
Sampling Algorithms for Evolving Datasets

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Rainer Gemulla

geboren am 28. April 1980 in Sondershausen

verteidigt am 20. Oktober 2008

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik, Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Dr. Peter J. Haas
IBM Almaden Research Center, K55/B1
650 Harry Road, San Jose, CA 95120-6099
USA

Prof. Dr.-Ing. Dr. h.c. Theo Härder
Technische Universität Kaiserslautern
Fachbereich Informatik
AG Datenbanken und Informationssysteme
67653 Kaiserslautern

Dresden im Oktober 2008

Abstract

Perhaps the most flexible synopsis of a database is a uniform random sample of the
data; such samples are widely used to speed up the processing of analytic queries
and data-mining tasks, to enhance query optimization, and to facilitate information
integration. Most of the existing work on database sampling focuses on how to create
or exploit a random sample of a static database, that is, a database that does not
change over time. The assumption of a static database, however, severely limits
the applicability of these techniques in practice, where data is often not static but
continuously evolving. In order to maintain the statistical validity of the sample, any
changes to the database have to be appropriately reflected in the sample.

In this thesis, we study efficient methods for incrementally maintaining a uniform
random sample of the items in a dataset in the presence of an arbitrary sequence of
insertions, updates, and deletions. We consider instances of the maintenance problem
that arise when sampling from an evolving set, from an evolving multiset, from the
distinct items in an evolving multiset, or from a sliding window over a data stream.
Our algorithms completely avoid any accesses to the base data and can be several
orders of magnitude faster than algorithms that do rely on such expensive accesses.
The improved efficiency of our algorithms comes at virtually no cost: the resulting
samples are provably uniform and only a small amount of auxiliary information
is associated with the sample. We show that the auxiliary information not only
facilitates efficient maintenance, but it can also be exploited to derive unbiased,
low-variance estimators for counts, sums, averages, and the number of distinct items
in the underlying dataset.

In addition to sample maintenance, we discuss methods that greatly improve the
flexibility of random sampling from a system’s point of view. More specifically, we
initiate the study of algorithms that resize a random sample upwards or downwards.
Our resizing algorithms can be exploited to dynamically control the size of the sample
when the dataset grows or shrinks; they facilitate resource management and help
to avoid under- or oversized samples. Furthermore, in large-scale databases with
data being distributed across several remote locations, it is usually infeasible to
reconstruct the entire dataset for the purpose of sampling. To address this problem,
we provide efficient algorithms that directly combine the local samples maintained at
each location into a sample of the global dataset. We also consider a more general
problem, where the global dataset is defined as an arbitrary set or multiset expression
involving the local datasets, and provide efficient solutions based on hashing.

iii

Acknowledgments

In a recent conversation, my thesis adviser mentioned to me that he had read a thesis
in which the acknowledgment section started with the words “First of all, I’d like
to thank my adviser [...].” He was really excited about this—constantly repeating
the “first of all” part of the introductory sentence. I’m not sure if he made good fun
or if he intended to make clear to me how to start my very own acknowledgment
section. I’ll play it safe: First of all, I’d like to thank my adviser Wolfgang Lehner.
Wolfgang sparked my interest in data management and teached me everything I
know about it. He always had time for discussions; his enthusiasm made me feel
that my work counts. Whenever I had problems of organizational or motivational
nature, a conversation with him quickly made them disappear. Always trusting my
skills, he gave me the freedom to approach scientific problems my way. Thank you
for everything.
I am deeply grateful to Peter Haas, who essentially acted like a co-adviser for my
work. Peter contributed significantly to this thesis and to my knowledge about
sampling and probability in general. He is a great mentor, inspiring me with his
passion. I want to thank Theo Härder for co-refereeing this thesis; Kevin Beyer,
Berthold Reinwald, Yannis Sismanis, and Paul Brown for working with me and for
fruitful discussions; and Frank Rosenthal, Simone Linke, and Benjamin Schlegel for
proof-reading parts of this thesis—it draws much from their comments. I like to
thank Henrike Berthold, for introducing me to the field of database sampling and for
writing the proposal that made possible this work; Benjamin Schlegel and Philipp
Rösch, for providing diversion and lending me their ears when I wanted to discuss
something; Ines Funke, for fighting me through that jungle of bureaucracy (and,
of course, for providing me with candy); Anja, Bernhard, Felix, Marcus, Norbert,
Sebastian, Steffen, Stephan, Torsten, and Ulrike, for their invaluable help within the
Derby/S project; and Anja, Bernd, Bernhard, Christian, Dirk, Eric, Frank, Hannes,
Henrike, Maik, Marc, Martin, Matze, Peter, Steffen, Sven, and Thomas, for being
great colleagues and friends.
All this work would not have been possible without the constant support of my
family and friends. I like to thank my grand-parents, my parents and my sister for
their rock-solid confidence in my doings. I like to thank all my friends for the great
time we had together. And I want to thank my wife and my little son for helping me
through this tough time, for providing encouragement, for accepting not seeing me
many evenings, and for just being the family I love.

Rainer Gemulla
August 27, 2008

I am grateful to the Deutsche Forschungsgemeinschaft for providing the funding for
my work under grant LE 1416/3-1.

v

Contents

1 Introduction 1

2 Literature Survey 5
2.1 Finite Population Sampling . 5

2.1.1 Basic Ideas and Terminology 6
2.1.2 Sampling Designs . 7
2.1.3 Estimation . 14

2.2 Database Sampling . 22
2.2.1 Comparison to Survey Sampling 22
2.2.2 Query Sampling . 23
2.2.3 Materialized Sampling . 27
2.2.4 Permuted-Data Sampling . 29
2.2.5 Data Stream Sampling . 30

2.3 Applications of Database Sampling 32
2.3.1 Selectivity Estimation . 33
2.3.2 Distinct-Count Estimation . 38
2.3.3 Approximate Query Processing 40
2.3.4 Data Mining . 45
2.3.5 Other Applications of Database Sampling 48

3 Maintenance of Materialized Samples 51
3.1 Relationship to Materialized Views 52
3.2 Definitions and Notation . 54
3.3 Properties of Maintenance Schemes 55

3.3.1 Sampling Designs . 55
3.3.2 Datasets and Sampling Semantics 56
3.3.3 Supported Transactions and Maintenance Costs 58
3.3.4 Sample Size . 60
3.3.5 Sample Footprint . 63
3.3.6 Summary . 64

3.4 Schemes for Survey Sampling . 64
3.4.1 Draw-Sequential Schemes . 65
3.4.2 List-Sequential Schemes . 66
3.4.3 Incremental Schemes . 69

3.5 Schemes For Database Sampling . 75
3.5.1 Set Sampling . 75

vii

Contents

3.5.2 Multiset Sampling . 85
3.5.3 Distinct-Item Sampling . 87
3.5.4 Data Stream Sampling . 94

4 Set Sampling 101
4.1 Uniform Sampling . 102

4.1.1 Random Pairing . 102
4.1.2 Random Pairing With Skipping 110
4.1.3 Experiments . 113

4.2 Sample Resizing . 122
4.2.1 Resizing Upwards . 123
4.2.2 Parametrization of Resizing 128
4.2.3 Experiments . 132
4.2.4 Resizing Downwards . 135

4.3 Sample Merging . 140
4.3.1 General Merging . 141
4.3.2 Merging for Random Pairing 142
4.3.3 Experiments . 146

4.4 Summary . 148

5 Multiset Sampling 151
5.1 Uniform Sampling . 152

5.1.1 Augmented Bernoulli Sampling 152
5.1.2 Estimation . 159

5.2 Sample Resizing . 166
5.3 Sample Merging . 171
5.4 Summary . 173

6 Distinct-Item Sampling 175
6.1 Hash Functions . 176
6.2 Uniform Sampling . 181

6.2.1 Min-Hash Sampling With Deletions 181
6.2.2 Estimation of Distinct-Item Counts 185
6.2.3 Experiments . 197

6.3 Sample Resizing . 199
6.3.1 Resizing Upwards . 199
6.3.2 Resizing Downwards . 199

6.4 Sample Combination . 200
6.4.1 Multiset Unions . 200
6.4.2 Other Operations . 202
6.4.3 Analysis of Sample Size . 203

6.5 Summary . 203

7 Data Stream Sampling 205

viii

Contents

7.1 Uniform Sampling . 206
7.1.1 A Negative Result . 206
7.1.2 Priority Sampling Revisited 207
7.1.3 Bounded Priority Sampling 208
7.1.4 Estimation of Window Size 214
7.1.5 Optimizations . 215
7.1.6 Experiments . 215

7.2 Stratified Sampling . 226
7.2.1 Effect of Stratum Sizes . 227
7.2.2 Merge-Based Stratification 228
7.2.3 Experiments . 232

7.3 Summary . 237

8 Conclusion 239

Bibliography 243

List of Figures 257

List of Tables 259

List of Algorithms 261

Index of Notation 263

Index of Algorithm Names 269

ix

Chapter 1

Introduction

I got this strange idea that maybe I could study the Bible
the way a scientist would do it, by using random sampling.

The rule I decided on was we were going to study
Chapter 3, Verse 16 of every book of the Bible.

This idea of sampling turned out to be
a good time-efficient way to get into a complicated subject.

— Donald Knuth (2008)

Recent studies conducted by IDC (2007, 2008) have revealed that the 2007 “digital
universe“ comprises about 45 gigabytes of data per person on the planet. Looking
only at the data stored in large-scale data warehouses, Winter (2008) estimates
that the size of the world’s largest warehouse triples about every two years, thereby
even exceeding Moore’s law. To analyze this enormous amount of data, random
sampling techniques have proven to be an invaluable tool. They have numerous
applications in the context of data management, including query optimization, load
balancing, approximate query processing, and data mining. In these applications,
random sampling techniques are exploited in two fundamentally different ways: (i)
they help compute an exact query result efficiently and/or (ii) they provide means
to approximate the query result. In both cases, the use of sampling may significantly
reduce the cost of query processing.

For an example of (i), consider the problem of deriving an “execution plan” for a
query expressed in a declarative language such as SQL. There usually exist several
alternative plans that all produce the same result but they can differ in their efficiency
by several orders of magnitude; we clearly want to pick the plan that is most efficient.
In the case of SQL, finding the optimal plan includes (but is not limited to) decisions
on the indexes to use, on the order to apply predicates, on the order to process joins,
and on the type of sort/join/group-by algorithm to use. Query optimizers make this
decision based on estimates of the size of intermediate results. Virtually all major
database vendors—including IBM, Microsoft, Oracle, Sybase, and Teradata—use
random sampling to compute online and/or precompute offline statistics that can be
leveraged for query size estimation. This is because a small random sample of the
data often provides sufficient information to separate efficient and inefficient plans.

1

1 Introduction

Perhaps the most prevalent example of (ii) is approximate query processing. The
key idea behind this processing model is that the computational cost of query
processing can be reduced when the underlying application does not require exact
results but only a highly-accurate estimate thereof. For instance, query results
visualized in a pie chart may not be required to be exact up to the last digit.
Likewise, exploratory “data browsing”—carried out in order to find out which parts
of a dataset contain interesting information—greatly benefits from fast approximate
query answers. It is not surprising that random sampling is one of the key technologies
in approximate query processing. There exists a large body of work on how to compute
and exploit random samples; results obtained from a random sample can be enriched
with information about their precision and, if desired, progressively refined; and
sampling scales well with the size of the underlying data. Recognizing the importance
of random sampling for approximate query processing, the SQL standardization
committee included basic sampling clauses into the SQL/Foundation:2003 standard;
these clauses are already implemented in most commercial database systems.

So far, we have outlined some applications of random sampling but we have not
discussed how to actually compute the sample. The key alternatives for sample com-
putation are “query sampling” (compute when needed) and “materialized sampling”
(compute in advance). In this thesis, we concentrate almost entirely on materialized
sampling. One of the key advantages of materialized sampling is that the cost of
obtaining the sample amortizes over its subsequent usages. We can “invest” in
sophisticated sampling designs well-suited for our specific application, even if such a
sample were too costly to obtain at query time. Another distinctive advantage of
materialized sampling is that access to the underlying data is not required in the
estimation process. The more expensive the access to the actual data, the more
important this property gets. In fact, base data accesses may even be infeasible in
applications in which, for instance, the underlying dataset is not materialized or
resides at a remote location.

The key challenge we face in materialized sampling is that real-world data is
not static; it evolves over time. To ensure the statistical validity of the estimates
derived from the sample, changes of the underlying data must be incorporated. The
availability of efficient algorithms for sample maintenance is therefore an important
factor for the practical applicability of materialized sampling. There do exist several
efficient maintenance algorithms, but many of these are restricted to the class of
append-only datasets, in which data once inserted is never changed or removed.
In contrast, this thesis contributes novel maintenance algorithms for the general
class of evolving datasets, in which the data is subject to insertion, update and
deletion transactions. As a consequence, our algorithms extend the applicability of
materialized sampling techniques to a broader spectrum of applications.

Summary of Contributions

In more detail, our main contributions are:

2

1 Introduction

1. We survey the recent literature on database sampling. To the best of our
knowledge, the last comprehensive survey of database sampling techniques was
undertaken by Olken (1993). There has been a tremendous amount of work
since then; our survey focuses on the key results, structured coarsely by their
application area.

2. We review available maintenance techniques for the class of uniform random
samples. In particular, we classify maintenance schemes along the following
dimensions: types of datasets supported, types of transactions supported,
sampling semantics, sample size guarantees, I/O cost, and memory consumption.
We point out scenarios for which no efficient sampling techniques are known.
We also disprove the statistical correctness of a few of the techniques proposed
in the literature.

3. We present several novel maintenance algorithms for uniform samples under
insertion, update, and deletion transactions. Compared to previously known
algorithms, our algorithms have the advantage of being “incremental”: they
maintain the sample without ever accessing the underlying dataset. The main
theme behind our algorithms is that of “compensating insertions”: We allow
the sample size to shrink whenever one of the sampled items is removed from
the underlying dataset, but we compensate the loss in sample size with future
insertions. We apply unique variations of this principle to obtain maintenance
algorithms for set sampling, multiset sampling, distinct-item sampling, and
data stream sampling.

4. We propose novel algorithms for resizing uniform samples. Techniques for
resizing a sample upwards help avoid the loss in accuracy of the estimates that
may result from changes of the underlying data. Conversely, techniques for
resizing a sample downwards prevent oversized samples and thus overly high
resource consumption. Again, expensive accesses to the underlying dataset
in order to resize the sample are avoided whenever possible and minimized
otherwise.

5. We present novel techniques for combining two or more uniform samples. Such
techniques are particularly useful when the underlying datasets are distributed
or expensive to access; information about the combined dataset can be obtained
from the combined sample. More specifically, we consider the problem of
computing a uniform sample from the union of two or more datasets from their
local samples. We present novel algorithms that supersede previously known
algorithms in terms of sample size. We also consider the more general problem
of computing samples of arbitrary (multi)set expressions—including union,
intersection, and difference operations—based solely on the local samples of the
involved datasets. It is known that, in general, excessively large local sample
sizes are required to obtain a sufficiently large combined sample. However, we
extend earlier results on “min-hash samples” to show that min-hash samples

3

1 Introduction

are well suited for this problem under reasonable conditions on the size of the
expression.

6. We complement our results with improved estimators for certain population
parameters. Our estimators exploit the information that is stored jointly with
the sample in order to facilitate maintenance. Parameters of interest include
sums, averages, the dataset size, and the number of distinct items in the dataset;
all of our estimators are unbiased and have lower variance than previously
known estimators.

Roadmap

Chapter 2 starts with a brief introduction to the theory of finite population sampling,
which underlies all database sampling techniques. The main part of that chapter
surveys techniques for database sampling and their applications. In chapter 3, we
shift our attention to the actual computation and maintenance of random samples.
The chapter reviews and classifies available maintenance techniques. Chapters 4
to 7 contain our novel results for set sampling, multiset sampling, distinct-item
sampling, and data stream sampling; an entire chapter is devoted to each of these
topics. Chapter 8 concludes this thesis with a summary and a discussion of open
research problems.

4

Chapter 2

Literature Survey

The purpose of this chapter is to give a concise overview of the fundamentals of
random sampling as well as its applications in the area of databases.

We start with an introduction to the theory of finite population sampling, also
called survey sampling, in section 2.1. This theory provides principle methods to
select a sample from a “population” or dataset of interest and to infer information
about the entire population based on the information in the sample. As Särndal et al.
(1991) pointed out, survey sampling has a vast area of applications: Nation-wide
statistical offices make use of survey sampling to obtain information about the state
of the nation; in academia, survey sampling is a major tool in areas such as sociology,
psychology, or economy; and last but not least, sampling plays an important role
for market research. Our discussion covers only the basics—most notably common
sampling designs and estimators—but it will suffice to follow the rest of this thesis.

In the last decades, sampling has been applied to many problems that arise
in the context of data management systems. To cope with the specifics of these
systems, novel techniques beyond the scope of classical survey sampling have been
developed. A brief comparison of survey sampling and database sampling is given
in section 2.2, where we also discuss different approaches to database sampling.
Section 2.3 is devoted entirely to database-related applications of sampling, including
query optimization, approximate query processing and data mining. Note that this
chapter does not cover sample creation and maintenance; these issues are postponed
to subsequent chapters.

2.1 Finite Population Sampling

As indicated above, the theory of finite population sampling forms the basis of
database and data stream sampling. We restrict our attention to those parts of the
theory that are relevant for this thesis. Our notation follows common styles, but
see the index of notation on page 263. Readers familiar with the theory can skip or
skim-read this section.

5

2 Literature Survey

2.1.1 Basic Ideas and Terminology

The data set of interest is called the population and the elements of the population
are called items. Unless stated otherwise, we assume that the population is a set
(i.e., it does not contain duplicates) and use

R = { r1, . . . , rN }

to denote a population of size N . For example, the population may comprise
households of a city or employees of a company. It may also comprise tuples from
a table of a relational database, tuples from a view of a relational database, XML
documents from a collection of XML documents, lines of text from a log file, or
items from a data stream. In this thesis, we assume that the population coincides
with the dataset being sampled; the latter is usually called the sampling frame. We
occasionally make use of the terms base data, underlying dataset or simply dataset to
denote the population because these terms are more common in database literature.

A sample is a subset of the population. The method that is used to select the
sample is called the sampling scheme. Following Särndal et al. (1991), a probability
sampling scheme has the following properties:

1. It is possible (but not necessarily practicable) to define the set of samples
S = { s1, s2, . . . , sm } that can be produced by the sampling scheme.

2. For each sample s ∈ S , the probability that the scheme produces s is known.

3. Every item of the population is selected with non-zero probability.

Samples produced by a probability sampling scheme are called probability samples.
There are alternatives to probability sampling. Cochran (1977) lists haphazard
sample selection, the selection of “typical” items by inspection and the restriction
of the sampling process to the parts of the population that are accessible. Any
of these alternative techniques might work well in specific situations, but the only
way to determine whether or not the technique worked efficiently is to compare the
resulting estimates with the quantity being estimated. As we will see later, the unique
advantage of probability sampling is that the precision of the estimates derived from
the sample can be estimated from the sample itself.

The probability distribution over the set of possible samples S is called the
sampling design. Often, many possible schemes exist for a given design. For example,
suppose that scheme A first selects a single item chosen uniformly and at random
from the entire population and then independently selects a second item chosen
uniformly and at random from the remaining part of the population. Also suppose
that scheme B selects the first item as stated above. To select the second item,
scheme B repeatedly samples uniformly and at random from the entire population
until an item different to the first item is found. It is easy to see that both A and B
lead to the same sampling design. Thus, a sampling scheme describes the computation
of the sample, and the sample design describes the outcome of the sampling process.

6

2.1.2 Sampling Designs

Table 2.1: Common sampling designs

Class Description

Uniform sampling Select subsets of equal size with equal probability
Weighted sampling Select items with probability proportional to item weight
Stratified sampling Divide into strata and sample from each stratum
Systematic sampling Select every k-th item
Cluster sampling Divide into clusters and sample some clusters entirely

The particular design produced by A and B is called simple random sampling; it is
one of the most versatile of the available sampling designs.

An estimator is a rule to derive an estimate of a population parameter from the
sample. For any specified sample, the estimator produces a unique estimate. For
example, to estimate the average income of a population of employees, one might
take the average from a sample of the employees. Whether this specific estimator
performs well or not depends on the sampling design. In general, estimator and
sampling design influence each other. To analyze the properties of an estimator,
one may analyze the distribution of the estimates found after having applied the
estimator to each of the samples in S .

In what follows, we first discuss common sampling designs (section 2.1.2) and then
take a look at frequently used estimators for these designs (section 2.1.3).

2.1.2 Sampling Designs

For a given population R and set S of possible samples, there is an infinite number
of different sampling designs because there are infinitely many ways of assigning
selection probabilities to the samples in S . In practice, however, one does not
directly decide on the sampling design but on the sampling scheme. This decision is
based on both the cost of executing the scheme and the properties of the resulting
sampling design. In this section, we discuss classes of sampling designs that are
commonly found in practice. An overview is given in table 2.1 and figure 2.1.

A. Uniform Sampling

In a uniform sampling design, equally-sized subsets of the population are selected
with equal probability. More formally, denote by S the random sample and fix two
arbitrary subsets A,B ⊆ R with |A| = |B| = k. Under a uniform design, it holds
that

Pr [S = A] = Pr [S = B] =
Pr [|S| = k](

N
k

) , (2.1)

7

2 Literature Survey

(a) Uniform sampling (b) Weighted sampling

(c) Stratified sampling (d) Systematic sampling

(e) Cluster sampling

Figure 2.1: Illustration of common sampling designs (N = 400, n = 40). Adapted
from Thompson (1992).

8

2.1.2 Sampling Designs

where Pr [S = A] denotes the probability of selecting subset A as the sample, and
Pr [|S| = k] denotes the probability that the sample contains exactly k elements.
The denominator of the final equality is a binomial coefficient defined as(

N

k

)
=

N !
k!(N − k)!

,

where we take the convention 0! = 1 and hence
(

0
0

)
= 1. The value of

(
N
k

)
denotes

the number of possible ways to select precisely k out of N items (disregarding their
order); or, equivalently, the number of different subsets of size k. From (2.1), it
follows immediately that every item has the same chance of being included in the
sample.1 A uniform sample of 40 items from a population of 400 items is shown in
figure 2.1a.

Uniform sampling is the most basic of the available sampling designs. It is objective;
no item is preferred over another one. Uniform samples capture the intuitive notion
of randomness and are often considered representative. If information about R or
the intended usage of the sample is unavailable at the time the sample is created,
uniform sampling is the best choice. This situation occurs rarely in traditional
survey sampling but is frequent in database sampling. Otherwise, when additional
information is available, alternative sampling designs may be superior to uniform
sampling. In this case, uniform sampling often acts as a building block for these
more complex designs.

As becomes evident from equation (2.1), different uniform sampling designs differ
in the distribution of the sample size |S| only. The most common uniform designs are
simple random sampling and Bernoulli sampling; we will come across other uniform
designs in the course of this thesis.

Under the simple random sampling design (SRS), the sample size is a constant.
For an SRS of size n, we have for each A ⊆ R

Pr [S = A] =

{
1
/(

N
n

)
|A| = n

0 otherwise.
(2.2)

The sample in figure 2.1a is a simple random sample of size n = 40. We make use of
the letter n whenever we refer to the obtained sample size; n is a synonym for |S|.

Under the Bernoulli sampling design (BERN), the sample size is binomially
distributed. For a given sampling rate q, each item is included into the sample with
probability q and excluded with probability 1− q; the inclusion/exclusion decisions
are independent. We have

Pr [S = A] = q|A|(1− q)N−|A| (2.3)

for any fixed A ⊆ R and

Pr [|S| = k] =
(
N

k

)
qk(1− q)N−k (2.4)

1The opposite does not hold, see section D on systematic sampling.

9

2 Literature Survey

Sample size

P
ro

b
a
b
il
it

y

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7

Figure 2.2: Sample size distribution of Bernoulli sampling (N = 400, q = 0.1)

for 0 ≤ k ≤ N . The binomial probability in (2.4) is referred to frequently; we use the
shortcut

B(k; N, q) def=
(
N

k

)
qk(1− q)N−k, (2.5)

so that Pr [|S| = k] = B(k; N, q). The sample size has mean qN and variance
q(1− q)N ; the distribution of the sample size for N = 400 and q = 0.1 is given in
figure 2.2.

To distinguish the random sample size n from the “desired” sample size qN , we
will consistently make use of the letter M , referred to as the sample size parameter
of a design. The key difference between n and M is that n is a random variable while
M is a constant.2 Using this notation, an SRS of size M , where 1 ≤M ≤ N , is often
preferable to a Bernoulli sample with q = M/N for the purpose of estimation. Both
designs have an expected sample size of M but the additional sample-size variance
of Bernoulli sampling adds to the sampling error (Särndal et al. 1991). In practice,
however, Bernoulli samples are sometimes used instead of simple random samples
because the former are easier to manipulate.

Both SRS and BERN sample without replacement, meaning that each item sampled
at most once. Alternatively, one can sample with replacement. In a with-replacement
design, each item can be sampled more than once. Such a situation typically occurs

2There is no difference for SRS, though. Strictly speaking, we should have used M in our discussion
of SRS and equation (2.2) but we chose n for expository reasons.

10

2.1.2 Sampling Designs

when items are drawn one by one, without removing already selected items from the
population. The set S of possible outcomes then consists of sequences of items from
R; order is important. A with-replacement design is called uniform if all equal-length
sequences of items from R are selected with equal probability. As before, different
uniform designs with replacement differ in the distribution of the sample size (length
of sequence) only.

In simple random sampling with replacement (SRSWR), the sample size is a
predefined constant M (so that n = M). For example, let R = { 1, 2, 3 } and set
M = 2. Possible samples are

(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3),
(3, 1), (3, 2), (3, 3)

and each sample is selected with probability 1/9. One can construct a uniform sample
without replacement by removing duplicate items. The resulting sample is called
the net sample, denoted by D(S) for “set of distinct items in S”. The unmodified
sample is called the gross sample, denoted by S. For our example, the respective net
samples are

{ 1 }, { 1, 2 }, { 1, 3 },
{ 1, 2 }, { 2 }, { 2, 3 },
{ 1, 3 }, { 2, 3 }, { 3 }.

The distribution of the net sample size is rather complex. After the i-th draw,
denote by Si the sample, by |Si| the number of items in the sample, including
duplicates, and by |D(Si)| the number of distinct items in the sample. Then
|D(S1)| = 1 and

Pr [|D(Si+1)| = k] =
k

N
Pr [|D(Si)| = k] +

N − k + 1
N

Pr [|D(Si)| = k − 1] (2.6)

for 1 ≤ k ≤ i + 1. Figure 2.3 depicts an example of the resulting distribution. A
non-recursive formula of Pr [|D(Si+1)| = k] is given in Tillé (2006, p. 55). The
expected sample size is

E [|D(S)|] = N

(
1−

(
N − 1
N

)M)
,

which evaluates to 38.11 in our example. When M � N , SRSWR performs nearly
as well as SRS. Otherwise, Rao (1966) has shown that SRSWR is statistically less
efficient, that is, estimates derived from the sample exhibit (slightly) higher estimation
error. Nevertheless, drawing an SRSWR is sometimes less costly than drawing an
SRS, even if the sample size of SRSWR is increased to compensate for the effect of
duplicate items.

11

2 Literature Survey

Sample size

P
ro

b
a
b
il
it

y

0 20 40 60 80 100

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Figure 2.3: Sample size distribution of simple random sampling with replacement
after duplicate removal (N = 400, n = 40)

B. Weighted Sampling

An important class of sampling designs are weighted sampling designs, which are also
called probability-proportional-to-size (PPS) sampling designs. Unlike in uniform
sampling or other equal-probability designs, the probability of an item being included
into the sample varies among the items in the population. Weighted sampling is
especially useful when some items in the population are considered more important
than other items and the importance of each item can be quantified before the
sample is created. The importance is modeled by associating a weight wi with each
item ri in the data set, 1 ≤ i ≤ N . The interpretation of the weight differs for
without-replacement and with-replacement sampling. We restrict our discussion to
without-replacement sampling; with-replacement designs are discussed in Särndal
et al. (1991) and Thompson (1992).

Under a weighted sampling design without replacement, the inclusion probability
of each item is proportional to its weight. Denote by

πi
def= Pr [ri ∈ S]

the first-order inclusion probability of ri. With M being the desired sample size, we
have

πi = M
wj∑
j wj

(2.7)

12

2.1.2 Sampling Designs

assuming that the right hand side of the equation is always less than or equal to 1.
Hanif and Brewer (1980) list and classify 50 different sampling schemes for weighted
sampling without replacement. Most of these schemes lead to a unique sampling
design. The designs differ in the higher-order inclusion probabilities, that is, the
probabilities that two or more items occur jointly in the sample. For sample sizes
larger than M = 2, most of the schemes are complex and/or lead to complex variance
estimators.

We will only discuss Poisson sampling, a simple but common design. In Poisson
sampling, each item ri is accepted into the sample with probability πi as in (2.7) and
rejected with probability 1− πi. The acceptance/rejection decisions are independent.
We have

Pr [S = A] =
∏
ri∈A

πi
∏

ri∈R\A

(1− πi)

for an arbitrary but fixed A ⊆ R. A realization of Poisson sampling is shown in
figure 2.1b; the weight of each item is proportional to its squared distance from the
center. The sample size is random; it has mean M and variance

∑
πi(1−πi). Unless

M is not too small, the sample size will stay close toM with high probability (Motwani
and Raghavan 1995). In the special case where all πi are equal, Poisson sampling is
reduced to Bernoulli sampling and the sample size is binomially distributed.

C. Stratified Sampling

Under a stratified sampling design, the population is divided into strata in such a
way that every item is contained in exactly one stratum. The strata therefore form
a partitioning of the population. A separate sample is drawn independently from
each stratum, typically using simple random sampling. In this case, the total sample
size is constant. An example is given in figure 2.1c, where stratum boundaries are
represented by solid lines. Precisely 3 items have been selected from each of the two
large strata and 1 has been taken item from each of the smaller strata.

The placement of stratum boundaries and the allocation of the available sample
size to the individual strata is a challenging problem, especially if multiple variables
are of interest. A good overview of existing approaches is given in Cochran (1977).
In general, when subpopulations are of interest (e.g., male and female), one may
place each subpopulation in its own stratum. This way, it is guaranteed that the
subpopulations are appropriately represented in the sample. When strata are chosen
in such a way that the study variable is homogeneous within each stratum and
heterogeneous between different strata, stratified sampling may produce a significant
gain in precision compared to SRS.

D. Systematic Sampling

The systematic sampling design is an equal-probability design, that is, items are
selected with equal probability. The design results from schemes that (1) order the

13

2 Literature Survey

data set by some fixed criteria and (2) select every k-th item starting from an item
chosen uniformly and at random from the first k items. Only k different samples
can be selected under the design so that it is not uniform. Figure 2.1d shows a
realization of systematic sampling with k = 10. The sample size is either bN/kc or
dN/ke depending on the start item. Systematic sampling might be used in practice
when drawing a uniform sample is considered too expensive or is too cumbersome to
implement.

E. Cluster Sampling

Cluster sampling is used when the population is naturally divided into clusters of
items (e.g., persons in a household or tuples in a disk block). The sample consists
of entire clusters randomly chosen from the set of all clusters. Figure 2.1e shows a
possible outcome. In the figure, cluster boundaries are represented by solid lines and
simple random sampling has been used to select the clusters.

In contrast to stratified sampling, the primary goal of cluster sampling is to reduce
the cost of obtaining the sample. The price is often a loss in precision, especially
in the common case where the items within clusters are homogeneous and different
clusters are heterogeneous. But still, the precision/cost ratio of a cluster sampling
scheme may be higher than the ones of alternative schemes.

2.1.3 Estimation

Sampling is usually applied to estimate one or more parameters of the population.
Parameters are, for example, the unemployment rate of a country’s population, the
labor cost of a company’s employees, or the selectivity of a query on a relational
table. We focus solely on real-valued parameters. More complex estimation tasks
specific to databases are deferred to section 2.3.

We denote an estimator of population parameter θ by θ̂. Generally, estimator θ̂
is a function from a subset of R to a real value, that is, θ̂ : P(R) → R with P(R)
denoting the power set of R. For an arbitrary but fixed sample s ∈ S , the quantity
θ̂(s) is a constant. The quantity θ̂(S), however, is a random variable because the
sample S itself is random. Clearly, we want to choose θ̂ such that θ̂(S) approximates
θ, that is, that θ̂(S) is close to θ with high probability. For brevity, we will usually
suppress the dependance on S and write θ̂ to denote θ̂(S).

A. Properties of Estimators

Before we discuss estimators for common population parameters and sampling
designs, we will briefly summarize some important properties of estimators in general.
These properties help to determine how good an estimator performs in estimating a
population parameter. They are often used to compare alternative estimators against
each other. An overview is given in table 2.2.

The expected value of an estimator can be seen as the average value of the estimate
when sampling is repeated many times. The bias is a measure of accuracy, the

14

2.1.3 Estimation

Table 2.2: Important properties of estimators

Property Notation and definition

Expected value E [θ̂] =
∑
s∈S

Pr [S = s] θ̂(s)

Bias Bias[θ̂] = E [θ̂]− θ

Variance Var[θ̂] = E [(θ̂ − E [θ̂])2] = E [θ̂2]− E [θ̂]
2

Standard error SE[θ̂] =
√

Var[θ̂]

Coefficient of variation CV[θ̂] =
SE[θ̂]

E [θ̂]

Mean squared error MSE[θ̂] = Var[θ̂] + Bias[θ̂]2

Root mean squared error RMSE[θ̂] =
√

MSE[θ̂]

Average relative error ARE[θ̂] = E
[
|θ̂ − θ|
θ

]

degree of systematic error. It equals the expected deviation from the real population
parameter. If an estimator has the desirable property of zero bias, it is said to be
unbiased. An unbiased estimator is correct in expectation, that is, its expected value
equals the population parameter it tries to estimate. Otherwise, the bias is non-zero
and the estimator is biased. The variance is a measure of precision, the degree of
variability. It equals the expected squared distance of the estimate from its expected
value. A “large” variance means that the estimates heavily fluctuate around their
expected value; a “low” variance stands for approximately stable estimates. What
is considered large and low variance depends on the application and the parameter
to be estimated (see below). Often, the standard error (square root of variance) is
reported instead of the variance. The standard error is more comprehensible and has
the same unit as θ. Going one step further, the coefficient of variation equals the
standard error normalized by the expected value; it is unitless. A value strictly less
than 1 indicates a low-variance distribution, whereas a value larger than 1 is often
considered high variance.

The suitability of an estimator for a specific estimation problem depends on both
its bias and its variance. A slightly biased estimator with a low variance may be
preferable to an unbiased estimator with a high variance. The mean squared error
(MSE) incorporates both bias and variance. It is equal to the expected squared
distance to the true population parameter and is often used to compare different
estimators. A low mean squared error leads to more precise estimates than a high
mean squared error. The root mean squared error (RMSE) denotes the square root
of the MSE and has the same unit as θ. The average relative error (ARE) denotes

15

2 Literature Survey

the expected relative deviation of the estimate from θ. In contrast to the MSE, the
ARE is normalized and unitless. It can therefore be used to explore the performance
of an estimator across multiple data sets.

One of the main advantages of random sampling is that the variance of an estimator
can itself be estimated from the sample. For some problems (e.g., estimating sums
and averages), formulas for variance estimation are available and given below. Other,
more complex problems require more sophisticated techniques, e.g., resampling
methods such as bootstrapping and jackknifing.

B. Sums and Averages

Let f : R→ R be a function that associates a real value with each of the items in
the population. For brevity, set

yi = f(ri)

for 1 ≤ i ≤ N . We now describe how to estimate the population total

τ =
∑
ri∈R

yi

and the population average

µ =
1
N

∑
ri∈R

yi =
τ

N
.

All yi, τ and µ are defined with respect to f , but we omit this dependency in our
notation. Some typical choices for f are described by Haas (2009):

1. Suppose that each r ∈ R has a numerical attribute A and let f(r) = r.A. Then,
τ corresponds to the population total of attribute A and µ corresponds to the
population average of A. For example, suppose that R comprises employees of
a company and that, for each employee r ∈ R, f(r) gives r’s income. Then,
τ corresponds to the total income of all employees and µ corresponds to the
average income.

2. Let h be a predicate function such that h(r) = 1 whenever r satisfies a given
predicate and h(r) = 0 otherwise. Set f(r) = h(r). Then, τ corresponds to
the number of items in R that satisfy the predicate and µ to the selectivity
of the predicate. Picking up the above example, set h(r) = 1 whenever r is a
manager and h(r) = 0 otherwise. Then, τ corresponds to the total number of
managers and µ corresponds to the fraction of employees that are managers.

3. Defining r.A and h as above, let f(r) = h(r)r.A. Then, τ corresponds to the
sum of attribute A over the values that satisfy the predicate. In our example,
τ corresponds to the total income of all managers.

16

2.1.3 Estimation

Note that in the last case, µ does not correspond to the average value of the items
that satisfy the predicate; it does not have any meaningful value. Averages over
subpopulations can be expressed as a ratio of two sums—(

∑
h(r)r.A)/

∑
h(r)—and

are discussed in Särndal et al. (1991, sec. 5.6).
We start with estimators for the population total τ . Horvitz and Thompson

(1952) introduced an estimator that can be used with any probability design without
replacement. It is given by

τ̂HT =
∑
ri∈S

yi
πi
, (2.8)

where, as before, πi = Pr [ri ∈ S] denotes the first-order inclusion probability of ri.
In (2.8), each value is scaled-up or “expanded” by its inclusion probability. For this
reason, the above sum is often called π-expanded sum.

The Horvitz-Thompson (HT) estimator is unbiased for τ . Its variance Var[τ̂HT]
depends on the second-order inclusion probabilities

πij
def= Pr [ri ∈ S, rj ∈ S]

and is given in table 2.3. The table also gives an unbiased estimator V̂ar[τ̂HT] of
the variance of τ̂HT from the sample. The variance estimator is guaranteed to be
non-negative when all πij > 0. It involves the computation of a double sum, which
might be expensive in practice. A more serious problem is that the πij are sometimes
difficult or impossible to obtain. Fortunately, the HT estimator and the respective
variances simplify when used with most of the designs discussed previously. For
example, when SRS is used, we have πi = n/N for all i and

τ̂SRS =
N

n

∑
ri∈S

yi.

A sampling rate of 1% thus leads to a scale-up factor of 100.
Table 2.3 gives estimators, their variance and estimators of their variance for other

sampling designs. Some of the formulas involve the population variance

σ2 =
1

N − 1

∑
ri∈R

(yi − µ)2

or the sample variance

s2 =
1

n− 1

∑
ri∈S

(yi − ȳ)2 with ȳ =
1
n

∑
ri∈S

yi.

The table gives two estimators for Bernoulli sampling: one that does not require
knowledge of N and one that does. The first estimator is the standard HT estimator.
The second estimator, in essence, treats the sample as if it were a simple random
sample. The estimator is asymptotically unbiased and usually more efficient (Strand
1979). For stratified sampling, we denote the strata by R1, . . . , RH and the stratum

17

2 Literature Survey

T
ab

le
2.3:

E
stim

ators
of

the
population

total,
their

variance
and

estim
ators

of
their

variance

D
esign

R
eq

u
ired

τ̂
B

ias[τ̂
]

V
ar[τ̂

]
V̂

ar[τ̂
]

W
ithout

replacem
ent

π
i ,π

ij
= ∑r

i ∈
S

y
i

π
i

=
0

= ∑r
i ∈

R ∑r
j ∈

R (
π

ij

π
i π

j
−

1)
y

i y
j

= ∑r
i ∈

S ∑r
j ∈

S (
1

π
i π

j
−

1π
ij)

y
i y

j

W
ith

replacem
ent

p
i

=
1n ∑r

i ∈
S

y
i

p
i

=
0

=
1n ∑r

i ∈
R (

y
i

p
i −

τ)
2

p
i

=
1

n(n
−

1) ∑r
i ∈

S (
y

i

p
i −

τ̂)
2

SR
S

N
=
Nn ∑r

i ∈
S

y
i

=
0

=
N

2
σ

2

n (1
−
nN)

=
N

2
s
2n (1

−
nN)

SR
SW

R
N

=
Nn ∑r

i ∈
S

y
i

=
0

=
N

(N
−

1)
σ

2

n
=
N

2
s
2n

B
ernoulli

q
=

1q ∑r
i ∈

S

y
i

=
0

= (
1q
−

1)∑r
i ∈

R

y
2i

=
1q (

1q
−

1)∑r
i ∈

S

y
2i

B
ernoulli

N
=
Nn ∑r

i ∈
S

y
i

A
sym

ptotically
as

SR
S,

see
Strand

(1979).

P
oisson

π
i

=
M

w
i

∑
i w

i
= ∑r

i ∈
S

y
i

π
i

=
0

= ∑r
i ∈

R (
1π
i −

1)
y
2i

= ∑r
i ∈

S

1π
i (

1π
i −

1)
y
2i

Stratified
τ̂
h

=
H
∑h
=

1

τ̂
h

=
0

=
H
∑h
=

1 V
ar[τ̂

h
]

=
H
∑h
=

1 V̂
ar[τ̂

h
]

Stratified
+

SR
S

N
h

=
H
∑h
=

1

N
h

n
h ∑r

i ∈
S

h

y
i

=
0

=
H
∑h
=

1

N
2h

σ
2h

n
h (

1
−
n

h

N
h)

=
H
∑h
=

1

N
2h

s
2h

n
h (

1
−
n

h

N
h)

System
atic

/
C

luster
See

Särndal
et

al.
(1991).

18

2.1.3 Estimation

samples by S1, . . . , SH , respectively. The stratum size, sample size and total estimator
of the h-th stratum are denoted by Nh, nh and τ̂h, respectively.

Hansen and Hurwitz (1943) introduced a general estimator for sampling designs
with replacement. The estimator requires knowledge of the probability pi of selecting
item ri in each of the draws. Observe that pi differs from πi for n > 1; the latter
probability is given by πi = 1− (1− pi)n. The Hansen-Hurwitz (HH) estimator is

τ̂HH =
1
n

∑
ri∈S

yi
pi
,

where S is treated as a multiset. This means that each value participates in the sum
as many times as it is present in S. The HH estimator is unbiased for τ . Table 2.3
gives the variance and an unbiased variance estimator for the HH estimator. The
table also contains the SRSWR version of the estimator.

We now turn our attention to population averages. Making use of the HT or HH
estimate of the population total, averages are obtained through division by N . We
have

µ̂X =
τ̂X
N

(2.9)

for X ∈ {HT,HH }. The variance and its estimate change by a factor of N−2:

Var[µ̂X] =
1
N2

Var[τ̂X] and V̂ar[µ̂X] =
1
N2

V̂ar[τ̂X].

Of course, this requires that the population size N is known. Otherwise, the HT
estimator of N is given by

N̂HT =
∑
ri∈S

1
πi

and the weighted sample mean estimator of µ is given by

µ̂WSM =
τ̂HT

N̂HT

=

∑
ri∈S yi/πi∑
ri∈S 1/πi

.

The estimator is slightly biased but the bias tends to zero as the sample size increases.
According to Särndal et al. (1991, sec. 5.7), µ̂WSM can be superior to µ̂HT in terms
of variance. One such example is Bernoulli sampling, where the weighted sample
mean coincides with the sample mean ȳ while µHT = n/(qN)ȳ does not.

C. Confidence Intervals

The HT and HH estimators described previously produce a point estimate, that is,
they output a single value that is assumed to be close to the true value. In practice,
one is often less interested in a single point than in an interval in which the true value
is likely to lie. Confidence intervals are a prominent example of this so-called interval
estimation. A confidence interval is a random interval in which the true value lies

19

2 Literature Survey

with a specified probability. This probability is referred to as the confidence level
and denoted by 1− δ, where the “error probability” δ is usually small. The larger
the value of 1 − δ, the broader the intervals get. A typical choice is 1 − δ = 95%,
which is a good tradeoff between failure of coverage of the true value and the width
of the interval.

In practice, confidence intervals are often obtained from only the sample. The
resulting intervals are approximate in the sense that they cover the true value with a
probability of approximately 1− δ. Here, we only consider large-sample confidence
intervals for a population total τ . Large-sample confidence intervals are valid when
the estimate τ̂ is normally distributed with mean τ . This condition of normality
holds when either the population values are normally distributed or—by the central
limit theorem—when the sample size is sufficiently large, say, 100 items. The desired
interval is then given by

τ̂ ± t1−δ ŜE[τ̂],

where t1−δ is (1− δ/2)-quantile of the normal distribution. For example, t0.90 ≈ 1.64,
t0.95 ≈ 1.96 and t0.99 ≈ 2.58. The width of the interval depends on both the
confidence level and the standard error of the estimator. It is approximate because
an estimate of the standard error is used instead of the real standard error.

D. Functions of Sums and Averages

Denote by τ1, . . . , τk the population totals of the values of functions f1, . . . , fk,
respectively, and denote by τ̂1, . . . , τ̂k the corresponding HT estimators. As usual in
practice, we assume that all estimators have been computed from the same sample.
Statistics of the form

θ = g(τ1, . . . , τk)

can be estimated by replacing each τj by its estimator τ̂j so that

θ̂ = g(τ̂1, . . . , τ̂k).

If g is a linear function of the form

g(x1, . . . , xk) = a0 +
k∑
j=1

ajxj

for arbitrary but fixed a0, . . . , ak ∈ R, the estimator θ̂ is unbiased. The variance of θ̂
depends on the covariances between the θj . The covariance between two estimators
is a measure of correlation defined as

Cov[τ̂j1 , τ̂j2] = E
[(
τ̂j1 − E [τ̂j1]

)(
τ̂j2 − E [τ̂j2]

)]
=
∑
ri1∈R

∑
ri2∈R

(
πi1i2
πi1πi2

− 1
)
yi1j1yi2j2 ,

20

2.1.3 Estimation

where yij = fj(ri). In the final equality, we used the assumption that the τ̂j are
derived from the same sample, as usual in practice.3 A positive covariance indicates
that τ̂j2 tends to increase as τ̂j1 increases. Conversely, when the covariance is negative,
τ̂j2 tends to decrease as τ̂j1 increases. An unbiased estimator of the covariance is
given by

Ĉov[θ̂j1 , θ̂j2] =
∑
ri1∈S

∑
ri2∈S

1
πi1πi2

(
πi1πi2
πi1πi2

− 1
)
yi1j1yi2j2 .

We can now express the desired variance of θ̂ as

Var[θ̂] =
k∑

j1=1

k∑
j2=1

aj1aj2 Cov[τ̂j1 , τ̂j2]

=
k∑
j=1

a2
j Var[τ̂j] + 2

k−1∑
j1=1

k∑
j2=j1+1

aj1aj2 Cov[τ̂j1 , τ̂j2], (2.10)

where the covariance terms in the final equality might reduce or add to the total
variance. The variance of θ̂ can be estimated by replacing in (2.10) the variance
Var[τ̂j] by V̂ar[τ̂j] and Cov[τ̂j1 , τ̂j2] by Ĉov[τ̂j1 , τ̂j2]. If it is known that the sum
of the covariance terms is negative or close to zero, one occasionally ignores the
covariances and yields a conservative (i.e., too large) estimate of the variance.

If g is non-linear but continuous in the neighborhood of θ, the estimator θ̂ is
approximately unbiased for sufficiently large sample sizes. Its variance can be
estimated via Taylor linearization, see Särndal et al. (1991, sec. 5.5) or Haas (2009,
sec. 4.5).

E. Quantiles

Random samples can also be used to make inferences about population quantiles.
Denote by r(1), r(2), . . . , r(N) a sequence of the items in R ordered by some criterion,
so that r(t) denotes the (t/N)-quantile of the population. The goal is to find from
the sample a confidence interval for r(t). Denote by s(1), s(2), . . . , s(n) the ordered
sequence of items in a uniform sample from R. The interval

[s(L), s(U)]

with 1 ≤ L ≤ U and L ≤ t contains the desired quantile with probability

Pr
[
s(L) ≤ r(t) ≤ s(U)

]
= Pr[s(L) ≤ r(t)]− Pr[s(U) ≤ r(t−1)]

=

{
U−1∑
i=L

(
t

i

)(
N − t
n− i

)
+
(
t− 1
U − 1

)(
N − t
N − U

)}/(
N

n

)
.

For example, with N = 100,000 and n = 1,000, the 25% quantile lies between s(230)

and s(270) with a probability of approximately 85%. The situation gets much more

3Otherwise, if the estimates were independent, the covariance would be 0.

21

2 Literature Survey

Table 2.4: Coarse comparison of survey sampling and database sampling

Survey sampling Database sampling

Query known Yes No
Exact result obtainable No Yes
Non-response Yes No
Measurement errors Yes No

Domain expertise available Yes No
Sampling designs Sophisticated Simple (e.g., uniform)
Sample size Small Large
When performed Query time Usually in advance
Time required Days, weeks, months Seconds, minutes, hours
Preprocessing feasible No Yes

complicated when non-uniform sample designs are used; see Krishnaiah and Rao
(1988, ch. 6).

2.2 Database Sampling

Database sampling is concerned with sampling techniques tailored to database
management systems and data stream management systems. In section 2.2.1, we point
out the key differences from survey sampling. We then discuss the three alternative
approaches to database sampling: query sampling (section 2.2.2), materialized
sampling (section 2.2.3) and permuted-data sampling (section 2.2.4). Within data
stream management systems, different sampling techniques are required; we discuss
these techniques separately in section 2.2.5.

2.2.1 Comparison to Survey Sampling

Although database sampling techniques are built upon the survey sampling techniques
of section 2.1, they differ in various respects. Our discussion of these differences draws
from a similar discussion in Haas (2009). A coarse overview is given in table 2.4; not
all points do always apply. We first discuss survey sampling and then proceed to
database sampling.

The goal of survey sampling is to obtain information about the population that
often cannot be obtained with other techniques. For example, it is infeasible to
question all of the inhabitants of a large city or even the entire country. The objective
of the survey is known in advance and the sample is created exclusively to achieve
the objective. In fact, sampling surveys are often carried out by statisticians and
domain experts, who create highly specialized sampling schemes just for the purpose
of a single survey. These specialized schemes allow for very small sample sizes, which
are a must because access to the data is limited and costly. Because the effort for

22

2.2.2 Query Sampling

conducting a survey is high, the process of sampling may require from a few days up
to many months to complete.

We face an entirely different situation in database sampling. In contrast to survey
sampling, we are in principle able to run the query on the entire database (i.e., the
population) and obtain its exact result. However, in the applications we are interested
in, this approach is too time-consuming and sometimes even infeasible. Preprocessing
of the data is nevertheless feasible, and many database sampling techniques make
use of it in order to support efficient sampling at query time. The prospects of
preprocessing are somewhat limited, though, because the query is often unknown or
only vaguely known at the time the sample is created. This is due to two reasons:
First, as we discuss later, even the computation of the sample at query time might
be too expensive, so that the sample has to be precomputed before the query is
issued. Second, the cost of computing the sample is balanced out when the sample is
reused several times; it is clearly desirable to make use of a single sample for many
different queries. Since domain expertise is unavailable and we consequently cannot
build highly specific samples, simple sampling designs—such as uniform sampling
designs—that play only a minor role in survey sampling become essential tools in
database sampling. Also, to compensate for the disadvantages of simple sampling
designs, database samples tend to be much larger than survey samples.

Research in database sampling mainly focuses on the questions of (i) how to quickly
provide a sample at query time, and (ii) how to run database queries on the samples.
Sampling schemes that are able to (iii) exploit workload information, or any other
information about expected queries, are also of interest. In the remainder of this
section, and in large parts of this thesis, we focus on (i); available techniques for
points (ii) and (iii) are discussed in section 2.3.

2.2.2 Query Sampling

In what follows, we distinguish exact queries and approximate queries. The decision
of whether or not approximate query answers are allowed is therefore left to the issuer
of the query. Perhaps the oldest class of database sampling methods is represented
by query sampling, which is also known as online sampling. In query sampling, the
sample is computed from the database at query time. When an approximate query
enters the system, the base data is accessed in order to build a sample for estimating
the query result. Repeated runs of the same query initiate repeated computations
of the sample and thus may lead to different results. Figure 2.4 illustrates the
architecture of an query-sampling enhanced database system.

If implemented carefully, query sampling leads to a reduction in I/O cost because
the sample can be built without reading the entire data set. As we will see below,
the reduction in I/O cost might not be as high as expected at first thought. In any
case, query sampling leads to reduction in CPU cost because fewer tuples have to be
processed. In practice, different sampling schemes are applied depending on whether
query processing is I/O-bound or CPU-bound (Haas and König 2004).

23

2 Literature Survey

Base

updates

Base

data

Exact

query

Approximate

query

Exact

result

Approximate

result
Estimator

Sampling

scheme

Figure 2.4: Query sampling architecture

A. Sampling Schemes

We now describe how to obtain a query sample from a relational table. Virtually
all query sampling schemes lead to uniform or clustered uniform designs because
the cost to execute alternative schemes, such as weighted or stratified sampling, at
query time are simply too high. One distinguishes row-level and block-level schemes,
depending on whether the sampling units are individual items (=rows) or blocks of
items as stored on hard disk. The latter approach produces a cluster sampling design.
For a given sample size, row-level sampling often leads to more precise estimates
compared to block-level, sampling while block-level sampling has lower I/O cost (see
below).

Row-level sampling is usually executed draw-by-draw, that is, one item at a time.
Each successful draw yields an item chosen uniformly and at random from the
population, which naturally leads to a with-replacement sampling scheme.4 In the
simplest setting, the items are stored in blocks of equal size, that is, each block
contains exactly the same number of items. Then, a random item can be obtained by
first selecting a random block (see below) and then picking a random item from this
block. Results about the probability distribution and expected values of the number
of accessed blocks to obtain a sample of a specified size can be found in Cárdenas
(1975), Yao (1977), and Cheung (1982).5

In a more general setting, items are distributed among blocks of unequal size. If
the block sizes are known, the above schemes can be modified appropriately: Each
block is selected with a probability proportional to its size and, as before, a random

4To sample without replacement, draws that produce items already sampled are repeated.
5These articles do not directly discuss row-level sampling but consider the problem of retrieving k

specific records from disk. Since their analysis is based on the assumption that every record on
disk is equally likely to be one of the k specific records, it coincides with row-level sampling.

24

2.2.2 Query Sampling

item from the block becomes the sample item. Christodoulakis (1983) gives results
about the number of required block accesses. In his Ph.D. thesis, Olken (1993)
discusses acceptance/rejection (A/R) schemes that compute the sample when block
sizes are unknown beforehand. The key idea is to pick a block uniformly and at
random. The block is “accepted” with probability

number of items in selected block
upper bound on number of items in any block

and rejected otherwise. In the case of a rejection, the current draw fails and is
repeated from scratch (by choosing a new block). In case of acceptance, a tuple
chosen uniformly and at random from the selected block is returned as the sample
item. The A/R step ensures that each item is chosen with equal probability but it
also increases the sampling cost due to rejections.

In an I/O-bound environment, the cost of reading blocks from disk dominate the
cost of row-level sampling. The idea behind block-level sampling is to sample all
items of selected blocks, that is, all items read from disk are used in the sample.
Perhaps the simplest approach is block-level Bernoulli sampling, where each block
is included in the sample with probability q and excluded with probability 1 − q.
Of course, only the blocks that are included into the sample are read from disk.
Alternatively, one might sample draw-by-draw for block-level SRSWR or apply
list-sequential sampling techniques (section 3.4.2) to obtain a block-level SRS. All
block-level sampling schemes require that we are able to efficiently retrieve the k-th
out of all blocks, where k is a random block number determined by the scheme.
This is trivial if the blocks are stored contiguously. Otherwise, in-memory data
structures that record where to find the blocks on disk can be exploited; see B+

tree sampling (Olken and Rotem 1989), augmented-B+ tree sampling (Antoshenkov
1992), hash file sampling (Olken et al. 1990), and extent map sampling (DeWitt et al.
1992).

We now give a simple example that emphasizes the advantages and disadvantages
of the two approaches. Suppose that the population consists of 1,000,000 items,
which are stored in blocks of 100 items each. Further, suppose that the first block
consists of only 1s, the second block of only 2s, and, more generally, the i-th block
consists of only is. To compare row-level and block-level sampling, we can run both
schemes on the population and use the sample to estimate the population average.
Figure 2.5a shows the expected number of fetched blocks for each of the schemes
and for varying sampling fractions. As can be seen, row-level sampling is much more
expensive than block-level sampling. In fact, when the sampling rate exceeds roughly
4%, we are reading almost all of the blocks. However, as shown in figure 2.5b, the
precision of the estimate (in terms of the coefficient of variation) is much higher for
row-level sampling than it is for block-level sampling. It is not immediately clear
which of the two schemes is the better choice; the decision depends on both the
estimator and the distribution of the data in the blocks. An in-depth treatment
of this topic can be found in Haas and König (2004), who also propose a hybrid
sampling scheme that combines the advantages of both approaches.

25

2 Literature Survey

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Sampling fraction

E
x
p
ec

te
d
 f

ra
ct

io
n
 o

f
b
lo

ck
s

re
a
d

Row−level
Block−level

(a) I/O cost

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Sampling fraction

C
o
ef

fi
ci

en
t

o
f

v
a
ri

a
ti

o
n

Row−level
Block−level

(b) Precision of estimate

Figure 2.5: Comparison of row-level and block-level sampling

26

2.2.3 Materialized Sampling

B. The SQL Standard and Commercial Implementations

A very basic form of query sampling has been included into the SQL/Foundation:2003
standard. According to the standard, each table in the FROM clause can be followed
by a sample clause of the form

TABLESAMPLE BERNOULLI|SYSTEM (<rate>) [REPEATABLE (<seed>)],

where <rate> denotes the desired sampling rate in percent, BERNOULLI stands for
row-level Bernoulli sampling, and SYSTEM is vendor-specific and typically refers to
a block-level sampling scheme. The REPEATABLE clause can be used to generate
the same sample in repeated executions of the query (by passing the same <seed>).
Estimation from the sample has to be implemented by the query issuer. For example,
the following query estimates the number of parts in stock based on a 1% Bernoulli
sample using the HT estimator described in section 2.1.3:

SELECT SUM(NO STOCKED)*100 FROM PARTS TABLESAMPLE BERNOULLI (1)

The TABLESAMPLE clause is implemented in IBM DB2 UDB (Haas 2003) and with
a varied syntax in Microsoft SQL Server6, Oracle Database7, Teradata Database8,
and IBM Informix Dynamic Server9. Gryz et al. (2004) also describe how DB2 uses
query sampling techniques when the RAND() function is encountered in the WHERE
clause of a SQL query.

2.2.3 Materialized Sampling

In materialized sampling, or offline sampling, a set of precomputed samples is
materialized before the actual queries arrive. The samples are taken directly from
the base tables or from arbitrary views derived from the base tables. For this reason,
materialized samples are sometimes called materialized sample views (Larson et al.
2007). When an approximate query enters the system, one or more of these samples
are selected to answer the query. Unless different samples are selected, repeated
runs of the same query produce identical results. The general architecture of a
materialized-sampling system is shown in figure 2.6.

Materialized sampling has several advantages when compared to query sampling.
Since the sample is computed in advance, the cost of sample computation does
not affect the cost of processing an approximate query. One may therefore use
more sophisticated sampling schemes than in query sampling. As a consequence,
the precision of estimates derived from materialized samples can be significantly
increased. Processing materialized samples also has a lower I/O cost because the
samples are readily available when needed. For example, a materialized uniform

6http://msdn2.microsoft.com/en-us/library/ms189108.aspx
7http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/ap_standard_sql004.

htm
8http://www.teradata.com/t/page/44490/
9http://www.redbooks.ibm.com/abstracts/tips0513.htm

27

http://msdn2.microsoft.com/en-us/library/ms189108.aspx
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/ap_standard_sql004.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/ap_standard_sql004.htm
http://www.teradata.com/t/page/44490/
http://www.redbooks.ibm.com/abstracts/tips0513.htm

2 Literature Survey

Base

updates

Base

data

Exact

query

Exact

result

Estimator

Sample

data

Approximate

query

Approximate

result

Sampling

scheme

Figure 2.6: Materialized sampling architecture

sample of a relation stored on disk can be exploited to obtain estimates with the
(high) precision of row-level sampling at the (low) cost of block-level sampling. The
cost is further reduced when the sample is small enough to be stored in main memory.
Apart from costs, materialized sampling is advantageous because it supports a wider
range of queries. The reason is that materialized samples can be computed from
arbitrary views over base tables. For example, it may be feasible to precompute a
sample of a join with arbitrary join predicates even when the cost of obtaining such
a sample at query time is too high.

The advantages of materialized sampling do not come without disadvantages. A
minor point is that materialized samples require storage space. But unless the
sampling fractions are extremely high, the additional space consumption will be low
compared to the space required to store the base data. In fact, a large part of this
thesis is concerned with sampling schemes that guarantee that the space consumption
is bounded at all times. A more important point is that materialized samples have
to be maintained or refreshed as the base data evolves. In a static database, samples
computed once are valid forever.10 In practice, however, databases are evolving: they
are subject to insertions, updates and deletions. Each of these operations has to be
reflected appropriately in the sample, which incurs maintenance costs. We do not go
into further detail here because sample maintenance is one of the main topics in this
thesis; it is thoroughly discussed in chapters 3 and following.

10In order to avoid that a bad sample obtained by an “unlucky” draw remains valid for all times,
static samples should be recomputed occasionally.

28

2.2.4 Permuted-Data Sampling

Base

updates

Query

Exact

result
Estimator

Permuted

Base

Data

Sampling

scheme
Approximate

result

refine

Sampling

scheme

Figure 2.7: Permuted-data sampling architecture

2.2.4 Permuted-Data Sampling

In permuted-data sampling, the data in the database is rearranged in random order.
The DBO system of Jermaine et al. (2007), which pioneered permuted-data sampling,
selects each possible ordering with equal probability; but other approaches are
possible. In both cases, any prefix of a table can be seen as a random sample of that
table. This property is exploited in query processing, where an estimate of the final
query result is maintained while the data is processed. In fact, there is no distinction
between exact queries and approximate queries: exact query results are obtained
by running queries to completion. The architecture of a permuted-data sampling
system is depicted in figure 2.7. Part of the sampling cost emerges at update time
(permutation of tables), part of it at query time (reading the permuted tables in a
specified order). In this sense, permuted-data sampling is in between query sampling
and materialized sampling.

Permuted-data sampling is appealing because a first estimate is quickly available
and this estimate is refined as the query execution progresses. As soon as the precision
is sufficient, the query (or parts of the query) can be stopped. Permuted-data sampling
has its roots in the work on online aggregation by Hellerstein et al. (1997), where
the focus was put on aggregation queries with optional group-by. Later, techniques
for the computation of running confidence intervals have been proposed (Haas 1997,
1999; Jermaine et al. 2007). The main challenge in permuted-data sampling is the
non-blocking computation of joins; the problem has been extensively studied by Haas
and Hellerstein (1999), Jermaine et al. (2005), and Jermaine et al. (2007).

The main drawback of permuted-data sampling is that it has an impact on
traditional query processing. This includes both queries and updates. Data in a
traditional database is organized in such a way that some locality conditions are
preserved. In a permuted database, locality is destroyed on purpose. Preliminary
results in Jermaine et al. (2007) indicate that the overhead for running queries to
completion in a permuted database is not too large. Since permuted-data sampling
is a relatively new field of study, it is currently unknown how updates to the base
data can be incorporated without too much overhead.

A rough overview of the advantages and disadvantages of query sampling, ma-
terialized sampling and permuted-data sampling is given in table 2.5. Parentheses

29

2 Literature Survey

Table 2.5: Comparison of query, materialized and permuted-data sampling

Query Materialized Permuted

Responsiveness moderate high high
Repeated queries have different results yes no no

Ability to handle complex queries low high moderate
Ability to deal with data skew low high (low)
Ability to report running aggregates high low high

Performance impact on exact queries no no yes
Performance impact on updates no yes (yes)
Storage space required no yes no
Access to base data required yes no yes

indicate conjectures; the respective points have not yet been explored in the literature.
Each approach has unique advantages and disadvantages; the decision on which
one to use must be taken on a case-by-case basis. In this thesis, we focus almost
entirely on materialized sampling. The reason is that query sampling techniques are
too costly for many applications, and permuted-data sampling, though promising,
requires a complete redesign of the available system, thereby affecting traditional
query processing. Materialized samples both support the widest range of queries
and have the lowest response time. These two facts alone can outweigh its main
disadvantage, namely that of maintenance cost.

2.2.5 Data Stream Sampling

Data stream sampling is concerned with sampling from data streams, that is, from
potentially infinite sequences of items. Samples are used to reduce or bound resource
consumption, to support ad-hoc querying, to analyze why the system produced a
specific output, or to optimize the query graph. Since a data stream is changing
continuously, efficient sample maintenance is key to data stream sampling. Although
many techniques for maintaining materialized samples from databases can also be
used to sample from data streams, there are problems that are unique to data stream
sampling. To avoid repetition, we focus on these problems only, that is, we do
not discuss sampling problems that are solvable with database sampling techniques.
The main difference in data stream sampling is that samples are often “biased”
towards more recent items because recent items are considered more important by
applications. Such a notion of recency does not exist in traditional database sampling
and calls for novel sampling schemes. In this section, we give an overview of data
stream sampling; actual sampling schemes are discussed in chapter 3.

We model a data stream as a (possibly infinite) sequence of items. The items in the
stream may or may not comprise a timestamp attribute. If they do, we assume—as
usual in data stream literature—that the timestamps are non-decreasing. There

30

2.2.5 Data Stream Sampling

are alternative data stream models, in which each arriving element of the stream
constitutes an update to a global data structure (Muthukrishnan 2005). These models
resemble database sampling and—for this reason—are excluded from our discussion.
In the following, we will also assume that the intended use of the sample is not known
or only vaguely known upon its creation. Otherwise, specialized techniques, which
are not necessarily based on random sampling, exist for a wide range of analytical
tasks. The discussion of these techniques by far exceeds the scope of this thesis, but
see Muthukrishnan (2005), Aggarwal (2006a), and Garofalakis et al. (2009).

If sampling is performed from the entire stream, weighted sampling schemes, in
which the weight increases with the recency of the item, are required. The reason is
that—since the data stream is infinite—schemes such as uniform sampling produce
samples that either grow infeasibly large or represent a diminishingly small fraction
of the recent stream. In contrast, weighted samples have the advantage that a recent
fraction of the data stream is well-represented in the sample (Haas 2009; Aggarwal
2006b).

An alternative approach is to sample from a window defined over the stream. We dis-
tinguish stationary windows, in which the endpoints of the window are fixed, and slid-
ing windows, in which the endpoints move forward (Golab and Özsu 2003). Database
sampling techniques can be applied to sample from stationary windows (Haas 2009).
Sliding windows can be further classified into sequence-based sliding windows, which
comprise the last N items arrived in the stream, and time-based windows, which
comprise the items that arrived during the last ∆ time units. We say that a sample
is sequence-based or time-based if it is derived from a sequence-based or time-based
window, respectively. The number of items in the window is referred to as the window
size, while the time interval covered by a window is called the window length.

Using this terminology, sequence-based windows have fixed size but varying length.
The fixed window size reduces the complexity of sample maintenance, but the varying
window length can be problematic for time-based analyses. For example, consider
the following CQL query:11

SELECT SUM(size) AS num bytes
FROM packets [Range 60 Minutes]
GROUP BY port.

This query computes the number of bytes per port observed in the packets stream
during the last 60 minutes. Suppose that we want to answer the query using a
sequence-based sample of the last N items. Since the sample is sequence-based and
the query is time-based, we have to choose N in such a way that the last N items
are guaranteed to completely cover the 60-minute range of the query. Clearly, such
a choice is impossible if no a-priori knowledge about the data stream is available.
But even if we can come up with an upper bound for the number of items in the
query range, sequence-based schemes may perform poorly in practice. The reason
is that—unless the data stream rate is roughly constant—the average number of

11CQL is short for Continuous Query Language, see Arasu et al. (2006).

