x' = x and y'' = y'. At this point, when calculating the objective function of 

cost, we only need consider demand nodes since the nodes with zero demand have no contribution 

to the cost. For each demand node i, in order to reduce the cost, the best choice is to send data 

through itself. However, considering the third constraint in the new demand problem, node i 

cannot send all data through itself. In our solution x', we take the best case by setting 

.JI II "fd1 Q 
xii = Yi ' l i > ' 
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i.e., y;' portion of demand d; is sent through node i itself. In addition, we assign the remaining 

(1- y:') portion of d; to another demand node i', where Pi'i is the minimum among all demand 

nodes. Let s( i) denote such node i'. The minimum cost associated with all demand nodes i is 

Ldf(Pu~:+Ps(i)i(1-~;)) = L df (PuY:' + Ps(i)i( 1 - y:')) 
d!>O d!>O 

= 

where 

L df (f3Zil + Ps(i)i- Ps(i)iY:') 
d{>O 

L dfPs(i)i- L dfy:' (Ps(i)i- f3Zi), (2.6) 
d{>O d{>O 

So far, we only modify x', but y" is still equal toy'. Since formula (2.6) only depends on y", we 

can use f(y") to represent it. 

Next, we will show that under the constraint ! :::; y;' :::; 1 for demand node i, we can obtain 

a {!, 1 }-integral solution y" such that f(y") is the minimum. The first term of Eq. (2.6) is a 

constant independent of y". To minimize the cost, we should maximize y:' for the nodes with 

largest values of d;(Ps(i)i- f3li)· Let n' be the number of demand nodes, as we know, n' < 2k. We 

reorder demand nodes according to d[ (Ps(i)i- czh) decreasingly. We set y;' = 1 for the first 2k- n' 

nodes andy:'= ! for the remaining 2(n'- k). It is actually a greedy algorithm to maximum the 

second term of Eq. (2.6). Thus, 

J(y") :::; J(y') :::; eND (x, y'). 

Accordingly, x' is also a {!, 1 }-integral solution. For a demand node i, if y:' = 1, 

{ 

II 1 'f . • 
X~·= Yi = 1 J = l; 

Jl 0 otherwise. 



0 h · "f II 1 t erwtse, 1 yi = 2, 

Theorem 2.9 CND(x',y''):::; cND(x,y'). 

if j = i; 
if j = s(i); 
otherwise. 
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Proof: It is obvious because (x',y") yields the minimum value of the cost function f. • 

Step 3: Rounding Finally, we apply a rounding algorithm to get a {0, 1} integer solution. First, 

we place a storage node at node j if y'j = 1. For the remaining nodes with y~' = ! , half data is sent 

via s( i). Consider a directed graph G consisting of the remaining demand nodes, where each edge 

is from ito s(i). 

Lemma 2.3 There is no loop of length more than 2 in G. 

Proof: Assume there is a loopinG involving nodes n1 ,n2, · · · ,nm. where m > 2 and 'it:::; m there 

is a directed edge from n1 to n(t mod m)+I" For each node n1, s(n1) = n(t mod m)+I" According to 

the definition of s(n1) that Ps(n,)n, is the minimum, we have 

Recall Pij = Cij + f3h, the conditions above become 
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Thus, the summation of the left side should be less than the summation of the right side. We 

find by examining the inequalities, however, that the summation of both sides are equal. This 

contradiction means that the series of conditions can not be held at a same time. • 
Furthermore, if there are two edges between two nodes, i.e s( i) = j and s(j) = i, we arbitrarily 

choose one of them as a root and eliminate the directed edge from the root to the other node. 

Finally, G becomes a forest graph, which consists of multiple rooted trees. Additionally, we 

assign every node a level value, which is the distance to the root of the tree that it belongs to. We 

can divide these nodes into two sets based on odd and even level values and select the smaller set 

of nodes to be storage nodes. Recall that {ily~' =!}has 2(n'- k) nodes. Thus, we place at most 

n' - k storage nodes at this step. Plus the storage nodes set earlier in { ily~' = 1}, which has 2k- n' 

nodes, the total number of storage nodes is at most 2..~' ::::; k. In addition, each unselected node i 

in the tree will associate itself with s(i), which must be a storage node, i.e., (x;(i)i = 1). Finally, we 

get an integer solution to the new demand problem from feasible solution (x,Y). Let CNv(INT) be 

the cost of this integer solution in the new demand problem (found after rounding). We can prove 

the following theorem. 

Theorem 2.10 After rounding, the cost of the integer solution CNv(INT) is no more than double 

the cost of (x'' ,y"), i.e., CNv(INT) ::::; 2CNv(x'' ,y"). 

Proof: In the routing process above, for j with y'j = !. the previous cost is !f3lj + !Ps(j)j and after 

rounding, it becomes Ps(j)j or {3lj. Thus, the cost is at most doubled. • 



Based on the previous theorems, therefore, 

CNv(INT) < 2CNv(x",y")(Theorem 2.10) 

< 2CNv(x',y')(Theorem 2.9) 

< 6CNv(x,y)(Theorem 2.8). 
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As we mentioned in Theorem 2.6, we can derive an integer solution to the original problem 

from an integer solution to the new demand problem. Let CLP(INT) denote the cost of this integer 

solution in the LP problem, 

CLP(INT) < CNv(INT) +4CLP(x,y)(Theorem 2.6) 

< 6CNv(x,y) + 4CLP(x,y) 

< 6CLP(x,y) +4CLp(x,y)(Theorem 2.5) 

10CLP(x,y). 

Since (x,y) is the optimal fractional solution, the cost of (x,y), CLp(x,y), must be no more than 

the cost of the optimal integer solution. Therefore, combining three steps together, we get a 1 a

approximation (3 x 1 x 2 + 4) algorithm for this problem. 

2.3.3 Stochastic Analysis for Random Deployment 

The algorithms in the previous sections aim to find the optimal locations for storage nodes. In 

reality, however, the storage nodes may not be deployed in a precise way. Instead their deployment 

may be random, e.g., the storage nodes are dispersed from an airplane. In this section, we evaluate 

the performance of random deployment of storage nodes in fixed and dynamic trees in which every 

sensor node finds the best storage node for data storage. 
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2.3.3.1 Fixed Thee Model 

Assume the forwarding nodes and storage nodes are randomly distributed to the field with density 

A and As respectively. For simplicity, we consider a disk network field, where the sink is placed at 

the center and R is the radius. In the fixed tree model, the network builds a communication tree in 

which each node finds the shortest path to the sink by following the tree edges. Each forwarding 

node sends its data to the first ancestor storage node on the path to the sink. As our simulation and 

other previous research show, the radius (ri) of the area covered by the nodes that are i hops or 

less from the sink is proportional to i. Let this ratio be c' = q, Thus, we can estimate the number 

of nodes whose distances to the sink are between (t- 1 )c' and tc', i.e., the nodes with depth t. Let 

num(t) represent the total number of the nodes whose depth values are t, 

For a node with depth t, let s(t) be the expected hop distance to its closest storage ancestor. The 

cost caused by this node is 

The probability that an individual node is a storage node is p = ~. Therefore, 

s(t) p·O+p(1-p)·1+p(1-p)2 ·2+···+p(1-p/-1 ·(t-1)+(1-p)'·t 

( .!._ -1)(1- (1- p)1
). 

p 

The total energy cost in the fixed tree model can be expressed as 

R 
-;;r 

E = ,Lnum(t)(rdsds(t) + rqasd(t- s(t))) + Eq, 
t=l 
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where Eq is the cost of query diffusion. The value of c' is related to the communication range and 

node density. We can obtain the value from simulations. 

Query messages are diffused from the sink to every storage node. For each storage node, it 

incurs an extra query diffusion cost along the path to its closest storage ancestor. If we assume 

there is no overlap among the paths connecting each storage node and its closest storage ancestor, 

the total query diffusion cost Eq can be formulated as 

R 
? 

Eq = :Lnum'(t)rqsqs(t), 
t=l 

(2.7) 

where num' (t) = As1t'(2t- 1 )c'2 is the number of storage nodes whose depth values are t and recall 

s(t) is the expected distance to the closest storage ancestor. 

2.3.3.2 Dynamic Tree Model 

The fixed tree model assumes that the communication tree does not change according to the place-

ment of the storage nodes. In the dynamic tree model, after the storage nodes have been positioned, 

each sensor node chooses the best storage node for storage with respect to the minimal communi-

cation cost for data forwarding and query diffusion and reply. The storage node placement in this 

model is more complicated than that in the fixed tree model because we need to consider the in-

terplay between the storage node placement and the selection of the storage node for each sensor. 

These two steps affect each other dynamically. 

In the optimal solution, a storage node should send query reply to the sink by following the 

shortest path because the data coming out of a storage node cannot be reduced any further ac-

cording to the definition of data reduction function. A forwarding node has to choose a storage 

node for data storage to minimize the total communication cost for its data. Assume the sink is 
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located at the origin. Let Xi represent the location of sensor i. Additionally, we define fd(xi) as 

the location ofthe forwarding destination (storage node) assigned to node i. If i is a storage nodes, 

then fd(~) =~.The energy cost of sending raw data from Xi to fd(~) is rdsdJ~- fd(~)J. The 

query reply cost for the data from forwarding node i is rqasdJfd(xi)J. In total, the cost generated 

by a single node i in a time unit is: 

To find the optimal solution, we need to minimize the cost for each sensor. 

The total energy cost of the sensor network can be described as 

(2.8) 

where Eq is the cost of query diffusion. We find that Eq in this dynamic tree model is the same as 

that in the fixed tree model. Because in both models, each storage node is connected to the sink 

by the shortest path. Therefore, we can also use Eq. (2.7) to estimate Eq. In the following of this 

section, we will analyze the rest part of Eq. (2.8), which is denoted by E'. 

First, we define a function F(x,Y) as the energy cost caused by the sensor at location x where 

y is the location of its forwarding destination. 

Moreover, we define an area 

G(x, U) = {yJF(x,Y) ~ U}, 

that is, if a sensor at x selects any storage node in that area, the energy cost for the data of that 

sensor would be no more than U. Theoretically, the minimum reply cost with Poisson deployment 
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is 

E' = A j j P(y E S)F (.X, y)P( G(x, F (.X, y)) n S = lf> )dydx, 

where S is the set of all storage nodes including the sink. P(y E S) is the probability that there is a 

storage node at location y. 

PC E S) = { 1 if y is t?e origin; 
y As otherwise. 

F(x,Y) is the energy cost if a forwarding node at .X sends data through a storage node at Y, For a 

fixed x, 

P(G(x,F(x,Y)) ns = q,) 

is the probability that its forwarding destination is at location y, i.e., no other storage node would 

induce less energy cost than F (x,Y). G(x, F (x,Y)) n S = q, means that no other storage node is 

more eligible than the one at y. According to Poisson processes, 

P(G(x F(x -))nS= A>)= e , , I x,~ - x, ; 
{ 

-A.,.IG(x F(x .Y))I 'f F(- -) < F(- O) 
' ,y '~" 0 otherwise. 

Unlike other nodes, the sink is deterministically fixed in the network. So if area G covers the sink, 

there is no need to compute the probability. The forwarding node will definitely send data directly 

to the sink. 

However, IGI in the formula above, called the Cartesian Oval, cannot be expressed in a closed 

form. To approximate the energy cost, we make each forwarding node simply choose the closest 

storage node for data storage. The network field is then divided into Voronoi cells induced by 

storage nodes. The energy cost of this topology is very close to the optimal case, especially when 
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Assume there is a forwarding node i at location x, the probability that i sends data through a 

storage node at location y becomes 

Thus, 

E' = A j j F(x,Y)P(x ~ y)dydx 

if lx-5il ~ lxl; 
if y is the origin; 

Otherwise. 

A(JF(x,O)e-lls~r/.i'/2 
dx+ j { F(x,Y)Ase-lls~r/x-.YF dydx) 

1/x-.Y/</xl 

= A jF(x,O)e-Aslr/.i'/2 
dx+ A J r F(x,Y)Ase-Aslr/.i'-y/ 2 

dydx. (2.9) 
1/x-.Yl</.i'/ 

In the first term, F(x,O) = rdsdlxl. Therefore, 

(2.10) 

(2.11) 

Figure 2. 7: A forwarding node at location x sends data via a storage node at y. 

For the second term in Eq. (2.9), Fig. 2.7 shows the variables after coordination conversions, 

where p = lx- 91 and p' = lxl- F(x,y) can be expressed by 
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Thus, the second term becomes: 

(2.12) 

Combining Eq. (2.10) and (2.12), the total energy cost except query diffusion is 

We can further approximate E' by examining its two components separately. Let E fs be the 

cost of transferring raw data between forwarding nodes and their closest storage nodes. Let Ess 

be the cost to relay reply from storage nodes to the sink. For a forwarding node i , the expected 

distance to the closest storage node is 2~. Thus, 

(2.13) 

'A nR2 is the total number of forwarding nodes and r dsd 2~ is the energy cost of transferring raw 

data from an individual forwarding node to its closest storage node. On the other hand, 

Ess = rqasd'L,(Di+ 1)Li, 
iES 

where Di is the total number of descendants and Li is the distance to the sink. Since each forward-

ing node chooses the closest storage node for data storage, the number of forwarding nodes that 
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each storage node is responsible for is approximately the same. If we replace Li by the mean value 

L' 
' 

Ess = rqasdL'L(Di+ 1). 
iES 

In this equation, LiEs(Di + 1) represents the number of nodes which send data via storage 

nodes to the sink. Let N' be the number of forwarding nodes that send data directly to the sink, 

N' can be derived as 

L(Di+ 1) = J..nR2 -N'. 
iES 

And L' can be simply approximated as 

1 _ Asfl2nr·rdr _ ~R 
L- AsnR2 -3 . 

Therefore, 

2 2 A -A. nR2 
Ess=rqasd(-R(J..nR --;;---(1-e ' ))). 

3 . 1\-s 

Combining Eq.(2.13) and (2.14), 

(2.14) 
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2.4 Performance Evaluation 

2.4.1 Fixed Tree Model 

We have implemented a simulator to simulate the deterministic storage node placement in the 

fixed tree model by using dynamic programming. and the random storage node deployment in the 

fixed tree and dynamic tree models. We evaluate the energy cost for various parameters. 

2.4.1.1 Simulation Settings 

In our simulation, we consider a network of sensors deployed on a disk of radius 5 with the sink 

placed at the center. One thousand sensor nodes (n = 1000) are deployed to the field randomly 

following 2-dimensional spatial Poisson process. Node transmission range is set to 0.65. After all 

nodes are deployed, a routing tree rooted at the sink is constructed by flooding a message from 

the sink to all the nodes in the network. The message carries the number of hops it travels at each 

node so that each node chooses among its neighbors the node that has the minimum number of 

hops to be its parent. This tree topology is needed in the simulation of the fixed tree model. This 

step, however, can be skipped for the dynamic tree model. 

In the rest of this section, we will present and compare the following algorithms. 

• FT-DD: It represents the fixed tree model with deterministic deployment. In this algorithm, 

the storage nodes are deployed by following the dynamic programming algorithm according 

to the known tree topology. 

• FT-RD: It represents the fixed tree model with random deployment. In this algorithm, we 

randomly select a certain number of nodes in the network to be storage nodes. 
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• DT-RD: It represents the dynamic tree model with random deployment. In this algorithm, 

the storage nodes are randomly deployed. After that, each forwarding node selects the best 

storage node to deliver data and each storage node replies to query by following the shortest 

path to the sink. 

• ST-RD: It represents semi-dynamic tree model with random deployment which is enhanced 

version of FT-RD with a local adjustment. When a sensor i is upgraded to storage node 

in a tree structure, its siblings' children will try to set i as their parents if i is within their 

communication range. 

• Greedy: It represents a greedy algorithm where the most heavily loaded sensors will be 

upgraded to storage nodes. Usually, those sensors close to the sink will become storage 

nodes in this algorithm. 

In addition, we use relative energy cost as performance metrics. We use the scenario that no 

storage node except the sink is deployed as the baseline. Let the energy cost in this no storage 

scenario be E1. And let the energy cost after the storage nodes are deployed be E. The relative 

energy cost is defined as ~, represented as a percentage. In the rest, we simply use "energy cost" 

for "relative energy cost". 

Because of the randomness of our simulation environment, results from the same parameter 

setting might vary a lot. Therefore, for a certain set of parameters, we conduct 100 independent 

simulations and the average energy cost is used in the following analysis and comparison. Unless 

otherwise stated, we set the following parameters in our simulations: rd = 1, rq = 1, sd = 1, sq = 1 

and a= 0.5. We evaluate the energy cost by varying the number of storage nodes k and the data 

reduction rate a. The density of storage nodes As can be derived by As=~· Note that the energy 
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cost is also related to r d, sd, r q and Sq. However, for comparison purpose, changing r q, sq, r d, sd 

will be equivalent to changing a. To simplify the description, we fix rq = sq = rd = sd = 1 and 

only vary a to examine different characteristics of data and queries. 

2.4.1.2 Random Deployment 

Fig. 2.8 shows the energy cost of random deployment in the fixed tree model. We compare our 

theoretical estimation with simulation results. As we can see from the figure, the theoretical 

estimation and the simulation match well. We have examined the simulation carefully and found 

that many storage nodes are placed at the leaf nodes or have very few descendants. Therefore, the 

data reduction for those descendants is negligible and less energy is saved compared to the case 

that each node sends all the data to the sink. 
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25 

Figure 2.8: Ff-RD: Energy cost with varying 
number of storage nodes (k), n = 1000, rd = 
rq=sd=sq= l,a=0.5. 
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Figure 2.9: Ff-RD: The impact of data re
duction rate (a), n = IOOO,rd = rq = sd = 
Sq= l,k= lOandA.s = fj.r =0.127. 

In Fig. 2.9, we show the energy cost with respect to different data reduction rates a. We fix 

the number of storage nodes (k = 10) and change the data reduction rate a from 0.1 to 0.9. In this 

fixed tree model, decreasing data reduction rate cannot improve the performance too much. Even 

when a is set to 0.1, we still have more than 96% energy cost with 10 storage nodes. The reason 

is that data accumulation to the storage nodes from the forwarding nodes consumes most of the 



77 

energy with respect to the query diffusion and reply. Moreover, when a is 0.9, the energy cost is 

even worse than the original cost, because the incurred query diffusion cost becomes larger than 

the benefits obtained. 

The energy cost of random deployment in the dynamic tree model is shown in Fig. 2.10. In 

this model, the location of each storage node is broadcast to forwarding nodes so that they can 

choose the proper storage nodes to deliver data for the energy concern. In this way, we take full 

advantage of every storage node and maximize their contributions to the whole network. As shown 

in Fig. 2.10, random deployment performs much better in this dynamic tree model. The energy 

cost decreases very fast with increasing number of storage nodes, e.g., with 10 storage nodes (1% 

of total nodes), we can save energy by approximately 20%. Fig. 2.11 illustrates the impact of data 

reduction rate to the energy cost in the dynamic tree model. In this figure, a becomes an important 

parameter, because every storage node is in charge of many forwarding nodes in the dynamic tree 

model. A small decrease of a will reduce energy cost greatly. We also observe that our theoretical 

estimation matches well with the simulation results. Although our stochastic analysis uses some 

expected values and approximations, the maximum difference between the two curves is less than 

5%. 
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Figure 2.10: DT-RD: Energy cost with 
varying number of storage nodes (k), n = 
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As shown above, with random deployment, the dynamic tree model has a significant perfor

mance improvement over the fixed tree model. However, the locations of storage nodes need to 

be broadcast to all other nodes and the new tree is completely different from the originally con

structed tree one. We consider a semi-dynamic tree model, in which local adjustments are applied 

to the originally constructed tree. For each storage node i, all the forwarding nodes within the 

transmission range of i that have a depth no less than i's depth select i as parent. In result, each 

storage node gains more descendants and accepts more raw data storage. Fig. 2.12 compares the 

energy costs of random deployment in three models (fixed tree, dynamic tree and semi-dynamic 

tree), as well as deterministic deployment in the fixed tree model. We use ST-RD to denote the 

newly introduced semi-dynamic tree model with random deployment. As shown in Fig. 2.12, DT

RD achieves the best performance, while FT-RD has the worst performance. Local adjustment in 

ST-RD improves the performance of the fixed tree model. In FT-RD, each storage node has no 

control about how many descendants it can have. Many storage nodes are deployed with few de

scendants, which explains why FT-RD delivers the worst performance. ST-RD allows each storage 

node to have some restrained flexibility in choosing its descendants, and has a better performance 

than FT-RD. DT-RD has more flexibility in choosing descendants, and we see a much improved 

performance. 

2.4.1.3 Deterministic Deployment 

Fig. 2.13 and Fig. 2.14 illustrate the performance of deterministic deployment in the fixed tree 

model. In the simulation, the locations of the storage nodes are obtained by Algorithm 2. Com

pared to the random deployment (FT-RD) and greedy algorithm, deterministic deployment signif

icantly improve the performance by precisely computing the optimal positions to put the storage 
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Figure 2.12: Comparison of energy costs with varying number of storage nodes (k), n = 1000, rd = rq = 

sd = sq = 1, a= 0.5. 

nodes. 

In Fig. 2.13, we fix the reduction rate a = 0.5, and vary the number of storage nodes from 2 

to 25. With a few storage nodes, the energy cost is sharply reduced in Fig. 2.13. When k becomes 

larger, the slope gradually becomes flatter. As shown in the figure, we can save about 20% energy 

cost with 10 storage nodes, and 30% with 25 storage nodes. In addition, Fig. 2.14 shows the 

energy cost with varying reduction rate, when the number of storage nodes is fixed as 10. As we 

can see, the energy cost is nearly linear to the reduction rate a. 

Intuitively, the performance in the fixed tree model depends on which level of the tree the 

storage nodes are deployed at. When storage nodes are close the the leaves, which often happens 

in FT-RD, the benefit of data reduction is limited. On the other hand, when storage nodes are 

deployed close to the sink as in the greedy algorithm, a large amount of raw data have to traverse a 

long path to reach the storage nodes still yielding high energy cost. The locations derived from our 

algorithm usually reside in the middle levels. Here is an example of the result. The following table 

shows the depth distribution in a particular tree structure. The depth of the sink is 0. When we 
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deploy 10 storage nodes in such a tree, the derived depths of storage nodes are 3,4,4,4,4,5,5,6,6,6. 

2.4.1.4 Network Life 

Finally, load distribution and network lifetime are shown in Fig. 2.15 and Fig. 2.16. We show the 

workloads of the most heavily-loaded 50 nodes in Fig. 2.15. In Fig. 2.16, we define lifetime as the 

time that 2% nodes are depleted of energy. In our setting, it means 20 sensors are out of operation. 

According to our simulation, this scenario will usually cause disconnection in the sensor network. 

As we can see in Fig. 2.15, FT-RD almost has no improvement on load-balancing and lifetime. 

In contrast, FT-DD lengthens the lifetime a lot with a small number of storage nodes, although 

the objective of our algorithm is to minimize the total energy cost. For example, with 15 storage 

nodes, the lifetime is increased by more than 60%. DT-RD does not perform well with only a few 

storage nodes because the sensors connecting storage nodes and the sink carry a lot of workloads 

for both raw data transmission and reply collection. The greedy algorithm is superior to DT-RD 
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We have implemented the approximation algorithm and compared the performance of the algo-

rithm with the optimal solution. We consider a network composed of 100 sensor nodes randomly 

deployed in a 100 x 100 square field, where the sink is in the center. We vary the number of 

storage nodes k (including the sink) from 2 to 15 with f3 taking 0.1,0.15, and 0.2 respectively. In 

our approximation algorithm implementation, we use GLPK package (GNU Linear Programming 

Kit [1]) to get the fractional solution in the first step of our algorithm. The optimal solution is done 

by using integer linear programming, which is provided by MIP (mixed integer program). 

Fig. 2.17 shows the simulation results when the parameter f3 is set to 0.1, 0.15 and 0.2. We first 

calculate a maximum cost Cmox, which is the energy cost when there is no storage node and every 

sensor sends data directly to the sink. The performance shown in the figures is the ratio over Cmox. 

From the figures, we observe that our approximation algorithm achieves the optimal performance 

when the number of storage nodes is small, which is a valid assumption since a storage node 
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is expected to be in charge of tens of regular sensor nodes. When the number of storage nodes 

becomes larger, the disparity between the optimal solution and our approximation algorithm gets 

bigger. Even though the approximation algorithm has a high competitive ratio, our simulation 

shows that in practice, the algorithm performs well when the number of storage nodes is small. 
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Figure 2.17: Select k storage nodes from 100 randomly deployed sensors and f3 = 0.1 ,0.15,0.2. 

2.5 Summary 

In this chapter, we have presented our work in network architecture design which focuses on 

storage placement in sensor networks. Our design improves the energy efficiency by deploying 

special storage nodes to build a hybrid sensor network with regular sensors. We have proposed 

the optimal algorithms for finding the best locations to place storage nodes in order to maximize 

performance gain. Our evaluation shows that guided by our algorithms, this hybrid structure 

significantly reduces the energy consumption in a sensor network. 

Our solution in this chapter is a generic framework suitable for all queries. In fact, with more 

knowledge about specific queries, we can customize the protocol to become more efficient in terms 

of energy and time consumptions. Starting from the next chapter, we will focus on designing 

efficient protocols for particular queries, which may be combined with our work in this chapter 

depending on application models. 



Chapter 3 

Basic Query in Sensor Networks: 

Range Query 

The previous chapter has discussed general design of network architecture that support all queries. 

From this chapter, we present upper layer protocol design for particular queries. We start with a 

basic query in sensor networks, range query, which is adopted in many applications. As mentioned 

in Chapter 1, we investigate this query with more practical settings. Generally, many sensor net

work applications may have other objectives or requirements besides efficiency. Multiple design 

objectives in the same sensor network may not coincide with each other and there are often tradoffs 

among them. It is challenging to optimize the query protocol with multiple conflicting objectives. 

Our work in this chapter, therefore, shows how to design an efficient protocol for the range query 

with other requirements that incur additional energy consumption. In particular, we focus on the 

applications with security and privacy concerns. Our solution achieves two goals in range query, 

protecting data privacy and verifying the reply, with low extra energy overhead. 

83 
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3.1 Related Work 

Data privacy and security have attracted lots of work in database system ( [9-12, 63, 67, 131]). 

The database server might not be trusted in "Database as a Service" model [63] or outsourced 

database [67]. In [63], the authors considered privacy problems in a model, where the service 

provider might not be trusted and thus the data owner encrypts the data before sending it out. The 

authors proposed a data partitionlbucketization scheme to allow the service provider to process 

queries without decryption. Finally, the results are decrypted and processed at the client site. 

In another work, the privacy issues of outsourced database are also discussed in [67]. B. Hore 

et al. investigated data bucketing scheme and analyzed the tradeoff between performance and 

privacy. They further gave two measurements of privacy and designed an algorithm to optimize 

the performance. Our work uses the same privacy metrics in [67] and [9], and apply them in 

sensor networks. In prior work, however, data providers are assumed to be just curious about 

sensitive data, but not to act in a malicious way. Our work, however, considers more powerful 

malicious attacks to a sensor network deployed in a hostile environment. Preserving privacy and 

detecting malicious behaviors are the two integral goals in our work. In addition, we consider 

communication efficiency in sensor networks, which is not presented in [67] and [9]. 

Another related research is privacy protection of documents stored on untrusted sites ( [30, 

56, 118]). D. Song et al. [118] described several schemes for keyword searching on encrypted 

data. Similarly, they considered the privacy issues with an untrusted storage server. The same 

problem is also discussed in [30]. Y. Chang et al. resolved the problem by using a dictionary and 

interactive protocol. In addition, P. Golle et al. proposed protocols particularly for conjunctive 

keyword search in [56]. The work in this line considers keyword search in a setting where the data 

provider is the one who issues the search operation. Our work considers a different application -
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range query assuming the users query the data provided by sensors. 

Prior research about privacy issue in sensor networks ( [60, 75,123,132, 135]) focus on security 

and privacy for the location of the source sensor, not the data information. In addition, M. Shao et 

al. [112] and K. Ren et al. [109] apply cryptographic mechanism to provide security and privacy 

protection for data centric sensor networks and pervasive computing environment respectively. 

However, they do not consider data processing at storage sites. 

In sensor networks, secure aggregation ( [29, 68, 105, 125, 126]) is similar to our query reply 

verification. L. Hu and D. Evans [68] proposed a protocol to prevent intermediate aggregators 

transmitting false information by using MAC messages as a signature. In their design, one aggre

gator is able to verify the information from its children by the messages from its grandchildren. 

This scheme, however, does not work for the case where multiple nodes are compromised. In 

SIA [105], B. Przydatek et al. proposed an aggregate-commit-prove scheme to verify the aggre

gation result. Sampling theory is applied in the protocol, which enables the sink to estimate the 

probability that the result is within a tolerant error range. H. Chan et al. [29] extended this work to 

a hierarchical aggregation model with multihop communication. SDAP [125] is another solution 

to secure aggregation in a multihop sensor network. The authors divide the aggregation tree into 

groups and use a commit-and-attest scheme to enable the sink to verify the aggregates. However, 

all these approaches are not designed for privacy-sensitive data. In addition, the goal of [68] is to 

find malicious aggregators, not suspect data sources, and the schemes in [29, 105, 125] are designed 

only for aggregation queries. Their basic goal is to prevent malicious aggregators from forging 

the result. Our verification scheme, however, tries to detect the incorrect data from suspect data 

sources, i.e., the compromised storage nodes. In addition, some of the prior work is not suitable 

for range query, and some protocols release data information to other nodes, which breaches the 
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privacy in our problem. 

3.2 Problem Formulation 

3.2.1 System Model 

We consider a sensor network consisting of storage nodes and regular sensors. The basic query

response model is illustrated in Fig. 3.1. We assume that every sensor generates environmental 

data values in a fixed rate and periodically submits the collected data to the closest storage node. 

For example, sensors monitor temperature every ten seconds and submit the data to storage nodes 

every one minute. Thus, each submission contains six temperature readings. We define an epoch, 

as the interval time between two consecutive submissions (one minute in the above example). 

