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ABSTRACT

The contributions of this dissertation are centered around designing new algorithms

in the general area of sublinear algorithms such as streaming, core sets and sublinear

verification, with a special interest in problems arising from data analysis including data

summarization, clustering, matrix problems and massive graphs.

In the first part, we focus on summaries and coresets, which are among the main

techniques for designing sublinear algorithms for massive data sets. We initiate the study

of coresets for uncertain data and study coresets for various types of range counting queries

on uncertain data. We focus mainly on the indecisive model of locational uncertainty

since it comes up frequently in real-world applications when multiple readings of the

same object are made. In this model, each uncertain point has a probability density

describing its location, defined as k distinct locations. Our goal is to construct a subset of

the uncertain points, including their locational uncertainty, so that range counting queries

can be answered by examining only this subset. For each type of query we provide coreset

constructions with approximation-size trade-offs. We show that random sampling can be

used to construct each type of coreset, and we also provide significantly improved bounds

using discrepancy-based techniques on axis-aligned range queries.

In the second part, we focus on designing sublinear-space algorithms for approximate

computations on massive graphs. In particular, we consider graph MAXCUT and cor-

relation clustering problems and develop sampling based approaches to construct truly

sublinear (o(n)) sized coresets for graphs that have polynomial (i.e., nδ for any δ > 0)

average degree. Our technique is based on analyzing properties of random induced

subprograms of the linear program formulations of the problems. We demonstrate this

technique with two examples. Firstly, we present a sublinear sized core set to approximate

the value of the MAX CUT in a graph to a (1+ ε) factor. To the best of our knowledge, all the

known methods in this regime rely crucially on near-regularity assumptions. Secondly, we

apply the same framework to construct a sublinear-sized coreset for correlation clustering.



Our coreset construction also suggests 2-pass streaming algorithms for computing the MAX

CUT and correlation clustering objective values which are left as future work at the time of

writing this dissertation.

Finally, we focus on streaming verification algorithms as another model for designing

sublinear algorithms. We give the first polylog space and sublinear (in number of edges)

communication protocols for any streaming verification problems in graphs. We present

efficient streaming interactive proofs that can verify maximum matching exactly. Our results

cover all flavors of matchings (bipartite/ nonbipartite and weighted). In addition, we also

present streaming verifiers for approximate metric TSP and exact triangle counting, as well

as for graph primitives such as the number of connected components, bipartiteness, mini-

mum spanning tree and connectivity. In particular, these are the first results for weighted

matchings and for metric TSP in any streaming verification model. Our streaming verifiers

use only polylogarithmic space while exchanging only polylogarithmic communication

with the prover in addition to the output size of the relevant solution.

We also initiate a study of streaming interactive proofs (SIPs) for problems in data

analysis and present efficient SIPs for some fundamental problems. We present protocols

for clustering and shape fitting including minimum enclosing ball (MEB), width of a point

set, k-centers and k-slab problem. We also present protocols for fundamental matrix analysis

problems: We provide an improved protocol for rectangular matrix problems, which in

turn can be used to verify k (approximate) eigenvectors of an n× n integer matrix A. In

general our solutions use polylogarithmic rounds of communication and polylogarithmic

total communication and verifier space.

iv
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CHAPTER 1

INTRODUCTION

The area of sublinear algorithms is a new rapidly emerging area of computer science.

In recent years, there has been growing body of work on designing sublinear algorithms,

which are algorithms that use space, time or communication that are sublinear in the input

size, i.e., o(input size n). This is mainly motivated by the increased interest in the design

and analysis of algorithms for massive data sets that occur more frequently in various

applications. Managing and analyzing such data sets requires reconsidering the traditional

notions of efficient algorithms: the classic algorithmic models do not provide accurate

means for modern large-scale applications and even linear cost algorithms can be too slow

and expensive. Hence, there is the desire to develop algorithms whose complexities are not

only polynomial, but in fact are sublinear in n. The range of questions that can be answered

accurately using sublinear (or even polylogarithmic) space or time is enormous, and the

underlying techniques of sketching, streaming, sampling and core sets have been proven to

be a rich toolkit.

Constructing coresets is a technique for designing sublinear algorithms. This technique

summarizes a large data set with a proxy set of potentially much smaller size that can

guarantee error for certain classes of queries. Here the assumption is often that we have

offline access to the data; however, due to the increasing size of the data this assumption

may not be valid. This motivates study on the streaming algorithms, where data arrives in

a streaming fashion and the goal is to extract only a small amount of information about the

input (a “sketch”) for computing the approximate answer to the query. However, it is shown

that many problems (especially on graph data) are intractable in the streaming setting and

require a prohibitive amount of space or number of passes over the data. This motivates

considering a relaxation of the standard streaming model, called streaming interactive

proofs (SIPs), in which a powerful third party (prover) assists with the computations to
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reduce the required memory while still verifying correctness by a sublinear amount of

communication. Besides being practically motivated by outsourced computations, SIPs are

closely related to Merlin-Arthur proofs with space-bounded verifiers.

In the following sections, we give an overview of the three main topics that this

dissertation spans, and later we outline our results and contributions.

1.1 Summaries and Coresets
One of the most popular approaches to processing massive data is to first extract a

compact representation (or synopsis) of the data and then perform further processing only

on the representation itself, obtaining a good approximation to the original input. This

approach significantly reduces the cost of processing, communicating and storing the data.

Examples of this approach include techniques such as sampling, sketching and coresets.

Coresets was first introduced in the field of computational geometry [4, 5, 40, 153]. Given a

large data set P and a family of queries A, then an η-coreset is a subset S ⊂ P such that for all

r ∈ A we obtain ‖r(P)− r(S)‖ ≤ η (note the notion of distance ‖ · ‖ between query results

is problem specific). Initially used for smallest enclosing ball queries [40] and perhaps most

famous in geometry for extent queries as η-kernels [4, 5], the coresets are now employed

in many other problems such as clustering [27] and density estimation [153]. In recent

years, methods for constructing coresets have become more mature theoretically and have

been used to solve some well known open problems in computer science and machine

learning. Coresets present a new approach to optimization in general and have huge success

especially in tasks which use prohibitively large computation time or space. Furthermore,

coresets offer a way to obtain algorithms that work in models such as distributed computing

and the streaming model, where the space used by the algorithm must be significantly

smaller than the input size: simply compute and store a coreset (typically, a coreset is much

smaller than the input size), and then run a more expensive algorithm on the coreset rather

than on the original input.

1.2 Streaming Graph Algorithms and Sketches
Large scale graphs are now a widely used tool for representing real world data. Many

modern applications, such as search engines or social networks, require supporting various
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queries on large scale graphs efficiently. It is possible to store a massive graph on a

large storage device, but the random access in these devices are often quite slow and

the computation costs will be expensive.

To overcome the challenges which arise by computation on massive graphs, an important

approach is maintaining a succinct representation that preserves certain properties of the

graph (i.e., coreset). Another popular approach is to process such large graphs in the data

stream model using a limited amount of space. The core task here is to construct a synopsis

data structure which is easy to construct in streaming fashion while also yielding good

approximation of the properties of the graph data. Many of these synopses are constructed

using sketching (computing a linear projection of the data) and sampling techniques.

The techniques developed for graph streams are now finding application in other areas

including data structures for dynamic graphs, approximation algorithms, and distributed

and parallel computations. A nice survey of graph stream algorithms and related technical

details can be found in [132].

1.3 Streaming Verification Algorithms
One of the main challenges in streaming computation on massive data is designing

algorithms for potentially difficult problems in which computation or space requirements

are prohibitive under the streaming model. In this case, we can consider outsourcing the

storage and processing of the data stream to a more powerful third party, the cloud, but

the data owner would like to be assured that the desired computation has been performed

correctly. In this setting, the resource-limited verifier (data owner) sees a data stream

and tries to solve the problem with the help of a more powerful prover (cloud) who

sees the the same stream. This model can be viewed as a streaming modification of a

classic interactive proof system (a streaming IP, or SIP), and has been the subject of a

number of papers [45, 49, 64, 66, 70, 117, 119, 149] that have established sublinear (verifier)

space and communication bounds for classic problems in streaming. Here the goal is to

develop efficient (in terms of communication and space) interactive proof protocols for

verifying computations which are streaming in nature and explore how interaction and

communication can be helpful in attacking problems in data analysis as well as classic and

fundamental problems in geometric and combinatorial algorithms and optimization under



4

streaming inputs.

In this dissertation, we contribute to the study of sublinear algorithms for massive data

computations in the following ways.

1.4 Chapter 2: Range Counting Coresets for Uncertain
Data

There have been several works on computing coresets for different problems in geometry,

data mining and machine learning, but here in this dissertation, we initiate the study of

coresets for uncertain data. In recent years, uncertain data has become ubiquitous because

of new technologies for collecting data which can only measure and collect the data in

an imprecise way. As a result, there is a need for tools and techniques for mining and

managing uncertain data and dealing with uncertainty, and exploring how the existing

machinery for designing sublinear algorithms for massive data can be adapted to work

efficiently in the uncertain case as well.

To model uncertainty on data, there are several formulations where each point p ∈ P

has an independent probability distribution µp describing its location and such a point is

said to have locational uncertainty.

In Chapter 2, we study constructing coresets for various types of range counting queries

on uncertain data. We focus mainly on the indecisive model of locational uncertainty

since it comes up frequently in real-world applications when multiple readings of the

same object are made. In this model, each uncertain point has a probability density

describing its location, defined as k distinct locations. Our goal is to construct a subset of

the uncertain points, including their locational uncertainty, so that range counting queries

can be answered by just examining this subset. We study three distinct types of queries:

RE queries return the expected number of points in a query range; RC queries return the

number of points in the range with probability at least a threshold; RQ queries return the

probability that fewer than some threshold fraction of the points are in the range. In both

RC and RQ coresets the threshold is provided as part of the query.

We provide the first results for RE-, RC-, and RQ-coresets with guarantees. In particular

we show that a random sample T of size O((1/ε2)(ν + log(1/δ)) with probability 1− δ is

an ε-RC coreset for any family of ranges A whose associated range space has VC-dimension
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ν. If we enforce that each uncertain point has k possible locations, then a sample T of size

O((1/ε2)(ν + log(k/δ)) suffices for an ε-RE coreset.

Then we leverage discrepancy-based techniques [51, 131] for some specific families

of ranges A, to improve these bounds to O((1/ε)poly(k, log(1/ε))). This is an important

improvement since 1/ε can be quite large (say 100 or more), while k, interpreted as the

number of readings of a data point, is small for many applications (say 5). In R1, for

one-sided ranges we construct ε-RE and ε-RC coresets of size O((
√

k/ε) log(k/ε)). For

axis-aligned rectangles in Rd we construct ε-RE coresets of size O((
√

k/ε) · log
3d−1

2 (k/ε))

and ε-RC coresets of size O((k3d+ 1
2 /ε) log6d− 1

2 (k/ε))). Finally, for RQ queries, we show that

to get useful bounds for approximating the answers via coresets, it is required to allow an

α-error in the threshold associated with the query itself, in addition to the standard ε-error

(for 0 < ε ≤ 1) in the returned answer. We prove that any ε-RE coreset of size t is also an

(ε, αε,t)-RQ coreset with value αε,t = ε +
√
(1/2t) ln(2/ε).

These results leverage new connections between uncertain points and both discrepancy

of permutations and colored range searching that may be of independent interest.

1.5 Chapter 3: Sublinear Algorithms for Maxcut
and Correlation Clustering

When dealing with large graphs, the sublinear paradigm has proven to be effective in

two ways. Firstly, for dense graphs, it has long been known that simple sampling strategies

allow us to estimate good approximations even for NP-hard problems. In the streaming

setting, viewing a graph as a large matrix and using sketching/sampling techniques has led

to algorithms that use space that is sublinear in the number of edges, but not the number of

vertices (the so-called semi-streaming paradigm).

Pushing beyond this limit has proven to be difficult. In one direction, the upper bounds

based on sketching and (edge) sampling appear to require access to all the vertices in

the graph. In another direction, there are now a number of lower bounds indicating

that any single-pass streaming algorithm that uses strictly sublinear space cannot get a

(1 + ε)-approximation (for MaxCut and matching, for example). Note that for MaxCut, it

is trivial to get a 2-approximation in log m space by counting edges, and edge sampling
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techniques can get (1 + ε) approximations in Õ(n) space 1.

While the lower bounds suggest that the situation is hopeless, the actual constructions

used in these bounds are very sparse (the graphs have Θ(n) edges). Given the success of

sampling techniques for dense graphs as well as graphs with some kind of regularity as-

sumption, the question we pose in this paper is: “can we get truly sublinear approximations

for (some) graph problems in between (easy) dense graphs and (hard) sparse graphs?”

In Chapter 3, we develop sampling-based approaches to produce core sets of truly

sublinear size (O(n1−δ)) for graphs that have Ω(n1+δ) edges (where 0 < δ ≤ 1). Our

approach draws on ideas first developed outside the realm of sublinear algorithms: the

key insight is to write down a linear program expressing the relevant problem, and then

analyze properties of an induced linear program formed by randomly selecting variables

(i.e., vertices) from the linear program. We apply this paradigm to two graph problems

that have been studied in the sublinear setting: MaxCut and correlation clustering. In both

cases, our approach yields the aforementioned sublinear-sized core set. Our algorithm for

constructing coresets suggests a 2-pass streaming algorithm for these two problems which

is left as a future work.

In order to prove these results, we have to overcome two major obstacles. Firstly, results

of Andoni et al. [18] suggest that maintaining all cuts in a graph approximately requires

an Ω(n) size sketch, and most prior sublinear algorithms for computing MaxCut in fact

maintain all cuts. Thus in order get below the Ω(n) barrier it seems important to focus

only on the maximum cut. Our approach based on the linear programming formulation

is quite different in this sense. Secondly, offline efficient PTASs for MaxCut use uniform

sampling of the graph and rely on the variance in vertex degrees being small (either by

enforcing a regularity condition [33, 77] or by assuming density [16], which ensures that

most vertices have degree Ω(n)). We avoid such assumptions by using a biased sampling

strategy (i.e., vertices of higher degree need to be sampled with proportionally higher

probabilities). Analyzing non-uniform vertex sampling and its effect on the values of

optimization problems (MaxCut and correlation clustering) on large graphs is our main

contribution.

1As usual, Õ( f (n)) = O( f (n)poly log n).
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Our algorithm itself is very simple, and indeed the high level argument can be easily

summarized (Section 3.3). The main complexity in our analysis is in showing a concentration

bound for the behavior of random induced subprograms of linear programs (a slight variant

of this was considered in earlier works such as [16]).

1.6 Chapter 5: Streaming Verification for Graph
Properties

All prior work on streaming graph verification has been in the annotation model,

which in practice resembles a 1-round SIP (a single message from prover to verifier after

the stream has been read). In Chapter 5, we present streaming interactive proofs (SIPs)

for graph problems that are traditionally hard for streaming, such as for the maximum

matching problem (in bipartite and general graphs, both weighted and unweighted) as

well for approximating the traveling salesperson problem. While the streaming model

of computation has been extremely effective for processing numeric and matrix data, its

ability to handle large graphs is limited, even in the so-called semistreaming model where the

streaming algorithm is permitted to use space quasilinear in the number of vertices. Recent

breakthroughs in graph sketching [132] have led to space-efficient approximations for many

problems in the semistreaming model but canonical graph problems like matchings have

been shown to be provably hard.

It is known [111] that no better than a 1− 1/e approximation to the maximum cardi-

nality matching is possible in the streaming model, even with space Õ(n). It was also

known that even allowing limited communication (effectively a single message from the

prover) required a space-communication product of Ω(n2) [45, 64]. Our results show

that even allowing a few more rounds of communication dramatically improves the

space-communication tradeoff for matching, as well as yielding exact verification. We

note that streaming algorithms for matching vary greatly in performance and complexity

depending in whether the graph is weighted or unweighted, bipartite or nonbipartite. In

contrast, our results apply to all forms of matching. Interestingly, the special case of perfect

matching, by virtue of being in RNC [115], admits an efficient SIP via results by Goldwasser,

Kalai and Rothblum [89] and Cormode, Thaler and Yi [66]. Similarly for triangle counting,

the best streaming algorithm [14] yields an additive εn3 error estimate in polylogarithmic
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space, and again in the annotation model (effectively a single round of communication) the

best result yields a space-communication product of n2 log2 n, which is almost exponentially

worse than the bound we obtain. We note that counting triangles is a classic problem in the

sublinear algorithms literature, and identifying optimal space and communication bounds

for this problem was posed as an open problem by Graham Cormode in the Bertinoro

sublinear algorithms workshop [60]. Our bound for verifying a 3/2 + ε approximation for

the TSP in dynamic graphs is also interesting: a trivial 2-approximation in the semistreaming

model follows via the MST, but it is open to improve this bound (even on a grid) [145].

In general, our results can be viewed as providing further insight into the tradeoff

between space and communication in sublinear algorithms. The annotation model of

verification provides Ω(n2) lower bounds on the space-communication product for the

problems we consider: in that light, the fact that we can obtain polynomially better bounds

with only a constant number of rounds demonstrates the power of just a few rounds of

interaction. We also note that virtually all of the canonical hard problems for streaming

algorithms (Index [49], Disjointness [28, 31], Boolean Hidden Matching [43, 75, 121]) admit

efficient SIPs. A SIP for Index was presented in [49] and we present SIPs for Disjointness

and Boolean Hidden Matching here as well.

1.7 Chapter 6: Streaming Verification for Data
Analysis

The shift from direct computation to outsourcing in the cloud has led to new ways of

thinking about massive scale computation. In the verification setting, computational effort

is split between a computationally weak client (the verifier) who owns the data and wants

to solve a desired problem, and a more powerful server (the prover) which performs the

computations. Here the client has only limited (streaming) access to the data, as well as a

bounded ability to talk with the server (measured by the amount of communication), but

wishes to verify the correctness of the prover’s answers.

There are now many third party “cloud” services that can perform intensive computa-

tional tasks on large data. Examples include Amazon EC2 services, Microsoft’s Azure cloud

platform, Google Compute Engine and even a host of specialized platforms for large-scale
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data analysis.2 These servers are not computationally limited: they typically comprise large

clusters of computing nodes.

In Chapter 6 of this thesis, we initiate a study of streaming interactive proofs for problems

in data analysis and present efficient SIPs for some fundamental problems. We present

protocols for clustering and shape fitting as well as an improved protocol for rectangular

matrix multiplication. In particular, We give 3-message SIPs that can verify a minimum

enclosing ball (MEB) and the width of a point set exactly with polylogarithmic space and

communication costs. We present polylogarithmic round protocols with polylogarithmic

communication and verifier space for verifying optimal k-centers and k-slabs in Euclidean

space. We also show a simple 3-message protocol for verifying a 2-approximation to the

k-center in a metric space, via simple adaptation of the Gonzalez 2-approximation for

k-center. We also present protocols for fundamental matrix analysis problems: We provide

an improved protocol for rectangular matrix problems, which in turn can be used to verify

k (approximate) eigenvectors of an n× n integer matrix A. In general our solutions use

polylogarithmic rounds of communication and polylogarithmic total communication and

verifier space. For special cases (when optimality certificates can be verified easily), we

present constant round protocols with similar costs. For rectangular matrix multiplication

and eigenvector verification, our protocols work in the more restricted annotated data

streaming model (which essentially corresponds to one-message SIPs), and use sublinear

(but not polylogarithmic) communication.