31

2 Literature Survey

items in the query range is much smaller than the upper bound N , so that (with
high probability) the sample contains a large fraction of outdated items not relevant
for the query.

In contrast, time-based windows have variable window size but fixed window length.
A time-based sliding window of the packets arrived during the last 60 minutes can
directly be used to approximately answer the query above. In time-based sampling,
the main challenge is to realize an upper bound on the space consumption of the
sample, while using the allotted space efficiently at the same time. Space bounds
are crucial in data stream management systems with many samples maintained
in parallel, since they greatly simplify the task of memory management and avoid
unexpected memory shortcomings at runtime. The difficulty of time-based sampling
arises from the fact that the number of items in the window may vary significantly
over time. If the sampling fraction is kept constant at all times, the sample shrinks
and grows with the number of items in the window. The size of the sample is therefore
unstable and unbounded. To avoid such behavior, the sampling fraction has to be
adapted on-the-fly. Intuitively, we can afford a large sampling fraction at low stream
rates but only a low sampling fraction at high rates.

As with the different approaches to sampling in databases, the decision of whether
to sample a data stream using weighted sampling, sequence-based sampling or time-
based sampling has to be taken on a case-by-case basis. The above discussion and
the description of the actual sampling schemes in chapter 3 might help in taking that
decision.

2.3 Applications of Database Sampling

In a wide area of database-related applications, sampling techniques have been used
as means to reduce computational cost. This cost reduction can be achieved in
two different ways. First, sampling facilitates query optimization—or, more general,
algorithm selection—because knowledge obtained from a sample of the data helps
to find more efficient ways to process it. Second, sampling is a key technique in
approximate query processing and data mining, where the accuracy of the query
answer is traded for the cost of its computation. In this section, we survey recent
work in database sampling, structured by their main applications.12 We cover
query sampling, materialized sampling, and permuted-data sampling. Many of these
techniques can also be applied on a sample obtained from a (sliding window of a)
data stream.

We will see that, in general, there is an advantage if the sample is precomputed, or
materialized, before it is actually used. Materialized samples are sometimes referred
to as sample synopses of the data. There are alternative non-sample synopses such
as histograms or wavelets; we do not cover these techniques here. In general, the

12In his Ph.D. thesis, Olken (1993) gives a survey about database sampling in the early 90’s; most
of the work discussed therein also appears here. In general, Olken’s survey gives a more detailed
account of this earlier work.

32

2.3.1 Selectivity Estimation

advantage of random sampling is that it scales well with both the amount of data
and the data’s dimensionality. A related approach to data summarization is given by
sketches, which can be seen as summaries tailored to a specific purpose. For example,
a sketch may maintain a data structure that can be used to estimate the number
of distinct items in the dataset; the very same sketch cannot be used to estimate
anything else, such as the number of distinct items in a subset of the dataset as
defined by a predicate. Since they are focused on a specific estimate, sketches—when
applicable—often perform better than random sampling. Again, sketches are not
discussed in the next sections; we are interested in techniques that can be exploited
for a variety of purposes.

2.3.1 Selectivity Estimation

Selectivity estimation is the process of estimating the selectivity or, equivalently,
the size of (the result of) a query over a database. It is one of the most important
applications of database sampling. Selectivity estimates are used in query optimiza-
tion, where they help to determine the cost of alternative execution plans. They
are also useful for load balancing in distributed systems, where a query workload
is distributed amongst several nodes. In both cases, precise selectivity estimates
are key to the improvement of the overall performance of query processing. In
some applications, selectivity estimates are also interesting in their own right; see
section 2.3.3 on approximate query processing.

Our focus is on selectivity estimation in relational database systems. We discuss
predicate selectivity estimation, join selectivity estimation, and selectivity estimation
for arbitrary relational algebra expressions. We then review fixed-precision sampling
schemes that provide estimates with a specified precision. Finally, we discuss
the usefulness of random sampling for the purpose of histogram construction and
maintenance.

A. Predicate Selectivity

In the simplest instance of the selectivity estimation problem, the query has the form
σ(R), where R is a table and σ is a predicate. We want to estimate how many tuples
in R satisfy predicate σ. We assume that, for each tuple r ∈ R, the membership
of r in σ(R) can be determined efficiently. Other than that, we do not impose any
restrictions on σ. Let h : R → { 0, 1 } denote a predicate function, that is, h(r) = 1
if r ∈ σ(R) and h(r) = 0 otherwise. Then,

Nσ = |σ(R)| =
∑
r∈R

h(r) (2.11)

denotes the query size. The query selectivity is given by Nσ/N , where as before
N = |R|.

33

2 Literature Survey

Estimators for sums such as (2.11) have already been discussed in section 2.1.3B.
Denote by Srow a uniform (row-level) sample of R and by Sbl a uniform block-level
sample of R. Unbiased estimators for Nσ are given by

N̂row =
N

n
|σ(Srow)| and N̂bl =

Nbl

nbl
|σ(Sbl)|,

where n denotes the size of Srow in tuples, nbl the size of Sbl in blocks, and Nbl the
size of R in in blocks. Block-level sampling for predicate selectivity estimation is
implemented in Oracle9i Release 2 and above.13 As discussed previously, row-level
sampling is (typically) superior to block-level sampling in terms of precision per
sampled tuple, but block-level sampling is superior to row-level sampling in terms of
cost per sampled tuple (cf. figure 2.5). Haas and König (2004) proposed a hybrid
approach that combines row-level and block-level sampling. If a materialized uniform
sample Smat from R is available, its usage is the best choice: the precision of the
estimate corresponds to that of row-level sampling; the sampling cost corresponds to
that of block-level sampling (sample stored on disk) or is even less (sample stored in
memory).

For uniform sampling (row-level or materialized), Toivonen (1996) has shown that
a sample of size ln(2/δ)/(2ε2), for 0 < ε, δ < 1, suffices to guarantee that the absolute
error of the selectivity estimate exceeds ε with a probability of at most δ. This
sample size bound is independent of both the dataset and the actual predicate. For
example, to guarantee an absolute error of ε = 0.01 with probability 1− δ = 95%, a
sample size of 19,000 items is sufficient. Results for selectivity estimation in general
are summarized in section D.

B. Join Selectivity

A join query has the form σ(R1 × · · · ×Rk), where R1, . . . , Rk are tables and σ is a
predicate. For simplicity, we assume that k = 2 and that σ describes an equi-join on
attribute A. Thus, we consider queries of the form J = σ1(R1) onR1.A=R2.A σ2(R2).
A pair (r1, r2) ∈ R1 × R2 of tuples is said to join if and only if (r1, r2) ∈ J . The
quantity |J | denotes the join size; |J |/(|R1| · |R2|) denotes the join selectivity. For
ease of presentation, we subsequently assume that |R1| = |R2| = N .

To describe the available schemes, we make use of the notation of Seshadri (1992)
and Haas et al. (1993).14 The simplest scheme is denoted t indep; this scheme
basically runs the row-level sampling scheme of section A with R = R1 × R2. To
obtain a sample from R, t indep samples uniformly a tuple r1 from R1 and r2 from
R2 (with replacement). The fraction of (r1, r2)-pairs that join is an unbiased estimate
of the join selectivity.

13The technique is called dynamic sampling, see http://download.oracle.com/docs/cd/B10500_

01/server.920/a96533/whatsnew.htm.
14Names consist of prefix “t ” for row-level and “p ” for block-level sampling. The suffix describes

the type of sampling: independent, cross-product, or index-based.

34

http://download.oracle.com/docs/cd/B10500_01/server.920/a96533/whatsnew.htm
http://download.oracle.com/docs/cd/B10500_01/server.920/a96533/whatsnew.htm

2.3.1 Selectivity Estimation

1

T
u
p
le

s
fr
o
m

2

(a) t indep
1

T
u
p
le

s
fr
o
m

2
(b) t cross

1

T
u
p
le

s
fr
o
m

2

(c) t index

Figure 2.8: Space explored by various schemes for join selectivity estimation (n=3)

Suppose that t indep samples n tuples from both R1 and R2. As illustrated in
figure 2.8a, it then explores a fraction of n/N2 of the full cross product. This is
because every sample item is only used once: the i-th sample from R1 is joined with
the i-th sample from R2 only, 1 ≤ i ≤ n. An alternative approach is to join each
newly sampled tuple with all previously sampled tuples. This method is denoted
as t cross; it explores a fraction of n2/N2 of the cross product (figure 2.8b). Alon
et al. (1999) have shown that t cross is space-optimal for worst-case data: a sample
of size O

(
N2/J

)
is both necessary and sufficient to guarantee fixed relative error

with constant probability. Unfortunately, this also implies that, for low-selectivity
queries (small J), very large samples might be required; see section D for a way to
avoid this problem.

If there is an index on, say, R2.A, we can leverage the index to come up with a
more efficient sampling scheme. In each step, the index-based scheme t index samples
a single tuple from R1 and then computes the full join r1 on S, thereby making use
of the index. When n tuples have been sampled from R1, the explored search space
is n/N (figure 2.8c); a significant improvement.

Each of the above schemes can be implemented using block-level sampling; the
resulting schemes are denoted as p indep, p cross, and p index. All but the index-
based schemes are due to Hou et al. (1988). The index-based schemes have been
proposed by Lipton and Naughton (1990), and Hou and Ozsoyoglu (1991). A
theoretical comparison between all 6 schemes has been performed by Haas et al.
(1993) and Haas et al. (1996). They found that after a fixed number of sampling
steps, the following relationships hold:

index ≤ block-level ≤ row-level

and
index ≤ cross ≤ indep,

where we write X ≤ Y when the scheme X achieves a better or equal precision than
scheme Y .

35

2 Literature Survey

In some cases, the above algorithms can be problematic. One example of such a
situation is when R1.A contains a few infrequent values that are frequent in R2.A.
This is because these infrequent values are likely to be missed by all schemes, even
though they may contribute significantly to the join size. For these hard cases, Haas
et al. (1995) propose an extended version of t cross that makes use of precomputed
statistics about frequent values. Ganguly et al. (1996) also focus on these cases; their
bifocal sampling scheme is an ingenious combination of t cross and t index.

More recent schemes precompute materialized samples to further improve the
selectivity estimates. Suppose that we have precomputed a sample S from the join
result R1 on R2. The sample can be used to estimate the selectivities of all joins of
the form σ(R1 on R2). The problem of join selectivity estimation is therefore reduced
to the problem of predicate selectivity estimation. Acharya et al. (1999) propose
a technique called join synopses, which precomputes samples over key-foreign-key
relationships. In more detail, for each table R, the scheme determines the set of
tables R1, . . . , Rk that are reachable from R via key-foreign-key relationships. The
sample is taken from R on R1 on . . . on Rk. As shown by Kaushik et al. (2005), the
so-obtained sample is a space-optimal synopsis for worst-case data. Gemulla et al.
(2008) show how the space consumption of join synopses can be further reduced
(although it is still the same in the worst case). For other joins than key-foreign-key
joins, Estan and Naughton (2006) propose a weighted sampling scheme that does not
sample from the join result. Instead, the scheme correlates the individual samples
of each table in the database. This correlation allows for significantly more precise
join size estimates than it would be possible with query sampling techniques. Larson
et al. (2007) discusses the general advantages of materialized “sample views” in
query optimization. They make use of a static sample that is refreshed whenever the
quality of the estimates—as observed after running the query—indicates that the
sample has become outdated.

C. Arbitrary Expressions of Relational Algebra

The problem of selectivity estimation for general relational algebra expressions has
been studied in Hou et al. (1988) and Hou and Ozsoyoglu (1991). In this instance of
the problem, we are given an expression E that combines a set of base tables using
operations σ,on, π,∩,∪, and \. We are interested in the query size |E|.

We briefly summarize the results of Hou et al.’s work. First, set intersections
(∩) are a special case of a natural join, where all attributes of both tables are join
attributes. This implies that any query containing only σ,on, and ∩ can be evaluated
using the techniques previously described. For set union (∪) and set difference (\),
one can apply the principle of inclusion-exclusion. Denote by E1 and E2 two arbitrary
expressions. We have |E1∪E2| = |E1|+|E2|−|E1∩E2| and |E1\E2| = |E1|−|E1∩E2|.
Thus, we can rewrite queries with ∪ and \ into several subqueries that do not contain
these operations. Projections (π) can be handled using the distinct-count estimation
techniques described in section 2.3.2.

36

2.3.1 Selectivity Estimation

D. Fixed-Precision Sampling

In fixed-precision sampling, we are given a query Q, an error bound ε—either absolute,
relative, or combined—and a failure probability δ. The goal is to derive a sampling
scheme that returns an estimate of |Q| so that the probability that the estimation
error exceeds ε is no more than δ. Fixed-precision sampling is important in practice
because it can be used to determine the size of the sample required for a specific
application. Clearly, a fixed-precision scheme should sample as little as possible to
achieve the desired precision.

We make use of the urn model of Lipton and Naughton (1990) in our description.
In this model, the result of the query (urn) is divided into disjoint partitions (balls).
In each sampling step, the scheme selects a partition uniformly and at random and
determines its exact size (number printed on ball). The selectivity estimate is given
by the scaled sum of the sampled partition sizes. For example, the t index scheme
for estimating |R1 on R2| would divide the dataset into |R1| partitions, one for each
tuple in R1. The partition of tuple r1 ∈ R1 is given by r1 on R2 (=number on ball
r1).

To solve the fixed-precision problem, we have to decide how many partitions we
will have to sample. The double sampling scheme of Hou et al. (1991) takes a small
pilot sample and estimates the query selectivity from the pilot sample. Based on
this estimate, the sample size required to achieve the desired precision is estimated
and the full sample is constructed in one run. As pointed out by Haas and Swami
(1992), there is no theoretical guidance on how large the pilot sample should be. An
alternative approach that does not require a pilot sample has been proposed by Lipton
and Naughton (1990). Their adaptive sampling scheme makes use of an a-priori
bound on the size of each partition. The scheme repeatedly samples a partition; it
stops when the sum of the sizes of the sampled partitions exceeds a constant derived
from the upper bound. Adaptive sampling is efficient when the bound is tight but
may execute too many sampling steps otherwise. An improved version that avoids
overly large samples is given in Lipton et al. (1990). The sequential sampling scheme
of Haas and Swami (1992) and Haas et al. (1993) does not rely on any a-priori
information. The scheme maintains an estimate of the selectivity and of the variance
of the partition sizes. These estimates are used to compute large-sample confidence
intervals as described in section 2.1.3C; sampling is stopped when the interval is
small enough.

All of the above schemes make use of a sanity bound, which ensures that the
sample does not get overly large when the selectivity is very low. When the sampling
algorithm terminates due to the sanity bound, one can conclude that the selectivity
is very low, which suffices for the purpose of query optimization.

A comparison of the various fixed-precision schemes has been performed by Ling
and Sun (1995). Haas et al. (1994) and Haas and Swami (1995) investigated the cost
of fixed-precision t cross sampling for join selectivity estimation relative to the cost
of actually computing the join.

37

2 Literature Survey

E. Histogram Construction and Maintenance

Histograms are the most-widely used technique for selectivity estimation within
relational database systems (Ioannidis 2003). A histogram of an attribute partitions
the values of the attribute into a set of buckets and stores summary information
for each bucket. Compared to random sampling, histograms have the advantage
that they are smaller and faster to use. In fact, Kaushik et al. (2005) proved that
equi-depth histograms—in which every bucket comprises the same number of values—
are space-optimal (for worst-case data) for the purpose of selectivity estimation of
range queries over a single attribute. Random sampling complements histograms;
it is more suited for queries that involve either complex predicates or predicates on
multiple attributes.

Nevertheless, it is common practice to construct histograms based on a random
sample of the database. In their early work, Piatetsky-Shapiro and Connell (1984)
and Muralikrishna and DeWitt (1988) suggest the use of sample sizes of roughly
1,000 tuples. More recently, Chaudhuri et al. (1998) discussed the question of how
large the sample should be in order to provide strong guarantees on the error induced
by sampling. Their results indicate that it is sufficient to sample O(logN) rows, a
rather small sample size. Chaudhuri et al. (2004) provide algorithms that build a
histogram using block-level sampling. Since it is non-trivial to maintain accurate
histograms when the underlying data evolves, Gibbons et al. (1997) proposed to
maintain a so-called backing sample instead.15 Recomputation of the histogram from
the sample is triggered when the estimates obtained from the histogram turn out to
be inaccurate. The problem of maintaining a histogram is therefore reduced to the
problem of maintaining a random sample.

2.3.2 Distinct-Count Estimation

The distinct count of a multiset R is the number of distinct items in R, also called
the zeroth frequency moment. Accurate assessment of distinct counts is important
for query optimization in relational databases. In fact, estimating the size of queries
with duplicate-eliminating operations—such as projection or group-by operations—is
equivalent to estimating the distinct count of the underlying data. Distinct-count
estimates are also of interest for approximate query processing; see section 2.3.3.

There is a wealth of literature on distinct-count estimation in situations where a
single pass over the data is feasible. An in-depth survey of the available techniques
is given by Gibbons (2009). For example, the “probabilistic counting” method of
Flajolet and Martin (1985) can be used to accurately estimate the distinct count
using only O(logN) bits of memory, which is optimal (Alon et al. 1996). Most of
these single-scan techniques are superior to random sampling in terms of both cost
and precision. This does by no means imply that random sampling is useless for
distinct-count estimation. In fact, when a scan of the entire dataset is impractical,
random sampling is the only viable option. For example, such a situation occurs

15The actual sampling scheme is discussed in section 3.5.1E.

38

2.3.2 Distinct-Count Estimation

in query optimization: since both the predicates of the query and the attributes
referenced by it are unknown in advance, single-pass methods that precompute (an
estimate of) the distinct count cannot be used.

The use of random sampling for distinct-count estimation has a long tradition in
both statistical and database literature. We only point out some of the most recent
results; a survey and evaluation of the available estimators can be found in Bunge
and Fitzpatrick (1993) and Haas et al. (1995).

The problem of estimating the number of distinct items from a random sample
is known to be difficult. In fact, Charikar et al. (2000) have proven that, for worst-
case data, no estimator that reads at most n items can provide a ratio error16 less
than O(

√
N/n) with high probability. They also give an estimator called GEE

with O(
√
N/n) expected ratio error. Unfortunately, the worst-case optimality of

GEE does not mean that it is the best estimator for all datasets. In fact, Haas
et al. (1995) and Haas and Stokes (1998) have shown experimentally that no single
estimator performs well for all datasets. In particular, some estimators exhibit good
performance for low-skew datasets, while others perform well for high-skew data.
Consequently, they propose a hybrid estimator that runs chi-square test on the
sample to distinguish the low-skew and high-skew scenario; a different estimator
is chosen depending on the test’s outcome. Charikar et al. (2000) improve on the
hybrid estimator by exchanging one of its sub-estimators with GEE.

Distinct-count estimation from a block-level sample is an even harder problem.
Haas et al. (2006) briefly survey the statistical literature on estimating the number
of species from a “quadrat sample“, which coincides with block-level sampling from
databases. They propose a generalized jackknife estimator that performs best in
certain situations and, consequently, suggest a hybrid approach similar to the one
above. Chaudhuri et al. (2004) propose to use any row-level estimator but to remove
duplicate items within each block before doing so. This “collapse” operation is
thought to reduce the effect of clustering in the blocks. They also extend the lower
bound to block-level sampling: For worst-case data, no distinct-count estimator
that examines at most nB blocks can provide a ratio error of less than O(

√
N/nb)

with high probability. This bound is considerably weaker than the one for row-level
sampling. As with selectivity estimation, materialized samples can be exploited
to avoid the decrease in accuracy that results from block-level sampling, without
increasing the sampling cost at query time.

In the section 2.3.3A, we also discuss (single-pass) sampling schemes that compute
a sample of the distinct items in the dataset. Of course, these schemes can also be
used to estimate distinct counts but, since they are more general, they have a higher
computational cost.

16The ratio error of an estimate D̂ of D is given by max(D̂/D,D/D̂).

39

2 Literature Survey

2.3.3 Approximate Query Processing

All of the previous applications can be seen as special cases of approximate query
processing. In approximate query processing, we are given a query over a database
and try to estimate the query’s result based on random sampling. The advantage
of approximate query processing over the exact computation of the result is that
the computational cost can be reduced significantly. In applications such as online
analytical processing (OLAP) or exploratory data analysis, where quick approximate
results are acceptable, approximate query processing can increase the interactivity of
the system. In other cases, such as data streaming, it is even infeasible to store or
process the entire dataset so that approximate query processing is a must. But even
if exact results are required, approximation may help to decide which exact results
are likely to be of interest and which are not.

We consider SQL-style aggregate queries involving selection, projection, join and/or
group-by:

SELECT A1, . . . , Ag, aggregate(X)
FROM R1, . . . , Rk }R
WHERE σ

}
RQ

GROUP BY A1, . . . , Ag.

The predicate σ includes both local predicates on R1, . . . , Rk as well as the join
predicates between these relations. Attributes A1, . . . , Ag are referred to as grouping
attributes. The group-by clause is optional, so that we also allow g = 0. The
aggregation attribute X may correspond to an attribute of any input relation (e.g.,
the price of an order) or a function of one or more such attributes (e.g., price*tax).
Aggregates of interest include count, distinct count, average, sum, standard deviation,
variance, minimum, maximum, and median (or other quantiles). Not all techniques
support all the aggregates and, in fact, most of the techniques specifically target sum
queries. This is because sum queries are ubiquitous in applications and can be used
to express other aggregates, such as counts and sums. Thus, unless stated otherwise,
our subsequent discussion assumes a sum aggregate. Note that random sampling
does not perform particularly well for minimum or maximum queries because these
items are likely to be missed in the sample; however, it is still possible to derive an
upper or lower bound, respectively.

For a given query of the form above, denote by R the dataset defined by only
the FROM clause, restricted to the attributes referenced in the entire query (without
eliminating duplicates). Similarly, denote by RQ the dataset defined by both the FROM
and WHERE clause; RQ = σ(R). Conceptually, the general approach to approximate
the query result is to obtain a random sample S of either R or RQ. The query result
is then estimated from this intermediate sample. Approximate query answering
provides methods to derive sample S as well as methods to estimate the query result
from S. In particular, query sampling and permuted-data sampling techniques try to
obtain S directly from R1, . . . , Rk without generating R or RQ. Materialized sampling

40

2.3.3 Approximate Query Processing

techniques precompute sample S; they do not even require access to R1, . . . , Rk at
query time.

A. Single-Table Query Without Group-By (k = 1, g = 0)

We first consider the simplest case of queries, that is, single-table queries without
group-by. To answer this class of queries using query sampling, one obtains a uniform
(row-level) sample S of R. Olken and Rotem (1986) have shown that σ(S) is a
uniform sample of RQ = σ(R) so that one can apply the estimation techniques of
section 2.1.3 to compute the desired aggregate. The cost of row-level sampling can
be avoided using permuted-data sampling—where R is stored in random order so
that any prefix of R constitutes a uniform random sample—or materialized sampling,
where S is precomputed. To further reduce the cost of sampling, any indexes that
help to sample directly from RQ (instead of from R) can also be exploited; one
possibility is to use the B+ tree sampling techniques of Olken and Rotem (1989).

In their well-known work on online aggregation, Hellerstein et al. (1997) show how
to present to the user a running estimate of the query result; the estimate is refined
as more and more tuples are processed. A discussion of how to compute confidence
intervals in the context of online aggregation can be found in Haas (1997, 1999).

All the above approaches work well unless either (i) σ has low selectivity or (ii)
the data is highly skewed. In both cases, large sample sizes are required to provide
reasonably accurate estimates (Chaudhuri and Motwani 1999). Several (materialized)
techniques that deal with either (i), (ii), or both have been proposed in the literature.
These techniques can roughly be divided into two classes: techniques that are based
on workload information and techniques that are not.

The idea behind workload-based techniques is to find a sampling design that
performs well for a prespecified workload. Approximate queries that are “similar”
to the prespecified workload are expected to profit (in terms of precision) from the
workload-based design. Likewise, “dissimilar” queries are penalized. One of the
first workload-based sampling techniques is due to Ganti et al. (2000). In essence,
their icicles constitute a uniform random sample of the so-called extension of R,
which is a multiset that contains R and, for any query in the workload, the set of
tuples referenced by the query.17 The key idea is that tuples that are often used
in query evaluation are more likely to be present in the sample. Query evaluation
is based on the assumption that the aggregate value of each tuple is independent
from the tuple’s probability of being sampled. This assumption may or may not
hold in practice; there does not appear to be a way to verify it based on the sample.
A similar approach suggested by Chaudhuri et al. (2001) avoids this problem by
making use of weighted sampling; the weight of each item is proportional to the
number of queries in the workload that reference it. Going one step further, the
techniques in Chaudhuri et al. (2001) and Chaudhuri et al. (2007) partition table
R into “fundamental regions” so that every query in the workload either references

17In our notation, query σ(R) references a tuple r ∈ R if and only if r ∈ σ(R).

41

2 Literature Survey

all or none of the tuples in a fundamental region. The fundamental regions are
taken as strata for stratified sampling; sample space is allocated to the strata so
that the error in the workload is minimized. The problem with this approach is
that, in practice, the number of fundamental regions can be significantly higher than
the space available in the sample. In this case, some (deterministically determined)
subset of regions are known to be unrepresented in the sample; the resulting design
neither constitutes a stratified nor a probability sampling design.

If no workload is available, or if the available (exact) workload does not permit
conclusions about the approximate workload, or if penalization of “dissimilar” queries
is not acceptable, workload-based techniques cannot be used. Instead, workload-
independent techniques are needed. Chaudhuri et al. (2001) proposed a stratified
scheme called outlier indexing to deal with highly-skewed data. It is based on the
observation that tuples with an extremely low or high value in the aggregation
attribute deteriorate the precision of the estimate. The scheme detects these outliers
and stores them in a separate data structure; a uniform sample is taken from the rest
of the table. Outlier indexing has been generalized to multiple aggregation attributes
in Rösch et al. (2008). The approximate pre-aggregation techniques introduced by
Jermaine (2003) and later Jin et al. (2006) incorporate additional summary statistics
(the “pre-aggregation” part) into the sampling-based estimate (the “approximate”
part). In particular, Jin et al. (2006) proposes to use existing knowledge to obtain
an alternative “negative estimator”. For example, suppose that we know that the
aggregation attribute sums to v over the entire relation R but that the query has
a predicate and thus addresses only a subset of the data. The standard (positive)
estimator determines the scaled sum of the items in R that satisfy the predicate. In
contrast, the negative estimator would determine the scaled sum of the items in R
that do not satisfy the predicate and subtract the result from v. Both estimators are
combined to achieve the final estimate, which can be significantly more precise than
each of the estimators on their own.

In the remainder of this section, we discuss issues that arise when R is a multiset.18

Gibbons and Matias (1998) propose to store the sample S of R in compressed form,
in which the sample consists of (item, frequency)-pairs. This way, a larger sample
can be stored in the available space. The paper also proposes a concise sampling
and a counting sampling scheme that maintain a random sample of the dataset in
compressed form; the schemes are particularly useful for finding frequent items, see
section 2.3.4B.

To support distinct-count queries, the schemes of Gibbons (2001), Cormode et al.
(2005), and Frahling et al. (2005) maintain a sample from the set of distinct items in
the aggregation attribute X. Each distinct item is equally likely to be present in the
sample. Queries in which the predicate involves attributes other than X cannot be
answered from such a sample.19 For this reason, Gibbons (2001) associates with each

18Recall that R is restricted to the attributes referenced by the query, which may not include the
primary key of R1.

19Nevertheless, these samples are useful in some applications. For example, consider a sample of IP
addresses (= X) and a query like “How many distinct IP addresses have the form 192.*?”.

42

2.3.3 Approximate Query Processing

sampled X-value x the set { r ∈ R | r.X = x } of tuples from R that have this distinct
value (or, if space is an issue, a uniform sample thereof). This distinct sample can
be used to answer a variety of distinct-count queries such as “What is the distinct
number of customers that placed an order in 2008?” As discussed previously, queries
of this kind are difficult to answer from uniform (multiset) samples.

B. Single-Table Query With Group-By (k = 1, g ≥ 1)

Queries with group-bys can directly be answered with the above techniques. Suppose
that we are given a group-by query and that exact computation reveals that the
query result contains m different groups G = { g1, . . . , gm }, where gi ∈ A1× . . .×Ag
for 1 ≤ i ≤ m. Then, the query result can be decomposed into m subqueries of the
form

SELECT A1, . . . , Ag, aggregate(X)
FROM R1, . . . , Rk
WHERE σ AND (A1, . . . , Ag) = gi.

The union of all m subqueries is identical to the query result. To estimate the result
of the group-by query from a random sample S, we proceed as before but replace G
by the set G′ of groups that actually occur in S. Xu et al. (2008) investigate the
problem of assigning confidence bounds to the so-obtained aggregates when S is a
simple random sample of R. In some cases, not all the groups are represented in
the sample so that |G′| < m; that is, some groups are missing. Small groups are
especially likely to be missed by random sampling so that the problem of missing
groups is often referred to as small-group problem.

For query sampling, the index striding technique of Hellerstein et al. (1997) can
be used to avoid the small-group problem when an index on the grouping attributes
is available. The idea is that the index can be exploited to sample uniformly from
each group, in a round-robin fashion. In the context of online aggregation, where
a running estimate is presented to the user, this has the additional advantage that
each group is updated with the same frequency. Index striding can also be exploited
to sample more tuples from groups in which the estimate is perceived to be of low
precision.

Acharya et al. (2000) propose a stratified sampling design called congressional
sampling, in which each group gets its own stratum. The scheme distributes the
available sample space in such a way that each group gets a “fair” amount of space.
Of course, this technique requires that (supersets of) the grouping attributes are
known in advance. In contrast, the small-group sampling scheme of Babcock et al.
(2003) materializes a uniform sample of R along with some information about small
groups. In more detail, for each potential grouping attribute, the scheme scans the
dataset for small groups and stores all tuples belonging to a small group into a
separate “small-group table”. These tables are exploited at query time to include
small groups into the query result.

43

2 Literature Survey

C. Join Queries (k > 1)

We restrict our attention to joins between two relations R1 and R2, k = 2. Most of
the techniques below can be extended to the more general case. Also suppose that
we want to estimate the sum over aggregation attribute X.

A well-known result of Olken and Rotem (1986) is that, in general, the join of
two uniform samples from R1 and R2 does not constitute a uniform sample of
R1 on R2. Observe that the t cross sampling scheme discussed in the context of
join selectivity estimation joins the samples of R1 and R2; figure 2.8b visualizes the
non-uniformity of the result. Of course, one can fall back to t indep sampling to
obtain a uniform sample, figure 2.8a. Recall that t indep samples uniformly from
R1 ×R2; the join selectivity estimate equals the fraction of sampled tuple pairs that
join. In approximate query processing, however, we want to compute aggregates over
these joining pairs. Clearly, a significantly larger number of tuple pairs is required to
achieve sufficient accuracy. We conclude that t indep is not a promising approach for
approximate query processing, although it does produce uniform samples of R1 on R2.

When there is an index on the join attribute on table R2, Hellerstein et al. (1997)
propose to use t index sampling (figure 2.8c). The idea is to sample a random tuple
from r ∈ R1, join it with R2 using the index, and sum over the values of X in
r1 on R2. Denote the result by X(r) and observe that X(r) is the “contribution” of
r to the query result. We can view X(r) as a random sample of a modified relation
R′1, which is derived from R1 by replacing every tuple with its contribution to the
query result. Thus, for the purpose of estimation, we reduced the join query to a
single-table query and the estimators of section 2.1.3 can be used.

If there is no index on R2, the situation becomes more difficult. Interestingly,
t cross sampling can be applied even though the resulting sample is non-uniform.
Haas (1997) has shown that the standard sum estimator for uniform sampling, which
takes the sample sum and scales up, remains unbiased for t cross sampling. He also
derived large-sample confidence intervals for estimators of the sum, average, standard
deviation, or variance of X. Based on these results, Haas and Hellerstein (1998) and
Haas and Hellerstein (1999) developed the ripple join, which is a generalization of
t cross sampling. The key idea of the ripple join is to sample β1 tuples from R1,
then β2 tuples from R2, then again β1 tuples from R1, and so on. Whenever a block
of tuples from one of the relations has been sampled, it is joined with the sample
of the other relation. Thus, t cross sampling is obtained when β1 = β2 = 1. The
parameters β1 and β2 can be used to control the update frequency of the estimate in
the context of online aggregation. Furthermore, these parameters can be tuned to
reduce the number of sampling steps required to achieve the desired precision.

The ripple join as described above assumes that the samples of R1 and R2 both
fit into memory. Jermaine et al. (2005) pointed out that the ripple join becomes
unusable when the sample sizes exceed the available memory. To overcome this
problem, they propose the SMS join, which is a combination of the ripple join and
a classic sort-merge; it scales well with the size of the samples. Jermaine et al.
(2007) extend the ideas behind the SMS join to more than 2 relations. Their DBO

44

2.3.4 Data Mining

system constitutes an approximate query processing system based on permuted-data
sampling. In fact, the cost of both the ripple join and the SMS join is reduced
significantly when the data is stored in random order because block-level sampling
can be used without deteriorating precision.

Materialized samples can be exploited to reduce any join query to a single-table
query, both in terms of estimation complexity and cost. The idea is to precompute
and maintain a sample S of R = R1 on R2; the query is then interpreted as a
single-table query on R and the required sample of R is readily available. Using
this approach, all the sophisticated materialized sampling techniques for single-table
queries that we discussed in the previous sections can directly be applied to join
queries. If a sample of R is unavailable but there exist materialized samples of R1

and R2, these samples can be fed into a ripple join (or SMS join) to reduce its I/O
cost.

2.3.4 Data Mining

Data mining, or more generally knowledge discovery, is “the nontrivial extraction of
implicit, previously unknown, and potentially useful information from data” (Frawley
et al. 1992). Algorithms employed in the data mining process are usually expensive
in terms of both runtime cost and space consumption. Random sampling is used to
improve the efficiency of data mining tasks that search for “regularities” in the data;
these regularities are likely to be retained in a sample. In fact, Palmer and Faloutsos
(2000) point out that many statistical vendors make use of uniform sampling to
handle large datasets; see, for example, the best-practices paper of SAS Institute
Inc. (1998). Along the same lines, Chen et al. (2002) state that “a number of large
companies routinely run mining algorithms on a sample of their data rather than on
the entire warehouse.”

In our subsequent discussion, we briefly describe the application of random sampling
to clustering, to the discovery of frequent items and association rules, and to the
discovery of correlations and constraints.

A. Clustering

Clustering is “the art of finding groups in data” (Kaufman and Rousseeuw 1990).
Clustering algorithms divide the data into groups of similar objects; objects belong-
ing to different groups should be as dissimilar as possible. For example, a sales
company might want to divide its customers into groups that exhibit a similar
shopping behavior. Well-known clustering algorithms include the k-means algorithm
of MacQueen (1967), the PAM algorithm of Kaufman and Rousseeuw (1990), the
BIRCH algorithm of Zhang et al. (1996), and the DBSCAN algorithm of Ester et al.
(1996).

To cope with large datasets, several authors have proposed to run the clustering
algorithm on a random sample instead of using it on the entire dataset. Since
clustering algorithms are typically expensive—they often have superlinear time

45

2 Literature Survey

complexity—, such an approach can significantly reduce the computational cost.
Optionally, objects not belonging to the sample can be assigned to their closest
cluster in a postclustering step. MacQueen (1967) already proposes this sample-and-
postcluster approach for k-means. Experiments by Joze-Hkajavi and Salem (1998)
suggest that random sampling for k-means compares favorably to the alternative CF
tree method of Zhang et al. (1996). Similarly, Guha et al. (1998) make use of uniform
sampling to scale their CURE algorithm to large datasets. The CLARA algorithm
of Kaufman and Rousseeuw (1990) draws multiple random samples, applies PAM
to each of these samples, and outputs the best achieved clustering. For BIRCH,
Palmer and Faloutsos (2000) propose a weighted “density-biased” sampling scheme
for the case that cluster sizes are heavily skewed. The key idea is to undersample
dense areas and oversample spare areas, which ensures that low-density clusters
are retained in the sample. Kollios et al. (2001) extend these ideas and present a
density-biased scheme in which the sampling probability is a tunable function of the
local density around each point. They apply their technique for both clustering and
distance-based outlier detection. Gionis et al. (2007), who propose techniques that
“aggregate” multiple clusterings into a single one, also make use of random sampling
to speed up their algorithms.

B. Frequent Items

Another important problem in data mining is the discovery of the frequent items—
also called heavy hitters or hot items—in a dataset. For example, a sales company
might be interested in their top-selling items or their most active customers. In
this section, we consider iceberg queries, which ask for all items that have a relative
frequency of at least f .20 As Fang et al. (1998) pointed out, the naive computation
of the exact result based on either hashing or sorting may be too expensive in some
applications. Thus, many more sophisticated techniques, both exact and approximate,
have been proposed to reduce I/O and/or memory costs. We limit our attention to
sampling-based approaches; there do exist more efficient special-purpose techniques
not based on random sampling, but random samples are applicable to a wider class
of queries.

One can show that with a probability of at least 1− δ, a uniform sample of size
ln(δ−1f−1)/f (including duplicates) contains all items with relative frequency of
at least f . For example, with probability of at least 99%, a sample size of 1,000
items suffices to find all items with relative frequency of at least 0.01. Of course, the
sample is likely to contain in addition items with relative frequency lower than f .
Fang et al. (1998) argues that, if desired, these “false-positives” can be eliminated
using a scan of the dataset. They also propose several exact algorithms that use
sampling in a preprocessing phase.

Gibbons and Matias (1998) propose two materialized sampling schemes called
concise sampling and counting sampling. Both schemes require a constant amount

20The relative frequency of an item that occurs k times in a dataset of size N is given by k/N .

46

2.3.4 Data Mining

of space; they run a variant of Bernoulli sampling and reduce the sampling rate
whenever the sample gets too large.21 To make efficient use of the available space,
the sample is stored in compressed form, that is, items that occur more than once
in the sample are represented by an (item, frequency)-pair. The schemes differ in
their use of the frequency counter. For concise sampling, the counter is equal to the
number of times an item has been accepted into the sample. For counting sampling,
however, the counter equals the number of times the item has been seen since its first
acceptance into the sample. As shown by Manku and Motwani (2002), a (slightly
modified) counting sample of size 2 ln(δ−1f−1)/ε, where 0 < ε ≤ f , can be used to
report with a probability of at least 1− δ all the items with a relative frequency of
at least f . In contrast to uniform sampling, the scheme guarantees that it does not
report items with frequency less than f − ε.

C. Association Rules

In association rule mining (Agrawal et al. 1993), we are given a dataset of so-called
transactions, where each transaction consists of several items. For example, in a
supermarket application, a transaction may correspond to a shopping cart and an
item corresponds to a product in the cart. A rule X ⇒ Y , with X and Y being
disjoint sets of items, is a statement of the form “a transaction that contains X also
contains Y .” An association rule is a rule X ⇒ Y in which itemset X is frequent and
the rule is satisfied by most transactions that contain X. For example, the association
rule { bread,butter } ⇒ milk means that, with high confidence, a customer who buys
bread and butter will also buy milk.

Association rule mining is related to finding frequent itemsets. In fact, the well-
known a-priori algorithm of Agrawal and Srikant (1994) first discovers single items
that are frequent, then pairs of items that are frequent, then triples of items, and
so on. In each pass, the algorithm only considers itemsets that could potentially be
frequent and prunes away the rest. Toivonen (1996) proposes a two-phase variant
of the a-priori algorithm. In the first phase, a random sample is used to determine
sets of items that are likely to be frequent. In the second phase, the algorithm scans
the entire dataset and verifies the frequency of both the discovered itemsets and a
carefully selected fraction of the pruned itemsets. For sufficiently large samples (see
the previous section), none of the pruned itemsets will turn out to be frequent. In
this case, the algorithm produces the exact result. Otherwise, when some of the
pruned itemsets are frequent, a second scan of the data is performed to catch all
itemsets that may have been missed.

One would somehow like to avoid scanning the database to verify the rules obtained
from the sample. Clearly, if the initial sample is large, we are sure to catch all the
important association rules. However, the larger the sample, the higher the cost
of finding the rules supported by it. To overcome this problem, Chen et al. (2002)
and Brönnimann et al. (2003) each propose a two-phase algorithm—called FAST

21A more detailed description can be found in section 3.5.1B.

47

2 Literature Survey

and EASE, respectively—that works with any algorithm for mining association rules.
In the first phase, the algorithms obtain a relatively large random sample of the
database. In the second phase, a reduced sample is constructed in such a way that
the “difference” between the frequent itemsets in the full sample and the reduced
sample is minimized. The reduced sample serves as input to an association rule
mining algorithm. The runtime cost and accuracy of both algorithms are compared
in Brönnimann et al. (2004).

D. Correlations and Constraints

Data mining is also concerned with finding correlations and constraints in the
data. The BHUNT algorithm of Brown and Haas (2003) discovers fuzzy algebraic
constraints between pairs of attributes in a relational database. For example, such
a constraint could say that the number of days between shipment and receipt of a
product is likely to lie either in the interval 2− 5 days (national shipment) or the
interval 12− 19 days (international shipment). To find the constraints, BHUNT first
constructs candidate pairs of columns that are potentially related and interesting.
Since the number of such pairs can be large, BHUNT searches for constraints in
a random sample of the tuples corresponding to each of the column pairs. The
CORDS algorithm of Ilyas et al. (2004) extends BHUNT in that it detects arbitrary
correlations between columns. To do so, CORDS constructs contingency tables based
on a random sample of the database; it then estimates the “mean-square contingency”
as a measure of correlation. The outcome of the algorithm can be visualized in a
dependency graph.

A related problem is that of constraint verification, that is, the check of whether a
set of constraints is satisfied by the data. The constraints may originate, for example,
from an older version of the dataset or from a dataset that is believed to be similar to
the one under investigation. Constraint verification has been considered by Kivinen
and Mannila (1994), who make use of random sampling to find constraints that are
“clearly false”. The remaining constraints are likely to hold for a large part of the
database and, if desired, they can be verified exactly.

Random sampling has also been applied to efficiently estimate the similarity
between objects. For large collections of Web documents, Broder (1997) proposes
a variant of “min-hash sampling”22 to estimate the resemblance and containment
for any two of these documents. Datar and Muthukrishnan (2002) applied min-hash
sampling to estimate rarity and similarity over data stream windows.

2.3.5 Other Applications of Database Sampling

In this section, we briefly list some other applications where database sampling
appears to be useful.

22Min-hash sampling is discussed in section 3.5.3D.

48

2.3.5 Other Applications of Database Sampling

Denning (1980) states that the U.S. Census Bureau uses random sampling to avoid
inference of individuals; she proposes a variant of “min-hash sampling” to prevent
such inference from database queries.

Willard (1991) applies selectivity estimates obtained from a random sample to
choose between different competing algorithms. He also shows that a sample size of
O(N2/3) is cost-optimal for the class of “differential database batch queries.”

Ikeji and Fotouhi (1995) propose a stratified sampling scheme to quickly produce
partial results of non-aggregate queries. In contrast to aggregate queries, these early
results do not have to be chosen in a uniform manner.

For parallel sorting, DeWitt et al. (1991b) make use of random samples to determine
a “probabilistic splitting vector” such that every node has about the same amount
of work. DeWitt et al. (1992) propose a related approach for efficient processing of
parallel joins, in which random samples are used to choose the best join algorithm
and distribute tuples to nodes. DeWitt et al. (1991a) apply random sampling to
determine the partitions used by a “partitioned band join”.

In the context of data warehousing, Brown and Haas (2006) propose a “synopsis
warehouse” that consists of synopses of the partitions in a data warehouse. The
synopses can be used for a variety of applications, including approximate query
processing and metadata discovery. They present several sampling algorithms useful
in this setting; we will discuss most of these algorithms in the course of this thesis.

49

Chapter 3

Maintenance of Materialized Samples

Most of the techniques for materialized sampling implicitly assume that the underlying
database is static. Under this assumption, a sample once computed from the database
remains valid for all times. In many practical applications, however, the database
is subject to changes so that the assumption of a static database does not hold. In
this situation, any modifications of the database have to be reflected in the sample
to maintain its validity. Unless maintenance can be done efficiently, the cost of
maintaining the sample can outweigh the advantages of materialization. In this
chapter, we review and classify the available work on sample maintenance with a
special focus on efficiency. We will see that maintenance can be done efficiently, but
that there are still a lot of open problems that have to be resolved. Some of these
open problems are investigated in chapters 4–7.

Our discussion is mainly concerned with the maintenance of uniform samples.
As discussed previously, uniform sampling plays a major role in database sampling
because, in database applications, the intended use of the sample is often not known
in advance. The advantage of uniform sampling is that samples are representative
in the sense that they are not biased towards a certain part of the underlying data.
Also, many statistical estimators and confidence-bound formulas for these estimators
assume the uniformity of the sample. But even when information about the intended
use of the sample is available, uniform sampling is still essential. In fact, uniform
samples are often used as a building block for more complex techniques that are
tailored to a specific type of database queries. For example, one common approach is
to store a uniform sample accompanied by some auxiliary information, which is then
used to improve estimates for certain types of queries. Another example is stratified
sampling, where after the division of the population into strata, uniform sampling is
applied to each of the strata.

We start with a comparison of materialized samples and materialized views in
the context of relational database systems in section 3.1, where we also outline the
scope of this thesis. Before reviewing existing techniques for sample maintenance,
we use section 3.2 to define the basic terms and notation used throughout the
thesis. In section 3.3, we develop a classification of schemes for sample maintenance
with respect to sampling semantics, supported transactions, sample size, and space
consumption. This classification spans the space that database sampling schemes
have to cover. Afterwards, in section 3.4, we discuss sampling schemes in the area
of survey sampling; again, these represent the ground on which database sampling

51

3 Maintenance of Materialized Samples

schemes are built. Finally, in section 3.5, we give a detailed review of the existing
work on sample maintenance for both database sampling and data stream sampling.
During our discussion, we point out deficiencies of the existing techniques, if any,
and outline our own contributions that are presented in the subsequent chapters.

3.1 Relationship to Materialized Views

The techniques in this thesis apply to a broad spectrum of applications and systems.
The following discussion is specific to the case where the sample is maintained within
a relational database system.

Sample maintenance within a relational database system is closely related to the
problem of maintaining a materialized view (Gupta and Mumick 1999). And in fact,
a materialized sample can be interpreted as a materialized view of the underlying
dataset (Olken and Rotem 1992; Larson et al. 2007). This interpretation is not
supported in this thesis because there are significant differences between materialized
views and materialized samples. The key difference is that the view is unique while
the sample is not. Given a database state and a view definition, there is a unique
relation corresponding to the content of the view. The situation is different for
materialized samples because, in addition to the database state and view definition,
both the sampling scheme and the random inclusion/exclusion decisions carried
out during the execution of the scheme determine the content of the sample. The
interpretation taken in this thesis is that a materialized sample is a sample derived
from a view or materialized view, but does not constitute a materialized view itself.

In materialized view maintenance, the important questions are when and how to
maintain the view. The answer to the first question is called the maintenance policy,
which is either immediate or deferred. Immediate views are updated immediately
after the underlying data has been updated. Deferred views are updated at some later
point in time. Examples include periodic maintenance, where the view is updated
at regular time intervals, or lazy maintenance, where the view is updated whenever
it is queried. The actual maintenance of the view is performed in two steps called
propagate and refresh. The steps are illustrated in figure 3.1a, where the view R is
derived from base relations R1, . . . , Rn. In the propagate step, the changes ∆R to
the view R that result from the changes ∆Ri to base relations Ri, 1 ≤ i ≤ n, are
computed. This process may involve access to the base relations. In the refresh step,
∆R is applied to the materialized view.

As described above, a materialized sample is derived from a view R, just as R is
derived from the base relations. There is usually no need for R to be materialized.
The concept of a view maintenance policy directly applies to sample maintenance. In
this thesis, we assume the immediate policy. Techniques for immediate maintenance
can be used to implement deferred maintenance by keeping a log file of all transactions,
although this approach may be less efficient than specialized techniques (such as those
proposed in Jermaine et al. 2004; Gemulla and Lehner 2006; Pol et al. 2008; Nath and
Gibbons 2008). Materialized sample maintenance consists of three steps: propagate,

52

3.1 Relationship to Materialized Views

Propagate Refresh R

∆R1

∆Rn

∆R

(a) Materialized views

SamplePropagate Refresh
∆R ∆S

S

∆R1

∆Rn

This thesis

(b) Materialized samples

Figure 3.1: View and sample maintenance in an RDBMS. The view/dataset is
given by R = R1 on R2 on . . . on Rn.

sample, and refresh. The steps are illustrated in figure 3.1b. The propagate and
the refresh step are identical to the corresponding steps in view maintenance and
available techniques can be used directly. The sample step, which we will discuss
extensively in this thesis, computes the changes ∆S to the sample S based on the
changes ∆R to the view.

The separation of the propagate and the sample step has been made primarily
to emphasize the scope of this thesis. It is somewhat artificial because, when R
is not materialized, one may consider computing ∆S directly from the ∆Ri. This
direct approach may increase efficiency. Since the sample S can be seen as a subset
of the dataset R, not all the transactions that affect R also have an effect on S.
For example, consider two tables R1 and R2 and suppose that there is a many-
to-one relationship between the two tables. Further suppose that the sample is
derived from the view R = R1 on R2. Whenever an item r is inserted into R1, a
tuple r′ = { r } on R2 is propagated to the maintenance scheme. When the sample
inclusion/exclusion decision does not depend on the value of r′ but solely on its
existence,1 the computation of the join between r and R2 is unnecessary for the
case where r′ is excluded from the sample. Combined approaches, which handle
the propagate and the sample step as a unified whole, are therefore an interesting
direction for future research.

To summarize, we assume in this thesis that the changes to the dataset R, from
which the sample is drawn, are propagated to the sample maintenance algorithm. If
R is a relational table, then updates to the table correspond to updates of R. If R is
a view defined over one or more tables, changes to R are computed using traditional
view maintenance techniques. When we talk about the cost of sampling maintenance,

1Some of the schemes discussed in this thesis work precisely in this way.

53

3 Maintenance of Materialized Samples

we mean the cost of computing and applying ∆S given ∆R. This viewpoint allows
us to focus on the fundamental issues of sample maintenance.

3.2 Definitions and Notation

We assume throughout this thesis that the dataset R is a subset of a possibly infinite
set R = { r1, r2, . . . } of unique, distinguishable items. For example, the set R might
correspond to the domain of a relational table, to the set of all IP addresses or to a
collection of XML documents. We generally allow R to be a multiset, that is, R may
contain multiple copies of items from R. We do not require R to be materialized.

Changes to R are modeled using a (possibly infinite) sequence of transactions
γ = (γ1, γ2, . . .). We denote by R0 the initial dataset and by Ri, i > 0, the dataset
that results from the applications of the first i transactions to R0. Similarly, we
denote by Ni the number of items in dataset Ri, including duplicates. Without loss
of generality, we assume that the initial dataset R0 is empty and thus N0 = 0. Each
transaction γi is of one of the following three types:

• An insertion transaction +r corresponds to the insertion of item r ∈ R:

Ri = Ri−1] { r } .

• A deletion transaction −r corresponds to the deletion of item r ∈ R:

Ri = Ri−1 \+ { r } .

• An update transaction r → r′ corresponds to the replacement of item r ∈ R by
item r′ ∈ R:

Ri = Ri−1 \+ { r }]
{
r′
}
.

Here,] and \+ denote the multiset versions of the set operators ∪ (set union) and \
(set difference). Thus, when item r occurs multiple times in Ri−1 upon processing a
deletion or update transaction, only a single copy of the item is updated or deleted.
We require the stream of transactions to be feasible: whenever a transaction removes
or updates an item, it must be present in the dataset at the start of the transaction.
In some scenarios (e.g., set sampling), additional restrictions on the sequence of
transactions apply and will be discussed when needed. In some applications, multiple
transactions are clustered, that is, they occur simultaneously. In this case, we break
up the clustering and perform the operations in arbitrary order (or in an order
specified by the sampling scheme).

With these definitions at hand, we define a maintenance scheme as a randomized
algorithm that maintains a sample Si from Ri for all i. As usual in practice, we
assume throughout this thesis that the sequence γ is not known in advance; the
maintenance scheme cannot look ahead of the transaction currently processed. On
the same lines, we assume that the application that produces γ is oblivious to the

54

3.3 Properties of Maintenance Schemes

state of the sample; γ is independent from the inclusion/exclusion decisions of the
maintenance scheme.

In general, it is desirable that a maintenance scheme computes Si from Si−1 and
γi only, but there are schemes that require access to Ri. Perhaps the simplest such
scheme discards the current sample when γi arrives and computes a fresh sample
from Ri by using some sampling scheme. This approach is clearly inefficient, but
it shows that every sampling scheme can be used to maintain a sample if access to
the dataset is available. Similarly, a maintenance scheme can be used to compute a
sample from R by treating every element of R as an insertion transaction into an
initially empty dataset. Thus, the concepts of sampling scheme and maintenance
scheme are related. Whenever the intended meaning can be derived from the context,
we drop this distinction and refer to both schemes as sampling scheme.

3.3 Properties of Maintenance Schemes

Recall that a sampling design is specified by a probability distribution over the set of
all possible samples. When a maintenance scheme is used to maintain a sample of an
evolving dataset, the set of possible samples—and therefore, the sampling design—is
also evolving. Thus, a maintenance scheme results in a sequence of sampling designs,
one for each transaction in the sequence of transactions. One might extend sampling
theory by temporal aspects, but there is little to be gained for the purpose of this
thesis. Instead, we are interested in properties valid for all the designs produced by
the scheme. These time-invariant properties are discussed in the following. They span
a “space” that can be used to classify the available maintenance schemes. Dimensions
of the space include sampling semantics, supported types of transactions, sample size
properties and memory consumption.

3.3.1 Sampling Designs

We only consider sampling designs where Si ⊆ Ri, that is, the sample does not
contain any items not present in the underlying dataset. A maintenance scheme is
said to be be uniform if the resulting sampling designs are all uniform. That is, for
every i ≥ 0,

Pr [Si = A] =
Pr [|Si| = |A|](

Ni
|A|
) (3.1)

for an arbitrary but fixed A ⊆ Ri. For many maintenance schemes, the distribution
of sample size is not fixed and varies from transaction to transaction. Also note that
equation (3.1) only gives the marginal distribution of the samples. Samples Si−1 and
Si are usually dependent because most maintenance schemes reuse information in
Si−1 to compute Si. Often, but not always, we have

Pr [Si = A | Si−1 = B] 6= Pr [|Si| = |A|](
Ni
|A|
)

55

3 Maintenance of Materialized Samples

for arbitrary but fixed A ⊆ Ri, B ⊆ Ri−1. This inter-sample dependency usually does
not pose a problem; it may even have advantages. For example, when the sample
is used to monitor the evolution of a population parameter over time, inter-sample
dependencies can be exploited to provide more precise estimates; see the discussion
in Krishnaiah and Rao (1988, ch. 8).

A maintenance scheme is said to sample with replacement if all Si are with-
replacement samples. A maintenance scheme is said to sample without replacement if
all the Si are without-replacement samples. For weighted sampling, we assume that
the weights associated with the items in R are fixed. Then, a maintenance scheme is
said to be weighted if for every item rj ∈ Ri, i ≥ 0, it holds

Pr [rj ∈ Si] ∝ wj

with wj being the weight of rj and ∝ denoting proportionality. Again, the distri-
bution of the sample size may change over time. The situation is more difficult
for stratified and cluster sampling designs because the strata and clusters may be
evolving themselves. We do not go into further detail here, but see section 7.2 for an
example of a stratified maintenance scheme.

3.3.2 Datasets and Sampling Semantics

We distinguish three different sampling semantics; some of them only apply to certain
types of datasets: set sampling, multiset sampling and distinct-item sampling.

A. Set Sampling

The most common form of sampling in classical sampling theory is set sampling. In
set sampling, the dataset is a true set, that is, it does not contain any duplicates. The
sample may contain duplicate items if sampling is with replacement. A maintenance
scheme supports set sampling if sequences resulting in true sets are supported by the
scheme. In such a sequence, an insertion transaction γi = +r is allowed to occur only
if r /∈ Ri−1. Set sampling is the most basic sampling semantics and is supported by
virtually all maintenance schemes.

B. Multiset Sampling

In the context of database systems, sampling is sometimes performed from multisets
instead of sets. For example, suppose that we want to maintain a sample from a
table of a relational database. For improved efficiency, only the columns relevant for
estimation purposes are to be included into the sample. Then, the primary key, which
ensures the uniqueness of the items in the table, is often omitted so that sampling is
performed from a table that now may contain duplicate items. In multiset sampling,
every item from R may occur more than once in the dataset. Multiset sampling is
more general than set sampling; every multiset sampling scheme can directly be used
for set sampling.

56

3.3.2 Datasets and Sampling Semantics

The semantics of multiset sampling is more involved than the one of set sampling.
Even if sampling is without replacement, the sample may contain duplicates because
the dataset does. To transfer the ideas of set sampling to multiset sampling, we
say that a multiset sampling scheme corresponds to a set sampling scheme if the
following two procedures yield equal sampling designs:

1. Run the multiset sampling scheme on the dataset R.

2. Label all items in R with a unique identifier. Run the set sampling scheme
on the labeled version of R. Finally, remove the labels from the items in the
sample.

For example, consider the dataset R = {A,A,B } and the following multiset sampling
scheme: Select an item from R uniformly and at random. Include the selected item
into the sample and remove a single copy of the selected item from R. Then,
independently select another item uniformly and at random from the remaining
dataset and include the selected item into the sample. The resulting distribution of
the multiset sample S is

Pr [S = {A,A }] = 1/3
Pr [S = {A,B }] = 2/3.

(3.2)

The above sampling scheme corresponds to simple random sampling of size 2. To see
this, we first label the items in R and obtain dataset R′ = {A1, A2, B3 }. Then, we
compute a simple random sample S′ from R′. The probability distribution of S′ is
given by

Pr
[
S′ = {A1, A2 }

]
= 1/3

Pr
[
S′ = {A1, B3 }

]
= 1/3

Pr
[
S′ = {A2, B3 }

]
= 1/3.

Finally, we remove the labels from S′ and obtain the distribution in (3.2). Using
the method described above, we can apply properties of set sampling schemes to
multiset sampling schemes. In particular, a multiset sampling scheme is uniform if
and only if there exists a corresponding set sampling scheme that is uniform (as in
the example above).

C. Distinct-Item Sampling

In distinct-item sampling, the dataset is also a multiset, but sampling is performed
from the distinct items in the dataset. Distinct-item sampling is applied when the
number of copies of an item should not affect its probability of being sampled. If
sampling is without replacement, the sample does not contain duplicates.

Again, we make use of a correspondence to set sampling. A distinct-item sampling
scheme corresponds to a set sampling scheme if the following two procedures yield
equal sampling designs:

57

3 Maintenance of Materialized Samples

1. Run the distinct-item sampling scheme on R.

2. Run the set sampling scheme on D(R), the set of distinct items in R.

For example, set R = {A,A,B } and thus D(R) = {A,B }. Any distinct-item
scheme that corresponds to simple random sampling of size 1 must produce the
following sampling design:

Pr [S = {A }] = 1/2
Pr [S = {B }] = 1/2.

A uniform distinct-item sampling scheme corresponds to a set sampling scheme that
is uniform. In such a scheme, each distinct item is sampled with equal probability.

3.3.3 Supported Transactions and Maintenance Costs

Probably the most important aspect of a maintenance scheme is which types of
transactions it supports. A maintenance scheme supports insertions, deletions, or
updates if it can handle all transactions of the respective type. As will become
evident later on, not every scheme supports all types of transactions. In some
applications, datasets are append-only sets and it suffices that the scheme supports
insertion transactions. In other applications, datasets are subject to each of the three
transaction types and more sophisticated maintenance schemes are required.

If a specific maintenance scheme supports the types of transactions required by
the application, it is important to assess the costs associated with processing the
transactions. In fact, it may be the case that a scheme that supports only insertions
is faster at processing insertions than a scheme that supports all three transaction
types. Maintenance costs include CPU costs, I/O costs for accessing the sample, and,
if existent, I/O costs for accessing the underlying dataset R. Another cost is that of
space consumption, which is discussed in detail in section 3.3.5.

We argue below that, if a scheme requires access to R, the I/O cost of these
accesses often by far outweigh the other costs. For this reason, we classify sampling
schemes into separate categories depending on whether or not and how often they
access base data.

A. Cost of Base Data Accesses

Schemes that access the base data have a significant overhead, often several orders of
magnitude higher than the CPU cost or the I/O cost of accessing the sample. This
may have several reasons:

1. Dataset R is much larger than its sample and usually resides on hard disk. A
scan of even a small fraction of R may therefore lead to significant I/O costs.
In contrast, the sample is often stored in main memory (or resides in the cache)
so that sample accesses incur no or little I/O costs.

58

3.3.3 Supported Transactions and Maintenance Costs

2. Dataset R is accessed in random fashion. In fact, access to R is often required
to extract items chosen uniformly and at random. As discussed in section 2.2.2
on query sampling, the extraction of random items can be expensive, even if
only a few items are required.

3. Dataset R is stored at a remote location. In this case, accesses to R may lead to
significant communication costs. Additionally, system resources at the remote
location are utilized.

4. Dataset R is not materialized. For example, one might sample from the join
of two tables R1 on R2 without materializing the join result. Access to R then
triggers the execution of a join or parts thereof.

In some cases, schemes that access R are not applicable at all:

5. Dataset R is not accessible. When sampling from a data stream window,
for instance, the content of the window itself is discarded due to resource
limitations in the data stream system. Instead, the sample is used to represent
the items in the window.

From the discussion above, it becomes evident that access to dataset R should be
avoided, if possible.

B. Incremental Maintenance

We now classify maintenance schemes with respect to the type of access to R they
require. For each type of transaction T , we distinguish three classes.

• A maintenance scheme is non-incremental with respect to T if for all feasible
sequences γ and for all transactions γi of type T , the computation of Si is
solely based on Ri (or Ri−1 and γi). Non-incremental schemes do not reuse
the current sample, they recompute it from scratch.

• A maintenance scheme is incremental with respect to T if for all feasible
sequences γ and all transactions γi of type T , the scheme computes Si without
ever accessing the dataset Ri. Often, the computation is based on Si−1 and
γi. Sometimes, auxiliary data structures that enable strongly incremental
maintenance are stored and maintained with the sample. We view these
structures as an intrinsic part of the maintenance scheme.2

• A maintenance scheme is semi-incremental with respect to T if it is neither
non-incremental nor incremental. Semi-incremental schemes may access both
Si−1 and Ri. Note that a scheme is semi-incremental even if it accesses Ri
infrequently.

2This is different to the corresponding concept of self-maintainability of a materialized view, which
applies to the view only, without additional data structures.

59

3 Maintenance of Materialized Samples

From the viewpoint of efficiency, incremental schemes are preferable over semi-
incremental schemes, which in turn are preferable over non-incremental schemes.

A maintenance scheme that supports insertions automatically supports (at least)
non-incremental maintenance under updates and deletions. If an update or deletion
occurs, the scheme would discard the current sample and recompute it from scratch by
reinserting all items of the modified dataset. Similarly, a scheme that is incremental
under both insertions and deletions is also incremental under updates. This is because
updates can be expressed as a deletion followed by an insertion. In general, schemes
that support updates directly, that is, schemes that do not fall back to deletion and
reinsertion, are more efficient.

C. Implicit Deletions

Thus far, we have assumed that the sequence γ is complete, that is, γ explicitly
contains all the transactions that modify R. In some applications, however, deletions
are not given explicitly. Instead, a “deletion predicate” is used to determine whether
or not a given item has been deleted. Deletions are implicit in the sense that they
are implied by the deletion predicate. Only deletions of items that are stored in the
sample at the time of their deletion are visible to the maintenance scheme; the scheme
is oblivious to deletions of items that are not stored in the sample. A maintenance
scheme that supports deletion transactions does not necessarily support implicit
deletions.

We do not further investigate implicit deletions in general. Instead, we will consider
only a special case of implicit deletions that occurs when sampling from a time-based
sliding window of a data stream. In this setting, items that arrive in the stream
are valid for a certain amount of time; they expire afterwards. Implicit deletions
occur when an item expires because only expirations of items stored in the sample
are visible to the sampling scheme.3

3.3.4 Sample Size

An important aspect of a maintenance scheme is the sample size or the distribution
of the sample size produced by the scheme. The sample size is defined as the number
of items stored in the sample, including duplicates. The problem of finding the
optimum sample size for a given application has been studied extensively in statistical
literature, see Cochran (1977) for an overview. The essence is that, on the one hand,
larger samples contain more information about the data than smaller samples do;
thus, they lead to more precise estimates. On the other hand, one does not want
the sample to become too large because both the cost of sampling and the cost of
obtaining the estimate from the sample increase with the sample size.

3This does not hold for sequence-based windows. In such a window, arrivals and expirations are
synchronized, that is, an expiration occurs if and only if a new item arrives in the stream. The
sampling scheme is not oblivious to deletions. In fact, this is the reason why sequence-based
samples are easier to maintain.

60

3.3.4 Sample Size

The requirements on the sample size depend on both the application and properties
of the dataset. To facilitate analysis of the algorithms, we distinguish between stable
datasets, whose size (but not necessarily composition) remains roughly constant over
time, and growing datasets, in which insertions occur more frequently than deletions
over the long run. The former setting is typical of transactional database systems
and databases of moving objects; the latter setting is typical of data warehouses,
which accumulate historical data.

In this section, we discuss classes of maintenance schemes with respect to sample-
size variability and sample-size bounds. We also discuss their suitability for stable and
growing datasets. Since a maintenance scheme may behave differently for different
transaction sequences, denote by Γ an arbitrary but fixed set of transaction sequences.
For example, Γ might correspond to the set of all sequences over domain R, to the
set of insertion-only sequences, or to the set of all sequences in which the population
size never exceeds a certain quantity. All subsequent properties are with respect to
such a set Γ, but we omit any reference to Γ for brevity. Later, when we state that a
sampling scheme exhibits a certain property, the set Γ must be defined if it not clear
from the context.

A. Variability

A fixed-size maintenance scheme produces samples of constant size. For with-
replacement sampling, we have

|Si| = M

for some arbitrary but fixed sample size M > 0. For without-replacement sampling,
the sample size cannot be larger than the size of the dataset and

|Si| = min {M,Ni } .

Fixed-size samples have the advantage that the cost of obtaining an estimate from
the sample is bounded from above for many estimation problems. For example, if the
population sum of an attribute is estimated using a Horvitz-Thompson estimator,
estimation requires summing up at most M scaled values. Fixed-size samples are
ideal for stable datasets because the sampling fraction remains roughly constant. For
growing datasets, however, keeping the sample size fixed for all times is of limited
practical interest. Over time, such a sample represents an increasingly small fraction
of the dataset. Although a diminishing sampling fraction may not be a problem for
tasks such as estimating a population sum, many other tasks—such as estimating the
number of distinct values of a specified population attribute—require the sampling
fraction to be bounded from below.

In a semi-variable-size maintenance scheme, the sample size changes as new
transactions are processed, but each individual sample design has a constant sample
size. We have

|Si| = Mi

61

3 Maintenance of Materialized Samples

for a sequence of arbitrary but fixed sample sizes M1,M2, . . . with Mi ≥ 0. The Mi

may depend on γ. Compared to fixed-size sampling, semi-variable-size samples have
the advantage that the sample size can be adjusted dynamically. For example, the
sample size may be increased whenever the sampling fraction drops below a lower
bound. Such an approach retains the advantages of fixed-size sampling, but avoids
its disadvantage for growing datasets. Thus, techniques for sample resizing—either
upwards or downwards—are of interest in some applications.

Finally, a variable-size maintenance scheme produces samples of a probabilistic
size, that is, the variability of the sample size results from the sample design. The
sample size is a random variable. Its distribution typically depends on γ and changes
over time. Although a variable sample size is disadvantageous, variable-size schemes
often have a lower maintenance cost than fixed-size or semi-variable-size schemes.
This cost reduction may more than make up for the variability of the sample size,
especially if the variability is low. For this reason, variable-size schemes play a very
important role in sample maintenance.