Assume all sensors are synchronized so that they have agreement on the beginning and end of 

an epoch. After every epoch, the collected data is sent to the nearby storage nodes by sensors 

and archived there for future queries. The data messages from sensor si contain the following 

information: 

si---t Storage Node: i,t, {datal,data2, ... }, 

where i is the sensor ID and t is the current value of the epoch counter. Data query from a user 

is directed to the storage nodes through the sink. In this work, we consider range queries in the 

following format RangeQuery = {t, [a, b]}, where tis the time slot (epoch) the user is interested in 

and [a, b] is the specified data value range. For easy exposition, we only consider one-dimensional 

data in this work. In some applications, sensors may generate data with multiple attributes, which 

yield more complex range query. Our approach, however, can be easily extended to the query with 

multiple data types. 
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Figure 3.1: 1\vo-tiered System Model (with two storage nodes) 

3.2.2 Adversary Model and Security Goals 

We assume that the adversary tries to launch the following two attacks. First, the adversary wants 

to obtain the sensitive data information from the sensor network, which violates data privacy. 

Leaking valuable data is a critical threat in many applications. The second attack is to breach data 

fidelity. For a user's query, the adversary tries to reply with wrong information and convince the 

user to accept it. We consider that both storage nodes and regular sensors might be compromised 

in a hostile environment. We suppose that a compromised node is fully controlled by the adver-

sary. The adversary may utilize any compromised resource to launch attacks. In the rest of this 

subsection, we discuss the impacts of the compromised storage nodes and regular sensors, and 

propose our corresponding security goals. 

3.2.2.1 Compromised Storage Nodes 

Our major focus is on the compromised storage nodes. Since storage nodes host a lot of data 

collected from other regular sensors, compromising storage nodes will cause great damage to 
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the system. First, once compromising a storage node, the adversary easily obtains the privacy

sensitive data stored on the storage node. Second, the compromised storage nodes can help the 

adversary launch the data fidelity attack, because storage nodes are responsible for answering 

queries from the sink. After receiving a query, the compromised storage nodes may return arbitrary 

data as the reply. Therefore, the goal of this work is to protect data privacy and data fidelity. We 

aim to protect data privacy by designing a storage scheme, such that little information is exposed 

to storage nodes while fulfilling data queries. Data fidelity attack, however, is hard to prevent, 

because the compromised storage nodes under the control of the adversary may behave arbitrarily. 

Our countermeasure is an approach to enabling the sink to detect and reject the false reply so that 

applications will not be affected by misleading data. 

3.2.2.2 Compromised Sensors 

Regular sensors are data source in this system. If one regular sensor is compromised, the readings 

ofthe sensor will be exposed and the sensor may send forged data to storage nodes. Unfortunately, 

it is hard to prevent the data privacy attack and data fidelity attack in this scenario. However, the 

data from an individual sensor is minor in the whole network. Unless the adversary compromises 

a lot of regular sensors, this kind of attack has a very limited impact. 

Compromised sensors, however, may be helpful for the adversary who has also compromised 

some storage nodes. The adversary may use the information from the compromised regular sen

sors to disclose other large amount of sensitive data, which are sent by other sensors or the compro

mised sensors in the past epochs. In addition, these information may help the adversary generate a 

false reply to fool the sink. Therefore, when we design a protection scheme, we ought to minimize 

the dependency among different sensors and epochs. 
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3.3 Methodology 

3.3.1 Storage Scheme and Query Protocol 

In this section, we propose our schemes to address the privacy and security issues discussed in the 

previous section. Our solution includes two components. The first is a privacy-preserving storage 

scheme for storage nodes to protect data privacy and the second is a query protocol to yield a 

verifiable reply for the sink to enable data fidelity. We will describe the details in the rest of this 

section. The following Table 3.1 lists some notations we will use in the rest of this chapter. 

n/si the number of sensors I sensor i 

t the epoch value 

s the amount of data generated in each epoch 

ki,t the secret key of sensor si at epoch t 

H hash function 

Qi the ith query in the query set 

Vmox/Vmin the maximum I minimum data value 

aj8 requirement of data lose ratio I confidence 

VARp/ENp requirement of variance I entropy 

PT; probability that a data is with tag Ti 

dss distance between a storage node and the sink 

davg average distance between a storage node and the associated sensors 

Table 3.1: Notations 
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3.3.1.1 Privacy-Preserving Storage 

We first discuss the protection of data privacy, i.e., preventing data from being disclosed to storage 

nodes. For this purpose, storing plaintext data on storage nodes is not desirable. Instead, each 

sensor must encrypt the data before sending them to the storage node. We assume that every 

sensor shares a secret key with the sink for a certain epoch, which makes up a one-way key chain. 

Let ki,t represent the secret key of sensor si at epoch t, 

ki,t = hash(ki,t-d· 

After an epoch, a new key is generated by the embedded hash function and the old key is erased 

from the sensor. The initial key ki,O can be preloaded before deployment. Secure protocols for 

key establishment such as MIB [86] can further protect the initial phase. Considering a long-term 

application, the overhead of this initial phase is negligible. In addition, the epoch counter t keeps 

increasing and will be reset to 0 periodically by applications. In the new cycle, the initial key will 

be the hash value of the last key in the previous cycle. In our design, compromising a sensor si as 

well as the nearby storage node does not lead to the disclosure of the data from si generated before 

the compromise. Each sensor possesses a distinct key chain so that compromising one sensor 

does not affect the security of another sensor's data. After the sink receives the query reply from 

storage nodes, the shared key between the sink and the corresponding sensor assists to decrypt the 

received data. 

Leaking no information to the storage nodes provides good privacy, but does not help with 

replying a range query: the storage nodes have to send all the stored data back to the sink for a 

query request, which consumes too much energy. Our solution is to expose some information to 

the storage nodes while a good level of privacy is still maintained. We adopt the bucketing scheme 
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in [ 63], and associate a tag with each encrypted data. In this approach, the value domain is assumed 

to be discrete and divided into multiple buckets. There is no overlap or gap between consecutive 

buckets, i.e., every value is covered by exactly one bucket, and each bucket is assigned with a tag. 

Assume sensors and the sink have agreed on the same bucket partition in the initialization phase. 

When sending data to the storage nodes, sensors attach the corresponding tag to every encrypted 

data based on which bucket the data falls into. The data values with the same tag can be encrypted 

as a block. For example, a sensor si may send the following to the storage node: 

si---t Storage Node i,t, 

{Tagl, {data1,data2}k;,, }, 

{Tag2, {data3}k;,, }, ... , 

where datal and data2 are in the same bucket with Tagl. 

For a user query { t, [a, b]}, the sink first translates the value range into a list of tags which are 

associated to the smallest set of buckets that cover the range [a,b]. Therefore, the query sent to 

storage nodes is composed of this list of eligible tags, instead of a and b, for example: 

Sink ---t Storage Node: t, {Tagl, Tag2, ... }. 

Storage nodes will look up all the data generated in epoch t and return those whose tags are listed 

in the query. We will discuss how to define each bucket in the next section. 

3.3.1.2 Verifiable Reply 

As we mentioned earlier, if storage nodes behave maliciously, they may send back arbitrary data 

as the query reply. In this subsection, we discuss the counter schemes to detect the false reply 
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of a range query. More precisely, there are three possibilities for a storage node to cheat on a 

range query reply. First, a storage node can forge a non-existent data value for the query reply. 

The forged data can be easily detected because each valid data is encrypted by a key shared by 

the sink and the sensor who generates the data. Second, the storage node may reply with a valid 

encrypted data that is out of the required query range. The sink can also easily detect the cheating 

by decrypting the data and comparing with the query range. Third, a storage node may return 

partial portion of the requested data, which constructs an incomplete reply. In this work, we focus 

on detecting the incomplete reply. 

Assume there are m tags, labeled as T1, 12, · · · , Tm. Recall that when a sensor si sends data at 

the end of an epoch, all the data with the same tag are encrypted in bulk. If a storage node wants 

to drop the data with tag Ij, it has to drop the entire data block and pretends that no data with tag 

Tj has been received from sensor si in the specified epoch. In the next, we propose to use encoding 

number to detect the incomplete reply. We assume that the sink is aware of the association between 

sensors and storage nodes, i.e., which storage nodes store the data from which regular sensors. Our 

basic idea is to require a sensor to send the storage node an encoding number for a tag if the sensor 

has no data associated with the tag. This encoding number shares a similar format as a HMAC 

and is generated by a hash function on the secret key ki,t. The encoding number will be requested 

by the sink, when the storage node claims that a sensor has no data with the tag. The sink is able 

to verify the authenticity of the received secrets. In this way, if a compromised storage node drops 

some data, it has to guess the encoding number to pass the verification at the sink. With careful 

design, our scheme can detect a false reply with high confidence. 

The details of our design are as follows. For each tag Tj. every sensor Si is able to generate a 

Drbit encoding number based on a predefined hash function H. Here Dj is a system parameter 
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and we will discuss how to set this value in the next section. Let num( i, j, t) represent s/s encoding 

number for tag Tj after epoch t. The encoding number is defined as 

num(i,j,t) = H(jl/ki,t) mod 2Dj, 

where II means concatenating operation. After sending all data gathered during the past epoch to 

the storage node, each sensor also generates and sends the encoding numbers for those tags that 

have no data associated with to the storage node. For example, assume si generates some data with 

tag Tt, but no data with T2 during epoch t. It will send to the storage node data in the following 

format: 

si--+ Storage Node i,t, 

{Tt, {datal,data2, · · · h;,,}, 

{Tz,num(i, 2,t)}, ... 

To respond to a range query, in addition to finding all data matching the query range, a storage 

node generates a digest to show that it knows all the received encoding numbers for the tags within 

the query range. In fact, the storage node can send all received encoding numbers as a digest. 

However, to reduce the message size, our scheme uses a hashed value of the encoding numbers 

instead. First, for each encoding number in epoch t (num(i,j,t)), the storage node generates a 

hash value 

c(i,j,t) = H(iiUIItllnum(i,j,t)). 

Then, the storage node concatenates these hash values c(i,j,t) in the order of (i,j) pairs. This 

ordering is to enable the sink to reconstruct the digest later. Finally, the digest is obtained by 
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applying the hash function H on the concatenation of c(i, j,t), Digest= H(llc(i, j,t) ). This digest 

is included in the return message to the sink. 

Tt Tz T3 T4 

St X X 001 101 

sz X X X 010 

S3 101 X 011 X 

S4 X 110 010 100 

ss X 100 X X 

Table 3.2: Each row represents the data sent by one sensor. We use 'X' to denote some data with the tag is 
generated, otherwise, a three-bit encoding number is received. 

For example, assume there are 5 sensors {st ,sz,s3,s4,s5} and 4 tags {Tt, Tz, T3, T4}. Table 3.2 

details the data received by storage nodes at epoch t. Consider a query for { Tt , Tz, 13}, the digest 

is constructed as follows. We first generate 

c(1,3,t) = H(lll3lltii001) , c(3, l,t) = H(3IIIIItll101), 

c(3,3,t) = H(3ll3lltll011) , c(4,2,t) = H(4ll2lltll110), 

c(4, 3,t) = H(4ll3lltll010) , c(5,2,t) = H(5ll2lltll100). 

Then, we apply H to obtain the digest. 

Digest = H(c(1,3,t)llc(3, 1,t)llc(3,3,t) 

llc(4, 2,t)llc(4, 3, t) llc(5, 2, t) ). 
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After calculating the digest, the storage node returns the following message to the sink: 

Storage Node -t Sink: Digest, 

When the sink receives the reply, it can reconstruct the encoding numbers and the digest based 

on the received data because it knows all secret keys. The sink compares it with the received digest 

and the validity of the reply is verified if they match. 

3.3.1.3 Security Analysis 

In this subsection, we discuss some potential security issues if storage nodes are compromised and 

how our protocols deal with them. It is possible that some regular sensors are also compromised 

by the same adversary. 

Beach data privacy: Once a storage node is compromised, all the data stored there are dis-

closed to the adversary. In our scheme, however, these data are encrypted by symmetric keys. The 

adversary cannot obtain the data values unless they can break the symmetric key cryptosystem. In 

a feasible attack, the adversary can guess the data value according to the tag associated to the en-

crypted data. After compromising the storage node, the adversary is aware of the bucket partition, 

i.e., the value range each tag represents. Intuitively, for a tag representing a shorter value range, 

the adversary's guess is more likely to be closer to the actual value. Whether or not this attack can 

breach the privacy depends on the bucket partition and the application-specified requirements for 

privacy. In the next section, we will present how to quantify the privacy requirements and how to 
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define the buckets to satisfy these requirements. 

Obtain each sensor's secret key: In our scheme, the adversary cannot obtain the secret key 

ki,t of sensor Si at epoch t through eavesdropping or compromising storage nodes. The possible 

available information to the adversary is the encoding numbers for those tags the sensor has gen

erated no data with. In our scheme, these encoding numbers are generated by a hash function on 

the secret ki,t· Since it is computationally infeasible to invert a hash function, the adversary cannot 

derive the secret key from the encoding numbers. 

Forge the digest: In order to launch an incomplete reply attack, the compromised storage node 

has to drop some data and generate a digest to pass the verification at the sink side. In our scheme, 

however, the adversary does not have enough information (all necessary encoding numbers) to 

surely generate a valid digest for the incomplete reply. The adversary may know partial encoding 

numbers for the digest. But it does not provide any clue about the valid digest generated by a hash 

function. Thus, the adversary can only forge the digest by guessing. In our scheme, we set the 

digest to be sufficiently long (e.g., 1 O-bit), so that a direct guess of the valid digest is very unlikely 

to be correct (e.g., with probability of~< 0.1 %). Another alternative for the adversary to forge 

the digest is to forge the missing encoding numbers and apply function H to generate a digest. We 

will discuss it in the next. 

Forge the encoding numbers: The compromised storage node may forge some encoding 

numbers it has not received to generate a valid digest for an incomplete reply attack. In our scheme, 

each encoding number num( i, j, t) is generated by a hash function and unique per sensor/tag/epoch. 

The adversary may receive other encoding numbers with one or two identical parameters, but 

cannot obtain any hints to derive the missing encoding number. Therefore, the encoding numbers 

can only be forge by blindly guessing. We will discuss the possibility of successfully guessing the 
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encoding numbers in the next section. 

Malicious regular sensors: It is possible that some regular sensors may be faulty, dysfunc

tional, or even malicious after being compromised. The encoding numbers from those sensors 

may be incorrect or missing at storage nodes. In this case, storage nodes simply report to the sink 

about those abnormal sensors when replying a query. Since the main objective of this work is to 

detect malicious behavior, informing the sink of the faulty sensors is sufficient for further actions. 

3.3.2 Finding the Optimal Parameters 

In the previous section, we introduced a bucketing scheme to protect data privacy and encoding 

numbers to verify a reply. How to divide the value range into buckets and determine the length for 

encoding number is still a problem. In the rest of this section, we formulate the problem of setting 

parameters as an optimization problem with three system performance metrics, and discuss how 

to solve the problem in this setting. 

Assume that a storage node is in charge of n sensors and each sensor generates s readings per 

epoch. Every data value is considered discrete at some precision level. Also we assume that the 

data generated by every sensor follows the same distribution F(x) (the probability that a certain 

sensed value is x), which can be obtained from theoretical models or empirical data. In addition, 

the query characteristics, i.e., range specification and query frequency, need to be accounted as 

well to set the optimal parameters. We consider a complete range query set represented as {Qi}, 

where Vmin and Vmax are the minimum and maximum values of the collected data, and ti can be any 

past epoch, and there does not exist another Qj. such that ai = aj and bi = bj. Let L be the value 
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range, L = Vmax- Vmin + 1. Thus, there are L(Lil) possible ranges in this set. For the purpose of a 

generalized analysis, we assume that the sink has the same possibility to receive a query for any 

range and it receives the queries to all possible ranges during c epochs. 

3.3.2.1 System Performance Metrics 

In this subsection, we introduce three performance metrics, which are crucial to the design of 

our scheme. Privacy and security metrics describe the robustness to data privacy and data fidelity 

attacks. Communication cost is the metric for energy efficiency. We define these metrics mathe

matically as follows. 

Privacy Constraints: While bucketing scheme enables storage nodes to search data with tags, 

it may potentially lead to privacy breach. For example, let's consider an extreme case in which 

every distinct value has a unique tag. If a sensor is compromised, the value-tag mapping will be 

exposed to the adversary. He can derive all data values stored on the compromised storage node, 

even if the data is encrypted. Therefore, we should reduce this information leakage caused by the 

value-tag mapping. To do that, we need a way to measure the level of privacy for a bucket scheme. 

In this work, we use variance and entropy to measure the privacy protection of a bucket as 

proposed in [67]. Essentially, we protect data against two types of privacy attacks. First, storage 

nodes may guess the actual value of stored data from the associated tag. Variance of value distri

bution of the data with a certain tag represents the protection level of this attack, i.e., the hardness 

to guess the data. Second, when query messages arrive, storage nodes may try to derive the ex

act value range (i.e., lower/upper bounds) from the list of tags in the query message. Entropy is 

chosen to measure this query privacy. Larger variance and entropy indicate better protection of 

privacy. In fact, our design does not restrict to these two measurements introduced in [67]. Some 
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applications may have different definitions of the privacy measurements and it is easy to modify 

our scheme accordingly. 

For a given tag Tj defined by range [h, hi], li :::; hi, the variance and entropy can be calculated 

as follows. Let Ei be the expected value within this range and P'Tj be the probability that a value 

belongs to this range, 

h; 

Ei = LF(x)·x, (3.1) 
x=l; 

h; 

P'Tj LF(x). (3.2) 
x=l; 

According to the definitions of variance and entropy, we have 

h; 

variance = LF(x)(x-Ei)2
; (3.3) 

x=l; 

entropy = _I F(x) log F(x). (3.4) 
x=l; p~ P'Tj 

Applications may specify the requirements for these two metrics, indicated by VARp and ENp 

respectively. In a valid bucketing plan, for any bucket, the variance and entropy must be greater 

than V ARp and ENp respectively. Thus, ~ is valid if its variance > VARp and entropy > ENp. 

Security Constraints: Encoding number scheme proposed earlier is not perfectly secure. 

There is still a certain probability that the adversary can forge encoding numbers correctly to pass 

the verification, in particular when the length of the encoding number is short (say one bit, or less 

than one bit when multiple tags combined share one encoding number). We define the security 

level of a set of encoding numbers as follows: 

Definition 1 a-valid/false reply: We say a reply is a-valid if the dropped data is less than a 

portion of the total expected data. A reply, which is not a-valid, is called a false reply. 
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Definition 2 (a, o)-secure encoding numbers: We say that a set of encoding numbers are (a, 8)-

secure, if the confidence of accepting an a-valid reply, i.e., the probability of detecting false reply, 

is greater than 8. 

The first parameter a defines data fidelity, which is the fraction of data loss we can tolerate 

over the amount of data that should be returned for a range query. Data reply confidence o, is the 

probability that we can detect a false reply. Given user specified a and o, our resulting encoding 

numbers must be (a, o)-secure. 

Communication Cost: With security protection, extra communication cost is incurred in data 

collection and query reply. The objective in this problem is to minimize the communication cost 

during c epochs, which includes the cost of transferring data from sensors to storage nodes and 

from storage nodes to the sink. In this section, we analyze the costs and give an expression of the 

objective function. 

First, the bucketing scheme incurs a problem of false positive [67]. Some useless data are sent 

back together with the desired data. We define false positive as the total amount of the useless 

data received by the sink. Consider a tag 1i. defined by the range of [li, hi]. For a range query [a, b], 

1i. yields no false positive if there is no overlap between [a, b] and [h, hi], i.e., b < li or a > hi. 

However, if [j ::; b < hi, the data in the range of [b + 1, hi], which size is n · s · L.~~b+ 1 F (x), are also 

returned. Considering the complete query set, for a certain b, a belongs to [vmin, b], which yields 

b- vmin + 1 queries. Thus, the false positive in [li, hi] caused by the data out of a query's upper 

bound (between band hi, (b,hi]) is 

~-1 ~ 

L(b-Vmin+1)·n·s· L F(x). 
b=l; x=b+1 

Similarly, if [j < a ::; hi, the data in [h, a- 1] becomes false positive. In addition, we assume the 
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cost of transferring data is proportional to the data size and the distance between the sender and 

receiver. Therefore, considering the complete query set, the total cost for transferring the false 

positive incurred by Tj, denoted by CFj, is 

~-l ~ ~ ~~ 

CFj=dss·n·s(L(j-Vmin+1) L F(x)+ L (vmax-J+1)LF(x)), 
j=l; x= j+ I j=l;+ I x=l; 

where dss is the distance between the storage node and sink. 

Similar to privacy protection, encoding number scheme incurs extra costs, too. First, when 

storage nodes reply to a query, a digest is attached to the message. The sensors relaying the 

message will consume more costs. This cost, however, is constant in this scheme. We do not have 

to consider it when determining buckets plan and encoding numbers. Second, when sensors send 

data to storage nodes, they need send the encoding numbers for the tags with no data associated 

as well. The cost of transferring encoding numbers depends on bucket partition, the length of 

each encoding number, the number of sensors in the proximity, and the distance between sensors 

and their closest storage nodes. For a tag Tj, the probability that one sensor has no data with 1i is 

( 1 - PTiY. Thus, the expected number of those sensors which have no data with 1i in an epoch is 

n · (1- PTjy. This is the number of sensors that have to send the encoding number for 1i to storage 

nodes. Therefore, for each epoch, the expected communication cost for transferring the encoding 

numbers for 1i is 

Di · n · ( 1 - PTiY · davg, 

where davg is the average distance between sensors and the storage node and recall Di is the length 

of the encoding number for Tj. Let CEi be the cost of transferring the encoding numbers of 1i 

during c epochs, 

(3.5) 



102 

The secure protocols we proposed may also incur extra cost for computation such as hash 

operations. However, this extra cost for computation is negligible compared to the communication 

cost. 

3.3.2.2 Problem Formulation 

Considering all the metrics discussed above, our problem is formally defined as follows: 

Input: F, VARp,ENp, a, 8 

Output: Bucket partition ('lj) & encoding numbers (Di) 

Objective: min L,( CFi + CEi) 

s.t. \i1j, variance> VARp and entropy> ENp; 

{Di} is (a, 8)-secure. 

(3.6) 

That is, given the sensed data distribution F(x), privacy parameters VARp and ENp, and security 

parameters a and 8, we aim to find the optimal bucket partition (1i) and encoding numbers (Di), 

such that the communication cost <Ii(CFi + CEi)) is minimized while the privacy requirements 

(in terms of variance and entropy) and the security requirement ((a, 8)-secure) are guaranteed. 

3.3.2.3 Algorithm to Find the Optimal Parameters 

As shown above, our problem boils down to determining the optimal bucket scheme and the 

optimal length for each encoding number. We call the bit length of an encoding number encoding 

length in the rest of this work. Our main algorithm uses dynamic programming to enumerate all 

bucket partition schemes. For each bucket partition, we first check the privacy constraints and call 

another algorithm to calculate the encoding lengths which can guarantee the security constraints. 
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Then, we can obtain the communication cost incurred by the bucket partition. After examining all 

bucket partition plans, our algorithm can find the optimal one with the minimum communication 

cost. 

Main Algorithm: In this subsection, we describe the main algorithm to divide the value 

range into buckets such that the communication cost is minimized while the security and privacy 

constraints are satisfied. We use dynamic programming to resolve the problem in the following 

Algorithm 4. It basically is composed of two phases. In the first phase (lines 1-7), we enumerate 

all possible ranges [i, j] by two loops. We first check if each range is eligible to be valid buckets 

according to the privacy constraints and store the results in a boolean array valid[i,j]. For each 

valid range [i, j], i.e., valid[i, j] is true, we calculate an encoding length D[i, j] by another function 

EncodingLength. We will discuss the details of this function in the next subsection. Basically, 

for a given range, it returns the shortest encoding length that can guarantee the security constraint. 

Then in line 7, we compute the communication cost incurred by this range for transferring false 

positive data (Eq.(3.5)) and encoding numbers (Eq.(3.5)). The time complexity of this phase is 

O(L2 · max{L2 ,s} ), where Lis the value range as defined earlier. In the second phase, we define a 

two dimensional matrix M, where each element M[i, j] stores the cost of the best solution to divide 

range [i,j). We use dynamic programming to fill matrix M and finally M[vmin, vmax] is the cost of 

the optimal bucket partition. We start from the smallest ranges with width 1 and calculate M[i, j] 

in the ascending order of the range width w = j - i. Dividing [i, j] can be regarded as a two-step 

process: defining the first bucket and recursively dividing the remaining range. Let [i, k] be the first 

bucket. We enumerate all possible positions of k and M[i, j] is obtained by the following equation, 

M[i,j] = min{CE[i,k] +CF[i,k] +M[k+ 1,j]}, 



104 

where k E [i, j] and valid[i, k] = true. Additionally, another matrix P is used to record the pivot 

points of range partition. By tracing back from P[vmin, vmax], we can obtain the optimal bucket 

partition. The time complexity of the second step is O(L3 ). Therefore, the algorithm terminates 

within O(L2 • max{L2 ,s}) steps. 
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Algorithm 4 Optimal Solution (F, VARp, ENp, a, 8) 

1: for i = Vmin to Vmax do 

2: for j = i to Vmax do 

3: Calculate E[i, j] and PT[i, j] by Eq.(3.1) and Eq.(3.2) 

4: Calculate variance and entropy by Eq.(3.3) and Eq.(3.4) 

5: if variance > V ARp and entropy > ENp then 

6: valid[i, j] =true, D[i, j] = EncodingLength([i, j]) 

7: COST[i,j] = Eq.(3.5)+Eq.(3.5) 

8: end if 

9: end for 

10: end for 

11: for w = 1 to Vmax - Vmin + 1 do 

12: for i = 1 to Vmax - w do 

13: if valid[i, i + w] then 

14: M[i, i + w] = COST[i, j] 

15: for j = 1 to w- 1 do 

16: if valid[i, i + j] then 

17: cost= COST[i,i + j] +M[i + j + 1,i + w] 

18: if cost < M[i, i + w] then 

19: M[i, i + w] = cost 

20: P[i,i+w] = j 

21: end if 

22: end if 

23: end for 

24: end if 

25: end for 

26: end for 
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Optimal Encoding Length: Here we present the details of Encodinglength. Apparently, 

a long bit length increases the communication cost, and this increase is non-negligible when a 

large number of sensors send encoding numbers during many epochs. The security level, i.e., the 

probability of detecting an incomplete reply, also increases with a long bit length, which hardens 

the process for a storage node to forge the encoding numbers. In this sub-problem, therefore, 

our goal is to find the optimal set of encoding lengths, which are (a, 8)-secure and yields the 

minimum communication cost. 

To resolve this sub-problem, we first analyze the behavior of a malicious storage node, and 

then give an approximated estimation of the required encoding lengths. Essentially, malicious 

storage nodes intend to drop enough data to form a false reply and forge the missing encoding 

numbers to pass the verification at the sink. Let us consider a range query with a tag list TQ = 

{Tq1 , Tq2 , • • • , Tqk} for the data collected in epoch t. Storage nodes are supposed to look up all data 

generated during epoch t and return the data whose tag is in TQ. We define two 2-dimension 

matrixes SD and N, where SDij represents the set of data from sensor si with tag 1j and Nij is the 

Tr T2 ... Tm 

St SDrr SD12 ... SDtm 

S2 SD21 SD22 ... SD2m 

.. . ... .. . ... . .. 

Sn SDnt SDn2 ... SDnm 

size of SDij, i.e., Nij = ISDijl· Thus, the size of reply data for TQ is 

n 

RN(TQ) = L L Nij. 
i=l TjETQ 
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A successful attack requires a malicious storage node to drop at least a· RN(TQ) data and forge 

the necessary encoding numbers to get approved. Consider the malicious storage node applies 

the optimal way to achieve this goal, i.e., drop those data with the minimum probability being 

detected. Let us regard all elements of SD as individual blocks and label those blocks which 

should be returned for T Q as { b1, b2, · · · , br}. For example, assume there are 3 sensors and the 

tags listed in TQ are T1 and T2. The following Table 3.3 illustrates the data received by the storage 

node. In this case, we need consider 3 blocks as shown in Table 3.4. For a block bj with tag Tq, 

T1 T2 

S} X X 

S2 0 0 

S3 0 X 

Table 3.3: 'X' means there are data in the block received by the storage node. '0' means no data are 
received. 

T1 T2 

S! b1 = SD11 b2 = SD12 

S2 

S3 b3 = SD32 

Table 3.4: Renumber the three blocks that should be returned for TQ. 

we associate an encoding length dj with it, where dj = Dq. One block is the minimum bulk of 

data the storage node can drop and if b j is removed, the probability of successfully forging the 

encoding number is 2~j • Thus, given B = { b1, b2, .. · , br} and { d 1 , d2, .. · , dr}, the storage node 
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need find a subset B' of B to 

. . rr 1 maxtmtze b;EB' 2!i 

The objective is equivalent to maximize 

1 1 
log IT ([ = :L log ([ = - :L di. 

b;EB' 2 
I b;EB' 2 

I b;EB' 

This problem is reducible to the 0/1 knapsack problem, which is known to be NP-hard. We define 

Thus, the objective will be 

{ 
1 if bi (j. B'; 

Xi= 0 if bi E B'. 

maximize(- L di) =?maximize L di =?maximize di ·Xi· 
b;EB' b;f/.B' 

The constraint can also be expressed in the following form, 

L lbil ~a ·RN(TQ) =? L lbil < (1- a) ·RN(TQ) 
b;EB' b;f/.B' 

Then this problem is formulated as the 0/1 knapsack problem, 

maximize di ·Xi 
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where di is the value of item i, lbd is the weight of item i, and (I- a)· RN(TQ) is the capacity of 

the bag. 

To simplify the problem, we assume that the storage node applies a greedy algorithm as the 

attack strategy to select victim blocks. It first orders all blocks according to the values of ~· 

where lbil is the number of data in bi. In the ascending order, the storage node drops the blocks 

with the smallest values until the total dropped data is larger than a· RN(TQ) 

Next, we present our algorithm to determine the optimal encoding lengths that are (a, 8)

secure for any possible query. We first give an algorithm to determine the optimal encoding 

lengths for a special category of queries, called single tag query, where the tag list in the query 

contains only one tag. Later we extend it to more general queries with multiple tags. Recall tag 

1j is defined by a range [li, hi] and Di denotes the encoding length of this tag. Algorithm 5 shows 

the detailed function of deriving a proper value of Di. In the first step, we estimate the expected 

number of sensors which have t number of data with 1j, where t E [1, s], and store them in an array 

Ei. According to binomial distribution, 

Ei[t] = n · (;) · PT/ ·(I- P1jy-r. 