Furthermore, in Chapter 4 we provide an overview of main techniques and tools for

streaming verification algorithms which we use later in Chapter 5 and 6. We end this

dissertation by presenting a summary of all the technical results achieved along with some

open directions for future research work.

Main parts of this dissertation have been published as papers or manuscripts. Chapter 2

is published as [1], Chapter 5 is published as [2], Chapter 6 is published as [70] and Chapter

3 is a manuscript [36] submitted and was under review at the point this dissertation is

written.

2See, for example, http://aws.amazon.com/ec2/, http://azure.microsoft.com/en-us/, https://cloud.
google.com/compute/, https://bigml.com/, and https://dato.com/index.html



CHAPTER 2

RANGE COUNTING CORESETS FOR

UNCERTAIN DATA

Techniques for constructing coresets are becoming more relevant in the era of big data;

they summarize a large data set P with a proxy set S of potentially much smaller size that

can guarantee error for certain classes of queries. They also shed light on the limits of how

much information can possibly be represented in a small set of data.

2.1 Overview
The two main themes of this chapter are around coresets and uncertain data, which we

give a short overview of them.

2.1.1 Coresets

In this chapter, we focus on a specific type of coreset called an η-sample [52, 98, 153]

that can be thought of as preserving density queries and that has deep ties to the basis of

learning theory [20]. Given a set of objects X (often X ⊂ Rd is a point set) and a family

of subsets A of X, then the pair (X,A) is called an range space. Often A are specified by

containment in geometric shapes, for instance as all subsets of X defined by inclusion in any

ball, any half space, or any axis-aligned rectangle. Now an η-sample of (X,A) is a single

subset S ⊂ X such that

max
r∈A

∣∣∣∣ |X ∩ r|
|X| −

|S ∩ r|
|S|

∣∣∣∣ ≤ η.

For any query range r ∈ A, subset S approximates the relative density of X in r with error

at most η.

There are various works on constructing coresets for different problems. We give a brief

overview of some of this related work here.

In [6], Agarwal et al. give an overview of coreset based algorithms for geometric approx-

imations including extent measures and other related optimization problems. Reference [99]
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presents coresets for k-means and k-median clustering. In addition, [79] gives constant-size

coresets for PCA and projective clustering. Reference [56] also studies coresets for k-median

and k-means clustering in metric and euclidean spaces. Reference [26] presents optimal

coresets for balls and [82] develops coresets for polytope distance. In [71], Dasgupta et al.

provide sampling algorithms and coresets for `p regression problem and in [78] Feldman et

al. study coresets and sketches for high-dimensional subspace approximation problems.

There are several other works which study the construction of coresets with the goal of

designing faster algorithms; a comprehensive review of this sizable literature is outside of

the scope of this dissertation.

2.1.2 Uncertain Data

Another emerging notion in data analysis is modeling uncertainty in points. There

are several formulations of these problems where each point p ∈ P has an independent

probability distribution µp describing its location and such a point is said to have locational

uncertainty. In imprecise points (also called deterministic uncertainty) model, a data point

p ∈ P could be anywhere within a fixed continuous range and was originally used for

analyzing precision errors. The worst case properties of a point set P under the imprecise

model have been well-studied [29, 91, 92, 100, 124, 127, 135, 137, 152]. In indecisive points (or

attribute uncertainty in database literature [144]) model, each pi ∈ P is able to take one of k

distinct locations {pi,1, pi,2, . . . , pi,k} with possibly different probabilities, modeling when

multiple readings of the same object have been made [3, 8, 61, 62, 104, 151].

We also note another common model of existential uncertainty (similar to tuple uncertainty

in database literature [144] but a bit less general) where the location or value of each p ∈ P

is fixed, but the point may not exist with some probability, modeling false readings [62, 108,

109, 144].

In this chapter, we will focus mainly on the indecisive model of locational uncertainty

since it comes up frequently in real-world applications [8, 151] (when multiple readings

of the same object are made, and typically k is small) and can be used to approximately

represent more general continuous representations [103, 139].
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2.2 Problem Statement
Combining the two notions coreset and uncertain data leads to the question: can we

create a coreset (specifically for η-samples) of uncertain input data? A few more definitions

are required to rigorously state this question. In fact, we develop three distinct notions of

how to define the coreset error in uncertain points. One corresponds to range counting

queries, another to querying the mean, and the third to querying the median (actually it

approximates the rank for all quantiles).

For an uncertain point set P = {p1, p2, . . . , pn} with each pi = {pi,1, pi,2, . . . pi,k} ⊂ Rd

we say that Q b P is a transversal if Q ∈ p1 × p2 × . . . × pn. I.e., Q = (q1, q2, . . . , qn) is

an instantiation of the uncertain data P and can be treated as a “certain” point set, where

each qi corresponds to the location of pi. PrQbP[ζ(Q)], (resp. EQbP[ζ(Q)]) represents the

probability (resp. expected value) of an event ζ(Q) where Q is instantiated from P according

to the probability distribution on the uncertainty in P.

As stated, our goal is to construct a subset of uncertain points T ⊂ P (including the

distribution of each point p’s location, µp) that preserves specific properties over a family of

subsets (P,A). For completeness, the first variation we list cannot be accomplished purely

with a coreset as it requires Ω(n) space.

• Range Reporting (RR) Queries support queries of a range r ∈ A and a threshold τ,

and return all pi ∈ P such that PrQbP[qi ∈ r] ≥ τ. Note that the fate of each pi ∈ P

depends on no other pj ∈ P where i 6= j, so they can be considered independently.

Building indexes for this model have been studied [57, 69, 147, 156] and effectively

solved in R1 [3].

• Range Expectation (RE) Queries consider a range r ∈ A and report the expected number

of uncertain points in r, EQbP[|r ∩Q|]. The linearity of expectation allows summing

the individual expectations each point p ∈ P is in r. Single queries in this model have

also been studied [41, 101, 102].

• Range Counting (RC) Queries support queries of a range r ∈ A and a threshold τ, but

only return the number of pi ∈ P which satisfy PrQbP[qi ∈ r] ≥ τ. The effect of each

pi ∈ P on the query is separate from that of any other pj ∈ P where i 6= j. A random

sampling heuristic [155] has been suggested without proof of accuracy.
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• Range Quantile (RQ) Queries take a query range r ∈ A, and report the full cumulative

density function on the number of points in the range PrQbP[|r∩Q|]. Thus for a query

range r, this returned structure can produce for any value τ ∈ [0, 1] the probability

that τn or fewer points are in r. Since this is no longer an expectation, the linearity

of expectation cannot be used to decompose this query along individual uncertain

points.

Across all queries we consider, there are two main ways we can approximate the answers.

The first and most standard way is to allow an ε-error (for 0 ≤ ε ≤ 1) in the returned answer

for RQ, RE, and RC. The second way is to allow an α-error in the threshold associated with

the query itself. As will be shown, this is not necessary for RR, RE, or RC, but is required to

get useful bounds for RQ. Finally, we will also consider probabilistic error δ, demarcating

the probability of failure in a randomized algorithm (such as random sampling). We strive

to achieve these approximation factors with a small size coreset T ⊂ P as follows:

RE: For a given range r, let r(Q) = |Q ∩ r|/|Q|, and let Er(P) = EQbP[r(Q)]. T ⊂ P is an

ε-RE coreset of (P,A) if for all queries r ∈ A we have
∣∣∣Er(P) − Er(T)

∣∣∣ ≤ ε.

RC: For a range r ∈ A, let GP,r(τ) = 1
|P|
∣∣{pi ∈ P | PrQbP[qi ∈ r] ≥ τ

}∣∣ be the fraction

of points in P that are in r with probability at least some threshold τ. Then T ⊂
P is an ε-RC coreset of (P,A) if for all queries r ∈ A and all τ ∈ [0, 1] we have

|GP,r(τ)− GT,r(τ)| ≤ ε.

RQ: For a range r ∈ A, let FP,r(τ) = PrQbP[r(Q) ≤ τ] = PrQbP

[
|Q∩r|
|Q| ≤ τ

]
be the

probability that at most a τ fraction of P is in r. Now T ⊂ P is an (ε, α)-RQ coreset

of (P,A) if for all r ∈ A and τ ∈ [0, 1] there exists a γ ∈ [τ − α, τ + α] such that

|FP,r(τ)− FT,r(γ)| ≤ ε. In such a situation, we also say that FT,r is an (ε, α)-quantization

of FP,r.

A natural question is whether we can construct a (ε, 0)-RQ coreset where there is not a

secondary α-error term on τ. We demonstrate that there are no useful nontrivial bounds on

the size of such a coreset.

When the (ε, α)-quantization FT,r need not be explicitly represented by a coreset T, then

Löffler and Phillips [104, 126] show a different small space representation that can replace it

in the above definition of an (ε, α)-RQ coreset with probability at least 1− δ. First randomly

create m = O((1/ε2) log(1/δ)) transversals Q1, Q2, . . . , Qm, and for each transversal Qi
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create an α-sample Si of (Qi,A). Then to satisfy the requirements of FT,r(τ), there exists

some γ ∈ [τ − α, τ + α] such that we can return (1/m)|{Si | r(Si) ≤ γ}|, and it will be

within ε of FP,r(τ). However, this is subverting the attempt to construct and understand

a coreset to answer these questions. A coreset T (our goal) can be used as proxy for P as

opposed to querying m distinct point sets. This alternate approach also does not shed light

into how much information can be captured by a small size point set, which is provided by

bounds on the size of a coreset.

2.2.1 Simple Example

We illustrate a simple example with k = 2 and d = 1, where n = 10 and the nk = 20

possible locations of the 10 uncertain points are laid out in order:

p1,1 < p2,1 < p3,1 < p4,1 < p5,1 < p6,1 < p3,2 < p7,1 < p8,1 < p8,2 < p9,1 < p10,1 < p5,2

< p10,2 < p2,2 < p9,2 < p7,2 < p4,2 < p6,2 < p1,2.

We consider a coreset T ⊂ P that consists of the uncertain points T = {p1, p3, p5, p7, p9}.
Now consider a specific range r ∈ I+, a one-sided interval that contains p5,2 and smaller

points, but not p10,2 and larger points. We can now see that FT,r is an (ε′ = 0.1016, α = 0.1)-

quantization of FP,r in Figure 2.1; this follows since at FP,r(0.75) = 0.7734 either FT,r(x) is at

most 0.5 for x ∈ [0.65, 0.8) and is at least 0.875 for x ∈ [0.8, 0.85]. Also observe that∣∣∣Er(P) − Er(T)

∣∣∣ = ∣∣∣∣13
20
− 7

10

∣∣∣∣ = 1
20

= ε.

When these errors (the (ε′, α)-quantization and ε-error) hold for all ranges in some range

space, then T is an (ε′, α)-RQ coreset or ε-RC coreset, respectively.

To understand the error associated with an RC coreset, also consider the threshold

τ = 2/3 with respect to the range r. Then in range r, 2/10 of the uncertain points from

P are in r with probability at least τ = 2/3 (points p3 and p8). Also 1/5 of the uncertain

points from T are in r with probability at least τ = 2/3 (only point p3). So there is 0 RC

error for this range and threshold.

2.3 Discrepancy and Permutations
The key tool we will use to construct small coresets for uncertain data is discrepancy

of range spaces, and specifically those defined on permutations. Consider a set X, a
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Figure 2.1: Example cumulative density functions (FT,r, in red with fewer steps, and
FP,r, in blue with more steps) on uncertain point set P and a coreset T for a specific
range.

range space (X,A), and a coloring χ : X → {−1,+1}. Then for some range A ∈ A,

the discrepancy is defined discχ(X, A) = |∑x∈X∩A χ(x)|. We can then extend this to be

over all ranges discχ(X,A) = maxA∈A discχ(X, A) and over all colorings disc(X,A) =

minχ discχ(X,A).

Consider a ground set (P, Σk) where P is a set of n objects, and Σk = {σ1, σ2, . . . , σk}
is a set of k permutations over P so each σj : P → [n]. We can also consider a family of

ranges Ik as a set of intervals defined on one of the k permutations so Ix,y,j ∈ Ik is defined so

P ∩ Ix,y,j = {p ∈ P | x < σj(p) ≤ y} for x < y ∈ [0, n] and j ∈ [k]. The pair ((P, Σk), Ik) is

then a range space, defining a set of subsets of P.

A canonical way to obtain k permutations from an uncertain point set P = {p1, p2, . . . , pn}
is as follows. Define the jth canonical traversal of P as the set Pj = ∪n

i=1 pi,j. When each

pi,j ∈ R1, the sorted order of each canonical traversal Pj defines a permutation on P as

σj(pi) = |{pi′,j ∈ Pj | pi′,j ≤ pi,j}|, that is σj(pi) describes how many locations (including

pi,j) in the traversal Pj have value less than or equal to pi,j. In other words, σj describes the

sorted order of the jth point among all uncertain points. Then, given an uncertain point set,
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let the canonical traversals define the canonical k-permutation as (P, Σk).

A geometric view of the permutation range space embeds P as n fixed points in Rk and

considers ranges which are defined by inclusion in (k− 1)-dimensional slabs, defined by

two parallel half spaces with normals aligned along one of the coordinate axes. Specifically,

the jth coordinate of the ith point is σj(pi), and if the range is on the jth permutation, then

the slab is orthogonal to the jth coordinate axis.

Another useful construction from an uncertain point set P is the set Pcert of all locations

any point in P might occur. Specifically, for every uncertain point set P we can define the

corresponding certain point set Pcert =
⋃

i∈[n] pi =
⋃

j∈[k] Pj =
⋃

i∈[n],j∈[k] pi,j. We can also

extend any coloring χ on P to a coloring in Pcert by letting χcert(pij) = χ(pi), for i ∈ [n] and

j ∈ [k]. Now we can naturally define the discrepancy induced on Pcert by any coloring χ of

P as discχcert(Pcert,A) = maxr∈A ∑pi,j∈Pcert∩r χ(pi,j).

2.4 Low Discrepancy to ε-Coreset
There is a well-studied relationship between range spaces that admit low-discrepancy

colorings, and creating ε-samples of those range spaces [34, 51, 52, 131]. Mainly in the 90s

Chazelle and Matousek [51, 52, 54, 130, 131] led the development of the method to convert

from a low-discrepancy coloring to a coreset that allowed for approximate range queries.

The key relationship states that if disc(X,A) = γ logω(n), then there exists an ε-sample of

(P,A) of size O((γ/ε) · logω(γ/ε)) [139], for values γ, ω independent of n or ε. Construct

the coloring, and with equal probability discard either all points colored either −1 or those

colored +1. This roughly halves the point set size, and also implies zero over-count in

expectation for any fixed range. Repeat this coloring and reduction of points until the

desired size is achieved. This can be done efficiently in a distributed manner through

a merge-reduce framework [52]. The take-away is that a method for a low-discrepancy

coloring directly implies a method to create an ε-sample, where the counting error is in

expectation zero for any fixed range. Here we describe and extend these results in much

more detail and state a bit more specifically for our setting.

Theorem 2.1 (Phillips [139, 140]). Consider a point set P of size n and a family of subsets A.

Assume an O(nβ) time algorithm to construct a coloring χ : P → {−1,+1} so discχ(P,A) =

O(γ logω n) where β, γ, and ω are constant algorithm parameters dependent on A, but not P (or n).
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There exists an algorithm to construct an ε-sample of (P,A) of size g(ε,A) = O((γ/ε) logω(γ/ε))

in time O(n · g(ε,A)β−1).

Note that we ignored nonexponential dependence on ω and β since in our setting they

are data and problem independent constants. But we are more careful with γ terms since

they depend on k, the number of locations of each uncertain point.

We restate the algorithm and analysis here for completeness, using g = g(ε,A) for

shorthand. Divide P into n/g parts {P̄1, P̄2, . . . , P̄n/g} of size k = 4(β + 2)g. Assume this

divides evenly and n/g is a power of two; otherwise pad P and adjust g by a constant. Until

there is a single set, repeat the following two stages. In stage 1, for β + 2 steps, pair up all

remaining sets, and for all pairs (e.g. Pi and Pj) construct a low-discrepancy coloring χ on

Pi ∪ Pj and discard all points colored −1 (or +1 at random). In the (β + 3)rd step pair up

all sets, but do not construct a coloring and halve. That is every epoch (β + 3 steps) the size

of remaining sets double, otherwise they remain the same size. When a single set remains,

stage 2 begins; it performs the color-halve part of the above procedure until disc(P,A) ≤ εn

as desired.

We begin analyzing the error on a single coloring.

Lemma 2.1. The set P+ = {p ∈ P | χ(p) = +1} is an (discχ(P,A)/n)-sample of (P,A).

Proof.

max
R∈A

∣∣∣∣ |P ∩ R|
|P| −

|P+ ∩ R|
|P+|

∣∣∣∣ = max
R∈A

∣∣∣∣ |P ∩ R| − 2|P+ ∩ R|
n

∣∣∣∣ ≤ discχ(P,A)

n
.

We also note two simple facts [51, 131]:

(S1) If Q1 is an ε-sample of P1 and Q2 is an ε-sample of P2, then Q1 ∪Q2 is an ε-sample of

P1 ∪ P2.

(S2) If Q is an ε1-sample of P and S is an ε2 sample of Q, then S is an (ε1 + ε2)-sample of P.

Note that (S1) (along with Lemma 2.1) implies the arbitrarily decomposing P into n/g

sets and constructing colorings of each achieves the same error bound as doing so on

just one. And (S2) implies that chaining together rounds adds the error in each round. It
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follows that if we ignore the (β + 3)rd step in each epoch, then there is 1 set remaining

after log(n/g) steps. The error caused by each step is disc(g,A)/g so the total error is

log(n/g)(γ logω g)/g = ε. Solving for g yields g = O(γ
ε log( nε

γ ) logω(γ
ε )).

Thus to achieve the result stated in the theorem the (β + 3)rd step skip of a reduce needs

to remove the log(nε/γ) term from the error. This works! After β + 3 steps, the size of each

set is 2g and the discrepancy error is γ logω(2g)/2g. This is just more than half of what it

was before, so the total error is now:

log(n/g)
β+3

∑
i=0

(β + 3)γ logω(2ig)/(2ig) = Θ(β(γ logω g)/g) = ε.

Solving for g yields g = O( βγ
ε logω(1/ε)) as desired. Stage 2 can be shown not to asymptot-

ically increase the error.

To achieve the runtime we again start with the form of the algorithm without the

half-skip on every (β + 3)rd step. Then the first step takes O((n/g) · gβ) time. And each ith

step takes O((n/2i−1)gβ−1) time. Since each subsequent step takes half as much time, the

runtime is dominated by the first O(ngβ−1) time step.

For the full algorithm, the first epoch (β + 3 steps, including a skipped halve) takes

O(ngβ−1) time, and the ith epoch takes O(n/2(β+2)i(g2i)β−1) = O(ngβ−1/23i) time. Thus

the time is still dominated by the first epoch. Again, stage 2 can be shown not to affect this

runtime, and the total runtime bound is achieved as desired, and completes the proof.

Finally, we state a useful corollary about the expected error being 0. This holds

specifically when we choose to discard the set P+ or P− = {p ∈ P | χ(p) = −1} at

random on each halving.

Corollary 2.1. The expected error for any range R ∈ A on the ε-sample T created by Theorem 2.1 is

E
[ |R ∩ P|
|P| −

|T ∩ R|
|T|

]
= 0.