B. Bounds

When the sample size is not fixed, it is of practical interest whether or not the sample
size can be bounded. Lower bounds ensure that the sample contains at least a certain
amount of information about the dataset, while upper bounds are effective to control
the cost of sample maintenance and estimation. In fact, upper bounds on the sample
size are especially useful in applications that need to guarantee a hard upper bound
on the response time of queries over the sample.

A maintenance scheme is bounded in size from below if there exists a constant
L > 0 such that for all i

|Si| ≥ min(|Ri|, L).

A scheme is bounded in size from above if there exists a constant M such that for
all i

|Si| ≤M.

A maintenance scheme is unbounded in size from below/above if such a bound does
not exist. Using similar arguments as above, bounded-size sampling schemes are
the method of choice for stable datasets. In general, unbounded sampling schemes
are needed for growing datasets. Note that unbounded-size sampling and fixed-size
sampling are mutually exclusive, but all other combinations of variability and bounds
are feasible; see table 3.1

The bounds as discussed above are both global (valid at all times) and strict (never
exceeded). In the course of this thesis, we will also consider local bounds, which are
valid under certain conditions only, and probabilistic bounds, which are valid with
a certain probability. If global and strict bounds do not exist or are very broad,
local and/or probabilistic bounds can help understand further the behavior of a
maintenance scheme.

62

3.3.5 Sample Footprint

Table 3.1: Feasible combinations of sample size and sample footprint

Size Footprint
fixed semi-var. variable bounded unbounded

S
iz

e bounded X X X X X
unbounded - X X - X

Item 1

Item 2

Item 3

Item n

Sample
Auxil-

Iary

Data

Sample footprint

(#bytes)

Sample size

(#items)

Figure 3.2: Sample size and sample footprint

3.3.5 Sample Footprint

The footprint of a sample is the space consumption of the sample in bytes. If auxiliary
data structures are kept to enable sample maintenance, the space consumption of
these structures is included in the footprint. The sample footprint is related to the
sample size, but has a different focus:

1. The sample size is measured in number of items, the footprint uses bytes.

2. The sample size does not include any auxiliary data, the footprint does.

3. The sample size is a measure of how much information is contained in the
sample, the footprint is a measure of how much space is required to store the
sample.

Both quantities are illustrated in figure 3.2.
We distinguish maintenance schemes with fixed footprint, semi-variable footprint

and variable footprint. The definitions correspond to the respective definitions for
sample-size variability. Similarly, the footprint of a maintenance scheme can be
bounded or unbounded. Ensuring that the sample footprint remains bounded from

63

3 Maintenance of Materialized Samples

above at all times can be useful from a system-design point of view. Specifically,
a-priori bounds for the sample footprint simplify the task of memory management
by avoiding unexpected overflows and expensive memory reallocation tasks; such
simplification is particularly desirable when many such samples are being maintained
simultaneously, as in the sample-warehouse setting of Brown and Haas (2006) or in
a data stream management system.

The sample size and sample footprint of a maintenance scheme do not necessarily
have the same class of variability or bounds. For example, there are fixed-size
maintenance schemes that have a variable footprint, and there are bounded-size
sampling schemes that have an unbounded footprint. Unbounded-size sampling
and bounded-footprint sampling are mutually exclusive, all other combinations are
feasible; see table 3.1.

3.3.6 Summary

We discussed several properties that a maintenance scheme can have. These properties
range from sampling semantics and properties of the sampling designs—such as
uniformity or sample-size distribution—over the types of transactions that a scheme
supports, as well as the cost associated with these transactions, to the amount of
space required to store the sample with all its auxiliary data structures. They allow
us to concisely summarize the key characteristics of a maintenance scheme, and we
will make use of them in our subsequent discussion.

3.4 Schemes for Survey Sampling

In traditional survey sampling, two different types of sampling schemes are dis-
tinguished (Särndal et al. 1991). Draw-sequential schemes compute the sample
draw-by-draw. In each draw, a new sample item is selected from either the entire
population or a subset of it. The selection is randomized and the selection probabili-
ties may change after each draw. As a consequence, the population is accessed in
random order. In contrast, list-sequential schemes scan the population sequentially
and decide for each element whether or not it is selected; this decision is randomized.
Again, the selection probabilities are often not fixed a priori but depend on the
outcome of earlier selections.

The notion of list-sequential sample selection is similar but not equal to our notion
of incremental sample maintenance (with respect to insertions). The difference
is that the survey-sampling schemes typically require some knowledge about the
population before the selection is carried out. Such knowledge may include the size
of the population or the value of an auxiliary variable associated with the population
items. Furthermore, some list-sequential schemes reorder the population before
sample selection is carried out. Incremental schemes are stronger in that they do not
require a-priori knowledge or reordering. In fact, every incremental scheme is also
list-sequential, while the opposite does not hold.

64

3.4.1 Draw-Sequential Schemes

3.4.1 Draw-Sequential Schemes

Suppose that the items in the population are stored in an indexed list and denote by
1, . . . , N the set of indexes. The simplest draw-sequential scheme uniformly selects a
random integer between 1 and N in each draw and adds the item having the selected
index to the sample. The process is repeated—with draws being independent—until
a sample of the desired size has been computed. The method is a special case of
the sampling scheme of Muller (1958). Since each index can be selected more than
once, the method leads to simple random sampling with replacement. The number
of distinct items in the sample is distributed as given in equation (2.6) on page 11.
Variations of this simple draw-sequential scheme, in which the random selection of
an item is replaced by more sophisticated procedures, were already discussed in the
context of query sampling; see section 2.2.2.

To obtain a simple random sample of size M without replacement, we may repeat
the drawing of items until M distinct items have been selected. Items that are
already present in the sample are discarded. Denote by Bn a random variable for
the number of sampling steps required to obtain the n-th distinct item, 1 ≤ n ≤M .
Clearly, we have B1 = 1 because the first drawn item is always distinct. Since each
of the subsequent items is accepted into the sample only if it has not been sampled
already, Bn is geometrically distributed with

Pr [Bn = k] = Pr [k − 1 duplicates followed by a new item]

=
(
n− 1
N

)k−1 N − n+ 1
N

for k ≥ 1. The Bn are independent. The total number of repetitions is given
by B =

∑
Bn. Using the linearity of the expected value, standard properties of

the geometric distribution (Johnson et al. 1992, pp. 201–207) and a change in the
summation index, we find that

E [B] =
M∑
n=1

E [Bn] = 1 +
M∑
n=2

N

N − n+ 1
= 1 +N(HN−1 −HN−M). (3.3)

Here, the quantity

Hn
def=

n∑
i=1

1
i

denotes the n-th harmonic number. A well-known approximation for Hn is given by

Hn = lnn+ γ + ε, ε ≤ 1
2n
, (3.4)

where γ = 0.5772 . . . denotes Euler’s constant (Knuth 1997). For brevity, we define
the partial harmonic number

Hn,m =
m∑
i=n

1
i

= Hm −Hn−1.

65

3 Maintenance of Materialized Samples

By (3.4), we find that

Hn,m ≈ ln
(

m

n− 1

)
≈ ln

(
m+ 1
n− 1

)
(3.5)

with negligible error whenever m,n� 1. Thus, for large N ,

E [B] = NHN−M+1,N−1 ≈ N ln
(

N

N −M

)
.

For example, to sample 1,000 distinct items out of 10,000 items, approximately 1,053
sampling steps are required in expectation. Compared to with-replacement sampling,
the overhead in the number of draws is negligible when N �M , but the repeated
sample lookups can be expensive. In fact, if the sample lookup is performed by a
sequential scan of the sample, the algorithm requires Ω(M2) total time.

Many draw-sequential schemes try to improve upon the above algorithm by avoiding
any repetitions or sample lookups. A scheme suggested by Goodman and Hedetniemi
(1977)4 maintains a list of unselected indexes initialized to 1, . . . , N . In each draw, a
random index is selected and removed from the list, and the population item having
the selected index is added to the sample. The scheme has the obvious drawback of
requiring Ω(N) space. Ernvall and Nevalainen (1982) and Teuhola and Nevalainen
(1982) improve upon the algorithm by storing only the difference between the set of
all indexes and the set of unselected indexes. The algorithms run in O(M) expected
time and O(M2) worst-case time. They require O(M) space.

As we will see below, draw-sequential algorithms are superseded by carefully
implemented list-sequential algorithms.

3.4.2 List-Sequential Schemes

As above, we describe schemes that select M integers from the sequence of indexes
1, ..., N . In this section, we only describe list-sequential schemes that are not incre-
mental. When applicable, these schemes are often superior to incremental schemes
in terms of efficiency because they exploit knowledge of the population size.

The standard list-sequential algorithm has been proposed by Fan et al. (1962,
Method 1) and Jones (1962). It was rediscovered by Bebbington (1975). The idea is
to process the indexes sequentially. Each index is accepted with probability

M − n
N − i+ 1

=
remaining samples
remaining indexes

,

where n is the number of already accepted indexes and i is the current index.
Whenever an index is accepted, the respective population item is retrieved and
added to the sample. The process stops as soon as M items have been selected.
The algorithm accesses the population sequentially, and the original order of the
population items is retained in the sample. As proven by Fan et al. (1962), the

4As cited by Ernvall and Nevalainen (1982).

66

3.4.2 List-Sequential Schemes

method produces a simple random sample without replacement. The number of
sampling steps lies in the range from M to N and averages to M

M+1(N + 1) (Ahrens
and Dieter 1985).

An example with M = 2 and N = 4 is shown in figure 3.3a. The figure displays
a probability tree that contains all possible states of the sample along with the
probability of state transitions. The probability of reaching a node can be obtained
by multiplying the transition probabilities along the path from the root of the tree
to the respective node. Each sample is selected with probability 1/6; the average
number of sampling steps is 10/3 ≈ 3.33.

The large number of sampling steps has given rise to the development of more
efficient schemes. The general idea of the improved schemes is to compute a “skip
counter” that indicates the number of items to skip before the next item is processed.
Skipped items do not incur any cost, and the computation of the skip counters can
be done very efficiently. Suppose that we are about to process the i-th index and
that n items have already been selected into the sample. Index i is then accepted
with probability (M − n)/(N − i+ 1). If index i is rejected, index i+ 1 is accepted
with probability (M − n)/(N − i) and rejected otherwise. In the latter case, index
i+ 2 is accepted with probability (M − n)/(N − i− 1) and so on. Denote by Zi,n a
random variable for the number of excluded items before the next sample inclusion.
We have

Pr [Zi,n = z] =
M − n

N − i+ 1− z

z−1∏
z′=0

(
1− M − n

N − i+ 1− z′

)
(3.6)

for z ≥ 0, where we take an empty product as 1. We can now state the skip-based
algorithm. The algorithm first generates a realization z1 of Z1,0 and includes the item
with index i1 = z1 + 1 into the sample. Thus, the first z1 indexes are skipped. Next,
the algorithm generates a realization z2 of Zi1+1,1 and includes item i2 = i1 + z2 + 1
into the sample. The process is repeated until M items have been selected. The
entire algorithm is illustrated in figure 3.3b; the number of sampling steps is precisely
M = 2. The efficiency of the skip-based algorithm depends on how efficiently the
realizations of Zi,n can be generated. A detailed overview of such methods is given
in Devroye (1986, ch. XII.3); we summarize the main results below.

In Devroye (1986) and Bissell (1986), algorithms that generate a realization of
Zi,n using the inversion method are proposed; see Devroye (1986, ch. II.2) for a
general discussion of this method. The idea is to generate a uniform random number
U on the interval [0, 1]. The desired value of the skip counter is then given by the
smallest integer z ≥ 0 that satisfies U < Pr [Zi,n ≤ z]. The value of z is found by a
sequential search, starting with z = 0. Devroye (1986) also gives a more intelligent
method that avoids starting from z = 0 by computing a lower bound on z. In any
case, the inversion method reduces the number of required random numbers to M ,
but the computation of the Zi,n is still expensive.

A more efficient acceptance-rejection (AR) algorithm has been proposed by Vitter
(1984); see Devroye (1986, chapter II.3) for a general discussion of such algorithms.
The basic idea is to find another random variable Z∗ that is easy and fast to generate.

67

3 Maintenance of Materialized Samples

2

1

1 2

3 3 4

2

1

2 4

1 4

1 3

i

2 3

1

1

1

1
1/2

1/2

2/3

1/3

1 2 3 4

1/2

1/2

1/2

1/2

1/3

2/3

1

0

(a) Standard algorithm

2

1 2

3 3 4

2 4

1 4

1 3

i

2 3

1

1/2

1 2 3 4

1/6

1/3

1 1/3

1/3

1/2

1/2

1/3

0

(b) Skip-based algorithm

Figure 3.3: Illustration of list-sequential sampling

68

3.4.3 Incremental Schemes

The AR algorithm starts by generating a realization z∗ of Z∗. With probability p(z∗),
this value is “accepted” and the algorithm returns with Z = z∗; with probability
1 − p(z∗), the value is “rejected” and the process repeated. The random variable
Z∗ and the probability function p(·) are carefully chosen so that (i) conditional
on being accepted, the returned value has the same probability distribution as Z,
and (ii) the expected number of rejections before the final acceptance is small. To
compute the M skip counters required to obtain the size-M sample, Vitter’s AR
method requires O(M) expected time; a significant improvement over the standard
method. An optimized version of the algorithm is given in Vitter (1987) and Nair
(1990).

Another direction is taken by Ahrens and Dieter (1985), who make use of a
Bernoulli sampling scheme that is also based on skip counters. Their method exploits
the fact that skip counters for Bernoulli sampling have a simpler distribution and are
thus easier to compute than for sequential sampling (section 3.4.3B). Therefore, the
idea is to generate a Bernoulli sample that is slightly larger than M with sufficiently
high probability. The sample size is then reduced using, for example, the standard
method described above. Finally, the items corresponding to the indexes in the
reduced sample are retrieved from disk. The method is slightly faster than Vitter’s
method (Vitter 1987), but it has the disadvantage that index computation and
population access cannot be interweaved. It also requires O(M) space.

3.4.3 Incremental Schemes

We now discuss list-sequential schemes that are also incremental. These schemes
treat the population as a sequence of insertion transactions into an initially empty
dataset. Thus, the population is processed sequentially but—in contrast to the
schemes discussed above—incremental schemes are able to output at any time a
uniform random sample of that part of the population that has been processed
already. This is done by either maintaining the sample directly or by maintaining a
data structure from which the sample can be extracted.

The main motivation of incremental schemes in the context of survey sampling
is that, in some applications, the population size is unknown prior to sampling. Of
course, the population size can be determined in a first scan, and non-incremental
schemes can be used to compute the sample in a second scan. However, a direct,
single-scan approach is often more efficient.

A summary of the schemes discussed in this section is given in the upper part of
table 3.2, page 74. The table is structured according to the properties developed
in section 3.3. A check mark (X) stands for incremental, a circle (◦) is for semi-
incremental, and a dash (-) means non-incremental or unsupported.

Making use of the notation of section 3.2, we describe the schemes in terms of
processing a sequence γ that consists of insertions only. To simplify our discussion,
we assume that γi = +ri so that Ri = { r1, r2, . . . , ri }. Both the dataset and the
sample are initially empty, S0 = R0 = ∅.

69

3 Maintenance of Materialized Samples

A. Bernoulli Sampling, BERN(q)

Perhaps the simplest incremental scheme is the Bernoulli sampling scheme. In
Bernoulli sampling with sampling rate q, denoted BERN(q), each arriving item is
included into the sample with probability q and excluded with probability 1 − q,
independent of the other items. We have

Si+1 ←

{
Si ∪ { ri+1 } with probability q
Si with probability 1− q.

(3.7)

The Bernoulli sampling scheme leads to the Bernoulli sampling design; see section 2.1.2
for a discussion of the properties of this design. When the intended meaning becomes
apparent from the context, we will write Bernoulli sampling to denote either the
Bernoulli design or a scheme that leads to this design. The Bernoulli scheme as
described above has been proposed by Fan et al. (1962, Method 3). Replacing ∪ by
] in (3.7), it can also be used when both S and R are multisets because the sampling
decisions do not depend on the actual values of the processed items.

B. Bernoulli Sampling With Skipping

As with list-sequential sampling, Bernoulli sampling can be implemented more
efficiently by maintaining a skip counter in addition to the sample. As pointed out
by Fan et al. (1962, Method 9) and Ahrens and Dieter (1985), the skip counter Z
follows a geometric distribution with

Pr [Z = z] = (1− q)zq (3.8)

for z ≥ 0. Using the inversion method of Devroye (1986, ch. X.2), a realization of Z
can be computed in constant time by setting

Z =
⌊

logU
log(1− q)

⌋
with U being a uniform random variable in (0, 1). The expected number of skipped
transactions is E [Z] = (1− q)/q, which is O(q−1) so that savings can be substantial
if q is small. Given a sequence z0, z1, . . . of independent realizations of Z according
to (3.8), the complete algorithm is

(Si+1, Zi+1)←

{
(Si ∪ { ri+1 } , zi+1) Zi = 0
(Si, Zi − 1) Zi > 0,

(3.9)

starting with Z0 = z0. The zi encode the generation of skip counters; only the zi
that are actually used have to be generated.

70

3.4.3 Incremental Schemes

C. Reservoir Sampling, RS(M)

The reservoir sampling scheme, denoted RS(M), maintains a uniform sample of fixed
size M , given a sequence of insertions. The procedure inserts the first M items
directly into the sample. For each successive transaction γi = +ri, i > M , the item
is inserted into the sample with probability M/Ni, where Ni = Ni−1 + 1 = i is the
size of the dataset just after the insertion. An included item replaces a randomly
selected item in the sample. The complete algorithms is as follows

Si+1 ←

Si ∪ { ri+1 } Ni + 1 ≤M
Replace(Si, ri+1) with probability M/(Ni + 1)
Si with probability (Ni −M + 1)/(Ni + 1),

(3.10)

where the function Replace(S, r) replaces a random item in S by r and returns the
result. The algorithm requires knowledge of Ni, which thus has to be maintained
with the sample. A slightly different version of reservoir sampling appeared in Knuth
(1981). According to Knuth, this method is due to Alan G. Waterman. The version
given here was first proposed by McLeod and Bellhouse (1983); their paper also
contains a proof of uniformity.

An illustration of the algorithm for M = 2 is given in figure 3.4a. The first two
steps have been omitted; the sample { 1, 2 } is output with probability 1 after these
two steps. The upper children represent acceptances, the lower child represents a
rejection. In case of acceptance, another random decision is carried out to determine
at which position the new item is written. After 4 items have been processed, each
distinct sample is selected with probability 1/6; there are multiple paths to some of
the sample states.

Ignoring the first M steps required to initially fill the sample, the algorithm
performs MHM+1,N ≈ M ln(N/M) item replacements in expectation to process
N > M items (Knuth 1981). In the example, the expected number of replacements
up to N = 4 is 0.583̄.

D. Reservoir Sampling With Skipping

In his well-known paper, Vitter (1985) developed an acceptance-rejection algorithm
that generates skip counters for reservoir sampling in constant time. The problem is
also discussed in Pinkham (1987) and Li (1994). As before, right after item ri has been
processed, denote by Zi a random variable for the number of rejected items until the
next sample insertion. Item ri+1 is accepted with probability M/(Ni + 1) or rejected
otherwise. In case of rejection, item ri+2 is accepted with probability M/(Ni + 2). If
ri+2 is rejected as well, item ri+3 is selected with probability M/(Ni + 3) and so on.
The distribution of Zi is therefore

Pr [Zi = z] =
M

Ni + z + 1

z−1∏
z′=0

(
1− M

Ni + z′ + 1

)
(3.11)

71

3 Maintenance of Materialized Samples

1 2

1 3

1/2

1 2

3 2

1 2

1 4

4 2

3 2

3 4

4 2

1 3

4 3

1 4

1/2

1/3

1/2

1/2

1/2

1/2
2/3

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

i
3 42

(a) Standard algorithm

1 2

i

1 3

1/2

3 4

3 2

1 4

4 2

3 4

4 2

4 3

1 4

1/2 1/2

1/2

2/3

1/6

1/2

1/2

1/2

1/2

1/2

1/2

1/15

1/5

1/5

2

(b) Skip-based algorithm

Figure 3.4: Illustration of reservoir sampling

72

3.4.3 Incremental Schemes

for z ≥ 0. Given a sequence zM , zM+1, . . . of independent realizations of random
vairables ZM , ZM+1, . . ., respectively, the skip-based algorithm is given by

(Si+1, Zi+1)←

(Si ∪ { ri+1 } , zM) Ni + 1 ≤M
(Replace(Si, ri+1), zi+1) Zi = 0
(Si, Zi − 1) Zi > 0.

(3.12)

Again, only the zi that are actually used have to be generated. The algorithm is
illustrated in figure 3.4b. There are infinitely many possible values for each skip
counter; skip counter values that refer to item r6 and beyond are omitted (as indicated
by vertical ellipsis points).

E. Min-Wise Sampling, MIN(M)

Min-wise sampling (Fan et al. 1962, Method 4) is a precursor to reservoir sam-
pling.5 The algorithm makes use of a sequence U = (U1, U2, . . .) of independent and
identically-distributed (i.i.d.) random variables, typically uniform. The Ui act as
random tags in the sequence of arriving items r1, r2, . . .; item ri is given tag Ui. In
min-wise sampling of size M , denoted MIN(M), the sample consists of the items
with the M lowest tags processed thus far. To enable maintenance, it is necessary to
store the tags of the items that have been included into the sample. The algorithm is

Si+1 ←

(Si ∪ { (ri+1, Ui+1) } |Si| < M

Si \ { argmax
(r,u)∈Si

u } ∪ { (ri+1, Ui+1) } |Si| = M, Ui+1 < max
(r,u)∈Si

u

Si otherwise.

Uniformity follows by symmetry; every size-M subset of R has the same chance
of having the smallest tags. Compared to reservoir sampling, min-wise sampling
has the disadvantage that its sample footprint is larger because additional space is
required to store the tags. It also has higher CPU cost. In a naive implementation
of a sampling step, the sample is scanned sequentially for the item with the largest
tag, which gives O(M) time per transaction. By keeping track of the largest item,
the cost of rejected transactions can be reduced to O(1). An even more economic
approach is to store the sample in a heap; the cost for accepted items then reduces to
O(logM), which is still more than the O(1) of reservoir sampling. Min-wise sampling
has the advantage, however, that the number of items in the base data does not have
to be known when executing a sampling step. As we will see later, this property is
important for scenarios such as distinct-item sampling or sliding-window sampling.
Min-wise sampling can be implemented using geometric skips (Devroye 1986; Li
1994), but it then loses its unique advantages in the aforementioned scenarios.

5In fact, min-wise sampling was known under the name reservoir sampling (Knuth 1969; Devroye
1986). To avoid confusion, we do not follow this nomenclature.

73

3 Maintenance of Materialized Samples

T
ab

le
3.2:

U
niform

m
aintenance

schem
es

for
set/m

ultiset
sam

pling

Set

Multiset

Insert

Update

Delete

S
ize

F
o
otp

rin
t

S
k
ip

Survey
sampling

B
E

R
N

(q)
X

X
X

-
-

U
nbounded

U
nbounded

X

R
S(M

)
X

X
X

-
-

F
ixed

F
ixed

a
X

M
IN

(M
)

X
X

X
-

-
F

ixed
F

ixed
a

X

Database
sampling

M
B

E
R

N
(q)

X
-

X
X

X
U

nbounded
U

nbounded
X

M
B

E
R

N
P

(M
)

X
-

X
X

-
B

ounded
B

ounded
a

X

M
R

S(M
)

X
-

X
X

-
F

ixed
F

ixed
a

X

M
R

SR
(L
,M

)
X

-
X

X
◦

B
ounded

B
ounded

a
(X

)

M
R

ST
(L
,M

)
X

-
X

X
◦

b
B

ounded
F

ixed
a

X

C
A

R
(M

)
X

-
X

X
◦

B
ounded

c
F

ixed
a

(X
)

C
A

R
W

O
R

(M
)

X
-

X
X
◦

F
ixed

F
ixed

a
(X

)

M
B

E
R

N
M

(q)
X

X
X
◦
◦

U
nbounded

U
nbounded

X

Novel
schemes

R
P

(M
)

X
-

X
X

X
B

ounded
B

ounded
a

X

A
B

E
R

N
(q)

X
X

X
X

X
U

nbounded
U

nbounded
-

aA
ssu

m
in

g
co

n
sta

n
t

sp
a
ce

fo
r

sto
rin

g
a
n

item
/

a
co

u
n
ter

/
a

la
b

el
/

th
e

sa
m

p
lin

g
ra

te.
bX

w
h
en

d
eletio

n
s

o
ccu

r
in

freq
u
en

tly.
cA

fter
co

n
v
ersio

n
to

a
w

ith
o
u
t-rep

la
cem

en
t

sa
m

p
le.

74

3.5 Schemes For Database Sampling

3.5 Schemes For Database Sampling

The main difference between database sampling schemes and survey sampling schemes
is that, in addition to insertion transactions, the former also consider update and/or
deletion transactions applied on the dataset. These additional types of transactions
significantly increase the complexity of sample maintenance. Nevertheless, many of
the schemes we are going to review here build upon the incremental survey sampling
schemes, often in a non-trivial way.

We assume throughout that the sample is small enough to fit in main memory
so that random accesses to the sample are cheap. This assumption limits the
applicability of database sampling in warehousing scenarios where the dataset size
can be so large, and the sampling rate so high, that the samples must be stored
on disk or flash drives. Extending database sampling schemes to large disk-based
samples is a topic for future research; see chapter 8. We also assume that an index
is maintained on the sample in order to rapidly determine whether a given item is
present in the sample or not—such an index is mandatory for any implementation of
sampling schemes subject to deletions.

We discuss set sampling schemes, multiset sampling schemes, distinct-item sampling
schemes and data stream sampling schemes, each class in its own section. Similarly,
chapters 4–7 are each devoted to one of these classes. A short summary and discussion
of the contribution of this thesis is given at the end of each section. An overview
of the schemes is given in tables 3.2, 3.4, and 3.7. Detailed information about our
naming conventions as well as a list of all algorithms can be found in the index of
algorithm names on page 269.

As before, we assume throughout this thesis that S0 = R0 = ∅. Also denote by
Ni = |Ri| the size of the dataset and by ni = |Si| the (random) size of the sample
after the i-th transaction. Clearly, n0 = N0 = 0. The dataset size, including potential
duplicates, can be maintained incrementally. If transaction γi+1 corresponds to an
insertion, then Ni+1 = Ni + 1. If it corresponds to a deletion, then Ni+1 = Ni − 1.
If γi+1 is an update transaction, the dataset size remains unchanged and Ni+1 = Ni.

3.5.1 Set Sampling

We start with a discussion of available set sampling schemes. We consider two
extensions of Bernoulli sampling (one unbounded, one bounded), three extensions of
reservoir sampling (two of them supporting deletions), and two adapted versions of
the correlated acceptance/rejection scheme of Olken and Rotem (1992).

A. Modified Bernoulli Sampling, MBERN(q)

It is straightforward to modify Bernoulli sampling on sets to handle updates and
deletions; the modified version is denoted as MBERN(q). The algorithm remains
unchanged for insertions; each inserted item is accepted with probability q and

75

3 Maintenance of Materialized Samples

rejected with probability 1 − q; see equations (3.7) and (3.9). If transaction γi+1

corresponds to an update of the form r → r′, set

Si+1 ←

{
Si \ { r } ∪ r′ r ∈ Si
Si otherwise,

that is, simply update the sample copy of the item if present. The output of the
sampling process is the same as if r were replaced by r′ right from the beginning. If
transaction γi+1 corresponds to a deletion −r, set

Si+1 ←

{
Si \ { r } r ∈ Si
Si otherwise,

that is, remove the deleted item if present in the sample. Thus the deletion operation
“annihilates” item r; it is as if item r were never inserted into R. It is possible to run
MBERN(q) using skip counters to process insertion transactions; the value of the
skip counter remains unmodified for both update and deletion transactions.

B. Modified Bernoulli Sampling With Purging, MBERNP(M)

The MBERN(q) scheme described above is unbounded in both size and space. To
bound the sample size, the scheme can be combined with the “counting sample”
technique proposed by Gibbons and Matias (1998); the combined scheme is de-
noted MBERNP(M). The idea is to use MBERN(q) sampling and to purge the
sample whenever the sample size exceeds an upper bound M . In more detail, the
MBERNP(M) scheme starts with q = 1. Each purge operation consists of one or
more subsampling steps,6 and the sampling rate q is decreased at each such step.
Specifically, the sample is subsampled using a BERN(q′/q) scheme, where q′ < q,
and q is set equal to q′ afterwards. This procedure is repeated until the sample
size falls below M , at which point the purge operation terminates and MBERN(q)
sampling recommences, using the new, reduced value of q. The method works well
for insertion and updates but, as we will show below, it leads to non-uniform samples
when the transaction sequence contains deletions. Thus, unlike common practice,
MBERNP(M) can only be used on sequences that do not contain any deletions.

In the remainder of this section, we show that MBERNP(M) does not support
deletion transactions. To simplify the discussion, we assume that q′ = pq for a fixed
constant p ∈ (0, 1); similar arguments apply when q′/q can vary over the subsampling
steps.

The purge operation is executed whenever the sample size increases to M + 1, due
to an accepted insertion transaction. Each purge involves L Bernoulli subsampling
steps with sampling rate p, where L is a geometrically distributed random variable
with

Pr [L = k] = p′(1− p′)k−1

6Subsampling is the process of applying a sampling scheme on a sample, that is, on a dataset that
is already sampled. Subsampling is used to decrease the size of a sample.

76

3.5.1 Set Sampling

for k ≥ 1. Here, p′ = 1− pM+1 denotes the probability that at least one of the M
sample items is rejected so that the purge operation terminates. Denoting by S′ the
subsample that results from executing the purge operation on S, we have for any
A ⊂ S

Pr
[
S′ = A

]
= Pr [all r ∈ A retained, all r ∈ S \A purged | ≥ 1 item purged]

=
p|A|(1− p)M+1−|A|

p′
. (3.13)

After the purge operation has terminated, the sampling process proceeds with the
new sampling rate qpL.

We now give a simple example where MBERNP(M) does not produce a uni-
form sample; an illustration is given in figure 3.5. Consider the sequence γ =
(+r1,+r2,−r1,+r3) and set M = 1. Denote by Ri the dataset, by Si the sample
and by Qi the (random) sampling rate after processing the i-th transaction, starting
with R0 = S0 = ∅ and Q0 = 1. The first insertion +r1 is directly included into the
sample; the sampling rate remains unmodified, Q1 = 1. The insertion of r2 triggers
a purge operation and, using (3.13) with A = { r1 }, we find that r2 is selected as
the sample item with probability p1 = p(1− p)/(1− p2). The same holds for r1; the
sample becomes empty with probability 1− 2p1. Also, the sampling rate is adjusted
depending on the number L of purges so that Q2 = pL. Transaction −r1 simply
removes r1 if present in the sample; Q3 = Q2. Transaction +r3 is accepted with
probability Q3 = pL and rejected otherwise. In the case of a rejection, the sample
remains unmodified. Otherwise, if r3 is accepted, it is included into the sample and,
when additionally S3 = { r2 }, another purge operation is triggered. By multiplying
the probabilities along the paths in figure 3.5, summing up and replacing Q3 by pL,
we yield

Pr [S4 = { r2 } | L] = p1(1−Q3) + p1Q3p1

= pL(p2
1 − p1) + p1,

and

Pr [S4 = { r3 } | L] = (1− 2p1)Q3 + p1Q3 + p1Q3p1

= pL(p2
1 − p1 + 1).

77

3 Maintenance of Materialized Samples

We can now uncondition on L and simplify the resulting infinite sum

Pr [S4 = { r3 }] =
∞∑
k=1

Pr [L = k] Pr [S4 = { r3 } | L = k]

=
∞∑
k=1

(1− p2)(p2)k−1pk(p2
1 − p1 + 1)

=
1− p2

p2
(p2

1 − p1 + 1)
∞∑
k=1

(p3)k

=
p

p+ 1
,

where we used the limit of the geometric series

∞∑
k=0

xk =
1

1− x

for |x| < 1. Similarly,

Pr [S4 = { r2 }] =
∞∑
k=1

Pr [L = k]
(
pk(p2

1 − p1) + p1

)
=

p

p+ 1
p2 + 1

p2 + p+ 1
.

It follows that
Pr [S4 = { r2 }] < Pr [S4 = { r3 }]

for p > 0, so that MBERNP(M) biases the sample towards recent items. For example,
a common choice is p = 0.8; the two probabilities are then given by ≈ 0.30 and
≈ 0.44, respectively.

The purge operation thus introduces some subtle dependencies among the sample
items, and these dependencies lead to non-uniform samples when the transaction
sequence contains deletions. MBERNP(M) appears to work in the insertion-only
setting, but this assertion has not yet been proven. Also, in the insertion-only setting,
the scheme is superseded by modified reservoir sampling, which we consider next.
As a final note, Tao et al. (2007) proposed an extension of MBERNP(M) that can
be shown to produce non-uniform samples even in the insertion-only setting. The
proof is similar to the one above. In short, the sequence γ = (+r1,+r2,+r3) with
M = 1 leads to

Pr [S3 = { r1 }] = 3/8
Pr [S3 = { r2 }] = 3/8
Pr [S3 = { r3 }] = 1/4,

which is clearly non-uniform.

78

3.5.1 Set Sampling

2

i

1-2p1

111

1 2

1

1

3

3

2

3

p1

p1

Q3

1-Q3

2
1-Q3

Q3

p1

p1

1-2p1

1

Q3

1-Q3

Purge

Purge

+r1 +r2 -r1 +r3

1 2 3 40

Figure 3.5: Counterexample for modified Bernoulli sampling with purging

79

3 Maintenance of Materialized Samples

C. Modified Reservoir Sampling, MRS(M)

Reservoir sampling can be extended to process update transactions in an incremental
way. The modified scheme, denoted as MRS(M), processes insertion transactions
as before; see equations (3.10) and (3.12). If an update transaction γi+1 = r → r′

arrives, item r—if present in the sample—is replaced by r′:

Si+1 ←

{
Si \ { r } ∪ { r′ } r ∈ Si
Si otherwise.

Again, insert operations can be sped up using skip counters. Since the dataset size,
which determines the inclusion probability of inserted items, is not affected by update
transactions, the value of the skip counter remains unchanged for updates.

D. Modified Reservoir Sampling and Deletions

The extension of MRS(M) to support deletion transactions is more complex. Suppose
that γi+1 = −r− is the first deletion transaction that occurs in γ. Also suppose
that the reservoir has been filled initially before γi+1 arrives, that is, |Si| = M and
Ni > M . There are two different cases that can occur when processing deletion
transaction γi+1:

1. Item r− is not present in the sample, r− /∈ Si. This event occurs with probability
1− ni/Ni.

2. Item r− is present in the sample, r− ∈ Si. This event occurs with probability
ni/Ni.

Case 1 is easy to handle. By the uniformity of Si, every size-M subset from Ri is
equally likely to be chosen as the sample Si. It follows that all size-M subsets that
do not contain item r− are also chosen with equal probability. Thus, Si represents a
size-M uniform random sample of Ri+1 = Ri \ { r− } and we therefore set Si+1 ← Si.

In case 2, we have no option but to remove r− from the sample. Using the same
argument as above, one finds that the resulting sample Si\{ r− } is a uniform random
sample of Ri+1. However, the sample size has been reduced by one, and it is not
immediately clear how to proceed.

Ideally, we would want to use subsequent insertions to “compensate” for previous
deletions, that is, to cancel out their effect of reducing the sample size. An “obvious”
algorithm would be as follows: Whenever the sample size matches its upper bound M ,
the algorithm handles insertions identically to RS(M). Whenever the sample size lies
below the upper bound M and an item is inserted into the dataset, the item is also
inserted into the sample. Although simple, this algorithm is unfortunately incorrect,
because it fails to guarantee uniformity. To see this, suppose that, at some stage,
|S| = M < |R| = N . Also suppose that the deletion of item r− is directly followed
by an insertion of item r+. Denote by S′ the sample after these two operations. If

80

3.5.1 Set Sampling

the sample is to be truly uniform, then the probability that r+ ∈ S′ should equal
M/N , conditional on |S| = M . Since r− ∈ S with probability M/N , it follows that

Pr
[
r+ ∈ S′

]
= Pr

[
r− ∈ S, r+ included

]
+ Pr

[
r− 6∈ S, r+ included

]
=
M

N
· 1 +

(
1− M

N

)
· M
N

>
M

N
, (3.14)

conditional on |S| = M . Thus, an item inserted just after a deletion has an overly
high probability of being included in the sample. The basic idea behind our random
pairing algorithm, which is introduced in chapter 4, is to carefully select an inclusion
probability for each inserted item so as to ensure uniformity. In what follows, we
discuss alternative approaches that have been proposed in the literature.

E. Modified Reservoir Sampling With Recomputation, MRSR(L,M)

An alternative approach to extend MRS(M) to support deletions is to simply continue
reservoir sampling with a smaller sample size n < M whenever a deletion has caused
the sample to shrink. This leads to a slightly different procedure for handling insertion
transactions because we now have to account for situations where the sample size is
smaller than M . For insertion γi+1 = +r, we have

Si+1 ←

Si ∪ { r } Ni + 1 ≤M, ni = Ni

Replace(Si, r) with probability ni/(Ni + 1)
Si with probability (Ni − ni + 1)/(Ni + 1).

(3.15)

This procedure is a direct extension of equation (3.10). The problem with this
approach is that the sample size decreases monotonically to zero. We therefore
modify this approach using a device as in Gibbons et al. (1997): as soon as the
sample size falls below a prespecified lower bound L, recompute it from scratch using,
for example, a list-sequential sampling scheme. The resulting method can be described
as modified reservoir sampling with recomputation, denoted as MRSR(L,M). It
is also called the “backing sample” method. The complete algorithm to process
deletion γi+1 = −r is

Si+1 ←

Si \ { r } r ∈ Si, Ni ≤ L ∨ ni > L

Si r /∈ Si
Srs(Ri+1, M) otherwise,

where Srs(Ri+1,M) computes a size-M simple random sample of Ri+1. MRSR(L,M)
is semi-incremental with respect to deletions because access to the base data is
required from time to time. It is incremental with respect to insertions and updates.

One may use skip counters with MRSR(L,M), but the value of the counter has to
be recomputed with every deletion. This is because the dataset size and/or sample
size changes so that the inclusion/exclusion probabilities assumed when generating
the skip counter do not hold anymore. The use of a skip counter is therefore only
beneficial when the number of deletions is low.

81

3 Maintenance of Materialized Samples

F. Modified Reservoir Sampling With Tagging (And Recomputation),
MRST(L,M)

Tao et al. (2007) proposed another approach, denoted as MRST(0,M), to extend
MRS(M) with deletion support.7 The basic idea is to tag deleted items instead
of physically removing them from the sample. A deletion is therefore interpreted
as an update that sets the “deleted flag” of the respective tuple; and updates are
directly supported by MRS(M). Denote by N+

i the cumulated number of insertion
transactions that have arrived in the stream up to and including transaction γi;
N+

0 = 0. If γi+1 is an insertion +r, we set

Si+1 ←

Si ∪ { (r, false) } N+

i + 1 ≤M
Replace(Si, (r, false)) with probability M/(N+

i + 1)
Si with probability (N+

i −M + 1)/(N+
i + 1),

and N+
i+1 = N+

i + 1. Here, each element in the sample is a tuple (r, d), where r
denotes the item and d the deletion flag. All items are marked as non-deleted at the
time of their insertion. If γi+1 = −r is a deletion, we set

Si+1 ←

{
Si \ { (r, false) } ∪ { (r, true) } (r, false) ∈ Si
Si otherwise,

and N+
i+1 = N+

i . The net sample, which contains only the non-deleted items, is given
by

S∗i = { r | (r, false) ∈ Si } .

As observed by Tao et al. (2007), the net sample size follows a hypergeometric
distribution and averages to

E [|S∗i |] =
Ni

N+
i

M.

The values of Ni and N+
i depend on the sequence γ. To shed some light on the

expected sample size,8 pick a sequence γ that satisfies

lim
i→∞

N+
i

i
= p+

for some constant 0.5 ≤ p+ ≤ 1. The value of p+ can be seen as the fraction
of insertions in γ over the long run. Let N0 = |R0| be the initial size of the
dataset before applying γ and let S0 be a size-M uniform sample of R0. Then,
Ni = N0 +N+

i − (i−N+
i) and we obtain

lim
i→∞

Ni

N+
i

= lim
i→∞

N0 +N+
i − (i−N+

i)
N+
i

=
2p+ − 1
p+

.

7The algorithm has been developed independently from our random pairing algorithm given in
chapter 4.

8The key ideas of the following derivation are due to Peter J. Haas.

82

3.5.1 Set Sampling

Table 3.3: Expected sample size for MRST(0,M)

p+ 0.5 0.6 0.7 0.8 0.9 1
E [|S∗|] 0 0.33M 0.57M 0.75M 0.88M M

In the final equality, we made use of the fact that limi→∞N
+
i = ∞ under our

assumptions. The expected net sample size in the limit is

lim
i→∞

E [|S∗i |] =
2p+ − 1
p+

M.

Table 3.3 gives the limit of E [|S∗i |] for some choices of p+. The algorithm shows good
performance if deletions occur infrequently but it fails in the case of a stable dataset
(where p+ = 0.5). For this reason, we modify MRST(0,M) so that it recomputes the
sample whenever the net sample size has fallen below a prespecified lower bound L.
The modified algorithm is denoted by MRST(L,M); it coincides with MRST(0,M)
for L = 0.

G. Correlated Acceptance/Rejection Sampling, CAR(M)

The correlated acceptance/rejection algorithm of Olken and Rotem (1992), denoted
as CAR(M), maintains a size-M simple random sample with replacement. It is
incremental with respect to insertions and updates, and semi-incremental with respect
to deletions. CAR(M) has been designed for the specific setting where the base data
is stored in a table of a relational database. Adapted to our setting, the algorithm
essentially maintains M independent MRSR(1, 1) samples, although it is slightly
more efficient. CAR(M) processes an insertion γi+1 = +r as follows. First, it
generates a random number Xi+1 from the binomial(M, 1/Ni+1) distribution, that
is,

Pr [Xi+1 = k] = B(k; M, 1/Ni+1)

for 0 ≤ k ≤M . Fast methods to generate Xi+1 can be found in Devroye (1986, ch.
X.4). Based on the observation that Xi+1 is distributed as the number of MRSR(1, 1)
samples that accept r, CAR(M) replaces Xi+1 random items of the current sample
by Xi+1 copies of r. Extending the previous Replace function by an additional
argument for the number of items to replace, we have

Si+1 ← Replace(Si, r, Xi+1).

To process a deletion γi+1 = −r, CAR(M) replaces each occurrence of r by a random
item drawn from the population:

Si+1 ←
⊎
r′∈Si

{
r′ r′ 6= r

Srs(Ri+1, 1) r′ = r
,

83

3 Maintenance of Materialized Samples

where samples obtained by repeated calls to Srs are independent. As discussed in
section 2.1.2, we can obtain a uniform sample without replacement by removing
duplicates.

H. Correlated Acceptance/Rejection Sampling Without Replacement,
CARWOR(M)

The CAR(M) algorithm can be modified to sample directly without replacement.
In this modified version, denoted as CARWOR(M), insertions and updates are
processed as in MRS(M). A deletion transaction γi+1 = −rj is processed as follows:

Si+1 ←

{
Si \ { rj } ∪ Srs(Ri+1 \ Si, 1) rj ∈ Si
Si rj /∈ Si

,

that is, whenever an item is deleted from the sample, we resample a replacement
item from the base data. CARWOR(M) is similar to MRSR(M, M), but the sample
is refilled instead of being entirely recomputed.

I. Summary and Roadmap

The classic survey sampling schemes only apply to insertion-only datasets; they are
mainly used to compute the initial samples that are subsequently maintained by one
of the other schemes.

The MBERN(q) scheme extends the applicability of Bernoulli sampling to arbitrary
sequences of insertions, updates and deletions. The scheme has zero space overhead,
does not require access to the base data and is simple to implement. In applications
where the sample size variability and unboundedness of Bernoulli sampling are
acceptable, MBERN(q) is clearly the method of choice.

The various bounded-size schemes differ with respect to cost and sample-size
stability. For sequences that do not contain any deletion transactions, MRS(M) is
the method of choice because it provides both a fixed sample size and a fixed footprint
without ever accessing the base data. Sequences with deletions are more difficult
to handle. In fact, all of the available schemes require access to the base data to
compensate for the reduced sample size caused by deletions. CARWOR(M) provides
a fixed sample size but accesses base data at every sample deletion. MRSR(L,M) and
MRST(L,M) are more efficient because base-data access is deferred until the sample
has become too small. This improved efficiency comes at the cost of sample-size
stability.

An ideal bounded-size scheme for stable datasets would not require any base data
accesses while at the same time providing a fixed sample size. Unfortunately, such a
scheme does not exist: every sample deletion either leads to a decrease of the sample
size or, if compensated, to a base data access. In chapter 4, however, we introduce a
novel bounded-size scheme for stable datasets that comes close to the ideal scheme.
Our scheme is called random pairing, denoted by RP(M); its properties are given
in table 3.2. RP(M) is an extension of reservoir sampling that makes use of newly

84

3.5.2 Multiset Sampling

inserted items to compensate for prior deletions. The scheme does not require access
to the base data, even if the transaction sequence contains deletions. Experiments
show that, when the fluctuations of the dataset size are not too extreme, random
pairing is the algorithm of choice with respect to speed and sample-size stability.

Also in chapter 4, we consider algorithms for periodically resizing a bounded-
size random sample upwards; these algorithms are well-suited for growing datasets.
Compared to MBERN(q), which in expectation also produces larger samples when
the dataset is growing, such algorithms have the advantage that the sample can be
grown in a controlled manner and in arbitrary increments (i.e., not necessarily linear
to the dataset size). We prove that any resizing algorithm cannot avoid accessing the
base data and we provide a novel resizing algorithm that minimizes the time needed
to increase the sample size.

3.5.2 Multiset Sampling

Relatively little is known about sampling from evolving multisets. The survey
sampling schemes BERN(q), RS(M), and MIN(M) can all be used to maintain a
sample of an insertion-only multiset. This is because the inclusion/exclusion decisions
are independent of the value of the inserted item. To derive the multiset versions
of the algorithms, simply replace each set union (∪) by a multiset union (]) in the
respective descriptions. When the transaction sequence contains updates or deletions,
however, maintenance becomes much harder because both the dataset R and the
sample S may contain multiple copies of the updated or deleted item. As discussed
in section 3.2, update and deletion transactions refer to only a single one of these
copies, so it is not immediately clear how to proceed. In fact, the only known uniform
sampling scheme is a semi-incremental scheme based on MBERN(q). We describe
the scheme below, but first we introduce some helpful notation.

Denote by Xi(r) the frequency of item r in the sample and by Ni(r) its frequency
in the dataset just after transaction γi has been processed. The quantity Xi(r) is
typically a random variable, while Ni(r) is completely determined by the sequence γ.
We subsequently assume that the sample is stored in compressed form, as proposed
by Gibbons and Matias (1999). In the compressed representation, each element
of the sample comprises a pair (r,Xi(r)) when Xi(r) > 1 or a singleton (r) when
Xi(r) = 1. An item r with Xi(r) = 0 does not appear in the sample. For example,
the compressed form of the set

{A,A,A,B }

is given by
{ (A, 3), (B) } .

The compressed representation has the advantage of requiring less storage space than
the multiset representation. In other words, the footprint of the sample is reduced;
the sample size remains unaffected. The compression also leads to a concise way to
refer to sample insertions and deletions. We will write

Xi+1(r)← Xi(r) + 1

85

3 Maintenance of Materialized Samples

to denote the sample inclusion of item r,

Si+1 ←

Si ∪ { (r) } Xi(r) = 0
Si \ { (r) } ∪ { (r, 2) } Xi(r) = 1
Si \ { (r, j) } ∪ { (r, j + 1) } Xi(r) = j > 1.

Similarity, we write Xi+1(r)← Xi(r)− 1 to denote a sample deletion.
Gibbons and Matias (1999) used sample compression to enforce an upper bound on

the footprint of the sample. In a way similar to MBERNP(q), their concise sampling
algorithm purges the sample whenever its footprint exceeds a given space budget. As
shown by Brown and Haas (2006), the approach does not produce uniform samples,
so that we do not consider it here. Brown and Haas also propose a hybrid version of
RS(M) that uses the compressed representation as long as the entire dataset can
be represented within the space budget, but it switches back to a non-compressed
representation afterwards.9 This approach is especially beneficial for datasets with
few distinct items; it supports insertion transactions only.

A. Modified Bernoulli Sampling for Multisets, MBERNM(q)

In the multiset setting, Si is a Bernoulli sample of Ri with sampling rate q if and
only if each Xi(r) is binomially distributed with

Pr [Xi(r) = k] = B(k; Ni(r), q)

and the random variables Xi(r), r ∈ R, are mutually independent. Thus, each item
is maintained independently of the other items; the value of Xi(r) remains unaffected
if an item r′ 6= r is inserted or removed. For i = 0, both the dataset and the sample
are empty and we have Ni(r) = Xi(r) = 0 for all r ∈ R.

With these definitions at hand, we now describe an algorithm due to Gemulla et al.
(2007) for maintaining a Bernoulli sample of a multiset. The algorithm is denoted
MBERNM(q). If γi+1 corresponds to an insertion +r, then

Xi+1(r)←

{
Xi(r) + 1 with probability q
Xi(r) with probability 1− q.

(3.16)

If γi+1 corresponds to a deletion −r, then

Xi+1(r)←

{
Xi(r)− 1 with probability Xi(r)/Ni(r)
Xi(r) with probability 1−Xi(r)/Ni(r).

(3.17)

Laxly speaking, when Xi(r) of the Ni(r) copies of item r are present in the sample,
the “deleted copy” is one of the copies in the sample with probability Xi(r)/Ni(r).

9The paper also proposes a hybrid BERN(q) scheme that switches to reservoir sampling as soon
as the Bernoulli sample size exceeds an upper bound. It can be shown that this approach is
non-uniform, see section 4.2.1B.

86

3.5.3 Distinct-Item Sampling

Update transactions are modeled as a deletion followed by an insertion. A formal
proof of the correctness of the algorithm is given in Gemulla et al. (2007).

MBERNM(q) is semi-incremental with respect to deletions because processing a
deletion requires knowledge of the quantity Ni(r), which has to be obtained from the
underlying dataset Ri. One might consider maintaining the counters Ni(r) locally
for each distinct item in the dataset, but, of course, this is equivalent to storing the
entire dataset in compressed form.

B. Summary and Roadmap

The classic survey sampling schemes can be used to maintain a sample of an insertion-
only multiset. As discussed above, neither the survey sampling nor the set sampling
schemes can be used when the dataset is additionally subject to update or deletion
transactions. The only known scheme that does support these types of transactions
is MBERNM(q), a scheme that relies on frequent base-data accesses.

In chapter 5, we propose a novel sampling scheme called augmented Bernoulli
sampling, ABERN(q), that is able to maintain a Bernoulli sample of an evolving
multiset without ever accessing base data. The basic properties of the scheme are
given in table 3.2. ABERN(q) maintains for every sample item a so-called “tracking
counter.” We show that these counters can be exploited to estimate population
frequencies, sums, averages, and the number of distinct items in an unbiased manner,
with lower variance than the usual estimators based on a Bernoulli sample.

3.5.3 Distinct-Item Sampling

Distinct-item sampling schemes sample uniformly from D(R), the set of distinct
items in R. All previously known schemes are based on hashing, that is, they make
use of a set of hash functions h1, . . . , hk for some k ≥ 1. The sampling schemes are
deterministic in the sense that they produce the same result when run repeatedly on
the same transaction sequence using the same set of hash functions. The “randomness”
of the sample thus depends only on the degree of randomness in the hash functions.

Ideally, hash functions h1, . . . , hk are independent and truly random, that is, they
act like independent random functions from R to the hash range. In practice,
however, truly random hash functions are unusable because their description requires
space linear to the size of R (or at least R). The “practitioner’s approach”, therefore,
is to use weaker hash functions instead and to assume that these functions behave as
if they were truly random. Interestingly, this assumption has recently received some
theoretical justification (Mitzenmacher and Vadhan 2008). The “theorist’s approach”
is to design the sampling algorithms in such a way that they only require a “certain
degree” of randomness in the hash functions. The downside is that these algorithms
may have a significant overhead in space and/or time, which makes them unappealing
in practice. Thus, practice and theory differ widely; we describe algorithms of both
types. A more detailed discussion of hash functions is given in section 6.1.

87

3 Maintenance of Materialized Samples

Table 3.4: Uniform maintenance schemes for distinct-item sampling

In
se

rt

U
p

d
at

e

D
el

et
e

Size Footprint Hash functions (#)

BERND(q) X - - Unbounded Unbounded truly random (1)

MBERND(q) X X X Unbounded Unbounded truly random (1)

BERNDP(M) X - - Bounded Boundeda truly randomc (1)

MIND(M) X - - Fixed Fixeda M -min-wise (1)

MINDWR(M) X - - Boundedb Fixeda min-wise (M)

DIS(M) X X X Bounded Boundeda truly randomc (M)

AMIND(M) X ◦d ◦d Bounded Fixeda M -min-wise (1)

ABERND(q) X X X Unbounded Unbounded none

aAssuming constant space for storing an item / a counter / a hash function.
bAfter conversion to a without-replacement sample.
cSee discussion in text.
dXwhen deletions occur infrequently.

A summary of the algorithms and their requirements on the hash functions is given
in table 3.4. Note that when R is a set, distinct-item sampling and set sampling
coincide: all distinct-item schemes can thus be used to maintain a uniform sample
from a set.

A. Bernoulli Sampling for Distinct Items, BERND(q)

The BERN(q) scheme can be adapted to sample uniformly from the distinct items of
an insertion-only dataset. Recall that BERN(q) accepts each newly-inserted item
r with probability q and rejects it with probability 1− q; see equation (3.7). In an
actual implementation, the decision of whether or not to sample r may be taken by
first generating a uniform random number U ∈ (0, 1) and—since Pr [U < u] = u
for u ∈ [0, 1]—accepting the item if and only if U < q. Given a truly random hash
function h : R → (0, 1), we can treat the hash value h(r) of r as if it were a uniform
random number and thus replace U by h(r) in the algorithm. For an insertion
γi+1 = +r, set

Si+1 ←

{
Si ∪ { r } h(r) < q

Si otherwise.

Here, the sample is treated as a set so that each item is sampled at most once. The
key idea of this hash-based Bernoulli scheme, which we denote BERND(q), is that
repeated insertions of the same item lead to the same random hash value. Thus, each
item is either accepted at its first insertion or it is never going to be accepted. It

88

3.5.3 Distinct-Item Sampling

follows directly that the probability that an item is sampled does not depend on its
frequency in R. Since each item is also sampled independently and Pr [h(r) < q] = q
for all r ∈ R, the sample is indeed uniform; its size follows the binomial(|D(R)|, q)
distribution.

The above scheme is well-known in the literature. Denning (1980) makes use
of it to prevent inference of individuals from sensitive database queries; Duffield
and Grossglauser (2001) uses it as a building block for a network sampling scheme
(“trajectory sampling”); Duffield et al. (2001) proposes a weighted version of the
scheme (“size-dependent sampling”); Gibbons and Tirthapura (2001) apply it to
estimate simple functions on the union of data streams (“coordinated 1-sampling”);
and Hadjieleftheriou et al. (2008) uses it to estimate the selectivity of weighted-
set-similarity queries (“hashed samples”). The reason for the widespread usage of
BERND(q) is that the scheme (and all other hash-based schemes) can be used to
correlate the sampling process of several datasets by simply using the same hash
functions. We will also make use of sample correlation through hashing in chapter 6.

Note that BERND(q) requires the hash function to be truly random in order to
produce uniform samples. Less randomness is required when the sample is solely
used to estimate counts, sums, and averages over the distinct-items. In fact, pairwise
independent hash functions (section 6.1C) suffice to obtain unbiasedness and variance
of the “Bernoulli estimator” as given in table 2.3 on page 18. This nice property
does not hold for any of the subsequent schemes.

B. Modified Bernoulli Sampling for Distinct Items, MBERND(q)

The BERND(q) scheme does not directly support update and deletion transactions.
The reason is that maintaining its invariant

r ∈ Si ⇔ r ∈ Ri ∧ h(r) < q

would require access to the base data in the case of updates and deletions. For
example, a dataset deletion should lead to a sample deletion if and only if the last
copy of the item has been deleted from the dataset. The frequency of the deleted
item, however, cannot be obtained from the BERND(q) sample. Fortunately, we can
extend BERND(q) so that it stores the frequency of each sampled item along with
the item itself; each sample item is then a pair (r,Ni(r)). We denote the modified
scheme by MBERND(q). The frequency counters can be maintained incrementally
as follows. An insertion γi+1 = +r is processed as

Si+1 ←

Si ∪ { (r, 1) } h(r) < q, Ni(r) = 0
Si \ { (r,Ni(r)) } ∪ { (r, Ni(r) + 1) } h(r) < q, Ni(r) > 0
Si otherwise,

89

3 Maintenance of Materialized Samples

and a deletion γi+1 = −r as

Si+1 ←

Si \ { (r,Ni(r)) } h(r) < q, Ni(r) = 1
Si \ { (r,Ni(r)) } ∪ { (r, Ni(r)− 1) } h(r) < q, Ni(r) > 1
Si otherwise,

and an update as a deletion followed by an insertion. In addition to facilitating
efficient maintenance, knowledge of the frequencies of sampled items can also be
exploited for estimation purposes.

The idea of storing a counter with each sampled item can be extended further. In
fact, arbitrary data structures can be associated with each sampled item, provided that
the data structures are themselves incrementally maintainable. For example, consider
a table of sales transactions, where each transaction consists of a customer and a
price. We can then compute and maintain an MBERND(q) sample of the distinct
customers and associate with each customer the (exact) total of all their transactions.
Such a sample is useful, for example, to estimate the fraction of customers that have
a total of less than a given quantity. This remarkable observation is due to Gibbons
(2001), who maintains, for each distinct item, a uniform sample of the respective
base data items. Of course, this idea can also be applied to BERND(q) as well as to
most of the subsequent schemes, with DIS(M) being the exception.

C. Bernoulli Sampling for Distinct Items With Purging, BERNDP(M)

In a way similar to MBERNP(M), an upper bound on the sample size of BERND(q)
can be realized by purging the sample from time to time. The bounded scheme,
denoted as BERNDP(M), starts with an initial value of q = 1. Whenever the
sample size exceeds M items due to a successful sample insertion, the sample is first
subsampled using BERND(q′/q) sampling for some q′ < q, and the value of q is then
set to q′. This so-called purging step is repeated until the sample size has fallen
below M . A clever implementation of this scheme for the case q′ = 0.5q is given
by Gibbons (2001).10 The scheme cannot be used when the transaction sequence
contains updates or deletions. In fact, BERNDP(M) reduces to MBERNP(M) when
the dataset does not contain any duplicates; the non-uniformity arguments against
MBERNP(M) directly apply.

We now show that that pairwise-independent hash functions are not sufficient to
guarantee the uniformity of the sample; they do not even lead to an equal-probability
sampling design. Denote by h the hash function and suppose that h is chosen
uniformly from the Hp family discussed in section 6.1C, that is, h(x) = ax + b
mod p for a fixed prime p and randomly chosen integers 0 ≤ a, b < p.11 Then, h is
10Gibbons calls his scheme “distinct sampling”. We do not make use of this name to avoid possible

confusion with distinct-item sampling in general.
11This is almost the hash function used by Gibbons, who additionally required that a > 1. We

explicitly allow a = 0 because otherwise the hash values would not be pairwise independent.
However, the ongoing analysis remains unaffected because, whenever a = 0 and N > M , all
items have the same hash value and the resulting sample will be empty.

90

3.5.3 Distinct-Item Sampling

Table 3.5: Frequencies of each possible sample for BERNDP(1)

N = 1 N = 2 N = 3 N = 4 N = 5

S = ∅ 0 22,361,431 16,773,121 17,705,179 17,238,455

S = { 1 } 67,092,481 22,365,525 16,773,120 12,114,152 10,017,341
S = { 2 } 22,365,525 16,773,120 12,579,499 9,318,632
S = { 3 } 16,773,120 12,579,499 11,182,080
S = { 4 } 12,114,152 9,318,632
S = { 5 } 10,017,341

Uniform? X X X - -

pairwise independent, that is, for all pairs of integers 0 ≤ r1, r2 < p and pairs of hash
values 0 ≤ v1, v2 < p, we have

Pr [h(r1) = v1, h(r2) = v2] =
1
p2
. (3.18)

We now fix a value of p = 8,191 and run BERNDP(1), with q′ = 0.5q, successively with
each of the p2 possible hash functions (all combinations of a and b). If BERNDP(1)
were uniform, all equally-sized samples would be reported with the same probability.
Table 3.5 shows the distribution of the samples for M = 1 (rows) for various datasets
(columns). Each dataset consists of N items, where N varies across columns, and
comprises integers { 1, . . . , N }. As can be seen, BERNDP(1) does not produce
uniform samples when N > 3. For example, when N = 5, sample { 3 } is reported
more than 19% more frequently than sample { 2 }. Similar behavior can be seen for
other choices of p. Of course, when h is truly random, the algorithm does produce
uniform samples.

D. Min-Hash Sampling, MIND(M)

Min-wise sampling can be adapted to sample from the distinct items of an insertion-
only dataset. The adapted algorithm maintains a sample of size min(|D(R)|,M) and
is denoted by MIND(M). As with the distinct-item versions of Bernoulli sampling,
MIND(M) makes use of a random hash function h. The idea is to run min-wise
sampling as described in section 3.4.2 but to replace the random tags by the hash
value of the arriving item. For this reason, the algorithm is referred to as min-hash
sampling. For insertion γi+1 = +r, we set

Si+1 ←

Si ∪ { r } |Si| < M

Si \ { argmax
r′∈Si

h(r′) } ∪ { r } |Si| = M, r /∈ Si, h(r) < max
r′∈Si

h(r′)

Si otherwise,

where Si is treated as a set. Updates and deletions are not supported. The efficiency
of the algorithm can be improved by storing the hash values together with the

91

3 Maintenance of Materialized Samples

sampled items. MIND(M) does not require h to be truly uniform; it suffices if h
is M -min-wise independent; see the discussion in section 6.1D. The algorithm is
used by Broder (1997) to estimate resemblance and containment between multiple
datasets.

E. Min-Hash Sampling With Replacement, MINDWR(M)

A with-replacement version of MIND(M) is given in Datar and Muthukrishnan
(2002) and Dasu et al. (2002). The MINDWR(M) scheme maintains M independent
MIND(1) samples. A different hash function is used for each sample. Compared to
MIND(M), MINDWR(M) has the advantage that it requires only min-wise (instead
of M -min-wise) independent hash functions. It has the disadvantage that sampling
is with replacement. Moreover, M hash values (instead of a single one) have to be
computed for each incoming item so that the CPU cost is significantly higher; it
grows linearly with M .

F. Dynamic Inverse Sampling, DIS(M)

Cormode et al. (2005) proposed a bounded-size scheme that can handle arbitrary
insertions and deletions; a similar scheme is given by Frahling et al. (2005). The
former scheme is called dynamic inverse sampling, denoted as DIS(M). It makes use
of M data structures and M independent hash functions, one per data structure.
Each data structure maintains—with some success probability p > 0—a single item
chosen uniformly and at random from the set of distinct items in R. The sample
size is thus random in [0,M] and sampling is with replacement.

Each data structure consists of O(log|R|) buckets. Each inserted or deleted item
affects exactly one of the buckets in a data structure; the hash function associated
with the data structure ensures that each item maps to the same bucket whenever it
occurs in the transaction sequence. In more detail, an item is hashed to bucket i with
probability (1− α)αi−1, where 0 < α < 1 is a parameter of the algorithm.12 Each
bucket consists of the sum of the items (treated as integers) inserted into it, a counter
of the number of inserted items and a data structure for collision detection. Adding
an item to (resp., deleting an item from) a bucket simply involves incrementing
(resp., decrementing) the counter by 1, incrementing (resp., decrementing) the sum
by the item value and updating the collision detection structure accordingly. If there
is a bucket in the data structure that contains exactly one distinct item, then the
data structure “succeeds,” and this item is returned as a random sample of size 1;
otherwise, the data structure fails. Note that the lower-numbered buckets are more
likely to succeed when the dataset size is small; the higher-numbered buckets handle
large datasets. The point is that the stored items do not need to be maintained
individually; in the important case where a bucket contains only a single distinct
item (as indicated by the collision-detection data structure), the value of the sum is

12Suppose that hash function h maps uniformly into the range 1, . . . , H. Then, the bucket number
of item r is given by dlog1/α(H/h(r))e.

92

3.5.3 Distinct-Item Sampling

Table 3.6: Frequencies of each possible sample for DIS(1)

N = 1 N = 2 N = 3 N = 4 N = 5

S = ∅ 0 6,776,653 3,388,337 5,553,787 4,520,971

S = { 1 } 67,092,481 30,157,914 23,029,192 16,806,972 14,415,533
S = { 2 } 30,157,914 17,645,760 13,962,375 10,684,929
S = { 3 } 23,029,192 13,962,375 12,370,586
S = { 4 } 16,806,972 10,684,929
S = { 5 } 14,415,533

Uniform? X X - - -

equal to the value of the counter times the value of the item; the item can thus be
extracted. Cormode et al. (2005) have shown that, for an appropriate choice of α,
the success probability p is at least 14.2%.

DIS(M) is the only known bounded-size sampling method that is “delete-proof” in
that the sample-size distribution depends only on the size of the dataset, regardless
of how it has been produced. Indeed, each deletion of an item precisely cancels
the effect of the prior insertion of the item. The main disadvantage of DIS(M) is
its low space efficiency. For example, with 32-bit items and a choice of α =

√
2/3

as suggested by Cormode et al. (2005), we need more than 100 buckets per data
structure, and thus exploit at most 1% of the memory allocated to the sample. Also,
as in MINDWR(M) sampling, processing an insertion or deletion transaction requires
the computation of M hash values (instead of just one).

DIS(1) has been developed with the intention of making BERNDP(1) delete-
proof.13 We thus conjecture that pairwise independent hash functions do not suffice
to guarantee uniformity. To validate our conjecture, we make use of the same
experimental setup that was used to prove the non-uniformity of BERNDP(1) under
pairwise independent hash functions.14 Table 3.6 shows our results; DIS(1) indeed
produces non-uniform samples for N > 2. Of course, DIS(1) does produce uniform
samples when truly random hash functions are used.

G. Summary and Roadmap

BERND(q) and MBERND(q) are the methods of choice for maintaining a Bernoulli
sample of the distinct items in an evolving dataset. These methods have low space
and time overhead and they are easy to implement.

13Private communication. In essence, DIS(1) stores information about the buckets that BERNDP(1)
would have purged; this information can be used to “undo” purge operations. Similar ideas can
be exploited for delete-proof distinct-count estimation, see for example Ganguly (2007).

14We used a value of α =
p

2/3 and the “greedy” version of DIS(1). Other values of α as well as
usage of the basic version led to similar results.

93

3 Maintenance of Materialized Samples

Bounded-size sampling is more complex. For insertion-only datasets, MIND(M) is
the method of choice. It supersedes BERNDP(M) and MINDWR(M) because the
latter schemes do not provide a fixed sample size. When the dataset is subject to
update and/or deletion transactions, DIS(M) is the only available scheme that is
incremental, although its space efficiency is low.