Also, we calculate the expected total number of data with 1j as sumi = n · s · P1j. Secondly, we 

emulate the behavior of malicious storage nodes, dropping data by the greedy strategy. Since we 

are considering single tag queries, the encoding length dj of every eligible block b j is the same 

as Di. Thus, the dropping order only depends on v!JT. i.e., the block with the largest size lbjl will 

be dropped first. We start with the sensors which haves data with 1j, because lbjl ~ s. Totally, 

they contribute s · Ei [s] data, but to drop all of them, we have to forge Ei[s] encoding numbers. We 

continue to drop the data from the sensors which have s- I data with 1j, and stop the procedure 



Algorithm 5 EncodingLength (1j = [h,hi]) 

for t = 1 to s do 

end for 

sumi = n·s·P1j,drop = O,enum = 0 

for t = s to 1 do 

drop= drop+ Ei[t]· t 

enum = enum + Ei[t] 

if drop > a· sumi then 

enum = enum- (drop- a · sumi) /t 

break 

end if 

end for 

r tu r-log(l-8)
1 e ml enum 
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when the dropped data is greater than a· sumi. During this process, variable drop indicates the 

total amount of the dropped data, and variable enum records the number of encoding numbers the 

adversary has to forge. Thus, the estimated confidence of detecting a false reply is 1 - 2vr~num. To 

make it greater than 8, we have 

1 
1 ~ D _-_lo-=g:..:....( 1_-_8_:..) 

- >u::::} i> 
2D;·enum enum 

"' . . . h . . D r-log(I-8)1 h I . 1.0 mtmmtze t e commumcat10n cost, we set ito 1 enum . T e time comp extty of Algo-

rithm 5 is O(s). 

For multiple tag queries, we can apply the similar analysis as above. However, this step can 
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be skipped because of the following lemma. 

Lemma 3.1 If a set of encoding numbers are (a, 8)-secure for every single tag query, they are 

also (a, 8)-secure for multiple tag queries. 

Proof: Assume that a vector of encoding lengths D = {D1,D2 , ••• ,Dm} are (a,8)-secure for 

any single tag query. Now let us consider a multiple tag query for a list of tags { 7f1 , 7f2 , ••• } • 

As in Algorithm 5, we can estimate the expected total number of data for each tag, denoted by 

{ sum11 , sum12 , ••• } • The summary L. sum1; will be the expected return size of this query. Then, we 

will apply the greedy strategy to drop at least a · L. sum1; data. Meanwhile, we need count the 

encoding numbers that have to be forged. Let enumr; be the number of dropped blocks of tag 'It;. 

The confidence will be 1 - 0 
2

v,)numr; . However, in this process, there must exist a tag 'Itj such that 

the dropped data of 'ltj is greater than a· sum1j. We already know that D1j guarantee the confidence 

of single tag query for 'ltj, which implies 1 -
2
v,j .! •• m,j > 8. Back to the confidence of this multiple 

tag query, 

Therefore, D can also guarantee the required confidence for multiple tag queries. • 
Thus, for any given bucket, Algorithm 5 can find the optimal encoding length satisfying the 

security constraint. 

3.3.3 Rare Event Detection with Abnormal Values 

In this part, we study event detection as a special application of range query. We consider a 

scenario that an event can be detected by the sensors in the proximity. For example, a vehicle 

traversing the field generates abnormal noise and vibration, which can be measured by nearby 
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sensors (illustrated in Fig. 3.2). Users can query the data in the range of abnormal values to detect 

the event and collect the relevant information. 

0 Field Area ( S ) 1 =-:,Coverage Area ( S ' ) 

/ 

I 

I 100 \, 
\ 

' 

10 ., 

' 
100 \ 

#; 
I 

110 / 

---~,- ~- --~ 
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10 ., 
10 ., 

15 , 

Figure 3.2: Example of event detection with range query: The sensors close to the passing vehicle measure 
abnormally high noise or vibration ([90,110] in this example), while the normal readings are much lower 
([10-15]). Assume users know the prior information that the noise generated by a sedan is usually between 
80 and 120. Thus, users can obtain the information about the event by querying the data in range [80-120]. 

The previously proposed schemes are suitable for general range query, but might be ineffi-

cient for detecting rare events. As we mentioned earlier, our schemes incur extra communication 

costs for transferring false positive data and encoding numbers. Although we may carefully de-

sign a bucket partition to minimize the false positive, the cost for transmitting encoding numbers 

inevitably escalates for rare events. Let us assume some tags are associated with abnormal value 

ranges that represent certain rare events. In most epochs, no such event occurs and every sensor 

has to send the corresponding encoding numbers for these tags to storage nodes. This extra cost 

caused by sending encoding numbers could be extremely high when accumulated over time in a 

large scale sensor network. Therefore, in this subsection, we propose an efficient encoding number 

scheme for rare event detection. For simplicity, we assume that each type of event can be detected 

by querying a special single tag. In reality, we may need query multiple tags for a certain event 

depending on the bucket partition parameters. In this subsection, however, we will not discuss the 
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bucket partition, but focus on the encoding number scheme. Our solution can be easily extended 

to the event covered by multiple tags. 

The problem setting for event detection is slightly different from the previous problem in two 

aspects. First, we need to consider the coverage of an event, i.e., the proximity area of the event 

source where sensors can detect the event. This new parameter depends on the characteristics of 

events and the sensitivity of sensors. A larger coverage area tends to have more sensors detect the 

event. Second, in event detection applications, it is unnecessary for a storage node to send back all 

the received data about the same event. Event detection applications often take advantage of data 

redundancy in the sensed data among the sensors that detect the event to reduce the communication 

cost. The data from multiple sensors may collaboratively detect a rare event. However, after 

a certain threshold, obtaining more data does not yield much new information because of the 

redundancy. This threshold depends on the characteristics of the event and the sensed data. For 

example, the application may require the event data from five sensors no matter how many sensors 

actually detect the event. The sink will specify this threshold in the query. After receiving the 

query, a storage node will look up the hosted data and determine whether there exist data about 

the event, the storage node will bundle five of them (from five sensors) as the reply and send them 

back to the sink. 

We modify the previous problem for this special case of rare event detection as follows. As

sume a storage node is in charge of a field with area S as illustrated in Fig. 3.2. Sensors are 

randomly deployed on the field with a density A and can be modeled as points of a Poisson pro

cess. Assume a rare event is associated with tag T, i.e., querying the data with T can detect the 

occurrence of this type of event. Let S' be the coverage area of an event. Here we use a simplified 

model for the rare event. When this rare event is not present, no sensor will generate data with tag 
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T. When an event occurs, on average A· S' sensors will detect it. We assume that the application 

requires event data from (1- a) ·A ·S' sensors if the event occurs. Note that parameter a here has 

a different meaning from the tolerance parameter in the previous sections. We still use a to keep 

consistent with our previous problem setting. 

The adversary model in this problem is similar. A compromised storage node tries to drop 

partial or all the event data when some events have occurred and return less than (1- a)· A· S' 

(could be none) event data as a reply. Therefore, our security goal is still to enable the sink to 

detect such kind of false reply with high probability. 

In the rest of this subsection, we present a new encoding number scheme for rare event de

tection and derive the optimal parameters. Our scheme utilizes a sampling technique in order to 

efficiently report events. Instead of requiring all the sensors to send the encoding numbers when 

no event happens, we randomly choose a small set of v sensors as sample nodes to send the en

coding numbers of T in each epoch. We assume that every sensor is aware of all sensor IDs in 

the field. In epoch t, each sensor calculates a pseudo-random function R(t,i) for every sensor Sj. 

The top v sensors with the largest values of R(t, i) are selected as sample nodes. If no event is 

detected in an epoch, each sample node will send out an encoding number to the storage node 

while a non-sample node will not. To reply a query forT, storage nodes are supposed to return the 

event data with tag T from ( 1 - a) · A · S' sensors. If there is no such data, i.e., no such event oc

curs, the storage node will send a digest generated by the encoding numbers received from sample 

nodes. After receiving the digest, the sink can apply the same pseudo-random function to derive 

the set of sample nodes and generate all the encoding numbers to verify the received digest. If the 

sink receives less than ( 1 - a) · A · S' event data or an invalid digest, it will discard the reply and 

consider the sending storage node as a malicious storage node for further investigation. Again, 
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remember we assume a simplified event model in which no sensor will generate data with tag T 

when there is no rare event. 

To verify a reply is valid when an event happens, we consider two attacks the adversary may 

launch. First, the adversary may send partial event data ( < (1 -a) ·A · S') back. According to 

our policy for the sink, this reply will definitely be discarded. Second, the compromised storage 

node may pretend that it has not received any data about the event. In our scheme, the compro-

mised storage node then has to send a digest back. If no sample sensor detects the event, this 

attack is certainly successful because the compromised storage node has obtained all necessary 

encoding numbers from sample nodes to generate a valid digest. However, if the storage node 

receives event data from some sample nodes (i.e., does not receive the encoding numbers from 

these sample nodes), it has to forge the encoding numbers to generate the digest for this attack to 

pass the verification at the sink side. In the next, we focus on the second attack and discuss how 

to determine the number of sample nodes v and the encoding length D for tag T such that the sink 

has a high probability (> D) to detect it. 

Since we randomly pick v sensors as the sample nodes, the density of sample sensors is As = ~. 

Let p(x) be the probability that exactly x sample sensors detect the event, which means there are x 

sample sensors in the area S'. Thus, according to Poisson process, we have 

(As. S'Y. e-A.s·S' 

p(x) = ' 
X. 

In this case, to drop all the data, the adversary has to guess x encoding numbers with a success 

probability of ~. Therefore, the probability we can detect the event by selecting v samples is 

1-Ixi~~. 

On the other hand, the communication cost for transmitting encoding numbers in each epoch 
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is v · D · davg. where davg is the average distance between a sensor and the storage node. Thus, we 

can find the optimal parameters by solving the following problem, 

s.t. 

minimize v · D 

1-~ p(x) > 8. 
L..J 2X·D 

X 

Recall in our solution to this problem, the sink requires ( 1 - a) · A, • S' event data or a digest 

from a storage node. It is possible that the actual number of sensors around the event source is 

less than the threshold (1 -a) ·A · S', in which case a legitimate storage node can not provide 

sufficient event data and maybe can not generate a valid digest either. The sink then may regard 

this storage node as a malicious one and trigger a false alarm by mistake. The probability of the 

such a mistake depends on the threshold defined by a. Assume X sensors detect an event. The 

sink may trigger a false alarm if X :::; ( 1 - a) · A, • S', whose probability is 

(1-a)·.lt·S' (A.. S')x. e-.it·S' 
Pr(X:::;(l-a)·A.·S')= L 

1 X=O X. 

As we will show in the evaluation, this probability can be neglected with a reasonable parameter 

setting. 

3.4 Performance Evaluation 

In this section, we evaluate our scheme based on simulation. We first evaluate the performance of 

the scheme for generic range queries and then show the simulation result for rare event detection. 

The generic privacy-preserving range query scheme is summarized in Algorithm 4, which calls 

subroutine Algorithm 5. To show the performance of these two algorithms in more detail, we first 
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examine Algorithm 5 in A and B to show that the resulting encoding length is sufficient to protect 

query reply, then in C we use real data sets to simulate Algorithm 4 and show the communication 

cost incurred by this approach. Furthermore, we present the data for rare event detection in the 

end. 

3.4.1 Suggested Encoding Length 

We first run Algorithm 5 to estimate the optimal encoding length for a single tag query. By default, 

we set {n,s, a, 8,P1i} to {100, 10,0.1,0.9,0.1 }. In the simulation, we fix four of these parameters 

and varies the remaining variable. The following figures (Fig. 3.3-Fig. 3.7) show the results of 

the encoding lengths suggested by Algorithm 5. On the one hand, higher confidence obviously 

requires longer encoding numbers, as shown in Fig. 3.4. On the other hand, the encoding length 

is also related to the tolerant size of the data loss. The more data loss we can tolerate, the shorter 

encoding length we require. To return a false reply, the adversary has to drop at least a · Ni data, 

where Ni is the total number of data with tag 7j. We can use the expected value to express it, 

Ni = P1j · n · s. Thus, the encoding length will be a non-increasing function over a· P1j · n · s, 

which explains the trend of the curves in Fig. 3.3, Fig. 3.5, Fig. 3.6 and Fig. 3.7. 
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Figure 3.3: Encoding length vs. P1i (n = 100, 
s = 10, a= 0.1, o = 0.9) 
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Figure 3.5: Encoding length vs. a (n = 100, s = 
10, o = 0.9, P1; = 0.1) 
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Figure 3.6: Encoding length vs. s (n = 100, a = 
0.1, o = 0.9, P1; = 0.1) 

Next, we examine the accuracy of this algorithm. Let k be the suggested encoding length and 

conf(i) be the confidence achieved by using i-bit encoding numbers. We evaluate it from two 

aspects. First, we show the values of conf(k) based on simulations to examine if k is sufficiently 

long to guarantee the security requirements, i.e., if conf(k) > 8. Second, we show the values of 

conf(k- 1) if k > 1 to test whether k is optimal. If conf(k) > 8 and conf(k- 1) ::; 8, then k is a 

perfect choice of the encoding length while k- 1 fails the security requirements. 

In this simulation, we randomly generate data based on the data distribution P~ and simulate 

the behaviors of a malicious storage node. We run 10000 independent tests, and calculate the 

confidence, i.e., the probability of detecting a false reply at the sink. The simulation compares the 

values of conf(k) and conf(k- 1) in Fig. 3.8-Fig. 3.12, where the dashed line without markers is 

the confidence requirement 8. As we can see, conf(k) is always greater than 8 while conf(k-

1) is not in most cases, which indicates that k - 1 is not a proper encoding length for security 

protection. 

Therefore, we conclude that Algorithm 5 gives a good guideline of selecting appropriate en-

coding lengths. Simulations have shown that the suggested length value is sufficient for security 

and also efficient in communication. 
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Figure 3.7: Encoding length vs. n (s = 10, a= 
0.1, o = 0.9, P1j = 0.1) 
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Figure 3.9: Confidence vs. P1j (n = 100, s = 10, 
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3.4.2 One Bit Encoding Numbers 
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Figure 3.8: Confidence vs. n (s = 10, a= 0.1, 
o = 0.9, P1j = 0.1) 
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Figure 3.10: Confidence vs. o (n = 100, s = 10, 
a= 0.1, P1i = 0.1) 

In this subsection, we are particularly interested in a special arrangement, where every encoding 

length is set to the smallest value 1, because it is the best case for communication cost. Since 

every encoding number has the same length, when the storage node drops data, it simply selects 

the largest block, no matter which tag it is associated with. We make small modifications to 

Algorithm 5 to estimate the confidence achieved by one bit encoding numbers. 

We first examine the confidence for a single tag (Ii) query with varying P1;. The following 

Fig. 3.13 shows the comparison of our estimation and simulation results. In this setting, our 
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Figure 3.12: Confidence vs. s (n = 100, a = 0.1, 
o = 0.9, Pii = 0.1) 

estimation is very close to simulation when p 2: 0.08. The result is also consistent with Fig. 3.3, 

in which 1-bit is suggested when p 2:0.12. 
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Figure 3.13: Confidence of 1-bit encoding number for single tag query, n = 100, s = 10, a = 0.1. 

Furthermore, we consider multiple tag range query in a more practical simulation. We adopt 

a data set with a normal distribution and find the optimal bucket partition which satisfies privacy 

constraints and yield minimum communication cost for false positive. The following Table 3.5 

shows the bucket partition and the corresponding probability for each bucket. 

Then we enumerate all 28 possible range queries in the tests. For each query, we generate 
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Tt 12 13 T4 15 16 17 

[20,30] [31,38] [39,46] [47,53] [54,60] [61,68] [69,80] 

0.090 0.139 0.174 0.193 0.195 0.131 O.D78 

Table 3.5: The second row is the range partition of tags and the third row lists the probability of each tag. 

random data for every sensor and apply the greedy algorithm to drop data. Since the encoding 

length is known as 1, we can easily derive a confidence of detecting the false reply. We repeat 

this process and use the average value as the result. Table 3.6 compares the simulation results 

with our algorithm. The cell in T;. row and Tj column represents the confidence for a query of 

{T;., 1i+1, ... , 1j }. The values in parenthesis are our estimated confidence. As we can see, the esti-

mation is very accurate for both single tag and multiple tag queries, where the largest difference is 

0.016. We observe that one bit encoding numbers work well for popular tags or mild security re-

T1 Tz T3 T4 Ts T6 T1 

T! 0.884(0.875) 0.987(0.984) 0.999(0.999) 0. 999(0. 999) 0.999(0.999) 0.999(0.999) 0.999(0.999) 

Tz - 0.930(0.938) 0.994(0.996) 0.999(0.999) 0.999(0.999) 0.999(0.999) 0.999(0.999) 

T3 - - 0.947(0.938) 0.996(0.998) 0.999(0.999) 0.999(0.999) 0.999(0.999) 

T4 - - - 0.953(0.969) 0.997(0.998) 0.999(0.999) 0. 999(0. 999) 

Ts - - - - 0.954(0.969) 0.994(0.996) 0.998(0.999) 

T6 - - - - - 0.925(0.938) 0.983(0.984) 

T1 - - - - - - 0.868(0.875) 

Table 3.6: Confidence Comparison of 1-bit Encoding Numbers: The row (column) index is the minimum 
(maximum) tag in the query. In each cell, the first value is simulation result and the second value in the 
parenthesis is our estimation. 

quirements, and we can accurately estimate the confidence to determine whether one bit encoding 

numbers are suitable for a certain scenario. 
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3.4.3 Communication Cost 

In this subsection, we present the performance of communication cost. We begin with the intro

duction to the data set and other environment settings used in our simulation. Then, we illustrate 

the two extra costs incurred by our protection scheme with varying parameters. First, during the 

periodical data report, sensors need to send encoding numbers to storage nodes for verifying the 

reply. Second, when storage nodes reply range queries, extra data (false positive) are transferred 

to the sink following the bucketing scheme. As we will show later, both encoding number scheme 

and bucket partition scheme are very efficient. 

In this simulation, we use a real data set from Intel Lab [2], which is collected from 54 sensors 

during a one-month period. The details of the data set can be found at Intel Lab's web site [2]. 

After filtering out the incomplete and abnormal data, we adopt the data from 44 nodes in our 

simulation. We evenly divide the 40 sensors into 4 groups and place one storage node in each 

group, i.e., n = 11 for each storage node. We also retain their location coordinates and calculate dss 

and davg for Algorithm 4. We select the temperature data collected during 03/0112004-03/10/2004 

as the sensitive information and we round the data points to the precision of 0.5. In addition, we 

sample three different epoch lengths, 10 mirmtes, 20 minutes and 30 minutes and we assume that 

the whole query set is received in 24 hours. In our scheme, privacy requirements (V ARp. ENp) 

and security requirements (a, 8) also need to be specified. In this simulation, we fix security 

requirements (a= 0.1, 8 = 0.9), set ENp to {1, 1.5,2}, and vary VARp from 0.4 to 1.2 with 

an interval of 0.2 to examine the performance. The following Table 3.7 presents the number of 

buckets our scheme derives for epoch=30min with different settings of the privacy requirements. 

We first show the cost of transferring encoding numbers from sensors to storage nodes. For 

each sensor, let CE be the cost of sending encoding numbers, and let CD be the cost of transferring 
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VARp =0.4 0.6 0.8 1.0 1.2 

ENp = 1.0 13 8 6 5 4 

1.5 8 8 6 5 4 

2.0 5 5 5 5 4 

Table 3.7: Number of buckets (epoch=30min) 

the encrypted data to the storage node. We measure the ratio of g~ in our simulation, which 

indicates the impact of sending encoding numbers. Since this ratio varies for different sensors, the 

average values are illustrated in Fig. 3.14-Fig. 3.16. 

We observe that the less strict privacy requirement leads to the higher cost of transferring 

encoding numbers. Intuitively, the less strict privacy requirement allows smaller buckets, which 

provide more accurate information and can reduce the false positive. However, smaller buckets 

may increase the cost of sending encoding numbers because they yield a large number of buckets 

and each sensor probably has to send more encoding numbers in each epoch. In our simulation 

setting, every storage node is in charge of 11 sensors, which makes the false positive dominant 

in the extra cost compared with the cost of sending encoding numbers. Therefore, in order to 

minimize the total extra cost, our algorithm prefers to use fine-grained buckets in favor of reducing 

false positive. When the privacy requirement becomes less strict, our bucket partition probably 

will contain smaller buckets, which further increase the cost of sending encoding numbers. We 

also observe that the cost of encoding numbers decreases when the length of epoch increases. In 

a longer epoch, every sensor collects more data in each bucket following a certain distribution. 

It decreases the probability for each bucket to have no data in an epoch. Thus, increasing epoch 

length can reduce the number of non-data tags for each sensor, which require the sensor to send 

encoding numbers. Therefore, by suppressing more encoding numbers, a longer epoch incurs less 
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communication cost. 

As a summary, we find that the encoding number scheme does not incur too much extra cost. 

Even for 10-minute epoch, the extra cost(CE) is less than 25% of CD in most cases. The perfor-

mance mainly benefits from short encoding numbers derived in our protocol. In all the tested case, 

the length of an encoding number is no more than 4 bits. If we use the standard HMAC, e.g., 160 

bits HMAC-SHAl, the cost of sending encoding numbers will be significantly increased (> 40 

times). 

The other extra cost in our scheme is the false positive. We measure the false positive as the 

number of useless data received by the sink, represented by CF. We also count the total number 

of data received by the sink, indicated as TN. The performance of the false positive is illustrated 

by the ratio of ~~ in Fig. 3.17. 
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Figure 3.14: Cost of encoding numbers vs. V ARp 
(ENp = 1) 

8.4 0.6 0.8 1 1.2 
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Figure 3.15: Cost of encoding numbers vs. VARp 
(ENp = 1.5) 

We observe that the false positive increases when the privacy requirements become more strict, 

because each of the resulting buckets probably include more data in order to yield the required 

variance and entropy. In our simulation, we also find that there is no big difference for varying 

epoch lengths. The reason is that in our simulation setting (n = 11), the false positive (CF in 

Eq.(3.6)) is much larger than the cost of encoding numbers (CE in Eq.(3.6)). Different epoch 
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Figure 3.17: False Positive vs. 
(epoch=lOmin) 

VARp 

lengths do not change CF, which is the dominant factor of the objective function Eq.(3.6). Thus, 

we obtain very similar bucket partitions for the varying epoch lengths. In Fig. 3.17, the epoch 

length is set to 10 minutes. 

Based on our simulation results, bucketing scheme is also an efficient protection against pri-

vacy breach. The false positive (CF) takes less than 28% of the total data (TN) in all cases. 

3.4.4 Event Detection 

In this subsection, we test the encoding number scheme with sampling for rare event detection 

proposed in Section 3.3.3. In this setting, we randomly deploy 100 sensors in a 10 x 10 network 

field, i.e., S = 100. Assume the coverage area of an event be S', for convenience, we assume it is a 

vfSi x vfSi square area where the event source resides in the center. We set the coverage area from 

15 to 50 with an interval 5. In addition, we set 8 = 0.9 and consider varying a at 0.4, 0.5 and 

0.6 for defining the threshold of the desired event data. We first determine the number of sample 

nodes v and the encoding length D based on the previous analysis and the results are shown in 

Table 3.8. 

Then, we randomly select v sensors and mark them as sample nodes. In the simulation, we 
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Coverage Area: 15 20 25 30 35 40 45 50 

v: 30 23 18 15 13 11 10 9 

D: 1 1 1 1 1 1 1 1 

Table 3.8: Number of Sample Nodes (v) and Encoding Length (D) 

randomly select a point as the event source. The sensors in the coverage area are supposed to 

detect the event. For each parameter setting, we conduct 10000 independent tests and present the 

average result in the following figures. Our evaluation considers three aspects. First, we consider 

if a legitimate storage node can be verified with high probability. Second, we examine if our 

encoding number scheme can detect a false reply with high probability. Finally, we evaluate the 

efficiency of the communication cost with our sampling scheme. 

We first examine the probability that the number of sensors in the coverage area of an event is 

less than the specified threshold ( 1 - a) · A. · S'. This is also the probability that the sink triggers 

a false alarm and regards a legitimate storage node as a malicious storage node by mistake. The 

simulation result is presented in Fig. 3.18. As we can see, with a reasonable parameter setting, 

this probability of false alarm is very close to 0, especially when the coverage area is large. 

In addition, we illustrate the confidence of detecting a false reply in Fig. 3.19. As we men

tioned, this confidence is irrelevant to the threshold defined by a. According to Fig. 3.19, the 

confidence is obviously higher than the requirement 8 = 0.9 in all cases. It indicates that the 

derived v and D can guarantee the security requirement. 

Moreover, we find this scheme significantly reduces the communication cost compared with 

encoding number scheme. For instance, when the event coverage are is 25, we decide to select 

v = 18 sample nodes to send encoding numbers (D = 1) every epoch. Thus, in this sampling 

scheme, 18 x 1 = 18 bits encoding numbers are sent every epoch. Compared with normal en-
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Figure 3.19: Confidence of Detecting a False Re
ply in Event Detection: This figure illustrates the 
probability for the sink to detect a false reply with 
varying coverage areas. The specified require
ment for the confidence is o = 0.9. 

coding number scheme, even if we use 1-bit length, there are 100 bits transmission per epoch. 

Therefore, the sampling scheme helps us reduce much communication cost and also achieve a 

desirable confidence. 

3.5 Summary 

Our work in this chapter considers a basic query in sensor networks, data range query, which 

is the building block in many applications. We focus on the security and privacy issues in this 

query which have been rarely discussed in the prior work. In particular, our solution preserves 

the privacy of sensor data and enables the sink to verify the query reply. Additionally, we have 

identified the trade-off between security protection and energy efficiency. Our solution satisfies 

the given security constraints with a minimal extra energy cost. Furthermore, we have studied an 

important application of event detection using our range query protocol with security mechanisms. 

Finally, we have evaluated our solution with both synthetic and real trace data. 
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As shown in this chapter, practical settings, e.g., the security concerns discussed here, often 

alter the protocol design for achieving efficiency. Our work on basic queries focuses on these 

practical scenarios in a pervasive computing environment. In the next chapter, we continue to 

discuss another basic query in RFID systems for practical applications. 



Chapter 4 

Basic Query in RFID Systems: 

Continuous Scans 

This chapter focuses on another basic query in RFID systems. Compared to sensor networks, 

RFID is still in its infant stages of development. RFID applications are much less mature and 

less diverse than sensor network applications. While the previous chapter targets the applications 

with extra requirements, this chapter considers a general application model which is commonly 

seen in the literature. However, the prior work usually simplifies the problem settings and ignores 

practical constraints. In this chapter, we move a step forward by considering the basic RFID query 

in a more realistic environment. 

In RFID systems, the most basic query is to collect all IDs from every RFID tag which has 

been the primary focus of the prior research. However, all the previous work only considers a 

single scanning process assuming all target RFID tags are within the reader's reading range at the 

time of scanning. This ideal assumption is not true in some practical scenarios. We often need a 

series of multiple scans to collect all the desired tags. In this chapter, as mentioned in Chapter 1, 

129 
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we consider this continuous scan problem defined in both spatial and temporal domains. 

In continuous scanning, an important property is that each individual scan usually is not in

dependent. Some of the scanning processes may involve overlapping RFID tags. In the example 

illustrated in Fig. 1.5, the processes at adjacent locations inevitably have some tags in common 

in the reading ranges. Similarly, in temporal continuous scanning, some products may stay in the 

reading range for a long time, thus can be read by several consecutive scans. According to the 

above property, therefore, the simple solution that scans all the RFID tags in the reading range 

is inefficient In a series of continuous scanning processes, a lot of RFID tags may be present in 

multiple scans. This implies that each scan in the simple solution may collect a lot of redundant 

information which has already been gathered in the previous scans. 

In this work, we propose algorithms to efficiently detect inventory changes for continuous 

scanning without collecting all the IDs. Our solution takes advantage of the information previously 

gathered about the inventory and only collects the IDs of the newly added tags, and removes the 

IDs that are no longer present. 

4.1 Related Work 

As mentioned, most of the previous research in RFID systems focused on the anti-collision pro

tocols. For the problem of continuous scanning, however, collision is not the key crux. In the 

evaluation, we will show that typical anti-collision protocols are not suitable for this problem. Our 

solutions are still based on the ALOHA protocol, but specifically designed for continuous scan

ning. Adaptive splitting proposed in [101] is the only existing approach that can be applied to our 

problem. We will compare it with our solution in the evaluation and show that tree traversal is 

time consuming in a large scale system with long IDs (e.g., 96bit ID). Furthermore, some work 
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has extracted useful information based on the typical ALOHA scheme, e.g., counting the number 

of RFID tags [82, 83, 106]. However, this paper considers a more general task of collecting tag 

IDs. The intuition behind our scheme of checking the existing tags in Section 4A.2 is similar to 

the Bloom filter, which has been well studied in the literature [10,23,35,64,99, 130]. However, our 

algorithm has a different goal of minimizing the scanning time with a certain accuracy require

ment. The protocol and the corresponding analysis are quite different. In addition, [64] proposed 

a method to build high accuracy bloom filter based on selectively choosing hash functions. In our 

improved scheme in Section 4.4.3, the pre-computation is motivated by a similar idea. Again, our 

problem has different goals and metrics. 

4.2 RFID Background 

An RFID system consists of RFID readers and RFID tags. An RFID tag contains an integrated 

circuit for storing and processing data, and an antenna for receiving and transmitting data. The 

most common passive RFID tags have no battery supply, and transmit data by backscattering the 

received signals from RFID readers. 

4.2.1 Slotted ALOHA Protocol 

Slotted ALOHA is a popular anti-collision protocol implemented by major RFID manufactures. 