Note that there is no absolute value taken inside E[·], so technically this measures the

expected undercount.

2.4.1 RE-Discrepancy

We are also interested in achieving these same results for RE-discrepancy. To this end, the

algorithms are identical. Lemma 2.4 replaces Lemma 2.1. (S1) and (S2) still hold. Nothing
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else about the analysis depends on properties of disc or RE-disc, so Theorem 2.1 can be

restated for RE-discrepancy.

Theorem 2.2. Consider an uncertain point set P of size n and a family of subsets A of Pcert.

Assume an O(nβ) time algorithm to construct a coloring χ : P→ {−1,+1} so RE-discχ(P,A) =

O(γ logω n) where β, γ, and ω are constant algorithm parameters dependent on A, but not

P (or n). There exists an algorithm to construct an ε-RE coreset of (P,A) of size g(ε,A) =

O((γ/ε) logω(γ/ε)) in time O(n · g(ε,A)β−1).

2.5 RE Coresets
First we will analyze ε-RE coresets through the Pcert interpretation of uncertain point set

P. The canonical transversals Pj of P will also be useful. In Section 2.5.2 we will relate these

results to a form of discrepancy.

Lemma 2.2. T ⊂ P is an ε-RE coreset for (P,A) if and only if Tcert ⊂ Pcert is an ε-sample for

(Pcert,A).

Proof. First note that since Pr[pi = pij] =
1
k ∀i, j, hence by linearity of expectations we have

that EQbP[|Q ∩ r|] = ∑n
i=1 E[|pi ∩ r|] = 1

k |Pcert ∩ r|. Now, direct computation gives us:∣∣∣∣ |Pcert ∩ r|
|Pcert|

− |Tcert ∩ r|
|Tcert|

∣∣∣∣ = ∣∣∣∣ |Pcert ∩ r|
k|P| − |Tcert ∩ r|

k|T|

∣∣∣∣ = ∣∣∣Er(P) − Er(T)

∣∣∣ < ε.

The next implication enables us to determine an ε-RE coreset on P from ε-samples on

each Pj b P. Recall Pj is the jth canonical transversal of P for j ∈ [k], and is defined similarly

for a subset T ⊂ P as Tj.

Lemma 2.3. Given a range space (Pcert,A), if we have T ⊂ P such that Tj is an ε-sample for

(Pj,A) for all j ∈ [k], then T is an ε-RE coreset for (P,A).

Proof. Consider an arbitrary range r ∈ R, and compute directly
∣∣∣Er(P) − Er(T)

∣∣∣. Recalling

that Er(P) =
|Pcert∩r|
|Pcert| and observing that |Pcert| = k|P|, we get that:∣∣∣Er(P) − Er(T)

∣∣∣ = ∣∣∣∣∣∑
k
j=1 |Pj ∩ r|

k|P| − ∑k
j=1 |Tj ∩ r|

k|T|

∣∣∣∣∣ ≤ 1
k

k

∑
j=1

∣∣∣∣∣ |Pj ∩ r|
|P| −

|Tj ∩ r|
|T|

∣∣∣∣∣ ≤ 1
k
(kε) = ε.
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2.5.1 Random Sampling

We show that a simple random sampling gives us an ε-RE coreset of P.

Theorem 2.3. For an uncertain points set P and range space (Pcert,A) with VC-dimension ν, a

random sample T ⊂ P of size O((1/ε2)(ν+ log(k/δ))) is an ε-RE coreset of (P, I) with probability

at least 1− δ.

Proof. A random sample Tj of size O((1/ε2)(ν + log(1/δ′))) is an ε-sample of any (Pj,A)

with probability at least 1 − δ′ [125]. Now assuming T ⊂ P resulted from a random

sample on P, it induces the k disjoint canonical transversals Tj on T, such that Tj ⊂ Pj and

|Tj| = O((1/ε2)(ν + log(1/δ′))) for j ∈ [k]. Each Tj is an ε-sample of (Pj,A) for any single

j ∈ [k] with probability at least 1− δ′. Following Lemma 2.3 and using union bound, we

conclude that T ⊂ P is an ε-RE coreset for uncertain point set P with probability at least

1− kδ′. Setting δ′ = δ/k proves the theorem.

2.5.2 RE-Discrepancy and its Properties

Next we extend the well-studied relationship between geometric discrepancy and

ε-samples on certain data towards ε-RE coresets on uncertain data.

We first require precise and slightly nonstandard definitions.

We introduce a new type of discrepancy based on the expected value of uncertain

points called RE-discrepancy. Let P+
χ and P−χ denote the sets of uncertain points from

P colored +1 or −1, respectively, by χ. Then RE-discχ(P, r) = |P| · |Er(P+
χ ) − Er(P)| for

any r ∈ A. The usual extensions then follow: RE-discχ(P,A) = maxr∈A RE-disc(P, r) and

RE-disc(P,A) = minχ RE-discχ(P,A). Note that (P,A) is technically not a range space, since

A defines subsets of Pcert in this case, not of P.

Lemma 2.4. Consider a coloring χ : P→ {−1,+1} such that RE-discχ(P,A) = γ logω(n) and

|P+
χ | = n/2. Then the set P+

χ is an ε-RE coreset of (P,A) with ε = γ
n log(n).

Furthermore, if a subset T ⊂ P has size n/2 and is an (γ
n logω(n))-RE coreset, then it defines a

coloring χ (where χ(pi) = +1 for pi ∈ T) that has RE-discχ(P,A) = γ logω(n).

Proof. We prove the second statement, the first follows symmetrically. We refer to the subset

T as P+
χ . Let r = arg maxr′∈A |Er′(P) − Er′(P+

χ )|. This implies γ
n logω n ≥ |Er(P) − Er(P+

χ )| =
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1
nRE-discχ(P, r).

We can now recast RE-discrepancy to discrepancy on Pcert. From Lemma 2.2 we know

that
∣∣∣ |Pcert∩r|

k|P| −
|Tcert∩r|

k|T|

∣∣∣ = ∣∣∣Er(P) − Er(T)

∣∣∣ and after some basic substitutions we obtain the

following.

Lemma 2.5. RE-discχ(P,A) = 1
k discχcert(Pcert,A).

This does not immediately solve ε-RE coresets by standard discrepancy techniques

on Pcert because we need to find a coloring χ on P. A coloring χcert on Pcert may not be

consistent across all pi,j ∈ pi. The following lemma allows us to reduce this to a problem of

coloring each canonical transversal Pj.

Lemma 2.6. RE-discχ(P,A) ≤ maxj discχcert(Pj,A).

Proof. For any r ∈ A and any coloring χ (and the corresponding χcert), we can write P as a

union of disjoint transversals Pj to obtain

discχcert(Pcert, r) =
∣∣∣∣ k

∑
j=1

∑
pij∈Pj∩r

χcert(pij)

∣∣∣∣ ≤ k

∑
j=1

∣∣∣∣ ∑
pij∈Pj∩r

χcert(pij)

∣∣∣∣
≤

k

∑
j=1

discχcert(Pj, r) ≤ k max
j

discχcert(Pj, r).

Since this holds for every r ∈ A, hence (using Lemma 2.5)

RE-discχ(P,A) =
1
k
discχcert(Pcert,A) ≤ max

j
discχcert(Pj,A).

2.5.3 ε-RE Coresets in R1

Lemma 2.7. Consider uncertain point set P with Pcert ⊂ R1 and the range space (Pcert, I+) with

ranges defined by one-sided intervals of the form (−∞, x], then RE-disc(P, I) = O(
√

k log n).

Proof. Spencer et al. [146] show that disc((P, Σk), Ik) is O(
√

k log n). Since we obtain the Σk

from the canonical transversals P1 through Pk, by definition this results in upper bounds on

the the discrepancy over all Pj (it bounds the max). Lemma 2.6 then gives us the bound on

RE-disc(P, I).
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As we discussed in Section 2.4 the low RE-discrepancy coloring can be iterated in a

merge-reduce framework as developed by Chazelle and Matousek [52]. With Theorem 2.2

we can prove the following theorem.

Theorem 2.4. Consider uncertain point set P and range space (Pcert, I+) with ranges defined

by one-sided intervals of the form (−∞, x], then an ε-RE coreset can be constructed of size

O((
√

k/ε) log(k/ε)).

Since expected value is linear, we have

RE-discχ(P, (−∞, x])− RE-discχ(P, (−∞, y)) = RE-discχ(P, [y, x])

for y < x and the above result also holds for the family of two-sided ranges I.

2.5.4 ε-RE Coresets for Rectangles in Rd

Here let P be a set of n uncertain points where each possible location of a point pi,j ∈ Rd.

We consider a range space (Pcert,Rd) defined by d-dimensional axis-aligned rectangles.

Each canonical transversal Pj for j ∈ [k] no longer implies a unique permutation on

the points (for d > 1). But, for any rectangle r ∈ R, we can represent any r ∩ Pj as the

disjoint union of points Pj contained in intervals on a predefined set of (1 + log n)d−1

permutations [37]. Spencer et al. [146] showed there exists a coloring χ such that

max
j

discχ(Pj,R) = O(D`(n) logd−1 n),

where ` = (1 + log n)d−1 is the number of defined permutations and D`(n) is the discrep-

ancy of ` permutations over n points and ranges defined as intervals on each permutation.

Furthermore, they showed D`(n) = O(
√
` log n).

To get the RE-discrepancy bound for Pcert = ∪k
j=1Pj, we first decompose Pcert into

the k point sets Pj of size n. We then obtain (1 + log n)d−1 permutations over points in

each Pj, and hence obtain a family Σ` of ` = k(1 + log n)d−1 permutations over all Pj.

D`(n) = O(
√
` log n) yields

disc((P, Σ`), I`) = O(
√

k log
d+1

2 n).

Now each set Pj ∩ r for r ∈ Rd, can be written as the disjoint union of O(logd−1 n) intervals

of Σ`. Summing up over each interval, we get that disc(Pj,R) = O(
√

k log
3d−1

2 n) for each
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j. By Lemma 2.6 this bounds the RE-discrepancy as well. Finally, we can again apply the

merge-reduce framework of Chazelle and Matousek [52] (via Theorem 2.2) to achieve an

ε-RE coreset.

Theorem 2.5. Consider uncertain point set P and range space (Pcert,Rd) (for d > 1) with

ranges defined by axis-aligned rectangles in Rd. Then an ε-RE coreset can be constructed of

size O((
√

k/ε) log
3d−1

2 (k/ε)).

2.6 RC Coresets
Recall that an ε-RC coreset T of a set P of n uncertain points satisfies that for all queries

r ∈ A and all thresholds τ ∈ [0, 1] we have |GP,r(τ)−GT,r(τ)| ≤ ε, where GP,r(τ) represents

the fraction of points from P that are in range r with probability at least τ.

In this setting, given a range r ∈ A and a threshold τ ∈ [0, 1] we can let the pair

(r, τ) ∈ A× [0, 1] define a range Rr,τ such that each pi ∈ P is either in or not in Rr,τ. Let

(P,A× [0, 1]) denote this range space. If (Pcert,A) has VC-dimension ν, then (P,A× [0, 1])

has VC-dimension O(ν + 1); This is according to the Corollary 5.23 in [98]. This implies

that random sampling works to construct ε-RC coresets.

Theorem 2.6. For uncertain point set P and range space (Pcert,A) with VC-dimension ν, a random

sample T ⊂ P of size O((1/ε2)(ν + log(1/δ))) is an ε-RC coreset of (P,A) with probability at

least 1− δ.

Yang et al. propose a similar result [155] as above, without proof.

2.6.1 RC Coresets in R1

Constructing ε-RC coresets when the family of ranges I+ represents one-sided, one-

dimensional intervals is much easier than other cases. It relies heavily on the ordered

structure of the canonical permutations, and thus discrepancy results do not need to

decompose and then recompose the ranges.

Lemma 2.8. A point pi ∈ P is in range r ∈ I+ with probability at least τ = t/k if and only if

pi,t ∈ r ∩ Pt.

Proof. By the canonical permutations, since for all i ∈ [n], we require pi,j < pi,j+1, then if
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pi,t ∈ r, it follows that pi,j ∈ r for j ≤ t. Similarly if pi,t /∈ r, then all pi,j /∈ r for j ≥ t.

Thus when each canonical permutation is represented upto an error ε by a coreset T,

then each threshold τ is represented within ε. Hence, as with ε-RE coresets, we invoke

the low-discrepancy coloring of Bohus [37] and Spencer et al. [146], and then iterate them

(invoking Theorem 2.1) to achieve a small size ε-RC coreset.

Theorem 2.7. For uncertain point set P and range space (Pcert, I+) with ranges defined by

one-sided intervals of the form (−∞, a]. An ε-RC coreset of (P, I+) can be constructed of size

O((
√

k/ε) log(k/ε)).

Extending Lemma 2.8 from one-sided intervals of the form [−∞, a] ∈ I+ to intervals of

the form [a, b] ∈ I turns out to be nontrivial. It is not true that GP,[a,b](τ) = GP,[−∞,b](τ)−
GP,[−∞,a](τ), hence the two queries cannot simply be subtracted. Also, while the set of points

corresponding to the query GP,[−∞,a](
t
k ) are a contiguous interval in the tth permutation we

construct in Lemma 2.8, the same need not be true of points corresponding to GP,[a,b](
t
k ).

This is a similar difficulty in spirit as noted by Kaplan et al. [110] in the problem of counting

the number of points of distinct colors in a box where one cannot take a naive decomposition

and add up the numbers returned by each subproblem.

We give now a construction to solve this two-sided problem for uncertain points in R1

inspired by that of Kaplan et al. [110], but we require specifying a fixed value of t ∈ [k].

Given an uncertain point pi ∈ P assume w.l.o.g that pi,j < pi,j+1. Also pretend there is a

point pi,k+1 = η where η is larger than any b ∈ R1 from a query range [a, b] (essentially

η = ∞). Given a range [a, b], we consider the right-most set of t locations of pi (here

{pi,j−t, . . . , pi,j}) that are in the range. This satisfies (i) pi,j−t ≥ a, (ii) pi,j ≤ b, and (iii) to

ensure that it is the right-most such set, pi,j+1 > b.

To satisfy these three constraints we re-pose the problem in R3 to designate each

contiguous set of t possible locations of pi as a single point. So for t < j ≤ k, we map

pi,j to p̄t
i,j = (pi,j−t, pi,j, pi,j+1). Correspondingly, a range r = [a, b] is mapped to a range

r̄ = [a, ∞) × (−∞, b] × (b, ∞); see Figure 2.2. Let p̄t
i denote the set of all p̄t

i,j, and let P̄t

represent
⋃

i p̄t
i .

Lemma 2.9. pi is in interval r = [a, b] with threshold at least t/k if and only if p̄t
i ∩ r̄t ≥ 1.
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b b

ba
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b

Figure 2.2: Uncertain point pi queried by range [a, b]. Lifting shown to p̄3
i along

dimensions 1 and 2 (left) and along dimensions 2 and 3 (right).

Furthermore, no two points pi,j, pi,j′ ∈ pi can map to points p̄t
i,j, p̄t

i,j′ such that both are in a range r̄t.

Proof. Since pi,j < pi,j+1, then if pi,j−t ≥ a it implies all pi,` ≥ a for ` ≥ j− t, and similarly,

if pi,j ≤ b then all pi,` ≤ b for all ` ≤ j. Hence if p̄t
i,j satisfies the first two-dimensional

constraints of the range r̄t, it implies t points pi,j−t . . . , pi,j are in the range [a, b]. Satisfying

the constraint of r̄t in the third coordinate indicates that pi,j+1 /∈ [a, b]. There can only be

one point pi,j which satisfies the constraint of the last two coordinates that pi,j ≤ b < pi,j+1.

And for any range which contains at least t possible locations, there must be at least one

such set (and only one) of t consecutive points which has this satisfying pi,j.

Corollary 2.2. Any uncertain point set P ∈ R1 of size n and range r = [a, b] has GP,r(
t
k ) =

|P̄t ∩ r̄t|/n.

This presents an alternative view of each uncertain point in R1 with k possible locations

as an uncertain point in R3 with k− t possible locations (since for now we only consider a

threshold τ = t/k). Where I represents the family of ranges defined by two-sided intervals,

let Ī be the corresponding family of ranges in R3 of the form [a, ∞) × (−∞, b] × (b, ∞)

corresponding to an interval [a, b] ∈ I. Under the assumption (valid under the lifting

defined above) that each uncertain point can have at most one location fall in each range, we

can now decompose the ranges and count the number of points that fall in each subrange

and add them together. Using the techniques (described in detail in Section 2.5.4) of

Bohus [37] and Spencer et al. [146] we can consider ` = (k− t)(1 + dlog ne)2 permutations

of P̄t
cert such that each range r̄ ∈ Ī can be written as the points in a disjoint union of intervals

from these permutations. To extend low discrepancy to each of the k distinct values of
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threshold t, there are k such liftings and h = k · ` = O(k2 log2 n) such permutations we

need to consider. We can construct a coloring χ : P→ {−1,+1} such that intervals on each

permutation has discrepancy O(
√

h log n) = O(k log2 n). Recall that for any fixed threshold

t we only need to consider the corresponding ` permutations. Hence the total discrepancy

for any such range is at most the sum of discrepancy from all corresponding ` = O(k log2 n)

permutations or O(k2 log4 n). Finally, this low-discrepancy coloring can be iterated (via

Theorem 2.1) to achieve the following theorem.

Theorem 2.8. Consider an uncertain point set P along with ranges I of two-sided intervals. We

can construct an ε-RC coreset T for (P, I) of size O((k2/ε) log4(k/ε)).

2.6.2 RC Coresets for Rectangles in Rd

The approach for I can be further extended to Rd, axis-aligned rectangles in Rd. Again

the key idea is to define a proxy point set P̄ such that |r̄ ∩ P̄| equals the number of uncertain

points in r with at least threshold t. This requires a suitable lifting map and decomposition

of space to prevent over or under counting; we employ techniques from Kaplan et al. [110].

First we transform queries on axis-aligned rectangles in Rd to the semibounded case in

R2d. Denote the xi-coordinate of a point q as xi(q), we double all the coordinates of each

point q = (x1(q), ..., x`(q), ..., xd(q)) to obtain point

q̃ = (−x1(q), x1(q)...,−x`(q), x`(q), ...,−xd(q), xd(q))

in R2d. Now answering range counting query ∏d
i=1[ai, bi] is equivalent to solving the query

d

∏
i=1

[(−∞,−ai]× (−∞, bi]]

on the lifted point set.

Based on this reduction we can focus on queries of negative orthants of the form ∏d
i=1(−∞, ai]

and represent each orthant by its apex a = (a1, ..., ad) ∈ Rd as Q−a . Similarly, we can define

Q+
a as positive orthants in the form ∏d

i=1[ai, ∞) ⊆ Rd. For any point set A ⊂ Rd define

U(A) = ∪a∈AQ+
a .

A tight orthant has a location of pi ∈ P incident to every bounding facet. Let Ci,t be

the set of all apexes representing tight negative orthants that contain exactly t locations of
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pi; see Figure 2.3(a). An important observation is that query orthant Q−a contains pi with

threshold at least t if and only if it contains at least one point from Ci,t.

Let Q+
i,t = ∪c∈Ci,t Q

+
c be the locus of all negative orthant query apexes that contain at

least t locations of pi; see Figure 2.3(b). Notice that Q+
i,t = U(Ci,t).