Most of the above distinct-item schemes are based on truly random hash functions,
which are infeasible in practice. In chapter 6, we take a closer look at available
hash functions and discuss their suitability for random sampling, arguing that hash
functions that “look” truly uniform suffice in practice. The main part of chapter 6 is
concerned with MIND(M) sampling. We propose a simple extension that augments
the sample with frequency counters. Our extension is denoted as AMIND(M) and
adds support for a limited number of updates and deletions. We provide an unbiased,
low-variance estimator for the number of distinct items in the population (or a subset
thereof) from an MIND(M) or AMIND(M) sample. Such estimators are required to
scale-up other estimates from the sample to the entire dataset. Finally, we show that
two or more AMIND(M) samples can be combined to obtain an AMIND(M) sample
of arbitrary unions, intersections, and differences of their underlying datasets.

In table 3.4, we also list a scheme denoted as ABERND(q). As discussed in
chapter 5, the scheme is based on our ABERN(q) multiset sampling scheme, from
which a distinct-item sample can be extracted whenever needed. Interestingly,
ABERND(q) is the only distinct-item scheme that does not make use of hashing.
However, the size of the underlying ABERN(q) sample depends on the size of the
entire dataset instead of just the number of distinct items in it. When the dataset
contains many frequent items and a multiset sample is not required, MBERND(q) is
usually a better choice.

3.5.4 Data Stream Sampling

We now proceed to the discussion of uniform sampling from sliding windows over data
streams. We consider both sequence-based and time-based windows; see section 2.2.5
for the respective definitions. Sampling is used for data stream windows when it is
infeasible to store the entire window. As a consequence, we are only interested in
incremental schemes; semi-incremental or even non-incremental schemes cannot be
used because the content of the window is not accessible.

We model a data stream as an infinite sequence R = (e1, e2, . . .) of items. Each
item ei has the form (i, ti, ri), where i is the position of the item in the data stream,
ti ∈ R denotes a timestamp, and ri ∈ R denotes the data associated with the item.
Throughout this thesis, we assume that ti < tj for i < j, that is, the timestamps of
the items are strictly increasing.15 As before, the data domain R depends on the
application; for example, R might correspond to a finite set of IP addresses or to an
infinite set of readings from one or more sensors.

15The algorithms discussed in this thesis also work when ti ≤ tj for i < j, but we will use the
stronger assumption ti < tj for expository reasons.

94

3.5.4 Data Stream Sampling

Table 3.7: Uniform maintenance schemes for data stream sampling

Sequence- Time-
Size Footprint

based based

BERNW(q) X X Unbounded Unbounded

PASSIVE(M) X - Fixed Fixeda

CHAIN(M) X - Boundedb Unbounded

PS(M) X X Boundedb Unbounded

PSWOR(M) X X Fixed Unbounded

BPS(M) X X Bounded Boundeda

BPSWOR(M) X X Bounded Boundeda

aAssuming constant space for storing an item / a counter / a priority.
bAfter conversion to a without-replacement sample.

Denote be Ri the set { e1, . . . , ei } of the first i items in R. After the arrival
of i items, denote by Wi,N = Ri \ Ri−N a sequence-based window of size N ; the
corresponding sample is denoted Si. The length of the window, that is, the time
span covered by the items in the window, is denoted by ∆i,N = ti − tN−i. Unless all
timestamps in the stream are equidistant, the window length ∆i,N varies over time.
The window size N , however, is constant so that, for without-replacement sampling,
the sample size cannot exceed N . We therefore make use of a slightly different notion
of bounded-size and bounded-space sampling. We say that a sequence-based scheme
is bounded in size if it can guarantee that the sample size is always strictly less than N .
The situation is more subtle for space bounds; we take the view that a sequence-based
scheme is bounded in space if it never stores all N items simultaneously.

A similar notation is employed for time-based windows. Denote by R(t) the
set of items from R with a timestamp smaller than or equal to t. Denote by
W∆(t) = R(t)\R(t−∆) a time-based sliding window of length ∆, by N∆(t) = |W∆(t)|
the size, and by S(t) the sample of the window at time t. Unless all timestamps in
the stream are equidistant, the window size N∆(t) varies over time. The window
length ∆ is constant.

A summary of the schemes discussed in the following is given in table 3.7. All
schemes but PSWOR(M) are due to Babcock et al. (2002); they are discussed in
more detail in Haas (2009). Note that some of the schemes cannot be used with
time-based windows. In fact, sampling from time-based windows is considerably
harder than sampling from sequence-based windows.

95

3 Maintenance of Materialized Samples

A. Bernoulli Sampling for Sliding Windows, BERNW(q)

Bernoulli sampling can be used to sample both sequence-based and time-based
sliding windows. The procedure is the same in both cases and, in fact, similar to the
different versions of Bernoulli sampling we have discussed already. Each arriving item
is accepted into the sample with probability q and rejected with probability 1− q.
An accepted item is kept in the sample until it expires (either after N successive
insertions or after ∆ time units have elapsed), in which case it is removed from the
sample. Since each item is sampled independently from all the other items, the
uniformity of the sample is maintained.

For sequence-based windows, the sample size follows a binomial(N, q) distribution
and averages to Nq. Since the variance of the binomial distribution is low, the sample
size will stay close to its expected value with high probability. Nevertheless, the
scheme is unbounded because Pr [|Si| = N] = qN > 0 for i ≥ N . For time-based
windows, the sample size has a binomial(N(t), q) distribution. It averages to N(t)q
so that the sample grows and shrinks with the window size.

B. Passive Sampling, PASSIVE(M)

The “passive” sampling scheme, denoted as PASSIVE(M), is an extension of reservoir
sampling to sequence-based windows. The idea is to build an initial sample by
applying RS(M) to the first N items of the stream. Afterwards, an arriving item is
included into the sample if and only if its arrival coincides with the expiration of a
sample item, which is in turn removed from the sample. The output of PASSIVE(M)
is a size-M uniform sample. To see this, observe that the distribution of the sample
is identical to the one of MRS(M), which is uniform, applied to the sequence
(+e1, . . . ,+eN , e1 → eN+1, e2 → eN+2, . . .). A disadvantage of PASSIVE(M) for
some applications is that the sample is highly periodic in that, for i ≥ N , items
ei, ei+N , ei+2N , . . . are either all accepted into the sample or all rejected. In fact, Haas
(2009) pointed out that when the stream is periodic with period N , the content of the
sample does not change after the N initial steps, that is, SN = SN+1 = SN+2 =

C. Chain Sampling, CHAIN(M)

Chain sampling, denoted as CHAIN(M), is a fixed-size sampling scheme with replace-
ment that, at the expense of some memory, does not show the periodic behavior of
PASSIVE(M). We describe the CHAIN(1) scheme; samples of size M are obtained
by running M independent copies of the CHAIN(1) scheme in parallel.

The key idea of chain sampling is to store, in addition to the sample item itself,
a list of items that replace the sample item when it expires. This so-called chain
retains the arrival order of the items in the stream, that is, new items are appended
at the end of the chain. The sample item is also stored in the chain so that “sample

96

3.5.4 Data Stream Sampling

item” is simply a shortcut for “first item in the chain.” The algorithm is as follows.16

An arriving item ei is accepted with probability 1/min(i,N). If accepted, ei replaces
the entire chain and the algorithm decides on an item eZ that replaces ei upon
its expiration; index Z is set to a value chosen uniformly and at random from
[i+ 1, i+N − 1]. Now, suppose that ei is rejected, that is, ei does not replace the
entire chain. Then, item ei is appended to the chain if and only if Z = i. In this
case, Z is reinitialized to a random integer in [i+ 1, i+N − 1]. Finally, the scheme
checks whether or not the sample item has expired; if yes, it is removed and the
now-first item in the chain becomes the new sample item.

To see why the algorithm works, suppose for induction that sample Si−1 is uniform;
this assumption trivially holds for i− 1 = 1 because S1 = { e1 } with probability 1.
When item ei arrives, it becomes the sample item if and only if it replaces the entire
chain—an event that happens with probability 1/min(i,N). Thus,

Pr [Si = { ei }] = Pr [ei accepted] =
1

min(i,N)
. (3.19)

Otherwise, we check whether or not the current sample item equals ei−N and thus
expires. If yes, the chain has not been entirely replaced by an arriving item since the
arrival of ei−N . Since Z has been set to a random index in [i−N + 1, i− 1] at that
time, and item eZ has been appended to the chain upon its arrival, every item in
ei−N+1, . . . , ei−1 is equally likely to be second in the chain and thus to become the
new sample item. Otherwise, if the sample item does not equal ei−N and thus does
not expire, it follows from the uniformity of Si−1 that each item in ei−N+1, . . . , ei−1

is equally likely to be the sample item. Putting both observations together, we
find that whether or not the sample item expires, each item in ei−N+1, . . . , ei−1 is
equally likely to be sampled. Since there are min(i,N)− 1 such items, we have for
j ∈ [i−N + 1, i− 1]

Pr [Si = { ej }] =
Pr [ei rejected]
min(i,N)− 1

=
1

min(i,N)

and uniformity follows together with (3.19).
The entire chain may consist of up to N elements so that the scheme is unbounded.

In practice, however, Babcock et al. (2002) and Haas (2009) have shown that the
expected length of the chain is at most e = O(1), and that the actual length does
not exceed O(logN) with high probability. Thus, on average, the independence
improvement of CHAIN(M) over PASSIVE(M) comes at a multiplicative cost of at
most e ≈ 3.

16The chain sampling scheme given here is a slightly modified version of the original scheme of
Babcock et al. (2002). The scheme has been modified to emphasize its similarity to priority
sampling.

97

3 Maintenance of Materialized Samples

D. Priority Sampling, PS(M)

The priority sampling scheme, denoted as PS(M), can be seen as an extension of
chain sampling to time-based sliding windows. Again, we describe the PS(1) scheme;
samples of size M are obtained by running M independent copies of the scheme.

The reason why chain sampling cannot be used with time-based sliding windows is
that the window size N(t) is variable and unknown. To ensure uniformity, an arriving
item must be chosen as the sample item with probability 1/N(t), a probability that
we do not know.17 Priority sampling avoids this problem by making use of an idea
similar to min-wise sampling. The scheme assigns a random priority chosen uniformly
from the unit interval (0, 1) to each arriving item. The idea is to report at any time
the item with the highest priority in the window as the sample item. Uniformity then
follows because each item has the same probability of having the highest priority.

To maintain the highest-priority item incrementally, PS(1) makes use of a chain
of elements of increasing timestamp and decreasing priority. The sample item can
always be found at the beginning of the chain, the other items replace the sample
item upon its expiration. The algorithm is as follows. Suppose that item ei = (i, ti, ri)
with priority pi arrives in the stream. Then, we remove all items with a timestamp
less than or equal to ti − ∆ from the beginning of the chain. These items have
expired so that they can be discarded. We also remove from the end of the chain
all items from the end of the chain that have a priority of less than pi. These items
cannot become the highest-priority item anymore because ei is “stronger”: it has
a higher priority and expires at a later point in time. Note that with probability
1/N(t), priority pi is the highest in the window and all items are removed from the
chain. As a final step, ei is appended to the end of the chain. The scheme maintains
the invariant that, at any time, all and only the window items for which there does
not exist an item with both a larger timestamp and a higher priority are present
in the chain. In order to be able to always report the highest-priority item—even
when no items subsequently arrive in the stream—, knowledge of these items is both
necessary and sufficient.

Babcock et al. (2002) have shown that, at an arbitrary point in time t, the scheme
requires O(logN(t)) space in expectation. The actual space requirement is also
O(logN(t)) with high probability. Thus, the space consumption of priority sampling
cannot be bounded from above. When priority sampling is applied to a sequence-
based window (ti = i and ∆ = N), the scheme requires more space than chain
sampling in expectation (O(logN) vs. O(1)). The reason is that chain sampling
exploits the knowledge of constant window size, while priority sampling does not.

E. Priority Sampling Without Replacement, PSWOR(M)

Priority sampling can be modified to sample without replacement. The resulting
scheme, denoted PSWOR(M), has been mentioned in Gemulla and Lehner (2008).

17An estimator for N(t) is given in chapter 7. This estimator can be used to determine scale-up
factors; it is not suited to drive the sampling process.

98

3.5.4 Data Stream Sampling

The idea is straightforward: Instead of maintaining only the highest-priority item
in the window, we maintain the items with the M highest priorities. In order to
maintain these M items incrementally, we store each arriving item as long as there
are fewer than M more recent items with a higher priority. One can show that the
space consumption is still O(M logN(t)) in expectation, but efficient maintenance
of the chain becomes challenging.

We give a semi-naive implementation that requires O(N(t)) time per item. In the
implementation, items are arranged in M “levels” labeled 0, . . . ,M − 1. An item is
stored at level l if exactly l more recent items with a higher priority have arrived.
Now suppose that item ei arrives in the stream. We first compare ei to every item
stored in the data structure. Suppose that ei is compared to item ej having level l.
If ei has a higher priority than ej , we promote ej to level l + 1. Item ej is removed
from the data structure either if it has expired or if it is promoted while being at
level M − 1. After all items have been processed, item ei is inserted at level 0.

The semi-naive scheme can be improved by maintaining a per-level index over the
priorities of the items. This way, one does not need to compare ei to each and every
item stored in the data structure. An interesting open problem is to estimate the
maintenance cost of this improved scheme.

F. Summary and Roadmap

Bernoulli samples can be maintained from both sequence-based and time-based
windows using the BERNW(q) scheme.

Again, bounded-size sampling is more complex. For sequence-based sampling,
the PASSIVE(M) scheme is clearly the best choice when inter-sample dependencies
are acceptable. This is because it is simple, efficient, and it has a fixed footprint.
Otherwise, when inter-sample dependencies have to be minimized, CHAIN(M) is the
method of choice because it has a lower expected space overhead than its competitors
PS(M) and PSWOR(M). For time-based windows, PS(M) and PSWOR(M) are
the only options. Although both schemes maintain a fixed-size sample, they have an
unbounded footprint.

In chapter 7, we introduce a novel with-replacement sampling scheme for time-
based windows called bounded priority sampling, BPS(M). We also propose a variant
of the scheme that samples without replacement, BPSWOR(M). Both schemes are
summarized in table 3.7. As the names suggest, these schemes are built upon priority
sampling but, in contrast to priority sampling, they have a bounded footprint. The
samples produced by both the BPS(M) and BPSWOR(M) schemes have a random
size. This is unavoidable because—as we will prove—it is impossible to guarantee
a minimum sample size in bounded space. We can, however, give a lower bound
on the expected sample size at each point of time. We also propose a stratified
sampling scheme for time-based windows that leads to larger samples but can only
be used when uniformity is not required by the application. In these applications,
the stratified scheme is a compelling alternative to BPS(M) and BPSWOR(M).

99

Chapter 4

Set Sampling

In this chapter,1 we develop algorithms that can be used to maintain a bounded
sample of an evolving set, where boundedness refers to both sample size and sample
footprint. The main challenges in this setting are (i) to enforce statistical uniformity,
(ii) to avoid accesses to the base data to the extent possible, because such accesses
are typically expensive (see section 3.3.3A), and (iii) to maximize sampling efficiency,
i.e., to keep the sample size as close to the upper bound as possible. In addition to
sample maintenance, we also discuss methods for reducing or increasing the sample
size dynamically as well as methods for merging two or more samples into a single
sample of the union of their underlying datasets.

In section 4.1, we provide a novel sampling scheme, called random pairing, RP(M),
that maintains a bounded, provably uniform sample in the presence of arbitrary
insertions, updates and deletions. RP(M) can be viewed as a generalization of the
modified reservoir sampling scheme and the passive sampling scheme discussed in
chapter 3. In contrast to previous schemes that handle deletions, RP(M) does not
require access to the base data. Provided that fluctuations in the dataset size are not
too extreme, the sample sizes produced by RP(M) are as stable as those produced
by alternative algorithms that require base-data accesses. Thus, if the dataset size
is reasonably stable over time, RP(M) is the algorithm of choice for incrementally
maintaining a bounded uniform sample.

In section 4.2, we initiate the study of algorithms for periodically “resizing” a
bounded-size random sample upwards, proving that any such algorithm cannot avoid
accessing the base data. Such methods are of interest for growing datasets because
they can be exploited to grow the sample in a controlled manner, whenever needed.
Prior to the current work, the only proposed approach to the resizing problem
was to naively recompute the sample from scratch. We provide a novel resizing
algorithm called RPRES that partially enlarges the sample using the base data,
and subsequently completes the resizing using only the stream of insertion, update
and deletion transactions. Especially when access to the base data is expensive and
transactions are frequent, the resizing cost can be significantly reduced relative to the

1Parts of the material in this chapter have been developed jointly with Peter J. Haas and Wolfgang
Lehner. The chapter is based on Gemulla et al. (2006) and Gemulla et al. (2008). The
copyright of Gemulla et al. (2006) is held by the VLDB Endowment; the original publication
is available at http://portal.acm.org/citation.cfm?id=1164179. The copyright of Gemulla
et al. (2008) is held by Springer; the original publication is available at www.springerlink.com

and http://dx.doi.org/10.1007/s00778-007-0065-y.

101

http://portal.acm.org/citation.cfm?id=1164179
www.springerlink.com
http://dx.doi.org/10.1007/s00778-007-0065-y

4 Set Sampling

naive approach by judiciously tuning the key algorithm parameter d; this parameter
controls the trade-off between the time required to access the base data and the time
needed to subsequently enlarge the sample using newly inserted data. Finally, we
give a subsampling algorithm termed RPSUB that can be used to reduce the size of
the sample; the algorithm is useful to handle potential memory bottlenecks and to
undo prior sample enlargements.

Algorithms for merging two or more samples are discussed in section 4.3. These
algorithms are particularly useful when the dataset is partitioned over several nodes.
In this case, sample merging can be used to obtain a sample of the complete
dataset from local samples maintained at each node, thereby facilitating efficient
parallel sampling. Our new RPMERGE algorithm extends the MERGE algorithm of
Brown and Haas (2006)—which was developed for an insertion-only environment—to
effectively deal with deletions. We show analytically that RPMERGE produces larger
sample sizes than MERGE in expectation; the merged sample thus contains more
information about the complete dataset. Additionally, when RPMERGE is used, the
merged sample can be maintained incrementally using the random pairing algorithm.

4.1 Uniform Sampling

In this section, we provide the details of the random pairing algorithm. We present a
proof of its correctness, analyze its sample size properties, show how a skip counter
can be incorporated, and present the results of our experimental evaluation.

We assume throughout that the sample fits in main memory. This assumption
limits, in terms of efficiency, the applicability of our techniques in warehousing
scenarios where the dataset size is so large, and the sampling rate so high, that the
samples must be stored on disk. Extending our results to large disk-based samples is
a topic for future research; see the discussion in chapter 8. We also assume that an
index is maintained on the sample in order to rapidly determine whether a given item
is present in the sample or not—such an index is mandatory for any implementation
of sampling schemes subject to deletions.

4.1.1 Random Pairing

As before, denote by M the sample size parameter and recall the “obvious” extension
of MRS(M) to support deletion transactions (section 3.5.1D). The idea of the obvious
algorithm is to compensate sample deletions–which may cause the sample size to
fall below M—by refilling the sample with newly inserted items. Unfortunately, the
algorithm does not produce a uniform sample because items inserted after deletions
have an overly high probability of being sampled. The basic idea behind RP(M)
is to carefully select an inclusion probability for each inserted item so as to ensure
uniformity.

In the following, we do not explicitly discuss update transactions; they are treated
as in MRS(M), that is, the updated item is also updated in the sample if present.
For brevity, we will frequently omit the sample size parameter and refer to RP(M)

102

4.1.1 Random Pairing

simply as RP; the parameter M is treated as a constant chosen before the sampling
process starts.

A. Algorithmic Description

In the RP scheme, every deletion from the dataset is eventually compensated by
a subsequent insertion. At any given time, there are 0 or more “uncompensated”
deletions. The RP algorithm maintains a counter cb that records the number of “bad”
uncompensated deletions in which the deleted item was in the sample (so that the
deletion also decremented the sample size by 1). The RP algorithm also maintains a
counter cg that records the number of “good” uncompensated deletions in which the
deleted item was not in the sample (so that the deletion did not affect the sample).
Clearly, d = cb + cg is the total number of uncompensated deletions.

The algorithm works as follows. Deletion of an item is handled by removing the
item from the sample, if present, and by incrementing the value of cb or cg, as
appropriate. If d = 0, that is, there are no uncompensated deletions, then insertions
are processed as in standard reservoir sampling. If d > 0, we flip a coin at each
insertion step, and include the incoming insertion into the sample with probability
cb/(cb + cg); otherwise, we exclude the item from the sample. We then decrease
either cb or cg, depending on whether the insertion has been included into the sample
or not. The complete algorithm is given as algorithm 4.1.

Conceptually, whenever an item is inserted and d > 0, the item is paired with
a randomly selected uncompensated deletion, called the “partner” deletion. The
inserted item is included into the sample if its partner was in the sample at the time
of its deletion, and excluded otherwise. For purposes of sample maintenance, it is
not necessary to keep track of the precise identity of the random partner; it suffices
to maintain the counters cb and cg. In fact, the probability that the partner was in
the sample matches precisely the probability cb/(cb + cg) used by RP.

Let’s repeat the calculation in (3.14) that was used to show that the obvious
algorithm is incorrect. Suppose that RP(M) has been used to obtain a sample S of
dataset R, with |R| > M , produced by a transaction sequence that does not contain
any deletions (d = 0). Since RP(M) and RS(M) coincide when no deletions occurs,
sample S is uniform and |S| = M . Now, suppose that item r− is deleted from R and
item r+ is subsequently inserted into R. Denote by S′ the state of sample after these
two operations have been processed by RP(M). We have

Pr
[
r+ ∈ S′

]
= Pr

[
r− ∈ S, r+ included

]
+ Pr

[
r− 6∈ S, r+ included

]
=
M

N
· 1

1
+
(

1− M

N

)
· 0

1
=
M

N
,

as desired. A complete proof of the correctness of RP is given in section C.
Typically, a sampling subsystem tracks the size of both the sample and the dataset.

If so, then instead of maintaining the two additional counters cb and cg, it suffices

103

4 Set Sampling

Algorithm 4.1 Random pairing (basic version)
1: cb: number of uncompensated deletions that have been in the sample
2: cg: number of uncompensated deletions that have not been in the sample
3: M : upper bound on sample size
4: R, S: dataset and sample, respectively
5: Random(): returns a uniform random number between 0 and 1
6:

7: Insert(r):
8: if cb + cg = 0 then // execute reservoir-sampling step
9: if |S| < M then

10: insert r into S
11: else if Random() < M/(|R|+ 1) then
12: overwrite a randomly selected element of S with r
13: end if
14: else // execute random-pairing step
15: if Random() < cb/(cb + cg) then
16: cb ← cb − 1
17: insert r into S
18: else
19: cg ← cg − 1
20: end if
21: end if
22:

23: Delete(r):
24: if r ∈ S then
25: cb ← cb + 1
26: remove r from S
27: else
28: cg ← cg + 1
29: end if

104

4.1.1 Random Pairing

to maintain a single counter d that records the number of uncompensated deletions.
Specifically, set d← 0 initially. After processing a transaction γi, update d as follows:

d←

{
d+ 1 if γi is a deletion
max(d− 1, 0) if γi is an insertion.

Then, at any time point,

cb = min(M, |R|+ d)− |S| and cg = d− cb. (4.1)

To see this, observe that min(M, |R|+ d) corresponds to the maximum sample size
seen so far; the number of bad deletions is just the difference to the current sample
size |S|.

B. Example

The RP(M) algorithm with M = 2 is illustrated in figure 4.1. The figure shows
all possible states of the sample, along with the probabilities of the various state
transitions. The example starts after i = 2 items have been inserted into an empty
dataset, i.e., the sample coincides with R. The insertion of item r3 leads to the
execution of a standard RS step since there are no uncompensated deletions. This
step has three possible outcomes, each equally likely. Next, we remove items r2 and r3

from both the dataset and the sample. Thus, at i = 5, there are two uncompensated
deletions. The insertion of r4 triggers the execution of a pairing step. Item r4 is
conceptually paired with either r3 or r2—these scenarios are denoted by (a) and (b)
respectively—and each of these pairings is equally likely. Thus r4 compensates its
partner, and is included in the sample if and only if the partner was in the sample
prior to its deletion. This pairing step amounts to including r4 with probability
cb/(cb + cg) and excluding r4 with probability cg/(cb + cg), where the values of cb

and cg depend on which path is taken through the tree of possibilities. A pairing step
is also executed at the insertion of r5, but this time there is only one uncompensated
deletion left: r2 in scenario (a) or r3 in scenario (b). The probability of seeing a given
sample at a given time point is computed by multiplying the probabilities along the
path from the “root” at the far left to the node that represents the sample. Observe
that the sampling scheme is indeed uniform: at each time point, all samples of the
same size are equally likely to have been materialized.

C. Proof of Correctness

We now formally establish the uniformity property of the RP(M) scheme with upper
bound M ≥ 1; we actually prove a slightly stronger result that implies uniformity.
As before, denote by Ri the dataset and by Si sample after the i-th processing step,

105

4 Set Sampling

i3 4 5 6

4 5

4 5

1 5

1 4

1 4

1 5

4

4

1

1

1 4

1 4

1

1

1

1

1

1

1

1

3 2 31 2

1 2 1

1 3 1 3

1/2

1/2

1/2

1/2

1/2

1/2

11

1

1 1

1

1/3

2

+r1

+r2 +r3 -r2 -r3 +r4 +r5

7...

Pairing (a)

Pairing (b)

2/3

1/2

1/2

Figure 4.1: Illustration of random pairing

106

4.1.1 Random Pairing

i.e., after processing transaction γi. Also denote by cb,i and cg,i the value of the
counters cb and cg after the i-th step, and set di = cb,i + cg,i. Finally, set

vi = min
(
M, max

1≤j≤i
|Rj |

)
= min(M, |Ri|+ di),

li = max(0, vi − di),
ui = min(M, |Ri|).

(4.2)

In light of (4.5) below, it can be seen that li and ui are the smallest and largest
possible sample sizes after the i-th step, and vi is the largest sample size attained so
far. Without loss of generality, we restrict attention to sequences that start with an
insertion into an empty dataset.

Theorem 4.1. For any feasible sequence γ of insertions and deletions, there exist
numbers { pi(k) : i ≥ 1 and k ≥ 0 }, depending on γ, such that

Pr [Si = A] = pi(|A|) (4.3)

for A ⊆ Ri and i ≥ 1. Moreover,

pi(k)
pi(k − 1)

=
vi − k + 1
di − vi + k

. (4.4)

for i ≥ 1 and k ∈ { li + 1, li + 2, . . . , ui }.

It follows from (4.3) that, at each step, any two samples of the same size are
equally likely to be produced, so that the RP algorithm is indeed a uniform sampling
scheme.

Proof. Clearly, we can take pi(k) = 0 for i ≥ 1 and k 6∈ { li, li + 1, . . . , ui }. Fix
a sequence of insertions and deletions, and observe that the sample size decreases
whenever cb increases, and increases whenever cb decreases (subject to the constraint
|S| ≤M .) It follows directly that

cb,i = vi − |Si| (4.5)

for i ≥ 1. The proof now proceeds by induction on i. The assertions of the theorem
clearly hold for i = 1, so suppose for induction that the assertions hold for values
1, 2, . . . , i− 1. There are two cases to consider. First, suppose that step i corresponds
to the insertion of an item r, and consider a subset A ⊆ Ri with |A| = k, where
li ≤ k ≤ ui. If di−1 = 0, then di = 0 and li = ui, so that (4.4) holds vacuously,
and the correctness proof for standard reservoir sampling—see, e.g., Haas (2009)—
establishes the assertion in (4.3). So assume in the following that di−1 > 0. If r ∈ A,
then, using (4.5), we have

Pr [Si = A] = Pr [Si−1 = A \ { r } , r included]

= pi−1(k − 1)
cb,i−1

di−1
= pi−1(k − 1)

vi−1 − k + 1
di−1

.

107

4 Set Sampling

If r 6∈ A, then

Pr [Si = A] = Pr [Si−1 = A, r ignored]

= pi−1(k)
di−1 − vi−1 + k

di−1
,

(4.6)

so that, if A 6= ∅, then

Pr [Si = A] = pi−1(k − 1)
vi−1 − k + 1

di−1
. (4.7)

Here (4.7) follows from (4.6) and an inductive application of (4.4). This establishes
the first assertion of the theorem with

pi(k) =

pi−1(k − 1)vi−1−k+1

di−1
if max(li, 1) ≤ k ≤ ui;

pi−1(0)di−1−vi−1

di−1
if k = li = 0;

0 otherwise.

(4.8)

To establish the second assertion of the theorem, apply (4.8) and then inductively
apply (4.4), making use of the fact that—since di−1 > 0 and an item is inserted at
step i—we have di = di−1 − 1 and vi = vi−1. Now suppose that step i corresponds
to the deletion of an item r, and again consider a subset A ⊆ Ri with |A| = k ∈
{ li, li + 1, . . . , ui }. Observe that

Pr [Si = A] = Pr [Si−1 = A] + Pr [Si−1 = A ∪ { r }]
= pi−1(k) + pi−1(k + 1),

which establishes the first assertion of the theorem with

pi(k) = pi−1(k) + pi−1(k + 1) (4.9)

for li ≤ k ≤ ui. Since di = di−1 + 1 and vi = vi−1, we then have

pi(k)
pi(k − 1)

=
pi−1(k) + pi−1(k + 1)
pi−1(k − 1) + pi−1(k)

=

[
pi−1(k)/pi−1(k − 1)

]
+
[
pi−1(k + 1)/pi−1(k − 1)

]
1+
[
pi−1(k)/pi−1(k − 1)

]
=

vi−1 − k + 1
di−1 − vi−1 + k + 1

=
vi − k + 1
di − vi + k

for li < k ≤ ui, where we have again inductively used (4.4). Thus the second assertion
of the theorem holds and the proof is complete.

Observe that RP(M) reduces to PASSIVE(M) when applied to a sequence-based
sliding window over a data stream. If there are no deletions, RP(M) scheme reduces
to standard RS(M).

108

4.1.1 Random Pairing

D. Sample Size Properties

Building on theorem 4.1, we can derive the statistical properties of the sample size at
any given time point. In theorem 4.2 below, we establish the probability distribution,
the mean, and the variance of the sample size. As before, see (4.2), we define li
and ui to be the smallest and largest possible sample size after processing the i-th
transaction, and vi to be the largest sample size encountered so far.

As a shortcut, denote by

H
(
k; N,N ′,M

)
=
(
N ′

k

)(
N −N ′

M − k

) / (N
M

)
(4.10)

a hypergeometric probability. Intuitively, H(k; N,N ′,M) denotes the probability
that when sampling M out of N ′ white and N −N ′ black balls, exactly k of them
are white. In the theorem below, the white balls correspond to the items in Ri, the
black balls correspond to uncompensated deletions.

Theorem 4.2. For any feasible sequence γ of insertions and deletions and i ≥ 1,
the sample size follows the hypergeometric distribution given by

Pr [|Si| = k] = H(k; |Ri|+ di, |Ri|, vi) (4.11)

for li ≤ k ≤ ui, and Pr [|Si| = k] = 0 otherwise. Moreover, the expected value and
variance of |Si| are given by

E [|Si|] =
|Ri|

|Ri|+ di
vi

and

Var [|Si|] =
divi(|Ri|+ di − vi)|Ri|

(|Ri|+ di)2(|Ri|+ di − 1)
.

Proof. Defining pi(k) as in theorem 4.1 and appealing to (4.3), we have

Pr [|Si| = k] =
∑
A⊆Ri
|A|=k

Pr [Si = A] =
(
|Ri|
k

)
pi(k),

and it suffices to show that

pi(k) =
(

di
vi − k

) / (|Ri|+ di
vi

)
(4.12)

for li ≤ k ≤ ui and i ≥ 1. Clearly, (4.12) holds for i = 1, and can be established
for general i > 1 by a straightforward inductive argument that uses (4.8) and (4.9).
The remaining assertions of the theorem follow from well-known properties of the
hypergeometric distribution (Johnson et al. 1992, p. 250).

109

4 Set Sampling

The intuition behind the result of the theorem is as follows. Suppose that whenever
an item is deleted, we mark it as “deleted,” but we retain such a “transient item” in
the dataset (and in the sample, if present) until the deleted item is compensated.
After processing the i-th transaction, the dataset contains |Ri| + di total items,
comprising |Ri| real items and di transient items. We can view the current sample
as a uniformly selected subset of size vi from the collection of |Ri|+ di total items.
The actual sample size |Si| is simply the number of these vi items that are real. As
mentioned above, the probability that a uniform sample of vi items from a population
of |Ri| real items and di transient items contains exactly k real items is well known
to be given by the hypergeometric probability asserted in the theorem statement.

It can be seen from theorem 4.2 that the sample size is concentrated around
its expected value. For example, suppose we sample 100,000 items from a dataset
consisting of 10,000,000 items (1%). If we delete 100,000 items, the sample size
is 99,000 in expectation and has a standard deviation of 31.31 items; we have
98,900 ≤ |S| ≤ 99.100 with a probability of approximately 99.8%. Moreover, when
the number of uncompensated deletions is small, the expected sample size is close to
the maximum possible sample size.

Observe that if di = 0, so that there are no uncompensated deletions, or if
|Ri| + di ≤ M , so that the sample coincides with the population, then E [|S|] =
min(M, |Ri|), Var [|S|] = 0, and Pr [|S| = min(M, |Ri|)] = 1, i.e., the sample size is
deterministic.

4.1.2 Random Pairing With Skipping

The RP algorithm, as displayed in algorithm 4.1, calls the Random function at
essentially every insertion transaction. In practice, random numbers are generated
using a pseudorandom number generator (PRNG); see L’Ecuyer (2006) for an overview
of PRNG’s. In general, the uniformity property of the sample relies on the statistical
quality of the PRNG, and increased quality has its price in terms of processing cost.
Because of the frequency with which the basic algorithm calls the Random function,
it is worthwhile investigating the possibility of reducing the number of PRNG calls.

Revisiting algorithm 4.1, one finds that there are two locations where random
numbers are generated. In line 11, random numbers are used to execute plain reservoir
sampling and in line 15, random numbers drive the pairing process. In both cases,
we can leverage results on skip-based sampling to produce a more efficient algorithm.
Note that in contrast to the skip-based survey sampling schemes of section 3.4, we
can not simply skip over arriving transactions when RP is used. This is because RP
proceeds differently for insertion and deletion transactions and therefore must access
every transaction to distinguish between both cases. We can, however, reduce the
cost of generating random numbers so that RP becomes more CPU-efficient.

110

4.1.2 Random Pairing With Skipping

A. Reservoir Step

Assume for a moment that γ consists only of insertion transactions. In this setting,
RP coincides with reservoir sampling so that we can make use of the skip counters for
reservoir sampling. Recall that skip-based reservoir sampling makes use of a random
variable Zi that denotes the number of rejected items until the next sample insertion;
Zi is defined in equation (3.11). When processing γi+1 = +r, item r is included into
the sample if and only if Zi = 0. In this case, Zi+1 is regenerated; otherwise, we set
Zi+1 ← Zi − 1 and ignore item r.

The same idea can be exploited for arbitrary sequences in which the insertion
process may be interrupted by deletion transactions. In fact, we can continue to use
the skip counter without modification as soon as the next reservoir step is executed.
To see this, suppose that there are no uncompensated deletions after processing
transaction γi and that γi+1 is a deletion; we have di = 0 and di+1 > 0. Denote by
i∗ > i the index of the next transaction after γi such that di∗ = 0. Since RP does
not execute a reservoir step for transactions γi+1, . . . , γi∗ , and since |Ri| = |Ri∗ | by
theorem 4.2, we have Pr[Zi+1 = k] = Pr[Zi∗+1 = k] according to (3.11), and the
skip-based reservoir sampling process can be continued at the point where it was
interrupted.

Algorithm 4.2 incorporates these optimizations into the basic RP algorithm. The
skip counter is denoted by Z. When Z ≥ 0, the variable contains the number
of insertions to skip; a value of Z < 0 indicates that the skip counter has to be
regenerated. The function SkipRS takes care of regeneration; it can be implemented
efficiently using on of the algorithms of Vitter (1985).

B. Pairing Step

We can exploit an idea similar to the one above to optimize the pairing step. Assume
that after processing transaction γi, there are di > 0 uncompensated deletions and
that transactions γi+1, γi+2, . . . , γi+di all correspond to insertions. As before, denote
by cb,i and cg,i the values of the sample counters after processing transaction γi,
where cb,i + cg,i = di. We argue that out of the di insertions, the items that RP
includes into the sample form a uniform random sample of size cb,i. To see this,
observe that the item corresponding to insertion transaction γi+1 is included in the
sample with probability cb,i/di and excluded otherwise. In case of inclusion, the next
item, corresponding to γi+2, is included with probability cb,i+1/(cb,i+1 + cg,i+1) =
(cb,i − 1)/(di − 1). In case of exclusion, the next item is included with probability
cb,i+1/(cb,i+1 + cg,i+1) = cb,i/(di − 1), and so on. These probabilities match the
inclusion probabilities used in the list-sequential schemes of section 3.4.2 with sample
size cb,i and population size di: the numerator of the inclusion probability denotes
the remaining sample items, the denominator equals the remaining population items.

We make use of the improved methods for list-sequential sampling in the RP
algorithm by maintaining a skip counter Z ′ for the pairing step; Z ′ is distributed as
given in equation (3.6). Unlike with the counter Z for the reservoir step, we have to

111

4 Set Sampling

Algorithm 4.2 Random pairing (optimized version)
1: cb: number of uncompensated deletions that have been in the sample
2: cg: number of uncompensated deletions that have not been in the sample
3: M : upper bound on sample size
4: R, S: dataset and sample, respectively
5: Z: skip counter for reservoir sampling (initialized to −1)
6: Z ′: skip counter for random pairing (initialized to −1)
7: SkipRS: reservoir-sampling skip function as in Vitter (1985)
8: SkipSeq: list-sequential-sampling skip function as in Vitter (1984)
9:

10: Insert(r):
11: if cb + cg = 0 then // execute optimized reservoir-sampling step
12: if |S| < M then
13: insert r into S
14: else
15: if Z < 0 then
16: Z ← SkipRS(M, |R|+ 1)
17: end if
18: if Z = 0 then
19: overwrite a randomly selected element of S with r
20: end if
21: Z ← Z − 1
22: end if
23: else // execute optimized random-pairing step
24: if Z ′ < 0 then
25: Z ′ = SkipSeq(cb, cb + cg)
26: end if
27: if Z ′ = 0 then
28: cb ← cb − 1
29: insert r into S
30: else
31: cg ← cg − 1
32: end if
33: Z ′ ← Z ′ − 1
34: end if
35:

36: Delete(r):
37: Z ′ ← −1 // invalidate
38: if r ∈ S then
39: cb ← cb + 1
40: remove r from S
41: else
42: cg ← cg + 1
43: end if

112

4.1.3 Experiments

recompute Z ′ whenever a deletion transaction interrupts the insertion process.2 The
complete procedure is given in algorithm 4.2. Again, a negative value of Z ′ indicates
that recomputation is required. SkipSeq generates the skip counter using one of the
algorithms of Vitter (1984). Because a call to SkipSeq is usually more expensive
than a (single) call to Random, we expect this optimization to be worthwhile when
the transaction stream comprises long blocks of insertions alternating with long
blocks of deletions; see section 4.1.3D for an empirical evaluation of our proposed
optimizations.

4.1.3 Experiments

We conducted an experimental study to evaluate the stability and performance of
the RP scheme with respect to the various bounded-size algorithms mentioned in
Section 3.5.1. In summary, we found that RP has the following desirable properties:

• When the fluctuations of the dataset size over time are not too extreme, RP
produces sample sizes that are as stable as those produced by slower algorithms
that access the base data.

• The speed of RP is clearly faster than any sampling scheme that requires access
to the base data.

For the optimizations, we found that

• The optimization of the reservoir step never slows down RP, and can speed
up RP when the dataset is growing or when the dataset is stable and the
transaction stream contains long sequences of insertions.

• The optimization of the pairing step can slow down RP when the dataset is
stable and the number of insertions that occur between a pair of successive
deletions tends to be small; the optimization is beneficial when the dataset is
growing or when the dataset is stable and the transaction stream contains long
sequences of insertions.

A. Setup

We implemented the RP algorithm, as well as the CAR, CARWOR, MRSR, and
MRST schemes, using Java 1.6. We employed an indexed in-memory array to
efficiently support the deletion of items. Since the order of the items within the
sample is commonly of no interest, we maintained a dense array, i.e., if an item gets
deleted, we moved the last item of the sample to its position. This avoids maintaining
a data structure to capture free slots within the array.

2More precisely, it suffices to recompute Z′ when the insertion process resumes. Suppose that Z′ is
recomputed while processing insertion γi+1: we set Z′ = Z1,0 where Z1,0 follows the distribution
in (3.6) with k = cb,i and N = di.

113

4 Set Sampling

All of the experiments used synthetic data; since our focus is on uniform sampling
of unique data items, the actual data values are irrelevant. We ran our experiments
on a variety of systems and, for most of the experiments, measured the number
of operations instead of actual processing times in order to facilitate meaningful
comparisons. Because the sampling algorithms in this thesis can potentially be used
in a wide range of application scenarios, our approach has the advantage that the
results reported here can be customized to any specific scenario by appropriately
costing the various operations. For example, if the base data corresponds to a single
relational table, then access to this data can be costed more cheaply than if the base
data is, say, a view over a join query. Unless otherwise stated, a reported result
represents an average over at least 100 runs.

We assumed that the deletions and insertions are clustered into batches of b
operations, and simulated the sequence of dataset operations by randomly deciding
whether the next b operations are insertions or deletions. Our default value was
b = 1, but we also ran experiments in which we systematically varied the value of b
to investigate the effect of different insertion/deletion patterns.

B. Sample Size

We evaluated the sample-size stability for the various algorithms by executing
a randomly generated sequence of 4,000,000 insertion/deletion operations while
incrementally maintaining a sample with a target size (and upper bound) of 100,000
items. To create a scenario in which the dataset of interest is reasonably large, we
restricted the first 1,000,000 operations to be insertions only. We used a lower bound
of 80,000 items for the MRSR and MRST algorithms. The goal of this experiment is
to illustrate the qualitative behavior of the algorithms, and so we did not average
over multiple runs. For each algorithm, we plotted the sample size as it evolved over
time. The upper part of figure 4.2 displays results for the sampling schemes that
access the base data, and the lower part displays results for the RP algorithm, which
avoids base-data accesses.

As can be seen, CARWOR is optimal, since it is able to maintain the sample at
its upper bound. CAR produces smaller samples after duplicate elimination, but the
sample size is stable and close to the upper bound. Both algorithms, however, need
to access the base data. MRSR and MRST also need to access the base data, but the
sample size is less stable than that of CAR or CARWOR; it fluctuates in the range
[0.8M,M]. MRST is slightly superior to MRSR in that the sample size decrease is
slower. We see that the sample sizes produced by RP are almost indistinguishable
from those of CARWOR.

We next measured the time-average sample size for a range of dataset sizes,
providing further insight into the impact of deletions. For each dataset size, we
used a sequence of insertions to create both the dataset and the initial sample, and
then measured changes in the sample size over time as we inserted and deleted
10,000,000 items at random. The results are shown in figure 4.3. Again, RP performs
comparably to CARWOR, in that it maintains a sample size close to the upper bound

114

4.1.3 Experiments

0 1 2 3 4

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

No. of operations (millions)

S
a
m

p
le

 s
iz

e
(%

)

MRSR
MRST
CAR
CARWOR

(a) Weakly incremental schemes

0 1 2 3 4

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

No. of operations (millions)

S
a
m

p
le

 s
iz

e
(%

)

RP

(b) Strongly incremental schemes

Figure 4.2: Evolution of sample size over time

115

4 Set Sampling

0 2 4 6 8 10

8
0

8
5

9
0

9
5

1
0
0

Dataset size (millions)

A
v
g
.
sa

m
p
le

 s
iz

e
(t

h
o
u
sa

n
d
s)

RP
MRSR
MRST
CAR
CARWOR

Figure 4.3: Dataset size and average sample size

M . CAR is almost as effective when the dataset size is large so that few duplicates
are expected in the sample. In contrast, the time-average sample sizes for MRSR and
MRST are smaller than those of the other algorithms. The reason for this behavior
is that the both algorithms actively adjusts the sample size only periodically.

The foregoing experiments use a cluster size of b = 1, which means that the
fluctuations in the dataset size are relatively small. We expect that, when the
dataset size fluctuates strongly, so does the sample size when base-data access is
disallowed. Specifically, the sample size produced by RP depends on the number of
uncompensated deletions, which in turn is determined as the difference between the
current dataset size and the maximum dataset size seen so far. To study this effect
experimentally, we varied the magnitude of the fluctuations by varying the cluster
size b. We started with a dataset consisting of 10,000,000 items and a sample size of
100,000. We then performed 223 operations and averaged the sample size after every
b operations. The results for different values of b are shown in figure 4.4.

As can be seen, the sample sizes produced by algorithms that access base data are
almost independent of the cluster size, whereas those produced by RP depend on the
cluster size; the higher the variance of the dataset size, the lower the average sample
size. Due to high peaks in the dataset size, RP may fail to maintain a sufficiently
large sample if the cluster size is large with respect to the dataset size. In this extreme
case, base-data access is required in order to enlarge the sample. A combination of
RP and resizing (RPR) can handle even this situation while minimizing accesses to

116

4.1.3 Experiments

8
0

8
5

9
0

9
5

1
0
0

Cluster size

A
v
er

a
g
e

sa
m

p
le

 s
iz

e
(t

h
o
u
sa

n
d
s)

20 22 24 26 28 210 212 214 216 218 220

RP
RPR
MRSR
MRST
CAR
CARWOR

Figure 4.4: Cluster size and average sample size

the base data. Note that RPR guarantees a lower bound on the sample size, whereas
RP does not.

In a final experiment, we measured the overall cost of the various sampling schemes
relative to the average sample size produced by them, for various cluster sizes. (Our
cost model is described in the next section.) The results are shown in figure 4.5.
MRSR and MRST perform worst since they are expensive and produce a non-optimal
sample size; both CAR and CARWOR are more stable and less expensive. Overall,
the RP-based schemes are clearly superior. As indicated above, RPR performs
comparably to RP when the cluster sizes are reasonably large. The extra cost of
RPR comes into play when the fluctuations in the database size are extreme. Indeed,
when the cluster size exceeds 220 (not shown), the sample is recomputed from scratch
after almost every deletion block, and RPR reduces to MRSR.

C. Performance (Base Data and Sample Accesses)

To evaluate the relative cost of the sampling algorithms, we ran them using different
dataset sizes while counting the number of dataset reads and sample writes. These
two factors strongly influence the performance of the algorithms. Again, we created a
sequence of 10,000,000 insertions and deletions and averaged the results over various
independent runs.

Figure 4.6 depicts the number of accesses to base data for the different algorithms.
Because they must periodically recompute the entire sample, MRSR and MRST

117

4 Set Sampling

Cluster size

R
el

a
ti

v
e

co
st

0
.1

1
1
0

1
0
0

20 22 24 26 28 210 212 214 216 218 220

RP
RPR
MRSR
MRST
CAR
CARWOR

Figure 4.5: Cluster size and relative cost

require more base-data accesses than any other sampling scheme. Both CAR and
CARWOR perform better than MRSR, with CARWOR incurring slightly more base-
data accesses than CAR due to duplicate removal. All of these algorithms require
fewer accesses to a larger dataset than to a smaller one because, for a bounded-size
sample, the effective sampling fraction drops with increasing dataset size, so that the
frequency of deletions from the sample drops as well. Note, however, that if large
datasets are subject to modifications more often than small ones, then this effect
may vanish. Finally, observe that, because RP never requires access to the base data,
its cost curve is indistinguishable from the x-axis.

Figure 4.7 shows the number of write accesses to the sample for the different
sampling schemes. Again, MRSR and MRST are the least efficient algorithms,
because every recomputation completely flushes the current sample and recomputes
it using base data. The other algorithms perform comparably; indeed, the curves for
CAR, CARWOR, and RP coincide.

Fig. 4.8 shows the combined cost of sample and population accesses, assuming
that the latter type of access is ten times as expensive as the former. (In many
applications, the relative cost of population accesses might be significantly higher.)
Again, RP clearly outperforms sampling schemes that require base data access.

118

4.1.3 Experiments

Dataset size (millions)

D
a
ta

se
t

re
a
d
s

(m
il

li
o
n
s)

0 2 4 6 8 10

0
.0

1
0
.1

1
1
0

RP
MRSR
MRST
CAR
CARWOR

Figure 4.6: Number of dataset reads

Dataset size (millions)

S
a
m

p
le

 w
ri

te
s

(m
il
li
o
n
s)

0 2 4 6 8 10

0
.1

1
1
0

RP
MRSR
MRST
CAR
CARWOR

Figure 4.7: Number of sample writes

119

4 Set Sampling

Dataset size (millions)

T
o
ta

l
co

st
 (

m
il

li
o
n
s)

0 2 4 6 8 10

0
.1

1
1
0

1
0
0

RP
MRSR
MRST
CAR
CARWOR

Figure 4.8: Combined cost

D. Performance (CPU)

We next evaluated the performance of RP in terms of CPU cost. Sampling schemes
that require base-data accesses were not considered, because these accesses typically
outweigh the computational cost. We implemented RP with none of the optimizations
from section 4.1.2, with the optimization of the reservoir step (RP+), and with both
optimizations (RP++). We used an indexed in-memory data structure to store the
individual items. Under our experimental parameter settings, the addition of an
item to the data structure takes 1.1µs, the replacement of an item by another one
2.2µs, the look-up cost is 0.9µs and the removal of an item takes 3.3µs. To generate
random numbers, we used the “Mersenne Twister” of Matsumoto and Nishimura
(1998); each random number takes approximately 0.6µs to produce.3 Each of the
above times includes the measurement time.

For each of our experiments, we generated a dataset consisting of 10 million
items and computed initial samples of size 100,000. We then generated a sequence
of 223 insertion and deletion transactions and measured the average throughput
(transactions per second) separately for both types of transactions. We found that
the time to process a deletion transaction is almost identical for all versions of RP,
and we therefore focus our discussion on insertion transactions.

3Surprisingly, the weaker PRNG shipped with Sun’s JDK requires 0.7µs and is therefore slower.

120

4.1.3 Experiments

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

Cluster size

In
se

rt
io

n
s/

S
ec

o
n
d
 (

m
il
li

o
n
s)

20 22 24 26 28 210 212 214 216 218 220

RP
RP+
RP++

Figure 4.9: Throughput, stable dataset

Figure 4.9 displays the throughput performance on a stable dataset for various
cluster sizes b. First, observe that RP and RP+ perform similarly. The reason is
that RP+ optimizes the reservoir step, which is executed very infrequently if the
dataset is stable and does not fluctuate strongly. In contrast, when b is small, RP++
slows down the sampling process due to frequent invalidations of the skip counter Z ′.
For b ≥ 16, RP++ performs better than both RP and RP+.4

Figure 4.10 plots the throughput of the insertion transactions on a growing dataset.
In this experiment, we fixed b = 16 and varied the fraction of insertion transactions
from p = 0.5 (stable) to p = 1 (insertion-only). As p increases, more reservoir
steps and less pairing steps are executed while running RP. Since the former are
more expensive (replacement of an item) than the latter (addition of an item), the
performance of RP degrades as p grows. However, the optimized schemes RP+ and
RP++ partly compensate for this effect by generating (far) fewer random numbers
as the fraction of insertions increases, so that these optimized algorithms outperform
plain RP. Note that RP+ and RP++ coincide when p = 1, since, in this case, no
pairing step is executed.

4An implementation of random pairing may switch from RP+ to RP++ and vice versa, depending
on the incoming transaction stream.

121

4 Set Sampling

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

Percentage of insertions

In
se

rt
io

n
s/

S
ec

o
n
d
 (

m
il
li

o
n
s)

50% 60% 70% 80% 90% 100%

RP
RP+
RP++

Figure 4.10: Throughput, growing dataset

4.2 Sample Resizing

The discussion so far has focused on stable datasets, and therefore on sampling
algorithms that guarantee a fixed upper bound on the sample size. For growing
datasets, however, one might want to increase the sample size from time to time
in order to avoid undersized samples. As discussed in section 3.5.1, the Bernoulli
scheme MBERN(q) can be used to maintain a sample whose size grows with the
dataset, but such a sampling scheme does not control the maximum sample size. We
therefore consider the problem of maintaining a sample with an upper bound that
is periodically increased according to the user’s needs. Furthermore, we study the
related problem of subsampling, that is, the problem of reducing the sample size and
its upper bound. Subsampling techniques can be used in practice when, for example,
the memory available for the sample decreases.

The outline of this section is as follows: We start with schemes that increase
the size of a bounded sample. In section 4.2.1, we show that any such scheme
cannot avoid accessing the base data. We then disprove the correctness of an earlier
algorithm given in Gemulla et al. (2008) and describe a novel, provably uniform
scheme called RPRES. In section 4.2.2, we discuss optimum parametrization of
RPRES. Experimental results are presented in section 4.2.3. We conclude this
section with a discussion of subsampling in section 4.2.4, where we derive the RPSUB
algorithm.

122

4.2.1 Resizing Upwards

4.2.1 Resizing Upwards

The discussion in this section applies to arbitrary bounded-size uniform samples,
not just the ones created by the random pairing algorithm. In general, we consider
algorithms that start with a uniform sample S of size M from a dataset R and—after
some finite (possibly zero) number of arbitrary transactions on R—produce a uniform
sample S′ of size M ′ from the resulting modified dataset R′, where M < M ′ < |R|.
We allow the algorithms to access the base dataset R. For example, a trivial resizing
scheme ignores the transactions altogether, immediately discards S, and creates a
fresh sample S′ by resampling R. Of course, we are interested in schemes that do
the resizing in a more efficient manner.

A. Negative Result

The RP algorithm can maintain a bounded sample without needing to access the
base data. One might hope that there exist algorithms for resizing a sample that
similarly do not need to access the base data. Theorem 4.3 below shows that such
algorithms cannot exist.

Theorem 4.3. There exists no resizing algorithm that can avoid accessing the base
dataset R.

Proof. Suppose to the contrary that such an algorithm exists, and consider the case
in which the transactions on R consist entirely of insertions. Fix a set A ⊆ R′

such that |A| = M ′ and A contains M + 1 elements of R; such a set can always be
constructed under our assumptions. Because the hypothesized algorithm produces
uniform samples of size M ′ from R′, we must have Pr [S′ = A] > 0. But clearly
Pr [S′ = A] = 0, since |S| ≤M and, by assumption, no further elements of R have
been added to the sample. Thus we have a contradiction, and the result follows.

B. Non-Uniformity of Bernoulli Resizing

Gemulla et al. (2008) proposed a resizing algorithm called Bernoulli resizing, denoted
BERNRES, that makes use of Bernoulli sampling to enlarge the sample. In this
section, we show that BERNRES does not produce uniform samples.

We first describe the algorithm. BERNRES has 2 phases. In phase 1, the
algorithm converts the size-M sample to an MBERN(q) sample for some arbitrary
value 0 < q < 1, possibly accessing base data in the process. If after the conversion
the sample size equals M ′ or is larger, the algorithm returns M ′ randomly chosen
items as the enlarged sample and bounded-size sampling resumes using the new upper
bound M ′. Otherwise, BERNRES proceeds to phase 2, in which it uses MBERN(q)
to increase the sample size to the target value M ′ and then resumes bounded-size
sampling.

We now give a counterexample in which BERNRES does not produce uniform
samples. We consider the transaction sequence γ = (+r1,+r2,+r3). Suppose that
we have already processed transactions +r1 and +r2 using a sample-size bound of

123

4 Set Sampling

M = 1. We now want to resize the sample to size M ′ = 2 using BERNRES. The
first step of BERNRES is to convert the current sample to a MBERN(q) sample.
The choice of q is arbitrary so that we set q = 0.5 to simplify the formulas. Denoting
by S the sample after conversion, we have according to (2.3) and since R = { r1, r2 }:

Pr [S = ∅] = Pr [S = { r1 }] = Pr [S = { r2 }] = Pr [S = { r1, r2 }] =
1
4
.

There are two cases: (i) |S| < 2 and (ii) |S| = 2. We discuss both cases separately.
Our goal is to determine the distribution of sample S′ that results from S after
processing transaction +r3. In case (i), BERNRES uses MBERN(0.5) sampling to
process +r3, that is, r3 is added to S with probability 0.5 or ignored otherwise. We
therefore have

Pr
[
S′ = ∅ | |S| < 2

]
= Pr

[
S′ = { r3 } | |S| < 2

]
= Pr

[
S′ = { r1 } | |S| < 2

]
= Pr

[
S′ = { r1, r3 } | |S| < 2

]
= Pr

[
S′ = { r2 } | |S| < 2

]
= Pr

[
S′ = { r2, r3 } | |S| < 2

]
=

1
6
.

We can see that S′ conditionally on |S| < 2 is not uniform because sample { r1, r2 } is
chosen with probability 0 while samples { r1, r3 } and { r2, r3 } are both chosen with
probability 1/6 > 0. For case (ii), where |S| = 2, bounded-size sampling recommences
so that

Pr
[
S′ = { r1, r2 } | |S| = 2

]
= Pr

[
S′ = { r1, r3 } | |S| = 2

]
= Pr

[
S′ = { r2, r3 } | |S| = 2

]
=

1
3
.

We can now uncondition on S to obtain

Pr [S = { r1, r2 }] = Pr [|S| < 2] Pr
[
S′ = { r1, r2 } | |S| < 2

]
+ Pr [|S| = 2] Pr

[
S′ = { r1, r2 } | |S| = 2

]
=

3
4

0 +
1
4

1
3

=
1
12

Pr [S = { r1, r3 }] = Pr [|S| < 2] Pr
[
S′ = { r1, r3 } | |S| < 2

]
+ Pr [|S| = 2] Pr

[
S′ = { r1, r3 } | |S| = 2

]
=

3
4

1
6

+
1
4

1
3

=
3
16
.

Both probabilities differ so that S′ does not constitute a uniform random sample
of R. The reason for the non-uniformity is that, when |S| < 2, S has a different
distribution than a real MBERN(q) sample so that MBERN(q) cannot be used in
phase 2.

124

4.2.1 Resizing Upwards

C. Algorithmic Description

We now describe our RPRES algorithm. It is based on BERNRES but avoids the
conversion into a Bernoulli sample that led to the incorrectness of BERNRES.

Suppose that the initial sample size is |S| = M with probability 1 and the target
sample size is M ′ > M , where M,M ′ < |R|.5 We say that a sample S is an RP(M ′, d)
sample of R if it is produced by running RP(M ′) on a sequence γ that produces R
and contains d uncompensated deletions. Such sequence exists for any value of d; for
example, the sequence may consist of |R| insertions, one for each item in R, followed
by the insertion of d “transient” items from R \R, which are subsequently deleted.
The key idea of RPRES is to convert sample S to an RP(M ′, d) sample, where d is
treated as a parameter of the conversion process. The conversion may require access
to the base data, but—as we discuss in the following section—the probability and
amount of such accesses depend on d. After conversion, subsequent transactions are
processed using RP(M ′) so that, after a sufficiently large number of insertions, the
sample size reaches its target value M ′. When base data accesses are expensive and
insertions occur frequently, this approach can be much faster than the traditional
approach of recomputing the sample from scratch.

RPRES comprises two phases. In phase 1 (conversion), the algorithm generates
a hypergeometric(|R| + d, |R|,M ′) random variable U , which—according to theo-
rem 4.2—represents the initial RP(M ′, d) sample size. The distribution of U depends
on parameter d, e.g., E [U] = M ′|R|/(|R| + d). For d = 0, we have U = M ′ with
probability 1; for larger values of d, the (expected) value of U decreases. The
algorithm now uses as many items from S as possible to make up the RP(M ′, d)
sample, accessing base data only if U > |S|. Phase 1 concludes with the computation
of the counters cg and cb according to (4.1). In phase 2 (growth), the algorithm
increases the sample to the desired size by using RP(M ′) sampling and subsequent
insertions. Since the dataset is growing, the sample size will eventually reach its
target value M ′. The phase ends as soon as the number of uncompensated deletions
reaches 0, in which case the sample size is guaranteed to equal M ′. We also end
phase 2 when the dataset becomes empty, although this situation is unlikely to occur
in practice. If it does, resizing should be abandoned in favor of a fresh RP(M ′)
sample maintained as the dataset grows again.

In algorithm 4.3, we give the complete pseudocode of the resizing procedure.
We make use of a function Hypergeometric that generates samples from the
hypergeometric distribution; see Zechner (1997, p. 101) or Kachitvichyanukul and
Schmeiser (1985) for efficient rejection algorithms, or refer to a statistical library
that includes this function, such as the Colt Library (2004) or the GNU Scientific
Library (2008).

5It is important that the initial sample size equals M with probability 1 because otherwise subtle
issues with uniformity can occur. An example of such issues is given in section 4.2.4, where
we discuss subsampling. However, when RP is used to maintain the sample, the assumption
that Pr [|S| = M] = 1 is fulfilled whenever d = 0 and—because the dataset is growing—easily
satisfied in practice.

125

4 Set Sampling

Algorithm 4.3 Resizing
1: M : initial sample size
2: M ′: target sample size (M ′ > M)
3: R: initial dataset
4: S: initial sample with |S| = M
5: d: resizing parameter
6:

7: Phase 1: // convert to RP(M’,d) sample
8: U ← Hypergeometric(|R|+ d, |R|,M ′)
9: if U ≤M then

10: S ← uniform subsample of size U from S
11: else
12: V ← uniform sample of size U −M from R \ S
13: S ← S ∪ V
14: end if
15: cg ←M ′ − |S|
16: cb ← d− cg

17: go to phase 2
18:

19: Phase 2: // grow sample to size M ′

20: while cg + cb > 0 ∧ |R| > 0 do
21: wait for transaction
22: process transaction using RP(M ′) and counters cg and cb

23: end while
24: return S

126

4.2.1 Resizing Upwards

We now assert the correctness of the resizing algorithm. Denote by S∗ the effective
sample at the end of phase 1. Also denote by Si and Ri (i ≥ 0) the elements in the
sample and the dataset after i transactions have occurred in phase 2. Finally, denote
by L (≥ 0) the number of transactions that occur during phase 2; the value of L is
completely determined by the transaction sequence and the value of parameter d.

Theorem 4.4. For any i, where 0 ≤ i ≤ L, the set Si is a uniform sample from Ri.

Proof. According to theorem 4.2, the distribution of U in phase 1 is identical to the
distribution of the sample size of an RP(M ′, d) sample from R. The subsampling step
(U ≤M) and the union step (otherwise) both maintain the uniformity of S, so that
S∗ is also uniform. Both facts together imply that S∗ is an RP(M ′, d) sample from
R. From this fact and from (4.1), we conclude that sample S∗ along with counters
cg and cb forms an RP(M ′) sample of R. The assertion of the theorem now follows
from the correctness of RP(M ′).

We assume that the dataset is “locked” during phase 1, so that the process of
incoming transactions is temporarily suspended. For ease of exposition, we assume
that the sample of R \ S is obtained using draw-sequential sampling techniques as
the ones discussed in section 3.4.1. Such techniques are applicable in a wide range
of settings and are typically much faster than a scan of the entire dataset. Recall
that draw-sequential techniques sample from R \ S by first extracting a random item
from the dataset. The item is accepted if it is not already in the sample (which is the
usual case); otherwise, the item is rejected and the process starts over. As discussed
in Gemulla et al. (2008), more sophisticated and efficient data-access methods may
be available, depending upon the specific system architecture and data layout. Our
goal, given cost models for a specified base-data access mechanism and the sequence
of transactions, is to optimally balance the amount of time required to access the
base data in phase 1, and the amount of time required to finish growing the sample
(using new insertions) in phase 2.

The value of the parameter d determines the relative time required for phases 1
and 2. Intuitively, when base data accesses are expensive but new insertions occur
frequently, we might want to choose a large value of d so as to resample as few items
as possible and shift most of the work to phase 2. In contrast, when base data
accesses are fast with respect to the arrival rate of new insertions, a small value of d
might be preferable to minimize the complete resizing time.

D. Example

The RPRES algorithm is illustrated in figure 4.11, where we make use of the
counterexample that was used to show the non-uniformity of BERNRES. The
transaction sequence is given by γ = (+r1,+r2,+r3) and the sample is resized from
M = 1 to M ′ = 2 after transaction +r1 and +r2 have been processed. We use a value
of d = 1 for the resizing algorithm. Right before resizing is initiated, the sample S is
equal to either { r1 } or { r2 }, each with probability 1/2. For |R| = 2 and our choice

127

4 Set Sampling

i3

1

2

2

+r1

+r2 +r3

...

1

1 2

1 3

1 2

2

1 2

2 3

1 2

U=1, cg=1, cb=0

U=2, cg=0, cb=1

U=1, cg=1, cb=0

U=2, cg=0, cb=1

1

1

1

1

Con-

version

2/3

1/3

2/3

1/3

1/2

1/2

Figure 4.11: Illustration of resizing

of d = 1, we have Pr [U = 1] = 2/3 and Pr [U = 2] = 1/3. When U = 1 = |S|,
the sample remains unmodified and the counters are set to cg = M ′ − U = 1 and
cb = d− cg = 0. Otherwise, when U = 2, a random item is selected from the base
data and added to the sample and the counters are set to cg = 0 and cb = 1. It can
be seen from the figure that, right after the conversion, the sample is indeed uniform.
When transaction +r3 arrives, a pairing step is executed. The decision of whether to
accept or reject r3 depends on the values of the counters, which in turn depend on
U . In our example, item r3 is added to the sample for U = 1 and ignored for U = 2.
At this point of time, we have cg = cb = 0 and the resizing algorithm terminates.
Note that the resizing algorithm accesses the base data with probability 1/3; with
probability 2/3, no such access is required.

4.2.2 Parametrization of Resizing

This section addresses the key problem of choosing the parameter d in algorithm 4.3.
For a given choice of d, the resizing cost—i.e., the time required for resizing—
is random. Indeed, the time required for phase 1 depends on the value of the
hypergeometric random variable U , and the time required for phase 2 depends on
both d and the transaction sequence. Our goal is therefore to develop a probabilistic
model of the resizing process, and choose d to minimize the expected resizing cost.6

We develop perhaps the simplest possible model, based on the base-data access
paradigm described previously and a very simple model of the transaction stream. A

6Of course, any practical implementation of the resizing algorithm would estimate the cost of
recomputing the sample from scratch, and choose this option if it is less expensive than the cost
of the new resizing algorithm under the optimal value of d. In many scenarios, however, complete
recomputation will not be the best option.

128

4.2.2 Parametrization of Resizing

discussion of more complex cost models and their implications on the resizing cost
can be found in Gemulla et al. (2008). Given a cost model, numerical methods can
be used to determine d∗, the optimal value of d. Since numerical optimization can be
too expensive at runtime, we also consider an approximate model of the cost function
that can be minimized analytically. The experiments in section 4.2.3 indicate that
both the approximate model of expected cost and the resulting choice of d closely
agree with the results obtained via numerical methods, thereby justifying the use of
the quick approximate analytical method.

A. Modeling the Resizing Process

We first consider the cost of phase 1. During this phase, the algorithm obtains N(U)
items from R \ S, where

N(u) = max(u−M, 0)

for 0 ≤ u ≤M ′. As discussed above, we assume that these items are obtained using
repeated simple random sampling from R with replacement, with an acceptance-
rejection step to ensure that each newly sampled item is not an element of S and is
distinct from all of the items sampled so far. Following an argument as in section 3.4.1,
the (random) number Bk of base-data accesses required to obtain the k-th item has
a geometric distribution

Pr [Bk = n] = pn−1
k (1− pk), n ≥ 1,

where the failure probability pk = (M +k−1)/|R| denotes the probability of drawing
an item that is already present in the sample. The random variables Bk are mutually
independent. Supposing that each base-data access takes ta time units, the expected
phase 1 cost is ta Ed [B], where B = B1 +B2 + · · ·+BN(U). We use the subscript d to
emphasize the fact that the probability distribution of B depends on the distribution
of U , and hence on the parameter d. We can re-express this expected cost in a more
convenient form. Using again an argument as in section 3.4.1, we have

Ed [B | U] = |R|H|R|−M−N(U)+1, |R|−M ,

where Hn,m =
∑m

i=n 1/i. Using approximation (3.5) for partial harmonic numbers,
we can write Ed [B | U] = g(U), where

g(u) = |R| ln
(

|R| −M
|R| −M −N(u)

)
.