We briefly review the protocol in this subsection because our design is built upon it. In this 

protocol, the RFID reader first broadcasts a number f to all tags indicating the following time is 

divided to f slots. These f slots form aframe and f is called the frame size. After receiving f, 

each tag will randomly pick a slot index from 0 to f -1 and load the index into a slot counter (sc). 

Usually, RFID tags use a pseudo-random number generator, which takes a random seed from the 



132 

reader and hashes the random seed with tag IDs to a slot index. Let r be the random seed sent by 

the reader, x be the tag ID, the slot index and the initial value of sc will be hash(xllr) mod f. In 

the rest of this paper, we use hJ(x, r) to represent this operation. In practice, this hash function is 

often implemented using the CRC checksum operation. 

After sending the initial message with f and r, the reader then orderly scans every slot in 

the frame. The reader uses a 'slot end' command to close the current slot and start the next slot, 

which also triggers every tag to decrease its slot counter (sc) by one. If a tag's sc becomes zero, it 

will backscatter its ID in the coming slot. From the RFID reader's view, there are three possible 

scenarios for each slot. First, if only one tag T replies in a slot (the slot is called single-reply slot), 

the reader will send an acknowledgment of success (ACKS) to notify T that the data is successfully 

received. Tag Twill then keep silent (inactive) in the rest of the session. Second, if multiple tags 

respond in the same slot, the reader will detect a signal collision (the slot is called collision slot). 

The reader will then send an acknowledgment of failure (ACKF) to notify the responding tags 

(> 1) that it has failed to receive the data. These tags will keep active. Third, if no tag responds 

in a slot (called empty slot), the reader will close the slot immediately. At the end of a frame, if 

collisions have occurred in this frame, the reader will start a new frame, in which only the active 

tags will participate. Fig. 4.1 illustrates the state diagram of an RFID tag in the slotted ALOHA 

protocol. 

Query : sc = hr (x,r) 
Slot end : sc = sc·l 

ACKF 

Figure 4.1: State Diagram of an RFID tag with ID x: There are three states and each directional edge 
is annotated by the transition condition or a pair of 'condition: action'. 'sc' denotes the slot counter and 
'Query' includes the frame size f and random seed r. 
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4.2.2 Modified ALOHA Protocol 

In this paper, we make a minor modification to the slotted ALOHA protocol, so that we can use it 

not only to collect IDs from RFID tags, but also to efficiently select a set of tags as details will be 

explained later. The only difference with the typical protocol is the transition from state 'Active' 

to state 'Reply'. In our design, when sc = 0, the tag has three options for the action, which is 

controlled by the reader. In the 'slot end' command, the reader adds two bits as an opcode, which 

instructs each tag with sc = 0 to act accordingly as follows. (1) no reply: If the opcode is 0, the 

tag will not reply anything. (2) short reply: If the opcode is 1, the tag will reply a random short 

binary string. The length can be as short as possible as long as the reader can detect the collision 

while more than one tag respond. Usually, the short reply is less than 10 bits. (3) reply ID: If the 

opcode is 2, the tag will reply its ID as the typical protocol. The modified state diagram of a tag 

is illustrated in Fig. 4.2. Note extra hardware design is needed to support this modified protocol. 

However, based on the functionality of current RFID tags, this modification is definitely feasible 

and can be easily implemented. 

"-""""'"""",_g sc = 0 : opcode action --'---+----
0 no reply 

short reply 

2 reply ID x 

Figure 4.2: Modified Transition from 'Active' to 'Reply': The transition action when sc = 0 depends on 
the opcode in the previous 'slot end' command. 

4.2.3 Slot Timing 

In the slotted ALOHA protocol, timing of each slot, which is the time duration of the slot, is an 

important parameter for calculating total scanning time. In our algorithms, there are different slot 
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timings in accordance with three possible actions of RFID tags as mentioned earlier. First, for 

the action of 'no reply', we use tnr to denote the slot timing. Second, for the action of 'short 

reply', we may have three different scenarios, empty slot, single-reply slot and collision slot. The 

timings of single-reply and collision slot are the same, indicated as fsr. and the timing of an empty 

slot is shorter, indicated as fem· Third, 'reply ID' action results in the same three scenarios as 

'short reply'. The timing for an empty slot is fem and the timing for single-reply and collision slot 

is tw. Table 4.1 summarizes the notations of slot timing used in this paper. These timings are 

hardware-dependent parameters, which will be quantified in the evaluation. A principal rule is 

tnr < fem < tsr << tw. 

Empty Single-Reply Collision 

No Reply fnr 

Short Reply fem fsr fsr 

Reply ID fem tw tw 

Table 4.1: Slot Timings 

4.2.4 Optimal Frame Size for Collecting IDs 

A part of our schemes also uses the typical slotted ALOHA protocol to collect IDs from all active 

RFID tags. Thus, we need set an appropriate frame size in order to achieve time efficiency. As 

we mentioned in the related work, a lot of previous work has derived the 'optimal' frame size 

for slotted ALOHA protocol. However, they all regard the number of slots as the measurement 

of scanning time, ignoring the varying timings for different types of slots. In this subsection, we 

analyze the optimal frame size used in our schemes. 

Assume there are n active tags, and we use frame size f in the typical ALOHA. We will 



135 

successfully collect an ID only in a single-reply slot. For a certain slot, the probability of being an 

a single-reply slot is 

Thus, there is a single-reply slot every ;
1 

slots expectedly. Considering empty and non-empty 

slots have different time durations, these _!_ slots take a time of 
Pt 

1 
-(po · tem + (1- Po)· tiD), 
PI 

where Po is the probability for a slot to be an empty slot, p0 = ( 1 - J )n = e -j. The optimal f 

minimizes the above formula, which indicates the minimum scanning time per ID collected. The 

above formula can be regarded as a function of 7 denoted as g( 7). Once tem and tiD are set, we 

can derive the optimal f by solving g' ( 7) = 0, where g' represents the derivative. 

4.3 Problem Formulation 

our objective is to efficiently scan RFID tags in a series of continuous scanning processes. In 

spatial continuous scanning, the objective is to efficiently collect the newly introduced RFID tags 

at each location. In temporal continuous scanning, besides collecting 'new' tags, the objective also 

includes efficiently detecting the RFID tags that have been moved away. Collecting all the tags in 

the reading range is definitely feasible, but very time-consuming especially in a setting of massive 

RFID tags. Our solutions utilize the previously gathered information to achieve the continuous 

scanning without collecting all IDs from every RFID tag. 

In this problem, continuous scanning boils down to a general task with two overlapped sets 

of RFID tags S and S at each scanning location/time-point. One set (S) is the RFID tags in the 
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reading range we are about to scan. The other set (S) is the previously gathered RFID tags that 

overlap with present set of tags S. Thus, assume we have scanned all the tags inS, our problem is 

to scan the RFID set S. We first define two important types of tags for this problem as follows: 

• Unknown tags: the present RFID tags whose IDs have not been collected in the previous 

scanning processes, i.e., S- S. Let U =IS- Sj. 

• Missing tags: the tags that have been previously scanned, but no longer exist, i.e., S- S. 

LetM= JS-Sj. 

Therefore, our goal is to efficiently collect IDs from unknown tags and for some applications 

(temporal continuous scanning), remove missing tags from the current inventory. 

In this paper, we propose probabilistic solutions to the problem, which can not guarantee 

perfect accuracy. Some unknown tags may not be collected by our schemes and some missing tags 

may not be detected either. Additionally, for any accuracy requirement, a deterministic guarantee 

can not be provided. Therefore, we describe the accuracy constraint as follows. Let U' and 

M' respectively be the number of unknown tags and missing tags after applying our schemes. We 

quantify the accuracy by making them upper bounded by two requirements Ru and RM respectively 

with more than a probability. 

To summarize, given the previously obtained inventory S, two upper bounds Ru and RM, and 

a probability a E (0, 1], we would like to use the minimal time to scanS, such that 

Pr(U' :S Ru) >a and Pr(M' :S RM) >a. 

In addition, our schemes are based on an assumption that the difference between S and S, 

characterized by U and M, is bounded. We use Umax and Mmax to denote the bounds, i.e., U = 
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IS- Sl :::; Umax and M = IS- Sl :::; Mmax. Note Umax and Mmax could be loose estimations. We will 

show the impacts of their accuracy in evaluation. We also try to relax this assumption and discuss 

a more general setting without prior knowledge about the difference between the two overlapped 

sets. 

4.4 Methodology 

Clearly, to achieve our objective, we need accomplish the following two tasks with a probability 

of at least a 

1. to collect 2 U - Ru unknown tags from S- S; 

2. to detect 2 M- RM missing tags from S- S. 

The rest of the section describes two algorithms, one for each task of the problem. 

4.4.1 Collect Unknown Tags 

The hurdle to efficiently collecting the unknown tags is that the tags in S n S, which have already 

been read previously, will interfere and make the responses from the unknown tags buried in 

overwhelming "noises". Once we can suppress the known tags from responding while keeping 

the unknown tags active, applying the typical slotted ALOHA protocol would efficiently collect 

the unknown tags with no interference. Therefore, we propose a two-phase algorithm consisting of 

the selecting phase and the collecting phase. In the selecting phase, we select only unknown tags 

and keep them active. Note that the selected unknown tags could be a subset of S- S. Meanwhile, 

we suppress and inactivate other tags including all the known tags in S n S and some unknown 

tags. In the collecting phase, we simply use the typical slotted ALOHA to scan all active tags. 
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The selecting phase is the key step in our algorithm and we still use the slotted ALOHA to 

select unknown tags. As we mentioned, in the slotted ALOHA, each tag randomly picks a slot in 

a frame based on the hashed value of its ID with a random seed sent by the reader. Since we know 

the set S, the random seed r, and the hash function, it is straightforward to determine whether a 

particular slot would be occupied by a known tag. When checking the slots one by one, we signal 

the tags replying in those slots to be silent and keep the tags replying in other slots active. It is true 

that some slots may possibly be occupied by both known and unknown tags and our method will 

mistakenly miss the unknown tags. To counteract this, therefore, we run the two-phase algorithm 

using different random seeds for a number of rounds so that all unknown tags may be exposed. 

Algorithm 6 (called the CU scheme) illustrates the protocol taking two parameters f and 8. 

How to determine the parameters is discussed later in this subsection. I is the resulting inventory 

which is expected to include sufficient unknown tags. The protocol first sets I = S and iteratively 

update I in the successive rounds. Inside the while loop, lines 3-15 present the selecting phase 

and line 16 is for the collecting phase with details omitted. In the selecting phase, the reader first 

generates a random seed r and broadcasts f and r. Each tag takes f as the frame size and picks 

the slot (from slot 0 to slot f- 1) to respond denoted by the hashed value of its ID and r (line 7). 

A slot is called a pre-empty slot if no known tag responds in that slot. We use PE(I,J, r) to denote 

the number of pre-empty slots after hashing all tag IDs in I with r onto f slots, that is, 

PE(I,J,r) = I{JIJ E [O,J),Vx E I,hJ(x,r) "I J}l. 

Being aware of the known tags, the reader can emulate the hashing for each known tag ID in S 

and determine if a particular slot is pre-empty. The reader then sends commands to make the tags 

replying in the pre-empty slots stay active in the following stage while other tags are kept silent. 
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In the collecting phase, the reader simply collects the IDs of all active tags via typical slotted 

ALOHA protocol and adds them to /. In Algorithm 6, since an unknown tag randomly picks a 

slot to respond in each round, it has PE(j1,r) probability to be collected. We use a variable p to 

keep track of the probability that an unknown tag will not be identified after the current round 

(line 5). Obviously, p becomes smaller as the reader applies more rounds of queries. The process 

terminates when p < 8. Fig. 4.3 illustrates an example. 

S = I A, B, C, D, E ) , S = I D, E, F, G, H ) 

Round 1: I= I A, B, C, D, E) 

Selecting Phase 0 G DGJ 0 
----------------------
Collecting Phase D 0 D 

Round 2 : I= I A, B, C, D, E, F ) 

Selecting Phase 0 0 DLJG 
----------------------
Collecting Phase EJ D D 

000 
Figure 4.3: Example of Collecting Unknown Tags (/ = 5): In this figure, each rectangle represents a slot 
and the dark rectangle indicates the pre-empty slot. In round 1, we first check 2 pre-empty slots and F 
will be the only active tag at the end of the selecting phase. We then apply the typical slotted ALOHA 
protocol (the frame size is set to 3) and successfully collect the unknown tag F. In round 2, we also check 
2 pre-empty slots in the selecting phase. Note we do not select the third slot because F is already a known 
tag. Then, we apply the slotted ALOHA and collect IDs from G and H. 

The protocol is heavily dependent on the parameters f and 8. The following theorems show 

how to choose these two parameters to achieve time efficiency and satisfy the accuracy require-

ment. Note the total scanning time includes the time spent in the selecting phase and the collecting 

phase. However, the settings off and 8 only affect the selecting phase, while the scanning time 

in the collecting phase depends on the number of newly collected RFID tags, which is related to 

the requirement parameter Ru. Therefore, in the following analysis, our objective is to minimize 



Algorithm 6 CU (!, 8): Collect Unknown Tags 

1: It-S, p t- 1 

2: while p 2: 8 do 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

Reader powers on and generates a random seed r 

Reader calculates PE(I,J, r) 

(1 PE(I,J,r)) pt--p· - f 

Reader broadcasts f and r to tags 

Each tag with ID x responds in slot h t(x, r) 

for sloti = 0 to f - 1 do 

Reader sets opcode = 0 at the end of slot i- 1 

if slot i is a pre-empty slot then 

Reader sends ACKF 

else 

Reader sends ACKS 

end if 

end for 
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16: Reader collects active tags by the typical slotted ALOHA (opcode = 2) and adds their IDs 

to I 

17: Reader powers off 

18: end while 

19: Return I 
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the scanning time in the selecting phase. Theorem 4.1 gives the condition that guarantees the ac-

curacy requirement. Theorem 4.2 provides a bound for the expected number of the iterations in 

Algorithm 6 and Theorem 4.3 bounds the scanning time in the selecting phase by a function of the 

frame size. The results are utilized to find the optimal parameter f in Theorem 4.4 .. 

Theorem 4.1 After running Algorithm 6, we can guarantee Pr(U' ~ Ru) >a if we set 

8 < Ru+a 
- 2a+Umox 

Ja· (a· Umox+2Umax·Ru -2Rb) 

.;u;;;;;; · ( 2a + U mox) 

where a= (4>- 1(a))2 and 4> is the standard normal CDF. 

Proof: Recall that U and U' respectively represent the number of unknown tags before and after 

running Algorithm 6. For each unknown tag before running Algorithm 6, the event that it will not 

be collected by Algorithm 6 is independent and the probability of the event is p < 8 according 

to the algorithm. Therefore, U' follows a binomial distribution U' "'B(U,p). Consider another 

binomially distributed random variable z"' B(Umox, 8). Since p < 8 and U ~ Umox, Pr(U' < Ru) > 

Pr(z < Ru ). When Umox is large, z is approximated by a normal distribution1, z "'N(J.L, a 2), where 

J1 = 8 · Umox, a 2 = 8 · (1- 8) · Umox. Therefore, based on the property of normal distribution, 

Ru-J.L 
Pr(z < Ru) = 4>( J2 ). 

20' 

After plugging 8 in the hypothesis, we have Pr(z < Ru) 2': a. Thus, Pr(U' < Ru) >a. • 

ISI+Umax 
Theorem 4.2 Algorithm 6 is expected to terminate after k = In 8 /In( 1 - e- t ) rounds. 

Proof: In each round (loop variable in line 2) in Algorithm 6, the set of currently known tags is 

I, and each slot (loop variable in line 8) in the frame is a pre-empty slot if no tags in I selects the 

1The purpose of this approximation is to quickly calculate the CDF. 

file:///fUmax
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slot, which has a probability of (1- J )111. Thus, the expected value of PE(I,J, r) is f · (1- J )111. 

Since III ~ lSI + Umax in any round, the expected value of PE(jf,r) is 

After k rounds, the value of p in Algorithm 6 will be 

Thus, the algorithm will terminate after k rounds. • 
Theorem 4.3 The expected scanning time of the selecting phase in Algorithm 6 is bounded by 

STc = k · f · tnr, where k is the number of rounds in Algorithm 6. 

Proof: Apparently, Algorithm 6 spends totally k · f slots in the selecting phase. In each slot, the 

reader sets the opcode to 0 in the 'slot end' command. Thus, the timing of each slot in the selecting 

phase is tnr· • 
Theorem 4.4 The optimal value of the frame size is f = 1.443 · (lSI + Umax). 

Proof: With Theorem 4.2 and Theorem 4.3, the expected scanning time of the selecting phase is 

bounded by 

ln8 
STc= ~ ·f·tnr· 

ln(1-e- t ) 

By solving affl = 0, we obtain the optimal value of the frame size, f = 1.443 ·(lSI+ Umax)· • 
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4.4.2 Detect Missing Tags 

As we mentioned earlier, temporal continuous scanning may need remove the missing tags from 

the inventory. In this subsection, we propose a scheme to detect missing tags and analyze the 

parameter setting. 

To detect the missing tags, besides collecting all the present tags, another simple alternative is 

to check the existence of each tag in S by broadcasting its ID as a 'select' mask and listen to the 

response. If there is no response, the tag can be removed from the inventory. However, it is also 

inefficient to transmit all the IDs in S one by one, because the bit length of the data could be very 

long, e.g., a 96-bit ID in Gen2 standard [45] plus a 16-bit CRC checksum. Our solution is still 

based on tag replying in a certain slot according to the hashed value of the tag ID. Provided that 

a slot that should be occupied by a known tag becomes empty, we know the tag corresponding to 

that slot is missing. Similar to the previous problem of collecting unknown tags, some missing 

tags may be mapped to a slot with other present tags, and thus will not be detected. In this scheme, 

we also repeat the process for multiple rounds to achieve the accuracy requirement. 

Our solution is illustrated in Algorithm 7 (called the DM scheme). I represents the returned 

inventory which is supposed to have removed the missing tags after Algorithm 7. I' represents 

the set of known tags we have not checked yet. Initially, both I and I' are set to S. In each round 

inside the while loop, the reader first generates a random seed r and broadcasts f and r to tags. 

Each tag randomly picks a slot to respond according to the hash value of its ID. A slot is called an 

pre-single slot if only one tag in I' responds in the slot. With the knowledge of the known tags, the 

reader can calculate the indexes of the pre-single slots. The reader then checks each pre-single slot 

to determine if the known tag mapping to the slot is still present (x in line 9). If the pre-single slot 

is empty, the corresponding known tag ID x will be removed from I. If there is a reply, the reader 
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Algorithm 7 DM(f): Detect Missing Tags 

1: I+-- S, I' +-- s 

2: Reader powers on 

3: while /I'/ > 0 do 

4: Reader ge·nerates a random number r 

5: Reader broadcasts f and r to tags 

6: Each tag with ID x responds at slot ht(x, r) 

7: for slot i = 0 to f- 1 do 

8: if slot i is a pre-single slot then 

9: Reader sets opcode = 1 at the end of slot i- 1 

10: Find x E I such that ht(x, r) = i 

11: I'+-- I'- {x} 

12: if no tags respond then 

13: 1+--1-{x} 

14: else 

15: Reader sends ACKS 

16: end if 

17: else 

18: Reader sets opcode = 0 at the end of slot i -1 

19: Reader sends ACKF 

20: end if 

21: end for 

22: end while 

23: Return/ 
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will make no change on the inventory I and send ACKS to keep the responding tags silent in the 

following steps. Let PS(I',J,r) be the number of pre-single slots yielded by I',J, and r. Thus, 

in each round, we check the existence of PS(I' ,J, r) known tags. The whole algorithm terminates 

when II' I = 0, i.e., we have checked all the known tags. Fig. 4.4 shows an example of checking 

pre-single slots. 

In Algorithm 7, only one parameter j, the frame size, needs to be determined to optimize the 

performance. To find the optimal value for f, we make use of the following results. Theorem 4.5 

presents the condition that guarantees the accuracy requirement for the number of the undetected 

missing tags (M'). The scanning time in this algorithm, however, cannot be expressed by f in a 

closed form. Therefore, we present in Lemma 4.1 a program to estimate the number of iterations 

executed by Algorithm 7, and then the number of iterations can be used to express the scanning 

time in Theorem 4.6. By enumerating all possible values off, we can find a suitable f to optimize 

the overall performance. 

Theorem 4.5 After running Algorithm 7, we can guarantee Pr(M' :s; RM) > a, iff > -In0~a), 

where 

(} = RM+a 
2a+Mmax 

Ja· (a·Mmax+2Mmax·RM-2R~) 
v'Mmax · (2a + Mmax) 

a= (<1>- 1 (a))2 and <I> is the standard normal CDF. 

Proof: In Algorithm 7, a missing tag is not detected only if some unknown tags respond in the 

pre-single slot it belongs to. Let q be the probability for this scenario, 



S = { A, B, C, D, E } , S = { D, E, F, G, H } 

Round 1: I= { A, B, C, D, E}, I' = { A, B, C, D, E} 
active tags= { D, E, F, G, H} 

CQGJ~~GJ 
Round 2: I= { A, B, C, D, E}, I' = { A, B, D, E } 

active tags = { D, E, F, H } 

GJGJCQEJ~ 
Round 3: I= { B, C, D, E}, I' = { B} 

active tags = { H } 

~CQ~GJCQ 
return I= { C, D, E} 
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Figure 4.4: Example of Detecting Missing Tags (f = 5): In this figure, each rectangle represents a slot 
and the dark rectangle indicates the pre-single slot. I is the current inventory and I' represents the set of 
unchecked known tags. We also show the set of active tags in this figure. In round 1, there is only one 
pre-single slot. The reader supposes that the missing tag C is still present by mistake because the unknown 
tag G responds at the pre-single slot. In round 2, the reader checks 3 pre-single slots. ·We then remove A 
from I and confirm that D and E are still present. In the last round, the reader detects the missing tag B. 

Recall M and M' are the number of missing tags before and after running Algorithm 7 respectively. 

Since detecting each missing tag is independent, M' follows a binomial distribution M' f'"o.J B(M, q). 

Consider another binomially distributed random variable z f'"o.J B(Mmax, e). Since q < e and M ~ 

Mmax, Pr(M' < RM) > Pr(z < RM)· When Mmax is large, z is approximated by a normal distribu-

tion, z f'"o.J N(Jl, a-2), where Jl = e ·M, a-2 = e · (1- e) ·Mmax. Therefore, based on the property of 

normal distribution, 

Thus, Pr(M' < RM) >a. • 
Lemma 4.1 Given f, we can estirrulte the number of iterations executed in Algorithm 7. 
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Proof: Let ni be the number of unchecked known tags after round i. In round i, for each slot, the 

probability that only one known tag in I selects the slot is 

Thus, the expected value of ni is 

ni-l- PS(I',J, r) 
ni-l -ni-l 

ni-l -f. f . e t 

We iteratively calculate ni until ni < 1, and k is estimated as min{ilni < 1 }. • 
Theorem 4.6 Assume Algorithm 7 terminates after k round, the scanning time of Algorithm 7 is 

bounded by 

STd = ISI·tsr+ (k· f -lSI) ·tnr· 

' 
Proof: Given k and f, the expected total number of slots is k ·f. Since every known tag is checked 

in a pre-single slot, there are lSI pre-single slots and the rest k · f -lSI slots are no reply slots (lines 

18-19 in Algorithm 7) each with duration tnr· For each pre-single slot, there might be a response 

(with duration tsr) or no response (with duration tem < tsr). Therefore, the expected total scanning 

time is bounded by STd. • 
Finally, based on the analysis above, we can enumerate all possible values off (f is a bounded 

value in practice), and find the optimal value with the minimum scanning time STd. 
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4.4.3 Extension 

Our previous analysis is based on two parameters Umax and Mmax. In some applications, however, 

it may not be easy to estimate these two bounds or the estimations could be too loose to be mean

ingful. In this section, we present extensions to our schemes without the assumption of knowing 

Umax and Mmax. Additionally, we propose an improved scheme for detecting missing tags based 

on pre-computation. 

4.4.3.1 CU extension with estimating Umax 

As we described earlier, our CU scheme is an iterative process and we collect some unknown tags 

in each round. In this extension, we utilize these information of the collected unknown tags to 

estimate Umax. Thus, our basic idea is to first set a rough estimation for Umax. and then iteratively 

revise it as our scheme proceeds. We expect the estimation of Umax converges towards the tighter 

bound as more iterations are executed. 

The details of this extension is presented in Algorith 8. Initially, we set Umax to lSI, the total 

number of present tags, assuming all the tags are unknown tags. This number lSI can be obtained 

by the previous work [83] with a small overhead. We define another variable t to count how many 

unknown tags have been collected since the algorithm starts. 

In line 3, we set the frame size f as we discussed in Theorem 4 and keep updating p as in 

Algorithm 6. Recall that p is the probability for an unknown tag not to be collected after the 

current round. The selecting phase and collecting phase are the same as in Algorithm 6. We use 

variable c to denote the number of newly collected unknown tags and correspondingly update t in 

line 6. Lines 7-12 are the key part for this extension, which derives a new value for Umax based on 

the observations. 
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Algorithm 8 Collect Unknown Tags (Extension) 

1: Umox ~ ISI,t ~ O,p ~ 1 

2: while Umox- t > Ru do 

3: f ~ 1.443 ·(lSI+ Umax) 

4: Use f in the selecting phase and execute lines 6-16 in Algorithm 1 

5: Assume we collect c unknown tags in this round 

6: p ~ p· (1- PE(jf,r)), t ~ t+c, tolp ~ 0 

7 sum~ L~! 1 (: ) p'-'(1- p)', x ~I 
8: while tolp < a do 

9• tolp ~ tolp+ ( : ) p'-'(1- p)' /sum 

10: x~x+ 1 

11: end while 

13: end while 
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The following Theorem 4. 7 and Theorem 4.8 guarantee the accuracy requirement after running 

Algorithm 8. 

Theorem 4.7 At any iteration, Pr(U::::; Umnx) >a. 

Proof: At the beginning of the algorithm, there are U unknown tags. In each iteration, variable 

p records the probability that a certain unknown tag will have not been collected after the current 

iteration. Thus, the probability of collecting t unknown tags is 

( ~ ) Pu-t ( 1 _ P )t. 

In line 7, variable sum is the summary of the probability of collecting t unknown tags considering 

all possible values of U. We use sum as a normalizer in the following analysis. Basically, based 

on the observation oft, 

Pr(U=x)= ( ~ )~-t(l-p)'jsum. 

In lines 8-12, we set the new value for Umnx and guarantee that it satisfies the condition 

L Pr(U = x) > a, 
x<Umax 

which is equivalent to Pr(U < Umnx) > a. • 
Theorem 4.8 After running Algorithm 8, we can guarantee Pr( U' ::; Ru) > a. 

Proof: Recall U' is defined as the number of remaining unknown tags, thus U' = U - t. According 

to Theorem 4.7, Pr(U::::; Umnx) > a, then we have Pr(U' ::::; Umnx- t) > a. Since Algorithm 8 

terminates when Umnx- t::::; Ru, Pr(U'::::; Ru) 2: Pr(U'::::; Umnx- t) >a. • 
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4.4.3.2 DM extension with estimating Mmax 

The similar idea can be also applied to DM scheme while Mm£/x is not known. Initially, we set 

Mmax to lSI, assuming all the previously collected tags are missing. We define another variable t 

to count the number of missing tags that have been detected since the algorithm starts. According 

to the observation oft, we analyze if the current value of Mm£/x is too loose. Basically, given a 

value of Mmax, we derive the probability that such a value can yield the observation oft. If the 

probability is less than a small constant e (e.g., 0.01), the value of Mmax is considered too loose to 

be possible. The details are presented in Algorithm 9. 

Algorithm 9 Detect Missing Tags (Extension) 

1: If- S, I' f- S, Mmax t-ISI, P f- 1 

2: while II' I > 0 do 

3: Derive the optimal frame size fusing Mmax 

4: Execute lines 2-21 in Algorithm 7 

5: p f- p · (1- PS(~('r) ), t f- lSI-III 

6 M_ ~ max{xl (: ) p'-'(1- p)' >E) 

7: end while 

8: Return/ 

4.4.4 Improved DM Scheme 

Our basic DM scheme relies on the pre-single slots to detect the missing tags. The number of pre-

single slots (PS) per round in DM is critical to the performance. Previously, we blindly choose 

the random numbers/seeds for the hash function and give the probabilistic performance analysis. 

It is easy to observe that some random numbers may result in more pre-single slots, which in tum 
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may improve the performance. This subsection discusses an improved DM scheme that inserts, 

between two consecutive scanning, a pre-computation step that searches for good random numbers 

for the next scanning. 

Assume that RFID tags use 16-bit random numbers. Given a frame size f, the general opti

mization problem is to find the best set of random numbers from all possible random numbers, i.e., 

[0, 216 ), with the minimum scanning time while satisfying the accuracy constraints. This problem 

can be formulated as an integer programming and reducible to 0/1 knapsack problem. Due to 

the page limit, we omit the formal description here. Basically, the optimization is NP-hard and 

even approximation algorithms are not helpful because of the large size of the possible random 

numbers. Therefore, we present a heuristic solution based on greedy algorithm. 

Our metric of the random number r is PS(S,J, r). We prefer to use the random number with the 

largest value of PS because DM can check more known tags in one round. In this pre-computation, 

however, PS(S,J, r) is dependent on the random numbers applied before r. Thus, we iteratively 

apply greedy algorithm to find a set of random numbers. The details are proposed in Algorithm 10. 

We consider the returned set BSR has a limited size maxsize. U represents the set of unchecked 

tags and Nr denotes the number of selected random numbers. We examine every possible random 

number and pick the one with the largest PS. flag[i] records the number of tags responding at slot 

i, and id[i] tracks the ID of the last tag replying at slot i. At the end of each iteration, we remove 

from U the tag IDs, which can be checked by the selected random number (lines 18-20), before 

continuing to select the next random number. 

4.5 Performance Evaluation 

Our evaluation is based on simulation. Here are some general parameter settings. 