Lemma 2.10. For any point set pi ⊂ Rd of k points and some threshold 1 ≤ t ≤ k, we can

decompose U(Ci,t) into f (k) = O(kd) pairwise disjoint boxes, B(Ci,t).

Proof. Let M(A) be the set of maximal empty negative orthants for a point set A, such

that any m ∈ M(A) is also bounded in the positive direction along the 1st coordinate axis.

Kaplan et al. [110] show (within Lemma 3.1) that |M(A)| = |B(A)| and provide a specific

construction of the boxes B. Thus we only need to bound |M(Ci,t)| to complete the proof;

see M(Ci,t) in Figure 2.3(c). We note that each coordinate of each c ∈ Ci,t must be the same

as some pi,j ∈ pi. Thus for each coordinate, among all c ∈ Ci,t there are at most k values.

And each maximal empty tight orthant m ∈ M(Ci,t) is uniquely defined by the d coordinates

along the axis direction each facet is orthogonal to. Thus |M(Ci,t)| ≤ kd, completing the

proof.

Note that as we are working in a lifted space R2d, this corresponds to U(Ci,t) being

decomposed into f (k) = O(k2d) pairwise disjoint boxes in which d is the dimensionality of

our original point set.

Lemma 2.11. For negative orthant queries Q−a with apex a on uncertain point set P, a point pi ∈ P

is in Q−a with probability at least t/k if a is in some box in B(Ci,t), and a will lie in at most one box

from B(Ci,t).

Proof. The query orthant Q−a contains point pi with threshold at least t if and only if Q−a

contains at least one point from Ci,t and this happens only when a ∈ U(Ci,t). Since the

union of constructed boxes in B(Ci,t) is equivalent to U(Ci,t) and they are disjoint, the result

follows.

Corollary 2.3. The number of uncertain points from P in query range Q−a with probability at least

t/k is exactly the number of boxes in ∪n
i B(Ci,t) that contain a.
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Q+
c1

Q+
c2c1

c2

c1

c2

a

Q−a

U(Ci,t)

c1

c2

(a) (b) (c)
Figure 2.3: Illustration of uncertain point pi ∈ R2 with k = 8 and t = 3. (a): All

tight negative orthants containing exactly t = 3 locations of pi, their apexes are Ci,t =
{c1, c2}. (b): U(Ci,t) is shaded and query Q−a . (c): M(Ci,t), the maximal negative
orthants of Ci,t that are also bounded in the x-direction.

Thus for a set of boxes representing P, we need to perform count stabbing queries with

apex a and show a low-discrepancy coloring of boxes.

We do a second lifting by transforming each point a ∈ Rd to a semibounded box

ā = ∏d
i=1((−∞, ai] × [ai, ∞)) and each box b ∈ Rd of the form ∏d

i [xi, yi] to a point b̄ =

(x1, y1, ..., x`, y`, ..., xd, yd) in R2d. It is easy to verify that a ∈ b if and only if b̄ ∈ ā.

Since this is our second doubling of dimension, we are now dealing with points in

R4d. Lifting P to P̄ in R4d now presents an alternative view of each uncertain point pi ∈ P

as an uncertain point p̄i in R4d with gk = O(k2d) possible locations with the query boxes

represented as R̄ in R4d.

We now proceed similarly to the proof of Theorem 2.8. For a fixed threshold t, obtain

` = gk · (1 + dlog ne)4d−1 disjoint permutations of P̄t
cert such that each range r̄ ∈ R̄ can be

written as the points in a disjoint union of intervals from these permutations. For the k

distinct values of t, there are k such liftings and h = O
(

k · gk · log4d−1 n
)

such permutations

we need to consider, and we can construct a coloring χ : P→ {−1,+1} so that intervals on

each permutation have discrepancy O(
√

h log n) = O(kd+ 1
2 log

4d+1
2 n).

Hence for any such range and specific threshold t, the total discrepancy is the sum of dis-

crepancy from all corresponding ` = O
(

gk · log4d−1 n
)

permutations, or O
(

k3d+ 1
2 log6d− 1

2 n
)

.

By applying the iterated low-discrepancy coloring (Theorem 2.1), we achieve the following

result.

Theorem 2.9. Consider an uncertain point set P and range space (Pcert,Rd) with ranges defined

by axis-aligned rectangles in Rd. Then an ε-RC coreset can be constructed of size
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O
(
(k3d+ 1

2 /ε) log6d− 1
2 (k/ε)

)
.

2.7 RQ Coresets
In this section, given an uncertain point set P and its ε-RE coreset T, we want to

determine values ε′ and α so T is an (ε′, α)-RQ coreset. That is for any r ∈ A and threshold

τ ∈ [0, 1] there exists a γ ∈ [τ − α, τ + α] such that∣∣∣PrQbP

[ |Q ∩ r|
|Q| ≤ τ

]
−PrSbT

[ |S ∩ r|
|S| ≤ γ

] ∣∣∣ ≤ ε′.

At a high level, our tack will be to realize that both |Q ∩ r| and |S ∩ r| behave like Binomial

random variables. By T being an ε-RE coreset of P, then after normalizing, its mean is at

most ε-far from that of P. Furthermore, Binomial random variables tend to concentrate

around their mean–and more so for those with more trials. This allows us to say |S ∩ r|/|S|
is either α-close to the expected value of |Q∩ r|/|Q| or is ε′-close to 0 or 1. Since |Q∩ r|/|Q|
has the same behavior, but with more concentration, we can bound their distance by the α

and ε′ bounds noted before. We now work out the details.

Theorem 2.10. If T is an ε-RE coreset of P for ε ∈ (0, 1/2), then T is an (ε′, α)-RQ coreset for P

for ε′, α ∈ (0, 1/2) and satisfying α ≥ ε +
√
(1/2|T|) ln(2/ε′).

Proof. We start by examining a Chernoff-Hoeffding bound on a set of independent random

variables Xi so that each Xi ∈ [ai, bi] with ∆i = bi − ai. Then for some parameter β ∈
(0, ∑i ∆i/2)

Pr

[∣∣∣∣∣∑i
Xi − E

[
∑

i
Xi

]∣∣∣∣∣ ≥ β

]
≤ 2 exp

(
−2β2

∑i ∆2
i

)
.

Consider any r ∈ A. We now identify each random variable Xi = 1(qi ∈ r) (that is, 1 if

qi ∈ r and 0 otherwise) where qi is the random instantiation of some pi ∈ T. So Xi ∈ {0, 1}
and ∆i = 1. Thus by equating |S ∩ r| = ∑ Xi

PrSbT [||S ∩ r| − E [|S ∩ r|]| ≥ β|S|] ≤ 2 exp

(
−2β2|S|2

∑i ∆2
i

)
= 2 exp(−2β2|S|) ≤ ε′.

Thus by solving for β (and equating |S| = |T|)

PrSbT

∣∣∣∣ |S ∩ r|
|S| − E

[ |S ∩ r|
|S|

]∣∣∣∣ ≥
√

1
2|T| ln(

2
ε′
)

 ≤ ε′.
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Now by T being an ε-RE coreset of P then∣∣∣∣ESbT

[ |S ∩ r|
|S|

]
− EQbP

[ |Q ∩ r|
|Q|

]∣∣∣∣ ≤ ε.

Combining these two we have

PrSbT

[∣∣∣∣ |S ∩ r|
|S| − EQbP

[ |Q ∩ r|
|Q|

]∣∣∣∣ ≥ α

]
≤ ε′

for α = ε +
√

1
2|T| ln(

2
ε′ ).

Combining these statements, for any x ≤ M− α ≤ M− α′ we have ε′ > FT,r(x) ≥ 0

and ε′ > FP,r(x) ≥ 0 (and symmetrically for x ≥ M + α ≥ M + α′). It follows that FT,r is an

(ε′, α)-quantization of FP,r.

Since this holds for any r ∈ A, by T being an ε-RE coreset of P, it follows that T is also

an (ε′, α)-RQ coreset of P.

We can now combine this result with specific results for ε-RE coresets to get size bounds

for (ε, α)-RQ coresets. To achieve the below bounds we set ε = ε′.

Corollary 2.4. For uncertain point set P with range space (Pcert,A), there exists a

(ε, ε +
√
(1/2|T|) ln(2/ε))-RQ coreset of (P,A) of size |T| =

• O((1/ε2)(ν + log(k/δ))) when A has VC-dimension ν, with probability 1− δ (Theorem

2.3),

• O((
√

k/ε) log(k/ε)) when A = I (Theorem 2.4), and

• O
(
(
√

k/ε) log
3d−1

2 (k/ε)
)

when A = Rd (Theorem 2.5).

Finally we discuss why the α term in the (ε′, α)-RQ coreset T is needed. Recall from Sec-

tion 2.5 that approximating the value of EQbP
[ |Q∩r|
|Q|
]

with ESbT
[ |S∩r|
|S|
]

for all r corresponds

to a low-discrepancy sample of Pcert. Discrepancy error immediately implies we will have

at least the ε horizontal shift between the two distributions and their means, unless we

could obtain a zero discrepancy sample of Pcert. Note this ε-horizontal error corresponds

to the α term in an (ε′, α)-RQ coreset. When P is very large, then due to the central limit

theorem, FP,r will grow very sharply around EQbP
[ |Q∩r|
|Q|
]
. In the worst case FT,r may be

Ω(1) vertically away from FP,r on either side of ESbT
[ |S∩r|
|S|
]
, so no reasonable amount of ε′

vertical tolerance will make up for this gap.
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On the other hand, the ε′ vertical component is necessary since for very small probability

events (that is for a fixed range r and small threshold τ) on P, we may need a much

smaller value of τ (smaller by Ω(1)) to get the same probability on T, requiring a very large

horizontal shift. But since it is a very small probability event, only a small vertical ε′ shift is

required.

The main result of this section then is showing that there exist pairs (ε′, α) which are

both small.



CHAPTER 3

SUBLINEAR ALGORITHMS FOR MAXCUT

AND CORRELATION CLUSTERING

There is a long line of work on efficient approximation schemes for MaxCut and

correlation clustering, which first we give an overview here. Then, we provide the problem

statement and the technical details.

3.1 Prior Work
One direction by Arora et al. [22] is to get PTASs for the case of dense graphs. This

subsequently improved by Fotakis et al. [81] to the polynomial density graphs we consider

here, albeit in time exp(n1−δ). Alon et al. [16] took a different approach, sampling the linear

program formulation and analyzing the optimal solution on the subprogram, yielding

similar bounds for dense graphs. In both approaches, full random access to the graph is

needed. Other algorithms for the dense case are the ones from property testing (see [87]),

and the work of Mathieu and Schudy [129], who showed that simple sampling combined

with a greedy strategy improves the above bounds for MaxCut by a log( 1
ε ) factor.

In the “polynomial density” (average degree nδ) case that we consider, Feige and

Schectman [77] give a combinatorial approach to show that uniformly sampling vertices

with probability roughly 1/∆ preserves the value of the cut. Similar results were thoroughly

explored in [33]. These works heavily rely on a “near-regularity” requirement on the graph

(roughly speaking, that all degrees are within a small factor of each other), which can be

used to obtain strong concentration bounds. Their algorithm makes use of a uniform sample

of the vertices; this is in contrast to the biased sampling that we use in our more general

setting (when degrees can vary widely). Indeed, the main challenge in our work is to deal

with this issue, using biased sampling (which we analyze via the LP framework).

In the setting of streaming algorithms, there are several algorithms [10, 14, 85, 86, 114, 116]

which produce cut or spectral sparsifiers with O( n
ε2 ) edges using Õ( n

ε2 ) bits space which
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preserves every cut within (1+ ε)-factor (and therefore also preserve the max cut). All these

algorithms construct the sparsifier graph by sampling a subgraph of the original graph and

reweighting the sampled edges appropriately. All of these approaches use space Õ(n).

In [112], Kapralov et al. proved that any streaming algorithm that breaks the 2-

approximation barrier requires Õ(
√

n) space, even if the edges of the streaming graph

are presented in random order. They also show that for any ε > 0, any streaming algorithm

that obtains a (1 + ε)-approximation to the max cut value when edges arrive in adversarial

order requires n1−O(ε) space. Kapralov et al. [113] also proved that there exists ε∗ > 0 such

that every randomized single-pass streaming algorithm that yields a (1+ ε∗)-approximation

to the MAXCUT size must use Ω(n) space. For each lower bound, the result follows by

constructing a (distribution over) sparse graphs (with O(n) edges). Separately, Andoni

et al. [18] gave a Ω( n
ε2 ) lower bound for the bit complexity of a sketch. Since all of the

upper bounds are based on sketching techniques, this result shows that these algorithms

are essentially optimal (upto logarithmic factors).

Correlation clustering was first formulated by Bansal et al. [30] and has been stud-

ied extensively in both streaming and nonstreaming contexts. There are two variants

of the problem – maximizing agreement and minimizing disagreement. While these

are equivalent for exact optimization (their sum is a constant), they look very different

under an approximation lens. Maximizing agreement typically admits constant factor

approximations, but minimizing disagreement is much harder. In this paper, we focus

on the maximizing-agreement variant of correlation clustering and in particular we fo-

cus on methods that seek (1 + ε)-approximations. Ailon and Karnin [15] presented an

approximation scheme with sublinear query complexity (which also yields a semistream-

ing algorithm) for dense instance of correlation clustering. Giotis and Guruswami [83]

described a sampling based algorithm combined with a greedy strategy which guarantees a

solution within (εn2) additive error for max-agreement (their work is similar to spirit to the

sample-and-then-be-greedy technique used by Mathieu and Schudy [129]). Most recently,

Ahn et al. [9] gave single-pass semistreaming algorithms for max-agreement. For input

graphs with bounded weights, they provide an (1 + ε)-approximation streaming algorithm

and for graphs with arbitrary weights, they present a 0.766(1− ε)-approximation streaming

algorithm. Both algorithms require (nε−2) space. The key idea in their approach was to
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adapt multiplicative-weight-update methods for solving the natural SDPs for correlation

clustering in a streaming setting using linear sketching techniques. We mention in passing

work by Chierichetti et al. [58] that while focusing on min-disagreement, is also a multipass

semistreaming algorithm that yields a constant factor approximation on [0, 1]-weighted

graphs.

3.2 Definitions and Preliminaries
Definition 3.1 (MaxCut). Let G = (V, E, w) be a graph with weights w : E → R+. Let (A, B)

be a partition of V and let c(A, B) denote the sum of weights of edges going between A and B. Then

MaxCut(G) = max
(A,B) partition of V

c(A, B)

In this paper, for ease of presentation, we will assume that the input graph is unweighted.

However, our techniques apply generally as long as all weights are bounded by some

constant.

Let G = (V, E, c+, c−) be a graph with edge weights c+ij and c−ij where for every edge

ij we have c+ij , c−ij ≥ 0 and only one of them is nonzero. For every edge ij ∈ E, we define

ηij = c+ij − c−ij and for each vertex, di = ∑i∈Γ(j) |ηij|. We will also assume that all the weights

are bounded by an absolute constant in magnitude (for simplicity, we assume it is 1). We

define the “average degree” ∆ (used in the statements that follow) of a correlation clustering

instance to be (∑i di)/n.

Definition 3.2 (MAX-AGREE correlation clustering). Given G = (V, E, c+, c−) as above,

consider a partition of V into clusters C1, C2, . . . , Ck, and let χij be an indicator variable that is set

to 1 if i, j are in the same cluster and 0 otherwise. The MAX-AGREE score of this clustering is given

by

∑
ij

c+ij χij + ∑
ij

c−ij (1− χij)

and the goal is to find a partition maximizing this score. The maximum value of this objective over

all partitions of V will be denoted by CC(G).

Note that the objective value can be simplified to ∑ij c−ij + ηijχij = C− + ∑ij ηijχij, where

C− denotes the sum ∑ij c−ij .
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We will frequently appeal to Bernstein’s inequality for concentration of linear forms of

random variables. For completeness, we state it here.

Theorem 3.3 (Bernstein’s inequality [72]). Let the random variables X1, · · · , Xn be independent

with |Xi − E[Xi]| ≤ b for each i ∈ [n]. Let X = ∑i Xi and let σ2 = ∑i σ2
i be the variance of X.

Then, for any t > 0,

Pr[|X− E[X]| > t] ≤ exp(− t2

2σ2(1 + bt/3σ2)
)

A slightly more nonstandard concentration inequality we use is from Boucheron,

Massart and Lugosi [38]. It can be viewed as an exponential version of the classic Efron-Stein

lemma.

Theorem 3.4 ( [38]). Assume that Y1, · · · , Yn are random variables, and Yn
1 is the vector of these

n random variables. Let Z = f (Y1, · · · , Yn), where f : χn → R is a measurable function.

Define Z(i) = f (Y1, · · · , Yi−1, Y′i , Yi+1, · · · , Yn), where Y1, · · · , Y′n denote the independent copies

of Y1, · · · , Yn. Then, for all θ > 0 and λ ∈ (0, 1
θ ),

log E[eλ(Z−E[Z])] ≤ λθ

1− λθ
log E[e

λL+
θ ],

where L+ is the random variable defined as

L+ = E[
n

∑
i=1

(Z− Z(i))
2
1Z>Z(i) |Yn

1 ].

3.3 Technical Overview
The algorithm we develop is a simple biased sampling strategy followed by a reweight-

ing of edges in the induced subgraph. Given a graph G = (V, E), let di denote the degree of

vertex vi ∈ V.

Definition 3.5. Let the importance score of each vertex vi with degree di in graph G as hi =

min{1, max{di ,ε∆}
∆2αε

}, where αε is an appropriately small constant (for MaxCut, it will suffice to

choose it to be ε4

C log n , and for correlation clustering, we choose it to be ε6

Ck2 log n , where C is an

absolute constant).

We start by introducing two sampling procedures that we will use in our algorithm.
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• Procedure vertexsample. Let S′ be the set formed by selecting each vertex vi with

probability pi, where pi ≥ hi. Then assign a weight wij =
1

pi pj∆2 to each edge ij in the

induced subgraph H.1

Intuitively, we sample a vertex with high enough probability, and then reweight the

edges so that the edge counts are unbiased.

• Procedure edgesample. Here we are given a weighted graph H, with total edge

weight W. Now, sample each edge ij in H (independently) with probability pij =

min(1, 8|S′|wij

ε2W ), obtaining the graph H′. Now, assign a weight wij/pij to every edge in

H′.

Intuitively, we sample roughly |S′|/ε2 edges proportional to their weights, while

keeping the expected sum of edge weights the same. The main results of the paper

can now be stated as follows.

Theorem 3.6 (Core set). Let G be a graph with average degree ∆. Suppose we apply vertexsample

with probabilities pi ∈ [hi, 2hi] to obtain a weighted graph H. Then H has Õ( n
∆ ) vertices and the

quantities MaxCut(H) and CC(H) are within a (1 + ε) factor of the corresponding quantities

MaxCut(G) and CC(G), w.p. at least 1− 1
n2 .

Theorem 3.7 (Sparse core set). Given an input graph G with n vertices and average degree

∆ = nδ. If we apply vertexsample and then edgesample to G, then the resulting graph H′ is a

sublinear sized ε-coreset for MaxCut and CC, having size Õ( n
∆ ) = Õ(n1−δ).