By the law of total expectation, we have

Ed [B] = Ed
[

Ed [B | U]
]

= Ed [g(U)],

and we can therefore write the expected phase 1 cost as

T1(d) = ta Ed [g(U)].

129

4 Set Sampling

We now consider the cost of phase 2. In this phase, the resizing algorithm executes
L steps of the random pairing algorithm, where L depends on the transaction
sequence. To make further progress, we need a model of the insertion and deletion
process. The simplest model, which we will use here, is to assume that, during
phase 2, a sampling step occurs every tb time units; the quantity tb primarily reflects
the time between successive transactions. With probability p, the transaction is an
insertion, and with probability q = (1− p) the transaction is a deletion. We assume
that p > 1/2, since the dataset is growing. The parameters tb and p can easily be
estimated from observations of the arrival process.

The distribution the number L of transactions in phase 2 can be obtained by an
analogy to a ruin problem, see for example Feller (1968). In the classical ruin problem,
a gambler wins or loses a dollar with probability p and q = 1− p, respectively. The
gambler is given initial capital z and the game ends when the gambler’s capital
reduces to zero (=ruin) or reaches value a (=win). We are interested in the expected
number of steps until the gambler either wins or is ruined. In our setting, we have
z = |R| and a=|R|+ d. The expected value of the duration of the ruin problem is
given by (Feller 1968, p. 348)

Ed [L] =
|R|
q − p

− |R|+ d

q − p
1− (q/p)|R|

1− (q/p)|R|+d
. (4.13)

The expected cost of phase 2 can now be written as

T2(d) = tb Ed [L],

and the total resizing cost can be written as

T (d) = T1(d) + T2(d) = Ed [tag(U) + tbL].

B. Finding an Optimum Parametrization

We can now apply numerical methods to find the optimum value d∗ for d so that
T (d) is minimized. The expected cost of phase 1 can be computed numerically, based
on the formula

Ed [g(U)] =
M ′∑
u=l

Ed [B | U = u] Pr [U = u]

=
M ′∑
u=l

g(u)H
(
u; |R|+ d, |R|,M ′

)
,

(4.14)

where l = max(M ′ − d, 0) denotes the minimum value of U under our assumption
that M ′ < |R|. The above sum can be evaluated quite efficiently because only a
small number of terms contribute significantly to the sum. The expected cost of
phase 2 is given in (4.13) and can be easily computed. Given both formulas, we can

130

4.2.2 Parametrization of Resizing

use standard numerical optimization algorithms to compute d∗, see, for example,
(Press et al. 1992, ch. 10).

We now explore a closed-form approximation to the function T (d) that is highly
accurate and agrees closely with our numerical results. This approximation immedi-
ately leads to an effective approximation of d∗. The first step in the approximation
is to assume that U = E [U] = M ′|R|/(|R|+ d) with probability 1; see theorem 4.2
for the expected value and variance of U . Our motivation is that the coefficient of
variation

CV[U] =

√
Var [U]
E2 [U]

=

√
d(|R|+ d−M ′)
M ′|R|(|R|+ d− 1)

is of order O(|R|−1/2), and |R| is typically very large. Thus, U will be close to its
expected value with high probability.

Under the above assumption, the approximate expected phase 1 cost is

T̂1(d) = g(E [U]) = g

(
M ′

|R|
|R|+ d

)
= ta|R| ln

 |R| −M

|R| −M −N
(
M ′ |R||R|+d

)
 .

Making use of the fact that N(u) = 0 for u ≤M , and since

M ′
|R|
|R|+ d

≤M for d ≥ |R|M
′ −M
M

,

we find that

T̂1(d) =

ta|R| ln
[

(|R| −M)(|R|+ d)
|R|(|R|+ d−M ′)

]
d < |R|M ′−MM

0 d ≥ |R|M ′−MM .

It is easy to show that T̂1(d) is monotonically decreasing, convex, and differentiable
on the interval [0, |R|M ′−MM).

To approximate the expected phase 2 cost T2(d), observe that the expected change
of the dataset size after each transaction is p · 1 + (1 − p) · (−1) = 2p− 1, so that
the expected number of steps to increase the dataset size by 1 is roughly equal to
1/(2p − 1). Thus, roughly d/(2p − 1) steps are required, on average, to increase
the dataset size by d and therefore to finish phase 2. This leads to an approximate
expected phase 2 cost of

T̂2(d) = tb
d

2p− 1
.

The above equation is precisely the limit of (4.13) as |R| → ∞; in practice, the
approximation is accurate when |R| is not too small. The expected total time required
to resize a sample is approximately equal to T̂ (q) = T̂1(q) + T̂2(q).

131

4 Set Sampling

We now choose d = d̂∗, where d̂∗ minimizes the function T̂ . Note that our search
for d̂∗ can be restricted to the interval [0, |R|M ′−MM], because T̂2(d) is increasing and
T̂1(d) = 0 for d ≥ M ′−M

M . Thus, to compute d̂∗, first set

d0 =
M

2
− |R|+

√
M2

4
+
ta
tb
|R|M ′(2p− 1). (4.15)

If d0 ∈ [0, |R|M ′−MM], then d0 satisfies T̂ ′(d0) = 0, and we take d̂∗ = d0. Otherwise,
we take d̂∗ to be either 0 or |R|M ′−MM , depending upon which of the quantities T̂ (0)
or T̂ (|R|M ′−MM) is smaller. In our experiments, we found that the combined error
introduced by assuming that Pr [U = E [U]] = 1 and by replacing the harmonic
sum Hn,m by ln

(
m/(n− 1)) appears to be negligible.

4.2.3 Experiments

We conducted an experimental study to evaluate the performance of the RPRES
algorithm. We found that

• The numerical method and the quick approximation approach agree very closely
with respect to both the cost function T (d) and the optimal parameter value d∗.
These results validate the accuracy of the quick approximate tuning method.

• The time needed for resizing has low variance, so that the algorithm has stable
performance.

• A good choice of d can have a significant impact on the resizing cost.

Throughout, unless specified otherwise, we used initial and final sample sizes of
M = 100,000, M ′ = 200,000, respectively, and also set |R| = 1,000,000. In addition,
we set p = 0.6 and tb = 1ms; recall that p represents the probability that a transaction
is an insertion, and tb is the expected time between arrivals during phase 2. The
experimental results for various other choices of parameters were qualitatively similar.

Figure 4.12 displays the expected resizing cost T (d) for various values of d, when the
base-data access cost ta equals 20, 50, and 90 milliseconds.7 There are three possible
behaviors of the T function in the search interval: increasing, decreasing, and internal
minimum point. Our choices of ta illustrate these three possible behaviors. For
each scenario, the approximate cost T̂ is represented as a solid curve. Superimposed
on this curve are points that represent the exact (expected) cost T for various
values of d. As expected, when the base-data access cost ta is relatively small, the
cost function achieves its minimum value at d = 0, and the optimal strategy is to
increase the sample size to M ′ during phase 1, and not execute phase 2. When ta
is relatively large, the cost function achieves its minimum value at d = 1,000,000,
and the optimal strategy is to not sample the base data at all, and increase the

7A complete recomputation of the sample from scratch therefore takes 4,000s, 10,000s and 18,000s,
respectively.

132

4.2.3 Experiments

0 200 400 600 800 1000

2
4

6
8

1
0

1
2

d ×× 1,000

T
(d

)
××

1
,0

0
0
 s

ec
o
n
d
s

lll

lll

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
ll

ta == 20

ta == 50

ta == 90

Approximate
Numericl

Figure 4.12: Expected resizing cost T (d)

sample size to M ′ exclusively during phase 2. For an intermediate value of ta, the
optimal value of d falls in between 0 and 1,000,000—here, d∗ ≈ 517,745—so that the
resizing work is allocated between the two phases. Note that, in this example, the
expected costs corresponding to the best and worst choices of d can vary by a factor
of two. Moreover, the approximate and exact costs are extremely close to each other.
This high degree of consistency, which was observed for all parameter values that we
investigated, increases our confidence in the quick approximate cost model.

The high accuracy of the cost approximation leads us to expect that our numerical
and approximate methods will also yield similar estimates for d∗. This expectation
is fulfilled, as shown in figures 4.13 and 4.14. Figure 4.13 shows the optimal value d∗

for various values of ta, while Figure 4.14 shows the (exact) expected resizing cost for
the numeric and approximate value of d∗. As before, the solid line represents values
computed via the quick approximate method and the circular points represent the
numerical solutions. The approximate method seems to slightly underestimate the
exact value of d∗. However, even when the value of d∗ produced by the numerical
method differs slightly from the result of the approximate closed-form model, the
resulting resizing costs do not differ perceptibly. The reason is that the cost curve—as
shown in figure 4.12—is flat around the optimum value of d∗.

To evaluate the stability of RPRES with respect to its performance, we run as a
final experiment 100 independent repetitions of a Java implementation of RPRES.
We used the three scenarios ta = 20, ta = 50 and ta = 90 and set d to its respective

133

4 Set Sampling

20 30 40 50 60 70 80 90

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Base data access cost ta

d
*

××
1
,0

0
0

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
llllllll

Approximate
Numericl

Figure 4.13: Optimal value of d

20 30 40 50 60 70 80 90

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

Base data access cost ta

T
(d

*
)
××

1
,0

0
0
 s

ec
o
n
d
s

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

lllllllllllllllllllllllllllllllllllllll

Approximate
Numericl

Figure 4.14: Optimal expected resizing cost T (d∗)

134

4.2.4 Resizing Downwards

20 40 60 80 100

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

Repetition

T
(d

*
)
××

1
,0

0
0
 s

ec
o
n
d
s

ta == 20

ta == 50

ta == 90

Figure 4.15: Actual resizing cost at optimum parametrization

optimum value. Within each run, we monitored the number of base data accesses
and the total number of arriving transactions until the resizing process ended. The
results are given in figure 4.15, where we print a symbol for each individual run. As
can be seen, the running times are very stable, with little variation across multiple
runs. We conclude that the actual running time of the RPRES algorithm stays
close to its expected value with high probability, so that RPRES exhibits a stable
performance.

4.2.4 Resizing Downwards

We now turn attention to the subsampling problem, which can be formalized as
follows: Given an RP(M) sample Si with counters di = cb,i + cg,i, derive an RP(M ′)
sample S′i with M ′ < M accompanied with appropriate counters d′i = c′b,i + c′g,i. As
a technical matter, we assume henceforth that |Ri|+ di > M so that the maximum
sample size seen so far equals M .8

Suppose that after processing transaction γi, the memory bound is reduced from
M to M ′. We first consider the case where di ≤ M −M ′. Then, the minimum
sample size li as defined in (4.2) is at least M ′ so that Pr [|Si| ≥M ′] = 1. To form
S′i, we simply select M ′ random items from Si; this random selection can be executed

8Otherwise, we have Si = Ri and the subsampling problem can be trivially solved: simply run
RP(M ′) using the elements in Si as input.

135

4 Set Sampling

using one of the list-sequential algorithms of section 3.4.2. Observe that since Si is
uniform so is S′i. Together with |S′i| = M ′, it follows that S′i is statistically identical
to a fresh RP(M ′) sample computed from Ri so that we can set both c′b,i and c′g,i
to 0. In what follows, we will refer to this subsampling algorithm as SUB(M ′) or
simply SUB.

We now consider the case where di > M −M ′ so that Pr [|Si| < M ′] > 0. An
“obvious” algorithm for this case would be as follows: When |Si| ≥M ′, apply SUB as
before; this reduces the sample size to M ′ as desired. Otherwise, when |Si| < M ′,
there seems to be no need to perform any immediate action; we wait until—at some
time i′ > i—|Si′ | = M ′ and then apply SUB. Unfortunately, the obvious algorithm
turns out to be incorrect. To see this, consider the example given in figure 4.1 on
page 106 and suppose that the sample size is reduced from M = 2 to M ′ = 1 just
after transaction γ5 = −r3 has been processed. At that time, we have

Pr [S5 = ∅, cg = 0, cb = 2] =
1
3
,

Pr [S5 = { r1 } , cg = 1, cb = 1] =
2
3
.

The obvious subsampling algorithm leads to

Pr
[
S′5 = { r1 } , c′b,i = 0, c′g,i = 0

]
=

2
3
,

Pr
[
S′5 = ∅, c′b,i = 2, c′g,i = 0

]
=

1
3
,

where SUB is applied only when S5 = { r1 }. Now, suppose that transaction γ6 = +r4

is processed. Then, by applying the random pairing algorithm, we have

Pr
[
S′6 = { r1 }

]
= Pr

[
S′5 = { r1 } , r4 rejected

]
=

2
3

1
2

=
1
3
,

Pr
[
S′6 = { r4 }

]
= Pr

[
S′5 = { r1 } , r4 accepted

]
+ Pr

[
S′5 = ∅, r4 accepted

]
=

2
3

1
2

+
1
3

2
2

=
2
3
,

which is clearly non-uniform. Thus, we have to find another algorithm for reducing the
upper bound whenever Pr [|Si| < M ′] > 0 and S′i is subject to further maintenance.

The key idea underlying our RPSUB subsampling algorithm is the following:
Suppose that, conceptually, we do not purge deleted items from the dataset, but
rather put them into a “transient” state. Then, the dataset contains both “real”
and “transient items” that have not yet been purged; we refer to the dataset as
being “augmented” with transient items. Further suppose that we are somehow able
to come up with a size-M uniform sample from the augmented dataset. (We will
show that, again conceptually, such a sample can be obtained from sample S.) Since
M > M ′, the size of the augmented sample is larger than M ′ with probability 1, and
we can we can apply SUB to obtain an augmented subsample. The final subsample

136

4.2.4 Resizing Downwards

1

4

Z=2

6

5 7

64

RP(-)

S

S

Y=1

4

1
2

3
4 6

5

R

7

d=3

RP(M=5)

SUB(M =2)

0

0

+

S
+

R
+

0

Figure 4.16: A hypothetical subsampling algorithm

S′ is formed by removing all transient items from the augmented subsample. This
hypothetical algorithm is illustrated in figure 4.16; real and transient items are shown
as white and gray numbered circles, respectively.

To obtain the actual RPSUB algorithm, we determine the probability distribution
of Y—the number of real items that S ultimately contributes to S′ in the hypothetical
algorithm. We then generate a realization y of Y directly, and randomly sample
y items from S to form subsample S′. The only remaining task is to determine
the appropriate values for the counters cb and cg in the subsample. To this end,
we show that the result of running the hypothetical algorithm described above
is statistically identical to the result of executing RP on R using a distinguished
transaction sequence that is derived from the original sequence γ that was used to

137

4 Set Sampling

create S. The resulting counter values for the latter scenario are easy to determine,
and are assigned to the counters for the sample produced by RPSUB.

A. Deferring Deletion Transactions

The derivation and analysis of the RPSUB algorithm rest on theorem 4.5 below.
This result implies that, when analyzing the statistical properties of the output of
the RP algorithm, we can always assume without loss of generality that all deletions
are uncompensated deletions and thus located at the end of the transaction sequence.
Fix a sample-size bound M and, for a feasible finite sequence of transactions γ,
denote by R(γ), S(γ), Cb(γ), Cg(γ), and d(γ), the dataset, sample, counter values,
and number of uncompensated deletions that result from processing the transaction
sequence γ using the RP(M) algorithm.

Theorem 4.5. For any finite feasible sequence γ, there exists a finite feasible sequence
γ′, comprising a subsequence of insertion transactions followed by a (possibly empty)
subsequence of deletion transactions, such that

R(γ) = R(γ′) and d(γ) = d(γ′) (4.16)

and

Pr [S(γ) = A,Cb(γ) = cb, Cg(γ) = cg] = Pr
[
S(γ′) = A,Cb(γ′) = cb, Cg(γ′) = cg

]
for all A ⊆ R(γ) and cb, cg ≥ 0 with cb + cg = d(γ).

Proof. Let γ′ comprise |R(γ)| insertions, one for each item in R(γ), followed by the
insertion of d(γ) arbitrary distinct items from R \R(γ), followed by the deletion of
each of the latter d(γ) items. Within each of these subsequences, the particular order
in which individual items are inserted or deleted can be arbitrary. The equalities in
(4.16) follow immediately from the construction of γ′. Let v(γ) be the largest sample
size seen so far under sequence γ and similarly for v(γ′). By (4.16) and (4.2), we
have v(γ) = v(γ′), so that, by (4.12),

Pr [S(γ) = A] = Pr
[
S(γ′) = A

]
for all A ⊆ R(γ), and hence

Pr [|S(γ)| = k] = Pr
[
|S(γ′)| = k

]
for all k ≥ 0. The final assertion of the theorem now follows from (4.5).

B. Algorithmic Description

We now describe the hypothetical and, subsequently, our RPSUB algorithm in full
detail. Suppose that we have run the RP(M) algorithm to obtain sample S ⊆ R, and
that there are d uncompensated deletions. Denote by γ the transaction sequence that

138

4.2.4 Resizing Downwards

produced R and S. Using theorem 4.5, we can assume without loss of generality that
γ = γ+γ−, where γ+ consists solely of insertions and γ− consists solely of deletions.
The sequence γ+ corresponds to the insertion of the |R| “real” items that comprise
R, followed by the insertion of d “transient” items in R \Rj that will ultimately be
deleted from the dataset by processing the transactions in γ−.

The hypothetical algorithm creates an intermediate augmented dataset R+ =
R(γ+) and augmented sample S+ = S(γ+) by running RP(M) on γ+. Dataset R+

comprises |R| real items and d transient items, and sample S+ comprises Z real
items and M − Z transient items, where

Pr [Z = k] = H(k; |R|+ d, |R|,M) (4.17)

according to (4.10); see the discussion right after theorem 4.2. The hypothetical
algorithm now applies the SUB algorithm to obtain the subsample S+′. To do so,
SUB selects M ′ random items from S+. Observe that, of the M ′ items from S+

added to S+′, precisely Y items are real, where

Pr [Y = k | Z] = H
(
k; M,Z,M ′

)
. (4.18)

The hypothetical algorithm concludes by running the RP(M ′) algorithm on the
sequence γ−, starting with augmented sample S+′ and counter values cb = cg = 0.
This final processing step has the effect of removing all transient items from S+′,
thereby transforming S+′ into the final sample S′. Figure 4.16 depicts the hypothetical
algorithm in action.

We now determine appropriate counter values for the subsample, as well as the
probability distribution for its size. First observe that, by theorem 4.1, the sample S+′

that results from the execution of SUB by the hypothetical algorithm is statistically
identical to the sample S(γ+) ⊆ R(γ+) obtained by running RP(M ′) on the dataset
R+. Thus the final subsample produced by the hypothetical algorithm is statistically
identical to the sample S(γ+γ−) produced by running RP(M ′) on R using the
sequence γ+γ−, starting with counter values cb = cg = 0. Observe that, after
running RP(M ′) on R in this manner, the final counter values are cb = M ′−|S′| and
cg = d− cb. Indeed, after the transactions in γ+ have been processed, the sample size
is M ′ and the counter values for RP are given by cb = cg = 0 since no deletions have
occurred so far; after processing the remaining transactions in the sequence γ−, the
deficit M ′ − |S′| = cb corresponds precisely to the bad deletions, and the remaining
d− cb deletions are good. Since the hypothetical algorithm produces output just as if
RP(M ′) had been run on R, we can start with these counter values when maintaining
the subsample S′. Finally, by theorem 4.2, the probability distribution for the size of
the sample S′, and hence the probability distribution for sample size produced by
the hypothetical algorithm, is given by

Pr
[
|S′| = k

]
= H

(
k; |R|+ d, |R|,M ′

)
(4.19)

for 0 ≤ k ≤ M ′. We show below that, by construction, the output of the actual
RPSUB algorithm is statistically identical to the output of the hypothetical algorithm,

139

4 Set Sampling

Algorithm 4.4 Subsampling for random pairing
1: S: sample of R
2: d: number of uncompensated deletions for R
3: M : sample-size bound used by RP for generating S
4: M ′: new sample-size bound, M ′ < M
5:

6: Y ← Hypergeometric(M, |S|,M ′)
7: S′ ← {Y random items from S }
8: c′b = M ′ − |S′|
9: c′g = d− c′b

10:

11: return (S′, c′b, c
′
g)

and the above results on counter values and sample-size distributions apply to RPSUB
as well.

We now specify the RPSUB procedure. Ignoring transient items, we see that the
net effect of the hypothetical algorithm is to select precisely Y items from a uniform
sample S∗ ⊆ R of size Z, where the Z = |S∗| is distributed according to (4.17)
and Y—conditionally on |S∗|—is distributed according to (4.18). Observe that, by
theorem 4.2, the distribution of Z = |S∗| is identical to that of |S|, so we can take S
for S∗ in the procedure. Thus we generate Y according to

Pr [Y = k] = H
(
k; M, |S|,M ′

)
(4.20)

and then select Y random items from S to obtain S′. The complete pseudocode of the
subsampling procedure is given as algorithm 4.4, where we make use of the function
Hypergeometric to generate samples from the hypergeometric distribution; see
section 4.2.1C.

4.3 Sample Merging

In the foregoing discussion, we implicitly assumed that the dataset R and sample S
are each maintained at a single location and processed purely sequentially. In practice,
it is often the case that R is partitioned across several nodes; see Brown and Haas
(2006) for an example. In this case, it may be desirable to independently maintain a
local sample of each partition and compute a global sample of the complete dataset
(or, in general, of any desired union of the partitions) by merging these local samples.
This approach is often superior, in terms of parallelism and communication cost, to
first reconstructing R and sampling afterwards.

We therefore consider the pairwise merging problem, which is defined as follows.
Given partitions R1 and R2 of R with R1 ∪ R2 = R and R1 ∩ R2 = ∅, along with
two mutually independent uniform samples S1 ⊆ R1 and S2 ⊆ R2, derive a uniform
sample S from R by accessing S1 and S2 only. In some scenarios, it suffices to

140

4.3.1 General Merging

maintain the node samples separately and merge them on demand, e.g., in response
to a user query. In other scenarios, it may be the case that R1 and R2 are merged
into R at the same time that S1 and S2 are merged into S; it may then be desirable
to incrementally maintain S in the presence of future transactions on R.

Brown and Haas (2006) provide an algorithm, called MERGE, that is designed to
solve the merging problem in an insertion-only environment; the algorithm makes
no assumptions about the method used to create the uniform samples S1 and S2.
MERGE can also be used in the deletion setting but—as we will see in section 4.3.1—
has the disadvantage that the size of the merged sample is sensitive to skew in the
local sample sizes caused by uncompensated deletions. We provide a solution to
this problem for scenarios in which each sample is incrementally maintained using
the RP algorithm, perhaps with occasional resizing as described in section 4.2. Our
new extension of MERGE, called RPMERGE, yields larger merged samples and is
resistant to skew; moreover, the sample produced by RPMERGE is accompanied by
appropriate values for the counters cb and cg, so that incremental maintenance can
be continued.

The key idea underlying RPMERGE is similar to that of RPSUB. Recall that,
conceptually, RPSUB defers the processing of deletion transactions until after the
SUB algorithm has been applied. The dataset and sample prior to processing the
deletion are treated as being augmented with “transient” items that have not yet
been purged. Building upon this idea, our RPMERGE algorithm, again conceptually,
defers processing of deletion transactions on both participating datasets until after
MERGE has been applied: We run the MERGE algorithm on the augmented samples
to obtain a merged augmented sample, and then purge the transient items to produce
the final merged sample. This hypothetical algorithm is illustrated in figure 4.17; real
and transient items are shown as white and gray numbered circles, respectively. To
obtain the actual RPMERGE algorithm, we determine the probability distribution of
Y1 and Y2, then generate realizations y1 and y2 of Y1 and Y2 directly, and then select
y1 random items from S1 and y2 random items from S2 to form the merged sample S.
As with RPSUB, the values of the counters cb and cg are easy to determine by making
use of a statistical equivalence of RPMERGE and a fresh RP sample drawn from
R using a transaction sequence where all deletions occur at the end. The foregoing
statistical equivalence also permits easy calculation of the probability distribution
for the size of the merged sample; in section 4.3.2B we use this distribution to
show that RPMERGE typically produces larger sample sizes than naive MERGE in
expectation.

4.3.1 General Merging

The MERGE algorithm as described by Brown and Haas (2006) accesses S1 and S2

to create a uniform sample S of size m = min(|S1|, |S2|). The basic idea is to select
X1 random items from S1 and X2 = m−X1 items from S2 to include in S, with X1

being hypergeometrically distributed:

Pr [X1 = k] = H(k; |R1|+ |R2|, |R1|,m) . (4.21)

141

4 Set Sampling

In fact, H(k; |R1|+ |R2|, |R1|,m) is equal to the probability that exactly k out of
m random items from R1 ∪ R2 belong to R1. The resulting sample is therefore
statistically equivalent to a size-m uniform sample from R1 ∪R2 so that MERGE is
indeed correct.

We can apply MERGE, unchanged, in our setting and, after merging, use the
RP(m) algorithm to incrementally maintain S; to initialize RP(m), set cb ← 0
and cg ← 0 after the merging process has been completed. Observe that the size
(and upper bound) of the merged sample is limited by the smaller of the two input
samples. In an insertion-only environment such as the one considered in Brown and
Haas (2006), we have |S1| = M1 and |S2| = M2 after a sufficiently large number of
transactions, where M1 and M2 are the respective sample-size bounds used by the RP
algorithm. The size of the sample produced by MERGE is then M = min(M1,M2).
In the presence of deletions, however, we often have |S1| < M1 and |S2| < M2, and
the merged sample size is m < M . Specifically, MERGE is sensitive to skew in
the sample sizes: if either S1 or S2 has many uncompensated deletions, then this
very small sample limits the size of the merged sample. As previously discussed in
section 4.2.1A, there is no way to increase the sample size above m without accessing
base data. We show in the sequel that the RPMERGE scheme can achieve a sample
size of M even when |S1| < M1 and/or |S2| < M2. Otherwise, if |S| < M , future
insertions can be exploited to grow the sample to size M without accessing base data
because RPMERGE provides RP(M) counter values for the merged sample.

4.3.2 Merging for Random Pairing

For dataset Rj , j ∈ { 1, 2 }, denote by γj the transaction sequence that produced
sample Sj and let dj be the number of uncompensated deletions in γj . We assume
henceforth that vj = min(Mj , |Rj |+ dj), j ∈ { 1, 2 }, the maximum sample size seen
so far, satisfies vj = Mj .9

A. Algorithmic Description

We first describe the hypothetical algorithm in detail. An illustration of the algorithm
is shown in figure 4.17. Using theorem 4.5, we can assume without loss of generality
that γj = γ+

j γ
−
j , where γ+

j consists of |Rj | + dj insertions and γ−j consists of dj
deletions. As before, denote by R+

j = R(γ+
j) the augmented dataset and by S+

j the
augmented sample that is obtained by running RP(Mj) on R+

j using sequence γ+
j .

Observe that under our assumptions |S+
j | = Mj . As a first step, the hypothetical

algorithm applies MERGE to the augmented samples S+
1 and S+

2 . MERGE selects
X1 random items from S+

1 and M −X1 items from S+
2 , where according to (4.21)

Pr [X1 = k] = H
(
k; |R+

1 |+ |R
+
2 |, |R

+
1 |,M

)
(4.22)

9Otherwise, we have Sj = Rj and the merging problem can be trivially solved. For example, if
S1 = R1, we continue the RP algorithm on S2 using the items of S1, in any order, as input.

142

4.3.2 Merging for Random Pairing

Algorithm 4.5 Merging for random pairing
1: Sj : sample of Rj (j ∈ { 1, 2 })
2: dj : number of uncompensated deletions for Rj
3: Mj : sample-size bound used by RP for generating Sj
4:

5: M ← min(M1,M2)
6: X1 ← Hypergeometric(|R1|+ |R2|+ d1 + d2, |R1|+ d1,M)
7: Y1 ← Hypergeometric(M1, |S1|, X1)
8: X2 ←M −X1

9: Y2 ← Hypergeometric(M2, |S2|, X2)
10:

11: S ← {Y1 random items from S1 } ∪ {Y2 random items from S2 }
12: cb = M − |S|
13: cg = d1 + d2 − cb

14:

15: return (S, cb, cg)

with M = min(M1,M2). Denote by S+
j
′ the obtained augmented subsample of S+

j .
The MERGE algorithm then computes the union of the augmented subsamples to
obtain the merged augmented sample S+ = S+

1
′ ∪ S+

2
′, which is by construction a

size-M uniform random sample of R+ = R+
1 ∪R

+
2 . Since R+ = R(γ+

1 γ
+
2) and both

γ+
1 and γ+

2 consist of only insertions, S+ is statistically equivalent to an RP (M)
sample with counters cb = cg = 0 computed directly from R+. The hypothetical
algorithm now obtains the final sample S by running RP(M) on S+ using sequence
γ−1 γ

−
2 and initial counter values cg = cb = 0. Sample S is statistically equivalent to

an execution of RP(M) on sequence γ = γ+
1 γ

+
2 γ
−
1 γ
−
2 and—since R(γ) = R—it follows

that S is an RP(M) sample of R. Because the number of bad deletions that occurred
during processing γ−1 γ

−
2 equals the difference in sample sizes |S+| − |S| = M − |S|,

this execution of RP(M) results in counters cb = M − |S| and cb = d1 + d2 − cg.
To specify RPMERGE, observe that the number Yj of real items from Rj in S as

obtained by the hypothetical algorithm is distributed as the number of real items
in a size-Xj subsample of R+

j . We can therefore derive the distribution of Yj using
arguments as in section 4.2.4; the similarity of RPSUB and RPMERGE can also
be seen by direct comparison of figures 4.16 and 4.17. According to (4.20), the
distribution of Yj—conditionally on Xj—is given by

Pr [Yj = k | Xj] = H(k; Mj , |Sj |, Xj) . (4.23)

The RPMERGE algorithm thus generates X1 according to (4.22), sets X2 = M −X1

and then generates Yj according to (4.23). The complete pseudocode for the merging
procedure is given in algorithm 4.5, where we make of the function Hypergeometric
to generate samples from the hypergeometric distribution; see section 4.2.1C.

143

4 Set Sampling

RP(M1=5)

8

9

10
11

12
14

13

R1 d1=3

1
2

3
4 6

5

R2

7

d2=2

RP(M2=4)

R1
+

R2
+

8
11

12
14

Z1=2

S1
+

1

4

Z2=3

S2
+

6

5 7

8
12

6

4

Y1=1 Y2=2

S
+

RP(1 2)- -

4

8

12

S

64

SUB(X1)

S1
+

128

SUB(X2)

S2
+

X1=2 X2=2

0 0

Figure 4.17: A hypothetical merging algorithm

144

4.3.2 Merging for Random Pairing

B. Sample Size Properties

By theorem 4.2, the sample size |S| produced by RPMERGE is hypergeometrically
distributed with

Pr [|S| = k] = H(k; |R1|+ |R2|+ d1 + d2, |R1|+ |R2|, d1 + d2) (4.24)

and
E [|S|] =

|R1|+ |R2|
|R1|+ |R2|+ d1 + d2

M.

As indicated previously, the sample size produced by RPMERGE can be strictly
larger than that produced by a naive application of MERGE. For example, ignoring
the transient items in the scenario of figure 4.17, we see that RP produces samples
S1 ⊆ R1 and S2 ⊆ R2 with |S1| = 2 and |S2| = 3, so that MERGE can produce a
sample of at most min(|S1|, |S2|) = 2 items. In contrast, RPMERGE has produced a
sample S that contains three items.

We now show that RPMERGE often performs better in terms of average sample
size, also. In the common case where both samples have been generated using the
same sample size parameter, the following theorem asserts that RPMERGE produces
samples that are at least as large, on average, as those produced by MERGE. Indeed,
the expected sample size for RPMERGE is often strictly larger.

Theorem 4.6. Suppose that |Rj | > 0 and |Rj | + dj > Mj for j = 1, 2. If M1 =
M2 = M , then

E [min(|S1|, |S2|)] ≤ E [|S|], (4.25)

with equality holding if and only if d1 = d2 = 0.

The assumptions that |Rj | > 0 and |Rj |+ dj > Mj for j = 1, 2 virtually always
hold in practical cases of interest. Indeed, the latter assumption is just slightly
stronger than our running assumption that vj = Mj . To prove theorem 4.6, we need
the following lemma.

Lemma 4.1. For any random variables X and Y , we have

E [min(X,Y)] ≤ min(E [X],E [Y]),

and the above inequality is strict if Pr [X < Y] > 0 and Pr [X > Y] > 0.

Proof. Observe that

E [min(X,Y)] = E [XIX≤Y + Y IX>Y]
= E [X]− E [XIX>Y] + E [Y IX>Y]
= E [X]− E [(X − Y)IX>Y],

where IA = 1 if event A occurs and IA = 0 otherwise. Thus E [min(X,Y)] ≤ E [X],
and the inequality is strict if Pr [X > Y] > 0. Similarly, E [min(X,Y)] ≤ E [Y], and
the inequality is strict if Pr [X < Y] > 0. The desired result follows immediately.

145

4 Set Sampling

Proof. (of theorem 4.6) First suppose that d1 = d2 = 0. Since |Rj | + dj > M , we
have |S1| = M , |S2| = M , and |S| = M , each with probability 1, so that (4.25) holds
with equality. Otherwise, suppose that d1 + d2 > 0 and, without loss of generality,
that E [S1] ≤ E [S2]. By theorem 4.2, the latter assumption is equivalent to

|R1|
|R1|+ d1

M ≤ |R2|
|R2|+ d2

M.

Multiply by (|R1|+ d1)(|R2|+ d2) and add (|R1|2 + |R1|d1)M to both sides of the
inequality to obtain

|R1|(|R1|+ |R2|+ d1 + d2)M ≤ (|R1|+ |R2|)(|R1|+ d1)M.

Divide both sides by (|R1|+ |R2|+d1 +d2)(|R1|+d1) to show that E [|S1|] ≤ E [|S|],
where equality holds if and only if E [|S1|] = E [|S2|]. Using lemma 4.1, we have

E [min(|S1|, |S2|)] ≤ min
(
E [|S1|],E [|S2|]

)
(4.26)

= E [|S1|] ≤ E [|S|]. (4.27)

If E [|S1|] < E [|S2|], then the inequality in (4.27), and hence in (4.25), is strict.
Otherwise, we claim that Pr [|S1| > |S2|] > 0 and Pr [|S1| < |S2|] > 0, so that, by
lemma 4.1, the inequality in (4.26)—and hence in (4.25)—is strict, and the desired
result follows.

To see that the above claim holds, suppose that E [|S1|] = E [|S2|]. This equality
and the fact that d1 + d2 > 0 together imply that both d1 and d2 are positive. For
j = 1, 2, denote by lj = max(0,M − dj) and uj = min(M, |Rj |) the minimum and
maximum possible values for |Sj |. It is straightforward to show that lj < uj , given
that dj > 0 and, under our assumptions, |Rj | > 0 and |Rj |+ dj > M . Moreover, by
theorem 4.2, Pr [|Sj | = k] > 0 for lj ≤ k ≤ uj , and therefore

max(l1, l2) < E [|S1|] = E [|S2|] < min(u1, u2).

It follows that the intervals [l1, u1] and [l2, u2] strictly overlap, i.e., their intersection
contains at least two integer values, say, i and i+1. Since RP is executed independently
on the two partitions, we have

Pr [|S1| > |S2|] ≥ Pr [|S1| = i+ 1, |S2| = i]
= Pr [|S1| = i+ 1] Pr [|S2| = i] > 0.

A symmetric argument shows that Pr [|S1| < |S2|] > 0.

4.3.3 Experiments

We compared the RPMERGE algorithm to the naive application of the MERGE
algorithm. We found that:

• In most cases, RPMERGE produces significantly larger samples than MERGE.

146

4.3.3 Experiments

0 100 200 300 400 500

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

d1 ×× 1000

A
v
er

a
g
e

sa
m

p
le

 s
iz

e
a
ft

er
 m

er
g
e

RPMERGE
MERGE

Figure 4.18: Merging, d1 + d2 fixed

• As predicted by theory—see (4.24)—the sample size produced by RPMERGE
is dependent on the total number of uncompensated deletions but independent
of their distribution among the individual partitions.

• The relative sample-size advantage of RPMERGE over MERGE grows as the
total number of uncompensated deletions increases.

These results are not surprising: since RPMERGE leverages the fact that the samples
are generated by the RP algorithm, we expect RPMERGE to exhibit superior
performance. In our experiments, we generated two datasets R1 and R2 consisting
of 2 million and 1 million items, respectively. We then inserted and subsequently
deleted d1 items from R1 and d2 items from R2. As we generated the datasets
and performed the subsequent insertions and deletions, we maintained samples S1

and S2 using bounds M1 = M2 = 10,000. Finally, we merged both samples using
RPMERGE and MERGE. Our reported results are averages over 100 independent
runs. Note that there are d1 and d2 uncompensated deletions corresponding to S1

and S2, respectively, and that the sizes of both R1 and R2 remain constant as d1

and d2 vary.
In a first experiment, we fixed the total number of uncompensated deletions to

500,000 = d1 + d2. Figure 4.18 displays the average sample size after merging for
various values of d1 and d2. The sample size produced by RPMERGE depends
only on the sum of d1 and d2, and hence is insensitive to the individual values

147

4 Set Sampling

0 100 200 300 400 500

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

((d1 ++ d2)) ×× 1000

A
v
er

a
g
e

sa
m

p
le

 s
iz

e
a
ft

er
 m

er
g
e

RPMERGE
MERGE

Figure 4.19: Merging, d1/(d1 + d2) fixed

of these experimental parameters. In contrast, MERGE produces samples whose
size equals the smaller of the two input sample sizes. The best performance is
achieved when E [min(|S1|, |S2|)] ≈ min

(
E [|S1|],E [|S2|]

)
is maximized. Since

E [|Sj |] = M |Rj |/(|Rj |+dj), this optimal performance is achieved when d1 ≈ 333,333.
In this case, RPMERGE and MERGE produce samples of approximately the same
size. In all other cases, RPMERGE is clearly superior.

We next evaluated the impact of the total number of uncompensated deletions on
the sample-size performance. We experimented with different values of d1 + d2 and
set d1 to 0.3(d1 + d2), so that 30% of the uncompensated deletions occur in the first
partition. As can be seen in figure 4.19, both merging algorithms produce samples
of size M when d1 = d2 = 0. The larger the number of uncompensated deletions,
the greater the advantage of RPMERGE over MERGE. Together with the fact that
samples produced by RPMERGE can be (re)grown up to size M using subsequent
insertions only, RPMERGE seems to be the merging algorithm of choice.

4.4 Summary

We have systematically studied methods for maintaining bounded-size samples under
arbitrary insertions and deletions to the dataset. For stable datasets in which
the dataset size does not undergo extreme fluctuations, our new RP algorithm,
which generalizes both reservoir sampling and passive sampling, is the algorithm of

148

4.4 Summary

choice with respect to speed and sample-size stability. In the presence of extreme
fluctuations in the dataset size, RP can be combined with resizing or resampling
algorithms to achieve acceptable sample sizes while minimizing expensive base-data
accesses. For growing datasets, our new resizing algorithm permits the sample size
to grow in a controlled manner. We have developed both numerical methods and
approximate analytical methods for optimally tuning the algorithm to minimize
the time required for resizing. When both tuning methods are applicable, they
appear to yield almost identical results; the numerical methods can potentially be
applied even in complex scenarios where approximations are not available. We also
studied the inverse problem of reducing the size of the sample dynamically. Our
RPSUB algorithm is provably uniform and can be used to free some sample space
when resources become scarce. For distributed environments, where the dataset is
partitioned over multiple nodes and local samples are maintained at each node, we
have provided a novel extension of the MERGE algorithm that produces a sample
of the complete dataset (or of any desired union of the partitions) from the local
samples. Typically, our algorithm achieves larger sample sizes than are obtained via
a naive application of MERGE.

149

Chapter 5

Multiset Sampling

In this chapter,1 we are concerned with maintenance schemes for evolving multisets.
Specifically we propose an algorithm for incrementally maintaining a Bernoulli sample
over such a multiset. We derive improved estimators for use with our samples, and
we discuss issues that arise when samples are resized or merged.

Our sampling scheme, as introduced in section 5.1, is called augmented Bernoulli
sampling, ABERN(q), and can handle arbitrary insertion, update and deletion
transactions without ever accessing the underlying base data. In order to maintain
the sample, our method augments the sample with “tracking counters,” originally
introduced in Gibbons and Matias (1998) for the purpose of estimating the popu-
lation frequencies of “hot” items. We show that these counters not only facilitate
maintenance, but can also be exploited to obtain unbiased estimators of population
frequencies, sums, and averages, where these estimators have lower variance than the
usual estimators based on an ordinary Bernoulli sample. Furthermore, we show how
to estimate the number of distinct items in the multiset in an unbiased manner. Our
distinct-item estimator is based on the observation that a distinct-item Bernoulli
sample can be extracted from our ABERN(q) sample; this is not possible with
ordinary Bernoulli samples. We derive the standard error for each of our estimators,
and provide formulas for estimating these standard errors.

In section 5.2, we discuss the problem of dynamically changing the sampling rate q
of our augmented samples. We argue that increasing the value of q so as to enlarge the
sample size requires a scan of almost the entire dataset. Fortunately, this situation
occurs rarely in practice because ABERN(q) samples already grow linearly with the
dataset size. A more interesting problem is to reduce the value of q in order to reduce
the sample size and avoid oversized samples. We give a subsampling algorithm that
performs such a reduction of q without accessing the base data; the resulting sample
can be incrementally maintained. As discussed previously, subsampling cannot be
used to enforce strict bounds on the sample size because such an approach would
lead to non-uniform samples. However, we show how subsampling can be used to
provide tight probabilistic bounds.

Finally, in section 5.3, we examine issues that arise when incrementally maintaining
samples that result from merging operations. As a negative result, we show that, in

1The material in this chapter has been developed jointly with Peter J. Haas and Wolfgang Lehner.
The chapter is based on Gemulla et al. (2007) with copyright held by ACM. The original
publication is available at http://portal.acm.org/citation.cfm?id=1265530.1265544.

151

http://portal.acm.org/citation.cfm?id=1265530.1265544

5 Multiset Sampling

the general case of non-disjoint parent datasets, it is impossible to merge augmented
samples to obtain a new augmented sample from the union of the corresponding
parent datasets. However, the augmented samples can still be used to obtain a plain,
non-maintainable Bernoulli sample from this union.

5.1 Uniform Sampling

The only previously known algorithm for maintaining a Bernoulli sample in the
presence of insertion, update and deletion transactions is the MBERNM(q) scheme
given in section 3.5.2A. Recall that MBERNM(q) stores a tuple (r,Xi(r)) for each
sample item, where Xi(r) is the frequency of r in the sample. When an insertion +r
arrives, the value of Xi(r) is incremented with probability q and retained otherwise;
an increase of Xi(r) from 0 to 1 corresponds to the insertion of tuple (r, 1) into the
sample. In order to support deletion transactions, the scheme requires knowledge
of the frequency Ni(r) of r in the base data: When processing transaction −r, the
value of Xi(r) is decremented with probability Xi(r)/Ni(r) and retained otherwise.
Again, a decrease from Xi(r) from 1 to 0 corresponds to the removal of item r from
the sample. Since deletions of non-sampled items do not affect the sample, one would
like somehow to maintain only the Ni(r) counters corresponding to items r that
are in the sample. Such maintenance is impossible without accessing the base data,
because insertions into the dataset of an item that is not currently in the sample,
but will eventually be in the sample, cannot be properly accounted for.

Our augmented Bernoulli sampling scheme improves upon MBERNM(q) in that it
does not require knowledge of Ni(r) to process deletion transactions. The sample
can therefore be maintained without ever accessing the base data. We describe the
scheme in section 5.1.1 and turn our attention to improved estimators for our samples
in section 5.1.2.

5.1.1 Augmented Bernoulli Sampling

Borrowing an idea from Gibbons and Matias (1998), our new maintenance method
rests on the fact that it suffices to maintain a “tracking counter” Yi(r) for each item r
in the sample. Whenever Xi(r) is positive, the counter Yi(r) records the number of
net insertions of r into the dataset that have occurred since the insertion of the first
of the current Xi(r) sample items; the dataset insertion corresponding to the first
of these Xi(r) sample inclusions is counted as part of Yi(r). An example is shown
in figure 5.2, where a sequence consisting of 8 insertions of item r has been used.
In the figure, sample items and rejected items are shown as gray and white circles,
respectively.

The general layout of the sample Si is as follows: for each distinct item r ∈ R
that occurs in the sample at least once, Si contains the triple (r,Xi(r), Yi(r)); the
sample is therefore “augmented” with tracking counters. To save space, we store
the entry for r as (r,Xi(r), Yi(r)) if Yi(r) > 1 and simply as (r) if Xi(r) = Yi(r) = 1.

152

5.1.1 Augmented Bernoulli Sampling

The resulting space savings can be significant when there are many unique values in
the dataset.

A. Algorithmic Description

In Bernoulli sampling, each item is sampled independently from all the other items.2

Without loss of generality, therefore, we fix an item r and focus on the maintenance
of Xi(r) and Yi(r) as the transaction sequence γ is processed. We assume in this
section that γ consists solely of insertions and deletions of item r and we represent
the state of Si as (Xi, Yi), that is, we suppress the dependence on r in our notation.3

We have Xi = Yi = 0 whenever r /∈ Si. As before, we assume that both the dataset
and the sample are initially empty so that X0 = Y0 = 0.

The new algorithm works as follows: For an insertion transaction γi+1 = +r, set

(Xi+1, Yi+1)←

(Xi + 1, Yi + 1) if Φi+1 = 1
(Xi, Yi + 1) if Φi+1 = 0, Xi > 0
(0, 0) otherwise,

(5.1)

where Φi+1 is a 0/1 random variable such that Pr [Φi+1 = 1] = q. For a deletion
γi+1 = −r, set

(Xi+1, Yi+1)←

(0, 0) if Xi = 0
(0, 0) if Xi = Yi = 1
(Xi − 1, Yi − 1) if Xi ≥ 1, Yi > 1,Ψi+1 = 1
(Xi, Yi − 1) otherwise,

(5.2)

where Ψi+1 is a 0/1 random variable such that

Pr [Ψi+1 = 1] =
Xi − 1
Yi − 1

.

Note that Pr [Ψi+1 = 1] = 0 whenever Xi = 1; we have Xi+1 ≥ 1 whenever Yi > 1.
As before, item r is removed from the sample if Xi > 0, Xi+1 = 0 and added to the
sample if Xi = 0, Xi+1 > 0. The processing of γi+1 is solely based on Si and γi+1,
that is, access to the dataset R is not required at any time.

The complete pseudocode of the algorithm is given as algorithm 5.1, where we
write S[r] to denote the (Xi, Yi)-pair of item r.

2Thus our algorithm can also be used to maintain a Poisson sample, in which the inclusion
probability q varies for each distinct item.

3An exception to this rule is made in algorithm 5.1, where we give the complete pseudocode of our
algorithm.

153

5 Multiset Sampling

Algorithm 5.1 Augmented Bernoulli sampling
1: q: the sampling rate
2: S: the augmented Bernoulli sample
3: Random(): returns a uniform random number between 0 and 1
4:

5: Insert(r):
6: if S contains r then
7: (X,Y)← S[r]
8: if Random() < q then // r ∈ S, insertion accepted
9: X ← X + 1

10: end if
11: Y ← Y + 1
12: S[r]← (X,Y)
13: else if Random() < q then // r /∈ S, insertion accepted
14: S[r]← (1, 1) // add r to the sample
15: end if
16:

17: Delete(r):
18: if S contains r then
19: (X,Y)← S[r]
20: if Y = 1 then // last seen occurrence of r
21: remove r from S
22: else // more than one occurrence
23: if Random() < X−1

Y−1 then // deletion accepted
24: X ← X − 1
25: end if
26: Y ← Y − 1
27: S[r] = (X,Y)
28: end if
29: end if

154

5.1.1 Augmented Bernoulli Sampling

B. Example

Figure 5.1 depicts a probability tree for our algorithm with γ = (+r,+r,+r,−r) and
q = 0.25. Each node of the tree represents a possible state of the sample; for example,
(1, 2) stands for S = { (r, 1, 2) }. As before, edges represent state transitions and are
weighted by the respective transition probability. To determine the probability of
reaching a given node, multiply the probabilities along the path from the root to the
node. To compute the probability that the sample is in a specified state after γ has
been processed, sum the probabilities of all leaf nodes that correspond to the state.
For example,

Pr [S4 = ∅] =
(

3
4

)2 1
4

+
(

3
4

)3

.

Summing up all such probabilities, we find that

Pr [X4 = 0] =
9
16

= (1− q)2 = B(0; 2, q)

Pr [X4 = 1] =
6
16

= 2q(1− q) = B(1; 2, q)

Pr [X4 = 2] =
1
16

= q2 = B(2; 2, q) .

Thus X4 is binomially distributed, and we have a Bernoulli sample of R4.

C. Proof of Correctness

To show that ABERN(q) indeed maintains a true Bernoulli sample, we first derive
the probability distribution of the tracking counter Yi. Recall that Ni denotes the
multiplicity of item r in dataset Ri or, equivalently, the number of “non-annihilated”
insertion transactions after processing the sequence γ1, γ2, . . . , γi.

Lemma 5.1. For i ≥ 0 and any integer 0 ≤ k ≤ Ni,

Pr [Yi = m] =

{
(1− q)Ni if m = 0
q(1− q)Ni−m otherwise.

(5.3)

Proof. Our proof is by induction on i. We have Yi = Ni = 0 when i = 0, and (5.3)
holds trivially. Suppose for induction that (5.3) holds for i. If transaction γi+1 is an
insertion, then Ni+1 = Ni + 1 and

Pr [Yi+1 = m] =

(1− q) Pr [Yi = 0] if m = 0
qPr [Yi = 0] if m = 1
Pr [Yi = m− 1] otherwise.

If transaction γi+1 is a deletion, then Ni+1 = Ni − 1 and

Pr [Yi+1 = m] =

{
Pr [Yi = 0] + Pr [Yi = 1] if m = 0
Pr [Yi = m+ 1] otherwise.

155

5 Multiset Sampling

i0 1 2 3

1

1

1

1

1

1/4

3/4

1/4

3/4

1/2

1/2

-r

4

(1,1)

(1,1)

(1,2)

(1,2)

(2,2)

(1,2)

(2,2)

(2,2)

(1,1)

(1,2)

(2,2)

(1,3)

(2,3)

(2,3)

(3,3)
1

1/2

1/2

(1,1)

(1,2)

(2,2)

1/4

3/4

1/4

3/4

(1,1)

1/4

3/4

1/4

3/4

1/4

3/4

+r

(X(r),Y(r))

+r +r

Figure 5.1: Illustration of augmented Bernoulli sampling with q = 25%

156

5.1.1 Augmented Bernoulli Sampling

r r r r r r r r

Xi =4

Yi =6

Ni =8

Xi =3

Ni =5

i*=3
0

0

Figure 5.2: Notation used in the proof of theorem 5.1

The identity in (5.3) now follows by applying the induction hypothesis, together with
some straightforward algebra.

The assertion of lemma 5.1 is particularly easy to understand in the special case
where all transactions are insertions, so that there are no annihilated transactions
and Ni = i. In this scenario, Yi = 0 if all i inserted items are excluded from the
sample, which occurs with probability (1 − q)i, and Yi = m > 0 if the first i −m
items are excluded and the next item is included, which occurs with probability
q(1− q)i−m.

We now establish the correctness of our sample-maintenance algorithm. Recall
that

B(k; N, q) =
(
N

k

)
qk(1− q)N−k

denotes a binomial probability. In fact, B(k; N, q) corresponds to the probability
that exactly k heads occur when flipping N weighted coins with probability of heads
q. Figure 5.2 illustrates the notation used in the proof of the following theorem.

Theorem 5.1. For i ≥ 0 and any integer 0 ≤ k ≤ Ni, ABERN(q) maintains the
invariant

Pr [Xi = k] = B(k; Ni, q) . (5.4)

Proof. Although we could prove the validity of (5.4) by enhancing the inductive proof
of lemma 5.1, we choose to give an intuitive probabilistic argument that provides
insight into why the algorithm works. Fix i ≥ 0 and observe that Xi = 0 if and only
if Yi = 0, so that, using (5.3), we have

Pr [Xi = 0] = Pr [Yi = 0] = B(0; Ni, q) ,

as asserted in (5.4).
Now consider a scenario in which Xi ≥ 1, and denote by i∗ the index of the

transaction at which the first of the Xi instances of item r was inserted into the
sample. It follows from the definition of i∗ that, for j = i∗ + 1, i∗ + 2, . . . , i, the

157

5 Multiset Sampling

cumulative number of insertions in the sequence γi∗,j = (γi∗+1, γi∗+2, . . . , γj) is at
least as great as the cumulative number of deletions, so that the net number of
insertions is always nonnegative. We can therefore view each deletion in γi∗,i as
annihilating a previous insertion that is also an element of γi∗,i, and the net effect
of processing the transactions in γi∗,i can be viewed as inserting the set of non-
annihilated “new” items into the dataset Ri∗ . For j = i∗ + 1, i∗ + 2, . . . , i, denote by
R′j and S′j the set of non-annihilated new items in the dataset and sample, respectively,
just after processing transaction γj , and set N ′j = |R′j | and X ′j = |S′j |. Observe that
X ′j = Xj − 1 ≥ 0, since the sample Sj consists of the single “old” item that was
included at transaction γi∗ , together with the Xj − 1 new items in S′j . Also observe
that N ′j = Yj − 1, since Yj counts the item inserted into the dataset at γi∗ together
with the non-annihilated new items inserted into the dataset while processing the
transaction sequence γi∗,j .

We claim that X ′i can be viewed as the size of a sample S′i that is obtained
from R′i by processing the transactions in γi∗,i using the MBERNM(q) algorithm of
section 3.5.2. Indeed, for j = i∗, i∗ + 1, . . . , i− 1, suppose that transaction γj+1 is an
insertion. It follows from (5.1) that Xj , and hence X ′j , is incremented if and only if
the random variable Φj+1 equals 1, i.e.,

X ′j+1 ←

{
X ′j + 1 with probability q
X ′j with probability 1− q.

(5.5)

If γj+1 is a deletion, then, by (5.2),

X ′j+1 ←

{
X ′j − 1 if Ψi+1 = 1
X ′j otherwise,

(5.6)

where

Pr [Ψj+1 = 1] =
Xj − 1
Yj − 1

=
X ′j
N ′j

.

Our claim follows upon comparison of (5.5) to (3.16) and of (5.6) to (3.17).

The foregoing claim and the correctness of MBERNM(q)—as asserted in Gemulla
et al. (2007)—together imply that S′i is a true Bernoulli sample of R′i. We therefore
have

Pr [Xi = k | Yi = m] = Pr
[
X ′i = k − 1 | N ′i = m− 1

]
= B(k − 1; m− 1, q)

(5.7)

158

5.1.2 Estimation

for 1 ≤ k ≤ m ≤ Ni. Combining (5.3) and (5.7), we find that

Pr [Xi = k] =
Ni∑
m=k

Pr [Xi = k | Yi = m] Pr [Yi = m]

=
Ni∑
m=k

B(k − 1; m− 1, q) q(1− q)Ni−m

= qk(1− q)Ni−k
Ni∑
m=k

(
m− 1
k − 1

)
= B(k; Ni, q)

for k ≥ 1, and the desired result follows.

Thus, the new algorithm works by tracking the net number of insertions into the
dataset only after the item is first inserted into the sample, i.e., from transaction γi∗
onwards. As mentioned above, this idea originally appeared as part of the counting-
sample method in Gibbons and Matias (1998). A counting sample comprises pairs
of the form (r, Yi(r)), where Yi(r) is defined as above. As mentioned by Gibbons
and Matias (1998), a Bernoulli sample can be extracted from a counting sample
via a coin-flipping step. Our algorithms amortize this subsampling cost over all
transactions, thereby facilitating faster on-demand materialization of the sample,
and hence faster production of estimates based on the sample. Since we maintain
the value of Xi directly instead of randomly generating it every time the sample is
accessed, we expect that estimates derived from our augmented Bernoulli sample are
more stable statistically, especially when they are computed frequently.

5.1.2 Estimation

In this section, we derive unbiased estimators for item frequencies, sums, averages,
ratios, and distinct-item counts. We show how to exploit the tracking counters to
obtain a variance reduction.

A. Frequencies

We again assume a single item r. Ignoring the tracking counters in our augmented
Bernoulli sample, the frequency Ni of an item r can be estimated as N̂Xi = Xi/q.
This estimator is the standard Horvitz-Thompson (HT) estimator for a Bernoulli
sample from R; see section 2.1.3. The HT estimator N̂Xi is unbiased and has variance

Var[N̂Xi] = (1− q)Ni/q.

To motivate our improved estimator, write

N̂Xi =
Xi − 1
q

+
1
q
. (5.8)

159

5 Multiset Sampling

Recall the definitions of i∗ and R′i from the proof of theorem 5.1, figure 5.2. From (5.3),
it follows that the number Li = Ni − Yi of (non-annihilated) items inserted into R
during the processing of γ1, γ2, . . . , γi∗ has a geometric distribution:

Pr [Li = l] = q(1− q)l−1 (5.9)

for l ≥ 1. The expected number of items is therefore E [Li] = 1/q. Thus the second
term in (5.8) is an estimator of the number of items in Ri∗ = Ri \R′i. As described
in the proof of theorem 5.1, Xi − 1 is the size of a Bernoulli sample from R′i, so that
the first term in (5.8) is simply the (unbiased) HT estimator of the frequency of r
in R′i. Since we have maintained an augmented sample Si = { (Xi, Yi) }, however,
we know the value of the number of items inserted into R′i exactly : this number is
simply Yi − 1. Thus, intuitively, we can reduce the variance of the estimator N̂Xi by
replacing the first term in (5.8) by the quantity that it is trying to estimate, yielding
the improved estimator Yi − 1 + (1/q). This estimator is not quite correct, however,
because there is a positive probability that Yi = 0, in which case the above reasoning
does not hold. When Yi = 0, item r is not in the sample, and we have no information
at all about Ni. The simplest choice in this case is to estimate Ni as 0, just as in the
HT estimator; we show below that this choice ensures unbiasedness. Thus the final
form of our improved estimator4

N̂Yi =

{
0 if Yi = 0
Yi − 1 + (1/q) otherwise

(5.10)

The following result shows that N̂Yi is indeed unbiased.

Theorem 5.2. E [N̂Yi] = Ni for i ≥ 0.

Proof. Fixing r and suppressing the subscript i in our notation, we have

E [N̂Y] = Pr [Y = 0] E [N̂Y | Y = 0] + Pr [Y > 0] E [N̂Y | Y > 0]

= Pr [Y > 0] E [Y | Y > 0] + Pr [Y > 0]
1− q
q

(5.11)

Thus, we have to compute Pr [Y > 0] and E [Y | Y > 0]. From (5.3), the former
quantity is given by

Pr [Y > 0] = 1− Pr [Y = 0] = 1− (1− q)N . (5.12)

and the latter quantity by

E [Y | Y > 0] =
N∑
m=1

mPr [Y = m | Y > 0] =
N∑
m=1

m
Pr [Y = m]
Pr [Y > 0]

=
N∑
m=1

mq(1− q)N−m

1− (1− q)N
=
Nq − (1− q)

(
1− (1− q)N

)
q
(
1− (1− q)N

) .

(5.13)

4We recently learned that both N̂Yi and Var[N̂Yi] have been derived independently by Estan and
Naughton (2006, app. B) in the context of join-size estimation.

160

5.1.2 Estimation

To derive the final equality, observe that

N∑
i=1

ixN−i =
N−1∑
i=0

(N − i)xi = N
N−1∑
i=0

xi −
N−1∑
i=0

ixi = N
N−1∑
i=0

xi −
N−1∑
i=1

N−1∑
j=i

xj

and apply the identity
∑N−1

i=0 xi = N(1 − xN)/(1 − x) of the geometric series to
obtain

N∑
i=1

ixN−i =
N(1− x)− x(1− xN)

(1− x)2
.

The assertion of the theorem follows after substituting (5.12) and (5.13) into (5.11).

Calculations similar to the proof of theorem 5.2 show that the variance of N̂Y is
given by

Var[N̂Y] =
1− q − (1− q)N+1

q2
, (5.14)

where we continue to suppress i in our notation. Note that Var[N̂Y] < (1− q)/q2,
i.e., the variance is bounded from above in N . The reason for this advantageous
behavior is that, as N grows, the value of the estimator N̂Y becomes increasingly
dominated by the value Y , a quantity that embodies exact knowledge.

We now compare the variance of the unbiased estimators N̂X and N̂Y .

Theorem 5.3. Var[N̂Y] ≤ Var[N̂X], with equality holding only if N = 0 or 1.

Proof. Starting with the well-known Bernoulli inequality

(1− q)N ≥ 1−Nq, (5.15)

we find that

N ≥ 1− (1− q)N

q
.

The desired result follows after multiplying both sides of the above inequality by
(1− q)/q, and observing that equality holds in (5.15) only when N equals 0 or 1.

For fixed q, we have Var[N̂Y]/Var[N̂X] ≈ 1/(qN) as N becomes large, and the
variance reduction can be substantial.

Following standard statistical practice, we can estimate Var[N̂Y] using the (biased)
estimator

V̂ar[N̂Y] =
1− q − (1− q)N̂Y +1

q2
,

The bias of the estimator converges to 0 as q → 1.

161

5 Multiset Sampling

B. Sums, Averages, and Ratios

The foregoing results for frequencies lead immediately to unbiased estimators for
sums and averages, as well as estimator for ratios. In particular, suppose we are
given a function f : R 7→ R and we wish to estimate the sum of f(r) over all items r
in the dataset. That is, we wish to estimate α(f) =

∑
r∈R f(r)N(r), where N(r) is

the multiplicity of item r in R. The standard HT estimator of α(f) is

α̂X(f) =
∑

r∈D(S)

f(r)N̂X(r) =
∑
r∈R

f(r)N̂X(r),

where N̂X(r) corresponds to the estimator N̂X in (5.8), evaluated with respect to
item r, and D(S) denotes the set of distinct items in the sample. The linearity of
the expectation operator immediately implies that E [α̂X(f)] = α(f), so that α̂X is
unbiased. Because items are sampled independently, the estimators { N̂X(r) : r ∈ R }
are mutually independent, and

Var [α̂X(f)] =
∑
r∈R

f2(r)
(1− q)N(r)

q
.

Similarly, an improved estimator is given by

α̂Y (f) =
∑

r∈D(S)

f(r)N̂Y (r).

It follows from theorem 5.2 that α̂Y (f) is unbiased, and, by (5.14),

Var [α̂Y (f)] =
∑
r∈R

f2(r)
1− q − (1− q)N(r)+1

q2
.

Theorem 5.3 implies that Var [α̂Y (f)] ≤ Var [α̂X(f)]. We can obtain a natural
(biased) estimator of Var [α̂Y (f)] as

V̂ar [α̂Y (g)] =
∑

r∈D(S)

f2(r)
1− q − (1− q)N̂Y (r)+1

q2
(
1− (1− q)N̂Y (r)

) .
This estimator is “almost” the HT estimator of Var [α̂Y (f)], except that N(r) is
replaced by its estimate N̂Y (r) in each term of the sum.

The foregoing results extend in a straightforward way to averages of the form
µ = (1/|R|)

∑
r∈R f(r)N(r), where |R| =

∑
r∈R N(r). Since |R| is usually known

in applications or maintained with the sample, it can be treated as a deterministic
constant, adding a multiplicative factor of 1/|R| to the estimators and a factor of
1/|R|2 to the variances and variance estimators.

A less trivial scenario arises when estimating a ratio of the form

ρ =
∑

r∈R f(r)N(r)∑
r∈R g(r)N(r)

=
α(f)
α(g)

,

162

5.1.2 Estimation

where f and g are arbitrary real-valued functions on R. As special case of such an
estimator, take g to be a 0/1 function that corresponds to a predicate defined over
R, and take f(t) = f∗(r)g(r), where f∗ is an arbitrary real-valued function on R.
Then ρ corresponds to the average value of f∗ over those elements of R that satisfy
the predicate corresponding to g. The ratio estimation problem has been extensively
studied (Särndal et al. 1991), and an exhaustive discussion is beyond the scope of this
thesis; we content ourselves here with briefly presenting some of the most pertinent
results. The usual ratio estimator

ρ̂Θ =
α̂Θ(f)
α̂Θ(g)

=

∑
r∈D(S) f(r)N̂Θ(r)∑
r∈D(S) g(r)N̂Θ(r)

,

where Θ equals X or Y , is biased, but the bias converges to 0 as q increases. A
number of schemes have been proposed to reduce the bias when q is very small; see
Särndal et al. (1991). When q is not too small, a Taylor-series argument yields an
approximate expression for Var[ρ̂Θ]:

Var[ρ̂Θ] ≈ 1
α2(g)

(
Var [α̂Θ(f)] + ρ2 Var [α̂Θ(g)]− 2ρCov [α̂Θ(f), α̂Θ(g)]

)
,

where Cov [W,Z] denotes the covariance of random variables W and Z. Note that,
using the independence of the sampling for different distinct items, we have

Cov [α̂Θ(f), α̂Θ(g)] =
∑
r∈R

f(r)g(r) Var[N̂Θ(r)]

which can be estimated by

Ĉov [α̂Θ(f), α̂Θ(g)] =
∑

r∈D(S)

f(r)g(r)
1− q − (1− q)N̂Y (r)+1

q2
(
1− (1− q)N̂Y (r)

)
The usual method for estimating the variance Var[ρ̂Θ] simply replaces ρ by ρ̂Θ, α(g)
by α̂Θ(g), Cov by Ĉov, and each Var by V̂ar in the formula for Var[ρ̂Θ]. Of course,
we can always obtain standard errors or estimators of standard errors by taking the
square root of the corresponding variances or estimated variances.

C. Distinct-Item Counts

In this section we show that, perhaps surprisingly, an augmented Bernoulli sample
can also be used to estimate the number of distinct items in R. Although an
augmented Bernoulli sample will probably not perform as well as synopses that are
designed specifically for this task—see Gibbons (2009) for an overview of specialized
methods—the techniques in this section can be useful when special-purpose synopses
are not available.

163

5 Multiset Sampling

Given an augmented Bernoulli sample S, define an (ordinary) random subset
S′ ⊆ R by examining each r ∈ D(S) and including r in S′ with probability p(r),
where

p(r) =

{
1 Y (r) = 1
q Y (r) > 1.

.

Denote by D(R) the set of distinct items in R.

Theorem 5.4. The random subset S′ is a BERN(q) sample of D(R).

Proof. Fix an item r and observe that Pr [r ∈ S′] = 0 if r is not in S, and hence if
Y (r) = 0. Then, writing Y for Y (r) and using (5.3),

Pr
[
r ∈ S′

]
= Pr [Y = 1] + qPr [Y > 1]
= Pr [Y = 1] + q

(
Pr [Y > 0]− Pr [Y = 1]

)
= (1− q) Pr [Y = 1] + qPr [Y > 0]

= (1− q)q(1− q)N−1 + q
(
1− (1− q)N

)
= q

Since items are included or excluded from S′ independently of each other, the desired
result holds.

We can therefore obtain an unbiased estimate of D = |D(R)|, the number of
distinct items in R, by using a standard HT estimator, namely,

D̂HT =
|S′|
q
.