Algorithm 10 Finding the best set of random numbers for the improved DM 

1: Calculate the frame size f and initialize BSR[maxsize] 

2: u +--- S, N, +--- 0 

3: while U i= <I> and N, < maxsize do 

4: for r = 0 to 216 - 1 do 

5: reset array flag[f] and id[f] 

6: for each Xi E U do 

7: idx = hash(xd lr) mod f 

8: flag[idx] +--- flag[idx] + 1, id[idx] +---Xi 

9: end for 

10: ps +--- 0 

11: for i = 0 to f- 1 do 

12: if flag[i] = 1 then ps +--- ps+ 1 

13: end for 

14: if ps >max then 

15: max+--- ps, r' +--- r, flag' +---flag, id' +--- id 

16: end if 

17: end for 

18: fori= 0 to f- 1 do 

19: if flag'[i] = 1 then U +--- U- id'[i] 

20: end for 

21: BSR[N,] +--- r', N, +--- N, + 1 

22: end while 

23: Return BSR 
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Slot Timings: For slot timings, we keep the following ratios based on hardware and protocol 

specifications from major RFID manufactures, 

tnr : tern : tsr : tw = 1 : 1.5 : 3 : 30. 

We set the unit time above to 0.25ms according to I-CODE description [103]. This unit time may 

vary for different hardware, but usually appears in the same scale. 

Optimal Frame Size for Collecting IDs: As mentioned in Section 4.2.4, we need determine 

the optimal frame size when applying the typical slotted ALOHA protocol. According to the slot 

timing above and the analysis in Section 4.2.4, the optimal frame size for collecting n active tags 

is f = 3.48n. In the collecting phase of our CU scheme, n is estimated as the expected number of 

the selected unknown tags n = PJ · Uma.x. 

Accuracy Confidence: The parameter a in our problem formulation is set to 0.99 in all our 

simulation. It indicates that our schemes must guarantee the accuracy specified by Ru and RM 

with more than 0.99 probability. 

Other Solutions for Comparison: We consider the following three solutions for comparison. 

• Collect All (CA): In this solution, the reader collects all RFID tags via the typical slotted 

ALOHA protocol, ignoring the knowledge of 1. The initial frame size is set to lSI. The 

scanning time of this solution is proportional to the number of tags (lSI). We use CA to 

denote this solution. 

• Suppress Known (SK): In this solution, the reader first broadcasts the known tag IDs one 

by one. The tag whose ID matches the broadcast ID will be suppressed to keep silent. The 

reader then uses the ALOHA protocol to collect the remaining active tags, which are all 

unknown tags. We use SK to denote this solution. 
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• Adaptive Query Splitting (AQS): This solution is proposed in [101] based on tree traversal 

scheme. The basic idea is to record the results when traversing the ID tree in the previous 

scanning. For the current scanning, instead of traversing the whole tree, AQS only checks 

those nodes where no collision has occurred in the previous scanning. We refer readers to 

[101] for details. 

In the rest of this section, we present the scanning time of our schemes and compare with other 

solutions with different parameter settings. Spatial and temporal continuous scanning are sepa

rately evaluated. We conduct 100 independent trials for each parameter setting in the simulation, 

and illustrate the average values. The scanning time deviations of our schemes ( < 0.2 second) 

and other solutions ( < 0.5 second) are very small and omitted in the figures. In addition, in all 

our tested cases, the resulting inventories obtained by our algorithms always satisfy the accuracy 

requirement defined by Ru, RM and a. In the rest of this section, the results about the accuracy 

are not explicitly presented. Instead, we focus on the performance of the scanning time. 

4.5.1 Spatial Continuous Scanning 

In this subsection, we present the performance results for spatial continuous scanning. First, we 

consider the scenario with two overlapping sets of tags. Then, we simulate a more complete 

case involving a series of continuous scanning processes. Finally, we examine the CU extension 

scheme proposed in Section 4.4.3. 

4.5.1.1 Two overlapping sets 

In this simulation, we consider two overlapped sets of tags S and S. Recall that we have collected 

the tags in S and try to collect the unknown tags in S. The default parameter setting is as follows. 
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There are 5000 tags in both sets, i.e., JSJ = JSJ = 5000. The number of unknown tags U is set to 

U = 0.1 ·JSJ, which means 10% of current tags are unknown tags. For a certain value of U, the 

accuracy requirement Ru is set to Ru = 0.1 · U, i.e., keeping 10% unknown tags uncollected is 

tolerated. In addition, Umox (the upper bound of U) is set to 1.2 · U, i.e., 20% more than the actual 

value of U. In the next, we vary one of these parameters while the other parameters are the same 

as in the default setting, and present the corresponding performance results. 

Varying U: We first examine the performance with different number of unknown tags, which 

indicates the difference between the current set of RFID tags and that in the previous scanning. 

Fig. 4.5(a) compares our CU scheme with other three solutions. horizontal axis represents the 

. fu ratio o ]Sf· 

In Fig. 4.5(a), the CA scheme keeps the same performance for all the cases, since the total 

number of tags (JSJ) does not change. The other three schemes all yield a linearly increasing per-

formance when U increases. The performance of our CU scheme is superior to all other solutions. 

For example, in the default setting with fsr = 0.1, CU needs less than 13 seconds to finish while 

SK and CA need 46 and 53 seconds respectively. In the worst tested case with fsr = 0.5, CU still 

saves more than 40% scanning time compared with the CA scheme. 

Fig. 4.5(b) further illustrates the scanning time of the CU scheme spent in the selecting phase 

and the collecting phase. The collecting phase consumes more time when U increases because it 

need collect more unknown tags. On the other hand, the scanning time of the selecting phase does 

not change too much ranging from 7 to 9 seconds. It is interesting to observe that the scanning 

time of the selecting phase is not monotonously increasing with U. Sometimes, when U increases, 

our scheme can select more unknown tags in a shorter time. 

Varying JSJ and JSJ: In our simulation, we always set JSJ = JSJ. Both JSJ and JSJ indicate 
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Figure 4.5: Varying U: (a) The overall scanning time (b) The scanning time spent on the selecting phase 
and the collecting phase. In our settings, lSI = 5000, U /lSI = { 5%, 10%, · · · , 50%} 

the scale of the RFID tags in the simulated scenarios. In this part, we present and compare the 

performance with varying number of RFID tags. We test four cases, where the number of RFID 

tags ranges from 2500 to 10000 with 2500 as the interval. Other parameters are derived by keeping 

the same ratio as in the default setting. We compare the scanning time in Fig. 4.6(a). 

The performance of all schemes is proportional to the number of RFID tags. In all four cases, 

the scanning time of the CU scheme is less than 24% of that consumed by the CA scheme. The 

simulation results indicate that the CU scheme can significantly improve the performance in terms 

of scanning time, especially when dealing with a large amount of RFID tags. For example, when 

lSI= 10000, theCA scheme needs 104 seconds to finish. By contrast, the scanning time of CU is 

about 24 seconds. 

Varying Umnx: Our problem formulation assumes that Umnx is the estimated bound for the 

actual number of the unknown tags (U). We also test the impact of Umnx on the performance. In 

the default setting, the actual number of unknown tags is 500. We vary Umax in our tests from 

550 (10% more than the actual number) to 1000 (100% more than the actual number). The results 
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Figure 4.6: The scanning time of spatial continuous scanning with different varying parameters. (a) The 
performance of theCA scheme is also presented as a comparison. JSJ = JSJ = {2500,5000, 7500, 10000}. 
(b) U = 500 and the ratio of Umax/ M is set to 1.1, 1.2, ... ,2. 

are illustrated in Fig. 4.6(b), where the horizontal axis is the value of u'ba.x ranging from 1.1 to 2. 

We observe that a more accurate estimation slightly improves the performance, essentially in the 

selecting phase. The difference between the best case and worst case in Fig. 4.6(b) is less than 4 

second. Therefore, our CU scheme can perform well even with a rough estimation of Umax. 

4.5.1.2 A series of scanning processes 

In the next, we simulate the scenario that a series of continuous scanning processes are needed to 

cover a large warehouse. We consider a simple floor plan with a straight aisle and stocking shelves 

beside it. A person carrying an RFID reader will move along the aisle and stop at certain locations 

to turn on the reader and scan the tags. Fig. 4.7 illustrates the setting in our simulation. Assume 

the reader will stop at 10 locations, {L1,L2, ... ,LlO}. The reading range of a reader is considered 

as a circle with radius R. The interval distance between any two consecutive scanning locations is 

set to ~. For simplicity, we assume that the density of the products is a constant in the whole area, 

i.e., at any location, the number of the tags in the reading range is the same. With this setting, at 
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each location, there are about 30% unknown tags in the reading range. The total scanning time 

in the whole process is compared in Table 4.2. Compared with the CA scheme, the CU scheme 

dramatically reduces the scanning time by almost 50% . 

.... --
Figure 4.7: R is the reading range of the RFID reader, which moves towards a straight line and stop at 
10 locations, {Ll,L2, · · · ,LlO}, to launch the scanning process. The interval distance between any two 
consecutive locations is R/2. 

CA SK AQS cu 

528s 562s 628s 265s 

Table 4.2: Total scanning time for a series of scanning processes 

4.5.1.3 CU Extension 

Finally, we evaluate the CU extension scheme, which only affects the selecting phase in the CU 

scheme. We present the performance in Fig. 4.8. Compared to the default CU scheme, the CU 

extension only incurs a small overhead in the selecting phase. Its performance is very close to the 

CU scheme when U is small. Even in the worst case in Fig. 4.8, the extra time spent by the CU 

extension is less than 3 seconds. 

4.5.2 Temporal Continuous Scanning 

We assume that temporal continuous scanning need not only collect the unknown tags, but also 

detect the missing tags. Thus, the implementation combines the CU and DM schemes. In our 
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Figure 4.8: Selecting Phase in the CU Extension: This figure illustrate the scanning time spent on the 
selecting phase in the CU extension scheme with different number of unknown tags (U). The perfor
mance of the selecting phase in the CU scheme is also displayed as a comparison. (lSI = 5000, U /lSI = 
{5%, 10%, ... ,50%}) 

simulation, we first apply the CU scheme and then the DM scheme in each scanning process. In 

the next, we first present the simulation results when considering two overlapping sets. Then, we 

discuss the performance of the DM extension scheme and the improved DM scheme. We do not 

consider a series of scanning in an explicit section because its performance can be easily derived 

from the simple case with two overlapping sets. 

4.5.2.1 Two overlapping sets 

In the simulation, the default parameter setting is the same as that in spatial continuous scanning 

except that we need consider parameters for the missing tags. We set /S/ = /S/ = 5000. Thus, the 

number of missing tags is the same as the unknown tags. We set M = U = 0.1 · /S/ by default. 

The requirement for missing tags RM is also set in the same way as Ru, RM = Ru = 0.1 ·M. In 

addition, the estimation of Mmnx is to Mmnx = 1.2 · M. Similar to spatial continuous scanning, in 

the next, we vary one of these parameters and examine the performance. 
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Varying M: We first test the impact of the number of missing tags M. Fig. 4.9(a) shows 

the simulation results. The horizontal axis represents the ratio of fir ranging from 0.05 to 0.5 

with an interval of 0.05. We separately display the scanning time consumed by the CU and DM 

schemes. The summary of both parts is the total scanning time in temporal continuous scanning. 

The performance of other three schemes is the same as that in Fig. 4.5(a). In Fig. 4.9(a), we only 

compare our scheme with the CA scheme whose performance appears as a flat line. 

According to Fig. 4.9(a), we observe that our scheme for temporal continuous scanning is also 

very efficient. For example, in the default setting with fir = 0.1, our scheme consumes around 20 

seconds, which is 37% of the time caused by the CA scheme. In addition, we find that the process 

of detecting missing tags is much shorter than collecting unknown tags and that increasing M does 

not incur too much time in the DM scheme. For example, the difference of DM's scanning time 

between fir= 0.05 and fir= 0.5 is less than 3 seconds. 
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Figure 4.9: The scanning time of temporal continuous scanning with different varying parameters. 

Varying lSI and lSI: Similar to spatial continuous scanning, we consider 4 cases with 2500, 

5000, 7500 and 10000 RFID tags respectively. We compare our scheme with theCA scheme in 
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Fig. 4.9(b). The performance of the other two schemes (SK and AQS) is the same as in Fig. 4.6(a). 

In Fig. 4.9(b), we also separately illustrate the scanning time spent on the DM scheme. As we can 

see from Fig. 4.9(b), the scanning time of the DM scheme is a small overhead compared with the 

CU scheme and only slightly increases with the number of tags. Thus our scheme that combines 

CU and DM together is still much more efficient than the CA scheme, especially in a large scale 

system. When lSI = 10000, our scheme consumes less than 30% time required by the CA scheme. 

Varying Mmox: Finally, we evaluate how the value of Mmox affects the performance. The 

simulation results are presented in Fig. 4.9(c). The horizontal axis is the ratio of M;:r ranging 

from 1.1 to 2 with an interval of 0.1. As a comparison, the performance of the CU scheme is 

also displayed in the same figure. Similarly, we find that more accurate estimation of Mmox leads 

to a better performance. Although the absolute difference of performance is not large, e.g., the 

difference is less than 7 seconds between MX:r = 1.1 and M;:r = 2, the DM scheme is obviously 

more sensitive to Mmox compared with the CU scheme. 

4.5.2.2 DM Extension and Improved DM 

The performance of the DM extension and improved DM for varying M is illustrated in Fig. 4.10. 

We observe that the DM extension is slightly slower than the DM scheme with a difference less 

than 1 second. On the other hand, the improved DM scheme saves the scanning time by at least 

1.4 seconds. In the best case when ~ = 0.5, the improved DM scheme reduces the scanning time 

by 41% compared with the DM scheme. 

The improved DM scheme requires pre-computations which include numeric CRC16 oper

ations. We examine the feasibility by implementing the pre-computation on a HP iPAQ pocket 

PC with a CPU running at 520MHz frequency. Our results show that each CRC16 takes 2.5ms 
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with 0.1ms derivation. With our default setting with lSI= 5000, the pre-computation requires at 

most 130 seconds. With a reasonable scan frequency, it can definitely be completed between two 

consecutive scans. 
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Figure 4.10: Scanning Time of the DM Extension and Improved DM Schemes: This figure compares 
DM extension schemes with the DM scheme for varying number of missing tags M. (lSI = 5000, M /lSI = 
{0.05,0.1,··· ,0.5}) 

4.6 Summary 

This chapter focuses on a fundamental and practical query of continuously collecting all tag IDs 

via multiple scans. We have defined the problem in both spatial and temporal domains according to 

different application scenarios. In this problem, the key challenge is to deal with the overlapping 

RFID tags involved in multiple scans. Launching each scan from scratch is inefficient because 

redundant information is repeatedly collected. We have proposed efficient solutions based on 

randomized algorithm that utilizes the information obtained from previous scans to reduce the 

scanning time of the posterior scans. Our simulation results have shown a great improvement on 

the scanning time compared to the simple solution of collecting all IDs in each scan. 
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This work extends the scope of the previous research to a more practical environment. It shows 

the challenges and difficulties to design efficient query protocols with such weak pervasive devices 

as RFID tags. Meanwhile, it demonstrates that randomized algorithm is an effective tool for RFID 

systems because of the random selection in the slotted ALOHA scheme. In the following two 

chapters, we present our work on more complicated and challenging data mining queries in sensor 

networks and RFID systems. Randomized algorithm will also be applied to solve data mining 

query in RFID systems. 



Chapter 5 

Data Mining Query in Sensor 

Networks: Detecting Outliers 

In the previous two chapters, we have discussed two basic queries that have been studied in the 

literature and our work has addressed the efficiency issues in these two queries with more prac

tical settings. From this chapter, we present our work on data mining queries which are more 

complicated. However, the efficiency in data mining queries is valuable because the wireless in

frastructure is treated as a database and data mining queries can extract useful information, thus 

can be widely used in applications. Therefore, efficient solutions for data mining queries are 

necessary to complete efficient design for the wireless infrastructure. 

In this chapter, we focus on a classic data mining query of outlier detection in sensor networks. 

We consider two popular definitions of outliers in the database literature and develop efficient so

lutions to detect them. Different from research work in the database community, outlier detection 

in sensor networks is more challenging because the target data set is sparsely distributed on each 

sensor and gathering them at a central place is costly in terms of the energy consumption. In the 
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rest of this chapter, we present our efficient solutions based on histogram information. 

5.1 Related Work 

Outlier detection has been well studied in the database research community ( [7, 8, 19, 26, 80, 

81, 88, 107]) and there are several different definitions of outliers in the literature. Our work 

considers two popular distance-based definitions proposed in [80] and [107], where outliers are 

identified by examining data points' nearest neighbors. One major research goal of this problem 

in the database community is to efficiently detect outliers in a large-scale database ( [80, 81, 1 07] 

and [19]). In sensor networks, however, data are generated by scattered nodes and transferred 

via wireless channels. The proposed approaches in the previous work can not be directly applied 

unless all data are gathered at one node, which is very costly in transmission. Another hot spot 

for database researchers is high dimensional outlier detection ( [7, 8, 88] and [6]). This issue is not 

covered in our work, because sensor networks usually only generate low dimensional data, and 

different attributes, such as temperature and sound, may not be correlated to define outliers, thus 

can be considered separately as one-dimensional data. 

Sensor networks are often treated as databases and SQL queries are common ways to collect 

data ( [94] and [49]). A lot of research work ( [34, 59, 70, 92, 115-117]) has been proposed to 

handle different types of queries efficiently. However, the distance-based outlier detection has 

been seldom discussed in this area. As close work, T. Palpanas et al. [104] study a model-based 

outlier detection in sensor networks. Normal behaviors are first characterized by predictive mod

els and outliers are detected as the deviations. In [25], J. Branch et al. propose an in-network 

scheme for detecting outliers based on data exchanges among neighbors. However, their goal is 

to reveal outliers to every sensor and the cost is very expensive for common parameter settings in 
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the database literature. In [120], S. Subramaniam et al. present an online outlier detection scheme 

for sensor networks. Every sensor keeps a sliding window of the historic data and estimates the 

data distribution to detect the outliers. This method, however, consumes a lot of memory space 

and may not find all outliers. 

Some queries of detecting outliers in our solution have a similar form as general range queries. 

Previous work in [92] and [70] has provided typical models, in which users can easily specify a 

range query and obtain the result in an efficient and reliable way. On the other hand, top-k query 

( [116] and [127]) and order statistical query ( [115] and [59]) are similar to finding the rank

based outliers, which is a part of our work. However, none of these approaches is applicable to 

our problem, because the range parameter and the order of data in our problem do not depend 

on the data value, but the distance to neighboring data points. In addition, our problem requires 

outliers to be exactly returned without approximation. 

5.2 Problem Formulation 

An outlier represents a data point that is very different from the others. It has been defined in 

different ways in the database literature. In this work, we consider two popular definitions based 

on distance, which is defined as the the absolute difference between two data points. For each data 

point p, we can sort all the rest of the data points according to their distances to p in an ascending 

order. Suppose the sorted list is PI, P2, · · · , Pk, · · ·. We have !PI -PI ~ !P2- PI ~ · · · ~ !Pk- PI ~ 

···.Let Dk(p) = !Pk- pj represent the distance between data point p and its k-th nearest neighbor 

(KNN) (pk). We can define two types of outliers as follows: 

Definition 3 A data point p is called an 0( d, k) outlier if Dk (p) 2:: d. 
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Definition 4 A data point pis called an O(n,k) outlier if there are no more than n- 1 other data 

points q, such that Dk(q) > Dk(p). 

We are particularly interested in outlier detection in a sensor network composed of N sen

sors. The sensor network monitors the environment or any object and periodically generates data. 

Among all the data generated by the sensors, we would like to find all the outliers. We assume that 

a routing tree rooted at the sink has been constructed by using some simple routing algorithm, in 

which each sensor is linked to an up-stream and a down-stream node. An outlier detection algo

rithm will be built on this underlying communication tree. Depending on the choices of outliers, 

we aim to design efficient algorithms to respond to a query for outliers with parameters d and k 

for Definition 1 or n and k for Definition 2. 

It is possible that the tree topology might be broken or updated due to the wireless link failures. 

This work considers a common practice that, when building the tree, only stable links are selected 

such that errors in transmission due to poor link quality can be reduced and the tree topology 

can be robust for a long time. We also assume that the communication cost of sending a packet 

between two nodes with a direct link is proportional to the packet size. For easy exposition, we 

make an assumption that each data point is represented as an integer with precision to the last 

digit. It is easy to transform any real data to this format, e.g., 12.34 will be converted to 1234 for 

precision 0.01. Our algorithms focus on the data points and return all the outliers, although many 

applications may require the algorithm to return the sensor ID or location of the outliers. An easy 

solution is, after running our algorithm and obtaining all the outliers, to let the sink diffuse the 

outlier data points to the sensor network so that the sensors holding the outlier data points will 

reply with their IDs or locations. 
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5.3 Methodology 

5.3.1 Histogram Query 

In this section, we introduce the motivation of using histogram information to identify outliers. 

We observe that both definitions are based on the value of Dk(p), the distance between p and its 

KNN. In this section, we show that the histogram provides useful information to estimate Dk (p) 

for each data point p, which helps identify outliers. 

In this work, we use the equi-width histogram, because it is easy to aggregate equi-width 

histograms in sensor networks. We assume that the value range for all data points is uniformly 

divided into buckets with width w, and each bucket is assigned an ID, consecutively from 1 to the 

number of buckets. We define bucket i by a value range [mini,maxi), thus w =maxi- mini and 

mini = maxi-l· After collecting the histogram, the sink will know the total number of data points 

in each bucket i, indicated by /;.. For any data point p in bucket i, we can estimate the bounds on 

Dk (p) based on the histogram information. The following theorems aim to find a pair of values h 

and ui for any bucket i, such that V p in bucket i, Dk (p) E ( li, ui]. 

Theorem 5.1 If fi > k, then li = 0 and Ui = w-1 are the lower and upper bounds for Dk(p), 

where p is any data point in bucket i. 

Proof: We prove it by contradiction. Referring to Fig. 5.1, assume there exists a data point p 

k 
D(p)-

p-w+l p p+w-1 
----------- ---- ·------·-----· ---------------

Figure 5.1: Bounds on Dk(p) in Theorem 5.1 

in bucket i, such that Dk (p) > w - 1. Let Q = { xlx E (p - Dk (p), p + Dk (p))}. On one hand, 
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according to the definition of Dk(p), IQI :S k. On the other hand, 

indicates that Q must include all data points in bucket i. Thus, JQI 2: fi > k is a contradiction to 

IQI :s; k. • 
Theorem 5.2 We define a function as 

i+t 

F(t,i) = L /j. 
j=i-t 

If fi :S k, we can find an integer s 2: 0, such that F ( s, i) :S k and F ( s + 1, i) > k. Then, li = 

s· wand Ui = (s+2) · w-1 are the lower and upper bounds for Dk(p), where pis any data point 

in bucket i. 

Proof: According to the condition F(s, i) :S k, there are at most k data points from bucket i-s to 

--- sw--- ---sw---
p 

~ - - - - - _[ - - -- - _[ - - - - - _[ - - - ._ _[ - - - - - _[ -- - - - _[ - - - - - _L____j 
L_ __________ <=k------------~ 

'------------ > k ------------------' 

Figure 5.2: Bounds on Dk (p) in Theorem 5.2 

bucket i + s inclusively. With the condition F ( s + 1, i) > k, we can derive that the KNN of data 

point p must be in either bucket i - s - 1 or bucket i + s + 1. Without loss og generality, assume 

data point q is the KNN of p and q is in bucket i-s-1, i.e., Dk(p) = Jp-qJ = p-q. Thus, we 

have 

p- q > mini- ma:x:i-s-1 = s · w; 

p- q < (maxi -1)- mini-s-1 = (s+ 2) · w-1. 
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Therefore, we can derive the bounds for Dk(p) as 

Dk(p) E (s·w,(s+2) ·w-1]. 

• 
As shown above, the histogram information helps us derive lower and upper bounds on Dk (p) 

for any data point p. We will utilize these theorems in our outlier detection schemes. 

5.3.2 Outlier Detection for 0( d, k) 

In this section, we propose a histogram-based protocol for detecting outliers defined by Defini

tion 3. Our approach includes two stages. In the first stage, we divide the data value range into 

uniform buckets and collect equi-width histogram information. The histogram provides us with 

useful information to identify data points as outliers or non-outliers. However, the histogram in

formation may not be sufficient to identify every data point. We call those data points potential 

outliers if they cannot be identified by the histogram. In the second stage, the sink gathers the 

potential outliers from the sensor network and checks their distance to the KNN. Eventually, the 

sink will identify all outliers. 

In the rest of this section, we introduce a basic scheme which uses a single-round histogram 

information collection and an enhanced scheme which refines the histogram through multiple

round histogram collections. 

5.3.2.1 Basic Scheme 

In this subsection, we present a basic scheme for 0( d, k) outlier detection with a single-round of 

histogram collection. 
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Obtain Vmin and vmax: In the first step, the sink queries for the minimum and maximum 

data values in the sensor network in order to calculate the value range. Let Vmin and Vmax be the 

minimum and maximum values received by the sink. In this step, every sensor sends at most 

log(vmin · vmax) bits of information. 

Collect Histogram: In the second step, the sink collects the histogram from the sensor net

work. To obtain the histogram, every sensor and the sink have to agree on the same bucket par

tition, which can be specified by the bucket width wand the value range [vmin, Vmax + 1) 1. For an 

easy exposition, we fix the bucket width w to d. We will explain why we set this width rather than 

other values in the next step. In this step, the sink diffuses a query to the sensor network including 

d, Vmin and Vmax, as well as the other parameter, k. Every non-leaf node sends log(k · d · Vmax · Vmin) 

bits of information to forward the query to its children. Let 1 be the width of [vmin, Vmax + 1) 

defined as 1 = Vmax - Vmin + 1. Sensors divide the value range [ Vmin, Vmax + 1) into f £ l uniform 

buckets with width d after they receive the histogram query, i.e., the ith bucket is defined by 

[ Vmin + ( i - 1) · d, Vmin + i · d). Starting from the leaf nodes, each sensor aggregates the number of 

data points in each bucket from all its descendants. Let gf be the number of data points generated 

by sensor j in bucket i, and J/ be the histogram summary of bucket i sent by sensor j. For a leaf 

node j, J/ = gf. For a non-leaf node j, assume it receives summaries from its children c1 , c2 , · · ·. 

All these summaries are aggregated as well as its own summary, 

Finally, the aggregated number of data points in each bucket is forwarded to j's parent. In this 

step, we do not have to maintain the exact histogram as long as we can apply Theorems 5.1 and 5.2 

I We use an inclusive lower bound and exclusive upper bound to define a value range. 
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later. Therefore, if J/ > k+ 1, we will reset it ask+ 1 in order to reduce communication costs. In 

this way, every node transfers at most r ~ l ·log(k + 1) bits of data back and the sink finally obtains 

the value of fi. 

Collect Outliers and Potential Outliers: In the third step, the sink applies Theorem 5.1 and 

Theorem 5.2 on every bucket i based on fi to assign li and ui. If Ui is set by Theorem 5.1, we will 

get ui = w- 1 <d. On the other hand, if li is set by Theorem 5.2 and greater than 0, we must 

have h = sw 2:: d. Based on the definition of O(d,k), the sink analyzes the received histogram 

information as follows: 

• Case 1: If Ui < d, all data points in bucket i are non-outliers and bucket i is called a non

outlier bucket; 

• Case 2: If li 2:: d, all data points in bucket i are outliers and bucket i is called an outlier 

bucket; 

• Case 3: Otherwise, bucket i is called a potential outlier bucket and the data points in it are 

called potential outliers. 

As we mentioned earlier, w can be set to other values. If w > d, however, Theorem 5.1 will not 

help us identify non-outlier buckets because there is no derivation from Ui = w-1 to Ui <d. On the 

other hand, if w < d, more detailed information is obtained and more outlier buckets are identified. 

However, smaller buckets incur more communication costs and some non-outlier buckets might 

be overlooked. Therefore, without any prior knowledge of the data, d is a conservative value for 

w to achieve good performance. 

The non-outliers identified in Case 1 can be ignored, because they should not be returned in 

the result. For Case 2, the sink can send another query to indicate the outlier buckets and collect 
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all the identified outliers from every sensor. To process the potential outliers in Case 3, we use a 

simple method to first obtain all potential outliers and then, in the next step, find the distance to 

their individual KNNs to determine whether each potential outlier is actually an outlier or not. 

Considering all three cases above, the sink diffuses a query, which includes a vector of length 

where qi is a one-bit flag satisfying 

qi = { 0
1 

if bucket i is a non-outlier bucket; 
otherwise. 

In other words, qi = 1 indicates that all data points in bucket i need to be returned, because they 

are either outliers or potential outliers. After receiving this query, every sensor will scan its own 

data set and return all data points in the marked buckets along the routing tree. The query diffusion 

cost for each non-leaf sensor is f £ l bits. However, the cost of collecting potential data depends on 

the histogram obtained in the previous steps. Suppose N0 is the number of the identified outliers 

and Npo is the number of the potential outliers. Thus, the number of data points needed in this step 

is N0 + Npo· We assume the communication cost is proportional to the data size and the distance 

between the sender and receiver. Therefore, the cost of collecting data in this step is estimated as 

( N0 + Npo) · log Vma.x · avgDist, 

where avgDist is the average hop distance between the sink and sensors. 

Diffuse Potential Outliers and Count the Number of Neighbors within d: In the last step, 

the sink combs through the collected data points in the potential outlier buckets. Some data points 
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may be immediately identified as outliers or non-outliers.For example, data points in a potential 

outlier bucket will be identified if the data points in the two neighboring buckets are also collected. 

Unfortunately, some data points remained can not be identified as either outliers or non-outliers. 

The sink sends those remaining potential outliers to the sensor network in order to find the actual 

outliers among them. The query is formed as {PI , P2, ... , } , which includes all the remaining 

potential outliers. Every sensor will forward the query to its children until the query reaches the 

leaf nodes. To answer such a range query, starting from the leaf nodes, every sensor sends a vector 

of summaries, one for each data point, to its parent, {!{, f~, ... , } , where f{ is the number of the 

data points within [pi -d,pi +d], i.e., the number of p/s neighbors within distance d. A non-leaf 

sensor will sum up the summaries from its children as well as the summary of its own data set and 

forward the aggregated summaries to its parent. Similar to the second step, iff{> k+ 1, we will 

reset it to k + 1. 