3.3.1 Overview of the Proofs

Let us now give a rough outline of the proof. For this outline, we will restrict to the

case of MAXCUT, as it illustrates almost all the ideas. Technically, the key step is proving

Theorem 3.6. The sparse coreset results then follow via standard edge-sampling ideas. Let

us thus consider the vertex sampling step, which outputs the graph H. We wish to reason

about MaxCut(H).

The easy part is to show that the MaxCut(H) (if weighted correctly) is unlikely to be

too small compared to MaxCut(G).

1In correlation clustering, we have edge weights to start with, so the weight in H will be wij · c+ij (or c−ij ).
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Lemma 3.1. Let H be the graph produced by vertexsample. Then w.p. at least 1− 1
n4 ,

MaxCut(H) ≥ MaxCut(G)− εn∆

Intuitively, this is because we can look at the projection of the maximum cut in G onto

the subgraph H. A simple concentration bound can be employed to show that the value of

this cut is close to its expectation (see [77]). The main challenge is to argue that the cut in H

cannot be too large. The key to showing this is the following “double sampling” argument,

which has been used in works on property testing [87] and by Feige and Schechtman [77].

3.3.2 Two Views of Sampling

Consider the following two strategies for sampling a pair of subsets (S, S′) of a universe

[n] (here, qv ≤ pv for all v):

• Strategy A: choose S′ ⊆ [n], by including every v w.p. pv, independently; then for

v ∈ S′, include them in S w.p. qv/pv, independently.

• Strategy B: pick S ⊆ [n], by including every v w.p. qv; then iterate over [n] once again,

placing v ∈ S′ with a probability equal to 1 if v ∈ S, and p∗v if v 6∈ S.

Lemma 3.2. Suppose p∗v = pv(1− qv
pv
)/(1− pv). Then the distribution on pairs (S, S′) obtained

by strategies A and B are identical.

Proof. Let us examine strategy A. It is clear that the distribution over S is precisely the

same as the one obtained by strategy B, since in both the cases, every v is included in

S independently of the other v, with probability precisely qv. Now, to understand the

joint distribution (S, S′), we need to consider the conditional distribution of S′ given S.

Firstly, note that in both strategies, S ⊆ S′, i.e., Pr[v ∈ S′|v ∈ S] = 1. Next, we can write

Prstrategy A[v ∈ S′|v 6∈ S] as

Prstrategy A[v ∈ S′ ∧ v 6∈ S]
Prstrategy A[v 6∈ S]

=
pv(1− qv

pv
)

1− pv
.

Noting that PrstrategyB[v ∈ S′|v 6∈ S] = p∗v (by definition) concludes the proof.

In our proof of Theorem 3.6, we will set q to be the uniform distribution qv = 16 log n
ε2∆ .

The proof now proceeds as follows. Let H denote the weighted graph on S′ obtained by

applying vertexsample to G. The goal is to show that MaxCut(G) ≈ ∆2MaxCut(H), w.h.p.
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3.3.3 Estimation with Linear Programs

The main idea is to establish the above approximate equality indirectly, by using a

sampling based estimator for MaxCut, introduced by [22]. At a very high level, a set of

“seed vertices” is used to obtain approximations to appropriate linear functions of the

variables, which then allow us to reduce solving a quadratic program to solving a linear

program. More concretely, the estimator takes as input the graph G and a set of sampling

probabilities γ, and then uses γ to sample a small seed set of vertices S that can be used to

encode a linear program. Enumerating over all assignments to S then yields the desired

estimator Est(G). We describe this estimator in detail in Section 3.4; it is a weighted version

of the formulation of Arora et al. [22], introduced for approximating dense constraint

satisfaction problems (like MaxCut).

Suppose we now apply vertexsample to G, yielding a graph H with (sampled) vertex

set S′. We can now apply the estimation procedure Est(H) with the sampled seed set S.

Note that the sequence of first sampling S′ and then S is the strategy A above. Corollary 3.2

then shows that MaxCut(H) ≈ Est(H).

We can also apply estimation to the original graph G. This can be thought of as strategy

A, where S′ is ignored. Again, we invoke Corollary 3.1 to show that MaxCut(G) ≈ Est(G).

But how do we compare the two estimation procedures? The difficulty here is that

when computing Est(H) we sample the subset S′ and then sample the seed set S from S′.

However, when computing Est(G), the seed set S is sampled from V. Ideally, we would

then just sample G to yield the subset S′, but we have to make sure that S′ contains S.

Otherwise our estimation procedure is meaningless.

In effect, we need strategy B to compare the two estimators. Lemma 3.2 guarantees that

strategy B is equivalent to strategy A, and we can choose to interpret our sampling strategy

via strategy B as long as we adjust the sampling probabilities as prescribed by the Lemma.

Specifically, we assume that the seed set S is fixed and is the same for H and G. Then all

that remains is to sample S′ ⊃ S (via strategy B) and show that

Est(G) ≈ ∆2Est(H).

This final step is done in Theorem 3.11 (in Section 3.5) which is the technical core of our

result. It is essentially a theorem that relates the value of an LP to that of a random induced
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sub-LP (and is thus a concentration bound, at its core).

3.4 Estimation via Linear Programming
We now define a generalized estimation procedure that makes use of a linear program-

ming formulation of the problem to yield an accurate estimate of the optimal solution. Our

approach is based on the procedure outlined by Arora et al. [22]. The main difference here is

that we have weighted graphs, and sampling is done according to an arbitrary distribution

γ, as opposed to uniform.

Let H = (V, E, w) be a weighted, undirected graph with edge weights wij, and let

γ : V → [0, 1] denote sampling probabilities. Construct S ⊂ V by including vi ∈ V with

probability γi. Fix a partition (A, S \ A) of S. Define the linear program LPA,S\A(V) as

maximize ∑
i

xi(di − ρi)− si − ti

subject to ρi − ti ≤ ∑
j∈Γ(i)

wijxj ≤ ρi + si

0 ≤ xi ≤ 1, si, ti ≥ 0.

where

ρi = ∑
j∈Γ(i)∩A

wij

γj
and di = ∑

j∈Γ(i)
wij.

The intuition here is that the set S represents a set of witnesses for which we fix a cut,

and we then determine the assignment of the remaining vertices by looking only at a

vertex’s neighborhood in S. Note that the best choice of si, ti for each i are such that

si + ti = |ρi −∑j∈Γ(i) wijxj|.
Now define AKK-Est(H, γ) to be the output of the following randomized algorithm:

sample S as above; for each partition (A, S \ A) of S, compute LPA,S\A(V), and return the

largest value.

Theorem 3.8. Let H be a weighted graph on n vertices, with edge weights wij that add up to W.

Suppose the sampling probabilities γi satisfy the condition

wij ≤
Wε2

8 log n
γiγj

∑u γu
for all i, j. (3.1)

Then, we have AKK-Est(H, γ) ∈ MaxCut(H)± εW, with probability at least 1− 1/n2 (where

the probability is over the random choice of S).
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Proof. The proof consists of two claims as follow, that imply the necessary upper and lower

bound.

Claim 3.9. The estimate is not too small.

Proof. We can show that with high probability over the choice of S, there exists a cut (A, S \
A) of S such that LPA,S\A(H) ≥ MaxCut(H)− εW. The result follows by an application

of Bernstein’s inequality. Let (AH, V \ AH) be the max cut in the full graph H. Now

consider a sample S, and let (A, S \ A) be its projection onto S. For any vertex i, recall that

ρi = ∑j∈Γ(i)∩A
wij
γj

= ∑j∈Γ(i)∩AH
Yj

wij
γj

, where Yj is the indicator for j ∈ S. Thus

E[ρi] = ∑
j∈Γ(i)∩AH

γj
wij

γj
= ∑

j∈Γ(i)∩AH

wij.

We will use Bernstein’s inequality to bound the deviation in ρi from its mean. To this

end, note that the variance can be bounded as

Var[ρi] = ∑
j∈Γ(i)∩AH

γj(1− γj)
w2

ij

γ2
j
≤ ∑

j∈Γ(i)

(1− γj)w2
ij

γj
.

In what follows, let us write di = ∑j∈Γ(i) wij and fi = Wγi
∑u γu

. Then, for every j, our

assumption on the wij implies that wij
γj
≤ ε2

8 log n fi. Thus, summing over j, we can bound the

variance by ε2di fi
8 log n . Now, using Bernstein’s inequality (Theorem 3.3),

Pr[|ρi − E[ρi]| > t] ≤ exp

− t2

ε2di fi
4 log n + 2t

3
ε2 fi

8 log n

 . (3.2)

Setting t = ε(di + fi), and simplifying, we have that the probability above is < exp(−4 log n) =
1
n4 . Thus, we can take a union bound over all i ∈ V, and conclude that w.p. ≥ 1− 1

n3 ,∣∣∣∣∣∣ρi − ∑
j∈Γ(i)∩AH

wij

∣∣∣∣∣∣ ≤ ε(di + fi) for all i ∈ V. (3.3)

For any S that satisfies the above, consider the solution x that sets xi = 1 for i ∈ AH and 0

otherwise. We can choose si + ti = |ρi −∑j∈Γ(i) wijxj| ≤ ε(di + fi), by the above reasoning

(eq. (3.3)). Thus the LP objective can be lower bounded as

∑
i

xi(di − ρi)− ε(di + fi) ≥∑
i

xi(di − ∑
j∈Γ(i)

wijxj)− 2ε(di + fi).

This is precisely MaxCut(G) − 2ε ∑i(di + fi) ≥ MaxCut(G) − 4εW. This completes the

proof of the claim.
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Claim 3.10. The estimate is not much larger than an optimal cut.

Proof. Consider any feasible solution to the LP above (for some values ρi, si, ti). There exists

a cut in H of value at least the LP objective. The key insight here is that the linear program

is derived from a natural quadratic objective function. However, this objective is a linear

function of any xi if all other xj are fixed. This means that we can deterministically round

any fractional solution one variable at a time so that the resulting solution lies in 0, 1n

without decreasing the objective value. Here, we have a feasible solution x to the LP, of

objective value ∑i xi(di − ρi)− ∑i |ρi − ∑j∈Γ(i) wijxj|, and we wish to move to a cut of at

least this value. To this end, define the quadratic form

Q(x) := ∑
i

xi
(
di − ∑

j∈Γ(i)
wijxj

)
.

The first observation is that for any x ∈ [0, 1]n, and any real numbers ρi, we have

Q(x) ≥∑
i

xi(di − ρi)−∑
i
|ρi − ∑

j∈Γ(i)
wijxj|.

This is true simply because Q(x) = ∑i xi
(
di − ρi

)
+ xi

(
ρi −∑j∈Γ(i) wijxj

)
, and the fact that

the second term is at least −|ρi −∑j∈Γ(i) wijxj|, as xi ∈ [0, 1].

Next, note that the maximum of the form Q(x) over [0, 1]n has to occur at a boundary

point, since for any fixing of variables other than a given xi, the form reduces to a linear

function of xi, which attains maximum at one of the boundaries. Using this observation

repeatedly lets us conclude that there is a y ∈ {0, 1}n such that Q(y) ≥ Q(x). Since any

such y corresponds to a cut, and Q(y) corresponds to the cut value, the claim follows.2

Combining the two claims gives us the desired upper and lower bounds for AKK-Est(H, γ)

in terms of the optimal solution.

We can now state two corollaries to Theorem 3.8 that imply good estimates for the

MaxCut.

Corollary 3.1. Let H in the framework be the original graph G, and let γi = 16 log n
ε2∆ for all

i. Then the condition wij ≤ ε2

8 log n ·
Wγiγj

∑u γu
holds for all i, j, and therefore AKK-Est(G, γ) ∈

MaxCut(G)± εW, w.p. ≥ 1− 1
n2 .

2We note that the proof in [22] used randomized rounding to conclude this claim, but this argument is
simpler; also, later papers such as [81] used such arguments for derandomization.



42

The proof is immediate (with a slack of 2), as wij = 1, W = n∆, and all γu are equal.

Corollary 3.2. Let H be the weighted sampled graph obtained from vertexsample, and let γi =

16 log n
ε2∆

1
pi

. Then the condition (3.1) holds w.p. ≥ 1 − n−3, and therefore AKK-Est(H, γ) ∈
MaxCut(H)± εW w.p. ≥ 1− n−2.

Proof. In this case, we have wij =
1

pi pj∆2 . Thus, simplifying the condition, we need to show

that
1

pi pj∆2 ≤
2W

pi pj∆
1

∑u∈H
1
pu

.

Now, for H sampled via probabilities pi, we have (in expectation) W = n
∆ , and ∑u∈H

1
pu

=

n. A straightforward application of Bernstein’s inequality yields that W ≥ n
2∆ and ∑u∈H

1
pu
≤

2n, w.p. at least 1− n−3. This completes the proof.

3.5 Random Induced Linear Programs
We will now show that the AKK-Est on H has approximately the same value as the

estimate on G (with appropriate γ values). First, note that the estimate for MaxCut(G) is

maxA⊆S LPγ
A,S\A(G), where γi = qi. To write the LP, we need the constants ρi, defined by

the partition (A, S \ A) as ρi := ∑j∈Γ(i)∩A
1
qj

.

The LP is now as follows.

maximize ∑
i∈G

[xi(di − ρi)− (si + ti)]

subject to ∑
j∈Γ(i)

xj ≤ ρi + si, ∀i ∈ [n] (3.4)

− ∑
j∈Γ(i)

xj ≤ −ρi + ti, ∀i ∈ [n] (3.5)

0 ≤ xi ≤ 1 ∀i ∈ [n]

For the graph H, the estimation procedure uses an identical program, but the sampling

probabilities are now αi := qi/pi, and the estimates ρ, which we now denote by ρ̃i, are

defined by

ρ̃i := ∑
j∈Γ(i)∩A

pjwij

qj
.

Note that by the way we defined wij, ρ̃i =
ρi

pi∆2 . The degrees are now d̃i := ∑j∈Γ(i)∩S′ wij =

∑j∈Γ(i)∩S′
1

pi pj∆2 . The LP is thus
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maximize ∑
i∈S′

[xi(d̃i − ρ̃i)− (s̃i + t̃i)]

subject to ∑
j∈Γ(i)∩S′

wijxj ≤ ρ̃i + s̃i, ∀i ∈ S′

− ∑
j∈Γ(i)∩S′

wijxj ≤ −ρ̃i + t̃i, ∀i ∈ S′

0 ≤ xi ≤ 1, s̃i, t̃i ≥ 0 ∀i ∈ S′

Our aim in this section is to show the following:

Theorem 3.11. Let G be an input graph, and let (S, S′) be sampled as described in Section 3.3.1.

Then, with probability ≥ 1− 1
n2 , we have

max
A⊆S

LPγ
A,S\A(G) ≥ ∆2 ·max

A⊆S
LPα

A,S\A(H)− εn∆.

Proof outline. To prove the theorem, the idea is to take the “strategy B” viewpoint of sampling

(S, S′), i.e., fix S, and sample S′ using the probabilities p∗. Then, the theorem amounts to

showing that the optimum value of a random ‘induced linear program’ is not much larger

than the optimum value of the full program. This is shown by considering the duals of

the programs, and constructing a feasible solution to the induced dual whose cost is not

much larger than the dual of the full program, w.h.p. This implies the result, by linear

programming duality.

Let us thus start by understanding the dual LP of LPγ
A,S\A(G) given A (the variable z is

the difference of the dual variables corresponding to (3.4) and (3.5) in the primal):

minimize ∑
i∈G

ui + ρizi (3.6)

subject to ui + ∑
j∈Γ(i)

zj ≥ di − ρi

ui ≥ 0, −1 ≤ zi ≤ 1 ∀i ∈ [n]

We note that for any given z, the optimal choice of ui is max{0, di − ρi −∑j∈Γ(i) zj}; thus we

can think of the dual solution as being the vector z. The optimal ui may thus be bounded

by 2di, a fact that we will use later. Next, we write down the dual of the induced program,

LPα
A,S\A(H).
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minimize ∑
i∈S′

[ũi + ρ̃i z̃i] (3.7)

subject to ũi + ∑
j∈Γ(i)∩S′

wij z̃j ≥ d̃i − ρ̃i ∀i ∈ S′

ũi ≥ 0, −1 ≤ z̃i ≤ 1 ∀i ∈ S′.

Following the outline above, we will construct a feasible solution to LP (3.7), whose cost

is close to the optimal dual solution to LP (3.6). The construction we consider is very simple:

if z is the optimal dual solution to (3.6), we set z̃i = zi for i ∈ S′ as the candidate solution

to (3.7). This is clearly feasible, and thus we only need to compare the solution costs. The

dual objective values are as follows

DualG = ∑
i∈V

ρizi + max{0, di − ρi − ∑
j∈Γ(i)

zj} (3.8)

DualH ≤ ∑
i∈S′

ρ̃izi + max{0, d̃i − ρ̃i − ∑
j∈Γ(i)∩S′

wijzj} (3.9)

Note that there is a ≤ in (3.9), as z̃i = zi is simply one feasible solution to the dual (which is

a minimization program). Next, our goal is to prove that w.p. at least 1− 1
n2 ,

max
A⊆S

DualH ≤ max
A⊆S

DualG +
εn
∆

.

Note that here, the probability is over the choice of S′ given S (as we are taking view-B

of the sampling). The first step in proving the above is to move to a slight variant of the

quantity DualH, which is motivated by the fact that Pr[Yi = 1] is not quite pi, but p∗i (as we

have conditioned on S). Let us define ρ̃∗i := ρi
p∗i ∆2 (recall that ρ̃i is ρi

pi∆2 ), and w∗ij := 1
p∗i p∗j ∆2 . So

also, let d∗i := ∑j∈Γ(i) Yjw∗ij. Then, define

Dual∗H := ∑
i∈S′

ρ̃∗i zi + max{0, d̃∗i − ρ̃∗i − ∑
j∈Γ(i)∩S′

w∗ijzj}. (3.10)

A straightforward lemma is the following, which bounds the difference between the

“corrected” dual we used to analyze, and the value we need for the main theorem.

Lemma 3.3. Let (S, S′) be sampled as described in Section 3.3.1. Then w.p. at least 1− 1
n4 , we have

that for all z ∈ [−1, 1]n and for all partitions (A, S \ A) of S,3

|DualH −Dual∗H | ≤
εn
2∆

.

3Note that the partition defines the ρi.
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Proof. To prove the lemma, it suffices to prove that w.p. ≥ 1− 1
n4 ,

∑
i

Yi|ρ̃i − ρ̃∗i |+ ∑
i

Yi ∑
j∈Γ(i)

Yj|wij − w∗ij| ≤
εn
2∆

. (3.11)

This is simply by using the fact that zi are always in [−1, 1]. Before showing this, we

introduce some notation and make some simple observations. First, denote by Y the

indicator vector for S′ and by X the indicator for S.

Observation 3.12. With probability ≥ 1− 1
n4 over the choice of (S, S′), we have:

1. For all i ∈ V, ∑j∈Γ(i)
Xj
qj
≤ 2(di + ε∆).

2. For all i ∈ V, ∑j∈Γ(i),j 6∈S
Yj
p∗j
≤ 2(di + ε∆).

3. ∑i
Xi(di+ε∆)

pi
≤ 2ε2n∆.

4. ∑i 6∈S
Yi(di+ε∆)

p∗i
≤ 2n∆.