The variance of this estimator is (1− q)D/q and can be estimated by (1− q)D̂HT/q.
We propose a different unbiased estimator here, which estimates D directly from

S and yields lower variance. The idea is to apply the “conditional Monte Carlo
principle,” which asserts that, if W is an unbiased estimator of some unknown
parameter θ and Z is a random variable that represents “additional information,”
then the random variable W ′ = E [W | Z] is a better estimator than W in that, by
the law of total expectation, E [W ′] = E

[
E [W | Z]

]
= E [W] = θ, and, moreover,

Var [W ′] ≤ Var [W]. The variance reduction is a consequence of the well known
and easily derived variance decomposition

Var [W] = E
[

Var [W | Z]
]

+ Var
[

E [W | Z]
]
,

which holds for any two random variables W and Z. To apply this principle, we take
W = D̂HT and Z = S, so that our proposed estimator is D̂Y = E [D̂HT | S]. We can

164

5.1.2 Estimation

express D̂Y in a more tractable form, as follows. Denote by IA the indicator variable
that equals 1 if event A occurs and equals 0 otherwise. Then

D̂Y = E [D̂HT | S] = E
[

1
q

∑
r∈D(R)

Ir∈S′
∣∣∣ S]

=
1
q

∑
r∈D(R)

Pr[r ∈ S′ | S] =
1
q

∑
r∈D(R)

Ir∈D(S) Pr[r ∈ S′ | Y (t)]

=
1
q

∑
r∈D(R)

Ir∈D(S)p(r) =
1
q

∑
r∈D(S)

p(r).

Intuitively, each distinct item in S is included in S′ with probability p(r) and the
estimator D̂HT estimates D by counting all included items followed by a division by
q. On average, every item contributes a quantity of p(r)/q to the distinct-item count,
and D̂Y simply adds up the expected contributions. As shown above, D̂Y is unbiased
for D. Moreover, the variance of this estimator can be explicitly computed as

Var[D̂Y] =
∑

r∈D(R)

(1− q)N(r)/q

≤
∑

r∈D(R)

(1− q)/q = (1− q)D/q = Var[D̂HT],

where equality holds if and only if D = |R|. In the usual way, the variance of D̂Y

can be estimated by the “almost” HT estimator

V̂ar[D̂Y] =
∑

r∈D(S)

(1− q)N̂Y (t)

q
(
1− (1− q)N̂Y (t)

) ,
where N̂Y (r) is the estimator of N(r) given in (5.10). Note that the memory
requirement for our technique is unbounded, unlike the estimator in Gibbons (2001)
and other specialized distinct-item estimation methods as in Gibbons (2009).

As a final note, observe that—for practical values of q—we cannot extract a
BERN(q) sample of D(R) from a plain, non-augmented Bernoulli sample, that is, by
accessing X(r) only.

Theorem 5.5. For 0 < q < 0.5, there exists no algorithm that can extract a BERN(q)
sample of D(R) from a BERN(q) sample of any multiset R.

Proof. The proof is by contradiction. Suppose that there is an algorithm A that
takes as input a BERN(q) sample S from R and outputs a BERN(q) sample S′ from
D(R). Observe that A must output item r with probability 0 if r /∈ R and with
probability q if r ∈ R. In the following, we derive the probability function p(x),
which corresponds to the probability that A outputs r when X(r) = x. The assertion
of the theorem follows because, for certain x, p(x) does not denote a valid probability
when 0 < q < 0.5.

165

5 Multiset Sampling

Set R = { r0, r1, r2, . . . } and suppose that R contains each item ri exactly i items.
We can use dataset R to determine the values of p(x). Clearly, we have p(0) = 0
because A must not output r0 and X(r0) = 0 with probability 1, see (5.4). For
N > 0, we have

Pr [A outputs rN] =
N∑
x=0

p(x) Pr [X(rN) = x] =
N∑
x=0

p(x)B(x; N, q) = q, (5.16)

where the last inequality follows from the assumed correctness of A. We can use
(5.16) to determine the values of p(1), p(2), . . ., in that order, by setting N = 1, 2, . . .,
respectively. We find that

p(x) =

0 x = 0
1 x = 1
(2q − 1)/q x = 2
. . .

.

Now observe that p(2) < 0 for q ∈ (0, 0.5). The assertion of the theorem follows
because p(2) does not denote a valid probability.

The probabilities p(x) seem to be valid when q ≥ 0.5 but we did not further
investigate this issue.

5.2 Sample Resizing

We now turn attention to the the problem of resizing an ABERN(q) sample dy-
namically. Since, in expectation, the sample grows linearly with the size of the
dataset and since many estimators require only sublinear growth of the dataset to
maintain their accuracy, resizing the sample upwards is typically of limited interest
in practice. If such a resize is still required—that is, we want to switch to a sampling
rate q′ > q—, it appears that a scan of almost the entire base data is unavoidable.
The reason is that the draw-sequential model that we used for resizing an RP(M)
sample (section 4.2.1) cannot be used with ABERN(q) or, more general, multisets.
To see this, suppose that R = { a, b, b } and S = { a, b }. Further suppose that we
want to increase the size of S to 3 by drawing random items from R. The problem
is that in order to determine whether all copies of the selected item are already
in the sample (a drawn) or the not (b drawn), we require knowledge of the exact
frequency of the item in the base data. Since this frequency is expensive to obtain,
draw-sequential methods are expected to be inefficient. Thus, whenever the sample
is resized upwards, we compute the new ABERN(q′) sample from scratch using a
complete scan of the underlying dataset.

The remainder of this section is concerned with the subsampling problem: Given an
ABERN(q) sample S of a dataset R, derive an ABERN(q′) sample S′ from R, where
q′ < q, without accessing R. Subsampling has applications in practice whenever the

166

5.2 Sample Resizing

sampling process is run on a system with bounded processing or space capabilities.
In more detail, whenever some criterion is satisfied, one may reduce the sampling rate
in order to effectively reduce the size of the sample. Before we discuss algorithms for
subsampling, we briefly point out restrictions on the nature of the aforementioned
criterion. This discussion applies to arbitrary Bernoulli samples, not just ABERN(q)
samples.

A. Controlling the Sample Size

Several techniques in literature make use of subsampling to enforce an upper bound
on the sample size (Gibbons and Matias 1998; Brown and Haas 2006; Tao et al. 2007).
Though subsampling itself maintains the uniformity of the sample, this does not hold
when subsampling is used to bound the size of an evolving sample; see the discussion
in section 3.5.1B. The reason is that usage of subsampling in this fashion in effect
“converts” the Bernoulli sample to a bounded-size sample, and Bernoulli maintenance
algorithms cannot be used anymore. Therefore, we cannot use subsampling to enforce
a strict upper bound on the sample size.

However, subsampling can be used to enforce a probabilistic bound on the sample
size. The trick is to make the decision of whether or not to initiate subsampling
dependent on only the size of the dataset, and therefore independent from the size
or composition of the sample. Note that we do not require that the upper bound
is fixed for all times; we simply treat it as a (monotonically increasing) function
M : N→ N of the dataset size.5 For example, when M(Ni) = logNi, the sample size
is logarithmic in the dataset size. This is a distinctive advantage over methods such
as RP(M); these methods, however, are able to provide strict bounds.

We now show how to actually obtain the probabilistic upper bound on the sample
size using subsampling. Fix some time i and denote by N = Ni the size of the
dataset and by M = M(Ni) the upper bound at time i. Recall that the size of a
Bernoulli sample has a binomial(N, q) distribution, where q is the sampling rate at
time i. The probability that the sample size does not exceed M is given by (Johnson
et al. 2005, p. 110)

Pr [|S| ≤M] =
N∑

k=M+1

B(k; N, q) = Iq(M + 1, N −M), (5.17)

where Ix(a, b) denotes the regularized incomplete beta function (also called incomplete
beta function ratio). An efficient algorithm for the computation of the most significant
digits of Ix(a, b) is given by Didonato and Morris, Jr (1992). Now, to ensure that the
sample exceeds bound M with probability at most δ, we equate (5.17) to 1− δ and
solve for q using numerical methods; a closed-form approximation of the solution is
given by Brown and Haas (2006). With q0 being the obtained solution, we initiate
subsampling with target sampling rate q′ ≤ q0 when q0 < q, that is, when the current

5Other choices for M are possible, e.g., M may be a function of time. In the following, we only
require that M is oblivious to the state of the sample.

167

5 Multiset Sampling

sampling rate is too high. To avoid overly frequent subsampling steps, the target
sampling rate q′ after subsampling should be set to a value slightly less than q0.

The failure probability δ can be chosen small without too much overhead. For
example, suppose that |R| = 10,000,000, M = 10,000 and δ = 0.01. The value of q0

is then given by 0.00095; the expected sample size of 9,500 items is close to M , and
the actual sample size will not exceed M with probability 99%.

B. Algorithmic Description

The subsampling problem is trivial if we are only trying to produce an ordinary
Bernoulli subsample that does not need to be incrementally maintained. With q′ < q
being the desired sampling rate after subsampling, the subsample S′ can be obtained
by running BERN(q′/q) sampling on S; see for example Brown and Haas (2006).
Counting duplicate items separately, each item is present in S with probability q
and accepted into S′ with probability q′/q; the probability that it occurs in S′ thus
equals q · q′/q = q, as desired. The challenge in the general setting is to assign an
appropriate value to the tracking counters of the subsample, so that incremental
maintenance can be continued.

We now describe the subsampling algorithm for ABERN(q). Let Si be the sample
after processing transactions γ1, . . . , γi with sampling rate q. Again, we suppress the
subscript i and fix an item r, so that Si is given by S = (X,Y). Given S, we want to
generate S′ = (X ′, Y ′) having the correct distribution. Our subsampling algorithm is
illustrated in figure 5.3. In the figure, the original sample has been computed from a
transaction sequence that consists of 8 insertions of item r. Sample items are shown
as gray circles, rejected items are white. The upper and lower part of the figure
display the state of the sample before and after subsampling, respectively.

The algorithm is as follows: Set q∗ = q′/q. Let Φ be a Bernoulli(q∗) random
variable, i.e., a 0/1 random variable with Pr [Φ = 1] = q∗ and Pr [Φ = 0] = 1− q∗.
Let Ψ be a random variable such that Pr [Ψ = k′] = B(k′; X − 1, q∗) for 0 ≤ k′ < X.
Observe that Ψ ≡ 0 when X = 1. The random variable Φ has the interpretation that
Φ = 1 if and only if the first of the X items that were inserted into S is retained
in S′; the random variable Ψ is the number of the remaining X − 1 items that are
retained. The algorithm sets

X ′ ←

{
0 if X = 0
Φ + Ψ otherwise.

(5.18)

To compute Y ′, let Υ be another random variable with

Pr
[

Υ = m′
]

=
X ′

m′

Y−1∏
i=m′+1

(
1− X ′

i

)

168

5.2 Sample Resizing

r r r r r r r r

X=4

Y=6

N=8

r r r r r r r r

X =3

Y =Y=6

Ψ=2Φ=1

0

0

(a) First item retained (Φ = 1)

r r r r r r r r

X=4

Y=6

N=8

r r r r r r r r

X =2

Y =Υ=4

Ψ=2Φ=0

Z=2 0

0

(b) First item rejected (Φ = 0)

Figure 5.3: Illustration of subsampling

for X ′ ≤ m′ < Y . (By convention, we take an empty product as equal to 1.) The
algorithm sets

Y ′ ←

0 if X ′ = 0
Y if X ′ > 0 and Φ = 1
Υ otherwise.

(5.19)

Some insight into this choice of Y ′ is given in the proof below.

C. Proof of Correctness

We now establish the correctness of the subsampling algorithm.

Theorem 5.6. The above subsampling algorithm produces an ABERN(q′) sample.

Proof. We must show that the random pair (X ′, Y ′) has the proper distribution,
given (X,Y), after determining what this proper distribution is. As with theorem 5.1,
we give a proof that is somewhat informal, but provides insight into the workings of
the algorithm. The variables used in this proof are illustrated in figure 5.3. Denote
by γ = (γ1, . . . , γN) a sequence of N insertions of item r. Since, by theorem 5.1, the
distribution of X and Y depend only on N , we can assume without loss of generality
that S has been generated from γ. (That is, S is based on N non-annihilated
insertions.)

First consider the distribution of X ′. Clearly, X ′ must equal 0 if X equals 0.
Otherwise, as indicated above, the correct way to obtain X ′ from X is to take a
BERN(q∗) subsample of the X items in S. Therefore, the random variable X ′ must

169

5 Multiset Sampling

have a binomial(X, q∗) distribution, i.e., Pr [X ′ = k′] = B(k′; X, q∗). Recall that,
in general, a binomial(m, q) random variable can be represented as the sum of m
independent and identically distributed (i.i.d.) Bernoulli(q) random variables. Thus
Ψ can be viewed as a sum of X − 1 i.i.d. Bernoulli(q) random variables, so that
Φ + Ψ is distributed as a sum of X such variables, and hence has a binomial(X, q∗)
distribution. Therefore X ′, as defined by (5.18), indeed has the proper distribution.

To complete the proof, it suffices to show that the conditional distribution of Y ′

is the proper one, given that we have taken a BERN(q∗) subsample that resulted
in X ′ items being retained. To determine the proper distribution, first observe
that, trivially, Y ′ must equal 0 if X ′ equals 0. To analyze the case where X ′ > 0,
let j∗ = N − Y + 1 be the index of the transaction corresponding to the first
insertion of an item into S; thus the remaining X − 1 items in S were inserted during
transactions γj∗+1, γj∗+2, . . . , γN . Clearly, Y ′ = Y if and only if the item inserted
into S at transaction γj∗ is retained in the subsample S′; this event occurs with
probability q∗. With probability 1 − q∗, we have Y ′ 6= Y . In this case, we can
compute the proper distribution of Y ′ as follows. The transactions corresponding
to the X ′ items in the final subsample represent a subset (of size X ′) of the Y − 1
transactions γj∗+1, γj∗+2, . . . , γN . By symmetry, all possible subsets of size X ′ are
equally likely. Thus, if we have an urn containing Y − 1 balls, of which X ′ are black
(gray in figure 5.3b) and Y − 1−X ′ are white, and if Z is the random variable that
represents the number of sequential draws (without replacement) required to produce
the first black ball, then the first of the X ′ transactions has an index distributed as
j∗ +Z, so that Y ′ must be distributed as N − (j∗ +Z) + 1 = Y −Z. For Z to equal
l > 1, the first ball must be white, which happens with probability 1−

(
X ′/(Y − 1)

)
,

then the next ball must be white, which happens with probability 1−
(
X ′/(Y − 2)

)
(since there is one less white ball in the urn after the first draw), and so on, up
through the (l−1)st ball; the l-th ball must be black, which happens with probability
X ′/(Y − l). Similarly, Z = 1 with probability X ′/(Y − 1). Thus

Pr [Z = l] =
X ′

Y − l

l−1∏
i=1

(
1− X ′

Y − i

)

=
X ′

Y − l

Y−1∏
i=Y−l+1

(
1− X ′

i

)
for l ≥ 1, where the second equality results after a change of index from i to Y − i in
the product. Since Y ′ = Y − Z = m′ if and only if Z = Y −m′, we must have

Pr[Y ′ = m′ | Y ′ 6= Y] = Pr[Z = Y −m′]

=
X ′

m′

Y−1∏
i=m′+1

(
1− X ′

i

)
.

By inspection, the random variable Y ′ defined via (5.19) has precisely the correct
distribution. As mentioned previously, Φ has the interpretation that Φ = 1 if and

170

5.3 Sample Merging

only if Y ′ = Y , i.e., if and only if the item inserted into S at transaction γj∗ is
retained in S′.

Algorithm 5.2 gives the pseudocode for our subsampling algorithm. We have
displayed simple versions of the functions ComputeΨ and ComputeΥ, which
generate samples of the random variables Ψ and Υ, respectively. More efficient
algorithms are given in Devroye (1986, p. 521 and p. 619).

5.3 Sample Merging

We now discuss the merging problem. Given partitions R1 and R2 of R with
R1]R2 = R, along with two independent ABERN(q) samples S1 and S2, the goal is
to derive an ABERN(q) sample S from R by accessing S1 and S2 only.6 As mentioned
previously, merging is used in practice when R is distributed across several nodes;
see Brown and Haas (2006) for an example.

If S is not subject to further maintenance, we can set X(r)← X1(r) +X2(r) for
all r ∈ S1 ∪ S2 to produce a plain BERN(q) sample; see Brown and Haas (2006).
Here X1(r) and X2(r) denote the frequency of item r in the respective subsamples,
and X(r) denotes the frequency of item r in the merged sample. A harder version
of the problem is to derive a merged sample S that includes a tracking counter, so
that maintenance of S can be continued. First suppose that we know a priori that
R1 ∩R2 = ∅. Then it is easy to show that, for all when r ∈ Si, setting X(r)← Xi(r)
and Y (r) ← Yi(r) yields the desired augmented Bernoulli sample. Otherwise, the
hard merging problem cannot be solved, as shown by the following negative result.

Theorem 5.7. If R1 ∩ R2 6= ∅ and 0 < q < 1, then there exists no algorithm that
can compute an ABERN(q) sample S of R = R1]R2 by accessing S1 and S2 only.

Proof. The proof is by contradiction, so suppose that there exists a merging algorithm
A and let S be the ABERN(q) sample produced by A. Fix an item r in the intersection
of R1 and R2. There is always such an item, since R1 ∩R2 6= ∅. Denote by N , N1,
and N2 the frequency of item r in R, R1, and R2, respectively. Furthermore, let Y ,
Y1, and Y2 be the value of the tracking counters in S, S1, and S2, respectively.

We first show that A cannot ever set Y > Y1 + Y2. From (5.3), we must have
Pr [Y1 = N1] = Pr [Y2 = N2] = q so that, by the independence of Y1 and Y2,

Pr [Y1 = N1, Y2 = N2] = q2. (5.20)

Suppose that Algorithm A were to set Y > Y1 + Y2 with positive probability when it
observed, say, input values Y1 = k1 and Y2 = k2, that is,

Pr [Y > k1 + k2 | Y1 = k1, Y2 = k2] > 0

6Here,] has multiset semantics, so that it need not be the case that R1 ∩R2 = ∅.

171

5 Multiset Sampling

Algorithm 5.2 Subsampling for augmented Bernoulli sampling
1: q: current sampling rate
2: q′: desired sampling rate, q′ ≤ q
3: S: the augmented Bernoulli sample
4: Random(): returns a uniform random number between 0 and 1
5:

6: for all r ∈ S do
7: (X,Y)← S[r]
8: X ← ComputeΨ(X, q∗)
9: if Random() < q∗ then // first item included

10: X ← X + 1
11: S[r] = (X,Y)
12: else if X = 0 then // all items excluded
13: remove r from S
14: else // first item excluded
15: Y ← ComputeΥ(X,Y)
16: S[r] = (X,Y)
17: end if
18: end for
19:

20: ComputeΨ(X, q∗) // simple version
21: Ψ← 0
22: for 1 ≤ i ≤ X − 1 do
23: if Rand() < q∗ then
24: Ψ← Ψ + 1
25: end if
26: end for
27: return Ψ
28:

29: ComputeΥ(X,Y) // simple version
30: Υ← Y − 1
31: while Rand() < X/Υ do
32: Υ← Υ− 1
33: end while
34: return Υ

172

5.4 Summary

If item r happened to occur exactly k1 and k2 times in R1 and R2, respectively, so
that N1 = k1 and N2 = k2, then

Pr [Y > N]
≥ Pr [Y > k1 + k2, Y1 = k1, Y2 = k2]
= Pr [Y > k1 + k2 | Y1 = k1, Y2 = k2] Pr [Y1 = k1, Y2 = k2]

= Pr [Y > k1 + k2 | Y1 = k1, Y2 = k2] q2 > 0,

where we have used (5.20). But Y ∈ { 0, 1, . . . , N } by definition, so that Algorithm A
cannot ever set Y > Y1 + Y2.

We now show that A must set Y > Y1+Y2 with positive probability, a contradiction.
Observe that

Pr [Y = N] = Pr
[
Y = N, (Y1, Y2) = (N1, N2)

]
+ Pr

[
Y = N, (Y1, Y2) 6= (N1, N2)

]
.

(5.21)

By (5.3) and (5.20), we must have

Pr [Y = N] = q > q2 = Pr
[

(Y1, Y2) = (N1, N2)
]

≥ Pr
[
Y = N, (Y1, Y2) = (N1, N2)

]
,

which implies that
Pr
[
Y = N, (Y1, Y2) 6= (N1, N2)

]
> 0 (5.22)

for the equality in (5.21) to hold. Since N = N1 +N2 and, by definition, Y1 ≤ N1

and Y2 ≤ N2, the assertion in (5.22) is equivalent to Pr [Y = N,Y1 + Y2 < N] > 0,
so that Pr [Y > Y1 + Y2] > 0.

5.4 Summary

We have provided a scheme for maintaining a Bernoulli sample of an evolving
multiset. Our maintenance algorithm can handle arbitrary insertion, update and
deletion transactions, and avoids ever accessing the underlying dataset. We have
shown that the tracking counters used for maintenance can also be exploited to
estimate frequencies, population sums, population averages, and distinct-item counts
in an unbiased manner, with variance lower (often much lower) than the standard
estimates based on a Bernoulli sample. We have also indicated how to estimate the
variance (and hence the standard error) for these estimates, and we have briefly
described how to apply results from ratio-estimation theory to our new estimators.
We have also described how to obtain an augmented sample from another such
sample using subsampling, and we have identified the (rather limited) conditions
under which augmented samples can be merged to obtain an augmented sample of
the union of the underlying datasets.

173

Chapter 6

Distinct-Item Sampling

In this chapter,1 we are concerned with bounded-size sampling schemes that maintain
uniform distinct-item samples from an evolving dataset. We also show how to
estimate scale-up factors, how to resize the sample, and how to combine multiple
samples to compute a sample of any set or multiset expression involving their base
datasets. For the latter reason, our algorithms are also valuable in the context of set
sampling because typical set sampling methods cannot perform such combinations.

Recall that virtually all distinct items schemes are based on hashing—the only
exception known to the authors is the AMIND(q) scheme proposed in the previous
chapter. Before we turn our attention to distinct-item sampling from evolving datasets,
we briefly discuss the suitability of the available hash functions for sampling. Many
of these hash functions have been developed with applications such as hash tables in
mind. In these applications, the main goal of hashing is to minimize collisions; it is
not immediately clear how the hash functions interact with distinct-item sampling.
In section 6.1, we therefore review the most common classes of hash functions. We
also conduct a simple experiment that empirically evaluates the uniformity of the
sample obtained by using each of these hash functions. Interestingly, our experiment
suggests that the best compromise between practicability and uniformity of the
sample is achieved by cryptographic hash functions.

The heart of this chapter starts in section 6.2, where we extend min-hash sampling
with support for deletions. The resulting scheme is called augmented min-hash
sampling, AMIND(M), because the sample is augmented with counters of the
multiplicity of each distinct item. Our method is similar to the reservoir sampling
with tagging scheme by Tao et al. (2007), that is, deleted items are occasionally
retained in the sample in order to ensure uniformity. In our analysis, we show that
only deletions of the last copy of a distinct item may have a (negative) impact on the
sample size and that the sample stays reasonably large when the fraction of deletions
is not too high. Also in section 6.2, we consider the problem of estimating the number
of distinct items in the dataset for both plain MIND(M) and our AMIND(M) scheme.
We present several estimators for this problem and analyze their theoretical properties.

1Parts of the material in this chapter have been developed jointly with Kevin Beyer, Peter J.
Haas, Berthold Reinwald, and Yannis Sismanis. The chapter is based on Beyer et al. (2007)
with copyright held by ACM. The original publication is available at http://portal.acm.org/

citation.cfm?id=1247480.1247504.

175

http://portal.acm.org/citation.cfm?id=1247480.1247504
http://portal.acm.org/citation.cfm?id=1247480.1247504

6 Distinct-Item Sampling

It turns out that our estimators are unbiased and have low variance; they can even
be used to estimate the number of distinct items that satisfy a given predicate.

In section 6.3, we discuss the problem of resizing the sample upwards and down-
wards. Unfortunately, it appears that every algorithm that resizes the sample upwards
must scan almost the entire base data. We give a slightly more efficient algorithm
than naive recomputation from scratch. Reducing the sample size is significantly
easier and can be done without accessing base data.

One of the most interesting properties of AMIND(M) samples is that they can
be combined to obtain samples of arbitrary unions, intersections and differences of
their underlying datasets. In fact, we show in section 6.4 that AMIND(M) samples
are closed under these operations. Therefore, AMIND(M) samples are much more
powerful in this respect than the set and multiset sampling schemes discussed earlier.
As might be expected, the size of the resulting sample depends on the selectivity of
the expression used to combine the samples so that our techniques can only be used
when the result of the expression is not too small.

6.1 Hash Functions

We consider hash functions that have domain [N] and range [H], where both N
and H are fixed positive integers and [k] denotes the set { 0, . . . , k − 1 }. Let H =
{h1, h2, . . . } be a family of hash functions from [N] to [H]. In practice, the family
H represents the set of functions that are generated by a specific hashing scheme.
Whenever a hash function is required, it is chosen uniformly and at random from
H , typically by assigning random values to parameters of the hashing scheme. We
are therefore interested in properties of a single hash function h chosen uniformly
and at random from H .

A. Truly Random Hash Functions

If H is the set of all functions from [N] to [H], then h is said to be truly random. This
means that for arbitrary subsets { r1, . . . , rn } ⊆ [N] and arbitrary (not necessarily
distinct) hash values v1, . . . , vn ∈ [H], it holds

Pr [h(r1) = v1, h(r2) = v2, . . . , h(rn) = vn] =
1
Hn

.

Random hash functions can be used with any of the hash-based sampling schemes
of section 3.5.3, and the resulting samples are guaranteed to be truly uniform. The
downside is that the space required to store a random hash function is too large for all
practical purposes. Indeed, the number of hash functions in H is |H | = HN so that
Ω(N logH) bits are required to store h. Thus, smaller families of hash functions are
needed. These smaller families naturally lead to a smaller amount of “randomness”
in h (or, more precisely, a smaller amount of entropy), but can still provide good
results in practice.

176

6.1 Hash Functions

B. Universal Hash Functions

We first discuss families for which the loss in randomness can be quantified. A family
H is said to be 2-universal if for all r1, r2 ∈ [N] with r1 6= r2

Pr [h(r1) = h(r2)] ≤ 1
H
, (6.1)

that is, a collision of two hash values is at most as likely as a collision of two hash
values obtained from a truly random hash function. The concept has been introduced
in a well-known paper by Carter and Wegman (1977), who also give some 2-universal
hash functions. For example, for H ≤ N ≤ p with p prime, the family

Hp,H = {ha,b | a, b ∈ [p], a > 0 } with ha,b(x) =
(
(ax+ b) mod p

)
mod H

is 2-universal. To describe a hash function from Hp,H , only O(log p) bits to store
parameters a and b are required. According to Bertrand’s postulate, there exists a
prime between N and 2N , so that we require O(logN) bits for a suitably chosen
prime p. Although universal hash functions are well-suited for hashing into a hash
table, their usefulness for random sampling appears limited. Indeed, equation (6.1)
does not even guarantee that each hash value is chosen with equal probability for
each input item. For example, when H ≥ N , the family that consists of only the
identity function is 2-universal. Since this family contains only a single function,
h does not provide any randomness and thus cannot be used to drive the random
sampling process.2

C. Pairwise Independent Hash Functions

A stronger concept than 2-universality is that of pairwise independence (also called
strong 2-universality). A family H is pairwise independent if for all r1, r2 ∈ [N]
with r1 6= r2 and for all v1, v2 ∈ [H]

Pr [h(r1) = v1, h(r2) = v2] =
1
H2

,

that is, h is indistinguishable from a truly random function for inputs of size at most
2. The 2-universal family Hp,N given above is “almost” pairwise independent; minor
modifications lead to the pairwise independent family

Hp = {ha,b | a, b ∈ [p] } with ha,b(x) = (ax+ b) mod p

for N ≤ H = p, with p prime. A summary of available pairwise independent hash
functions is given in Thorup (2000). Again, for purposes such as hashing into hash
tables, pairwise independent hash functions work well in practice. Mitzenmacher and
Vadhan (2008) pointed out that this behavior results from the “randomness” of the
data items presented to the hash functions. Laxly speaking, when the data contains

2There are many other deterministic hash functions; none of them is suitable for random sampling.

177

6 Distinct-Item Sampling

enough randomness, the output of the hash function will approximately look like a
random function. However, there is no known distinct-item sampling scheme that
is able to produce provably uniform samples based on pairwise independent hash
functions; it is also unknown whether such a scheme exists.

The concept of pairwise independence can be generalized to k-wise independence
in the obvious way: A family of hash functions is k-wise independent, when the
hash values of every subset of [N] with size at most k are indistinguishable from a
truly random hash function. An efficient 4-wise independent hash function is given
in Thorup and Zhang (2004). When the base data is known to contain at most k
items and k-independent hash functions are used, all the distinct-item schemes of
section 3.5.3 produce truly uniform samples. However, using arguments as above,
such hash functions require Ω(k logH) bits to describe; too much in practice.

D. Min-Wise Independent Hash Functions

A family of hash functions is min-wise independent if it is collision-free (thus N ≤ H)
and if for all A ⊆ [N] and for all r ∈ A

Pr
[
h(r) = min

r′∈A
h(r′)

]
=

1
|A|

,

that is, for every subset of the domain, each item is equally likely to have the
minimum hash value. As discussed previously, min-hash sampling with replacement
(page 92) in conjunction with a set of min-wise independent hash-functions produces
truly uniform samples. Bounds on the size of min-wise independent families are given
in Broder et al. (2000) and an explicit, optimal construction algorithm is given in
Takei et al. (2000). The size of exact min-wise independent families is exponential in
N so that a hash function requires Ω(N) space to describe, but Indyk (1999) and
Broder et al. (2000) also discuss smaller approximate families.

From a theoretical point of view, the concept of min-wise independence can be
generalized to that of k-min-wise independence, meaning that any sequence of k
items is equally likely to have the k-smallest hash values. However, it is unknown
whether non-trivial (i.e., not truly random) k-min-wise independent families exist.
Also, from the arguments above, their space consumption is at least linear in N , so
that, from a practical point of view, these functions are infeasible.

E. Cryptographic Hash Functions

We now turn attention to families of hash functions that perform extremely well in
practice but do not provide theoretical guarantees. More specifically, we consider
cryptographic hash functions that are based on block ciphers, see Menezes et al.
(1996, ch. 9.5). A block cipher c with block length m is a function that maps an
m-bit input, called plaintext, to an m-bit output, called ciphertext ; it is parametrized
by a K-bit key k. Assume for a moment that N = H = 2m and denote by ck(r) the
ciphertext of r ∈ [N] using key k ∈ [2K]. Then

Hc =
{
ck | k ∈ [2K]

}

178

6.1 Hash Functions

is the family of hash functions generated by c. To select a hash function from Hc,
the key k is picked uniformly and at random from the set of all keys. A hash function
therefore requires O(K) bits to describe.

Our choice for c is the Advanced Encryption Standard (AES), see NIST Federal
Information Processing Standards (2001, FIPS 197). AES has a 128-bit block length
and we make use of the version of AES that also has 128-bit keys. Hellekalek and
Wegenkittl (2003) showed that AES behaves empirically like a high-quality pseudo-
random number generator when applied in an iterative fashion. Their experimental
results render AES therefore a promising candidate for sampling.

We now relax our initial assumption that both N and H equal 2128. When
N < 2128, zero padding is used to inflate the size of the input. When N > 2128, the
input is partitioned into blocks of 128 bits length and a technique called cipher-block-
chaining is used to compute the final hash value; see Menezes et al. (1996, p. 353)
for a discussion of the algorithm. Regarding the hash range, H is often set to 232 in
practice, in which case we simply take the last 32 bits of the ciphertext as the hash
value.

F. A Simple Experiment

We conducted a simple experiment that provides some insight into the suitability of
the different hash functions for random sampling. Our goal is to find out which hash
functions provide uniform samples with min-hash sampling and which do not. The
results in this section are of an empirical nature, that is, we can determine whether
a hash function is “bad” but positive results may not generalize. The experiment is
as follows:

1. Fix a dataset R of size N , a sample size M < N and select a family H of hash
functions to be tested.

2. Generate 5
(
N
M

)
independent MIND(M) samples of R. Each sample is generated

with a fresh hash function selected uniformly and at random from all the hash
functions in H .

3. Count the number of occurrences of each of the
(
N
M

)
possible samples. In

expectation, each sample should occur 5 times.

4. Run a chi-square test to check whether the observed frequencies are consistent
with their expected values.

The results of the test are given in table 6.1. The numbers in parentheses correspond
to the p-value of the chi-square distribution that corresponds to the outcome of the
sampling process (see below).

We now describe the experimental setup in more detail. We used three different
types of datasets: (i) increasing sequences of integers, (ii) real data, and (iii) random
numbers. For a given choice of N , the sequence dataset consists of the integers
{ 0, 1, . . . , N − 1 }, the real dataset has been obtained from the “quakes” dataset

179

6 Distinct-Item Sampling

Table 6.1: Results of uniformity tests of MIND(M) sampling

Dataset N M Random Pairwise Min-wise AES

Sequence 1,000 1 X(0.10) - (10−5) X(0.34) X(0.42)
100 2 X(0.77) - (0) X(0.96) X(0.34)
25 5 X(0.77) - (0) X(0.61) X(0.19)

Real 1,000 1 X(0.49) X(0.43) X(0.92) X(0.30)
100 2 X(0.74) X(0.73) X(0.24) X(0.84)
25 5 X(0.86) - (0.01) X(0.52) X(0.12)

Random 1,000 1 X(0.63) X(0.26) X(0.45) X(0.45)
100 2 X(0.11) X(0.38) X(0.74) X(0.79)
25 5 X(0.26) X(0.14) X(0.52) X(0.90)

shipped with The R Project (2008),3 and the random dataset consists of random
integers in the interval [0, 231 − 2]. The datasets cover the spectrum from low over
moderate to high entropy and allow us to study whether the distribution of the input
data has an effect on the uniformity of the samples. The samples were generated
using a family of truly random hash functions, a family of pairwise independent hash
functions (H231−1), a family of min-wise independent hash functions (Broder et al.
2000) and a family of cryptographic hash functions based on AES. The chi-square
test was run at the 5% significance level, meaning that the outcome of the sampling
process is considered non-uniform if the probability of receiving from a truly uniform
scheme a result at least as extreme as the one observed is below 5%. This probability
is called p-value and is given in table 6.1. Note that direct comparison of the p-values
is not meaningful, it only matters whether the p-value is less than 5% or not. To
avoid rejecting a hash function by mere coincidence, we repeated failed tests up to 3
times.

We now discuss the results shown in table 6.1. First, random hash functions lead
to provably uniform samples so that they naturally passed all the uniformity tests.
The same holds for min-wise independent hash functions when M = 1. Interestingly,
the min-wise independent hash function used in the experiments passed all the test
and therefore seems to be a good candidate for sampling. However, as discussed
previously, both random and min-wise independent hash functions require space
linear in N to describe. Pairwise independent hash functions do not produce uniform
samples on the sequence dataset, they pass some tests for the real data and all tests
for random data. It seems that pairwise independent hash functions can be used
when the dataset has sufficient entropy, see Mitzenmacher and Vadhan (2008). The
samples produced by AES passed all our tests. Since both the pairwise independent
hash function and the AES hash function require constant space, AES seems to be

3The dataset consists of information about 1,000 earthquakes near Fiji. We combined the longitude
and latitude into a single integer (long · 1,000,000 + lat · 100) and then used the first N of these
integers as the population.

180

6.2 Uniform Sampling

the method of choice for practical purposes. It provides a good tradeoff between
uniformity of the samples and the space required to store the hash function.

6.2 Uniform Sampling

In the remainder of this chapter, we focus on the min-hash sampling scheme MIND(M)
discussed in section 3.5.3D. Recall that in MIND(M) sampling, a random hash
function h is used to assign a hash value to each arriving item. The sample then
consists of the distinct items in R with the M smallest hash values. The scheme
supports only insertion transactions, but in section 6.2.1, we leverage an idea from Tao
et al. (2007) to provide support for update and deletion transactions. As mentioned
previously, the main obstacle of MIND(M) sampling is that it is not immediately
clear how to estimate the number D of distinct items in the dataset. We discuss this
problem in section 6.2.2, where we provide an unbiased, low-variance estimator of
the distinct-item count. Results of an experimental study are given in section 6.2.3.

We subsequently assume that—in an empirical sense—the hash function being used
with MIND(M) sampling behaves like a truly uniform hash function. In other words,
we assume that when H is the domain of the hash functions, the sequence of hash
values h(r1), h(r2), . . . , h(rD) looks like a realization of independent and identically
distributed samples from the discrete uniform distribution on [H]. Provided that
H is sufficiently greater than D, there will be no collision between the hash values
with high probability. In fact, a “birthday problem” argument shows that collisions
will be avoided when H = Ω(D2), see Motwani and Raghavan (1995, p. 45). We
assume henceforth that, for all practical purposes, any hash function that arises in
our discussion is collision-free.

6.2.1 Min-Hash Sampling With Deletions

We now propose a simple extension of MIND(M) that adds support for deletions.
We refer to the scheme as augmented min-hash sampling, AMIND(M). We do not
consider updates explicitly, because they can be decomposed into a deletion and
an insertion transaction. Also, we omit the transaction number (subscript i) in our
discussion for simplicity.

A. Algorithmic Description

The key idea of AMIND(M) is to maintain a uniform sample of all distinct items
that have been inserted into the dataset, even the ones that have been deleted in the
meantime. The non-deleted sample items then constitute a uniform sample of D(R),
the set of distinct items in R. To distinguish between deleted and non-deleted items,
we associate a frequency counter N(r) with each sampled item—just as we did in
MBERND(q) sampling, section 3.5.3B. Each element of the sample is therefore a
tuple (r,N(r)), where N(r) denotes the frequency of item r in R. In contrast to
MBERND(q), however, item r is also kept in the sample when its frequency count

181

6 Distinct-Item Sampling

reduces to zero. Items with a frequency count of at least 1 represent non-deleted
items, while items with a frequency count of 0 represent deleted items.

In more detail, the AMIND(M) sample consists of the distinct items with the M
smallest hash values seen thus far. The algorithm is as straightforward: Suppose
that we are about to process insertion +r. If r ∈ S, we increase its frequency count.
Otherwise, when r /∈ S, we proceed as in MIND(M) sampling: We add item r
directly to sample when the sample has not yet been completely filled (|Si| < M)
or replace the sample item rmax with the largest hash value when h(r) < h(rmax).
In both cases, the frequency count of item r is initialized to 1. Now suppose that
deletion −r arrives. If r ∈ S, we decrease its frequency count but keep the item in
the sample, even when its count became zero. If r /∈ S, we ignore the deletion.

Algorithm 6.1 gives the pseudocode of the sampling scheme. In order to support
efficient maintenance, an actual implementation would make use of a “randomized”
treap to store the items in S; see Seidel and Aragon (1996) for description and
analysis of the data structure. In a nutshell, a treap is a mixture of a tree and a
heap. As in a tree, the items are sorted with respect to their value so that a specific
item can be found efficiently. As in a heap, the items are sorted in heap order with
respect to their hash value. Our treap appears randomized because the hash values
are chosen at random. For a randomized treap of size M , both lookups, insertions
and deletions have expected cost O(logM). The element with the largest hash value
resides at the root of the treap and can thus be found in O(1) time. A discussion of
the total cost of algorithm 6.1 can be found in section C.

We refer to the sample maintained by AMIND(M) as gross sample because the
sample may contain deleted items, which cannot be exploited for estimation purposes.
Denote as before by R+ the set of all items that have ever been inserted into R
(including duplicates). We have D(R) ⊆ D(R+) and S ⊆ D(R+). Since deletions
never modify the items that are sampled (they modify only frequencies), the gross
sample is a uniform random sample from D(R+). In fact, the sample contains
the items from D(R+) with the M smallest hash values and—ignoring frequency
counts—is identical to a MIND(M) sample from R+. To obtain the desired sample
from D(R), we compute the net sample

S∗ =
{ (
r,N(r)

)
∈ S | N(r) > 0

}
,

which contains only the non-deleted items. S∗ is a uniform random sample of D(R)
by the uniformity of S and the fact that only the items from S that also belong to R
are retained in S∗.

B. Sample Size Properties

The AMIND(M) scheme can be seen as the distinct-item version of the modified
reservoir sampling scheme with tagging (MRST) by Tao et al. (2007), see the
discussion in section 3.5.1F. When AMIND(M) is executed on a dataset that does
not contain duplicates, it has the same sample size properties as MRST(0,M):
deletions cause the sample size to shrink. However, when the dataset contains

182

6.2.1 Min-Hash Sampling With Deletions

Algorithm 6.1 Augmented min-hash sampling
1: M : upper bound on the sample size
2: R,S: dataset and sample, respectively
3: S[r]: frequency counter of item r ∈ S (can be 0)
4: h: hash function from domain R to [H]
5: MaxHash(S): returns the item in S that has the maximum hash value
6:

7: Insert(r):
8: if r ∈ S then // repeated insertion
9: S[r]← S[r] + 1

10: else
11: if |S| < M then // build phase
12: add r to S and set S[r] = 1
13: else // sampling phase
14: rmax ←MaxHash(S)
15: if h(r) < h(rmax) then
16: remove rmax from S
17: add r to S and set S[r] = 1
18: end if
19: end if
20: end if
21:

22: Delete(r):
23: if r ∈ S then
24: S[r]← S[r]− 1
25: end if

183

6 Distinct-Item Sampling

duplicates, the effect of deletions on the size of an AMIND(M) sample may be
negligible. The reason is that only deletions of the last copy of an item have a
potential impact on the net sample size because only these deletions reduce the
frequency of the item to 0. All other deletions do not affect the size of the net sample.
For example, set M = 1 and consider the transaction sequence +r1+r1+r2. We then
have

Pr [S3 = { (r1, 2) }] = Pr [S3 = { (r2, 1) }] =
1
2
.

Now suppose that deletion −r1 arrives in the stream of transactions. Then,

Pr [S4 = { (r1, 1) }] = Pr [S4 = { (r2, 1) }] =
1
2

so that |S∗4 | = |S4| = 1 with probability 1. Thus, in contrast to MRST(0,M), the net
sample size does not directly depend on the total number of insertions and deletions.
Instead, it depends on the number D+ = |D(R+)| of insertions of new items—that
is, items that have not been inserted before—and the number of deletions of last
copies of an item. Continuing the example above, deletion −r2 leads to

Pr [S5 = { (r1, 1) }] = Pr [S5 = { (r2, 0) }] =
1
2

so that |S∗5 | = 1 with probability 0.5 and |S∗5 | = 0 otherwise. Using arguments as in
section 4.1.1, one finds that the sample size follows the hypergeometric distribution

Pr [|S∗| = k] = H(k;D+, D,M), (6.2)

where D = |D(R)| and H(k;N,N ′,M) is defined as in equation (4.10). The sample
size has expected value

E [|S∗|] =
D

D+
M

and variance

Var [|S∗|] =
D(D+ −D)M(D+ −M)

(D+)2(D+ − 1)
.

C. Runtime Cost

We now analyze the CPU cost of maintaining an AMIND(M) sample. As mentioned
before, we store the sample S in a randomized treap to facilitate efficient maintenance.
In the proof of the theorem below, we assume that D+ > M (so that the sample
does not coincide with the dataset) and that the computation of a hash value takes
O(1) time.

Theorem 6.1. AMIND(M) requires O((M/D+) logM) expected time to process an
insertion or deletion transaction.

184

6.2.2 Estimation of Distinct-Item Counts

Proof. We first consider a deletion −r. Making use of the fact that r ∈ S if and
only if h(r) ≤ h(rmax), the membership check in line 23 of algorithm 6.1 can be
implemented in O(1) time. The extraction of item rmax takes O(1) time because
rmax resides at the root of the treap. When r ∈ S, its frequency counter is updated.
This requires O(logM) expected time: we have to locate item r in the treap of M
items. Since r ∈ S with probability M/D+, the total expected cost is

Pr [r ∈ S]O(logM) + Pr [r /∈ S]O(1) = O
(
(M/D+) logM

)
as claimed in the theorem.

Basically the same arguments can be applied to the insertion case. The sample
updates in lines 9, 12, 16, and 17 each take O(logM) expected time. Observe that
the sample is updated if and only if h(r) ≤ h(rmax). If r has been inserted at an
earlier point of time, then this event occurs with probability Pr [r ∈ S] = M/D+.
Otherwise, when r is new, the probability of accepting r and thereby accessing the
sample is M/(D+ + 1) < M/D+ by the uniformity of AMIND(M) sampling. The
assertion of the theorem now follows because the expected cost is O(logM) with
probability at most M/D+ and O(1) otherwise.

When D+ ≤M , the expected cost per transaction is O(logD+).

6.2.2 Estimation of Distinct-Item Counts

For some sampling applications, it is crucial to be able to estimate the number
D of distinct items in the dataset. The value of D is used as a scale-up factor to
interpolate estimates from the sample to the entire dataset. For example, suppose
that the sample is taken over the distinct customers of a trading company and that
the exact total of the customer’s transactions is associated with each sample item.
In section 3.5.3B, we used such a sample to estimate the fraction f of customers that
contributed a total of less than a given quantity. If we instead want to determine
the number of these customers, we have to multiply f by D, the total number of
customers. Unfortunately, we cannot maintain D incrementally without storing the
entire set of distinct items, which is clearly infeasible.4 Therefore, we need more
efficient estimation schemes.

There are two principal approaches to compute an estimate of D:

• External estimation. Maintain in addition to the sample a special-purpose
synopsis solely for estimating D. A very good survey of the available synopses
and their underlying ideas is given by Gibbons (2009). All the techniques
are based on hashing, but—in contrast to distinct-item sampling—there are
schemes that can provide probabilistic guarantees on the estimation error even
when the hash functions being used are only pairwise independent (Alon et al.
1999; Bar-Yossef et al. 2002).

4This differs from set and multiset sampling, where the scale up factor equals the dataset size N ,
including duplicates, and can be maintained efficiently.

185

6 Distinct-Item Sampling

U(2)

0 12/11

E[U(2)]

Figure 6.1: 10 random points on the unit interval

• Internal estimation. Estimate the number of distinct values directly from the
information stored in the sample. As discussed below, the number of distinct
values can be estimated by looking at the hash values of the sampled items
and, in the case of AMIND(M), at the frequency counters associated with each
item.

External estimation has the advantage that D can be estimated up to an arbitrary
precision by throwing in sufficient resources. It has the disadvantage, however,
that the additional synopsis requires itself space and time to maintain. In contrast,
internal estimation does not incur any maintenance overhead, but its suitability
depends on how accurate we can estimate the distinct-item count from the sample.
As shown below, we can indeed provide highly accurate estimates provided that M
is not too small. For this reason, we focus solely on internal estimation.

We subsequently assume that D ≥M .5 For the insertion-only case, we review the
basic estimator of Bar-Yossef et al. (2002), which is biased, and then show that a
slightly modified version of the estimator yields an unbiased estimator with lower
mean squared error. Using results from Cohen (1997) and Beyer et al. (2007), we
find that the relative error of the unbiased estimator is bounded from above (as
D →∞). We also show that, if D �M , the basic estimator closely resembles the
maximum likelihood estimator of D. Finally, we extend our analysis to more general
settings. Specifically, we extend the estimator to deal with transaction sequences
that contain deletions, and we consider the problem of estimating the number of
distinct values in subsets of the dataset.

A. The Basic Estimator

Interestingly, some of the synopses for distinct-item estimation are closely related
to the MIND(M) sampling scheme. Instead of directly maintaining the M smallest
items, these synopses maintain just the hash values of these items (Bar-Yossef et al.
2002; Beyer et al. 2007). The motivation behind these techniques can be viewed as
follows. If D � 1 points are placed randomly and uniformly on the unit interval,
then, by symmetry, the expected distance between any two neighboring points is
1/(D + 1) ≈ 1/D, so that the expected value of U(M), the M -th smallest point, is

5Otherwise, the problem is trivial because the net sample size equals the number of distinct items
in the dataset.

186

6.2.2 Estimation of Distinct-Item Counts

E [U(M)] =
∑M

j=1 1/(D + 1) ≈ M/D; see figure 6.1. Thus D ≈ M/E [U(M)]. The
simplest estimator of E [U(M)] is simply U(M) itself,6 and yields the basic estimator

D̂BE
M =

M

U(M)
.

The connection between the above idea and the distinct-count estimation problem
rests on the observation that—under our assumptions—the hash function “looks
like” a uniform random number generator. In particular, let r1, r2, . . . , rD be an
enumeration of the distinct values in dataset R and let h be a hash function as before.
The sequence h(r1), h(r2), . . . , h(rD) will look like the realization of a sequence of
independent and identically distributed (i.i.d.) samples from the discrete uniform
distribution on [H]. Since we have set H = Ω(D2), hash range H it is sufficiently
greater than D so that the sequence

U1 =
h(r1)
H

,U2 =
h(r2)
H

, . . . , UD =
h(rD)
H

will approximate the realization of a sequence of i.i.d. samples from the continuous
uniform distribution on [0, 1]. Thus, in practice, the estimator D̂BE

k can be applied
with U(M) taken as the M -th smallest hash value (normalized by a factor of 1/H).
Note that the function f(x) = 1/x is strictly convex on (0,∞), so that

E [D̂BE
M] = E

[M

U(M)

]
>

M

E [U(M)]
≈ D

by Jensen’s inequality. That is, the estimator D̂BE
M is biased upwards for each possible

value of D. It was proposed by Bar-Yossef et al. (2002), along with conservative
error bounds based on Chebyshev’s inequality.

B. An Unbiased Estimator

In what follows, we provide an unbiased estimator that also has lower mean squared
error than D̂BE

M . The unbiased estimator is given by

D̂UB
M =

M − 1
U(M)

, (6.3)

a slight modification of D̂BE
M . In this section, we analyze properties such as the

unbiasedness and moments of D̂UB
M .

Let U1, U2, . . . , UD be the normalized hash values of the distinct items in the dataset;
we model these values as a sequence of independent and identically distributed
(i.i.d.) random variables from the uniform[0, 1] distribution—see the discussion
above. Denote by U(M) the M -th smallest of U1, U2, . . . , UD. We already know that

6In the statistical literature, this estimator is called the method-of-moments estimator of E [U(M)].

187

6 Distinct-Item Sampling

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

U (2)

D
en

si
ty

D=20

D=10

D=5

Figure 6.2: Distribution and expected value of U(2), the second-smallest hash value

E [U(M)] = M/(D+ 1). Unfortunately, this does not help in analyzing D̂UB
M because

U(M) occurs in the denominator of (6.3). Instead, our goal is to compute E [1/U(M)],
which requires knowledge of the distribution of U(M).

To make further progress, observe that U(M) is the M -th order statistic of
U1, . . . , UD. Results from the theory of order statistics (David and Nagaraja 2003,
sec. 2.1) imply that U(M) follows the beta distribution with parameters M and
D −M + 1. That is, the probability density function (pdf) of U(M) is given by

fM,D(t) =
tM−1(1− t)D−M

B(M,D −M + 1)
, (6.4)

where

B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt (6.5)

= a−1

(
a+ b− 1

a

)−1

(6.6)

denotes the beta function (Johnson et al. 1992, p. 7); equality (6.6) holds when a
and b are integers. Figure 6.2 provides some insight into the distribution of the U(M)

for M = 2 and different choices of D.

188

6.2.2 Estimation of Distinct-Item Counts

The probability that U(M) lies in a given interval is equal to the area under the
respective part of the density function. Thus,

Pr[U(M) ≤ x] =
∫ x

0
fM,D(t)dt = Ix(M,D −M + 1) (6.7)

where

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt

=
a+b−1∑
i=a

(
a+ b− 1

i

)
xi(1− x)a+b−i−1. (6.8)

denotes the regularized incomplete beta function. It is defined for all real a and
b (Johnson et al. 1992, p. 15) but equation (6.8) applies only when a and b are
integer. As mentioned previously, an efficient algorithm for the computation of the
most significant digits of Ix(a, b) is given in Didonato and Morris, Jr (1992). Applying
identity (6.8) to (6.7), we find that

Pr[U(M) ≤ x] =
D∑

i=M

(
D

i

)
xi(1− x)D−i,

which is simply the probability that at least M of the Ui values are smaller than x.
To facilitate the analysis of D̂UB

M , we first derive the moments of 1/U(M). For any
real value r in [0,M − 1), we have by definition of expected value, (6.4) and (6.5)

E [U−r(M)] =
∫ 1

0

1
tr
fM,D(t)dt =

B(M − r,D −M + 1)
B(M,D −M + 1)

.

If r is an integer, we can exploit identity (6.8) to obtain

E [U−r(M)] =
Dr

(M − 1)r
, (6.9)

where ab denotes the falling power a(a− 1) · · · (a− b+ 1). Regarding D̂UB
M , we find

that
E [D̂UB

M] = E
[M − 1
U(M)

]
= (M − 1) E [U−1

(M)] = D, (6.10)

so that D̂UB
k is indeed unbiased for D. Using the definition of variance and (6.9), we

obtain

Var[D̂UB
M] = (M − 1)2 E [U−2

(M)]− (M − 1)2 E [U−1
(M)]2 =

D(D −M + 1)
M − 2

. (6.11)

Since D̂UB
M is unbiased, its mean squared error (MSE) is equal to its variance.

189

6 Distinct-Item Sampling

For comparison, note that, since D̂BE
M = MD̂UB

M /(M − 1) and by (6.9), E [D̂BE
M] =

MD/(M − 1) and

MSE[D̂BE
M] =

(M

M − 1

)2
Var[D̂UB

M] +
(D

M − 1

)2
.

Thus, as discussed earlier, D̂BE
M is biased high for D, and has infinite mean when

M = 1. Moreover, it can be seen that D̂UB
M has lower MSE than D̂BE

M .
We now provide probabilistic (relative) error bounds for the estimator D̂UB

M .
Specifically, given a failure probability 0 < δ < 1, we give a value of ε such that D̂UB

M

lies in the interval [(1− ε)D, (1 + ε)D] with confidence probability 1− δ.

Theorem 6.2. For 0 < ε < 1 and M ≥ 1,

Pr
[
|D̂UB

M −D|
D

≤ ε
]

= Iu(D,M,ε)(M,D−M + 1)− Il(D,M,ε)(M,D−M + 1) (6.12)

where
u(D,M, ε) =

M − 1
(1− ε)D

and l(D,M, ε) =
M − 1

(1 + ε)D
. (6.13)

Proof. The desired result follows directly from (6.7) after using (6.3) to obtain

Pr
[
|D̂UB

M −D|
D

≤ ε
]

= Pr
[

(1− ε)D ≤ D̂UB
M ≤ (1 + ε)D

]
= Pr

[
M − 1

(1 + ε)D
≤ U(M) ≤

M − 1
(1− ε)D

]
.

Error bounds for a given value of δ can be obtained by equating the right side of
(6.12) to 1− δ and solving for ε using numerical root-finding algorithm. Although
useful for theoretical analysis, these bounds cannot be used directly in practice, since
they involve the unknown parameter D. Using a standard approach from statistics,
practical approximate error bounds based on the observed value of U(M) can be
obtained by replacing D with D̂UB

M in the above formulas.
Figure 6.3 displays the error bound ε as a function of 1 − δ for D = 1,000,000

and several values of M . The dashed and solid curves represent the confidence
intervals for the basic estimator D̂BE

M and the unbiased estimator D̂UB
M , respectively.

As expected, D̂UB
M is superior to D̂BE

M when M is small; for example, when M = 16
and 1− δ = 0.95, use of the unbiased estimator yields close to a 20% reduction in ε.
As M increases, M − 1 ≈M and both estimators perform similarly.

To further examine the behavior of the unbiased estimator, we derive the average
relative error (ARE), which is defined as the expected value of the relative error
|D̂UB

M − D|/D. As discussed in section 2.1.3A, the ARE is a common metric for
comparing the performance of statistical estimators.

190

6.2.2 Estimation of Distinct-Item Counts

Confidence probability (1−δδ)

E
rr

o
r

b
o
u
n
d
 (

εε
)

0.90 0.92 0.94 0.96 0.98

0
.0

1
0
.1

1

M=16

M=128

M=1024

M=8192

Biased
Unbiased

Figure 6.3: Error bounds for D = 1,000,000

Theorem 6.3. The average relative error of D̂UB
M is given by

ARE[D̂UB
M] = 2

(
D

M − 1

)(
M − 1
D

)M−1(
1− M − 1

D

)D−M+2

(6.14)

Proof. We have

ARE[D̂UB
M] = E

[
|D̂UB

M −D|
D

]
=

1
D

∫ 1

0

∣∣∣∣M − 1
t
−D

∣∣∣∣ fM,D(t) dt

=
1
D

∫ (M−1)/D

0

(M − 1
t
−D

)
fM,D(t) dt

+
1
D

∫ 1

(M−1)/D

(
D − M − 1

t

)
fM,D(t) dt

= 2I(M−1)/D(M − 1, D −M + 1)− 2I(M−1)/D(M,D −M + 1),

where the last equality is obtained after expanding the integrals and applying the
identity (M − 1)(tD)−1fM,D(t) = fM−1,D−1(t). The desired result follows after
applying (6.8).

Figure 6.4 displays the ARE for several choices of M and D. As can be seen, the
ARE converges to an upper bound as D becomes large. For this reason, we study
the behavior of D̂UB

M as D becomes large.

191

6 Distinct-Item Sampling

Number of distinct items (D)

A
v
er

a
g
e

re
la

ti
v
e

er
ro

r

103 104 105 1060
.0

0
1

0
.0

1
0
.1

1

M=16

M=128

M=1024

M=8192

ARE
Upper bound

Figure 6.4: Average relative error of the unbiased estimator D̂UB
M

C. Asymptotic Analysis of the Unbiased Estimator

Our discussion so far has provided formulas for probabilistic (relative) error bounds
and the average relative error of D̂UB

M given that D is known. In practice, however,
D is the quantity that is being estimated and, of course, unknown. Thus, we are
interested in error bounds that do not depend on the value of D. And in fact, we
can obtain these bounds by computing the limit of (6.12) and (6.14) as D →∞. An
alternative approach yielding the same result has been taken by Beyer et al. (2007).
They have shown that, as D →∞, U(M) converges in distribution to the sum of M
independent random variables, each having an exponential distribution with rate
parameter D. Based on this observation, we can use earlier results from Cohen
(1997), who proposed estimator D̂UB

M for precisely this situation. It follows that

Pr
[
|D̂UB

M −D|
D

≤ ε
]
≈ e−

M−1
1+ε

(
1 +

M−1∑
i=1

(M − 1)i

(1 + ε)ii!

)
− e−

M−1
1−ε

(
1 +

M−1∑
i=1

(M − 1)i

(1− ε)ii!

)
= PM−1

1−ε
(M)− PM−1

1+ε
(M),

where Px(a) is the regularized (lower) incomplete gamma function (Johnson et al.
1992, p. 14), and

ARE[D̂UB
M] ≈ 2(M − 1)M−2

(M − 2)!eM−1
≈

√
2

π(M − 2)
.

192

6.2.2 Estimation of Distinct-Item Counts

Though slightly conservative, the asymptotic error bounds have the advantageous
property that, unlike the exact bounds, they do not involve the unknown quantity
D. (In the context of distinct value estimation, asymptotic bounds can be exploited
to choose M so as to provide a-priori bounds on the estimation error.)

D. Maximum Likelihood Estimator

The classical statistical approach to estimating unknown parameters is the method
of maximum likelihood (ML); see Serfling (1980, sec. 4.2). We apply this approach
by casting our estimation problem as a parameter estimation problem. Specifically,
recall that U(M) has the probability density fM,D given in (6.4). The ML estimate
of D is defined as the value D̂ that maximizes the (log) likelihood L(D;U(M)) of the
observation U(M), defined as L(D;U(M)) = ln fM,D(U(M)). We find this maximizing
value by solving the equation L′(D;U(M)) = 0, where the prime denotes differentiation
with respect to D. We have

L′(D;U(M)) = ln(1− U(M))−Ψ(D −M + 1) + Ψ(D + 1),

where Ψ(n) denotes the digamma function (Johnson et al. 1992, p. 7). For x
sufficiently large and n > 0 integer, Ψ(n) = Hn−1 − γ ≈ ln(n− 1), where as before
Hn−1 denotes a harmonic number and γ denotes Euler’s constant. Applying this
approximation, we obtain

D̂ML
M ≈ M

U(M)
,

so that the ML estimator roughly resembles the basic estimator D̂BE
M provided that

D �M . In fact, our experiments indicated that D̂ML
M and D̂BE

M are indistinguishable
from a practical point of view. It follows that D̂ML

M is asymptotically equivalent to
D̂UB
M as M →∞. A basic result for ML estimators (Serfling 1980, sec. 4.2.2) implies

that, for D �M � 0, the estimator D̂UB
M has, to a good approximation, the minimal

possible variance for any estimator of D.

E. General Transaction Sequences

The above estimators do not apply to our AMIND(M) scheme and thus cannot be
used with sequences that contain update and deletion transactions. The reason is
that AMIND(M) maintains a sample S from D(R+), not D(R); the net sample S∗

from D(R) is extracted when needed. It follows that D̂UB
M turns into an unbiased

estimator of D+ = |D(R+)| and, because D+ ≥ D, can be biased for D. In this
section, we develop our final estimator D̂M , the AMIND(M) version of D̂UB

M .
Denote by K = |S∗| the number of non-deleted items in S. From (6.2), it follows

that K has a hypergeometric distribution

Pr [K = k] = H(k;D+, D,M). (6.15)

193

6 Distinct-Item Sampling

We now use K to estimate D. We know that D̂UB
M is an unbiased estimator of D+;

we would like to “correct” this estimator via multiplication by ρ = D/D+. We do
not know ρ, but a reasonable estimate is

ρ̂ =
K

M
, (6.16)

the fraction of sample elements in S that belong to R. This leads to our proposed
generalized estimator

D̂M =
K

M

(M − 1
U(M)

)
. (6.17)

We now establish some basic properties of the estimator. For d ≥ m ≥ 1, set

∆(d,m, ε) = Iu(d,m,ε)(m, d−m+ 1)− Il(d,m,ε)(m, d−m+ 1),

where as before Ix(a, b) is the regularized incomplete beta function, and u(d,m, ε)
and l(d,m, ε) are defined as in (6.13). Take ∆(∞,m, ε) = 0.

Theorem 6.4. The estimator D̂M satisfies E [D̂M] = D for M > 1,

Var[D̂M] =
D(M(D+ −M + 1)−D+ +D)

M(M − 2)

for M > 2, and, if D > 0, ε ∈ (0, 1), and M ≥ 1,

Pr
[
|D̂M −D|

D
≤ ε

∣∣∣ K = k

]
= ∆(MD/k,M, ε) (6.18)

for 0 ≤ k ≤ min(M,D), and

Pr
[
|D̂M −D|

D
≤ ε

]
=

min(M,D)∑
k=0

∆(MD/k,M, ε)H(k;D+, D,M). (6.19)

Proof. A can be seen from (6.2), the distribution of K does not depend on the
hash values {h(r) : r ∈ R+ }. It follows that the random variables K and U(M) are
statistically independent, as are ρ̂ and U(M), where ρ̂ = K/M as above. By (6.15)
and standard properties of the hypergeometric distribution, we have

E [K] = M
D

D+
(6.20)

and

Var[K] =
D(D+ −D)M(D+ −M)

(D+)2(D+ − 1)
. (6.21)

It follows from (6.20) that E [ρ̂] = ρ. Using independence and the unbiasedness of
D̂UB
M , we find that

E [D̂M] = E [ρ̂D̂UB
M] = E [ρ̂] E [D̂UB

M] = ρD+ = D.

194

6.2.2 Estimation of Distinct-Item Counts

The formula for Var[D̂M] follows after some straightforward algebra starting with
the definition of variance and using equations (6.9), (6.20), and (6.21). To obtain
the relation in (6.18), use the fact that K and D̂UB

M are independent, and write

Pr
[
|D̂M −D|

D
≤ ε

∣∣∣ K∩ = k

]
= Pr

[
|(k/M)D̂UB

M −D|
D

≤ ε
]

= Pr
[
|D̂UB

M −D∗|
D∗

≤ ε
]
,

where D∗ = (M/k)D. The desired result then follows by mimicking the proof of
theorem 6.2. The final relation in (6.19) follows from (6.18) by unconditioning on K
and using (6.15).

Thus D̂M is unbiased for D. It also follows from the proof that the estimator ρ̂ is
unbiased for the fraction of non-deleted elements ρ. Using (6.19), we can compute
exact confidence bounds numerically, analogously to the insertion-only case. To
obtain practical approximate bounds based on observation of K and U(M), use the
representation in (6.18), but replace D by D̂M .

Figure 6.5 displays the influence of deletions on the error bound of the estimate.
The figure has been obtained by fixing D = 1,000,000 and varying the value of ρ (and
thus D+). For example, a value of ρ = 0.1 means that we (conceptually) inserted
10,000,000 distinct items into the dataset and subsequently removed 9,000,000 of
these items, so that 10% of the items are still present. The figure plots the relative
error that is achieved with a confidence probability of 1− δ = 95%. As can be seen,
the error bound at first remains stable as ρ decreases, but then quickly approaches 1.
The reason for this behavior is that the estimate ρ̂, which is required to estimate D,
is highly accurate when ρ > 1/M (roughly) but becomes unusable as ρ falls below
1/M . In this case, the number K of non-deleted items in the sample will be zero
with high probability, which in turn leads to a estimate of D̂M = 0. Fortunately,
unless M is very small, a large fraction of the dataset has to be deleted to see this
behavior. For example, when M = 8, 192, the decrease in accuracy is visible when
ρ < 0.001, in which case more than 99, 9% of the dataset have been deleted.

F. Predicates

We now return to our initial example, where we were interested in the number
of customers that contributed less than a given quantity to the company’s total.
In settings such as this one, we are not interested in statements about the entire
population but about a certain subset of it. Let p be a predicate on the distinct items
in R and σp(A) the elements of A that satisfy p. We assume that all information
required to evaluate p is stored together with the sampled items. Our goal is to
estimate θ = |D(σp(R)|), the number of distinct items in R that satisfy p. There are
two ways to compute an estimate θ̂ of θ. A natural way is to extract the net sample

195

6 Distinct-Item Sampling

Fraction of non−deleted items (ρρ)

E
rr

o
r

b
o
u
n
d
 (

εε
)

1 0.1 0.01 0.001 0.0001

0
.0

1
0
.1

1

M=16

M=128

M=1024

M=8192

Figure 6.5: Error bounds of D̂M for D = 1,000,000 and 1− δ = 95%

S∗ from S, determine the number of customers in S∗ that satisfy the predicate, and
to scale up the resulting value:

θ̂1 =
|σp(S∗)|
|S∗|

D̂M =
|σp(S∗)|
M

· M − 1
U(M)

.

The second way is to (conceptually) delete all items that do not satisfy predicate
p from R and S, and then estimate the number of distinct items in the remaining
dataset. Denote by R′ = R C σp(R) the relation and by S′ = S C σp(R) the sample
after the deletions. Then,

θ̂2 = D̂′M =
K ′

M
· M − 1
U ′(M)

,

where as before K ′ denote the number of non-deleted items in S′ and U ′(M) denotes
the maximum hash value. Now observe that when running AMIND(M), we have
K ′ = |σp(S∗)| and U ′(M) = U(M). We infer that θ̂1 = θ̂2 so that we can apply
theorem 6.4 on θ2 to obtain properties of θ1. In fact, from the viewpoint of analysis of
estimators, there is no difference between deletions and predicates. As a consequence,
the analysis of the preceding section (for sequences with deletions) also applies to plain
MIND(M) sampling (with predicates). Finally, note that, in the trading-company
example, both θ̂1 and θ̂2 are independent from the actual customers in σp(S∗). This
independence simplifies the derivation of probabilistic error bounds for a wide range

196

6.2.3 Experiments

of more complex estimates such as, say, the actual contribution of the subset of the
customers to the company’s total (a.k.a. The Long Tail).

6.2.3 Experiments

The foregoing analysis was made under the assumption that the hash values follow a
continuous uniform[0, 1] distribution. In practice, however, hash functions have a
discrete range, so that only a finite number of different hash values exists. Normalizing
the hash values to [0, 1], it follows that, at best, the hash values only approximate
the continuous uniform[0, 1] distribution. Second and more importantly, the hash
function must distribute its hash values uniformly on its entire range. In this section,
we investigate empirically the validity of our analysis in the real world. Since our
experiments in section 6.1F showed that AES is a promising candidate for hash-based
sampling, we compare our theoretical results with practical results obtained by AES.