This step can be optimized by filtering out some unnecessary diffusion at each node based on 

the histogram obtained previously. For example, consider a potential outlier p, which belongs to 

bucket i = f p-v,;t+ 1l If a sensor j finds tf_ 1 + J/+ 1 = 0, according to the previous histogram, 

there is no need to diffuse Pi to its children, because all possible neighbors of Pi in the subtree 

rooted at this sensor are in bucket j, so we can immediately set the summary for p to J/. 

Eventually, the sink receives a value for each potential outlier, which represents the number 

of data points within distanced of Pi· The sink may simply scan the summary list and determine 

whether the ith potential outlier is actually an outlier by determining if f{ :::; k. 

In this final step, the sink diffuses all the potential outliers collected to every sensor. The 

diffusion cost is at most Nnl · Npo ·log Vmax, where Nnl is the number of non-leaf nodes. The cost of 

transferring the return summaries is bounded by N · N po · log ( k + 1). To summarize, the total cost 
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of the basic scheme, denoted by Cbasic• is estimated as 

I 
N ·log( Vmin · Vma.x) + Nnt ·log(k · d · Vmin · Vma.x) + N · f d l ·log(k + 1) 

I 
+Nnt · f d l +(No+ Npo) ·logvma.x · avgDist 

+Nnt·Npo ·logvma.x+N ·Npo ·log(k+ 1). (5.1) 

5.3.2.2 Enhanced Scheme 

A drawback of the basic scheme is that if there are many potential outliers, i.e., Npo in Eq.(5.1) 

is very large, collecting and diffusing them will incur a large communication cost. In this sec-

tion, we propose an enhanced scheme that refines some of the histogram before we query for the 

potential outliers. We expect that more rounds of histogram queries can help us prune out more 

data points, i.e., the number of potential outliers can be further reduced. In the following, our 

enhanced scheme only considers at most one extra round of histogram collection. The algorithm 

and analysis, however, can be used for more rounds of histogram collection in the same manner. 

The first two steps of the enhanced scheme are quite similar to the basic scheme. After receiv-

ing the histogram in step 2, however, the sink has two options. First, the sink can follow step 3 in 

the basic scheme, collecting the potential outliers. In the other option, the sink can send a query 

for another histogram with a new bucket width w = d' < d and then continue step 3 in the basic 

scheme. One more histogram with a smaller bucket width leads to more accurate information that 

helps to reduce ambiguous potential outliers. However, collecting more detailed histogram incurs 

extra communication cost. Thus, we need to determine if refining histogram is worthwhile and if 

so what is the appropriate bucket width for the new query. According to Eq.(5.1), if we do not 
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query for more histogram, the estimated cost of the remaining steps, denoted by Cost', is 

Cost' 
l 

= Nnt· r d 1 +(No +Npo) ·logvmax · avgDist 

+Nnt·Npo ·logvmax +N ·Npo ·log(k+ 1). (5.2) 

In the following, we analyze the cost of collecting more histogram and propose an algorithm to 

determine the optimal value of the new width d'. The minimum cost achieved by using d' will be 

compared with Cost' to determine which option is better. 

In this enhanced scheme, we keep the first two steps of the basic scheme with the following 

changes: 

• In the first step, besides Vmin and Vmax, the sink also queries for the total hop distance to the 

sink and the number of non-leaf nodes. These two values can be aggregated at each node 

and we use tolDist and Nnt to represent the results received by the sink respectively. 

• In the second step of collecting the histogram, the upper limit of data points count f/ is set 

to k · d, instead of k + 1. We will explain it in the analysis later. 

After step 2, we set avgDist = tolzist and estimate Cost' as defined in Eq.(5.2). 

Next, we estimate the cost after step 2 if we send one more histogram query. Essentially, 

the extra round of histogram query only targets at potential outlier buckets as well as their related 

neighboring buckets. Assume the new bucket width is set to d' = ~ for the next round of histogram 

query. To reuse the previously collected histogram information, we choose B to be an integer. The 

query sent by the sink includes B and a vector of bits which mark the potential outlier buckets 

identified by Theorems 5.1 and 5.2, 
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where qi = 1 if bucket i is a potential outlier bucket. Thus, the cost of query diffusion is Nnz · 

(log B + r ~ l). After receiving the query message, each sensor will know the new bucket width 

d' and the potential outlier buckets. The sensors divide each of potential outlier buckets and their 

neighboring buckets into B uniform sub-buckets. Similarly, every sensor generates a histogram 

for the new sub-buckets. This information is aggregated bottom-up along the routing tree and 

finally reaches the sink. One optimization that each sensor can apply is to transfer the first B - 1 

summaries for each target bucket i instead of B summaries, because its parent already knows 

the total number of data points in bucket i, the last summary can be derived from the available 

information. The number of buckets involved in the reply can be easily counted as follows: 

Count t-- 0 

if q1 + qz > 0 then Count t-- Count+ 1 

if qr £1_1 + qr£1 > 0 then Count t-- Count+ 1 

for i = 2 to r ~ l - 1 do 

if qi-1 + qi + qi+ 1 > 0 then Count t-- Count + 1 

In the return stage, each sensor transfers at most B ·Count ·log(k + 1) bits of information. 

Therefore, the total cost of querying and collecting the refined histogram is 

l 
Nnz· (IogB+ r d l) +N ·B ·Count ·log(k+ 1). (5.3) 

Assume after obtaining more histogram information, we identify EN0 outliers and ENpo po-

tential outliers. Following step 3 in the basic scheme, we need collect outlier data and further 



179 

check potential outliers. Similar to Eq.(5.2), the estimated cost of the remaining steps is, 

I . 
Nnt · f d 1 + (ENo + ENpo) ·logvmax · avgDzst 

+Nnt·ENpo ·logvmax +N ·ENpo ·log(k+ 1). (5.4) 

Therefore, the total cost incurred by refining histogram and its consequence after step 2 is 

estimated as 

Cost(d') = Eq.(5.3)+Eq.(5.4). 

In this problem, we aim to find the optimal d' such that Cost(d') is minimized and compare it with 

Cost' to decide if refining histogram is worthwhile. 

In order to calculate Cost(d'), we first estimate EN0 and ENno in Eq.(5.4) based on the his-

togram information collected in step 2. We assume that data are randomly distributed in each 

bucket. Let us take a close look at a potential outlier bucket i. After the refined histogram query, 

we will get B summaries for bucket i as well as bucket i - 1 and i + 1. Each new summary is 

responsible for a sub-bucket of the original buckets. Let us label the jth sub-bucket of the original 

bucket i as bucket b(i-I)B+j· Let fj, be the number of data points in sub-bucket bj'. In the fol-

lowing, we estimate the probabilities that a sub-bucket j' is a non-outlier bucket or outlier bucket, 

indicated by PnoU') and P0 (j') respectively. The probability of being a potential outlier bucket is 

1-PnoU')- P0 (j'). Thus, EN0 and ENpo can be derived as 

ENo = Lf},Po(j'), 
b/ 

ENpo Lf},(1-PnoU') -Po(j')). 
b/ 
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To ensure b(i-I)B+j(1:::; j:::; B) is a non-outlier bucket, we must have 

(i-I)B+j+B-1 

:L I;>k. 
q=(i-I)B+j-B+I 

As illustrated in Fig. 5.3, the left side can be derived as 

iB+j-1 (i-2)·B+B (i-I)·B+B i·B+ j-1 

:L I; :L I;+ :L 1;+ :L 1; 
q=(i-2)B+j+l q=(i-2)·B+j+l q=(i-I)·B+I q=i·B+I 

(i-l)B iB+j-1 

!i+ :L I;+ :L 1;. 
q=(i-2)B+j+l q=iB+l 

Thus, a sub-bucket b(i-I)B+j is a non-outlier bucket if 

(i-l)B iB+j-1 

:L 1;+ :L 1; >k-fi. 
q=(i-2)B+ j+l q=iB+ I 

Let a be the first term (the number of the data points in the rightmost B- j sub-buckets of bucket 

i- 1) and b be the second term (the number of the data points in the leftmost j- 1 sub-buckets of 

bucket i + 1 ). Thus, Pno ( ( i - 1 )B + j) is the probability that a + b > k - fi. We define a function 

P(x,y,z) to be the probability that the number of data points in the leftmost or rightmost y sub-

buckets of bucket x is z. Based on the assumption of random data distribution in every bucket, 

Thus, Pno ( ( i - 1 )B + j) can be calculated as 

.[;_, /;+! 

L (P(i- 1,B- j,a) · L P(i+ 1,j -1,b)). 
a=O b=k- f;-a+ 1 
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---d---

rj-1-----
---d---

Bucket i-1 Bucket i Bucket i+l 

Figure 5.3: Data involved in identifying a non-outlier sub-bucket 

On the other hand, we can claim that b(i-t)B+j is an outlier bucket if the following condition 

is satisfied: 

(i-l)B+j+B 

:L ~~~k. 
q=(i-l)B+j-B 

By similar analysis as above, it becomes 

(i-l)B iB+j 

:L !~+ :L ~~~k-Ji, 
q=(i-2)B+j q=iB+l 

as shown in Fig. 5.4. Let a be the first term and b be the second term. Then, P0 ((i- 1 )B + j) can 

---d---,-j--
---d---

Bucketi-1 Bucket i Bucket i+l 

Figure 5.4: Data involved in identifying an outlier sub-bucket 

be calculated as 

h-i k-/;-a 

L(P(i-1,B-j+1,a)· L P(i+1,j,b)). 
a=O b=O 

Besides the above analysis, we use a short-cut estimation if a potential bucket i's neighboring 

buckets reach the histogram limit k ·d. Assume fi+l = k · d, expectedly, the frequency of each value 

in bucket i + 1 is k. Thus, every data point in bucket i has a high probability to be a non-outlier. 

For such a bucket i, we skip the probabilistic analysis and directly increase EN0 by fi. 
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Algorithm 11 determines the optimal bucket width d' for the second round of histogram query. 

Initially, we scan every bucket and use an array M to mark the potential outlier buckets, 

M[i] = { ~ if bucket i is a potential outlier bucket; 
otherwise. 

The algorithm is constructed by two embedded loops. In the outer loop (lines 7-22), we try 

different bucket width d' = ~ by testing all possible B. For each B, we estimate the cost incurred 

by this round of refined query and the subsequent steps for raw data collection. The optimal width 

yields the minimum value of Cost, which is tracked by the variables optB and min in Algorithm 11. 

If the final value of min is no less than Cost', there is no need to conduct an extra round of 

histogram query. Otherwise, we set d' = o~B and do the refined histogram query. 

The inner loop of this algorithm (lines 9-17) checks every bucket to estimate the cost. There 

will be B sub-buckets for each requested bucket and reporting a histogram of them needs B · 

log(k + 1) bits of data. A bucket i will be involved only if it is a potential outlier bucket or one of 

its neighboring buckets is a potential outlier bucket. Additionally, EN0 and ENpo are accumulated 

in the inner loop when checking potential outlier buckets. 

The implementation of EstNO used in Algorithm 11 is shown in Algorithm 12. Basically, for 

every sub-bucket, we calculate its probability of being a non-outlier bucket. The loop variable j 

set from 2 to B - 1 is the index of sub-buckets. The first and last sub-buckets are special cases, 

which are handled in lines 16-22. For each sub-bucket j, q1 is the probability that a data point 

in bucket i - 1 resides in the rightmost B - j sub-buckets of bucket i - 1 and q2 is the probability 

that a data point in bucket i + 1 is within the leftmost j - 1 sub-buckets of bucket i + 1. In this 

algorithm, a represents the number of data points in the rightmost B - j sub-buckets of bucket 

i - 1 and b is the number of data points in the rightmost j - 1 sub-buckets of bucket i + 1. We 
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enumerate all possible combinations of a and b, which satisfy a+ b > k- Ji., and calculate the 

probabilities for values a and b, indicated by p 1 and P2 respectively. The sum of the product 

PIP2 for all possible cases becomes the probability that sub-bucket j is a non-outlier bucket. This 

value is recorded in variable p. On average, there are ~ data points in sub-bucket j, sop~ is the 

expected number of non-outliers in sub-bucket j. After checking every bucket, we store the total 

number of non-outliers in r and return it as the result. 

Algorithm 13 shows the details of EstO used in Algorithm 11. It has a quite similar structure 

to Algorithm 12. In this algorithm, we have the same definition of variables p 1,p2 ,a, and b. 

However, a sub-bucket is estimated as an outlier bucket if a+ b ::; k- Ji.. 
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Algorithm 11 Find the Optimal Bucket Width 

1: for i = 1 to r £ l do 

2: if/;, ::; k and .fi-1 + /;, + li+ 1 > k then 

3: M[i] = 1, Npo = Npo + /;, 

4: end if 

5: end for 

6: min= Cost' = Eq.(5.2) 

7: forB = 2 to d do 

8: Cost= N ·(1ogB+ I £)1 

9: for i = 1 to r £ l do 

10: if M[i-1] +M[i] +M[i+ 1] > 0 then 

11: Cost= Cost +N · (B -1) log(k+ 1) 

12: end if 

13: if M[i] = 1 then 

14: e = EstO(B, i), EN0 = EN0 + e 

15: ENpo = ENpo + /;,- EstNO(B, i) - e 

16: end if 

17: end for 

18: Cost= Cost+ EN0 ·avgDist ·log Vmax + ENpo · (avgDist ·log Vmax + Nnt·log Vmax + N ·log(k+ 

1)) 

19: if Cost <min then 

20: optB = B, min =Cost 

21: end if 

22: end for 

23: if min = Cost' then 

24: there is no need for more histogram query 

?'I· else 
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Algorithm 12 EstNO(B, i) 

1: t=k-.fi 

2: for j = 2 to B - 1 do 

3: - B-j - J.:::..! -0 q1 - !J• qz- B • P-

4: for a= 0 to .fi-1 do 

5: ( fi-t ) P1 = a if1(1- q1 )fi-t-a 

6: if a > t then pz = 1 

7: else if t + 1 - a > .fi+1 then pz = 0 

8: else 

9: for b = t + 1 - a to fi+ 1 do 

10: ( fi+I ) pz=pz+ b q~(l-qz)fi+t-b 

11: end for 

12: p= P+P1P2 

13: end for 

14: r= r+p~ 

15: end for 

16: if .fi-1 or .fi+1 > t then 

17: p=O 

18: for a = t + 1 to .fi-1 or fi+ 1 

e-1 or fi+I ) 19: p=p+ (B];1)a 

a 

20: end for 

21: r=r+p~ 

22: end if 
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Algorithm 13 EstO(B, i) 

1: t=k-fi 

2: for j = 2 to B - 1 do 

3: _ B-j _ j-1 _ O 
q1- /J• qz- 8• P-

4: for a = 0 to t do 

5: 

6: for b = 0 to t - a do 

7: 

8: end for 

9: p= P+ P1P2 

10: end for 

11: r=r+p~ 

12: end for 

13: p=O 

14: for a= 0 tot 

15: (fi-t ) e+l) p = p + ( a + a ) . ( BB 1 )a 

16: end for 

17: r=r+p~ 

18: return r 
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5.3.3 Outlier Detection for 0( n, k) 

In this section, we present a solution to detect the outliers defined by Definition 4. Given k and n, 

we sort all data points according to the distances to their KNNs. Let the sorted points be PI, p2 , •.• , 

where Dk(Pi) 2 Dk(Pj) fori< j. The first n data points, PI, ... ,pn, are all the O(n,k) outliers we 

are looking for. 

Our approach is still based on equi-width histogram. The sink sends histogram queries for 

multiple iterations and tries to find a suitable cut -off value c that separates Dk (Pn) and Dk (Pn+ I). 

The histogram collected in each iteration gives us an estimation for the range of c and helps filter 

out the buckets that are out of our interests. Then we use the next query to obtain more detailed 

histogram of the buckets that possibly hold outliers. This query process is repeated till we find 

all outliers. Note this approach does not fetch and check potential outliers as in the last step of 

finding the 0( d, k) outliers. Checking a potential outlier in this problem is very costly when k is 

large, because every sensor has to send k data values (k nearest neighbors of the potential outlier). 

In the following, we first show that we can estimate bounds for the cut-off value c based on the 

histogram information. We try to find a pair of values Lc and Uc, such that c E (Lc, Uc]. Suppose 

the sink sends a histogram query with bucket width w. After receiving the histogram, we first 

apply Theorem 5.1 and Theorem 5.2 on every bucket ito calculate li and ui. Then we calculate Lc 

and Uc according to the following theorems. 

Theorem 5.3 Consider the histogram collected with bucket width w. We have 

Lc = max {xi L J;. > n,x is multiple ofw} <c. 
l;?:x 

Proof: In the above equation, the condition, Lt;?:x J;. > n, means that there are more than n data 

points (p) satisfying Dk(p) 2 x. Based on the definition of the cut-off value c, x <c. Thus, any x 
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satisfying the condition can be an exclusive lower bound of c. • 
Theorem 5.4 Consider the histogram collected with bucket width w. We have 

Uc = min {xi L fi:::; n, x+ 1 is multiple ofw} 2: c. 
u;"2_x 

Proof: The condition, Lu;"2.xh:::; n, means that the number of all possible data points (p) satisfying 

Dk(p) 2: xis less than or equal ton. According to the definition of c, x 2: c. Thus, any x satisfying 

the condition can be an inclusive upper bound of c. • 
Our solution is shown in Algorithm 14. We start a histogram query with an initial bucket width 

Winit· Based on the received histogram, we obtain l; and u; for each bucket i and calculate Lc and 

Uc (lines 4-6). Then, we categorize buckets as follows: 

• Case 1: If u;:::; Ld, bucket i is a non-outlier bucket; 

• Case 2: If l; 2: Ud, bucket i is an outlier bucket; 

o Case 3: Otherwise, bucket i is a potential outlier bucket. 

Similar to the O(d,k) outlier detection, we ignore the non-outliers in case 1 and send another 

query to collect the data values in the outlier buckets (lines 7-10). For case 3, we query for more 

histogram information of potential outlier buckets, which are marked by the variable q; (lines 

12-16). The bucket width of the new query is set to the half of the current bucket width. Upon 

receiving the query, sensor nodes calculate the histogram of the marked buckets (by q;) with new 

bucket width, and send it back to the sink in a bottom-up direction. We repeat this process until 

all outliers are found. In the worst case, we need log Winit iterations. 
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Algorithm 14 Find O(n,k) Outliers 

1: w = Winit• hasPO =true, q1 = q2 = · · · = 1' 

2: while w > 1 and hasPO do 

3: Send a query with< w,q1q2 ···>and collect the 

histogram with bucket width w 

4: Calculate li and ui for each bucket i 

5: Ld = max {xl'Lt;~xfi > n} 

6: ud = min {xl'Lu;~xfi ~ n} 

7: fori= 1 to r 61 do 

8: qi = (h 2: Ud) 

9: end for 

10: Send a query with { qi} and collect the outliers 

11: hasPO =false 

12: fori= 1 to r 61 do 

13: if li < ud and Uj > Ld then 

14: qi = 1, hasPO =true 

15: else qi = 0 

16: end for 

17: w= ~ 

18: end while 



190 

5.4 Performance Evaluation 

Our evaluation is based on simulations. We conduct examinations on both real data trace and 

synthetic datasets. In the following, we will show the performance results separately. 

5.4.1 Real Data Trace 

In the first simulation, we use real datasets from Intel Lab [2]. The data were collected from 54 

sensors during a one-month period. The details of the dataset can be found at Intel Lab's web 

site [2]. We consider a 100 x 100 network field, where the sink is placed in the center. We deploy 

54 sensor nodes randomly in the field and assume sensors communicate in a multi-hop fashion. 

The communication range is set to 18 for good connectivity in a random topology. Two important 

parameters used in our algorithms, the number of non-leaf nodes and the average hop distance, are 

shown in Table 5.1. The values are average measurements of 1000 connected random topologies. 

In this simulation, we select the entire temperature records on two dates (03/01 and 03/20) as 

two datasets. The dataset for 03/01 represents a regular temperature distribution with mean value 

around 24 degrees. The dataset for 03/20, however, displays a large deviation from the average 

value. In this dataset, for some reason, 50 degrees is reported for many times, and a lot of data are 

sparsely scattered between 35 degrees and 50 degrees. We use precision 0.01 to round temperature 

values and scale them by 100 times in order to obtain integer values. The relevant parameters are 

also listed in Table 5.1 and Table 5.2. 

In the following, we show the performance of our algorithms in terms of the total communi

cation cost for finding all the outliers, which is the sum of all sensors' communication costs. We 

assume that the cost of transferring a message is proportional to the payload size, which includes 

the actual data size and necessary control information, e.g., the message type. Thus, in the fol-
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Table 5.1: Network Setup 

Number of Sensors (N) 54 

Number of Non-leaf Nodes (Nnt) 25.7 

Radio Range 18 

Average Hop Distance (avgDist) 4.26 

Table 52· Data Characteristics .. 
03/01 Dataset 03/20 Dataset 

Number of Data Points 91468 76871 

Maximum Value 3424 5008 

Minimum Value 1499 363 

Value Range (vmax- Vmin) 1926 4646 

lowing, the total communication cost is measured by the total size of the messages transferred in 

the whole network. We first measure the communication costs for the centralized scheme through 

1000 independent simulation runs and use the average value as the baseline. In the centralized 

scheme, the whole network transfers 575K bytes data for the 03/01 dataset on average and 514K 

bytes for the 03/20 dataset. The deviations for two datasets are 119K bytes and 113K bytes respec-

tively. In addition, to evaluate our algorithms, we conduct 100 independent simulations for each 

parameter setting. We normalize the average communication costs in our algorithms against the 

baselines of the centralized scheme and show them as percentage values in the rest of this section. 

5.4.1.1 O(d,k) Outlier Detection 

To compare the basic scheme and enhanced scheme with different parameters, we vary d and k 

separately. First, we fix k = 100 and vary d from 20 to 70 for the 03/01 dataset and from 50 to 
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450 for the 03/20 dataset. Fig. 5.5 shows the numbers of outliers with various d. We find the two 

datasets differ dramatically. For the 03/01 dataset, when we set d = 70 (i.e., 0.7 degree in original 

data), no outlier exists in the entire set. For the 03/20 dataset, however, when we use a large 

distance with d = 100 (1 degree in the original data), 126 outliers appear. We keep increasing d to 

400 ( 4 degree), we still find one outlier. This figure indicates that the 03/20 dataset contains more 

scattered data points and yields more outliers for a certain ( d, k) setting. 

03/01 Dataset 
25,o.---~-~--~-~----, 

~ 
~ 
8 150 

~ 100 
E 
::> z 
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~ 
~ 
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0 
0 
Q; 
.0 
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::> z 

03/20 Dataset 
1000 

BOO 
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Distance Parameter (d) 

Figure 5.5: Number of outliers for varying d (k = 100) 

400 

The performance of basic and enhanced schemes is illustrated in Fig. 5.6. First, as shown, the 

enhanced scheme is always superior to the basic scheme. Secondly, both schemes greatly reduce 

communication costs. In the worst case in Fig. 5.6, the basic scheme consumes less than 5.5% of 

the cost of the centralized scheme. 

03/01 Dataset 
6,---~--~r=~==7===~ 

-<-Basic Scheme 
-<>--- Enhanced Scheme 

~0 30 40 50 60 
Distance Parameter (d) 

03/20 Dataset 
5,-~--~~r=~~77==~ 

-<-Basic Scheme 
····-<>--·Enhanced Scheme 

Figure 5.6: Communication costs for varying d (k = 100) 
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In the following, we will analyze and compare the performance of the basic and enhanced 

schemes. The communication cost in both schemes is comprised of histogram collection and raw 

data transfer (collection and diffusion). Considering the same value range defined by [vmin, Vmax + 

1 ), larger bucket width yields smaller number of buckets and less cost in histogram collection. 

On the other hand, larger bucket width provides less detailed histogram information, which may 

increase the number of potential outliers and the cost in transferring raw data. 

In the 03/01 dataset, when we query for outliers, most non-outliers are identified after the first 

round of histogram collection, and the number of potential outliers is limited. Thus, the cost of 

histogram collection is the dominant factor compared with the raw data transfer. As shown in 

Fig. 5.6, the performance keeps decreasing along the increasing d. In the 03/20 dataset, a lot of 

data are sparsely distributed over an abnormal range and the number of outliers is dramatically 

larger than that in the 03/01 dataset. Since we set larger bucket width for the 03/20 dataset, 

the cost of histogram collection is less than that in the 03/01 dataset. On the other hand, as we 

mentioned above, larger bucket width may increase the cost of raw data transfer due to insufficient 

histogram information. Therefore, the cost of histogram collection is no longer dominant as the 

difference with the cost of raw data transfer is alleviated. Sometimes, raw data transfer is even 

more significant than histogram collection. These two types of cost interact with each other and 

show unstable curves for the 03/20 dataset in Fig. 5.6. The enhanced scheme outperforms the 

basic scheme in both datasets by filtering out more potential outliers. 

In our simulation, we also fix d and study the performance on variable k. Fig. 5.7 shows the 

change of the number of outliers and Fig. 5.8 is the performance comparisons. Similarly, we find 

that the enhanced scheme is better than the basic scheme and both schemes are very efficient. In 

this case, the cost of histogram collection is fixed for basic scheme and the communication cost 
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Figure 5.7: Number of outliers for varying k (d = 40 for the 03/01 dataset and d = 200 for the 03/20 
dataset) 

only depends on the number of potential outliers. For a given k, the data points with roughly k 

neighbors within distance d, have a high probability to be potential outliers, because it is hard 

to distinguish these data points by coarse histogram information. Thus, the trend of the curves 

in Fig. 5.7, which indicates the number of nearby potential outliers, has an impact on the com-

munication cost. As we can see, for the 03/01 dataset, there is a sharp increase of outliers when 

k E [150,250], which means that many potentialoutliers will be transferred as raw data when we 

search for outliers. Correspondingly, we see an increase of communication cost around that range 

in Fig. 5.8. Additionally, in the 03/20 dataset, the number of outliers has a jump from k = 100 to 

k = 150. It also yields an increased cost of basic scheme in Fig. 5.8. For both datasets, the en-

hanced scheme smooths the impact of the increased potential outliers and significantly improves 

the performance. 

As a summary, in this trace-driven simulations, our proposed approaches are very efficient 

for the 0( d, k) outlier detection. The enhanced scheme consumes less than 4% of the cost of the 

centralized scheme in most cases. 
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Figure 5.8: Communication costs for varying k (d = 40 for the 03/01 dataset and d = 200 for the 03/20 
dataset) 

5.4.1.2 O(n,k) Outlier Detection 

In this simulation, we set k = 100, and vary n from 10 to 80 for both datasets. The initial bucket 

width is set to a large value of 1500, i.e., Winit = 1500 in Algorithm 14. Fig. 5.9 shows the values 

for Dk(Pn) and the communication cost is presented in Fig. 5.10. 

The simulation results show that our approach is cost-efficient for the O(n, k) outlier detection. 

Compared with the centralized scheme, our approach significantly reduces the communication 

cost. For the abnormal 03/20 dataset, it takes less than 1% of the cost to find all top-80 outliers. 

For the normal 03/01 dataset, our scheme consumes less than 1.5% of the cost in all the cases. 
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Figure 5.9: Values of Dk(Pn) for varying n 
(k = 100) 
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Figure 5.10: Communication costs for vary
ing n (k = 100) 

In details, we observe that the communication cost is related to the value of Dk(Pn). When the 
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value of Dk(Pn) drops greatly, the communication cost is small. On the contrary, when the curve 

of Dk(Pn) becomes fiat, the corresponding communication cost is increased. This relationship 

can be explained from two perspectives. First, our scheme tries to estimate a range for the cutoff 

value in each round, thus when the algorithm terminates, the estimated range must reside between 

Dk(Pn) and Dk(Pn+I), i.e., Lc > Dk(Pn+I) and Uc < Dk(Pn). Therefore, if Dk(Pn) and Dk(Pn+I) 

are very close, the final estimated range will be very small. To obtain such accurate estimation, 

we have to use a small bucket width, which requires a large number of iterations. Second, if the 

value of Dk(Pn) changes dramatically, it is easy to distinguish the non-outlier data points around 

the cut-off value. Thus, in each round, the number of the potential outlier buckets, which actually 

contain no outlier, will become small. This further decreases the cost of collecting histogram. 

5.4.2 Synthetic Data Sets 

Our second set of simulations uses synthetic data. Again we consider a 100 x 100 square network 

field, where the sink is placed in the center. We deploy 100 sensor nodes randomly in the field and 

the communication range is set to 14 for good connectivity in a random topology. The number of 

non-leaf nodes and the average hop distance are shown in Table 5.3. The numbers are averaged 

over 1000 connected random topologies. 

Table 5.3: Network Setup 

Number of Sensors (N) 100 

Number of Non-leaf Nodes (Nnt) 46.65 

Radio Range 14 

Average Hop Distance (avgDist) 5.32 

This simulation is performed on two synthetic data sets, denoted by Dataset! and Dataset2. 
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Each data set contains 10 ranges with dense data distribution {[0, 1000), [1500, 2500), [3000, 

4000), · · ·, [13500, 14500)} and 10 ranges with sparse data distribution {[1000, 1500), [2500, 

3000), [4000, 4500), · ··, [14500, 15000)}. As we can see, the dense and sparse ranges alternate 

with each other, and the widths of each dense range and sparse range are 1000 and 500 respectively. 

We randomly distribute 10000 data points into each dense range. In addition, we generate a small 

number of data for sparse range. We intend to inject outliers among these data, especially the data 

in the central area of the sparse range. The number of sparse data is 1000 in Dataset! and 100 

in Dataset2. The parameters of the two data sets are listed in Table 5.4. For each data set, we 

randomly distribute the data to sensors and let every sensor hold the same amount of data. 

Table 5 4· Data Characteristics .. 
Dataset I Dataset2 

Number of Sparse Data 1000 100 

Number of Dense Data 100000 

Number of Clusters 10 

Width of Each Cluster 1000 

Width of Sparse Area 500 

Maximum Value 14999 

Minimum Value 0 

In the following, we show the performance of this set of simulations and discuss the results. 