All the inequalities are simple consequences of Bernstein’s inequality (and our choice

of parameters pi, p∗i , qi), and we thus skip the proofs. Next, note that as an immediate

consequence of part-1, we have

ρi ≤ 2(di + ε∆), for all partitions (A, S \ A) of S. (3.12)

Also, note that from the definitions of the quantities (and the fact qi/pi ≤ ε2), we have

∀i 6∈ S,

∣∣∣∣∣ 1
pi
− 1

p∗i

∣∣∣∣∣ ≤ ε2

p∗i
(3.13)

Now, we are ready to show (3.11). The first term can be bounded as follows:

∑
i

Yi|ρ̃i − ρ̃∗i | = ∑
i

Yiρi

∆2

∣∣∣∣∣ 1
pi
− 1

p∗i

∣∣∣∣∣ = ∑
i∈S

ρi

∆2

∣∣∣∣ 1
pi
− 1
∣∣∣∣+ ∑

i 6∈S

Yiρi

∆2

∣∣∣∣∣ 1
pi
− 1

p∗i

∣∣∣∣∣ . (3.14)

Using (3.12) and part-3 of the observation, the first term can be bounded by O(ε2n/∆).

For the second term, using (3.13) together with part-4 of the observation gives a bound of

O(ε2n/∆). Thus the RHS above is at most εn
16∆ , as we may assume ε is small enough.

Now, consider the second term in (3.11). When i 6∈ S and j 6∈ S, we have |wij − w∗ij|
being “small”. We can easily bound by 2ε2w∗ij, using∣∣∣∣∣ 1

pi pj
− 1

p∗i p∗j

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

pi pj
− 1

p∗i pj

∣∣∣∣∣+
∣∣∣∣∣ 1

p∗i pj
− 1

p∗i p∗j

∣∣∣∣∣ ≤ ε2

p∗i pj
+

ε2

p∗i p∗j
≤ 2ε2

p∗i p∗j
.

In the last steps, we used (3.13) and the fact that p∗i ≤ pi for i 6∈ S.



46

For i ∈ S or j ∈ S, we can simply bound |wij − w∗ij| by 2wij. Thus we can bound the

second term in (3.11) as

4 ∑
i∈S

1
pi∆2 ∑

j∈Γ(i)

Yj

pj
+ ∑

i 6∈S

Yi

p∗i ∆2 ∑
j∈Γ(i)\S

ε2Yj

pj
.

The second term has only a sum over j not in S – this is why have an extra 2 factor for

the first term. Now, consider the first term. The inner summation can be written as

∑j∈Γ(i)∩S
1
pj
+ ∑j∈Γ(i)\S

Yj
pj

. Using parts 1 and 2 of the observation, together with pj ≥ qj/αε,

and pj ≥ p∗j for j 6∈ S, we have ∑j∈Γ(i)
Yj
pj
≤ 4αε(di + ε∆). Then, using part-3 gives the

desired bound on the first term.

Let us thus consider the second term. Again using part 2 along with pj ≥ p∗j for j 6∈ S, we

can bound the inner sum by 2ε2(di + ε∆). Then we can appeal to part-4 of the observation

to obtain the final claim.

This ends up bounding the second term of (3.11), thus completing the proof of the

lemma.

Thus our goal in the rest of the section is to show:

Lemma 3.4. Let S satisfy the conditions (a) |S| ≤ 20n log n
ε2∆ , and (b) for all i ∈ V, ∑j∈Γ(i)∩S

1
qj
≤

2(di + ε∆). Then, w.p. ≥ 1− 1
n4 over the choice of S′ given S, we have

max
A⊆S

Dual∗H ≤ max
A⊆S

DualG +
εn
2∆

.

The condition (b) on S is a technical one that lets us bound ρi in the proofs. Let us see

why the lemma implies Theorem 3.11.

Proof of Theorem 3.11. The conditions we assumed on S in Lemma 3.4 hold w.p. at least

1− 1
n4 (via a simple application of Bernstein’s inequality). Thus the conclusion of the lemma

holds w.p. at least 1− 2
n4 . Combining this with Lemma 3.3, we have that maxA DualH ≤

maxA DualG + εn
∆ w.p. at least 1− 3

n4 . The theorem then follows via LP duality.

Our goal is thus to prove Lemma 3.4. Modulo a conditioning step we introduce later;

this will be done by (a) fixing an A and proving that the inquality holds with a high enough

probability, followed by (b) union bound over all possible A.
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Let Yi = 1i∈S′ . For convenience, let us denote the max{} terms in equations (3.8)

and (3.10) by ui and ũ∗i , respectively. Now,

Dual∗H −
1

∆2DualG = ∑
i

(
Yiρ̃
∗
i zi −

1
∆2 · ρizi

)
+

(
Yiũ∗i −

1
∆2 · ui

)
. (3.15)

We view the RHS as two summations (shown by the parentheses), and bound them

separately.

The first is relatively easy. Recall that by definition, ρ̃∗i = ρi
p∗i ∆2 . Thus the first term is

equal to ∑i
ρizi

p∗i ∆2

(
Yi − p∗i

)
. The expectation of this quantity is 0. We will apply Bernstein’s

inequality to bound its magnitude. For this, note that the variance is at most (using |zi| ≤ 1)

∑
i

ρ2
i

(p∗i )
2∆4 p∗i (1− p∗i ) ≤∑

i

4(di + ε∆)2(1− p∗i )
p∗i ∆4 .

The condition on S gives the bound on ρi that was used above. Next, we note that unless

p∗i = 1, we have p∗i ≥
(di+ε∆)

αε∆2 . Thus the variance is bounded by ∑i
4αε·(di+ε∆)

∆2 ≤ 8αεn
∆ . Next,

max
i

∣∣∣∣∣ ρizi

p∗i ∆2

∣∣∣∣∣ ≤ 2(di + ε∆)
p∗i ∆2 ≤ 2αε.

(Again, this is because we can ignore terms with p∗i = 1, and for the rest, we have a lower

bound.) Thus, by Bernstein’s inequality,

Pr[

∣∣∣∣∣∑i

ρizi

p∗i ∆2

(
Yi − p∗i

)∣∣∣∣∣ ≥ t] ≤ exp

(
− t2

16αεn
∆ + 2tαε

)
.

Setting t = εn/4∆, the bound simplifies to exp(− ε2n
C∆αε

), for a constant C. Thus, by our

choice of αε and our size bound on |S|, this is < exp(−|S|)/n4.

The second term of (3.15) requires most of the work. We start with the trick (which turns

out to be important) of splitting it into two terms by adding a “hybrid” term, as follows:

∑
i

Yiũ∗i −
1

∆2 · ui = ∑
i

(
Yiũ∗i −Yi

ui

p∗i ∆2

)
+ ∑

i

(
Yi

ui

p∗i ∆2 −
1

∆2 · ui

)
.

The second term will again be bounded using Bernstein’s inequality (in which we

use our earlier observation that ui = O(di)). This gives an upper bound of εn/8∆, with

probability 1− exp(−|S|)/n4. We omit the easy details.
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Let us focus on the first term. We now use the simple observation that max{0, A} −
max{0, B} ≤ |A− B|, to bound it by

∑
i

Yi

∣∣∣∣∣∣d̃∗i − ρ̃∗i − ∑
j∈Γ(i)∩S′

w∗ijzj −
1

p∗i ∆2

(
di − ρi − ∑

j∈Γ(i)
zj
)∣∣∣∣∣∣ .

By the definition of ρ̃∗i , it cancels out. Now, writing cj = 1− zj (which now ∈ [0, 2]) and

using the definition of d̃∗i , we can bound the above by

∑
i

Yi

∣∣∣∣∣∣ ∑
j∈Γ(i)

Yjw∗ijcj −
1

p∗i ∆2 cj

∣∣∣∣∣∣ = ∑
i

Yi

∣∣∣∣∣∣ ∑
j∈Γ(i)

w∗ijcj(Yj − p∗j )

∣∣∣∣∣∣ (using w∗ij =
1

p∗i p∗j ∆2 )

Showing a concentration bound for such a quadratic function will be subject of the rest

of the section. Let us define

f (Y) := f (Y1, . . . , Yn) := ∑
i

Yi

∣∣∣∣∣∣ ∑
j∈Γ(i)

w∗ijcj(Yj − p∗j )

∣∣∣∣∣∣ . (3.16)

We wish to show that Pr[ f > εn
∆ ] ≤ exp(−|S|). Unfortunately, this is not true – there are

counter-examples (in which the neighborhoods of vertices have significant overlaps) for

which it is not possible to obtain a tail bound better than exp(−n/∆2), roughly speaking.

To remedy this, we resort to a trick developed in [77, 88]. The key idea is to condition on the

event that vertices have a small weighted degree into the set S′, and obtain a stronger tail

bound.

3.5.1 “Good” Conditioning

We say that a choice of Y’s is good if for all i ∈ V, we have

∑
j∈Γ(i)

w∗ijYj ≤
ε∆ + 2di

p∗i ∆2 .

The first lemma is the following.

Lemma 3.5. Let H be the weighted graph on S′ obtained by our algorithm. For any vertex i ∈ V,

we have

Pr

 ∑
j∈Γ(i)

w∗ijYj >
ε∆ + 2di

p∗i ∆2

 <
1
n6 .
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Proof. Fix some i ∈ V, and consider ∑j∈Γ(i) w∗ijYj = 1
p∗i ∆2

(
∑j∈Γ(i)

Yj
p∗j

)
. The term in the

parenthesis has expectation precisely di. Thus, applying Bernstein using maxj
1
p∗j
≤ αε∆

ε ,

together with ∑j∈Γ(i)
p∗j (1−p∗j )
(p∗j )

2 ≤ di maxj
1
p∗j

, we have

Pr
[

∑
j∈Γ(i)∩VH

Yj

p∗j
> di + t

]
≤ exp

(
− εt2

(di + t)αε∆

)
.

By setting t = (di + ε∆), the RHS above can be bounded by

exp

(
− ε(di + ε∆)2

(2di + ε∆)αε∆

)
≤ exp

(
− ε2

2αε

)
<

1
n6 .

This completes the proof, using our choice of αε.

Conditioning on the Y being good, we show the following concentration theorem.

Theorem 3.13. Let Yi’s be independent random variables, that are 1 w.p. p∗i and 0 otherwise, and

let f (Y) be defined as in (3.16). Then we have

Pr
[

f (Y) ≥ εn
8∆
∣∣ Y is good

]
≤ 1

n5 · e
−20n log n/ε2

.

We observe that the theorem implies Lemma 3.4. This is because by the Theorem and the

proceeding discussions, Pr[Dual∗H −DualG ≤ εn/∆ | Y good] ≥ 1− exp(−|S|)
n5 , for any A ⊆ S.

Thus by union bound over A, Pr[maxA Dual∗H −maxA DualG ≤ εn/∆ | Y good] ≥ 1− 1
n5 .

Since the probability of the good event is at least 1 − 1
n5 (by Lemma 3.5), the desired

conclusion follows.

3.5.2 Concentration Bound for Quadratic Functions

To conclude our proof, it suffices to show Theorem 3.13. To bound the quadratic

function f , we bound the moment generating function (MGF), E[eλ f | good]. This is done

via a decoupling argument, a standard tool for dealing with quadratic functions. While

decoupling is immediate for ‘standard’ quadratic forms, the proof also works for our f

(which has additional absolute values). The rest of the proof has the following outline.

3.5.3 Proof Outline

The main challenge is the computation of the MGF under conditioning (which introduces

dependencies among the Yi, albeit mild ones). The decoupling allows us to partition vertices
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into two sets, and only consider edges that go across the sets. We then show that it suffices

to bound the MGF under a “weakened” notion of conditioning (a property we call δ-good).

Under this condition, all the vertices in one of the sets of the partition become independent,

thus allowing a bound on the moment — in terms of quantities that depend on the variables

on the other set of the partition. Finally, we appeal to a strong concentration bound of

Boucheron et al. [38] to obtain an overall bound, completing the proof.

Here we present the details of the proof.

3.5.4 Decoupling

Consider independent Bernoulli random variables δi that take values 0 and 1 w.p. 1/2

each, and consider the function

fδ := ∑
i

δiYi| ∑
j∈Γ(i)

(1− δj)w∗ijcj(Yj − p∗j )|

Using the fact that E[|g(x)|] ≥ |E[g(x)]| for any function g, and defining Eδ as the

expectation with respect to the δi’s, we have

Eδ fδ = Eδ ∑
i

δiYi| ∑
j∈Γ(i)

(1− δj)w∗ijcj(Yj − p∗j )| = ∑
i

1
2
·YiEδ| ∑

j∈Γ(i)
(1− δj)w∗ijcj(Yj − p∗j )|

≥∑
i

1
2
·Yi| ∑

j∈Γ(i)
Eδ(1− δj)w∗ijcj(Yj − p∗j )|

= ∑
i

1
4
·Yi| ∑

j∈Γ(i)
w∗ijcj(Yj − p∗j )| =

1
4

f

We used the fact that i never appears in the summation term involving Yi to obtain the first

equality. Next, using Jensen’s inequality, we have:

EY[eλ f | good] ≤ EY[e4λEδ fδ | good] ≤ EY,δ[e4λ fδ | good]

where EY,δ means the expectation with respect to both random variables Y and δ. Now, the

interpretation of fδ is simply the following. Consider the partitioning (V+, V−) of V defined

by V+ = {i ∈ [n] : δi = 1} and V− = {i ∈ [n] : δi = 0}, then

fδ = ∑
i∈V+

Yi
∣∣ ∑

j∈Γ(i)∩V−
w∗ijcj(Yj − p∗j )

∣∣.
For convenience, define Ri = |∑j∈Γ(i)∩V− w∗ijcj(Yj − p∗j )|, for i ∈ V+. Thus we can write

fδ = ∑i∈V+ YiRi. The condition that Y is good now gives us a bound on Ri. For any cj (it is
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important to note that the good condition does not involve the constants cj, as those depend

on the LP solution; all we know is that 0 ≤ cj ≤ 2), we have

Ri ≤
∣∣ ∑

j∈Γ(i)∩V−
2w∗ij(Yj + p∗j )

∣∣
≤ 2(ε∆ + 2di)

p∗i ∆2 +
2di

p∗i ∆2 ≤
2ε∆ + 6di

p∗i ∆2 .

Now, the quantity we wish to bound can be written as

E
Y
[eλ f | good] ≤ E

Y,δ
[e4λ fδ | good] ≤ E

δ
E
Y−

E
Y+

[e4λ ∑i∈V+ Yi Ri | good]. (3.17)

The key advantage that decoupling gives us is that we can now integrate over Yi ∈ V+, i.e.,

evaluate the innermost expectation, for any given choice of {Yi : i ∈ V−} (which define

the Ri). The problem with doing this in our case is that the good condition introduces

dependencies on the Yi, for i ∈ V+.

Fortunately, weakening conditioning does not hurt much in computing expectations.

This is captured by the following simple lemma.

Lemma 3.6. Let Ω be a space with a probability measure µ. Let Q1 and Q2 be any two events such

that Q1 ⊂ Q2, and let Z : Ω 7→ R+ be a non-negative random variable. Then,

E[Z|Q1] ≤
E[Z|Q2]

Pr[Q1]
.

Proof. Let Ω1 (resp. Ω2) be the subset of Ω in which Q1 (resp. Q2) is satisfied. By hypothesis,

Ω1 ⊆ Ω2. Now by the definition of conditional expectation, and the non-negativity of Z,

we have

E[X|Q1] =
1

µ(Q1)

∫
x∈Ω1

Z(x)µ(x)dx ≤ 1
µ(Q1)

∫
x∈Ω2

Z(x)µ(x)dx =
µ(Q2)

µ(Q1)
E[Z|Q2].

Since µ(Q2) ≤ 1, the conclusion follows.

3.5.5 Weaker Good Property

The next crucial notion we define is a property “δ-good”. Given a δ ∈ {0, 1}n (and

corresponding partition (V+, V−)), a set of random variables Y is said to be δ-good if for all

i ∈ V+, we have

∑
j∈Γ(i)∩V−

w∗ijYj ≤
ε∆ + 2di

p∗i ∆2 . (3.18)

We make two observations. First, the good property implies the δ-good property, for

any choice of δ. Second, and more crucial to our proof, conditioning on δ-good does not
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introduce any dependencies on the variables {Yi : i ∈ V+}. Now, continuing from (3.17),

and using the fact that the good condition holds with probability > 1/2, we have

E
δ

E
Y−

E
Y+

[e4λ ∑i∈V+ Yi Ri | good] ≤ E
δ

E
Y−

E
Y+

[2e4λ ∑i∈V+ Yi Ri | δ-good].

Now for any 0/1 choices for variables Y−, the Ri’s get fixed for every i ∈ V+, and we

can bound EY+ [e4λ ∑i∈V+ Yi Ri | Ri] easily.

Lemma 3.7. Let Yi be independent random 0/1 variables taking value 1 w.p. p∗i , and let Ri be

given, for i ∈ V+. Suppose λ > 0 satisfies |λRi| ≤ 1 for all i. Then

EY+ [eλ ∑i∈V+ Yi Ri ] ≤ e∑i∈V+ λp∗i Ri+λ2 p∗i R2
i .

Proof. Since the lemma only deals with i ∈ V+, we drop the subscript for the summations

and expectations. One simple fact we use is that for a random variable Z with |Z| ≤ 1,

E[eZ] ≤ E[1 + Z + Z2] ≤ eE[Z]+E[Z2].

Using this, and the independence of Yi together with Y2
i = Yi,

E[eλ ∑ Yi Ri ] = ∏E[eλYi Ri ] ≤∏ eE[λYi Ri ]+E[λ2R2
i Yi ]. (3.19)

As E[Yi] = p∗i , this completes the proof of the lemma.

Using the lemma, replacing λ with 4λ yields the following

E
δ

E
Y−

E
Y+

[e4λ ∑i∈V+ Yi Ri | δ-good] ≤ E
δ

E
Y−

[
e∑i∈V+ 4λp∗i Ri+16λ2 p∗i R2

i | δ-good
]
. (3.20)

The second term in the summation is already small enough, i.e., using (3.18)

∑
i∈V+

λ2 p∗i R2
i ≤ 2λ2αε

n
∆

.

While the bound on Ri can be used to bound the first term, it turns out that this is not

good enough. We thus need a more involved argument. Thus the focus is now to bound

E
δ

E
Y−

[
eλg(Y) | δ-good

]
, where g(Y) := ∑

i∈V+

p∗i

∣∣∣∣∣∣ ∑
j∈Γ(i)∩V−

w∗ijcj(Yj − p∗j )

∣∣∣∣∣∣ .
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3.5.6 Outline: Concentration Bound for g

To deduce a concentration bound for g, we first remove the conditioning (again ap-

pealing to Lemma 3.6). This then gives us independence for the Yj, for j ∈ V−. We can

then appeal to the fact that changing a Yj only changes g by a small amount, to argue

concentration. However, the standard “bounded differences” concentration bound ( [38])

will not suffice for our purpose, and we need more sophisticated results [38] (restated as

Theorem 3.4).

To use the same notation as the theorem, define Z = g(Y), where we only consider Yr,

r ∈ V−. Now, for any such r, consider Z− Z(r). Since Z(r) is obtained by replacing Yr by an

independent Y′r and recomputing g, we can see that the only terms i which could possibly

be affected are i ∈ Γ(r) ∩V+. Further, we can bound the difference |Z− Z(r)| by

|Z− Z(r)| ≤ |Yr −Y′r | ∑
i∈Γ(r)∩V+

2p∗i w∗ir,

where we have used |cr| ≤ 2. The summation can be bounded by 2dr
p∗r ∆2 . Denote this quantity

by θr. Then, to use the theorem, we need

EY′r |Z− Z(r)|2 ≤ |Yr −Y′r |2θ2
r ≤ |Yr −Y′r |θ2

r ≤ Yrθ2
r + p∗r θ2

r .