We used one real-world and two synthetic datasets. The real-world dataset has been
extracted from “The Gutenberg Webster’s Unabridged Dictionary”.7 It comprises
229, 480 words and 21, 983 distinct words. The first synthetic dataset consists of
a sequence of integers, while the second dataset comprises random numbers in
[0, 232 − 1]. Both datasets also contain 21, 983 distinct items.

In our first experiment, we repeatedly computed an AMIND(M) sample from the
dataset and then used the sample to estimate the total number of distinct items. We
used various values for the sample size M and repeated each individual experiment
100 times. The results are shown in figure 6.6, where we plot the mean estimate
along with a 2σ-interval. Here, σ = SE[D̂UB

M] denotes the standard error of the
estimate. Note that by Chebyshev’s inequality, at least 75% of the estimates lie
within the 2σ-interval. The leftmost bar of each group contains the expected values
that correspond to equations (6.10) and (6.11) of our analysis. Each of the remaining
bars corresponds to a dataset used in our experiments. As can be seen, the theoretical
and observed values agree closely, no matter which dataset has been used. The slight
variations visible in the figure result from the fact that we are actually estimating
the mean and standard error of the AES estimates based on 100 samples.

In our second and final experiment, we proceeded as before but fixed M = 1,024.
We then estimated the number of distinct values in the dataset after applying a
predicate. Such a setting requires usage of the generalized estimator of section 6.2.2E.
Figure 6.7 shows our results for varying selectivities. Again, the theoretical values
agree closely with the observed values for all three datasets. Admittedly, these
experiments are extremely simple and do not allow generalized conclusions. However,
they do provide some evidence that our analysis is applicable when AES is used as
a hash function. More empirical results for AES (and other hash functions) in the
context of distinct-item estimation from minimum hash values are given in Beyer
et al. (2007).

7Available at http://www.gutenberg.org/etext/673.

197

http://www.gutenberg.org/etext/673

6 Distinct-Item Sampling

16 128 1024 8192

Sample size

O
b
se

rv
ed

 m
ea

n
 ±±

 s
ta

n
d
a
rd

 e
rr

o
r

0
5
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

Expected
Sequence
Real
Random

Figure 6.6: Performance of unbiased estimator

0.001 0.01 0.1 1

Selectivity

O
b
se

rv
ed

 m
ea

n
 ±±

 s
ta

n
d
a
rd

 e
rr

o
r

1
0

1
0
0

1
0
0
0

1
0
0
0
0

Expected
Sequence
Real
Random

Figure 6.7: Performance of generalized estimator

198

6.3 Sample Resizing

6.3 Sample Resizing

In this section, we turn attention to the problem of resizing a MIND(M) sample
either upwards or downwards. As discussed in previous chapters, resizing algorithms
help to avoid under- and oversized samples, respectively, in case of changes of the
dataset size. Though our discussion is concerned with plain MIND(M) sampling, it
can easily be adapted to the setting of AMIND(M) sampling.

6.3.1 Resizing Upwards

We first consider algorithms for enlarging the sample size. Using an argument as in
the proof of theorem 4.3, one can show that any algorithm that increases the size of
the MIND(M) sample must access the base data with non-zero probability. In fact,
we argue that any resizing algorithm essentially requires a complete scan of R so
that resizing upwards is expensive. Suppose that we want to increase the sample size
from M to M ′, where M < M ′ ≤ D. The resulting MIND(M ′) sample then consists
of the distinct items with the M ′ smallest hash values. To obtain the sample, we
have to extract the items with the hash values of ranks M + 1,M + 2, . . . ,M ′. Thus,
we cannot simply extract M ′ −M random distinct items from R, we need a specific
set of items that is determined by the hash function being used. To find these items,
we have to look at every item in R \ S because every item we ignore might be one of
the desired items.

Since we have to scan R in any case, a naive algorithm is to completely discard
the sample and recompute a fresh MIND(M ′) sample from scratch. A slightly more
efficient approach is to sample M+ = M ′ −M (specific) items from R \ S. To do
so, denote by hmax the maximum hash value in S. The idea is to run MIND(M+)
sampling on R but only feed the items with a hash value larger than hmax into the
sampling scheme. Denoting by S+ the resulting sample, the desired enlarged sample
is given by S′ = S ∪ S+. The advantage of the improved approach is a reduced CPU
cost. Using results from Beyer et al. (2007), one finds that the expected cost to
compute the MIND(M+) sample is O(N +M+ logM+ logD). The merge requires
at most O(M ′ logM ′) expected time (because we have to build a randomized treap
of S′). This compares favorably to the expected cost of O(N +M ′ logM ′ logD) for
recomputing the MIND(M ′) sample from scratch. Of course, when reading the base
data requires expensive I/O operations, the savings in CPU cost may be negligible.

6.3.2 Resizing Downwards

Resizing the sample downwards can be done efficiently. Our algorithm is based on
the following theorem.

Theorem 6.5. Let S be a MIND(M) sample of some dataset R and let S′ be a
MIND(M ′) sample of S, where M ′ < M , obtained using the same hash function.
Then, S′ is a MIND(M ′) sample of R.

199

6 Distinct-Item Sampling

Proof. Observe that S′ contains the items of S having the M ′ smallest hash values.
Since by definition S contains the items of D(R) having the M > M ′ smallest hash
values, it follows immediately that S′ also comprises the items of D(R) having the
M ′ smallest hash values. This is exactly the definition of a MIND(M ′) samples and
the theorem follows.

Thus, to resize a MIND(M) sample downwards, we run MIND(M ′) sampling on
S, which requires O(M +M ′ logM ′ logM) expected time according to Beyer et al.
(2007). When M− = M −M ′ is small, it is more efficient to repeatedly remove
the root of the treap, which is known to have the largest hash value, instead of
computing a new sample. Because each removal requires at most O(logM) expected
time and M− items have to be removed, the total expected resizing cost of the
modified scheme is O(M− logM).

6.4 Sample Combination

The discussion up until now has focused on AMIND(M) sampling from a single base
dataset. We now consider the more general case where we are given multiple local
datasets, which may be distributed across several nodes, along with their AMIND(M)
samples.8 In the context of set and multiset sampling, we have already discussed the
case that the local samples form a partitioning of a “global” dataset that corresponds
to the union of the local datasets. Then, in order to derive a sample of the global
dataset, it is often more efficient to merge the local samples instead of reconstructing
the global dataset and sampling afterwards. In distinct-item sampling, we can push
this approach one step further: Our goal is to compute an AMIND(M) sample of a
compound dataset, that is, a dataset that is created from the local datasets using
the set and/or multiset operations of union, intersection, and difference. Since the
resulting sample is a true AMIND(M) sample, our previous algorithms for sample
maintenance, estimating distinct-item counts, and sample resizing apply directly.

6.4.1 Multiset Unions

Consider two datasets A and B along with their AMIND(M) samples SA and SB.
For convenience, we treat the elements in SA and SB as being items instead of (item,
counter)-pairs in our formulas. We wish to compute S], an AMIND(M) sample of
A]B.

For V ∈ {A,B }, denote by γV the sequence that were used to create SV and let
V + denote the multiset of all items ever inserted in γV . Observe that—by definition
of an AMIND(M) sample—SV comprises the items in D(V +) with the M smallest
hash values. Retaining sample items with frequency 0 and omitting all counter values,
we find that SV is thus a MIND(M) sample of V +. The distinction between V and

8We assume throughout that all local samples have been computed using the same hash function h
and sample size bound M . When the sample sizes bounds of the local samples vary, we resize
the samples to a common bound using the techniques in section 6.3.

200

6.4.1 Multiset Unions

V + is important: SV is an AMIND(M) sample of V but a MIND(M) sample of V +.
In fact, we can say that any MIND(M) sample from a set X ⊇ V together with
the counter values matching each sample item’s frequency in V is an AMIND(M)
sample of V .

We leverage the above observation in our algorithm: To derive S], we compute in
a first step a MIND(M) sample of A+]B+ ⊇ A]B, and then determine appropriate
counter values. Define by SA ⊕ SB the set comprising the items with the M smallest
hash values in D(SA]SB). Observe that the ⊕ operator is symmetric and associative.

Theorem 6.6. The set S⊕ = SA ⊕ SB is a MIND(M) sample of A+]B+.

Proof. Denote by G = A+ ⊕B+ the set of items with the M smallest hash values in
D(A+]B+). We have to show that S⊕ = G. Observe that G contains the items with
the M ′ smallest values in D(A+) for some M ′ ≤M , and these M ′ values therefore
are also contained in SA, i.e., G∩D(A+) ⊆ SA. Similarly, G∩D(B+) ⊆ SB, so that
G ⊆ SA ∪ SB. For any r ∈ (SA ∪ SB) \ G, we have that h(r) > maxr′∈G h(r′) by
definition of G and because r ∈ A+]B+. Thus G in fact comprises the M smallest
hash values in SA ∪ SB, so that S⊕ = G. Now observe that, by definition, G is
precisely the MIND(M) synopsis of A+]B+.

Given S⊕, we can obtain the desired sample S] by adding counter values. The
following lemma helps us to obtain the frequency in A and B of all items in S⊕.

Lemma 6.1. For all r ∈ S⊕ and V ∈ {A,B }, we have r ∈ SV if and only if r ∈ V +.

Proof. Let r ∈ S⊕, so that r is among the items with the M smallest hash values of
D(A+]B+). Then r is among the items with the M smallest hash values in D(V +)
if r ∈ V +, so that r ∈ SV if r ∈ V +. Conversely, if r ∈ SV , then r ∈ V + because
SV ⊆ D(V +).

Denote by NV (r) the frequency of item r in multiset V . Because SV is an
AMIND(M) sample of V , we have NSV (r) = NV (r). Combining this observation
with lemma 6.1, we find that for all r ∈ S⊕

NV (r) =

{
NSV (r) r ∈ SV
0 otherwise,

(6.22)

so that NV (r) can be computed from SV . Now observe that

NA]B(r) = NA(r) +NB(r) (6.23)

denotes the frequency of item R in A]B. Therefore, the final sample is given by

S] = { (r,NA]B(r)) | r ∈ S⊕ } . (6.24)

Here, NA]B is used as a function to combine the counter values obtained from both
samples.

201

6 Distinct-Item Sampling

Theorem 6.7. The sample S] is an AMIND(M) sample of A]B.

Proof. According to (6.24), S⊕ and S] contain the same items. It follows from
theorem 6.6 that S] contains the items with the M smallest hash values in D(A+]
B+) ⊇ D(A] B). From lemma 6.1 and equations (6.22), (6.23), and (6.24) we
conclude that NS](r) = NA]B(r) for all r ∈ S]. Thus, S] is an AMIND(M) sample
of A]B and the theorem follows.

The size of the resulting (net) sample is equal to M when A+ = A and B+ = B,
but may otherwise be smaller than M . Properties of the sample size are discussed in
section 6.4.3.

6.4.2 Other Operations

As before, consider two datasets A and B with corresponding AMIND(M) samples
SA and SB. We first show how to compute samples SC and S\+ of the multiset
intersection and multiset difference, respectively, of A and B. The key idea remains
the same as for multiset unions: we first compute S⊕, which is a MIND(M) sample
of A+] B+, and then compute the frequencies of the items in A C B or A \+B,
respectively. Thus, we apply the above algorithm for multiset unions, but replace
the formula used to combine the counter values by

NACB(r) = min(NA(r), NB(r))

for multiset intersection and

NA\+B(r) = max(NA(r)−NB(r), 0)

for multiset difference.
Using the same idea, we can also support the set operations {∪,∩, \ }. To do so,

we cap the counter values of the participating datasets and the result by 1, thereby
eliminating duplicates. The corresponding functions for combining the frequencies
are given by

NA∪B(r) = min(1, NA(r) +NB(r)),
NA∩B(r) = min

[
1,min(NA(r), NB(r))

]
,

NA\B(r) = min(1, NA(r))−min(1, NB(r)).

We can now generalize our results to obtain an AMIND(M) sample over arbitrary
expressions involving the operations {],C, \+,∪,∩, \ }. Given an expression E
over datasets A1, . . . , An and the respective samples SA1 , . . . , SAn , we set S⊕ =
SA1 ⊕ · · · ⊕ SAn . To construct SE , we obtain the frequency of each item in E by
recursively applying the above formulas on NE(r). The recursion stops when only
item frequencies of the base datasets remain in the formula. For example, the
expression (A1 CA2) \+A3 becomes

N(A1CA2)\+A3
(r) = max

[
NA1CA2(r)−NA3(r), 0

]
= max

[
min(NA1(r), NA2(r))−NA3(r), 0

]
.

202

6.4.3 Analysis of Sample Size

The final sample SE is then given by

SE = { (r,NE(r)) | r ∈ S⊕ } .

Of course, the number of items in the net sample S∗E—that is, the number of non-zero
items in SE—depends on the number of deletions in the base datasets as well as on
the fraction of items that satisfy expression E. In the next section, we look more
closely at the distribution of the net sample size.

6.4.3 Analysis of Sample Size

Let E be an (multi)set expression on A1, . . . , An and set A = A1]· · ·]An. Moreover,
define A+

1 , . . . , A
+
n as before and set A+ = A+

1] · · ·] A+
n . Then, the items in S⊕

and thus the items in SE , including zero items, form a size-M uniform sample of
D(A+). To derive the size of the net sample S∗E , we are interested in the number
of items in D(A+) that also belong to the result of expression E. Set D = |D(A)|,
D+ = |D(A+)| and let DE = |D(E)| denote the number of distinct items in the
result of E. Applying (6.2), we find that the size of the net sample S∗E follows the
hypergeometric distribution with

Pr [|S∗E | = k] = H(k;D+, DE ,M).

It follows that, in expectation, the sample size equals

E [|S∗E |] =
DE

D+
M =

DE

D
· D
D+
·M.

As expected, the effective sample size depends on the selectivity of E (that is, DE/D)
and the fraction of non-deleted items (D/D+). When E is highly selective and/or
there have been many deletions, the resulting sample will be small. For this reason,
our techniques can only be used when E is sufficiently large. Note that, however,
small result sizes may not be a problem in the context of distinct-item estimation,
where we are only interested in an estimate of DE . As indicated in figure 6.5 and
more closely examined in Beyer et al. (2007), these estimates can still be quite
accurate.

6.5 Summary

We have extended the well-known min-hash sampling scheme for distinct-item sam-
pling with support for deletions. The key idea behind our augmented min-hash
sampling scheme, AMIND(M), is to augment the sample with the multiplicities of
the sampled items. As perhaps expected, the sample size distribution of our scheme
does not depend on the total number of deletions but only on the number of deletions
that ultimately remove a distinct item from the dataset (i.e., the last copy). If these
deletions are relatively infrequent, they are effectively compensated over the long run.
A large part of our discussion focused around the problem of estimating the number

203

6 Distinct-Item Sampling

of distinct items in the base data or a subset thereof. This problem is important
because distinct-count estimates are required to determine scale-up factors from the
sample to the full dataset. We reviewed earlier estimators from related problem areas
and used them to develop an unbiased, asymptotically optimal estimator. The key
ideas behind our estimator can also be exploited for the sole purpose of distinct-item
estimation, that is, without even maintaining the sample. We have also shown how
multiple AMIND(M) samples can be combined to derive an AMIND(M) sample
of an arbitrary combination of their underlying datasets, where the combination
consists of (multi)set operations of union, intersection and difference. This flexibility
makes our AMIND(M) scheme interesting for traditional set sampling.

204

Chapter 7

Data Stream Sampling

With this chapter,1 we leave the area of database sampling and turn our attention
to sampling from a time-based sliding window defined over a data stream. Our
main focus lies on bounded sampling schemes; we provide a novel uniform sampling
scheme and discuss its properties in terms of sample size and computational cost. We
also develop a stratified scheme that overcomes some of the limitations of uniform
sampling for sliding windows.

In section 7.1, we prove as a negative result that no bounded-space uniform
sampling scheme over a time-based sliding window can guarantee a minimum sample
size. As a byproduct, we infer that priority sampling, PS(M),—which maintains
a fixed-size sample and is consequently unbounded in space—is optimal in terms
of space consumption. Nevertheless, in spite of being optimal, PS(M) has a high
space overhead that leads to a low space efficiency. To sample in bounded space, we
develop a related scheme called bounded priority sampling, BPS(M), which can be
seen as a modification of priority sampling, although the underlying idea is different.
BPS(M) cannot provide strict sample size guarantees but it is able to provide strong
probabilistic ones. In fact, our experiments indicate that—in addition to enforcing
space bounds—BPS(M) has a higher space efficiency than PS(M). Finally, we show
how to sample without replacement and how to estimate the window size directly
from the sample by applying our techniques from chapter 6.

In section 7.2, we propose a stratified sampling scheme for time-based sliding
windows. Recall that in stratified sampling, the dataset is divided into a set of
disjoint strata and a sample is taken from each of these strata. Usually, the strata
are constructed as required by the application and we can make use of arbitrary
sampling schemes in each stratum. For this reason, we did not explicitly discuss
stratified sampling in earlier chapters. However, the situation is different for data
stream sampling because we can exploit stratification to facilitate efficient sample
maintenance. In fact, out merge-based stratification algorithm divides the window
into strata of approximately equal size; it then maintains a uniform sample of each
stratum. The algorithm merges adjacent strata from time to time; the main challenge
is to decide when and which strata to merge. In our solution, we treat the problem
as an optimization problem and give a dynamic programming algorithm to determine

1The material in this chapter has been developed jointly with Wolfgang Lehner. The chapter is
based on Gemulla and Lehner (2008) with copyright held by ACM. The original publication is
available at http://portal.acm.org/citation.cfm?id=1376616.1376657.

205

http://portal.acm.org/citation.cfm?id=1376616.1376657

7 Data Stream Sampling

the optimum stratum boundaries. The resulting algorithm, termed MBS, has an
even higher space efficiency than BPS(M). The downside is that stratified samples
cannot be used with all applications so that the advantages of MBS cannot always
be exploited.

7.1 Uniform Sampling

We start with the discussion of uniform sampling. Our negative result about bounded-
space uniform sampling is stated and proven in section 7.1.1. We briefly review
priority sampling in section 7.1.2, before introducing and analyzing our bounded
priority sampling scheme in section 7.1.3. Afterwards, we give an estimator for
the window size in section 7.1.4 and outline some optimizations for our scheme in
section 7.1.5. Section 7.1.6 concludes with an overview of our experimental study.

We pick up our notation from section 3.5.4. In short, the data stream R is modeled
as a sequence of items e1, e2, Each item ei has form (ti, ri),2 where ti ∈ R is a
timestamp and ri ∈ R is the item’s value. The set of items that arrive until time
t (including) is denoted R(t). A time-based sliding window of length ∆ is denoted
by W∆(t) = R(t) \ R(t −∆) or W (t) for short. The window size—the number of
items in the window—is denoted by N(t) = |W (t)|. The uniform sample from W (t)
is denoted by S(t).

7.1.1 A Negative Result

One might hope that there is a sampling scheme that is able to maintain a fixed-size
uniform sample in bounded space. However, the following theorem asserts that such
a scheme does not exist.

Theorem 7.1. Fix some time t and set N = N(t). Any algorithm that maintains a
fixed-size uniform random sample of size M has to store at least Ω(M logN) items
in expectation.

Proof. Let A be an algorithm that maintains a uniform size-M sample of a time-
based sliding window and denote by W = { em+1, . . . , em+N } the items in the window
at time t. Furthermore, denote by t−j = tm+j + ∆ the point in time when item em+j

expires, 1 ≤ j < N , and set t−0 = t. Now, consider the case where no new items arrive
in the stream until all the N items have expired. Let Ij be a 0/1-random variable and
set Ij = 1 if the sample reported by A at time t−j contains item em+j . Otherwise, set
Ij = 0. Since A has to store all items it eventually reports, it follows that—at time
t−0 —A stores at least X =

∑
Ij items. We have to show that E [X] ≥ Ω(M logN).

Since A is a uniform sampling scheme, item em+1 is reported at time t−0 with
probability M/N . At time t−1 , only N − 1 items remain in the window and item

2We do not use triple (i, ti, ri) as in section 3.5.4 because the item index i is unimportant for
time-based windows.

206

7.1.2 Priority Sampling Revisited

em+2 is reported with probability M/(N − 1). The argument can be repeated until
at time t−N−M , all the M remaining items are reported by A . It follows that

Pr [Ij = 1] =

{
M/(N − j) 0 ≤ j < N −M
1 otherwise

(7.1)

for 0 ≤ j < N . Note that only the marginal probabilities are given in (7.1); joint
probabilities like Pr [I1 = 1, I2 = 1] depend on the internals of A . By the linearity
of expected value, and since E [Ij] = Pr [Ij = 1], we find that

E [X] =
N−1∑
j=0

E [Ij] = M(HN −HM + 1) = Ω(M logN) .

This completes the proof.

It follows directly that it is impossible to maintain a fixed-size uniform random
sample from a time-based sliding window in bounded space. By theorem 7.1, such
maintenance requires that we store a number of items logarithmic to the window
size. Because the window size is unbounded, so is the expected space consumption.
Of course, the worst-case space consumption is at least as large; it is also unbounded.
Moreover, it is impossible to guarantee a minimum sample size in bounded space
because any algorithm that guarantees a minimum sample size can be used to
maintain a sample of size 1.

At a first glance, our negative results seem to imply that efficient sample mainte-
nance in bounded space is infeasible. This is because we cannot provide any strict
guarantees on the sample size. However, we will see later that we can still provide
strong probabilistic guarantees. Our algorithms completely avoid the Ω(logN) mul-
tiplicative overhead of theorem 7.1; they have a superior space efficiency than any
fixed-size sampling scheme.

7.1.2 Priority Sampling Revisited

We briefly review priority sampling because it forms the basis of our schemes. Recall
that priority sampling, or PS(1), maintains a size-1 uniform sample; larger samples
are obtained by maintaining multiple samples in parallel. From theorem 7.1, we
immediately learn that the priority sampling requires unbounded space.

The idea behind priority sampling is as follows: A random priority pi chosen
uniformly and at random from the unity interval is associated with each item ei ∈ R.
The sample S(t) then consists of the item in W (t) with the highest priority.3 In
addition to the sample item, the scheme stores a set of replacement items, which
replace the highest-priority item when it expires. This replacement set contains all
the items for which there is no item with both a larger timestamp and a higher

3That’s similar to MIND(1), where we keep the item with the smallest hash value.

207

7 Data Stream Sampling

A B B B B F G

CC C

E

C

D

C

F

G

H

sample

item
replacement

set

D D E

GFEDCA B H t

0.4 0.8 0.6 0.4 0.2 0.5 0.9 0.7

Figure 7.1: Illustration of priority sampling

priority because only these items may eventually become the highest-priority item at
some later point of time.

Figure 7.1 gives an example of the sampling process. A solid black circle represents
the arrival of an item; its name and priority are given below and above, respectively.
The vertical bars on the timeline indicate the window length, item expirations are
indicated by white circles, and double-expirations4 are dotted white circles. Below
the timeline, the current sample item and the set of replacement items are shown. It
can be seen that the number of replacement items stored by the algorithm varies
over time. In fact, the replacement set is the reason for the unbounded space
consumption: it contains between 0 and N(t)− 1 items and roughly lnN(t) items
on average (Babcock et al. 2002). From theorem 7.1, we infer that priority sampling
is asymptotically optimal in terms of expected space consumption; we cannot hope
to find a better fixed-size scheme.

7.1.3 Bounded Priority Sampling

In this section, we develop our bounded priority sampling scheme, BPS(M), which
is based on priority sampling. In what follows, we describe the BPS(1) scheme.
To obtain a larger with-replacement sample, one may run multiple independent
BPS(1) samples in parallel. A more efficient without-replacement scheme is given in
section E.

A. Algorithmic Description

Bounded priority sampling also assigns random priorities to arriving items but stores
at most two items in memory: a candidate item from W (t) and a test item from
W (t−∆). The test item is used to determine whether or not the candidate item is
reported as a sample item, see the discussion below. The maintenance of these two
items is as follows:

(a) Arrival of item ei. If there is currently no candidate item or if the priority
of ei is larger than the priority of the candidate item, ei becomes the new

4An item that arrived at time t double-expires at time t+ 2∆.

208

7.1.3 Bounded Priority Sampling

candidate item and the old candidate is discarded. Otherwise, the arriving
item is ignored.

(b) Expiration of candidate item. The expired candidate becomes the test item;
we only store the timestamp and the priority of the test item. There is no
candidate item until the next item arrives in the stream.

(c) Double-expiration of test item. The test item is discarded.

The above algorithm maintains the following invariant: The candidate item always
equals the highest-priority item that has arrived in the stream since the expiration of
the former candidate item. This might or might not coincide with the highest-priority
item in the current window and we use the test item to distinguish between these two
cases. Suppose that at some time, the candidate item expires and becomes the test
item. Then the candidate must have been the highest-priority item in the window
right before its expiration. (If there were an item with a higher priority, this item
would have replaced the candidate.) It follows that whenever the candidate item
has a higher priority than the current test item, we know that the candidate is the
highest-priority item since the arrival of the test item and therefore since the start of
the current window. Similarly, whenever there is no test item stored by BPS, there
hasn’t been an expiration of a candidate item for at least one window length, so that
the candidate also equals the highest-priority item in the window. In both cases, we
report the candidate as a sample item. Otherwise, if the candidate item has a lower
priority than the test item, we have no means to detect whether or not the candidate
equals the highest-priority item in the window and no sample item is reported.

The complete pseudocode of BPS(1) is given as algorithm 7.1. The internal data
structures of algorithm 7.1 are updated only when a new item arrives in the stream
(Arrival) or when the sample is queried (Report). This has the advantage that the
sample does not have to be monitored when no data arrives in the stream. In both
cases, arrival and query, expired candidates become test items and double-expired
test items are discarded (RemoveExpired).

B. Example

Before we assert the correctness of BPS and analyze its properties, we give an
example of the sampling process in figure 7.2. The current candidate item and test
item are shown below the timeline. If the candidate item is shaded, it is reported as
a sample item; otherwise, no sample item is reported. The letters below the BPS
data structure refer to cases (a), (b) and (c) above. As long as no expiration occurs,
the candidate stored by BPS equals the highest-priority item in the window and is
therefore reported as a sample item. The situation changes as B expires. BPS then
makes item B the test item and—because there is no candidate item anymore—fails
to report a sample item. This failure can be seen as a consequence of theorem 7.1:
BPS is a bounded-space sampling scheme and thus cannot guarantee a fixed sample
size. Item F becomes the new candidate item upon its arrival. However, F is not

209

7 Data Stream Sampling

Algorithm 7.1 Bounded priority sampling
1: ∆: window length
2: t: current time
3: (t, r): timestamp and value of arriving item
4: ecand = (tcand, rcand, pcand): timestamp, value and priority of candidate item
5: etest = (ttest, ptest): timestamp and priority of test item
6: Random(): returns a uniform random number between 0 and 1
7:

8: Arrival(t, r):
9: call RemoveExpired(t)

10: p← Random()
11: if ecand = empty ∨ p > pcand then
12: ecand ← (t, r, p)
13: end if
14:

15: Report(t):
16: call RemoveExpired(t)
17: if ecand = empty ∨ etest = empty then
18: return ecand

19: else if pcand > ptest then
20: return ecand

21: else
22: return empty
23: end if
24:

25: RemoveExpired(t) :
26: if ecand 6= empty ∧ tcand ≤ t−∆ then
27: etest ← (tcand, pcand)
28: ecand ← empty
29: end if
30: if etest 6= empty ∧ ttest ≤ t− 2∆ then
31: etest ← empty
32: end if

210

7.1.3 Bounded Priority Sampling

B

GFEDC

A B F

B

G

B

G

A B H t

0.4 0.8 0.6 0.4 0.2 0.5 0.9 0.7

test item

candidate item

(a) (a) (b) (a) (a) (c)

Figure 7.2: Illustration of bounded priority sampling

reported because its priority is lower than the priority of the test item B. And in
fact, not F but C is the highest-priority item in the window at this time. Later C
expires and F does become the highest-priority item in the window, but we still do
not report F since we are not aware of this situation. As G arrives, however, we
report a sample item again because G has a higher priority than the test item B.
Finally, item B is discarded from the BPS data structure as it double-expires.

C. Proof of Correctness

We now establish the correctness of the BPS algorithm. Recall that BPS produces
either an empty sample or a single-item sample. We have to show that whenever
BPS produces a sample item, this item is chosen uniformly and at random from the
items in the current sliding window.

Theorem 7.2. BPS is a uniform sampling scheme, that is, for any e ∈ W (t), we
have

Pr
[
S(t) = { e }

∣∣|S(t)| = 1
]

=
1

N(t)
.

Proof. Fix some time t and set S = S(t). Denote by emax the highest-priority item in
W (t) and suppose that emax has priority pmax. Furthermore, denote by e′ ∈W (t−∆)
the candidate item stored in the BPS data structure at time t−∆ (if there is one)
and let p′ be the priority of e′. Note that both emax and e′ are random variables.
There are 3 cases.

1. There is no candidate item at time t−∆. Then, at time t, emax is the candidate
item and there is no test item. We have S = { emax }.

2. Item e′ has a smaller priority than emax. Then, emax is the candidate item
at time t and—depending on whether e′ expired before or after the arrival
of emax—the test item is either equal to e′ or empty. In both cases, we have
S = { emax }.

3. Item e′ has a higher priority than emax. Then, e′ is still the candidate item at
the time of its expiration, since there is no higher-priority item in W (t) that
might have replaced e′. Thus, item e′ becomes the test item upon its expiration

211

7 Data Stream Sampling

and continues to be the test item up to time t—it double-expires somewhere
in the interval (t, t+ ∆). It follows that no item is reported at time t so that
S = ∅, because the priority of the candidate item (≤ pmax) is lower than the
priority p′ of the test item.

To summarize, we have

S =

{ emax } no candidate item at time t−∆
{ emax } pmax > p′

∅ otherwise.

(7.2)

Uniformity now follows since (7.2) does not depend on the values, timestamps or
order of the individual items in W (t). For any e ∈W (t), we have

Pr [S = { e } | |S| = 1] = Pr [e = emax] =
1

N(t)

and the theorem follows.

D. Sample Size Properties

We now analyze the sample size of the BPS scheme. Clearly, the sample size is
probabilistic and its exact distribution depends on the entire history of the data
stream. However, in the light of theorem 7.3 below, it becomes evident that we
can still provide a local lower bound on the probability that the scheme produces
a sample item. The lower bound is local because it changes over time; we cannot
guarantee a global lower bound other than 0 that holds at any arbitrary time without
a-priori knowledge of the data stream.

Theorem 7.3. The probability that BPS succeeds in producing a sample item at
time t is bounded from below by

Pr [|S(t)| = 1] ≥ N(t)
N(t−∆) +N(t)

.

Proof. BPS produces a sample item if the highest-priority item emax ∈W (t) has a
higher priority than the candidate item e′ stored in the BPS data structure right
before the start of W (t); see (7.2) above. In the worst case, e′ equals the highest-
priority item in W (t−∆). Now suppose that we order the items in W (t−∆)∪W (t)
in descending order of their priorities. BPS succeeds for sure if the first of the ordered
items is an element of W (t). Since the priorities are independent and identically
distributed, this event occurs with probability N(t)/(N(t − ∆) + N(t)) and the
assertion of the theorem follows.

If the arrival rate of the items in the data stream is constant so thatN(t) = N(t−∆),
BPS succeeds with probability of at least 50%. If the rate increases or decreases, the
success probability will also increase or decrease, respectively.

212

7.1.3 Bounded Priority Sampling

E. Sampling Multiple Items

The BPS scheme as given above can be used to maintain a single-item sample. As
mentioned before, larger samples can be obtained by maintaining M independent BPS
samples S1, . . . , SM in parallel. The sample is then set to S(t) = S1(t)] · · ·] SM (t).
We have

E [|S(t)|] =
M∑
i=1

Pr [|Si(t)| = 1] ≥M N(t)
N(t−∆) +N(t)

by the linearity of the expected value. However, this approach has two major
drawbacks. First, the sample S is a with-replacement sample, that is, each item in
the window may be sampled more than once. The net sample size after duplicate
removal might be smaller than |S|. Second and more importantly, the maintenance
of the M independent samples is expensive. Since a single copy of the BPS data
structure requires constant time per arriving item, the per-item processing time is
O(M) and the total time to process a window of size N is O(MN). If M is large,
the overhead to maintain the sample can be significant.

We now develop a without-replacement sampling scheme called BPSWOR(M).
In general, without-replacement samples are preferable since they contain more
information about the data. The scheme is as follows: We modify BPS so as to
store M candidates and M test items simultaneously. Denote by Scand the set of
candidates and by Stest the set of test items. The sampling process is similar to BPS:
An arriving item e becomes a candidate when either |Scand| < M or e has a higher
priority than the lowest-priority item in Scand. In the latter case, the lowest-priority
item is discarded in favor of e. As before, expiring candidates become test items and
double-expiring test items are discarded. The sample SWOR(t) is then given by

SWOR(t) = top-M
(
Scand(t) ∪ Stest(t)

)
∩ Scand(t),

where top-M(A) determines the items in A with the M highest priorities. The
sample thus consists of the candidate items that belong to the M highest-priority
items currently stored in the data structure. Note that for M = 1, BPS(M) and
BPSWOR(M) coincide. SWOR(t) is a uniform random sample of W (t) without
replacement; the proof is similar to the proof of theorem 7.2. Also, using an argument
as in the proof of theorem 7.3, we can show that

E [SWOR(t)] ≥M N(t)
N(t−∆) +N(t)

.

Thus, BPS(M) and BPSWOR(M) have the same lower bound on the expected gross
sample size. The cost of processing a window of size N is O(MN) if the candidates
are stored in a simple array. A more efficient approach—which also improves the cost
in comparison to BPS(M)—is to store the candidates in a treap; see the discussion
on page 182. In the treap, the items are arranged in order with respect to the

213

7 Data Stream Sampling

timestamps and in heap-order with respect to the priorities. The expected cost of
BPSWOR then decreases to O(N +M logM logN) in expectation.5

7.1.4 Estimation of Window Size

Sampling from a sliding window is similar to sampling from the distinct items in
a dataset in that we do not know the size of the underlying window or dataset,
respectively. For some applications, however, it is important to be able to at least
estimate the window size in order to make effective use of the sample. For example,
the window sum of an attribute is typically estimated as the sample average of the
respective attribute multiplied by the window size. Thus—in some applications—
knowledge of the window size is important to determine scale-up factors.

In our discussion on distinct-item sampling, we pointed out that the dataset size
can be estimated using either external or internal estimation. The same arguments
apply here: Exact maintenance of the number of items in the window requires
that we store all the timestamps in the window in order to deal with expirations.
Typically, this approach is infeasible in practice. Approximate data structures do exist
and can be leveraged to support the sampling process (Datar and Muthukrishnan
2002). If such alternate data structures are unavailable or infeasible to maintain,
we can come up with an estimate of the window size directly from the sample. Set
W2∆(t) = W∆(t − ∆) ∪W∆(t) and denote by p(M) the priority of the item with
the M -th highest priority in W2∆(t). We make use of the distinct-count results of
section 6.2.2:6 According to (6.17), an unbiased estimator for N(t) is given by

N̂W (t) =
|W∆(t) ∩ top-MW2∆(t)|

M
· M − 1

1− p(M)
.

Here, the first factor estimates the fraction of non-expired items in W2∆(t) from the
top-M items (which can be viewed as a random sample of W2∆), while the second
factor is an estimate of |W2∆(t)| itself. Now, suppose that we maintain the sample
using BPSWOR(M). Set S2(t) = Scand(t) ∪ Stest(t) and denote by p′(M) the priority
of the item with the M -th highest priority in S2. Consider the estimator

N̂S(t) =
|S(t) ∩ top-MS2(t)|

M
· M − 1

1− p′(M)

.

This estimator is similar to N̂W (t) but solely accesses information available in the
sample. Both estimators coincide if and only if top-MS2(t) = top-MW2∆(t). This
happens if at least |W∆(t − ∆) ∩ top-MW2∆(t)| items have been reported as the
sample at time t−∆. Otherwise, the first factor in N̂S(t) will overestimate the first

5Following an argument as in Beyer et al. (2007), at most O(M logN) items of the window are
accepted into the candidate set in expectation and each accepted item incurs an expected cost of
O(logM). At most M items (double-)expire while processing a window, so that the expected
cost to process (double-)expirations is O(M logM).

6The results in section 6.2.2 also apply to priority sampling without replacement.

214

7.1.5 Optimizations

factor in N̂W (t), while the second factor will underestimate the respective factor
in N̂W (t). In our experiments, we found that the estimator N̂S has negligible bias
and low variance. Thus, both over- and underestimation seem to balance smoothly,
although we do not make any formal claims here.

7.1.5 Optimizations

We now briefly present two optimizations that improve upon the BPS and BPSWOR
schemes presented above.

Early expiration. Fix some time t and suppose that the application using the
sample can guarantee that it does not query the sample until some time t′, where
t < t′ < t+ ∆. This situation might occur, for example, when the sample is queried
on a periodical basis. If such knowledge is available, we can improve the probability
that BPS produces a sample item at time t + ∆ and later. The idea is to check
at time t whether the current candidate item e expires before time t′. If so, we
immediately make e the test item without waiting for its expiration. Then, at time
t + ∆, the sample is known to contain the highest-priority item of W (t + ∆); see
the first case in (7.2). To make this knowledge available to the sampling algorithm,
we backdate item e to time t − ∆ right before we make it the test item; e then
double-expires at time t+ ∆. This approach does not affect the correctness of the
scheme, but increases the sample size if the sample is queried infrequently. It can
also be used with BPSWOR.

Switching sampling on and off. When BPSWOR is used for sample maintenance,
the sample size can also be increased at times where the stream rate is very low. We
say that an item is discarded if (1) the item arrives but is not made a candidate or (2)
the item is evicted from the candidate set due to the arrival of a new higher-priority
item. Now suppose that BPSWOR did not discard an item for a time span of at
least ∆. It is easy to see that the candidate set then contains all the items in the
window. Thus we report the entire candidate set as the sample when the timestamp
of the last eviction is more then ∆ time units in the past. With this optimization,
sampling is “switched off” as soon as the algorithm detects that the entire window
fits into the available space. It is “switched on” again when the window size exceeds
the available space.

7.1.6 Experiments

We conducted an experimental study of BPS and BPSWOR for both synthetic and
real-world datasets. In summary, we found that:

• BPSWOR is the method of choice when the available memory is limited and
the data stream rate is varying. It then produces larger samples than both
Bernoulli sampling and PSWOR. Also, BPSWOR is the only scheme that does

215

7 Data Stream Sampling

not require a-priori information about the data stream and guarantees an upper
bound on the memory consumption.

• The window-size ratio of the current window to both the current and previous
window has a significant impact on the sample size of BPSWOR. A small ratio
leads to smaller samples, while a large ratio results in larger samples. For
a given ratio, the sample size has low variance and is skewed towards larger
samples.

• BPSWOR is superior to BPS because it is significantly faster and samples
without replacement.

• The window-size estimate of section 7.1.4 has low relative error. The relative
error decreases with an increasing sample size.

A. Setup

We implemented BPS(M), BPSWOR(M), PS(M), PSWOR(M) and BERNW(q) in
Java 1.6. The experiments have been run on a workstation PC with a 3 GHz Intel
Pentium 4 processor and 2.5 GB main memory.

Almost all of the experiments have been run on real-world datasets because we
felt that synthetic datasets cannot capture the complex distribution of real-world
arrival rates. An exception is made in section B where we compare BPSWOR with
alternative unbounded sampling schemes. We used two real datasets, which reflect
two different types of data streams frequently found in practice. The NETWORK
dataset, which contains network traffic data, has a very bursty arrival rate with
high short-term peaks. In contrast, the SEARCH dataset contains usage statistics
of a search engine and the arrival rate changes slowly; it basically depends on the
time of day. These two datasets allowed us to study the influence of the evolution
of the arrival rates on the sampling process. The NETWORK dataset has been
collected by monitoring one of our web servers for a period of 1 month. The dataset
contains 8, 430, 904 items, where each item represents a TCP packet and consists of
a timestamp (8 bytes), a source IP and port (4 + 2 bytes), a destination IP and port
(4 + 2 bytes) and the size of the user data (2 bytes). The SEARCH dataset has been
collected in a period of 3 months and contains 36, 389, 565 items. Each item consists
of a timestamp (8 bytes) and a user id (4 bytes).

As before, we do not report the estimation error of a specific estimate derived from
the sample but rather report the (distribution of the) sample size. The motivation
behind this approach is that two uniform samples of the same size are identical
in distribution, no matter which scheme has been used to compute them. Larger
samples inevitably lead to a smaller estimation errors: schemes that produce larger
samples are superior to schemes that produce smaller samples.

216

7.1.6 Experiments

B. Synthetic Data

In a first experiment, we compared BERNW, PSWOR and BPSWOR. Neither
BERNW nor PSWOR can guarantee an upper bound on the space consumption
and—without a-priori knowledge of the stream—it is impossible to parametrize them
to only infrequently exceed the space bound. The goal of this experiment is to
compare the sample size and space consumption of the three schemes under the
assumption that such a parametrization is possible. For this purpose, we generated
a synthetic data stream, where each item of the data stream consists of an 8-byte
timestamp and 32 bytes of dummy data. To generate the timestamps, we modeled
the arrival rate of the stream using a sine curve with a 24h-period, which takes values
between 3,000 and 5,000 items per hour. We superimposed the probability density
function (PDF) of a normal distribution with mean 24 and variance 0.5 on the sine
curve; the PDF has been scaled so that it takes a maximum of 30,000 items per hour.
This models real-world scenarios where the peak arrival rate (scaled PDF) is much
higher than the average arrival rate (sine curve).

We used the three sampling schemes to maintain a sample from a sliding window
of 1 hour length; the window size over time is given in figure 7.3. We used a space
budget of 32 kbytes; at most 819 items can be stored in 32 kbytes space. For the
sampling schemes, we used parameters MBPSWOR = 585 (number of candidate/test
items), MPSWOR = 113 (sample size) and qBERNW = 0.0276 (sampling rate). The
latter two parameters have been chosen so that the expected space consumption at
the peak window size equals 32 kbytes—as discussed above, this parametrization is
only possible because we know the behavior of the stream in advance. During the
sampling process, we monitored both sample size and space consumption; the results
are given in figure 7.4.

Bernoulli sampling. The size of the BERNW sample follows the size of the window:
It fluctuates around ≈ 110 items in the average case but stays close to the 819 items
at peak times. The space consumption of the sample is proportional to the sample
size; a large fraction of the available space remains unused in the average case.

Priority sampling. PSWOR produces a constant sample size of 113 items. The space
consumption has a logarithmic dependency to the size of the window because—in
addition to the sample items—PSWOR also stores the replacement set and the
priority of each item.

Bounded priority sampling. BPSWOR produces a sample size of ≈ 300 items in
the average case and therefore has a much better space utilization than BERNW
and PSWOR. When the peak arrives, the sample size first grows above, then falls
below the 300-item average. Afterwards it stabilizes again. By theorem 7.3, the
sample size depends on the ratio of the number of items in the current window to the
number of items in both the current and previous window together. This fraction
is roughly constant in the average case but varies with the arrival of the peak load.

217

7 Data Stream Sampling

0 5 10 15 20 25 30 35

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

Time (hours)

W
in

d
o
w

 s
iz

e

Figure 7.3: Progression of the window size over time (synthetic data)

Interestingly, the scheme almost always uses the entire available memory to store
the candidate items and the test items. The space consumption slightly decreases
when the peak arrives. In this case, we store fewer than M test items because—due
to the increased arrival rate—candidate items are replaced by new items before their
expiration and so do not become test items.

To summarize, each of the three schemes has a distinctive advantage: BERNW
does not have any memory overhead, PSWOR guarantees a fixed sample size and
BPSWOR samples in bounded space. If the available memory is limited, BPSWOR
is the method of choice because it produces larger sample sizes than BERNW or
PSWOR and does not require any a-priori knowledge about the data stream. For these
reasons, we do not consider BERNW and PSWOR for our real-world experiments.

C. Real data

Next, we ran BPS and BPSWOR on our real-world datasets with a window size of
one hour. We monitored the sample size, elapsed time, and the window-size estimate
during the sampling process and recorded the respective values at every full hour.
We did not record more frequently so as to minimize the correlation between the
measurements. The experiment was repeated with space budgets ranging from 1
kbyte to 32 kbytes. For each space budget, the experiment was repeated 32 times.

218

7.1.6 Experiments

0 5 10 15 20 25 30 35

0
2
0
0

4
0
0

6
0
0

8
0
0

Time

S
a
m

p
le

 s
iz

e

Upper bound

BPSWOR
PSWOR
BERNW

(a) Sample size

0 5 10 15 20 25 30 35

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Time

S
p
a
ce

 c
o
n
su

m
p
ti

o
n
 (

k
b
y
te

s)

Upper bound

BPSWOR
PSWOR
BERNW

(b) Space consumption

Figure 7.4: Progression of sample size and space consumption over time (synthetic
data)

219

7 Data Stream Sampling

Sample size. In figure 7.5a, we report the distribution of the BPSWOR sample
size for the NETWORK dataset; similar results were observed with BPS. We used
a space budget of 32 kbytes, which corresponds to a value of M = 862. The figure
shows a histogram of the relative frequencies for varying sample sizes. As can be
seen, the sample size concentrates around the average of 448 items and varies in
the range from 11 to 862 items. The standard deviation of the sample size is 173
and in 95% of the cases, the sample size was larger than 176 items. By theorem 7.3,
the sample size depends on the ratio of the size of the current window to the size
of both the prior and the current window, or the window-size ratio for short. In
figure 7.6a, we give a histogram of the window-size ratios in the NETWORK dataset.
As can be seen, the distribution of the window-size ratio has a striking similarity
to the distribution of the sample size. To further investigate this issue, we give a
box-and-whisker plot of the sample size for varying ranges of window-size ratios in
figure 7.7a. In a box-and-whisker plot, a box ranging from the first quartile to the
third quartile of the distribution is drawn around the median value. From the box,
whiskers extend to the minimum and maximum values as long as these values lie
within 1.5 times the interquartile distance (=height of the box); the remaining values
are treated as outliers and are directly added to the plot. From the figure, it becomes
evident that the window-size ratio has a significant influence on the sample size. Also,
for each window-size ratio, the sample size has low variance and is skewed towards
larger samples. The skew results from the fact that the worst-case assumption of
theorem 7.3 does not always hold in practice; if it does not hold, the sample size is
larger.

In figures 7.5b, 7.6b and 7.7b, we give the corresponding results for the SEARCH
dataset. Since the items in the SEARCH dataset require less space than the NET-
WORK items, a larger value of M = 1, 170 was chosen. As can be seen in the figures,
the sample size distribution is much tighter because the arrival rate in the dataset
does not vary as rapidly. The sample size ranges from 0 items to 1, 170 items, where
a value of 0 has only been observed when the window was actually empty. The
samples size averages to 579 items and is larger than 447 items in 95% of the cases.

220

7.1.6 Experiments

Sample size

R
el

a
ti

v
e

fr
eq

u
en

cy

0 200 400 600 8000
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

U
p
p
er

 b
o
u
n
d

(a) NETWORK data

Sample size

R
el

a
ti

v
e

fr
eq

u
en

cy

0 200 400 600 800 1000

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

U
p
p
er

 b
o
u
n
d

(b) SEARCH data

Figure 7.5: Distribution of sample size (real data)

221

7 Data Stream Sampling

Ratio of window sizes

R
el

a
ti

v
e

fr
eq

u
en

cy

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

(a) NETWORK data

Ratio of window sizes

R
el

a
ti

v
e

fr
eq

u
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5

(b) SEARCH data

Figure 7.6: Distribution of window-size ratio (real data)

222

7.1.6 Experiments

[0,0.1] (0.2,0.3] (0.4,0.5] (0.6,0.7] (0.8,0.9]

2
0
0

4
0
0

6
0
0

8
0
0

Ratio of window sizes

S
a
m

p
le

 s
iz

e
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
lll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l
l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll
lll

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l
ll

l

l

l

l

l

l

l
l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
ll
l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

ll

l

ll

l

l

ll

l

ll

l

l

ll

l

ll

l

l
l

l

ll

l

l

ll

l

ll

l

l

l
l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

ll

l

l
l

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

ll

l

l

l

l
l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

l
l

l

l
l

l

l

l

l

l

ll

l

l

ll

l

l
l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l
l

l

ll

l

l
l

ll

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

ll

l

l

ll

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

ll

l

l

ll

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

ll

l

l

l
l

l

l
l

ll

l

l
ll

l
l

l

l
ll

l
l
l

l
ll

ll
l

l

ll

ll

l

l
ll

l

l

l

l

ll

l
l
l

l

ll

ll

l

l
ll

ll

l

l

ll

ll

l

l
ll

ll

l

l

ll

ll

l

l

ll

l
l

l

l

ll

l
l

l

l
ll

l

l

l

l

ll

ll
l

l

ll

ll

l

l

ll

l
l
l

l
ll

l
l

l

l

ll

l
l

l

l
ll

ll

l

l

ll

l
l

l

l
ll

ll

l

l
ll

ll

l

l

l
l

l
l

l

l
ll

l
l

l

l
ll

l
l

l

l

ll

l
l
l

l

ll

ll

l

l
ll

l
ll

l

ll

l
l

l

l
ll

l

l

l
l
l

ll
l
l

l

l
l
l
lll
lllll

l

l
l
l

ll
l
l
l
l

ll

l
ll
l
l
ll
llll
l
lllll
l
l
l
lll
l

l

l
ll
l
lll

l

l

l

ll

l

lll

l

lllllll
lllll

l

llllll

l

llllllll
Upper bound

(a) NETWORK data

[0,0.1] (0.2,0.3] (0.4,0.5] (0.6,0.7] (0.8,0.9]

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Ratio of window sizes

S
a
m

p
le

 s
iz

e

l

l

l

l

l

l

l

lllllll

l

ll

l

ll

l

l

l

l

l

lll

lll

l

l

lll
l

l

ll

lllllllll
lll
l
l
l
ll
lllll
llllllllll
llllll
lllllll
lllll
lll
l
l
ll
l
ll
l
lll
llllllll
ll
l
l
lllll
lll
l
l
lllll
lllll
l
llllllllllllll
l
llll
llllllll
ll
ll
ll
l
lll
l
l
llllll
l
l
l
llllllll
llll
llllllllll
l
llllllll
l
lllll
ll
l
l
llll
lllll
l
ll
ll
l
l
lll
lll
l
llll
ll
l
l
l
l
lllllll
lll
l
lll

l
lllllll
l
llllll
l
l
llllll
l
lllll
l
lllll
l
ll
lllllllllll
llllll
l
ll
l
ll
ll
l
llll
l
lllll
ll
lllll
ll
lll
l
l
l
ll
ll
lll
l
lllllll
l
ll
ll
l
l
l
l
llll
l
l
lllllll
l
llll
l
l
l
ll
lll
l
l
l
l
lllllllll
l
l
l
ll
l
l
l
l
l
l
ll
l
llll
ll
llllll
l
lllll
lllll
llll
ll
l
lll
l
llllllllllll
l
ll
l
llll
l
ll
l
l
l
l
llllllll
l
lll
l
lllllll
ll
lllll
l
llll
lll
ll
l
l
lll
lllllllll
l
lll
l
ll
l
llllllll
lllll
llllllll
llllllll
l
llll
l
l
llll
ll
llll
llllllllllllllllll
ll
l
l
llllllll
l
l
lll
l
lll
l
ll
lllllllllll
ll
lll

l
lllllll
l
l
l
lllllllll
ll
lllll
ll
lllll
llllll
llll
l
llll
l
lll
llllll
llllll
llllll
l

llllll
l
llll
l
lll
l
l

l

lll
lll
l
llllll
l
lll
ll
ll
l
lll
l
llllllllll
lllll
l
llll
l
lll
l
l
l
l
l
llll
lll
l
l
l
lll

l

ll
lll
l
lll
l
ll
l
ll

l

l
lllll
ll
ll

l
ll
l
l
l
lllllllll
llllllll
lllll
ll
l
lll

ll
ll
l
l
l

l
l
lllllllll
l
l
llll
l
l
lllllllll
l
llll
l
ll
llllll
lllll
ll
ll
l
l
lllllllllll
llll
llllll
l
llll
lll
l
llll
l
llllllllllll
l
l
llll
l
llll
ll
lllll
ll
l

ll
llllll
ll

l

l
l
ll
l
l
l
l
ll
lll
llll
lllllllllll
l
llll
l
ll
lllllll
l
lll
l
l
llllll
l
lllll
l
l
lll
ll
lllll
lllll
l
l
lll
lll
lllllll

l

llll
l
l
l
l
l
l
l
lllll
l
l
llll

l
lllllll
ll
ll
l

l
l
lllll
l
lll
ll
lllll
l
lllll
l
llll

l
l

ll
lll
l
lllllllll
l
lllll
l
ll
l
llllll
lllll
l
llll
ll
lllllllll
l
lllllll
l
l
llll
ll
ll
llll
l
l
llllllllll
l
l
l
llllllll
l
lllllllll
l
ll
llll
llll
lllllllll

l

ll
llllll
l
l
lllll

l
lllllllll
llllllll
l
lllllll
l
llll
l
llll
l
ll

l
l
llllll
llllll
lllllll
l
l
ll
l
lll

l
ll
llll
l
ll
lllllllllll
l
l
ll
l
lllll
l
llllll
l
lll
l
llllllllllllllllllll
llll
l
l

l
l
l
lll
llllllllllll

lllllllll
lllll
l
lll
lllllll

l
lll
ll
llllll
llll
lllll
lllllll
l
lll
l
l
l
llll
l
l
ll
l
l
lll
ll
l
lll
lllll
l
lllllllll
ll
l
lllllll
lll
lllll
ll
ll
lllllllll
l
l
l
lll
l
l
l
l
llllllll
l
l

llllllll
ll

l

ll
l
l
llll

l
llll
l

l

lllll

l

lllll

l

llllllllllllllllll
l

Upper bound

(b) SEARCH data

Figure 7.7: Sample size distribution and window size ratio (real data)

223

7 Data Stream Sampling

1 2 4 8 16 32 64 128

Space (kbytes)

M
il
li
se

co
n
d
s

p
er

 i
te

m

0
.0

0
1

0
.0

1
0
.1

1

BPS
BPSWOR

Figure 7.8: Execution time (NETWORK data)

Performance. In figure 7.8, we compare the performance of BPS and BPSWOR
for various space budgets on the NETWORK dataset. The figure shows the average
time in milliseconds required to process a single item. It has logarithmic axes. For
both algorithms, the per-item processing time increases with an increasing space
budget, but BPSWOR is significantly more efficient than BPS. The results verify the
theoretical analysis in section 7.1.3E. Since BPSWOR additionally samples without
replacement, it is clearly superior to BPS.

Estimation of window size. In a final experiment, we evaluated the accuracy and
precision of the window-size estimator given in section 7.1.4 in terms of its relative
error; the relative error of an estimate N̂ of N is defined as |N̂ −N |/N . Figure 7.9
displays the distribution of the relative error for the NETWORK and SEARCH
dataset, respectively, in a kernel-density plot. The relative error is given for memory
budgets of 32 kbytes, 64 kbytes and 128 kbytes for the entire sample; although only
the priorities are used for window-size estimation. For both datasets and all sample
sizes, the relative error almost always lies below 10% and often is much lower. As the
memory budget and thus the value of M increases, the estimation error decreases;
see section 6.2.2 for a detailed discussion of this behavior. We conclude that our
window size estimator produces low-error estimates and can be used when specialized
synopses for window-size estimation are unavailable.

224

7.1.6 Experiments

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0
1
0

2
0

3
0

4
0

5
0

6
0

Relative error of window size estimate

D
en

si
ty

128 kbytes
64 kbytes
32 kbytes

(a) NETWORK data

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

1
0

2
0

3
0

4
0

5
0

6
0

Relative error of window size estimate

D
en

si
ty

128 kbytes
64 kbytes
32 kbytes

(b) SEARCH data

Figure 7.9: Estimation of window size (real data)

225

7 Data Stream Sampling

7.2 Stratified Sampling

We now consider the problem of maintaining a stratified sample of a time-based
sliding window. The general idea is to partition the window into disjoint strata and to
maintain a uniform sample of each stratum (Haas 2009). Stratified sampling is often
superior to uniform sampling because a stratified scheme exploits correlations between
time and the quantity of interest. As will become evident later on, stratification
also allows us to maintain larger samples than BPSWOR in the same space. The
main drawback of stratified sampling is its limited applicability; for some problems,
it is difficult or even impossible to compute a global solution from the different
subsamples. For example, it is not known how the number of distinct items (of an
attribute) can be estimated from a stratified sample, while the problem has been
studied extensively for uniform samples (see section 2.3.2). If, however, the desired
analytical tasks can be performed on a stratified sample, stratification is often the
method of choice.

We consider stratified sampling schemes, which partition the window into H > 1
strata and maintain a uniform sample Sh of each stratum, 1 ≤ h ≤ H. Each sample
has a fixed size of M items so that the total sample size is HM . In addition to the
sample, we also store the stratum size Nh and the timestamp th of the upper stratum
boundary; these two quantities are required for sample maintenance. The main
challenge in stratified sampling is the placement of stratum boundaries because they
have a significant impact on the quality of the sample.7 In the simplest version, the
stream is divided into strata of equal width (time intervals); we refer to this strategy
as equi-width stratification. An alternative strategy is equi-depth stratification, where
the window is partitioned into strata of equal size (number of items). As shown
below, equi-depth stratification outperforms equi-width stratification when the arrival
rate of the data stream varies inside a window, but the strata are more difficult
to maintain. In fact, perfect equi-depth stratification is impossible to maintain so
that approximate solutions are needed. In this section, we develop a merge-based
stratification strategy that approximates equi-depth stratification to the best possible
extent.

Figure 7.10 illustrates equi-width stratification with parameters H = 4 and M = 1;
sampled items are represented by solid black circles. The figure displays a snapshot
of the sample at 3 different points in time, which are arranged vertically and
termed (a), (b) and (c). Note that the rightmost stratum ends at the right window
boundary and grows as new items arrive, while the leftmost stratum exceeds the
window and may contain expired items. The maintenance of the stratified sample
is significantly simpler than the maintenance of a uniform sample because arrivals
and expirations are not intermixed within strata. Arriving items are added to the
rightmost stratum and—since no expirations can occur—we can use RS(M) to
maintain the sample incrementally. On the contrary, expirations only affect the

7To see this, consider the simple case where all items in the window fall into only one of the H
strata. In this case, a fraction of 100(H − 1)/H% of the available space remains unused.

226

7.2.1 Effect of Stratum Sizes

window
stratum

boundary

sampled

item

t

t

t

expiration

1st stratum

(a)

(b)

(c)

A B C FD E G

B C FD E G H

C FD E G H I JK

Figure 7.10: Illustration of equi-width stratification

leftmost stratum. We remove expired items from the respective sample; the remaining
sample still represents a uniform sample of the non-expired part of the stratum (as
discussed in section 3.5.1D).

7.2.1 Effect of Stratum Sizes

The main advantage of equi-width stratification is its simplicity, the main disadvantage
is that the sampling fraction may vary widely across the strata. In the example of
figure 7.10c, the sampling fractions of the first, second and third stratum are given
by 50%, 100% and 16%, respectively. In general, dense regions of the stream are
underrepresented by an equi-width sample, while sparse regions are overrepresented.
Thus, we want to stratify the data stream in such a way that each stratum has
approximately the same size and therefore the same sampling fraction. Before we
discuss equi-depth stratification and our approximate algorithms, we investigate the
relationship of stratum sizes and accuracy with the help of a simple example.

Suppose that we want to estimate the window average µ of some attribute of
the stream from a stratified sample and assume for simplicity that the respective
attribute is normally distributed with mean µ and variance σ2. Further suppose
that at some time the window contains N items and is divided into H strata of sizes
N1, . . . , NH with

∑
Nh = N . Then, the standard Horvitz-Thompson estimator µ̂ of

µ is a weighted average of the per-stratum sample averages (see table 2.3), that is

µ̂ =
1
N

H∑
h=1

Nhµ̂h,

where µ̂h is the sample average of the h-th stratum. The estimator has variance

Var[µ̂] =
1
N2

H∑
h=1

N2
h Var[µ̂h] =

σ2

MN2

H∑
h=1

N2
h ,

227

7 Data Stream Sampling

where we used Var[µ̂h] = σ2/M . Thus, the variance of the estimator is proportional
to the sum of the squares of the stratum sizes, or similarly, the variance of the
stratum sizes:

Var [N1, . . . , NH] =
H∑
h=1

(
Nh −

N

H

)2

=
∑
N2
h

H
−
(
N

H

)2

(7.3)

The variance is minimized if all strata have the same size (best case) and maximized
if one stratum contains all the items in the window (worst case).

The above example is extremely simplified because we designed the stream in such
a way that the variance Var[µ̂h] of the estimate is equal in all strata. In general,
stratification is the more efficient the higher the correlation of the attribute of interest
with time gets (because time is the stratification variable). In our discussion, however,
we assume that no information about the intended use of the sample is available;
in this case, our best guess is to assume equal variance in each stratum. Thus, the
variance of the stratum sizes as given in (7.3) can be used to quantify the quality of
a given stratification.

7.2.2 Merge-Based Stratification

Perfect equi-depth stratification is impossible, since we cannot reposition stratum
boundaries arbitrarily. To see this, consider the state of the sample as given in
figure 7.10c. To achieve equi-depth stratification, we would have to (1) remove
the stratum boundary between items D and E, and (2) introduce a new stratum
boundary between H and I. Here, (1) represents a merge of the first and second
stratum. A sample of the merged stratum can be computed from the samples of the
individual strata using one of the algorithms in section 4.3; preferably the MERGE
algorithm of Brown and Haas (2006). In the example, the merged sample would
contain item C with probability 2/3 and item E with probability 1/3. In contrast,
(2) represents a split of the third stratum into two new strata, one containing items
F -H and one containing items I-K. In the case of a split, it is neither possible to
compute the samples of the two new strata nor to determine the stratum sizes. In
the example, prior to the split, the third stratum has size 6 and the sample contains
item I. Based on this information, it is impossible to come up with a sample of
stratum F -H; we cannot even determine that stratum F -H contains 3 items.

A. Algorithmic Description

Our merge-based stratified sampling scheme (MBS) approximates equi-depth stratifi-
cation to the extent possible. The main idea is to merge two adjacent strata from
time to time. Such a merge reduces the information stored about the two strata but
creates free space at the end of the sample, which can be used for future items. In
figure 7.11, we illustrate MBS on the example data stream. We start as before with
the 4 strata given in (a). Right after the arrival of item H, we merge stratum C-D
with stratum E to obtain stratum C-E. The decision of when and which strata to

228

7.2.2 Merge-Based Stratification

t

t

t

through

merging

through

expiration

(a)

(b)

(c)

A B C FD E G

B C FD E G H

C FD E G H I JK

Figure 7.11: Illustration of merge-based stratification

merge is the major challenge in designing the algorithm. After a merge, we use the
freed space to start a new, initially empty stratum. The state of the sample after
the creation of the new stratum is shown in (b). Subsequent arrivals are added to
the new stratum (items I, J and K). Finally, stratum A-B expires and, again, a
fresh stratum is created; see (c). Note that the sample is much more balanced than
with equi-width stratification (figure 7.10).

Before we discuss when to merge, we briefly describe how to merge. Suppose that
we want to merge two adjacent strata Rh and Rh+1 and 1 < h < H. Denote by
Sh, Nh, th the uniform sample (of size M), the stratum size and the upper boundary
of stratum Rh. Then, the merged stratum Rh ∪Rh+1 has size Nh +Nh+1 and upper
boundary th+1. The sample S is computed from Sh and Sh+1 using the MERGE
algorithm of Brown and Haas (2006) as discussed in section 4.3.1.

B. When To Merge Which Strata

The decision of when and which strata to merge is crucial for merge-based stratifica-
tion. Suppose that at some time t, the window is divided into H strata R1, . . . , RH
of size N1, . . . , NH , respectively. During the subsequent sampling process, a new
stratum is created when either (1) stratum R1 expires or (2) two adjacent strata are
merged. Observe that we have no influence on (1), but we can apply (2) as needed.
We now treat the problem of when and which strata to merge as an optimization
problem, where the optimization goal is to minimize the variance of the stratum
sizes at the time of the expiration of R1. Therefore—whenever the first stratum
expires—the sample looks as much like an equi-depth sample as possible.

Denote by R+ = { e1, . . . , eN+ } the set of items that arrive until the expiration
of stratum R1 (but have not yet arrived) and set N+ = |R+|.8 At the time of R1’s
expiration and before the creation of the new stratum, the window is divided into
H − 1 strata so that there are H − 2 inner stratum boundaries. The positions of the

8In practice, N+ is not known in advance; we address this issue in section C.

229

7 Data Stream Sampling

stratum boundaries depend on both the number and point in time of any merges we
perform. Our algorithm rests on the observation that for any way of putting l − 2
stratum boundaries in the sequence

R2, R3, . . . , RH , e1, e2, . . . , eN+ ,

there is at least one corresponding sequence of merges that results in the respective
stratification. For example, the stratification

R2 | R3 | · · · | RH , e1, . . . , eN+

is achieved if no merge is performed (vertical bars denote boundaries), while

R2 | · · · | Rh, Rh+1 | · · · | RH , e1, . . . , ei | ei+1, . . . , eN+

is achieved if stratum Rh and Rh+1 are merged after the arrival of item ei and
before the arrival of item ei+1. In general, for every stratum boundary in between
RH , e1, . . . , eN+ , we drop a stratum boundary in between R2, . . . , RH by performing
a merge operation at the respective point in time.

We can now reformulate the optimization problem: Find the partitioning of the
integers

N2, . . . , NH , 1, . . . , 1︸ ︷︷ ︸
N+ times

into H − 1 consecutive and non-empty partitions so that the variance (or sum of
squares) of the intra-partition sums is minimized. The problem can be solved using
dynamic programming in O

(
H(H +N+)2

)
time (Jagadish et al. 1998). In our

specific instance of the problem, however, the last N+ values of the sequence of
integers are all equal to 1. As shown below, we can leverage this fact to construct a
dynamic programming algorithm that obtains an optimum solution in only O

(
H3
)

time. Since N+ is typically large, the improvement in performance can be significant.
The algorithm is as follows. Let opt(k, h) be the minimum sum of squares when

k − 1 of the H − 2 boundaries are placed between N2, . . . , NH and one boundary
is placed right after Nh; 0 ≤ k ≤ H − 2 and k < h < H. Then, opt(k, h) can be
decomposed into two functions

opt(k, h) = f(k, h) + g(k, h),

where f(k, h) is the minimum sum of squares for the k partitions left of and including
Nh and g(k, h) is the minimum sum of squares for the H − k − 1 partitions to the
right of Nh. The decomposition significantly reduces the complexity because the
computation of g does not involve any optimization. To define g(k, h), observe that
by definition, there are no boundaries in between Nh+1, . . . , NH , so that these values
fall into a single partition and we can sum them up. The resulting part of the integer
sequence is then

Nh+1,H , 1, . . . , 1,

230

7.2.2 Merge-Based Stratification

where Ni,j =
∑j

h=iNh.9 In fact, g is minimized if all the H − k − 1 partitions have
the same size

Nh+1,H +N+

H − k − 1
.

If Nh+1,H is larger than this average size, the minimum value of g cannot be obtained.
In this case, the best choice is to put Nh+1,H in one stratum for its own; the remaining
H − k − 2 partitions then all have size

N+

H − k − 2
.

Thus, the function g is given by

g(k, h) =

(H − k − 1)
(
Nh+1,H+N+

H−k−1

)2
Nh+1,H <

Nh+1,H+N+

H−k−1

N2
h+1,H + (H − k − 2)

(
N+

H−k−2

)2
otherwise

The function f can be defined recursively with

f(0, h) = N2
2,h

f(k, h) = min
k≤j<h

{
f(k − 1, j) +N2

j+1,h

}
.

and the optimum solution is given by

min
0≤k≤H−2

min
k<h<H

opt(k, h).