The communication costs are also normalized against the cost of centralized scheme and appear 

as percentage values. 
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5.4.2.1 O(d,k) Outlier Detection 

Similar to the previous evaluation, we first fix k = 100 and vary d from 50 to 450 at an interval of 

50. Fig. 5.11 shows the numbers of outliers with various d in Datasetl and Dataset2. The curves 

are nearly linear with a turning point at d = 250. 

Fig. 5.12 illustrates the performance comparison between the basic scheme and the enhanced 

scheme. In this outlier detection, most data in the dense ranges appear as non-outliers after the 

first histogram query, so the performance basically depends on identifying those data in the sparse 

ranges. As we mentioned, both schemes incur two types of costs, for histogram collection and raw 

data transfer. For a fixed value range [ Vmin, Vmax + 1), large bucket costs less in histogram collec

tion, but it may increase the number of potential outliers. When analyzing the histogram of bucket 

i, we check h-I + /;, + h+ 1 to determine if bucket i is an outlier bucket. If the neighboring buckets 

overlap with the dense range, bucket i probably will become a potential outlier bucket. Thus, as 

d increases, more data in sparse ranges are marked as potential outliers after the first query. For 

example, in Datasetl, when d =50, we can estimate that every sparse data point, whose distance 

to a dense range is less than 100, will become a potential outlier. Since we randomly distribute the 

sparse data, expectedly, there are ~gg ·100 · 9 + ~gg · 100 = 380 potential outliers. When d = 100, 

this number is doubled to 760. At the same time, the cost of histogram query decreases very 

slowly. When d changes from 50 to 100, the number of buckets is only reduced from 300 to 

150. So the raw data transfer dominates. Fig. 5.12 shows the increasing communication cost. The 

basic scheme reaches the maximum cost when d = 250, where every data point in sparse ranges 

becomes potential outliers. After the point of d = 250, as we continue increasing d, more sparse 

data will be identified as non-outliers after the first query, which reduces the number of potential 

outliers. Compared with the basic scheme, the enhanced scheme uses another histogram query to 
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reduce the number of outliers. As our simulation shows, the performance gain is much more than 

the cost incurred. 
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Figure 5.11: Number of outliers for varying d (k = 100) 
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Figure 5.12: Communication costs for varying d (k = 100) 

In Dataset2, due to the smaller number of sparse data, the costs are much lower than Dataset!. 

Using similar analysis mentioned earlier, when d =50, the expected number of potential outliers 

is 38. Compared with the histogram of 300 buckets, raw data transfer is no longer dominant. As a 

result, we see a decreasing trend along increasing bucket size because histogram collection costs 

less for larger bucket. The costs of histogram collection and raw data transfer interact with each 

other and show an unstable curve for Dataset2. For example, when d = 250, we will have 100 

potential outliers while the number of buckets is 60. Therefore raw data transfer becomes a major 

factor again. Also the enhanced scheme outperforms the basic scheme except when d = 150. This 
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abnormality is due to the fact that our cost estimations of fetching raw data and conducting more 

histogram queries are not accurate. When the actual costs of these two options are close, we may 

have chosen sending another histogram query by mistake, which causes the enhanced scheme to 

yield a little more cost than the basic scheme. 
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Figure 5.14: Communication costs for varying k (d = 200) 

In our simulation, we also set d = 200 and study the performance on variable k. Fig. 5.13 

shows the change of outliers and Fig. 5.14 is the performance comparison. Similarly, the com-

munication costs depend on the number of potential outliers. For a given k, the data points with 

roughly k neighbors within distance d, have a high probability to be potential outliers, so the tan-

gents of the curves in Fig. 5.13 indicate the trend of communication costs. As we can see, for 

Datasetl, there is a sharp increase of the number of outliers when k E [70,90], which means many 
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potential outliers appear when we search for outliers. Correspondingly, we see a burst of com-

munication cost around that range in Fig. 5.14. When k > 100, the number of outliers increases 

steadily, which incurs an almost constant cost shown in Fig. 5.14. On the other hand, in Dataset2, 

the number of outliers grows in a steady and linear fashion. It yields a very low communication 

cost and a flat curve in Fig. 5.14. In both data sets, we observe, the enhanced scheme significantly 

improves the performance. 

5.4.2.2 O(n,k) Outlier Detection 

In this simulation, we set k = 100, and vary n from 5 to 1000 for Dataset!, from 5 to 100 for 

Dataset2. Fig. 5.15 shows the values for Dk(Pn) and the performance is presented in Fig. 5.16. 
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Figure 5.15: Values of Dk(Pn) for various n (k = 100) 
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Figure 5.16: Communication costs of O(n, k) outlier detection (normalized against the centralized scheme). 
We set k to 100 and vary n from 5 to 1000 for Datasetl, from 5 to 100 for Dataset2. 
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Using an analysis similar to the real data trace, we find that when the curve's tangent is sharp 

in Fig. 5.15, the communication cost remains low. For Dataset1, the initial phase in Fig. 5.15 is 

steep and the communication cost is very low. But after the point of n = 60, the curve becomes 

less steep, which leads to an increase of communication cost in Fig. 5.16. In Dataset2, the value 

curve of Dk(Pn) drops constantly and faster than that in Datasetl. It results in a much lower 

communication cost in Fig. 5.16. Both data sets have a huge cost increase at the end of the curve. 

The reason is that, when n is large, we have to count the densely packed data points, whose Dk(p) 

values are very close to each other. 

5.5 Summary 

Outlier data represents a complex form of abnormal data which is extremely important in many 

applications. Outlier detection has been well studied in the database community, but the existing 

solutions cannot be applied in sensor networks unless all the data from every sensor is gathered at 

a central place which is a costly process in practice. Our solutions utilize small-sized histogram in

formation to analyze the data set and filter out undesired data without collecting them. According 

to our simulation, the proposed solutions accurately find all outliers with low energy consumption. 

From this work, we have demonstrated an appropriate way to handle complicated queries in a sen

sor network. Compared to collecting all the raw data, it is more efficient to collect a small amount 

of rough information first and analyze it to reduce further energy consumption. This process can 

be repeated for multiple rounds if applicable. This method, however, requires some information 

processing and data relaying on each device, thus only works with sensors, but not RFID tags. 

In the next chapter, we present our work on a data mining query in RFID systems which is more 

challenging because of the hardware limitation. 



Chapter 6 

Data Mining Query in RFID Systems: 

Finding Popular Categories 

Similar to sensors, RFID tags also contain useful data information and data mining queries are 

desirable in RFID systems too. In the previous chapter, our solution to the data mining query in 

sensor networks relies on each sensor's ability of data processing and transmission. RFID tags, 

however, represent a category of even weaker pervasive computing devices that do not hold the 

same ability as sensors. They can hardly process data and there is no communication between 

RFID tags. Therefore, data mining queries with RFID tags are more challenging and need a 

completely different design from the previous chapter to achieve efficiency. 

In the literature, there is very little work on complicated queries in RFID systems. Most of the 

prior work collects all tag IDs before replying to any query. This universal solution, however, may 

not be efficient for a particular query. In this chapter, we investigate a typical data mining query 

of finding popular items and develop efficient algorithms without collecting all IDs. 

203 
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6.1 Related Work 

For a reader to successfully receive data from multiple tags, anti-collision protocols must be de

signed so that replied data from multiple tags will not be garbled because of collision. In gen

eral, two approaches are used to regulate collision. The first is based on the ALOHA proto

col [24, 28, 45, 48, 66, 89, 97, 110, 121, 124, 129, 133]. A representative protocol used in RFID 

systems is the framed ALOHA [97], a variation of ALOHA [4]. In this protocol, a frame is di

vided into multiple time slots. The communication is initialized when the reader broadcasts a 

frame size, i.e., the number of slots in the frame. Every RFID tag responds only in a particular 

slot in the current frame. The reader can successfully receive data in a certain slot if only one tag 

picks the slot for transmission. This process is repeated until all tag data are collected. The second 

approach uses the tree traversal technique [33, 36, 69, 87, 98, 100, 101, 134]. The reader broadcasts 

an ID prefix, and those tags whose IDs match the prefix will respond. If a collision is detected, the 

reader will append '0' or '1' to the prefix and send new prefixes again. It is equivalent to traversing 

a binary tree, where each tag's ID is a leaf node. The expansion of prefix stops if only one tag re

sponds. The goal of the above anti-collision protocols is to collect all the IDs, which can definitely 

solve our problem of finding popular categories. However, as we will show in evaluation, they are 

not efficient. Interestingly, we do use the framed ALOHA and a tree-traversal-like method in this 

work, but with a totally different purpose. 

In the database community, mining RFID data has drawn considerable attention [57,58, 74,91]. 

Their problems are formulated at a high level, where all RFID data are already stored in a central 

database. Our work considers the problem where none of the RFID data has been collected. 

The research work in [83] is the closest to this work. The authors consider the problem of 

estimating the number of tags without collecting the tag IDs. Based on the framed ALOHA, their 
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algorithms analyze the numbers of empty slots, single-reply slots and collision slots to obtain ap

proximated information. By carefully tuning the parameters for multiple iterations, their solutions 

can quickly estimate the number of RFID tags with high accuracy. [82] uses a similar analysis 

for anonymous tracking in RFID systems. In this work, our TCS scheme is based on a similar 

analysis. However, we consider a more complex problem of finding popular categories. Directly 

applying the algorithms in [83] cannot efficiently resolve it. 

Another relevant research is finding popular items in streaming data [37,39,54,55, 77]. Similar 

ideas of group testing [ 42] are adopted in [37] to maintain a small set of counters to find frequent 

items in data streams, thus achieving memory efficiency. In this work, our goal is to reduce 

the scanning time and the assumption of scanning all the data in one pass in the data streaming 

algorithms is impossible. 

6.2 Problem Formulation 

We consider that, within the reading range of a reader, there are n products each of which is 

attached with an RFID tag, that is, n tags Ctt, ... , tn) in total. Every RFID tag contains a unique 

ID represented by a bit string, which consists of several fields [45]. We assume that one of the 

fields specifies the category the product belongs to. The bit string in the field is called category 

!D. Depending on the applications, a category ID can be as generic as the origin of country, or as 

specific as a brand and model number. We assume that we know the set of distinct category IDs 

of the tags considered in this scenario, denoted as C = {C1, ... ,Cm}· For each tag tj. we use Cj to 

represent its category ID. We will also discuss the scenario without knowing C in an extension of 

our scheme. 

In this work, popular categories are defined by an application specific threshold. Let Fi be the 
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number of products in category Ci. 

Definition 5 Given a threshold a E (0, 1 ), Ci is a popular category if Fi ;::: a· n. 

Our goal is to find a category set R, which contains popular categories of products in the ware

house. To this end, we are going to design randomized algorithms. This requires us to slightly 

modify the problem in the randomized setting as follows. Given a, f3 ::; a, and 8 E (0, 1), we 

would like to minimize the scanning time and find a category set R such that with probability 

larger than 1 - 8, the following two accuracy constraints are satisfied: 

1. Completeness Constraint: { Ci lEi ;::: a · n} ~ R; 

2. Population Constraint: '1/Ci E R,F;_;::: f3 ·n. 

We name the first constraint completeness constraint, since it requires returning all popular cate

gories. The second constraint is called population constraint, as it defines the lower bound of the 

population of any returned category. 

Here we briefly explain the rationale of this problem formulation. Ideally, we would like to 

return all popular categories, i.e., { CiiFi ;::: a· n} ~ R, and only the popular categories. However, 

our randomized setting may return some unpopular categories. To control what extraneous cat

egories may be returned, we introduce another parameter f3 ::; a, which defines a lower bound 

for the population of any returned category. It requires that any Ci E R must have no fewer than 

f3 · n products, i.e., '1/Ci E R, Fi ;::: f3 · n. A strict requirement may set f3 = a. In practice, however, 

applications usually tolerate a certain level of inaccuracy. For example, it is meaningful to return a 

category with fewer than a · n products as a popular category. With the requirement of f3, the pop

ulation of each resulting category, although maybe less than a · n, is confined to be close to a · n. 

Furthermore, to save scanning time, the number of products in each category is estimated by a 



207 

probabilistic algorithm. Thus, we can not provide deterministic guarantee for the two constraints. 

Instead, another parameter ~ E (0, 1) is defined as a probabilistic guarantee which specifies the 

maximum allowed probability that our returned results fail to satisfy the two constraints. 

In the rest of this chapter, our schemes often use a 'select' operation: the tags satisfying a 

certain condition will stay active while the others will keep silent. In a 'select' command, two 

types of conditions can be specified. First, the reader can broadcast a prefix bit string mask and 

each tag tj will check if its category ID matches the received prefix, i.e., if the first jmaski bits of 

c j is the same as mask, where I mask I is the bit length of mask. Second, the reader can broadcast 

three numbers, r, u, and v, and each tag tj will check the following condition, h(r,cj) mod u = v, 

where his a hash function. We use hu(r,x) to indicate h(r,x) mod u in the rest of this chapter. In 

both cases, an RFID tag will keep active only when the specified condition holds. 

Our communication model is based on the framed ALOHA. We assume that an RFID reader 

is able to distinguish the slots with no reply, single reply, or multiple replies. We define these slots 

as empty slot, single-reply slot, or collision slot respectively. In the typical ALOHA scheme, the 

duration of a non-empty slot (single-reply or collision) is much longer than that of an empty slot, 

because tags transfer the whole ID with CRC (Cyclic Redundancy Check) in a non-empty slot. 

In our approaches, every tag does not transfer the long ID, but a short random bit string (usually 

< 10 bits [83]), as long as the RFID reader can detect the presence of the signal. Thus, all slots 

in our approaches have similar durations. In the rest of this chapter, we call an empty slot or a 

slot transferring short bit strings as short slot, and a slot transferring IDs as long slot. We use S 

and L to denote the lengths of a short slot and long slot respectively. In addition, our schemes 

use the algorithm presented in [83] to estimate the total number of active tags. For total n' active 

tags, the algorithm, denoted as Q(a,b) for a,b E (0, 1), gives an estimation of ii1 for n', such that 
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with probability larger than a, 1- ~ ~ ~ ~ 1 + ~· Let 101 be the scanning time of n. As claimed 

in [83], 101 is independent of n. Table 6.1 lists some notations used in the following sections. 

n/ii number of tags I estimation of n 

n' /ii' number of active tags/ estimation of n' 

Ci/Fi category ID I number of products in Ci 

tj/Cj RFID tag I t / s category ID 

Table 6.1: Summary of Notations 

6.3 Methodology 

We propose and compare different solutions in this section. First, we describe three straight

forward, but impractical solutions. Then, we introduce the Threshold Checking Scheme (TCS), 

which is an important component in our solutions. Finally, we propose our schemes, group testing 

with TCS and tree traversal with TCS. 

6.3.1 Simple Solutions 

The first simple solution is to collect all tag IDs by using the framed ALOHA. Then, we can scan 

the data and find all popular categories. We call this solution identification scheme. In this solution, 

we have to use long slots to correctly receive the IDs. As analyzed in the prior work [28,48, 110], 

the number of slots needed is proportional to the number of tags n. It is inefficient when n is very 

large. 

Alternatively, we can use Q to resolve the problem. The algorithm is described in Algo

rithm 15. For each category, the reader broadcasts the category ID so that the tags in the category 
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stay active while the other tags keep silent. Then, we apply 0 to estimate the number of active 

tags and compare the result with the threshold. Since 0 can obtain a good estimation with a 

Algorithm 15 Check Each Category 

1: Run 0 to obtain ii 

2: for i = 1 to m do 

3: Reader broadcasts Ci 

4: Tag fJ stays active if Cj = ci 

5: Run 0 to obtain ii' 

6: ifii'~a·iithenR=RU{Ci} 

7: return R 

certain setting, Algorithm 15 is able to find all popular categories with a very high probability 

and the scanning time is m(L+ /0/). In practice, this solution is not efficient either, because we 

may have hundreds of categories (large m) and /0/ could be thousands of short slots for a certain 

accuracy [83]. 

Another alternative solution is the sampling scheme. We can randomly select a set of sample 

RFID tags, and collect all IDs from them. Then we can easily determine the popular categories 

in this small set. Assuming these samples effectively reflect the whole set of RFID tags, the 

popular categories found in samples can be returned as the results. The details are presented in 

Algorithm 16. The performance of this scheme heavily depends on the sample size and has a 

tradeoff with the accuracy. We will evaluate this scheme in Section 6.4. 

The probability that this sampling scheme can identify a popular category is 

an'-1 ck . p.k. (n _ F)n'-k 
}- " n

1 
I I 

£.J n' 
k=O n 
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Algorithm 16 Sampling Scheme 

1: Randomly select a set S' of RFID tags from n tags 

2:n'= IS'I 

3: for i = 1 tom do 

5: ifF/ 2:: a ·n' then R = RU {Ci} 

6: end for 

7: return R 

h ck,.F((n-F;)n'-k . h b b'l' h k f c I d UT 'II h w ere nn' ts t e pro a 1 tty t at tags rom a category i are samp e . vve wt s ow 

in the evaluation that this probability of identifying a popular category becomes low when F; is 

close to a· nand the sample rate (n' jn) is low. 

6.3.2 Threshold Checking Scheme (TCS) 

Our algorithms are based on a scheme that estimates whether the number of currently active tags 

(n') exceeds a given threshold. We call this scheme Threshold Checking Scheme (TCS). The 

details are presented in Algorithm 17. The input includes a frame size f and other two parame-

ters 't't, 't'2 ::; f. The reader first broadcasts the frame size f. RFID tags follow the basic framed 

ALOHA protocol and respond at a random time slot. During this frame, the reader keeps counting 

the numbers of empty slots and collision slots, recorded in No and Nc respectively._ In the end, the 

reader will compare No and Nc with 't't and 't'2 to determine the returned value of TCS. We inten-

tionally avoid using the number of slots for single tag reply (N1) because N1 is not a monotonous 

function of the number of tags. No and Nc, however, are monotonous decreasing and increasing 
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Algorithm 17 TCS(f, 't'1, -r2) 

1: Reader broadcasts f 

2: Each tag randomly picks a time slot to reply 

3: Reader obtains No and Nc 

4: if (No :::; -ri) and (Nc > 't'2) then return true 

5: else return false 

functions of the number of tags respectively. This gives us a simple way to check if n' is greater 

than the given threshold. We omit the detailed analysis here and refer the interested reader to [83]. 

By carefully choosing f, -r1, and -r2, we can have a high confidence that if the number of active 

tags exceeds a given threshold the protocol returns true. In the following lemmas and theorems, 

we give the analysis for the protocol assuming there are n' active RFID tags. More specifically, 

we show the results on Suc(n'), which is defined as the probability that TCS(j, -r1, 't'2) returns true 

when applied to n' active tags. These lemmas and theorems are crucial for the analysis of our 

algorithms which will be presented later. 

Lemma 6.1 When n' and f are large1, No and Nc approximately follow a normal distribution , 

No"' N(}.l{J, CTo), and Nc "'N(J.Lc, CTc), where }.l{J, CTo,Jlc and CTc are defined as follows. 

}.1{J ( n' ,f) 

crJ(n',J) 
n1 n' n1 

f-e-7(1-(1+ f)e-7); 

J.Lc(n',J) 
n' n' 

= f(I- (I+ f )e-7); 

n1 n' 2n' n' n' n' 

f·e-7((1+ 
1
)-(I+f+(f)2 +(!)3)e-7). 

1 We consider general rules of thumb for approximating a binomial distribution to a normal distribution. 
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Proof: Refer to [83]. • 
Theorem 6.1 When n' and fare large, 

1 ~-~ ~-g 
Suc(n') = -

4
(1 +erf( v'2 )) · (1-erf( v'2 c)), 

2cro 2CTc 

where er f is the error function of the standard normal distribution2, and variables ~. CTo, f..Lc and 

CTc are defined in lemma 6. 1. 

Proof: Based on the properties of normal distributions, 

Pr(No ~ 'CJ) 

Therefore, 

1 'CJ - ~ 'Cz - f..Lc 
Suc(n')=Pr(No~'Ct)·Pr(Nc2::'Cz)=-4 (1+erf( v'2 ))·(1-erf( v'2 )). 

2cro 2CTc 

• 
Theorem 6.2 Suc(n') is an increasing function ofn', i.e., ifn; 2:: n~, Suc(n;) 2:: Suc(n~). 

Proof: Obviously, compared with a group with n~ tags, a group with n; tags tends to have less 

empty slots and more collision slots. • 
Theorem 6.3 Given a list {ut, ... , uq} and a number v > 0, if 'Lui= z, then 

~ z z £..Suc(ui) ~ - + (q-- )Suc(v). 
v v 

2In our implementations, continuity correction is applied. 
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Proof: We divide the list into two sets, St = {ilui ~ v} and S2 = {ilui < v}. Obviously, at most~ 

elements belong to S I· Therefore, 

:Lsuc(ui) = L Suc(ui) + L Suc(ui) 
iESt iES2 

< 1Stl·1 + (q-IStl) ·Suc(v) 

= IStl· (1-Suc(v)) +q·Suc(v) 

z z < - + (q-- )Suc(v). 
v v 

• 
6.3.3 Group Testing with TCS 

In this section, we propose a solution based on group testing with TCS. We first divide the tags 

into groups according to their category IDs. The tags with the same category ID belong to the 

same group and each group may contain the tags in multiple categories. We then apply TCS 

to check the number of tags in each group. The intuition is that many categories with few tags 

may be grouped together and thus can be easily identified as unpopular categories in a simple 

group test. The groups with sufficient tags are labeled as potential popular groups, which may 

include popular categories or have no popular categories (when a certain number of unpopular 

categories contribute adequate number of tags). Our algorithm continues to shuffle all categories 

into different groups and apply the TCS tests to the new groups again. This process is repeated 

for a prescribed number of rounds and in the end, the testing history is able to reveal all popular 

categories. 

The details of our protocol are illustrated in Algorithm 18. The whole process consists ofT 

rounds (line 3) and in each round all tags are distributed into W groups by a hash function h(r,C), 



214 

Algorithm 18 Group Testing 
1: Run Q to obtain fi 

2: Calculate parameters T, W, j, !t, and !2 

3: fork= 1 toT do 

4: for g = 0 to W - 1 do 

5: Reader broadcasts a random seed rb W, and g 

6: Tag tj stays active if hw(rk,cj) = g 

7: M[k, g] = TCS(f, !t, r2) 

8: end for 

9: end for 

10: forCi ECdo 

11: check=true 

12: for k = 1 to T do 

13: if (notM[k,hw(rk,Ci)]) then 

14: check=false 

15: end if 

16: end for 

17: if check then 

19: end if 

20: end for 

21: return R 
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where r is a random seed and C is a category ID. A tag t j is in group g if hw ( r, c j) = g (recall 

hw(r,cj) denotes h(r,cj) mod W). We use a different random seed to shuffle the categories in 

each round. Thus, Algorithm 18 totally generates T random seeds, denoted by {r1, r2 , ... , ry }. 

Throughout the algorithm, all tags form T x W groups, labeled as G( k, g) for k E [ 1, T] and g E 

[0, W -1], such that 

In the rest of this chapter, we use IG(k,g)l to denote the number of the tags whose category IDs 

belong to G(k,g). In round k, the reader broadcasts rk. W, and g (line 5) to select the RFID tags 

mapping to group G(k, g). We then run TCS(f, 'rt, 'r2) to examine the number of RFID tags in 

G(k,g). We record the results in a matrix M: M[k,g] =true means that there might be popular 

categories in group G(k,g). Otherwise, if M[k,g] =false, all the categories in G(k,g) are consid-

ered as unpopular categories. Thus, as shown in lines 8-15, a category will be returned, only if the 

group it belongs to in every round passes the test. Fig. 6.1 illustrates an example of group testing 

with 10 categories. 

W=4 

0(1,1) 0(1,2) 

~ ~ (c4 c1 c9J 6 

[;] 
0(2,1) 

~ .... 
[ C1 C2CsC9 J II 

E-i 
7 0 

~ 
0(3,1) 0(3,2) 0(3,3) 

9 [ C2 C3 Cs c6 J CJ 
0Pass 0Fail 

Figure 6.1: There are 10 category IDs, with parameters W = 4 and T = 3. Based on the test results, c, and 
c4 will be returned as popular categories. 

In the following, we show how to choose these parameters to minimize the scanning time 
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while the constraints are satisfied. Theorem 6.4 and Theorem 6.5 give the conditions that provide 

the probabilistic guarantee for the completeness constraint and population constraint (stated in 

Section 3) respectively. Theorem 6.6 expresses the scanning time by the parameters. Combining 

them, we can find the optimal parameters with the minimum scanning time while satisfying the 

two constraints. 

Specify the constraints: Since TCS is probabilistic and group testing is essentially a ran-

domized algorithm, a popular category may be filtered out of the resulting set and an unpopular 

category may survive all tests and be present in R. The following two theorems specify the condi-

tions for the parameters to satisfy the accuracy constraints. 

Theorem 6.4 The completeness constraint is satisfied with more than 1 - 8 probability if ( 1 - 8 · 

a)~ Sue( a ·nf. 

Proof: Consider a popular category ci. assume ci belongs to G(k,g). Lett= IG(k,g)l ~ Fi ~ 

a· n. G(k,g) will pass the TCS test with probability of Pr(M[k,g] =true) = Suc(t). According to 

Theorem 5.2, 

Pr(M[k,g] =true)~ Sue( a ·n). 

The probability that any of the T groups that Ci belongs to will fail in the TCS test is at most 

1 -Sue( a· n) T ~ 8 ·a. Based on the definition of a popular category, there are at most ~ popular 

categories. Thus, by union bound, the probability that no popular category is missing (all popular 

categories pass all the T tests) is greater than 1 - 8 · a · ~ = 1 - 8. • 
Theorem 6.5 The population constraint is satisfied with more than 1 - 8 probability if there exists 

u, such that 

( ~ - f3 ~ n ) ( 1 - Sue( u)) +Sue( u) f ~ 8. 
W u- ·n 
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Proof: We prove the theorem by showing that for any unpopular category Ci, i.e., Fj < f3 · n, the 

probability to be returned in R is less than 8. Assume in a certain round, Ci belongs to a group G 

and lett= IGI. The probability that group G passes a TCS test is Suc(t). For any given u, 

Suc(t) = Pr(t 2: u )Suc(t) + Pr(t < u )Suc(t) 

< Pr(t 2: u) + (1- Pr(t 2: u))Suc(u). 

Let X denote the number of tags in group G which do not belong to category Ci, i.e., X= t- Fj. 

The expectation of X is E(X) = nvJi. According to Markov's inequality, 

Therefore, 

Pr(t 2: u) 

Suc(t) < Pr(t 2: u)(1-Suc(u)) +Suc(u) 

n-f3·n 
< W(u-f3·n)(1-Suc(u))+Suc(u). 

Considering T rounds of tests, Ci will be returned in R with probability of Suc(t) T < 8. • 

Express the scanning time: Here we express the scanning time used in Algorithm 18. In a 

simple estimation, we need test T · W groups and each test consumes one long slot and f short 

slots. Thus, in total, Algorithm 18 takes T · W · (L+ f ·S). We find, however, that it is not necessary 

to check all groups. In every round, we recognize some unpopular categories, thus the remaining 
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possible popular categories become fewer and fewer. If one group contains only known unpopular 

categories, we can skip the TCS test for it. We analyze the scanning time in the following series of 

theorems and lemmas. Theorem 6.6 bounds the expected scanning time utilizing the result from 

Lemma 6.3. Lemma 6.2 is an auxiliary lemma that helps prove Lemma 6.3. 

Lemma 6.2 Given a E (0, 1), x < b < n, and c ~ 1, (a+ (1-a)w~b~x)Y is a convex function of 

X. 

Proof: Let g = (a+ ( 1 -a) w ~b~x) Y. The lemma is proved if the second derivative of g is positive. 

Let h = W~b~x) > 0. We have 

, n-b 11 2(n-b) 
h =w.(b-x)2 >O,h =w·(b-x)3 >O. 

The first derivative of g is g' = c · ( 1 -a) · (a+ ( 1 -a )h y-1 h', and the second derivative is 

g" =c. (1- a). (((c -1)(1- a)(a+ (1- a)hr-2h'). h' +(a+ (1- a)hr- 1h") > 0. 

• 
Lemma 6.3 Let mk be the expected number of possible popular categories after the k-th iteration 

in line 3 of Algorithm 18 and mo = m. Given u > 0 and v $ ~~-t, then 'r/k E [1, T], mk is bounded 

by 

n n n-1 k 
~ + (m- ~)(Suc(u) + (1-Suc(u))W(u _ 

1
)) . 

Proof: For a category Ci, let Pi,k be the probability that Ci will still be considered as a possible 

popular category after the k-th iterations, mk = LiPi,k· Similar to Theorem 6.5, for any given u, 
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We divide all categories into two sets, St = {Cdfi > v} and S2 = {CiiFi ~ v}. We have, 

LPi,k L Pi,k+ L Pi,k 
C;ESt C;ES2 

n-F.-
< IStl+ L (Suc(u)+(1-Suc(u)) ( 1 )t 

C;ES2 W u-Fj 

According to Lemma 6.2, the right side of the above inequality is a convex function of fi. 

To maximize the right hand side, for each category Ci E Sz, fi takes value of either 1 or v, by 

the property of a convex function. Suppose t1 = I{CdFi = v}l and tz = I{Cilfi = 1}1 when the 

maximization is achieved. Therefore, "i.Pi,k is bounded by 

n-v n-1 
1St! +tt · (Suc(u) + (1- Suc(u))W( ) )k + tz · (Suc(u) + (1- Suc(u)) ( ) )k 

u-v W u-1 

n-1 k 
=1Sd+tt+tz·(Suc(u)+(1-Suc(u)) ( )) . 

W u-1 

Let A= (Suc(u) + (1- Suc(u)) w(;:-! 1) )k ~ 1, we have 

= m·A-+(1Stl+tt)·(1-A.). 

Since the right side of the above inequality is an increasing function of IStl + ft (the number of 

categories with no less than v tags) and IS 11 + ft is at most ~, we have 

n n n-1 k 
LPik~-+(m--)(Suc(u)+(1-Suc(u)) ( )) . 

' v v W u-1 

• 
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Theorem 6.6 The expected scanning time is bounded by 

T 1 
ST = ( L + J · S) · W · L (1 - ( 1 - ,--- )mk-1 ) , 

k=1 w 
(6.1) 

where mk-1 is expressed by the bound derived in Lemma 6.3, replacing k with k- 1. 