We used the fact that |Yr −Y′r | ∈ {0, 1}. Now applying Theorem 3.4 by setting θ = 1
2λ , we

have:

EV− [eλ(g−E[g])] ≤ EV− [e
λ2
2 ∑r∈V− Yrθ2

r +p∗r θ2
r ]

Once again, since λθr will turn out to be < 1, we can use the bound E[eλ2Yrθ2
r /2] ≤ eλ2θ2

r p∗r ,

and conclude that

EV− [eλ(g−E[g])] ≤ e2λ2 ∑r∈V− p∗r θ2
r ≤ e4λ2αε

n
∆ .

The last inequality is due to a reasoning similar to earlier.

We are nearly done. The only step that remains for proving Theorem 3.13 is to obtain a

bound on E[g]. For this, we need to bound, for any i, the term

E[|Ri|] = E[| ∑
j∈Γ(i)∩V−

w∗ijcj(Yj − p∗j )|].

By Cauchy-Schwartz and the fact that Yj are independent, we have
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E[|Ri|]2 ≤ E[R2
i ] = ∑

j∈Γ(i)∩V−
(w∗ij)

2cj p∗j (1− p∗j )

≤ 1
(p∗i )

2∆4 ∑
j∈Γ(i)

1− p∗j
p∗j

≤ αεdi

ε(p∗i )
2∆3 .

We have used the fact that (1− p∗j )/p∗j ≤ αε∆/ε. Thus we have

E[ ∑
i∈V+

p∗i |Ri|] ≤
( αε

ε∆3

)1/2
∑

i
d1/2

i ≤
( αε

ε∆3

)1/2
n∆1/2 ≤ n

∆

(αε

ε

)1/2
.

From our choice of αε, this is < 1
4 · εn

∆ .

Putting everything together, we get that the desired moment

≤ exp
(

λ
εn
4∆

+ λ2αε
n
∆

)
.

To complete the bound, we end up setting λ = ε
αε

. For this value of λ, we must ensure

that

ε

αε

(dr + ε∆)
p∗r ∆2 ≤ 1,

which is indeed true.

3.5.7 Proof of Theorem 3.6 for MaxCut

First, observe that the expected size of the set S′ is ∑i pi ≤ Õ(n/∆). This can be shown

to hold w.h.p. via simple Chernoff bounds.

Then, the concentration bound above implies Lemma 3.4. As we saw earlier, this

completes the proof of Theorem 3.11. Now, following the technical outline presented in

Section 3.3.1, this completes the proof of Theorem 3.6, for the case of MaxCut.

3.6 Sparse Coreset for Max-Cut
So far, we have shown that there is a core-set (i.e., a smaller weighted graph with the

same MAXCUT value) with a small number of vertices. We now show that the number of

edges can also be made small (roughly n/∆). The result follows from the following lemma

about sampling edges in graphs with edge weights ≤ 1. (We note that essentially the same

lemma is used in several works on sparsifiers for cuts.)
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Lemma 3.8. Consider the weighted graph H resulted from vertexsample, defined on set of vertices

S′ in which wij < 1. If we apply edgesampleon H, then the resulted graph H′ have

MaxCut(H′)± (1 + ε)MaxCut(H)

with probability at least 1− 1
n2 .

Proof. Recall that in edgesample algorithm we first rescale the edge weights so that they

sum up to |S′|, and then sample each edge ij in the resulted graph (also denoted H, as we

can assume it to be a preprocessing) with probability pij = min(wij
8
ε2 , 1) and reweigh the

edges to w′ij =
wij
pij

to obtain the graph H′. Define the indicator variable Xij for each edge

eij in graph H, where Xij = 1 if the corresponding edge eij is selected by edgesample and

Xij = 0 otherwise.

Our goal is to show that all cuts are preserved, w.h.p. Consider any cut (A, B) in H. Call

the set of all the edges on this cut as CA,B and the set of in the cut on the sampled graph H′

as C′A,B. Set w(CA,B) = ∑eij∈CA,B
wij and w′(C′A,B) = ∑eij∈C′A,B

w′ij. Then we have,

E[w′(C′A,B)] = E[∑ w′ijXij] = ∑ w′ijPr(Xij = 1) = ∑ pijw′ij = ∑ wij = w(CA,B).

We will now apply Bernstein’s inequality to bound the deviation. For this, the variance

is first bounded as follows.

Var[∑ w′ijXij] = ∑ w′ij
2Var(Xij) ≤∑

w2
ij

pij
(1− pij) ≤

ε2

8 ∑ wij =
ε2

8
w(CA,B)

We used the inequality that unless pij = 1 (in which case the term drops out), we have

wij/pij ≤ ε2/8.

By the observation on wij/pij above, we can use Bernstein’s inequality 3.3 with b = ε2/8,

to obtain

Pr[|∑ w′ijXij − w(CA,B)| ≥ t] ≤ exp

− t2

ε2w(CA,B)
4 + tε2

8

 .

Setting t = εW, where W is the sum of all the edge weights (which is equal to |S′| after

the preprocessing), the bound above simplifies to exp(−2|S′|), and thus we can take a union

bound over all cuts. This completes the proof.

3.6.1 Proof of Theorem 3.7

We only need to verify the bound on the number of edges. As every edge is sampled

with probability pij = min(1, 8wij

ε2 ), and since the total edge weight is normalized to be |S′|,
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we have that the expected number of edges is ≤ 8|S′|
ε2 , and w.p. at least 1− 1

n4 , this is at most
16|S′|

ε2 , completing the proof.

3.7 Correlation Clustering
We now show that precisely the same coreset construction used for MAXCUT also works

for correlation clustering. Recall that we consider the MAX-AGREE version of correlation

clustering. While correlation clustering is not a CSP (as the number of clusters is arbitrary),

the following lemma shows that for the MAX-AGREE version, we can obtain a (1− ε)

approximation, while restricting the number of clusters to 1/ε.

Lemma 3.9. Let C be the optimal clustering, and let OPT be its max-agree cost. Then there exists a

clustering C ′ that has cost ≥ (1−O(ε))OPT, and has at most 1/ε clusters.

The lemma is folklore in the correlation clustering literature. For the sake of complete-

ness, we provide a simple proof here.

Proof. Let A1, A2, . . . , Ak be the clusters in the optimal clustering C. Now, suppose we

randomly color the clusters with t = 1/ε colors, i.e., each cluster Ai is colored with a

random color in [t]. We then merge all the clusters of a given color into one cluster, thus

obtaining the clustering C ′. Clearly, C ′ has at most t colors.

Now, we observe that if u, v ∈ Ai to begin with, then u, v are still in the same cluster

in C ′. But if u ∈ Ai and v ∈ Aj, and the colors of Ai and Aj are the same, then u and v are

no longer separated in C ′. Let us use this to see what happens to the objective. Let χuv be

an indicator for u, v being in the same cluster in the optimal clustering C, and let χ′uv be a

similar indicator in C ′. The original objective is

C− + ∑
ij

ηijχij.

From the above reasoning, if χuv = 1, then χ′uv = 1. Also, if χuv = 0, E[χ′uv] = 1/t, i.e.,

there is a probability precisely 1/t = ε that the clusters containing u, v now get the same

color. Thus, we can write the expected value of the new objective as

C− + ∑
ij

ηijχij + ε ∑
ij

ηij(1− χij).
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Let us denote S = ∑ij ηijχij and S′ = ∑ij ηij(1 − χij). Then by definition, we have

S + S′ = ∑ij ηij = C+ − C−. Now, to show that we have a (1− ε) approximation, we

need to show that C− + S + εS′ ≥ (1− ε)(C− + S). This simplifies to C− + S + S′ ≥ 0, or

equivalently, C+ ≥ 0, which is clearly true. This completes the proof.

Another easy observation about MAX AGREE is that the objective value is at least

max{C+, C−} ≥ n∆/2. This is simply because placing all the vertices in a single cluster

gives a value C+, while placing them all in different clusters gives C−. Thus, it suffices to

focus on additive approximation of εn∆.

Once we fix the number of clusters k, we can write correlation clustering as a quadratic

program in a natural way: for each vertex i, have k variables xi`, which is supposed to

indicate if i is given the label `. We then have the constraint that ∑` xi` = 1 for all i. The

objective function then has a clean form:

∑
ij
[

k

∑
`=1

xi`(1− xj`)c−ij + xi`xj`c+ij ] = ∑
ij

∑
`

xi`c−ij + xi`xj`ηij = ∑
i,`

xi`(ρi` + d−i ),

where xi` = 1 iff vertex i ∈ C`, and ρi` = ∑j∈Γ(i) xj`ηij and d−i = ∑j c−ij .

Note the similarity with the program for MAXCUT. We now show that the same

framework we used to prove our coreset result for MAXCUT (outlined in Section 3.3.1)

carries over with minor changes. Let us start with the analog for the AKK Estimation

procedure of Section 3.4.

3.7.1 LP Estimation Procedure for Correlation Clustering

Let H = (V, E, c) be a weighted, undirected graph with edge weights c+ij and c−ij as

before, and let γ : V → [0, 1] denote sampling probabilities. We define AKK-EstC(H, γ) to

be the output of the following randomized algorithm: sample a set S by including each

vertex i in it w.p. γi independently; next, for each partition (A1, · · · , Ak) of S, solve the LP

defined below, and output the largest objective value.

LPA1,··· ,Ak(V) is the following linear program. (As before, we use constants ρi` :=

∑j∈Γ(i)∩A`

ηij
γj

.). Once again, the best choice of si`, ti` for each pair i, ` are so that si` + ti` =

|ρi` −∑j∈Γ(i) ηijxj`|.
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maximize ∑
i`

xi`(ρi` + d−i )− (si` + ti`)

subject to ρi` − ti` ≤ ∑
j∈Γ(i)

ηijxj` ≤ ρi` + si` ∀i, `

∑
`

xi` = 1 ∀i ∈ [n]

si`, ti` ≥ 0 ∀i, `

We now show a result analogous to the one earlier – that under appropriate conditions,

AKK-EstC is approximately equal to the optimal correlation clustering objective value.

Theorem 3.14. Let H be a weighted graph on n vertices with edge weights c+ij , c−ij that add up to

W. Suppose the sampling probabilities γi satisfy the condition

wij ≤
Wε2

8k2 log n
γiγj

∑u γu
for all i, j. (3.21)

Then, we have AKK-EstC(H, γ) ∈ CC(H)± εW, with probability at least 1− 1/n2 (where the

probability is over the random choice of S).

Note that the only difference is the k2 term in (3.21).

Proof. As before, the proof follows from two complementary claims.

Claim 1. W.h.p. over the choice of S, there exists a partitioning (A1, · · · , Ak) of S such that

LPA1,··· ,Ak(H) ≥ CC(H)− εW.

Claim 2. Consider any feasible solution to the LP above (for some values ρi`, si`, ti`). There

exists a partitioning in H of objective value at least the LP objective.

The proof of Claim 1 mimics the proof in the case of MAXCUT. We use Bernstein’s

inequality for every ` ∈ [k] with deviation being bounded by ε(di + ∆)/k in each term. This

is why we need an extra k2 term in the denominator of (3.21). We omit the details.

Proof of Claim 2. Suppose we have a feasible solution x to the LP of objective value ∑i,` xi`(d−i +

ρi`)−∑i,` |ρi` −∑j∈Γ(i) ηijxj`|, and we wish to move to a partitioning of at least this value.

To this end, define the quadratic form

Q(x) := ∑
i,`

xi`
(
d−i + ∑

j∈Γ(i)
ηijxj`

)
.
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The first observation is that for any x ∈ [0, 1]nk, and any real numbers ρi, we have

Q(x) ≥∑
i,`

xi`(d−i + ρi`)−∑
i,`
|ρi` − ∑

j∈Γ(i)
ηijxj`|.

This is true simply because Q(x) = ∑i,` xi`
(
d−i + ρi`

)
− xi`

(
ρi` −∑j∈Γ(i) ηijxj`

)
, and the fact

that the second term is at least −|ρi` −∑j∈Γ(i) ηijxj`|, as xi ∈ [0, 1].

Next, note that the maximum of the form Q(x) over [0, 1]nk has to occur at a boundary

point, since for any fixing of variables other than the ith group of variables xi1, · · · , xik for

a given i, the form reduces to a linear function of xi`, 1 ≤ ` ≤ k, which attains maximum

at one of the boundaries when subject to the constraint ∑` xi` = 1. Using this observation

repeatedly for i ∈ [n] lets us conclude that there is a y ∈ {0, 1}nk such that Q(y) ≥ Q(x).

Since any such y corresponds to a partitioning, and Q(y) corresponds to its objective value,

the claim follows.

This completes the proof of Theorem 3.14.

As in the case of MAXCUT, we can show that the estimation procedure can be used for

estimating both in the original graph (with uniform probabilities qi), and with the graph H,

with sampling probabilities qi/pi. We thus skip stating these claims formally.

3.7.2 Induced Linear Programs for Correlation Clustering

We next need to prove that the AKK-EstC procedures have approximately the same

values on G and H (with appropriate γ’s). To show this, we consider a sample (S, S′) drawn

as before, and show that

max
(A1,··· ,Ak):S

LPγ
A1,··· ,Ak

(V) ≥ ∆2 max
(A1,··· ,Ak):S

LPα
A1,··· ,Ak

(S′)− εn∆, (3.22)

where γi = qi and αi = qi/pi. As before, we consider the duals of the two programs.

This is the main place in which our correlation clustering analysis differs from the one for

MAXCUT. The dual is as follows

minimize ∑
i

ui + ∑
i,`

ρi`zi`

subject to ui + ∑
j∈Γ(i)

ηj`zj` ≥ d−i + ρi` ∀i, `

−1 ≤ zi` ≤ 1 ∀i ∈ [n], ` ∈ [k]
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The difference now is that for any vector z, the optimal choice of ui is max`{d−i + ρi` −
∑j∈Γ(i) ηj`zj`}. This is now a maximum of k terms, as opposed to the max of 0 and one other

term in the case of MAXCUT. But once again, we can think of the dual solution as being

the vector z, and we again have ui ≤ 2di. The dual of LPα
A1,··· ,Ak

(H) can be written down

similarly.

As we did earlier, we take a solution z to the dual of the LP on G, and use the same

values (for the vertices in S′) as the solution to the dual on H. The objective values are now

as follows.

DualG = ∑
i,`

ρi`zi` + ∑
i

max
`
{d−i + ρi` − ∑

j∈Γ(i)
ηijzj`} (3.23)

DualH ≤ ∑
i∈S′,`

ρ̃i`zi` + ∑
i

max
`
{ d̃−i + ρ̃i` − ∑

j∈Γ(i)∩S′
wijηijzj`} (3.24)

Here also, we have ρ̃i` =
ρi`

pi∆2 . We now show that w.p. at least 1− 1
n4 ,

max
(A1,...,Ak):S

DualH ≤
1

∆2 max
(A1,...,Ak):S

DualG +
εn
∆

. (3.25)

We next use the same trick as in the MAXCUT case, and move to Dual∗H, in which we

use ρ̃∗i` := ρi`
pi∆2 , weights w∗ij as before. The proof of Lemma 3.3 applies verbatim. Thus it

suffices to show that w.h.p. (assuming S satisfies conditions analogous to Lemma 3.4),

max
(A1,...,Ak):S

Dual∗H ≤
1

∆2 max
(A1,...,Ak):S

DualG +
εn
2∆

.

For this goal, consider the expression

Dual∗H −
1

∆2DualG = ∑
i

(
∑
`

(Yiρ̃
∗
i`zi` −

1
∆2 · ρi`zi`)

)
+

(
Yiũ∗i −

1
∆2 · ui

)
. (3.26)

We view this as two summations (shown by the parentheses), and bound them separately.

The first is relatively easy. We observe that by definition,

ρ̃∗i` = ∑
j∈Γ(i)∩C`

w∗ijηij p∗j
qj

=
ηij

p∗i ∆2 ∑
j∈Γ(i)∩C`

1
qi

=
1

p∗i ∆2 · ρi`. (3.27)

This implies that we can write the first term as ∑i`
ρi`zi`
p∗i ∆2

(
Yi − p∗i

)
. This will then be

bounded via Bernstein.
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For bounding the second term, we start with the trick of splitting it into two terms by

adding a “hybrid” term, as follows:

∑
i

Yiũ∗i −
1

∆2 · ui = ∑
i

(
Yiũ∗i −Yi

ui

p∗i ∆2

)
+ ∑

i

(
Yi

ui

p∗i ∆2 −
1

∆2 · ui

)
.

The second term will again be bounded using Bernstein. We will need to use the fact

that ui = O(di).

Let us thus consider the first term. We can appeal to the fact |max{P1, . . . , Pk} −
max{Q1, . . . , Qk}| ≤ ∑i |Pi −Qi|, to bound it by

∑
i

Yi ∑
`

∣∣∣∣∣∣ d̃∗−i + ρ̃∗i` − ∑
j∈Γ(i)∩S′

w∗ijηijzj` −
1

p∗i ∆2

(
d−i + ρi` − ∑

j∈Γ(i)
ηijzj`

)∣∣∣∣∣∣ .

Using (3.27) and w∗ij =
1

p∗i p∗j ∆2 we can bound the above by

∑
i

Yi ∑
`

∣∣∣∣∣∣ ∑
j∈Γ(i):ηij<0

Yj|ηij|w∗ij(1− zj`)−
|ηij|
p∗i ∆2 cj`

∣∣∣∣∣∣+ ∑
i

Yi ∑
`

∣∣∣∣∣∣ ∑
j∈Γ(i):ηij>0

|ηij|w∗ijzj`(Yj − p∗j )

∣∣∣∣∣∣
= ∑

i
Yi ∑

`

∣∣∣∣∣∣ ∑
j∈Γ(i):ηij<0

|ηij|w∗ij(1− zj`)(Yj − p∗j )

∣∣∣∣∣∣+ ∑
i

Yi ∑
`

∣∣∣∣∣∣ ∑
j∈Γ(i):ηij>0

|ηij|w∗ijzj`(Yj − p∗j )

∣∣∣∣∣∣
This leads to a sum over ` of terms of the form

∑
i

∣∣∣∣∣∣ ∑
j∈Γ(i):ηij 6=0

|ηij|w∗ij(1− zj`)(Yj − p∗j )

∣∣∣∣∣∣ (3.28)

The nice thing now is that we can appeal (in a black-box manner, using the boundedness of

η and z) to the concentration bound for quadratic functions in Sections 3.5 and 3.5.2, with ε

replaced by ε/k, to conclude the desired concentration inequality. For this goal, we again

use a similar conditioning as for MAXCUT, which we state here.

Lemma 3.10. Let H be the weighted graph obtained after sampling with probabilities p∗i . For any

vertex i ∈ V, we have

Pr

 ∑
j∈Γ(i)

w∗ij|ηij|Yj >
ε∆ + 2di

p∗i ∆2

 <
1
n4 .
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Proof. Fix some i ∈ V, and consider ∑j∈Γ(i) w∗ij|ηij|Yj =
1

p∗i ∆2

(
∑j∈Γ(i)

Yj|ηij|
p∗j

)
. The term in

the parenthesis has expectation precisely di. Thus, applying Bernstein using maxj
1
p∗j
≤ αε∆

ε ,

together with ∑j∈Γ(i)
|ηij|p∗j (1−p∗j )

p∗2j
≤ di maxj

1
p∗j

, we have

Pr
[

∑
j∈Γ(i)∩VH

|ηij|Yj

p∗j
> di + t

]
≤ exp

(
− εt2

(di + t)αε∆

)
.