To compute the optimum solution, we iterate over k in increasing order and memoize
the values of f(k, ·); these values will be reused for the computation of f(k + 1, ·).
The global solution and the corresponding stratum boundaries are tracked during
the process. Since each of the loop variables k, h and j take at most H different
values, the total time complexity is O

(
H3
)
. The algorithm requires O(H) space.

C. Estimation of Arriving Item Count

The decision of when to merge is dependent on the number N+ of items that arrive
until the expiration of the first stratum. In practice, N+ is unknown and has to be
estimated. In this section, we propose a simple and fast-to-compute estimator for
N+. Especially for bursty data streams, estimation errors can occur; we therefore
discuss how to make MBS robust against estimation errors.

As before, suppose that—at some time t—the sample consists of H strata of sizes
N1, . . . , NH and denote by th the upper boundary of the h-th stratum, 1 ≤ h ≤ H.
Furthermore, denote by ∆− = t1 + ∆− t the time span until the expiration of the
first stratum. We want to predict the number of items that arrive until time t+ ∆−.

9Ni,j can be computed in constant time with the help of an array containing the prefix sums
N2,2, . . . , N2,H (Jagadish et al. 1998).

231

7 Data Stream Sampling

Denote by j the stratum index such that t− tj > ∆− and t− tj+1 ≤ ∆−. An estimate
N̂+ of N+ is then given by

N̂+ = ∆−
∑H

h=j+1Nh

t− tj
.

The estimate roughly equals the amount of items that arrived in the last ∆− time
units. The intuition behind this estimator is that the amount of history we use
for estimation depends on how far we want to extrapolate into the future. In
conjunction with the robustness techniques discussed below, this approach showed a
good performance in our experiments.

Whenever a stratum expires, we compute the estimate N̂+ and—based on this
estimate—determine the optimum sequence of merges using the algorithm given in
section B. Denote by m̂ ≥ 0 the total number of merges in the resulting sequence
and by N̂+

1 the number of items that arrive before the first merge. In general, we
now wait for N̂+

1 items to arrive in the stream and then perform a merge operation.
Note that the value of m̂ (N̂+

1) is a monotonically increasing (decreasing) function of
N̂+; we perform the more merges the more items arrive before the expiration of the
first stratum. Thus, underestimation may lead to too few merges and overestimation
may lead to too many merges. To make MBS robust against estimation errors, we
recompute the sequence of merges whenever we observe that the data stream behaves
differently than predicted. There are two cases:

• m̂ = 0: We recompute m̂ and N̂+
1 only if more than N̂+ items arrive in the

stream, so that a merge may become profitable. This strategy is optimal if
N̂+ ≥ N+ but might otherwise lead to a tardy merge.

• m̂ > 0: Denote by t̂ = (N̂+
1 /N̂

+)∆− the estimated time span until the arrival
of the N̂+

1 -th item. We recompute the estimates if the N̂+
1 -th item does not

arrive close to time t+ t̂. For concreteness, recomputation is triggered if either
the N̂+

1 -th item arrives before time t+ (1− ε)t̂ or when fewer than N̂+
1 items

arrived at time t+ (1 + ε)t̂, where 0 < ε < 1 determines the validity interval of
the estimate and is usually set to a small value, say 5%.

In our experiments, the variance of the stratum sizes achieved by MBS without
a-priori knowledge of N+ was almost as low as the one achieved by MBS with a-priori
knowledge of N+.

7.2.3 Experiments

We run a set of experiments to evaluate whether merge-based stratification is superior
to equi-width stratification in practical scenarios. In summary, we found that:

• Merge-based stratification leads to significantly lower stratum size variances
than equi-width stratification when the data stream is bursty. Both schemes
have comparable performance when the data stream rate changes slowly.

232

7.2.3 Experiments

• Merge-based stratification seems to be robust to errors in the arrival rate
estimate. Results with estimated arrival rates are close to the theoretical
optimum.

• When the number of strata is not too large (H ≤ 32), the overhead of merge-
based stratification is low.

We used the same setup as in section 7.1.6; specifically, we used the NETWORK
and SEARCH datasets. For most of our experiments, we report the variance of
the stratum sizes, which is the key characteristic for stratified sampling over data
streams. The variance is a direct measure of how close stratification is to optimal
equi-depth stratification. A smaller variance typically results in less estimation error;
this behavior was also be visible in our experiments.

Recall that during the sampling process, MBS occasionally requires an estimate of
the number of items that arrive until the expiration of the first stratum. To quantify
the impact of estimation, we considered two versions of MBS in our experiments.
MBS-N makes use of an “oracle”: Whenever an estimate of the number of arriving
items is required, we determine the exact number directly from the dataset so that
no estimation error occurs. MBS-N can therefore be seen as the theoretical optimum
of merge-based stratification. In contrast, MBS-N̂ uses the estimation technique and
robustness modifications as described in section 7.2.2C. The experimental setup is
identical to the one used for uniform sampling, that is, we sample from the real-world
datasets over a sliding window of 1 hour length. Unless stated otherwise, we used a
space budget of 32 kbytes and H = 32 strata.

Variance of stratum sizes. We first compared the variance of the stratum sizes
achieved by the three different stratification schemes. In order to facilitate a mean-
ingful variance comparison for windows of varying size, we report the coefficient of
variation (CV) instead of the stratum-size variance directly. The CV is defined as
the standard deviation (square root of variance) normalized by the mean stratum
size:

CV [N1, . . . , NH] =

√
Var [N1, . . . , NH]

N/H
.

A value less than 1 indicates a low-variance distribution, whereas a value larger than
1 is often considered high variance. Figure 7.12a displays the distribution of the CV
for the NETWORK dataset using a kernel-density plot. As can be seen, equi-width
stratification leads to high values of the CV, while merge-based stratification produces
significantly better results. Also, MBS-N and MBS-N̂ perform similarly, with MBS-N
being slightly superior. The difference between equi-width stratification and the
MBS schemes is contributed to the burstiness of the NETWORK stream in which
the arrival rates vary significantly during a window length. In contrast, Figure 7.12b
shows the distribution of the CV for the SEARCH dataset. Since the arrival rates
change only slowly, equi-width stratification already produces very good results and
the merge-based schemes essentially never decide to merge two adjacent strata. The

233

7 Data Stream Sampling

three schemes produce almost identical results. Therefore, merge-based stratification
is the more beneficial the more bursty the data stream is.

Accuracy of estimate (example). In a next experiment, we used the stratified
sampling schemes to estimate the throughput of the NETWORK data from the
sample. Here, we defined the throughput as the sum of the user-data size attribute
over the entire window (see the description of the NETWORK dataset). Figure 7.13
gives the distribution of the relative error of the estimate. The estimates derived
from the merge-based schemes have a significantly lower estimation error than the
estimates achieved with equi-width stratification. Thus, intelligent stratification
indeed improves the quality of the sample. Note that for the SEARCH dataset, the
distribution of the relative error would be almost indistinguishable for the three
schemes because for this dataset, merge-based stratification does not improve upon
equi-width stratification.

Number of strata (Example). The number H of strata can have a significant influence
on the quality of the estimates. In table 7.1, we give the average relative error (ARE)
of the NETWORK throughput estimate for a varying number of strata. With an
increasing number of strata, the ARE increases for equi-width stratification but
decreases for the merge-based schemes. On the one hand, the sample size per stratum
decreases as H increases and it becomes more and more important to distribute
the strata evenly across the window. In fact, when the number of strata was high,
equi-width stratification frequently produced empty strata and thereby wasted some
of the available space. On the other hand, a large number of strata better exploits the
correlations between time and the attribute of interest. Thus, the estimation error
often decreases with an increasing value of H. In our experiment, the correlation of
the user-data size attribute and time is low, so that the decrease in estimation error
is also relatively low.

Performance. In a final experiment, we measured the average per-item processing
time for the three schemes and a varying number of strata. The results for the
NETWORK data are given in table 7.1. Clearly, equi-width stratification is the most
efficient technique and the processing time does not depend upon the number of
strata. The MBS schemes are slower because they occasionally have to (1) estimate
the number of arriving items, (2) determine the optimum stratification and (3) merge
adjacent strata. The computational effort increases as the number of strata increases.
MBS-N is slightly faster than MBS-N̂ because MBS-N̂ reevaluates (2) if the stream
behaves differently than predicted. In comparison to equi-width stratification, MBS
leads to a significant performance overhead if the number of strata is large. However,
when the number of strata is not too large (H ≤ 32), the overhead is low but the
quality of the resulting stratification might increase significantly.

234

7.2.3 Experiments

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Coefficient of variation

D
en

si
ty

MBS−N

MBS−N̂
Equi−width

(a) NETWORK data

0 1 2 3 4 5

0
1

2
3

4
5

6

Coefficient of variation

D
en

si
ty

MBS−N

MBS−N̂
Equi−width

(b) SEARCH data

Figure 7.12: Coefficient of variation of stratum sizes

235

7 Data Stream Sampling

0.00 0.05 0.10 0.15 0.20

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Relative error of throughput estimate

D
en

si
ty

MBS−N

MBS−N̂
Equi−width

Figure 7.13: NETWORK dataset, throughput estimation

Table 7.1: Influence of the number of strata (NETWORK dataset)

4 8 16 32 64

ARE Equi-width 2.31% 2.73% 3.44% 4.42% 5.90%
MBS-N 2.00% 1.83% 1.74% 1.70% 1.72%
MBS-N̂ 2.04% 1.88% 1.82% 1.76% 1.79%

Time (µs) Equi-width 2.27 2.25 2.24 2.22 2.21
MBS-N 2.33 2.36 2.41 3.17 9.68
MBS-N̂ 2.35 2.38 2.67 4.75 18.44

236

7.3 Summary

7.3 Summary

We have studied bounded-space techniques for maintaining uniform and stratified
samples over a time-based sliding window of a data stream. For uniform sampling,
we have shown that any bounded-space sampling scheme that guarantees a lower
bound on the sample size requires expected space logarithmic to the number of items
in the window; the worst-case space consumption is at least as large. Our provably
correct BPS scheme is the first bounded-space sampling scheme for time-based sliding
windows. We have shown how BPS can be extended to efficiently sample without
replacement and developed a low-variance estimator for the number of items in the
window. The sample size produced by BPS is stable in general, but quick changes of
the arrival rate might lead to temporarily smaller or larger samples.

For stratified sampling, we have shown how the sample can be distributed evenly
across the window by merging adjacent strata from time to time. The decision of
when and which strata to merge is based on a dynamic programming algorithm,
which uses an estimate of the arrival rate to determine the best achievable stratum
boundaries. MBS is robust against estimation errors and produces significantly
more balanced samples than equi-width stratification. We found that the overhead
of MBS is small as long as the number of strata is not too large. Especially for
bursty data streams, the increased precision of the estimates derived from the sample
compensates for the overhead in computational cost.

237

Chapter 8

Conclusion

Due to its wide range of applications, random sampling has been and continues to be
an important research area in data management. A quick look at the bibliography
of this thesis reveals that roughly 80 sampling-related papers appeared in the last
decade, counting only major database conferences and journals, and roughly 35 of
them appeared in the last 4 years. Many of the sampling techniques proposed in these
papers have been developed for static datasets, in which a sample once computed
remains valid for all times. In practice, however, datasets evolve and any changes to
the data have to be appropriately reflected in the sample to maintain its statistical
validity. In this thesis, we addressed this problem and provided efficient methods
for sample maintenance. Our algorithms can potentially be leveraged to extend the
applicability of many previous techniques to the class of evolving datasets.

More specifically, we considered the problem of maintaining a uniform random
sample of an evolving dataset; such samples are a building block of more sophisticated
techniques. We proposed novel maintenance algorithms including random pairing (for
sets), augmented Bernoulli sampling (for multisets), augmented min-hash sampling
(for distinct items), bounded priority sampling (for data streams), and merge-based
stratified sampling (also for data streams). The key property of all our algorithms is
that they are “incremental”, that is, they completely avoid any expensive accesses to
the underlying dataset. Instead, sampling decisions are based solely on the stream of
insertion, update, and deletion transactions applied to the data. In addition to our
maintenance schemes, we discussed the related problems of how to resize a random
sample and how to combine several samples into a single one. We proposed novel
estimators for counts, averages, sums, ratios, and the number of distinct items. Our
estimators exploit the maintenance information stored along with the samples and
they have lower estimation errors than known estimators, which do not exploit this
information.

Future Work

There are a lot of open problems in this specific area of database sampling; we list
some of them that we consider interesting to look at.

Sampling algorithms. Previous algorithms—together with the algorithms in this
thesis—already cover a large fraction of the problem space for uniform sample

239

8 Conclusion

maintenance. However, the following problems have not yet been addressed in the
literature:

• We presented bounded sampling algorithms for set sampling, distinct-item
sampling, and data stream sampling. Is there any corresponding algorithm for
multiset sampling?

• All known distinct-item sampling schemes assume at least min-wise independent
hash functions.1 Is there any maintenance scheme that works with pairwise
independent hash functions?

• The existing bounded distinct-item schemes either support only a “small”
number of deletions or have large space overhead. Is it possible to find a
compromise?

• We discussed a special case of sampling with “implicit deletions” that occurs
with time-based windows over a data stream. Are there any algorithms for the
more general setting as outlined in section 3.3.3C?

• We considered uniform sampling. What about weighted sampling?2

Sampling costs. We used simple cost models to assess the cost of sample maintenance,
and we generally assumed that the cost of sample maintenance is low. Both issues
may deserve further exploration:

• Our algorithms were designed under the assumption that samples are stored
in main memory so that random accesses are cheap. Can the algorithms be
modified so as to efficiently maintain large samples stored on hard disks or
flash drives?3

• We assumed that the dataset and its sample are stored at the same location
so that we can access the stream of transactions at virtually no cost. How
can maintenance techniques be integrated into distributed systems, where this
assumption might not hold?

• How does the cost of sample maintenance relate to the cost of maintaining the
underlying dataset? In other words, what is the overhead of maintaining a
random sample?

1In practice, min-wise independence can be approximated using k-wise independent hash functions,
k � 2, see Indyk (1999).

2One can modifiy BERN(q) and ABERN(q) to implement Poisson sampling from a set and a
multiset, respectively. For bounded-size sampling, the problem is decidedly hard; it has received
a lot of attention in the statistical literature.

3Efficient techniques for the class of append-only datasets have been proposed by Jermaine et al.
(2004), Pol et al. (2008), Gemulla et al. (2006), and Nath and Gibbons (2008). All these
approaches implement a deferred refresh policy.

240

8 Conclusion

• Materialized sampling is clearly preferable at query time but it might not be
a good option when the sample is accessed rarely but the dataset is updated
frequently. Can we be more specific about the relative cost of these two
approaches?

Sampling infrastructure. It is certainly a non-trivial issue to implement random
sampling techniques in an actual system. Here are some challenges that may arise
when doing so:

• We treated the “propagate step” and the “sample step” for incremental sample
maintenance separately. What would a combined approach look like? What
efficiency benefits are possible?

• Our algorithms process each insertion, update, and deletion transaction sepa-
rately. Can we be more efficient when we are given batches of transactions?

• How does sampling interact with transaction processing in a relational database
system? For example, there are situations in which several concurrent writers
can operate on different parts of the base data without any conflict. When a
materialized sample is defined on the dataset, can we avoid locking the entire
sample and thereby blocking one of the writers?

Many more open problems could probably be listed here. As mentioned previously,
database sampling is a very active area of research, and it is likely that some of the
problems above are going to be addressed in the near future. This thesis can be
seen as a step towards efficient algorithms for sample maintenance under general
transactions, but it is certainly not the final step.

241

Bibliography

Acharya, S., P. B. Gibbons, and V. Poosala (2000). Congressional samples for
approximate answering of group-by queries. In Proc. of the 2000 ACM SIGMOD
Intl. Conf. on Management of Data, pp. 487–498.

Acharya, S., P. B. Gibbons, V. Poosala, and S. Ramaswamy (1999). Join synopses
for approximate query answering. In Proc. of the 1999 ACM SIGMOD Intl. Conf.
on Management of Data, pp. 275–286.

Aggarwal, C. C. (Ed.) (2006a). Data Streams: Models and Algorithms (Advances in
Database Systems). Springer.

Aggarwal, C. C. (2006b). On biased reservoir sampling in the presence of stream
evolution. In Proc. of the 2006 Intl. Conf. on Very Large Data Bases, pp. 607–618.

Agrawal, R., T. Imielinski, and A. N. Swami (1993). Mining association rules between
sets of items in large databases. In Proc. of the 1993 ACM SIGMOD Intl. Conf.
on Management of Data, pp. 207–216.

Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association rules. In
Proc. of the 1994 Intl. Conf. on Very Large Data Bases, pp. 487–499.

Ahrens, J. H. and U. Dieter (1985). Sequential random sampling. ACM Transactions
on Mathematical Software 11 (2), 157–169.

Alon, N., P. B. Gibbons, Y. Matias, and M. Szegedy (1999). Tracking join and self-join
sizes in limited storage. In Proc. of the 1999 ACM SIGMOD-SIGACT-SIGART
Symp. on Principles of Database Systems, pp. 10–20.

Alon, N., Y. Matias, and M. Szegedy (1996). The space complexity of approximating
the frequency moments. In Proc. of the 1996 Annual ACM Symp. on Theory of
Computing, pp. 20–29.

Alon, N., Y. Matias, and M. Szegedy (1999). The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences 58 (1), 137–147.

Antoshenkov, G. (1992). Random sampling from pseudo-ranked b+ trees. In Proc.
of the 1992 Intl. Conf. on Very Large Data Bases, pp. 375–382.

Arasu, A., S. Babu, and J. Widom (2006). The CQL continuous query language:
semantic foundations and query execution. The VLDB Journal 15 (2), 121–142.

243

Bibliography

Babcock, B., S. Chaudhuri, and G. Das (2003). Dynamic sample selection for
approximate query processing. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, pp. 539–550.

Babcock, B., M. Datar, and R. Motwani (2002). Sampling from a moving window
over streaming data. In Proc. of the 2002 Annual ACM-SIAM Symp. on Discrete
Algorithms, pp. 633–634.

Bar-Yossef, Z., T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan (2002).
Counting distinct elements in a data stream. In Proc. of the 2002 Intl. Workshop
on Randomization and Approximation Techniques, pp. 1–10.

Bebbington, A. C. (1975). A simple method of drawing a sample without replacement.
Applied Statistics 24 (1), 136.

Beyer, K., P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla (2007). On synopses
for distinct-value estimation under multiset operations. In Proc. of the 2007 ACM
SIGMOD Intl. Conf. on Management of Data, pp. 199–210.

Bissell, A. F. (1986). Ordered random selection without replacement. Applied
Statistics 35 (1), 73–75.

Broder, A. Z. (1997). On the resemblance and containment of documents. In Proc.
of the 1997 Compression and Complexity of Sequences, pp. 21–29.

Broder, A. Z., M. Charikar, A. Frieze, and M. Mitzenmacher (2000). Min-wise
independent permutations. Journal of Computer and System Sciences 60 (3),
630–659.

Brönnimann, H., B. Chen, M. Dash, P. Haas, Y. Qiao, and P. Scheuermann (2004).
Efficient data-reduction methods for on-line association rule discovery. In K. S.
Hillol Kargupta, Anupam Joshi and Y. Yesha (Eds.), Data Mining: Next Generation
Challenges and Future Directions. AAAI Press.

Brönnimann, H., B. Chen, M. Dash, P. Haas, and P. Scheuermann (2003). Efficient
data reduction with ease. In Proc. of the 2003 Intl. Conf. on Knowledge Discovery
and Data Mining, pp. 59–68.

Brown, P. and P. J. Haas (2003). Bhunt: Automatic discovery of fuzzy algebraic
constraints in relational data. In Proc. of the 2003 Intl. Conf. on Very Large Data
Bases, pp. 668–679.

Brown, P. G. and P. J. Haas (2006). Techniques for warehousing of sample data. In
Proc. of the 2006 Intl. Conf. on Data Engineering, pp. 6.

Bunge, J. and M. Fitzpatrick (1993). Estimating the number of species: A review.
Journal of the American Statistical Association 88 (421), 364–373.

244

Bibliography

Cárdenas, A. F. (1975). Analysis and performance of inverted data base structures.
Communications of the ACM 18 (5), 253–263.

Carter, J. L. and M. N. Wegman (1977). Universal classes of hash functions (extended
abstract). In Proc. of the 1977 Annual ACM Symp. on Theory of Computing, pp.
106–112. ACM Press.

Charikar, M., S. Chaudhuri, R. Motwani, and V. Narasayya (2000). Towards
estimation error guarantees for distinct values. In Proc. of the 2000 ACM SIGMOD-
SIGACT-SIGART Symp. on Principles of Database Systems, pp. 268–279.

Chaudhuri, S., G. Das, M. Datar, and R. M. V. R. Narasayya (2001). Overcoming
limitations of sampling for aggregation queries. In Proc. of the 2001 Intl. Conf. on
Data Engineering, pp. 534–544.

Chaudhuri, S., G. Das, and V. Narasayya (2001). A robust, optimization-based
approach for approximate answering of aggregate queries. In Proc. of the 2001
ACM SIGMOD Intl. Conf. on Management of Data, pp. 295–306.

Chaudhuri, S., G. Das, and V. Narasayya (2007). Optimized stratified sampling for
approximate query processing. ACM Transactions on Database Systems 32 (2), 9.

Chaudhuri, S., G. Das, and U. Srivastava (2004). Effective use of block-level sampling
in statistics estimation. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on
Management of Data, pp. 287–298.

Chaudhuri, S. and R. Motwani (1999). On sampling and relational operators. IEEE
Data Engineering Bulletin 22 (4), 41–46.

Chaudhuri, S., R. Motwani, and V. Narasayya (1998). Random sampling for histogram
construction: how much is enough? In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 436–447.

Chen, B., P. Haas, and P. Scheuermann (2002). A new two-phase sampling based
algorithm for discovering association rules. In Proc. of the 2002 Intl. Conf. on
Knowledge Discovery and Data Mining, pp. 462–468.

Cheung, T.-Y. (1982). Estimating block accesses and number of records in file
management. Communications of the ACM 25 (7), 484–487.

Christodoulakis, S. (1983). Estimating block transfers and join sizes. In Proc. of the
1983 ACM SIGMOD Intl. Conf. on Management of Data, pp. 40–54.

Cochran, W. G. (1977). Sampling Techniques (3rd ed.). Wiley Series in Probability
& Mathematical Statistics. John Wiley & Sons.

Cohen, E. (1997). Size-estimation framework with applications to transitive closure
and reachability. Journal of Computer and System Sciences 55 (3), 441–453.

245

Bibliography

Colt Library (2004). Open source libraries for high performance scientific and
technical computing in Java. http://dsd.lbl.gov/~hoschek/colt/.

Cormode, G., S. Muthukrishnan, and I. Rozenbaum (2005). Summarizing and mining
inverse distributions on data streams via dynamic inverse sampling. In Proc. of
the 2005 Intl. Conf. on Very Large Data Bases, pp. 25–36.

Dasu, T., T. Johnson, S. Muthukrishnan, and V. Shkapenyuk (2002). Mining database
structure; or, how to build a data quality browser. In Proc. of the 2002 ACM
SIGMOD Intl. Conf. on Management of Data, pp. 240–251.

Datar, M. and S. Muthukrishnan (2002). Estimating rarity and similarity over data
stream windows. In Proc. of the 2002 Annual European Symp. on Algorithms, pp.
323–334. Springer-Verlag.

David, H. A. and H. N. Nagaraja (2003, Aug). Order Statistics (3rd ed.). Wiley
Series in Probability and Statistics. Wiley.

Denning, D. E. (1980). Secure statistical databases with random sample queries.
ACM Transactions on Database Systems 5 (3), 291–315.

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.

DeWitt, D. J., J. F. Naughton, and D. A. Schneider (1991a). An evaluation of
non-equijoin algorithms. In Proc. of the 1991 Intl. Conf. on Very Large Data
Bases, pp. 443–452.

DeWitt, D. J., J. F. Naughton, and D. A. Schneider (1991b). Parallel sorting on a
shared-nothing architecture using probabilistic splitting. In Proc. of the 1991 Intl.
Conf. Parallel and Distributed Information Systems, Los Alamitos, CA, USA, pp.
280–291. IEEE Computer Society Press.

DeWitt, D. J., J. F. Naughton, D. A. Schneider, and S. Seshadri (1992). Practical
skew handling in parallel joins. In Proc. of the 1992 Intl. Conf. on Very Large
Data Bases, pp. 27–40.

Didonato, A. R. and A. H. Morris, Jr (1992). Algorithm 708; significant digit compu-
tation of the incomplete beta function ratios. ACM Transactions on Mathematical
Software 18 (3), 360–373.

Duffield, N., C. Lund, and M. Thorup (2001). Charging from sampled network usage.
In Proc. of the 2001 ACM SIGCOMM Workshop on Internet Measurement, New
York, NY, USA, pp. 245–256. ACM.

Duffield, N. G. and M. Grossglauser (2001). Trajectory sampling for direct traffic
observation. IEEE/ACM Transactions on Networking 9 (3), 280–292.

Ernvall, J. and O. Nevalainen (1982). An algorithm for unbiased random sampling.
The Computer Journal 25 (1), 45–47.

246

http://dsd.lbl.gov/~hoschek/colt/

Bibliography

Estan, C. and J. F. Naughton (2006). End-biased samples for join cardinality
estimation. In Proc. of the 2006 Intl. Conf. on Data Engineering, pp. 20.

Ester, M., H.-P. Kriegel, J. Sander, and X. Xu (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. of the 1996 Intl.
Conf. on Knowledge Discovery and Data Mining, pp. 226–231.

Fan, C. T., M. E. Muller, and I. Rezucha (1962). Development of sampling plans by
using sequential (item by item) selection techniques and digital computers. Journal
of the American Statistical Association 57 (298), 387–402.

Fang, M., N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman (1998).
Computing iceberg queries efficiently. In Proc. of the 1998 Intl. Conf. on Very
Large Data Bases, pp. 299–310.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (3 ed.).
Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons.

Flajolet, P. and G. N. Martin (1985). Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences 31 (2), 182–209.

Frahling, G., P. Indyk, and C. Sohler (2005). Sampling in dynamic data streams
and applications. In Proc. of the 2005 Annual ACM Symp. on Computational
Geometry, pp. 142–149.

Frawley, W. J., G. Piatetsky-Shapiro, and C. J. Matheus (1992). Knowledge discovery
in databases: An overview. AI Magazine 13, 57–70.

Ganguly, S. (2007). Counting distinct items over update streams. Theoretical
Computer Science 378 (3), 211–222.

Ganguly, S., P. B. Gibbons, Y. Matias, and A. Silberschatz (1996). Bifocal sampling
for skew-resistant join size estimation. In Proc. of the 1996 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 271–281.

Ganti, V., M.-L. Lee, and R. Ramakrishnan (2000). ICICLES: Self-tuning samples
for approximate query answering. In Proc. of the 2000 Intl. Conf. on Very Large
Data Bases, pp. 176–187.

Garofalakis, M., J. Gehrke, and R. Rastogi (Eds.) (2009). Data Stream Management:
Processing High-Speed Data Streams. Data-Centric Systems and Applications.
Springer.

Gemulla, R. and W. Lehner (2006). Deferred maintenance of disk-based random
samples. In Proc. of the 2006 Intl. Conf. on Extending Database Technology, pp.
423–441.

247

Bibliography

Gemulla, R. and W. Lehner (2008). Sampling time-based sliding windows in bounded
space. In Proc. of the 2008 ACM SIGMOD Intl. Conf. on Management of Data,
pp. 379–392.

Gemulla, R., W. Lehner, and P. J. Haas (2006). A dip in the reservoir: maintaining
sample synopses of evolving datasets. In Proc. of the 2006 Intl. Conf. on Very
Large Data Bases, pp. 595–606.

Gemulla, R., W. Lehner, and P. J. Haas (2007). Maintaining bernoulli samples over
evolving multisets. In Proc. of the 2007 ACM SIGMOD-SIGACT-SIGART Symp.
on Principles of Database Systems, pp. 93–102.

Gemulla, R., W. Lehner, and P. J. Haas (2008). Maintaining bounded-size sample
synopses of evolving datasets. The VLDB Journal 17 (2), 173–201.

Gemulla, R., P. Rösch, and W. Lehner (2008). Linked bernoulli synopses: Sampling
along foreign keys. In Proc. of the 2008 Intl. Conf. on Statistical and Scientific
Database Management, pp. 6–23.

Gibbons, P. B. (2001). Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In The VLDB Journal, pp. 541–550.

Gibbons, P. B. (2009). Distinct-values estimation over data streams. In M. Garofalakis,
J. Gehrke, and R. Rastogi (Eds.), Data Stream Management: Processing High
Speed Data Streams. Springer.

Gibbons, P. B. and Y. Matias (1998). New sampling-based summary statistics for
improving approximate query answers. In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 331–342.

Gibbons, P. B. and Y. Matias (1999). Synopsis data structures for massive data
sets. In Proc. of the 1999 Annual ACM-SIAM Symp. on Discrete Algorithms, pp.
909–910.

Gibbons, P. B., Y. Matias, and V. Poosala (1997). Fast incremental maintenance
of approximate histograms. In Proc. of the 1997 Intl. Conf. on Very Large Data
Bases, pp. 466–475.

Gibbons, P. B. and S. Tirthapura (2001). Estimating simple functions on the union
of data streams. In Proc. of the 2001 Annual ACM Symp. on Parallel Algorithms
and Architectures, pp. 281–291.

Gionis, A., H. Mannila, and P. Tsaparas (2007). Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data 1 (1), 4.

GNU Scientific Library (2008). GNU Scientific Library. http://www.gnu.org/
software/gsl/.

248

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

Bibliography

Golab, L. and M. T. Özsu (2003). Issues in data stream management. SIGMOD
Record 32 (2), 5–14.

Goodman, S. E. and S. T. Hedetniemi (1977). Introduction to the Design and Analysis
of Algorithms. New York, NY, USA: McGraw-Hill, Inc.

Gryz, J., J. Guo, L. Liu, and C. Zuzarte (2004). Query sampling in DB2 Universal
Database. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of
Data, pp. 839–843.

Guha, S., R. Rastogi, and K. Shim (1998). CURE: An efficient clustering algorithm for
large databases. In Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management
of Data, pp. 73–84.

Gupta, A. and I. S. Mumick (Eds.) (1999). Materialized Views: Techniques, Imple-
mentations, and Applications. Cambridge, MA, USA: The MIT Press.

Haas, P. J. (1997). Large-sample and deterministic confidence intervals for online
aggregation. In Proc. of the 1997 Intl. Conf. on Statistical and Scientific Database
Management, pp. 51–63.

Haas, P. J. (1999). Hoeffding inequalities for join-selectivity estimation and online
aggregation. Technical Report RJ 10040, IBM Almaden Research Center. (Revised
version).

Haas, P. J. (2003). Speeding up DB2 UDB using sampling. Technical report, IBM
Almaden Research Center. http://www.almaden.ibm.com/cs/people/peterh/
idugjbig.pdf.

Haas, P. J. (2009). Data stream sampling: Basic techniques and results. In M. Garo-
falakis, J. Gehrke, and R. Rastogi (Eds.), Data Stream Management: Processing
High Speed Data Streams. Springer.

Haas, P. J. and J. M. Hellerstein (1998). Join algorithms for online aggregation.
Technical Report RJ 10126, IBM Almaden Research Center.

Haas, P. J. and J. M. Hellerstein (1999). Ripple joins for online aggregation. In Proc.
of the 1999 ACM SIGMOD Intl. Conf. on Management of Data, pp. 287–298.

Haas, P. J. and C. König (2004). A bi-level bernoulli scheme for database sampling.
In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data, pp.
275–286.

Haas, P. J., Y. Liu, and L. Stokes (2006). An estimator of the number of species
from quadrat sampling. Biometrics 62, 135–141.

Haas, P. J., J. F. Naughton, S. Seshadri, and L. Stokes (1995). Sampling-based
estimation of the number of distinct values of an attribute. In Proc. of the 1995
Intl. Conf. on Very Large Data Bases, pp. 311–322.

249

http://www.almaden.ibm.com/cs/people/peterh/idugjbig.pdf
http://www.almaden.ibm.com/cs/people/peterh/idugjbig.pdf

Bibliography

Haas, P. J., J. F. Naughton, S. Seshadri, and A. N. Swami (1993). Fixed-precision
estimation of join selectivity. In Proc. of the 1993 ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pp. 190–201.

Haas, P. J., J. F. Naughton, S. Seshadri, and A. N. Swami (1996). Selectivity and
cost estimation for joins based on random sampling. Journal of Computer and
System Sciences 52 (3), 550–569.

Haas, P. J., J. F. Naughton, and A. N. Swami (1994). On the relative cost of sampling
for join selectivity estimation. In Proc. of the 1994 ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pp. 14–24.

Haas, P. J. and L. Stokes (1998). Estimating the number of classes in a finite
population. Journal of the American Statistical Association 93 (444), 1475–1487.
www.almaden.ibm.com/cs/people/peterh/jasa3rj.pdf.

Haas, P. J. and A. N. Swami (1992). Sequential sampling procedures for query size
estimation. In Proc. of the 1992 ACM SIGMOD Intl. Conf. on Management of
Data, pp. 341–350.

Haas, P. J. and A. N. Swami (1995). Sampling-based selectivity estimation for joins
using augmented frequent value statistics. In Proc. of the 1995 Intl. Conf. on Data
Engineering, pp. 522–531.

Hadjieleftheriou, M., X. Yu, N. Koudas, and D. Srivastava (2008). Selectivity
estimation of set similarity selection queries. In Proc. of the 2008 Intl. Conf. on
Very Large Data Bases. (to appear).

Hanif, M. and K. Brewer (1980). Sampling with unequal probabilities without
replacement: A review. International Statistical Review 48, 317–335.

Hansen, M. H. and W. N. Hurwitz (1943). On the theory of sampling from finite
populations. Annals of Mathematical Statistics 14 (4), 333–362.

Hellekalek, P. and S. Wegenkittl (2003). Empirical evidence concerning aes. ACM
Transactions on Modeling and Computer Simulation 13 (4), 322–333.

Hellerstein, J. M., P. J. Haas, and H. J. Wang (1997). Online aggregation. In Proc.
of the 1997 ACM SIGMOD Intl. Conf. on Management of Data, pp. 171–182.

Horvitz, D. and D. Thompson (1952). A generalization of sampling without replace-
ment from a finite universe. Journal of the American Statistical Association 47 (260),
663–685.

Hou, W.-C. and G. Ozsoyoglu (1991). Statistical estimators for aggregate relational
algebra queries. ACM Transactions on Database Systems 16 (4), 600–654.

250

www.almaden.ibm.com/cs/people/peterh/jasa3rj.pdf

Bibliography

Hou, W.-C., G. Özsoyoğlu, and E. Dogdu (1991). Error-constrained COUNT query
evaluation in relational databases. In Proc. of the 1991 ACM SIGMOD Intl. Conf.
on Management of Data, pp. 278–287.

Hou, W.-C., G. Ozsoyoglu, and B. K. Taneja (1988). Statistical estimators for
relational algebra expressions. In Proc. of the 1988 ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pp. 276–287.

IDC (2007). The Expanding Digital Universe. IDC. http://www.emc.com/digital_
universe.

IDC (2008). The Diverse and Exploding Digital Universe. IDC. http://www.emc.
com/digital_universe.

Ikeji, A. C. and F. Fotouhi (1995). Computation of partial query results with an
adaptive stratified sampling technique. In Proc. of the 1995 Conf. on Information
and Knowledge Management, pp. 145–149.

Ilyas, I. F., V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga (2004). CORDS:
automatic discovery of correlations and soft functional dependencies. In Proc. of
the 2004 ACM SIGMOD Intl. Conf. on Management of Data, pp. 647–658.

Indyk, P. (1999). A small approximately min-wise independent family of hash
functions. In Proc. of the 1999 Annual ACM-SIAM Symp. on Discrete Algorithms,
pp. 454–456.

Ioannidis, Y. E. (2003). The history of histograms (abridged). In Proc. of the 2003
Intl. Conf. on Very Large Data Bases, pp. 19–30.

Jagadish, H. V., N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel
(1998). Optimal histograms with quality guarantees. In Proc. of the 1998 Intl.
Conf. on Very Large Data Bases, pp. 275–286.

Jermaine, C. (2003). Robust estimation with sampling and approximate pre-
aggregation. In Proc. of the 2003 Intl. Conf. on Very Large Data Bases, pp.
886–897.

Jermaine, C., S. Arumugam, A. Pol, and A. Dobra (2007). Scalable approximate
query processing with the dbo engine. In Proc. of the 2007 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 725–736.

Jermaine, C., A. Dobra, S. Arumugam, S. Joshi, S. Joshi, and A. Pol (2005). A
disk-based join with probabilistic guarantees. In Proc. of the 2005 ACM SIGMOD
Intl. Conf. on Management of Data, pp. 563–574.

Jermaine, C., A. Pol, and S. Arumugam (2004). Online maintenance of very large
random samples. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management
of Data, pp. 299–310.

251

http://www.emc.com/digital_universe
http://www.emc.com/digital_universe
http://www.emc.com/digital_universe
http://www.emc.com/digital_universe

Bibliography

Jin, R., L. Glimcher, C. Jermaine, and G. Agrawal (2006). New sampling-based
estimators for olap queries. In Proc. of the 2006 Intl. Conf. on Data Engineering,
pp. 18.

Johnson, N. L., S. Kotz, and A. W. Kemp (1992). Univariate Discrete Distribu-
tions (2nd ed.). Wiley Series in Probability and Mathematical Statistics. Wiley-
Interscience.

Johnson, T., S. Muthukrishnan, and I. Rozenbaum (2005). Sampling algorithms in a
stream operator. In Proc. of the 2005 ACM SIGMOD Intl. Conf. on Management
of Data, pp. 1–12.

Jones, T. G. (1962). A note on sampling a tape-file. Communications of the
ACM 5 (6), 343.

Joze-Hkajavi, N. and K. Salem (1998). Two-phase clustering of large datasets. Tech-
nical Report CS-98-27, Department of Computer Science, University of Waterloo.
http://www.cs.uwaterloo.ca/research/tr/1998/27/CS-98-27.pdf.

Kachitvichyanukul, V. and B. Schmeiser (1985). Computer generation of hypergeo-
metric random variables. Journal of Statistical Computation and Simulation 22,
127–145.

Kaufman, L. and P. J. Rousseeuw (1990). Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley-Interscience.

Kaushik, R., J. F. Naughton, R. Ramakrishnan, and V. T. Chakravarthy (2005). Syn-
opses for query optimization: A space-complexity perspective. ACM Transactions
on Database Systems 30 (4), 1102–1127.

Kivinen, J. and H. Mannila (1994). The power of sampling in knowledge discovery.
In Proc. of the 1994 ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems, pp. 77–85.

Knuth, D. E. (1969). The Art of Computer Programming (1st ed.), Volume 2:
Seminumerical Algorithms. Addison Wesley.

Knuth, D. E. (1981). The Art of Computer Programming (2nd ed.), Volume 2:
Seminumerical Algorithms. Addison Wesley.

Knuth, D. E. (1997). The Art of Computer Programming (3rd ed.), Volume 1:
Fundamental Algorithms. Addison Wesley.

Kollios, G., D. Gunopulos, N. Koudas, and S. Berchtold (2001). An efficient approxi-
mation scheme for data mining tasks. In Proc. of the 2001 Intl. Conf. on Data
Engineering, pp. 453–462.

Krishnaiah, P. and C. Rao (Eds.) (1988). Handbook of Statistics 6: Sampling. Elsevier
Science.

252

http://www.cs.uwaterloo.ca/research/tr/1998/27/CS-98-27.pdf

Bibliography

Larson, P.-Å., W. Lehner, J. Zhou, and P. Zabback (2007). Cardinality estimation
using sample views with quality assurance. In Proc. of the 2007 ACM SIGMOD
Intl. Conf. on Management of Data, pp. 175–186.

L’Ecuyer, P. (2006). Uniform random number generation. In S. G. Henderson and
B. L. Nelson (Eds.), Simulation, pp. 55–81. Elsevier.

Li, K.-H. (1994). Reservoir-sampling algorithms of time complexity o(n(1 + log(n/n))).
ACM Transactions on Mathematical Software 20 (4), 481–493.

Ling, Y. and W. Sun (1995). An evaluation of sampling-based size estimation
methods for selections in database systems. In Proc. of the 1995 Intl. Conf. on
Data Engineering, pp. 532–539.

Lipton, R. J. and J. F. Naughton (1990). Query size estimation by adaptive sampling
(extended abstract). In Proc. of the 1990 ACM SIGMOD-SIGACT-SIGART Symp.
on Principles of Database Systems, pp. 40–46.

Lipton, R. J., J. F. Naughton, and D. A. Schneider (1990). Practical selectivity
estimation through adaptive sampling. In Proc. of the 1990 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 1–11.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In Proc. of the 1967 Berkeley Symp. on Mathematical Statistics and
Probability, pp. 281–297.

Manku, G. S. and R. Motwani (2002). Approximate frequency counts over data
streams. In Proc. of the 2002 Intl. Conf. on Very Large Data Bases, pp. 346–357.

Matsumoto, M. and T. Nishimura (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation 8 (1), 3–30.

McLeod, A. and D. Bellhouse (1983). A convenient algorithm for drawing a simple
random sample. Applied Statistics 32 (2), 182–184.

Menezes, A. J., P. C. van Oorschot, and S. A. Vanstone (1996). Handbook of Applied
Cryptography (5th ed.). CRC Press.

Mitzenmacher, M. and S. Vadhan (2008). Why simple hash functions work: Exploiting
the entropy in a data stream. In Proc. of the 2008 Annual ACM-SIAM Symp. on
Discrete Algorithms, pp. 746–755.

Motwani, R. and P. Raghavan (1995). Randomized Algorithms. Cambridge University
Press.

Muller, M. E. (1958). The use of computers in inspection procedures. Communications
of the ACM 1 (11), 7–13.

253

Bibliography

Muralikrishna, M. and D. J. DeWitt (1988). Equi-depth multidimensional histograms.
In Proc. of the 1988 ACM SIGMOD Intl. Conf. on Management of Data, pp. 28–36.

Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science 1 (2).

Nair, K. A. (1990). An improved algorithm for ordered sequential random sampling.
ACM Transactions on Mathematical Software 16 (3), 269–274.

Nath, S. and P. Gibbons (2008). Online maintenance of very large random samples
on flash storage. In Proc. of the 2008 Intl. Conf. on Very Large Data Bases. (to
appear).

NIST Federal Information Processing Standards (2001). Advanced encryption stan-
dard. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

Olken, F. (1993). Random Sampling from Databases. Ph. D. thesis, Lawrence
Berkeley Laboratory. LBL-32883.

Olken, F. and D. Rotem (1986). Simple random sampling from relational databases.
In Proc. of the 1986 Intl. Conf. on Very Large Data Bases, pp. 160–169.

Olken, F. and D. Rotem (1989). Random sampling from b+ trees. In Proc. of the
1989 Intl. Conf. on Very Large Data Bases, pp. 269–277.

Olken, F. and D. Rotem (1992). Maintenance of materialized views of sampling
queries. In Proc. of the 1992 Intl. Conf. on Data Engineering, pp. 632–641.

Olken, F., D. Rotem, and P. Xu (1990). Random sampling from hash files. In Proc.
of the 1990 ACM SIGMOD Intl. Conf. on Management of Data, pp. 375–386.

Palmer, C. R. and C. Faloutsos (2000). Density biased sampling: an improved
method for data mining and clustering. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 82–92.

Piatetsky-Shapiro, G. and C. Connell (1984). Accurate estimation of the number of
tuples satisfying a condition. In Proc. of the 1984 ACM SIGMOD Intl. Conf. on
Management of Data, pp. 256–276.

Pinkham, R. S. (1987). An efficient algorithm for drawing a simple random sample.
Applied Statistics 36 (3), 307–372.

Pol, A., C. Jermaine, and S. Arumugam (2008). Maintaining very large random
samples using the geometric file. The VLDB Journal 17 (5), 997–1018.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical
Recipes in C (2nd ed.). Cambridge University Press.

Rao, J. (1966). On the comparison of sampling with and without replacement. Review
of the International Statistical Institute 34 (2), 125–138.

254

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Bibliography

Rösch, P., R. Gemulla, and W. Lehner (2008). Designing random sample synopses
with outliers. In Proc. of the 2008 Intl. Conf. on Data Engineering, pp. 1400–1402.

Särndal, C.-E., B. Swensson, and J. Wretman (1991). Model Assisted Survey Sampling.
Springer Series in Statistics. Springer Verlag.

SAS Institute Inc. (1998). SAS Institute Best Practices Paper: Data Mining and the
Case for Sampling. SAS Institute Inc. http://www.sasenterpriseminer.com/
documents/SAS-SEMMA.pdf.

Seidel, R. and C. R. Aragon (1996). Randomized search trees. Algorithmica 16 (4/5),
464–497.

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. Wiley
Series in Probability and Mathematical Statistics. Wiley.

Seshadri, S. (1992). Probabilistic methods in query processing. Ph. D. thesis, University
of Wisconsin at Madison.

Strand, M. M. (1979). Estimation of a population total under a “bernoulli sampling”
procedure. The American Statistician 33 (2), 81–84.

Takei, Y., T. Itoh, and T. Shinozaki (2000). Constructing an optimal family of
min-wise independent permutations. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E83-A(4), 747–755.

Tao, Y., X. Lian, D. Papadias, and M. Hadjieleftheriou (2007). Random sampling
for continuous streams with arbitrary updates. IEEE Transactions on Knowledge
and Data Engineering 19 (1), 96–110.

Teuhola, J. and O. Nevalainen (1982). Two efficient algorithms for random sampling
without replacement. International Journal of Computer Mathematics 11, 127–140.

The R Project (2008). The R project for statistical computing. http://www.
r-project.org/.

Thompson, S. K. (1992). Sampling (1st ed.). Wiley Series in Probability and
Mathematical Statistics. Wiley.

Thorup, M. (2000). Even strongly universal hashing is pretty fast. In Proc. of the
2000 Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 496–497.

Thorup, M. and Y. Zhang (2004). Tabulation based 4-universal hashing with
applications to second moment estimation. In Proc. of the 2004 Annual ACM-
SIAM Symp. on Discrete Algorithms, pp. 615–624.

Tillé, Y. (2006). Sampling Algorithms. Springer Series in Statistics. Springer.

Toivonen, H. (1996). Sampling large databases for association rules. In Proc. of the
1996 Intl. Conf. on Very Large Data Bases, pp. 134–145.

255

http://www.sasenterpriseminer.com/documents/SAS-SEMMA.pdf
http://www.sasenterpriseminer.com/documents/SAS-SEMMA.pdf
http://www.r-project.org/
http://www.r-project.org/

Bibliography

Vitter, J. S. (1984). Faster methods for random sampling. Communications of the
ACM 27 (7), 703–718.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on
Mathematical Software 11 (1), 37–57.

Vitter, J. S. (1987). An efficient algorithm for sequential random sampling. ACM
Transactions on Mathematical Software 13 (1), 58–67.

Willard, D. E. (1991). Optimal sample cost residues for differential database batch
query problems. Journal of the ACM 38 (1), 104–119.

Winter, R. (2008). Why are data warehouses growing so fast? Beye Business
Intelligence Network . http://www.b-eye-network.com/view/7188.

Xu, F., C. Jermaine, and A. Dobra (2008). Confidence bounds for sampling-based
group by estimates. ACM Transactions on Database Systems. (to appear).

Yao, S. B. (1977). Approximating block accesses in database organizations. Commu-
nications of the ACM 20 (4), 260–261.

Zechner, H. (1997). Efficient Sampling from Continuous and Discrete Distributions.
Ph. D. thesis, Technical University Graz.

Zhang, T., R. Ramakrishnan, and M. Livny (1996). BIRCH: An efficient data
clustering method for very large databases. In Proc. of the 1996 ACM SIGMOD
Intl. Conf. on Management of Data, pp. 103–114.

256

http://www.b-eye-network.com/view/7188

List of Figures

2.1 Illustration of common sampling designs 8
2.2 Sample size distribution of Bernoulli sampling 10
2.3 Sample size distribution of simple random sampling with replacement

after duplicate removal . 12
2.4 Query sampling architecture . 24
2.5 Comparison of row-level and block-level sampling 26
2.6 Materialized sampling architecture 28
2.7 Permuted-data sampling architecture 29
2.8 Space explored by various schemes for join selectivity estimation (n=3) 35

3.1 View and sample maintenance in an RDBMS 53
3.2 Sample size and sample footprint . 63
3.3 Illustration of list-sequential sampling 68
3.4 Illustration of reservoir sampling . 72
3.5 Counterexample for modified Bernoulli sampling with purging 79

4.1 Illustration of random pairing . 106
4.2 Evolution of sample size over time 115
4.3 Dataset size and average sample size 116
4.4 Cluster size and average sample size 117
4.5 Cluster size and relative cost . 118
4.6 Number of dataset reads . 119
4.7 Number of sample writes . 119
4.8 Combined cost . 120
4.9 Throughput, stable dataset . 121
4.10 Throughput, growing dataset . 122
4.11 Illustration of resizing . 128
4.12 Expected resizing cost T (d) . 133
4.13 Optimal value of d . 134
4.14 Optimal expected resizing cost T (d∗) 134
4.15 Actual resizing cost at optimum parametrization 135
4.16 A hypothetical subsampling algorithm 137
4.17 A hypothetical merging algorithm 144
4.18 Merging, d1 + d2 fixed . 147
4.19 Merging, d1/(d1 + d2) fixed . 148

5.1 Illustration of augmented Bernoulli sampling with q = 25% 156

257

List of Figures

5.2 Notation used in the proof of theorem 5.1 157
5.3 Illustration of subsampling . 169

6.1 10 random points on the unit interval 186
6.2 Distribution and expected value of U(2), the second-smallest hash value 188
6.3 Error bounds for D = 1,000,000 . 191
6.4 Average relative error of the unbiased estimator D̂UB

M 192
6.5 Error bounds of D̂M for D = 1,000,000 and 1− δ = 95% 196
6.6 Performance of unbiased estimator 198
6.7 Performance of generalized estimator 198

7.1 Illustration of priority sampling . 208
7.2 Illustration of bounded priority sampling 211
7.3 Progression of the window size over time (synthetic data) 218
7.4 Progression of sample size and space consumption over time (synthetic

data) . 219
7.5 Distribution of sample size (real data) 221
7.6 Distribution of window-size ratio (real data) 222
7.7 Sample size distribution and window size ratio (real data) 223
7.8 Execution time (NETWORK data) 224
7.9 Estimation of window size (real data) 225
7.10 Illustration of equi-width stratification 227
7.11 Illustration of merge-based stratification 229
7.12 Coefficient of variation of stratum sizes 235
7.13 NETWORK dataset, throughput estimation 236

258

List of Tables

2.1 Common sampling designs . 7
2.2 Important properties of estimators 15
2.3 Estimators of the population total, their variance and estimators of

their variance . 18
2.4 Coarse comparison of survey sampling and database sampling 22
2.5 Comparison of query, materialized and permuted-data sampling . . . 30

3.1 Feasible combinations of sample size and sample footprint 63
3.2 Uniform maintenance schemes for set/multiset sampling 74
3.3 Expected sample size for MRST(0,M) 83
3.4 Uniform maintenance schemes for distinct-item sampling 88
3.5 Frequencies of each possible sample for BERNDP(1) 91
3.6 Frequencies of each possible sample for DIS(1) 93
3.7 Uniform maintenance schemes for data stream sampling 95

6.1 Results of uniformity tests of MIND(M) sampling 180

7.1 Influence of the number of strata (NETWORK dataset) 236

259

List of Algorithms

4.1 Random pairing (basic version) . 104
4.2 Random pairing (optimized version) 112
4.3 Resizing . 126
4.4 Subsampling for random pairing . 140
4.5 Merging for random pairing . 143

5.1 Augmented Bernoulli sampling . 154
5.2 Subsampling for augmented Bernoulli sampling 172

6.1 Augmented min-hash sampling . 183

7.1 Bounded priority sampling . 210

261

Index of Notation

A small number of symbols have a different meaning in different chapters. In the
table below, we indicate such overloaded symbols by a preceding star symbol (*) in
the where column; the star indicates that the specified meaning is only valid in the
specified chapter or section. We do not list variables that have a very limited scope
(e.g., a single paragraph or page).

Symbol Meaning Where

|A| number of items in A (including duplicates) 2.1.2A
|D(A)| number of distinct items in A 2.1.2A

[k] set of nonnegative integers less than k: { 0, . . . , k − 1 } 6.1(
N
n

)
binomial coefficient: N !/(n!(N − n)!) 2.1.2A

n! factorial: n(n− 1)(n− 2) · · · 1, 0! = 1 2.1.2A
x ∝ y x is proportional to y: x = cy for some constant c 6= 0 3.3.1
∪,∩, \ set union, intersection, and difference 3.2
],C, \+ multiset union, intersection, and difference 3.2
ARE[θ̂] average relative error: E [|θ̂ − θ|/θ] 2.1.3A

b cluster size: number of consecutive transactions of
the same type

4.1.3A

Bn random variable for the number of base-data accesses
to retrieve the nth distinct item

3.4.1

B(k; N, q) binomial probability:
(
N
k

)
qk(1− q)N−k 2.1.2A

B(a, b) Beta function:
∫ 1

0 t
a−1(1− t)b−1 dt 6.2.2B

Bias[θ̂] expected distance to true value: E [θ̂]− θ 2.1.3A
Cov [X,Y] covariance of X and Y : E [(X − E [X])(Y − E [Y])] 2.1.3D

cb random variable for the number of uncompensated
bad deletions (deleted item in sample)

4.1.1A

cb,i random variable for the number of uncompensated
bad deletions after ith transaction

4.1.1C

Cb(γ) random variable for the number of bad deletions that
result by applying RP on γ

4.2.4A

cg random variable for the number of uncompensated
good deletions (deleted item not in sample)

4.1.1A

cg,i random variable for the number of uncompensated
good deletions after ith transaction

4.1.1C

263

Index of Notation

Symbol Meaning Where

Cg(γ) random variable for the number of good deletions
that result by applying RP on γ

4.2.4A

ε bound on relative error 6.2.2B
ei data-stream item of form (i, ri, ti) 3.5.4

E [X] expected value of random variable X 2.1.3A
δ probability of error 2.1.3C

1− δ probability of success, condidence level 2.1.3C
∆ window length parameter of a time-based window 3.5.4

∆i,N window length (in time units) of a size-N sequence-
based window at time i: ti − tN−i

3.5.4

d number of uncompensated deletions: cg + cb 4.1.1A
di number of uncompensated deletions after ith transac-

tion
4.1.1C

d(γ) number of uncompensated deletions in γ 4.2.4A
D number of distinct items in population: |D(R)| 5.1.2C
D+ number of cumulated insertions of new distinct items:

|D(R+)|
6.2.1B

D(A) set of distinct items in A 2.1.2A
γ sequence of transactions: (γ1, γ2, . . .) 3.2
γi ith transaction in sequence: either +rj , −rj or rj ←

rk

3.2

h hash function *6
H range of hash function *6

H family of hash functions *6
h index of stratum *7.2
H number of strata *7.2
Hn nth harmonic number:

∑n
i=1 1/i 3.4.1

Hn,m partial harmonic number:
∑m

i=n 1/i = Hm −Hn−1 3.4.1
H(k; N,N ′,M) hypergeometric probability:

(
N ′

k

)(
N−N ′
M−k

) / (
N
M

)
4.1.1D

Ix(a, b) regularized incomplete Beta function:
B(a, b)−1

∫ x
0 t

a−1(1− t)b−1dt
6.2.2B

li smallest possible sample size after ith transaction 4.1.1C
L lower bound on the sample size 3.3.4B
L random variable for the number of steps in phase 2

of RPRES
*4.2.1C

µ population average: τ/N 2.1.3B
M sample size parameter (expected/desired/maximum

sample size)
2.1.2A

M ′ sample size parameter after resizing 4.2
MSE[θ̂] mean squared error: Var[θ̂] + Bias[θ̂]2 2.1.3A

n random variable for the sample size: |S| 2.1.2A

264

Index of Notation

Symbol Meaning Where

ni random variable for the sample size after ith transac-
tion: |Si|

3.5

N population size: |R| 2.1.1
Ni population size after ith transaction: |Ri| 3.2

Ni(r) multiplicity of item r in population after ith transac-
tion

3.5.2

Nh size of stratum Rh *7.2
NV (r) multiplicity of r in multiset V 6.4.1
N∆(t) window size at time t: |W∆(t)| 3.5.4
N(t) shortcut for N∆(t) 3.5.4
N+ cumulative number of insertions: |R+| 3.5.1F
N+
i cumulative number of insertions after ith transaction 3.5.1F

N+ number of arrivals until next stratum expiration *7.2
O(f(n)) Big Oh: set of functions bounded from above by f(n)

(asymptotically and up to a constant factor)
Ω(f(n)) Big Omega: set of functions bounded from below by

f(n) (asymptotically and up to a constant factor)
πi first-order inclusion probability of item ri: Pr [ri ∈ S] 2.1.2B
πij second-order inclusion probability of items ri and rj :

Pr [ri ∈ S, rj ∈ S]
2.1.3B

Px(a) regularized (lower) incomplete gamma function: 1−
e−x

∑a−1
i=0 x

i/i! for integer a > 0
6.2.2C

P(A) power set of A 2.1.3
Pr [A] probability of occurrence of A 2.1.2A

Pr [A1, . . . , An] probability of joint occurrence of A1, . . . , An
Pr [A | B] conditional probability of A given B

q sampling rate for Bernoulli sampling 2.1.2A
R universe 3.2
R population (set or multiset) 2.1.1
Ri population after processing the first i transactions,

R0 = ∅
3.2

Rh a stratum (a partition of R) *7.2
R(t) population at time t 3.5.4
R(γ) population generated by γ 4.2.4A
R+ augmented population (deleted items retained) 4.2.4A
R+ set of items that arrive until next stratum expiration *7.2

RMSE[θ̂] root mean squared error:
√

MSE[θ̂] 2.1.3A
ri an item 2.1.1

+r insertion of item r 3.2
−r deletion of item r 3.2

r → r′ update of item r to item r′ 3.2

265

Index of Notation

Symbol Meaning Where

r(i) ith order statistic = ith smallest item = i/Nth quan-
tile

2.1.3E

S set of possible samples 2.1.1
σ2 population variance: 1/(N − 1)

∑
ri∈R(yi − µ)2 2.1.3B

σp(A) elements of A that satisfy predicate p (may contain
duplicates)

6.2.2F

s2 sample variance: 1/(n− 1)
∑

ri∈S(yi − ȳ)2 2.1.3B
S random sample (set or multiset) 2.1.2A
Si random sample after processing the first i transac-

tions, S0 = ∅
3.2

S(t) random sample at time t 3.5.4
S(γ) random sample generated by γ 4.2.4A
S∗ net sample 3.5.1F
Si∗ net sample after ith transaction 3.5.1F
S+ augmented random sample from R+ 4.2.4A

SE[X] standard error of random variable X:
√

Var[X] 2.1.3A
ŜE[X] estimator of SE[X]

ta cost of base data access 4.2.2A
tb interarrival time between consecutive transactions 4.2.2A
ti timestamp of item ei 3.5.4

T (d) expected total resizing cost with d uncompensated
deletions

4.2.2A

T1(d) expected phase 1 resizing cost with d uncompensated
deletions

4.2.2A

T2(d) expected phase 2 resizing cost with d uncompensated
deletions

4.2.2A

τ population total:
∑

ri∈R yi 2.1.3B
τh total of stratum Rh 7.2
θ population parameter 2.1.3
θ̂ estimator of θ 2.1.3

θ̂(s) estimate of θ obtained by applying θ̂ to sample s 2.1.3
U random variable for the intermediate sample size in

phase 1 of RPRES
4.2.1C

Ui normalized hash value of ri: h(ri)/H 6.2.2A
U(M) Mth smallest value of {Ui | ri ∈ R } 6.2.2A
ui largest possible sample size after ith transaction 4.1.1C
vi largest seen sample size after ith transaction 4.1.1C

Var[X] variance of random variable X: E [(X − E [X])2] =
E [X2]− E [X]2

2.1.3A

V̂ar [X] estimator of Var [X]
Wi,N sequence-based sliding window of size N : Ri \Ri−N 3.5.4

266

Index of Notation

Symbol Meaning Where

W∆(t) sliding window of length ∆ at time t: R(t) \R(t−∆) 3.5.4
W (t) shortcut for W∆(t) 3.5.4
Xi shortcut for Xi(r) 5.1.1A

Xi(r) random variable for the multiplicity of item r in sam-
ple after ith transaction

3.5.2

ȳ sample average: 1/n
∑

ri∈S yi 2.1.3B
yi numerical value associated with item ri: f(ri) 2.1.3B
Yi shortcut for Yi(r) 5.1.1A

Yi(r) random variable for the number of net insertions of
r after ith transaction, starting the counting process
after first sample acceptance of r

5.1.1A

Z skip counter for Bernoulli sampling 3.4.3B
Zi skip counter for reservoir sampling 3.4.3D

Zi,n skip counter for list-sequential sampling 3.4.2

267

Index of Algorithm Names

The first table describes our general naming scheme for algorithms, where each name
consists of zero or more prefixes, a basic name, zero or more suffixes and an optional
parameter list. The second table lists all the algorithms names and the position
where they are described.

Position Symbol Meaning

Prefix A augmented (with counters)
M modified (to support updates and/or deletions)

Basic name BERN Bernoulli sampling
BPS bounded priority sampling
CAR correlated acceptance-rejection sampling
CHAIN chain sampling
MIN min-wise sampling
PASSIVE passive sampling
PS priority sampling
RP random pairing
RS reservoir sampling
SRS simple random sampling

Suffix D for distinct items
M for multisets
P with purging
R with recomputation
T with tagging
W for sliding windows
WR with replacement
WOR without replacement

Parameter d number of uncompensated deletions
q Bernoulli sampling rate
L minimum sample size
M desired/maximum sample size

269

Index of Algorithm Names

Name Meaning Where

ABERN(q) augmented Bernoulli sampling for multisets 5.1.1
ABERND(q) augmented Bernoulli sampling for distinct items 5.1.2C
AMIND(M) augmented min-hash sampling 6.2.1
BERN(q) Bernoulli sampling 3.4.3A
BERND(q) Bernoulli sampling for distinct items 3.5.3A
BERNDP(M) Bernoulli sampling for distinct items with purging 3.5.3C
BERNW(q) Bernoulli sampling for sliding windows 3.5.4A
BPS(M) bounded priority sampling 7.1.3
BPSWOR(M) bounded priority sampling with replacement 7.1.3E
CAR(M) correlated acceptance/rejection sampling 3.5.1G
CARWOR(M) correlated acceptance/rejection sampling without re-

placement
3.5.1H

PASSIVE(M) chain sampling 3.5.4C
DIS(M) dynamic inverse sampling for distinct items 3.5.3F
MBERN(q) modified Bernoulli sampling 3.5.1A
MBERND(q) modified Bernoulli sampling for distinct items 3.5.3B
MBERNM(q) modified Bernoulli sampling for multisets 3.5.2A
MBERNP(M) modified Bernoulli sampling with purging 3.5.1B
MBS merge-based stratification 7.2.2
MERGE merging algorithm arbitrary uniform samples 4.3.1
MIN(M) min-wise sampling 3.4.3E
MIND(M) min-hash sampling for distinct items 3.5.3D
MINDWR(M) min-hash sampling for distinct items with replacement 3.5.3E
MRS(M) modified reservoir sampling 3.5.1C
MRSR(L,M) modified reservoir sampling with recomputation 3.5.1E
MRST(L,M) modified reservoir sampling with tagging (and recom-

putation)
3.5.1F

PASSIVE(M) passive sampling 3.5.4B
PS(M) priority sampling 3.5.4D
PSWOR(M) priority sampling with replacement 3.5.4E
RP(M) random pairing 4.1.1A
RP(M,d) random pairing with d uncompensated deletions 4.2.1C
RPMERGE merging algorithm for random pairing 4.3.2
RPSUB resizing algorithm for random pairing (downwards) 4.2.4B
RPRES resizing algorithm for random pairing (upwards) 4.2.1C
RPR(L,M) random pairing with recomputation 4.1.3B
RS(M) reservoir sampling 3.4.3C
SRS(M) simple random sampling 2.1.2A
SRSWR(M) simple random sampling with replacement 2.1.2A
SUB(M ′) basic subsampling algorithm used within RPSUB 4.2.4

270

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig und nur
unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Rainer Gemulla
Dresden, 27. August 2008

271

	1 Introduction
	2 Literature Survey
	2.1 Finite Population Sampling
	2.1.1 Basic Ideas and Terminology
	2.1.2 Sampling Designs
	2.1.3 Estimation

	2.2 Database Sampling
	2.2.1 Comparison to Survey Sampling
	2.2.2 Query Sampling
	2.2.3 Materialized Sampling
	2.2.4 Permuted-Data Sampling
	2.2.5 Data Stream Sampling

	2.3 Applications of Database Sampling
	2.3.1 Selectivity Estimation
	2.3.2 Distinct-Count Estimation
	2.3.3 Approximate Query Processing
	2.3.4 Data Mining
	2.3.5 Other Applications of Database Sampling

	3 Maintenance of Materialized Samples
	3.1 Relationship to Materialized Views
	3.2 Definitions and Notation
	3.3 Properties of Maintenance Schemes
	3.3.1 Sampling Designs
	3.3.2 Datasets and Sampling Semantics
	3.3.3 Supported Transactions and Maintenance Costs
	3.3.4 Sample Size
	3.3.5 Sample Footprint
	3.3.6 Summary

	3.4 Schemes for Survey Sampling
	3.4.1 Draw-Sequential Schemes
	3.4.2 List-Sequential Schemes
	3.4.3 Incremental Schemes

	3.5 Schemes For Database Sampling
	3.5.1 Set Sampling
	3.5.2 Multiset Sampling
	3.5.3 Distinct-Item Sampling
	3.5.4 Data Stream Sampling

	4 Set Sampling
	4.1 Uniform Sampling
	4.1.1 Random Pairing
	4.1.2 Random Pairing With Skipping
	4.1.3 Experiments

	4.2 Sample Resizing
	4.2.1 Resizing Upwards
	4.2.2 Parametrization of Resizing
	4.2.3 Experiments
	4.2.4 Resizing Downwards

	4.3 Sample Merging
	4.3.1 General Merging
	4.3.2 Merging for Random Pairing
	4.3.3 Experiments

	4.4 Summary

	5 Multiset Sampling
	5.1 Uniform Sampling
	5.1.1 Augmented Bernoulli Sampling
	5.1.2 Estimation

	5.2 Sample Resizing
	5.3 Sample Merging
	5.4 Summary

	6 Distinct-Item Sampling
	6.1 Hash Functions
	6.2 Uniform Sampling
	6.2.1 Min-Hash Sampling With Deletions
	6.2.2 Estimation of Distinct-Item Counts
	6.2.3 Experiments

	6.3 Sample Resizing
	6.3.1 Resizing Upwards
	6.3.2 Resizing Downwards

	6.4 Sample Combination
	6.4.1 Multiset Unions
	6.4.2 Other Operations
	6.4.3 Analysis of Sample Size

	6.5 Summary

	7 Data Stream Sampling
	7.1 Uniform Sampling
	7.1.1 A Negative Result
	7.1.2 Priority Sampling Revisited
	7.1.3 Bounded Priority Sampling
	7.1.4 Estimation of Window Size
	7.1.5 Optimizations
	7.1.6 Experiments

	7.2 Stratified Sampling
	7.2.1 Effect of Stratum Sizes
	7.2.2 Merge-Based Stratification
	7.2.3 Experiments

	7.3 Summary

	8 Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Index of Notation
	Index of Algorithm Names