Proof: Let Xk be the number of groups we need check in the k-th iteration. For a certain group, 

the probability that all the tags in it belong to known unpopular categories is ( 1 - .W )mk- 1 . Thus, 

the expected value of Xk is E(Xk) = W(1- (1- .W )mk-1 ). Obviously, it is an increasing function 

of mk_ 1• Thus, ST bounds the expected scanning time when we express it with the upper bound 

ofmk-I· • 

Solve the optimization problem: In summary, given a,{3,8,n and m, our problem is to 

determine the values ofT, W,J, -r1 and -r2 in the following optimization problem. 

minimize ST (Eq.(6.1)) 

s.t. (1- 8 ·a)::; Suc(a ·nf; 

3u,( ~-{3pn )(1-Suc(u))+Suc(u)l ::::;8. 
W u- ·n 

Since all these parameters are bounded integers, we can find the optimal set of parameters by 

discretizing them and enumerating all possible values. The process basically includes five loops 

to enumerate all possible discrete values for the five parameters. We also apply some optimization 

strategy to speed up the process. 

6.3.4 Tree Traversal 

Group testing can be applied differently. In this sub-section, we combine group testing with 

divide-and-conquer. We first divide all tags into W groups based on their category IDs and run 
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TCS for each group, which is the same as the first round in the previous solution. However, in this 

scheme, we do not shuffle all categories into groups in each of the remaining rounds. We ignore 

those groups that fail to pass the TCS tests and suppose there are no popular categories in them. 

Each of the groups which pass the test is further divided into W sub-groups and we apply TCS 

to each sub-group. This dividing process is repeated recursively until TCS test fails or there is 

only one category in the group, in which case that category will be returned as a popular category. 

Fig. 6.2 illustrates an example. 

All Categories 

Levell 

Level3 

Level4 0Pass 0 Fail 

Figure 6.2: In this example, there are 10 categories with parameter W = 2. Based on the test results, C1 
and C4 will be returned as popular categories. 

Conceptually, this scheme is equivalent to a depth-first tree traversal on a W-ary tree, where 

each leaf is a category and each non-leaf node represents a group of categories that appear as 

leaves of the subtree rooted at it. Different from the previous scheme, this scheme uses multiple 

random seeds and group indices to define a group. For example, a node at level 1 (a direct child 

of the root) is defined by a pair composed of a random seed and a group index as in the previous 

scheme. However, to select a group represented by a level 2 node, we need first select the tags 

belonging to its parent node, and then divide them into W sub-groups by another random seed. 

Thus, we need two pairs of random seeds and group indices to define a level 2 node. Inductively, 
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for a node at levell, the group it represents is defined by l pairs of random seeds and group indices. 

Thus, we denote a node by a vector of random seeds {rk} and a vector of group indices { vk}, 

Since passive RFID tags are memoryless devices, when visiting a node on the tree, the reader has 

to provide all random seeds and group indices to select the corresponding group. Algorithm 19 

presents the details of traversing a node. The first call is to traverse the root (level 0), where both 

{rk} and { vk} are empty. 

Algorithm 19 Traverse Node ( {rk}, { vk}) at Levell 
1: for k = 1 to l do 

2: Reader broadcasts W, vk, and rk 

3: Each tag fj stays active if hw(rk,cj) = vk 

4: end for 

5: if TCS(f, 't"t, 't"2) =true then 

6: Reader generates a new random seed r 

7: for v = 0 to W - 1 do 

8: Traverse Node ({rk}U{r},{vk}U{v}). 

9: end for 

10: end if 

Specify the constraints: Similar to the previous sub-section, the following Theorem 6. 7 and 

Theorem 6.8 give the conditions that guarantee the completeness constraint and population con-

straint. Lemma 6.4 is needed by the proof of Theorem 6. 7. 



Lemma 6.4 Consider a leaf node at Ievell. Given u ;:::: 1, 

1 
Pr(l::; u) = (1- wJm- 1

• 
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Proof: For a certain category Ci, the probability that a different category falls in the same group at 

Ievell is ~~ . The probability that none of the other m - 1 categories share the same hashed values 

• 
Theorem 6. 7 The completeness constraint is satisfied with more than 1 - 8 probability if there 

exists u, such that 

Proof: Assume a popular category is represented by a leaf node at level/. It must pass l TCS 

tests to be returned, which has a probability of at least Sue( a · n )1• Given a parameter u ;:::: 1, the 

probability that a popular category will be returned is more than Pr( I ::; u) ·Sue( a · n) u. Applying 

Lemma 6.4 and union bound, this theorem can guarantee the ;tccuracy requirement. • 
Theorem 6.8 The population constraint is satisfied with more than 1 - 8 probability if Suc(/3 · 

n) < 8. 

Proof: Any returned category in this scheme must pass the test as a leaf node, i.e., without tags in 

any other category in the same group. Therefore, Suc(/3 · n) < 8 guarantees that with more than 

1 - 8 probability, an unpopular category will not pass the test by its own. • 
Express the scanning time: In this tree traversing process, when visiting a node at level/, we 

need /long slots to transmit the random seeds and group indices which define the node. Then we 

need f short slots for each TCS test. Theorem 6.9 bounds the expected scanning time. 
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Theorem 6.9 Given u, the expected scanning time of the tree traversal scheme is bounded by 

logwm-1 n 1 n 
ST=W· L ((l+1)·L+f·S)·(-+(W --)Suc(u)). 

1=0 u u 
(6.2) 

Proof: Assume a node i is at Ievell + 1. Let Ni be the number of tags whose category IDs belong 

to the group represented by i. The probability that i is visited is less than Suc(Nj), where j is i's 

parent at Ievell. 

Let us consider a balanced W-ary tree, with W1 nodes at Ievell. The expected number of nodes 

visited at Ievell + 1 is at most W · LjSuc(Nj)· According to Theorem 6.3 

n 1 n 
L,Suc(Nj) ::; - + (W -- )Suc(u). 

u u 

Visiting node i requires l + 1 long slots for the reader to broadcast random numbers and group 

indices and f short slots for the TCS test. Thus, considering all levels, the expected scanning time 

is bounded by ST. • 
Therefore, our goal is to find the optimal parameters to 

minimize ST (Eq.(6.2)) 

s.t. :Ju 1- (1- -
1
-)m-Isuc(a ·n)u < 8 ·a· ' wu - ' 

Suc({3 ·n) < 8. 

Similar to the previous scheme, all the involved parameters are integers and bounded. Thus, we 

are able to enumerate all possible values and find the optimal parameters. 
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6.3.5 Extension 

6.3.5.1 Without Knowledge of C 

All previous solutions are based on the assumption that the set of present category IDs is known. 

In fact, with minor modifications, our schemes are also suitable for the scenario where category 

IDs are unknown. 

Obtain m: In our schemes, m is an important factor in setting other parameters. In this 

extension, our first step is to use n to estimate m. We can let the reader send a random seed r and 

a frame size f as usual and have each tag fj respond at slot ht(r,cj)· In this way, all the tags in a 

group will reply at the same slot, acting as a single tag. Thus, we can count the number of empty 

slots and use n to estimate the number of distinct categories. 

Group Testing: If we use group testing, the analysis of the scanning time will be different. 

Without the category ID information, we have to exam all T · W group. We can easily find the 

optimal parameter setting with this modified objective. For each group that passes a TCS test, we 

need use a simple query tree scheme to find the category IDs in the group. For each category ID, 

we check the other groups it belongs to. If all of them pass the tests, we return this category as a 

popular category. 

Tree Traversal: We can also use the tree traversal scheme in this extension. Without the 

category ID information, however, we have to determine if the traversing process reaches leaf 

nodes. An effective way is to observe the number of empty sub-groups of a node. If all sub

groups but one are empty, then with more than 1 - -J, probability, the node is a leaf node. If this 

scenario has occurred for several times (k times) while we keep dividing the non-empty sub-group, 

then with probability more than 1 - ~k, the node is a leaf node. With a heuristic value of k, we 

can confirm a leaf node with high probability in this means. After locating a leaf node, we can 
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easily obtain the category ID by using a prefix mask to query each bit. Assume the category ID is 

represented by B bits. We can locate it in B slots. 

6.3.5.2 Continuous Monitoring 

A unique advantage of group testing method is that it can be used for continuous online popular 

categories discovery. For example, in a shipping port monitoring system, goods may come through 

the monitoring gate in bulk and bursty fashion, or in a large warehouse, a reader cannot reach all 

the tags in stock. In both scenarios, finding the popular categories is different from the case that all 

tags are within the range of a reader, in which case the tag information can be retrieved any time. 

Group testing approach can conform to this dynamic environment so that the popular categories 

can be found by only estimating the number of tags that fall in each of the predetermined number 

of groups. Our algorithm can be slightly modified to suit this case. 

6.4 Performance Evaluation 

We evaluate the performance of our schemes via simulations. By default, we set n = 10000, 

m = 100, a= 0.1, f3 = 0.05, and 8 = 0.01. In addition, IO(a,b)l is estimated as 2000 short slots 

for a= 0.99 and b = 0.05% according to [83], and we assume that the duration of a long slot is 

5 times that of a short slot, i.e., L = 5S. For the rest of the evaluation, we denote group testing 

with TCS as GT, and tree traversal with TCS as TT. All results are the averaged results of 1000 

independent trials. 
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6.4.1 Distribution Models for Data Sets 

The performance of our schemes is heavily dependent on the product distribution in all categories. 

The following distribution models are considered in our evaluation. 

• Uniform Distribution: In this distribution, we intentionally introduce some popular cate-

gories, and uniformly distribute the remaining tags to the other unpopular categories. We 

use UD(k) to denote the uniform distribution with exactly k popular categories. For this 

distribution, each popular category is assigned a · n tags, and other m - k categories have 

• Max/1 Distribution: We denote this distribution as M1 (X), where X is the maximum number 

of tags in one category. In this distribution, each category has either X tags or only 1 tag. 

Since the total number of tags is n, there are L~-=-~ J categories with X tags and m- l~-=-~ J 

categories with 1 tag. 

• Zipf Distribution: We also consider the Zipf distribution, which is commonly found in the 

real world. This distribution, denoted as ZD(n,Z), is specified by two parameters. The first 

parameter is the total number of tags and the second parameter Z defines the upper bound 

of the population for each category, i.e., the number of tags in each category ranges from 

1 to Z. For each category, the probability of having i E [1,Z] tags is fe. where c is the 

normalization constant and 8 characterizes the distribution. In our data set ZD(n,Z), we 

tune the value of 8 such that the total number of tags is n. 
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6.4.2 Alternative Solutions 

6.4.2.1 Simple Solutions 

We begin with presenting the performance of the simple solutions mentioned in Section 6.3.1. 

For the first identification scheme, we conduct 1000 simulations with an initial frame size f = 

10000. At the end of each frame, the new frame size is set to the number of the tags which 

have not been collected. With the default setting, the time consumed in our simulations is about 

122k short slots on average and the deviation is less than 2k short slots. For the other simple 

scheme (Algorithm 15), the scanning time is estimated based on !O! = 2000. Checking each 

category needs 2000 short slots to finish n. Thus, with the default setting, Algorithm 15 requires 

100 x 2000 = 200k short slots. These two simple solutions are both very costly, as we will show 

later when comparing with our schemes. 

6.4.2.2 Sampling Scheme 

In the sampling scheme, we collect all IDs from every sample RFID tags. Thus, similar to the 

identification scheme, the scanning time of the sampling scheme is proportional to the sample 

size. For example, with our default setting of n = 10000, if the sample size is 10%, i.e., 1000 

RFID tags, the scanning time will be roughly 10% of 122k short slots. Therefore, if the sample 

size is small, the sampling scheme can be very efficient. 

Uniform Distribution 

0.8 

0.2 

0
0123456789 

Number of Popular Categories 

Max/1 Distribution 

0.15 

Figure 6.3: The accuracy of the sampling.scheme with different product distribution. Sample size is set to 
10% · n, 20% · n, and 50% · n. 
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However, the major problem of the sampling scheme is the accuracy. When using a small 

sample size, the sampling scheme can hardly guarantee the accuracy. It may miss some popular 

categories with more than a · n tags and report some categories with less than f3 · n tags. Fig. 6.3 

illustrates the accuracy of the sampling scheme under different workloads. We conducted 1000 

tests for each parameter setting, and the accuracy represents the percentage of correct results. 

As we can see, the sampling scheme is extremely sensitive to the product distribution and its 

accuracy dramatically vary with different parameters. Even with a sample size of 50% of all tags, 

the sampling scheme still cannot guarantee a high accuracy as our schemes. In practice, therefore, 

the sampling scheme may not be a feasible alternative to accurately finding popular items. 

6.4.3 Scanning Time 

6.4.3.1 Varying Number of Tags 

We first evaluate our schemes by varying the number of RFID tags n. Fig. 6.4, Fig. 6.5 and 

Fig. 6.6 present the performance of GT and TT under the uniform, Max/1 and Zipf distributions 

respectively. 

We observe that, when n increases, TCS tests in both GT and TT require larger frame sizes. 

This is because the number of tags involved in TCS test cases for GT and TT increases, i.e., each 

group in GT and each node in TT contain more tags. It is intuitive that, for TCS to achieve the 

same accuracy, a test case with more tags requires a larger frame size. If the frame size remains 

the same, the increased number of tags will overwhelm most slots in the frame with collisions 

engendering an inaccurate estimation. 

Under the uniform distribution (Fig. 6.4), the average number of tags in one category ( < 15) 

is far less than the threshold (a· n = 500, 1000 and 1500). Both schemes can efficiently identify 
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Figure 6.4: Scanning time for the uniform distribution with varying n 
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the groups with popular categories. In the GT scheme, the scanning time is approximately pro-

portional to the number of popular categories. However, the scanning time of the TT scheme does 

not change much along axis x. In both schemes, a larger n yields more scanning time primarily 

because of the increase of the frame size in TCS. 
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Tree Traversal 
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0.1 
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0.15 

Figure 6.5: Scanning time for the Ml distribution with varying n 

For the Ml (X) distribution (Fig. 6.5), we vary the maximum value X from 0.05n to 0.15n. Let 

us call a category with X tags a large category, and a group containing at least 1 large category a 

large group. Basically, a large group has a higher probability to pass the TCS tests. The value of 

X has two impacts on the performance. On the one hand, the growth of X increases the probability 

that a large group can pass the TCS tests. The consequence is that we have to apply more TCS tests 

to eliminate the unpopular categories. On the other hand, when X increases, there are fewer large 
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categories and groups in the protocol, which helps filter out the unpopular categories quickly. In 

Fig. 6.5, both schemes are fast at the starting phase, because when X is small, all categories (even 

large categories) are unpopular and every group has a small probability to pass the TCS tests. 

Thus, both schemes quickly eliminate all categories and return no popular category. When X 

grows, the first impact becomes visible, and a sharp increase appears for both schemes, though the 

peak values are reached at different values of X. We also observe there is a slight decline for GT 

before the peak value because of the second impact. When X keeps increasing, the second impact 

becomes dominant and both schemes show a decreasing scanning time after the peak values. For 

a fixed value of X jn, the scanning time is nearly proportional ton. 

Fig. 6.6 presents the performance under the Zipf distribution. In our data sets, there are usually 

one or two popular categories. Most categories are unpopular with the number of tags scattered 

between 1 and a· n. Since a considerable number of unpopular categories have tags close to the 

threshold, our schemes take more time to identify them as unpopular compared to the uniform 

distribution (UD(1) or UD(2)), in which the sizes of the unpopular and popular categories diverge 

dramatically. 
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Figure 6.6: Scanning time for the Zipf distri
bution with varying n 
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6.4.3.2 Varying Number of Categories 

We also evaluate the performance of the GT and TT schemes with a varying number of categories 

m. The results are illustrated in Fig. 6.8, Fig. 6.9 and Fig. 6.7. 

In Fig. 6.8 and Fig. 6.9, we find that with other parameters fixed, the scanning time is increas-

ing when m increases. However, the curves form= 500 and m = 1000 are quite close. In Fig. 6.7, 

the performance of TT for varying m is almost the same, and the scanning time of GT is slightly 

increased when m increases. 

Group Testing Tree Traversal 
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Figure 6.8: Scanning time for the uniform distribution with varying m 

In all three distributions, the number of popular categories in each tested case is primarily 

determined by other parameters rather than m. Thus, with all other parameters fixed, the case with 

a larger m has almost the same number of popular categories and more unpopular categories which 

have to be filtered out. Thus, our schemes need run more TCS tests to identify these unpopular 

categories. However, unlike n, the impact of m is not proportional to the value of m. 

6.4.3.3 Comparing to Simple Solutions 

Both GT and TT are very efficient in finding the popular categories. Recall that simple solutions 

in Section 6.3.1 need at least 122k short slots with our default setting. We use 122k as a baseline to 



Group Testing 

OL-----------~--------~ 
0.05 0.1 0.15 

Maximum Value (X/n) 
0~05 

Tree Traversal 

0.1 
Maximum Value (X/n) 

Figure 6.9: Scanning time for the Ml distribution with varying m 

233 

0.15 

compare with our schemes. In most of the tested cases, the scanning time of our schemes with the 

default setting is less than 15k short slots, which is about 12% of the baseline. In the scenario that 

only a few popular categories exist, e.g., UD(1), UD(2), our schemes only require < 4% of the 

baseline to finish. We also observe that the group testing scheme is superior to the tree traversal 

scheme in most cases, especially when the number of tags in some unpopular categories is close 

to the threshold. 

6.4.4 Tightness of Bounds 

Our analysis in Theorem 6.5 uses Markov inequality, a loose bound that holds for arbitrary random 

variables. Theorem 6.5 is further referred in Lemma 6.3 and Theorem 6.6 to derive a upper bound 

of the expected scanning time. Thus, inherently the bound in Theorem 6.6 is relatively loose for 

any specific case. To understand how well the theoretical bound matches the reality, we compare 

our estimated scanning time with the simulation results in this subsection. 

In the default setting, our algorithm estimates that the expected scanning time of the GT 

scheme is fewer than 14516 short slots. We compare this estimation with the results (mean scan-

ning time) found in our simulations in the following table. For each distribution, we select the 

worst observed performance. According to the results, our estimation is very close to the actual 
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performance (the worst case is UD(9) with 12734 short slots). 

Our Bound UD Ml ZD 

Number of short slots 14516 12734 11615 9196 

6.4.5 Other Issues 

This subsection covers the discussions on some other issues: 

1. Accuracy requirements: In all our simulations, both the completeness constraint and pop

ulation constraint always hold with more than 1 - 8 probability. 

2. Other varying parameters: When examining the scanning time, we also vary the param

eters a and {3, and find two basic trends. First, if a and {3 become closer, our schemes 

need more time to find popular categories. Second, if we keep their difference constantly, 

increasing one of them reduces the scanning time. 

3. Compare TCS with Q: Group testing can also be combined with algorithm n, because Q 

obtains more accurate estimation than our TCS test. However, in the tested cases, the frame 

size for TCS is between 115 to 247 slots, much less than 101 = 2000. Based on the results 

in [37], group testing with n will use smaller parameters T and W. The scanning time, 

however, is still much larger than that in our schemes with TCS. 

6.5 Summary 

In this chapter, we have discussed a data mining query of finding popular categories in RFID 

systems. It is difficult for weak devices like RFID tags to efficiently respond to such a complicated 

query because of the lack of processing and coordinating ability. Similar to our work in Chapter 4, 

we have adopted randomized algorithm in our solution. Combined with group testing technique, 
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we have proposed efficient protocols to reply to this complicated query. This work includes several 

novel means of analyzing the accuracy of the results and the scanning time, which can be applied 

to other similar problems. More importantly, the combination of randomized algorithm and group 

testing has been first introduced to accomplish complicated tasks in RFID systems. 



Chapter 7 

Conclusions and Future Work 

This chapter concludes the dissertation by summarizing the contributions and proposing several 

future research directions. 

7.1 Contributions 

When Mark Weiser first introduced the concept of pervasive computing in the early 1990s, he was 

describing computers on pens or pads, and imaging a room with hundreds of wireless computing 

devices. Around twenty years later, technology has already caught up with his description and 

gone further towards his imagination. Computer hardware has evolved over the years, becoming 

more powerful, less expensive and smaller. The most importantly, computers have been pervasive 

devices in our daily life. Consumer electronics such as PDA, cell phone, media player, and calcu

lator, are carried by people all the time. A lot more computing devices are weaved in our working 

and living space. For example, the modem kitchen appliances are configured by computer chips. 

Sensors are deployed to monitor machine status in a factory, the structural conditions on a bridge, 

and to detect wide fire in a forest. Computer-based medical devices have been equipped to help 
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health care. Many more pervasive computing devices and applications are being developed every 

day. Following this trend of development, we are substantially moving closer to the new era of 

pervasive computing referring to 'many computers per person'. 

Besides the hardware devices, pervasive computing applications heavily rely on a wireless 

infrastructure that connects all the devices and delivers various useful data information. This in

frastructure transparently links pervasive computing devices with each other and serves the upper 

application layer with the requested data across the whole environment. For designing such a 

wireless infrastructure, the most fundamental goal is to achieve efficiency, in particular, to save 

energy and time consumption in data provision. Most of pervasive computing devices are powered 

by batteries and saving energy is critical for prolonging their life time for service. Quick response 

to a query is also a highly desirable feature for pervasive computing applications, especially those 

with real-time requirements. 

Designing an efficient wireless infrastructure, however, is challenging because of the hardware 

limitations. In practice, most pervasive computing devices are inexpensive, but weak in ability. 

There is a big gap between pervasive computing devices and regular computers in terms of all 

computation and communication resources. With this characteristic, many existing approaches 

designed for traditional computer systems can hardly be applied in pervasive computing environ

ments. In addition, researchers encounter new problems and challenges that have never occurred 

in regular computer systems. 

The main contribution of this dissertation is to solve critical efficiency problems in designing 

the wireless infrastructure and to explore appropriate methodologies for achieving efficiency with 

weak pervasive computing devices. This dissertation has investigated two representative infras

tructures, sensor networks and RFID systems, both of which generate a large amount of data in 
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applications. To achieve efficiency, we have presented novel techniques for organizing network 

architecture and optimizing query protocols. Specifically, we have designed optimal algorithms 

for deploying storage sites in a sensor network and we have proposed efficient protocols for basic 

and complicated queries in sensor networks and RFID systems. We have developed solutions to 

address these representative and important problems in designing the wireless infrastructure. 

First, we have proposed a novel two-tiered hybrid sensor network with special storage nodes 

to support in-network storage model and reduce the energy cost. In this storage model, we have 

worked on the problem of determining the locations of storage nodes, which is critical to the 

energy efficiency. Two practical models are considered, fixed tree model and dynamic tree model. 

We have developed optimal algorithms for the first model and an approximation algorithm for the 

second one. In addition, our work has presented performance analysis for a common practice of 

random deployment in both models. 

Second, we have developed efficient protocols for two basic queries, range query in sensor 

networks and continuous scans in RFID systems. We have presented the first solution to provide 

security and privacy protection in range query. Particularly, we have developed a privacy pre

serving storage scheme and a range query protocol that enables the sink to verify the reply to the 

query. Our solutions satisfy the given security requirements with the minimum energy overhead. 

Additionally, we have proposed the first solution to launch continuous multiple scans in RFID 

systems without collecting all IDs in each scan. The key idea is to apply randomized algorithm 

to identify and avoid collecting the redundant RFID tags that have been previously gathered. We 

have discussed continuous scans in spatial and temporal domains and developed efficient solutions 

for both scenarios. 

Finally, we have investigated complicated data mining queries in pervasive computing envi-
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ronments. We have first designed efficient outlier detection algorithms in sensor networks based 

on histogram information. The basic idea is to collect small-sized histogram and apply analysis 

on it to filter unnecessary data transmission. In addition, we have developed the first protocol to 

efficiently find popular categories in an RFID system. Our solution includes a quick protocol for 

estimating the number of RFID tags based on randomized algorithm and a group testing scheme 

combined with the estimation protocol. The intuition is still to avoid collecting all RFID tags when 

responding to this complicated query. 

7.2 Future Work 

Following the work in this dissertation, there are several clear directions for future work. We start 

with two general directions and propose some particular problems later. 

• Complex data formats: While demonstrating the methodology and design principles for 

addressing efficiency issue, this dissertation mainly considers simple data format, e.g., sin

gle dimensional sensor data and one RFID tag per item. In practice, some applications 

involve more complicated data formats. For example, sensors may measure data with mul

tiple attributes and in an RFID system, each item may contain several tags. This reflects 

more complex problem settings for the topics discussed in the dissertation. For example, 

the range query may contain several value ranges each for a data attribute, outliers may be 

defined in the basis of multiple dimensional data, and categories in RFID systems may be 

classified by the combined information from several tags in an item. All these new settings 

raise new challenges and issues. Our work in this dissertation can be extended to solve some 

of the new problems. For the others, we need to explore new solutions. 
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• System implementations: Most of this dissertation focuses on theoretical and algorithmic 

design. It is a natural enhancement to consider system implementations in the future work 

which imply two aspects of efforts. First, we need to consider complete protocols that are 

compatible with the current hardware and software systems. For example, our work on 

sensor networks has focused on the data flow in the protocols, but ignored low level com

munication stacks such as duty-cycle MAC protocol, and packet coding and retransmission. 

To develop a complete protocol considering all these factors, our work needs to be further 

refined for achieving efficiency. Second, w~ need to consider practical issues for system 

implementation. For example, there might be signal loss in some RFID systems, i.e., the 

command from an RFID reader and the response from RFID tags cannot be successfully re

ceived. It leads to inaccurate or even misleading results in our solutions. In the future work, 

we need to first model and characterize the signal loss, and then integrate it into algorithm 

design as an input parameter. 

Besides the above two general directions, there are some concrete new problems we can con

sider in the future work. 

• Multi-tier storage in sensor networks: This is a follow-up problem from our work on 

storage placement in sensor networks, where we introduced storage nodes and built a two

tier network structure. In the future development, it is likely to build a multi-tier storage 

system in a sensor network, where each tier represents different storage hardware in terms 

of storage capacity, hardware cost and other functionalities. The applications benefit from 

this multi-tier structure by carefully assigning diverse data on these storage sites. Sensor 

data may have different types/sizes, e.g., small single-value data vs. large media data. Some 

data may be frequently queried while others may not. Some data may be more important 
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and some may be out-dated. Considering the diversity of sensor data, it is more appropriate 

to utilize a multi-tier storage system than a two-tier system. In this problem, the location 

of each storage site in each tier is still important to the efficiency performance. We are 

interested in investigating the storage placement problem in this direction. 

• Continuous /local outlier detection in sensor networks: The outlier detection protocols 

in this dissertation only consider one-time detection. In practice, some applications need to 

continuously monitor the outlier data. To solve this problem, we can periodically launch our 

one-time detection protocols. However, it is inefficient to start from scratch every time be

cause there might be minor change on the outlier data and histogram information compared 

to the previous runs. The better solution should utilize all available information from the 

last run and focus on the new data since then to identify new outliers or the existing outliers 

which are no longer abnormal. In addition, this dissertation has solved outlier detection 

with a global setting, i.e., all data form the target data set. However, some applications are 

interested in local outliers, i.e., the outliers are defined by the sensor data within a physi

cal region. For example, if a sensor network is deployed to monitor the temperature in a 

building. Most of the rooms are kept in 75F. But one room's is configured to control the 

temperature at 68F. If a sensor in that special room reports a temperature reading of 75F, it 

is normal if we consider the global data set. However, when comparing to the readings from 

local sensors nearby, it becomes a outlier data. In practice, there is often no clear boundary 

for defining the desired region, e.g., in an open field. It is challenging and interesting to 

gradually expand the target set of sensors to identify a meaningful region and detect the 

outlier data at the same time. 
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• Efficiently identify a group of items in RFID systems with security requirements: This 

problem is about how an RFID reader can determine whether the RFID tags in the reading 

range contain a certain group of IDs. In the traditional solution, the reader broadcasts each 

ID in the group one by one and the tags matching the IDs will respond. By gathering the 

responses, the reader is able to determine the result. This solution, however, is not secure in 

a hostile environment because the adversary can easily eavesdrop the tag IDs. In the future 

work, we are looking for a solution based on randomized algorithm. The basic intuition is 

that since we are aware of the group of IDs, we can deterministically predict their responding 

behaviors (i.e., how to choose slot to reply) if they are present. Therefore, we may seek a 

certain pattern from all the slots to identify the group. However, the challenge is that we 

need to consider other tags in the reading range that may introduce noises to obstruct the 

solution. 

7.3 Final Remarks 

This dissertation focuses on the critical efficiency problems, particularly time efficiency and en

ergy efficiency, in building wireless infrastructures for pervasive computing environments. In a 

general framework, we have found a system can be more efficient by a better strategy of organizing 

the underlying network architecture. We have proposed a new hybrid structure for sensor networks 

with special storage nodes and developed optimal algorithms for placing storage nodes to improve 

efficiency. In addition, we have realized that each particular query ought to be treated differently 

with a specially designed protocol in order to achieve more efficiency. We have investigated rep

resentative basic queries and data mining queries in sensor networks and RFID systems. For basic 

queries, this dissertation enhances the prior work by considering more practical problem settings. 
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In particular, we have shown for a sensor network with multiple objectives besides efficiency, how 

to design a query protocol to strike the tradeoff between them. We have further identified that 

the prior work on the basic query in RFID systems is inefficient in realistic scenarios. Using ran

domized algorithm, we have developed compatible RFID protocols for the basic query with much 

reduced scanning time. Finally, this dissertation has explored data mining queries which are use

ful in applications, but rarely discussed in pervasive computing environments. According to the 

different characteristics of sensors and RFID tags, we have demonstrated different techniques to 

efficiently process data mining queries. In sensor networks, we have proposed multiple round pro

tocols that gradually collect coarse but small-sized information with corresponding analysis. With 

a careful design, it is an efficient way to handle complicated queries by filtering out redundancy 

and unnecessary data transmissions. In RFID systems, we have found that randomized algorithm 

is also an appropriate tool to deal with data mining queries. Combining with other techniques 

such as probability analysis, group testing, and combinational optimization, we have developed 

protocols that work with weak RFID tags to efficiently respond to the complicated data mining 

query. 
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