By setting t = (di +
ε∆
k ), the RHS above can be bounded by

exp

(
− ε(di +

ε∆
k )

2

(2di +
ε∆
k )αε∆

)
≤ exp

(
− ε2

2αε

)
<

1
n4 .

This completes the proof, using our choice of αε.

Conditioning on the Y being good, we can obtain the concentration bound for the

quadratic function (3.28). This now lets us take a union bound over all possible partitions

of S (of which there are at most kn), to obtain (3.25), which then completes the proof of the

main result (Theorem 3.6), for correlation clustering.



CHAPTER 4

PRELIMINARIES ON STREAMING

VERIFICATION PROTOCOLS

There are two main models for streaming verification which we first discuss here. Then,

we provide the main streaming verification protocols which we use in this dissertation.

4.1 Models for Streaming Verification
The two main models of streaming verification are streaming interactive proofs and

annotated data streams.

4.1.1 Streaming Interactive Proof (SIP)

In this dissertation, we will mainly work in the streaming interactive proof (SIP) model

first proposed by Cormode et al. [66]. In this model, there are two players, the prover P

and the verifier V. The input consists of a stream τ of items from a universe U . Let f be a

function mapping τ to any finite set S . A k-message SIP for f works as follows:

• V and P read the input stream and perform some computation on it.

• V and P then exchange k messages, after which V either outputs a value in S ∪ {⊥},
where ⊥ denotes that V is not convinced that the prover followed the prescribed

protocol.

V is randomized. There must exist a prover strategy that causes the verifier to output

f (τ) with probability 1− εc for some εc ≤ 1/3. Similarly, for all prover strategies, V must

output a value in { f (τ),⊥} with probability 1− εs for some εs ≤ 1/3. The values εc and

εs are respectively referred to as the completeness and soundness errors of the protocol.

The constant 1/3 appearing in the completeness and soundness requirements is chosen

by convention [21]. The constant 1/3 can be replaced with any other constant in (0, 1)

without affecting the theory in any way. The protocols we design here will have perfect

completeness (εc = 0).
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4.1.2 Annotated Data Streams

The annotated data streaming model of Chakrabarti et al. [46] essentially corresponds to

one-message SIPs. Technically, the annotated data streaming model allows the annotation

to be interleaved with the stream updates, while the SIP model does not allow the prover

and verifier to communicate until after the stream has passed. However, almost all known

annotated data streaming protocols do not utilize the ability to interleave the annotation

with the stream, and hence are actually 1-message SIPs. In other words, interaction here

is restricted to a help message sent by the prover to the verifier after the data has passed.

Here, the constraint is the total communication should be sublinear in terms of input size

(so a few help messages are allowed; however the prover cannot for example replay the

data stream a nonconstant number of times).

4.1.3 Protocol Costs

A streaming verification protocol has two costs: the verifier space, and the total com-

munication, expressed as the number of bits exchanged between V and P. We will use the

notation (A, B) to denote a SIP with verifier space O(A) and total communication O(B).

We will also consider the number of rounds of communication between V and P.

4.2 Some Useful Verification Protocols
We will make use of some basic tools in our verification algorithms. We summarize

the main properties of these protocols here: for more details, the reader is referred to the

original papers.

4.2.1 Multi-Set Equality (MSE)

We are given streaming updates to the entries of two vectors a, a′ ∈ Zu and wish to

check a = a′. Reed-Solomon fingerprinting is a standard technique to solve MSE using only

logarithmic space.

Theorem 4.1 (MSE, [64]). Suppose we are given stream updates to two vectors a, a′ ∈ Zu

guaranteed to satisfy |ai|, |a′i| ≤ M at the end of the data stream. Let t = max(M, u). There is a

streaming algorithm using O(log t) space, satisfying the following properties: (i) If a = a′, then

the streaming algorithm outputs 1 with probability 1. (ii) If a 6= a′, then the streaming algorithm
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outputs 0 with probability at least 1− 1/t2.

Proof. Let F be a finite field of prime order, satisfying 6u3 ≤ |F| ≤ u4. We view each

entry of a and a′ as an element F in the natural way. At the start of the stream, the

streaming algorithm picks an α ∈ F at random, and computes finger(a) = ∑i∈[i] ai · αi and

finger(a′) = ∑i∈[i] a′i · αi with a single streaming pass over the input stream. The algorithm

outputs 1 if and only if finger(a) = finger(a′). Property (i) clearly holds: if a = a′, then

the algorithm outputs 1 with probability 1. To see that Property (ii) holds, observe that

finger(a) is a univariate polynomial of degree at most u in the entries of a, and similarly for

finger(a′). If a 6= a′, these two polynomials are not equal. Property (ii) follows, because any

two distinct polynomials of degree at most u over F can agree on at most u inputs.

Here are the two other protocols that act as building blocks for our graph verification

protocols.

4.2.2 Inverse Protocol (Finv)

Let a ∈ Zu be a (frequency) vector. The inverse frequency function F−1
k for a fixed k is the

number of elements of a that have frequency k: F−1
k (a) = |{i | ai = k}|. Let hk(i) = 1 for

i = k and 0 otherwise. We can then define F−1
k (a) = ∑i hk(ai). Note that the domain of hk is

[M] where M = maxi ai. We will refer to the problem of verifying a claimed value of F−1
k as

Finv. There is a simple SIP for Finv. We restate the related results here [66].

Lemma 4.1 (Finv, [66]). Given stream updates to a vector a ∈ Zu such that maxi ai = M and a

fixed integer k there is a SIP to verify the claim F−1
k (a) = K with cost (log2 u, M log2 u) in log u

rounds.

Proof. The proof is by a simple application of the sum-check protocol, which we discuss

later in detail (c.f. Lemma 4.5).

Note that the same result holds if instead of verifying an inverse query for a single

frequency k, we wish to verify it for a set of frequencies. Let S ⊂ [M] and let F−1
S = |{i|ai ∈

S}|. Then using the same idea as above, there is a SIP for verifying a claimed value of F−1
S

with costs given by Lemma 4.1.
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4.2.3 Subset Protocol

We now present a new protocol for a variant of the vector equality test described in

Theorem 4.1. While this problem has been studied in the annotation model, it requires

space-communication product of Ω(u2) communication in that setting.

Lemma 4.2 (Subset). Let E ⊂ [u] be a set of elements, and let S ⊂ [u] be another set owned by P.

There is a SIP to verify a claim that S ⊂ E with cost (log2 u, (|S|+ log u) log u) in log u rounds.

Proof. Consider a vector ā with length u, in which the verifier does the following updates:

for each element in set E, increment the corresponding value in vector ā by +1 and for each

element in set S, decrements the corresponding value in vector ā by −1. Let the vector

a ∈ {0, 1}u be the characteristic vector of E, and let a′ be the characteristic vector of S. Thus,

ā = a− a′. By applying F−1
−1 protocol on ā, verifier can determine if S ⊂ E or not. Note that

in vector ā, M = 1. Then the protocol cost follows by Lemma 4.1.

4.2.4 The PointQuery and RangeCount Protocols

An instance of the PointQuery problem consists of a stream of updates as described in

previous protocols followed by a query q ∈ [u]. The goal is to compute the coordinate aq.

Chakrabarti et al. [48] gave a 2-message SIP for the PointQuery problem with polylogarithmic

cost.

Theorem 4.2 (Chakrabarti et al. [48]). Suppose the input to PointQuery is guaranteed to satisfy

|ai| ≤ m at the end of the data stream, where the bound m is known in advance. Then there is a

two-round SIP for PointQuery on an input stream with length n, with space and communication

costs both bounded by O(log u log(m + log u)).

Another important protocol from [48] that we will rely on solves the RangeCount problem.

Let (U ,R) be a range space. Let the input consist of a stream of elements from U followed

by a range R ∈ R. The goal is to verify a claim by P that |R ∩ U| = k. Chakrabarti et al.

showed:

Theorem 4.3 (Chakrabarti et al. [48]). There is a two-message SIP for RangeCount with space

and communication cost bounded by O(log |R| log(|R| · n)), where n is the length of the stream.

In particular, for range spaces of bounded shatter dimension ρ, log |R| = ρ log n = O(log n).
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4.2.5 The GKR Protocol

A standard approach to developing multiround interactive proofs is to verify properties

of circuits that compute the desired function. One of the most powerful protocols of this

form is due to Goldwasser et al. [89], and known as the GKR protocol. This remarkable

protocol has polylogarithmic communication costs when applied to any circuit of polylog-

arithmic depth. The GKR protocol was adapted to the streaming setting by Cormode et

al. [66], yielding the following result.

Lemma 4.3. [66, 89] Let F be a finite field, and let f : Fu → F be a function of the entries of the

frequency vector of a data stream (viewing the entries as elements of F field in the natural way).

Suppose that f can be computed by an O(log(S) · log(|F|))-space uniform arithmetic circuit C
(over F) of fan-in 2, size S, and depth d, with the inputs of C being the entries of the frequency vector.

Then, assuming that |F| = Ω(d · log S), f possesses an SIP requiring O(d · log S) rounds. The

total space cost is O(log u · log |F|) and the total communication cost is O(d · log(S) · log |F|).

4.2.6 The Sum-Check Protocol

For completeness, we describe the technical details and analysis of sum-check protocol

of Lund, Fortnow, Karloff, and Nisan [128] in the next section. Here, we just state the

protocol itself in Figure 4.1, as well as its main properties and related complexity results.

The sum-check protocol satisfies perfect completeness, and has soundness error ε ≤
deg(g)/|F|, where deg(g) denotes the total degree of g (see [128] for a proof). There is one

round of prover–verifier interaction in the sum-check protocol for each of the v variables of

g, and the total communication is O(deg(g)) field elements.

Note that as described in Figure 4.1, the sum-check protocol assumes that the verifier

has oracle access to g. However, this will not be the case in applications, as g will ultimately

be a polynomial that depends on the input data stream. In order to apply the sum-check

protocol in a streaming setting, it is necessary to assume that V can evaluate g at any point r

in small space with a single streaming passover over the input (this assumption is made in

Lemma 4.4). Alternatively, one can have the prover tell the verifier g(r), and then prove to

the verifier that the value g(r) is as claimed, using further applications of the sum-check

protocol, or heavier hammers such as the GKR protocol (cf. Section 4.2.5), which is itself

based on the sum-check protocol.
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Input: V is given oracle access to a v-variate polynomial g over finite field F and an H ∈ F.
Goal: Determine whether H = ∑(x1,...,xv)∈{0,1}v g(x1, . . . , xv).

• In the first round, P computes the univariate polynomial

g1(X1) := ∑
x2,...,xv∈{0,1}v−1

g(X1, x2, . . . , xv),

and sends g1 to V. V checks that g1 is a univariate polynomial of degree at most deg1(g),
and that H = g1(0) + g1(1), rejecting if not.

• V chooses a random element r1 ∈ F, and sends r1 to P.

• In the jth round, for 1 < j < v, P sends to V the univariate polynomial

gj(Xj) = ∑
(xj+1,...,xv)∈{0,1}v−j

g(r1, . . . , rj−1, Xj, xj+1, . . . , xv).

V checks that gj is a univariate polynomial of degree at most degj(g), and that gj−1(rj−1) =

gj(0) + gj(1), rejecting if not.

• V chooses a random element rj ∈ F, and sends rj to P.

• In round v, P sends to V the univariate polynomial

gv(Xv) = g(r1, . . . , rv−1, Xv).

V checks that gv is a univariate polynomial of degree at most degv(g), rejecting if not.

• V chooses a random element rv ∈ F and evaluates g(r1, . . . , rv) with a single oracle query to
g. V checks that gv(rv) = g(r1, . . . , rv), rejecting if not.

• If V has not yet rejected, V halts and accepts.

Figure 4.1: Description of the sum-check protocol. degi(g) denotes the degree of g in
the ith variable.
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This protocol was first applied in the context of streaming algorithms by Cormode et

al. [66]. The costs of this protocol are summarized in the following lemma.

Lemma 4.4. Let g be a v-variate polynomial over F, which may depend on an input stream τ.

Denote the degree of g in variable i by degi(g). Assume V can evaluate g at any point r ∈ F

with a streaming pass over τ, using O(v log |F|) bits of space. There is an SIP for computing the

function F(τ) = ∑σ∈{0,1}v g(σ). The total number of messages is O(v) and the total communication

O(∑v
i=1 degi(g) · log |F|). The space required by the verifier is O(v · log |F|).

A simpler statement of sum-check protocol which we use for our graph verification

algorithms is as follows:

Lemma 4.5 (Sum-Check, [66]). Given streaming updates to a vector a ∈ Zu and a univariate

polynomial h : Z→ Z, there is a SIP to verify that ∑i∈[u] h(ai) = K for some claimed K. The total

number of rounds is O(log u) and the cost of the protocol is (log(u) log |F|, deg(h) log(u) log |F|).

4.3 Revisit the Sum-Check Protocol with Constant
Rounds

As mentioned before, we have a (log u)-rounds (log u)-cost verification protocol for

any frequency-based functions by applying the sum-check. In this section, we study the

possibility of reducing the round-complexity of the sum-check protocol to constant-rounds.

For this goal, we revisit the sum-check protocol described in [66] and briefly explain the

details of the protocol and the complexity analysis.

The sum-check which we present here is for verifying F1 function on a defined as follows:

F1(a) = ∑
i∈[u]

fa(i) = ∑
x1,··· ,xd∈[`]d

fa(x1, x2, · · · , xd)

in which u = [`]d. We can simply extend this protocol to any frequency-based function

defined as F(a) = ∑i∈[u] h(ai) = ∑i∈[u] h ◦ f (i).

We briefly describe the construction of this extension polynomial. Start from fa and

rearrange the frequency vector a into a d-dimensional array in which u = `d for a choosen

parameter `. This way we can write i ∈ [u] as a vector ((i)`1, ..., (i)`d) ∈ [`]d. Now we pick a

large prime number for field size |F| > u and define the low-degree extension (LDE) of a as

f̃a(x) = ∑v∈[`]d avχv(x), in which χv(x) = ∏d
j=1 χvj(xj) and χk(xj) has this property that it
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is equal to 1 if xj = k and 0 otherwise. This indicator function can be defined by Lagrange

basis polynomial as follows:

(xj − 0)...(xj − (k− 1))(xj − (k + 1))...(xj − (`− 1))
(k− 0)...(k− (k− 1))(k− (k + 1))...(k− (`− 1))

(4.1)

Observe that for any fixed value r ∈ [F]d, f̃a(r) is a linear function of a and can be

evaluated by a streaming verifier as the updates arrive. This is the key to the implementation

of the sum-check protocol with a streaming verifier.

At the start of protocol, before observing the stream, V picks a random point, presented

as r = (r1, · · · , rd) ∈ [F]d in the corresponding field. Then the verifier computes f̃a(r)

incrementally as it reads the stream updates on a. After observing the stream, the verification

protocol proceeds in d rounds as follows:

In the first round, P sends a polynomial g1(x1), claimed as :

g1(X1) = ∑
x2,··· ,xd∈[`]d−1

f̃a(X1, x2, · · · , xd)

Note that in this stage, if polynomial g1 is the same as what is claimed here by P, then

F1(a) = ∑x1∈[`] g1(x1).

Following this process, in round j > 1, V sends rj−1 to P. Then P sends a polynomial

gj(xj), claiming that:

gj(Xj) = ∑
xj+1,··· ,xd∈[`]d−j

f̃a(r1, · · · , rj−1, Xj, xj+1, · · · , xd)

In each round, V does consistency checks by comparing the two most recent polynomials

as follows:

gj−1(rj−1) = ∑
xj∈[`]

gj(xj)

Finally, in the last round, P sends gd which is claimed to be:

gd(Xd) = f̃a(r1, · · · , rd−1, Xd)

Now, V can check if gd(rd) = f̃a(r). If this test (along with all the previous checks)

passes, then V accepts and convinced that F1(a) = ∑x1∈[`] g1(x1).
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4.3.1 Complexity Analysis

The protocol consists of d rounds, and in each of them a polynomial gj is sent by P,

which can be communicated using O(`) words. This results in a total communication cost

of O(d`). V needs to maintain r, f̃a(r) which each requires (d + 1) words of space, as well

as computing and maintaining the values for a constant number of polynomials in each

round of sum-check. As described before, this is required for comparing the two most

recent polynomials by checking

gj−1(rj−1) = ∑
xj∈[`]

gj(xj)

Each of the gj communicated in round j is a univariate polynomial with degree (`− 1) and

can be described in (`− 1) words. Let’s represent each polynomial gj as follows:

gj(xj) = ∑
i∈[`−1]

cijxi
j

In each round j the verifier requires to do the consistency checks over the recent polynomials

as follows:

gj(rj) = ∑
xj∈[`]

∑
i∈[`−1]

cijxi
j

By reversing the ordering over the sum operation, we can rewrite this check as:

gj−1(rj−1) = ∑
i∈[`−1]

∑
xj∈[`]

cijxi
j = ∑

i∈[`−1]
cij ∑

xj∈[`]
xi

j

Let yi = ∑xj∈[`] xi
j. Then, this will be equivalent to:

gj−1(rj−1) = ∑
i∈[`−1]

cijyi

Both sides in this test can be computed and maintained in O(1) words space as V reads

the polynomials gj presented by P in streaming manner. Thus, the total space required by V

is O(d) words.

By selecting ` as a constant (say 2), we obtain both space and communication cost

O(log u) words for sum-check protocol which runs in log u rounds and the probablity of

error is `d
|F| .

Now to obtain constant-rounds protocol, we can set ` = O(u
1
γ ) for some integer constant

γ > 1, and considering u = [`]d, we get d = γ = O(1) (note that d controls the the number
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of rounds), result in a protocol with constant rounds and total communication O(u
1
γ ) words,

while maintaining the low space cost γ = O(1) words for V. The failure probability goes to

O( u
1
γ

|F| ), which by choosing |F| larger than ub it can be made less than 1
ub for any constant b

without changing the asymptotic bounds.

4.3.2 Constant Round for Frequency-Based Functions

Here for verifying any statistic F(a) = ∑i∈[u] h(ai) = ∑i∈[u] h ◦ f (i) on frequency vector

a, we use similar ideas to basic sum-check protocol which we described for verifying F1,

but the polynomials communicated by prover will be based on functions h ◦ fa:

In the first round, P sends a polynomial g′1(X1), claimed as:

g′1(X1) = ∑
x2,··· ,xd∈[`]d−1

h ◦ fa(X1, x2, · · · , xd)

If polynomial g′1 is the same as what is claimed here by P, then F(a) = ∑x1∈[`] g′1(x1).

In each round j > 1, V sends rj−1 to P. Then P sends a polynomial g′j(Xj), claimed as:

g′j(Xj) = ∑
xj+1,··· ,xd∈[`]d−j

h ◦ fa(r1, · · · , rj−1, Xj, xj+1, · · · , xd)

Again, consistency checks in each round is done by V by comparing the two most recent

polynomials:

g′j−1(rj−1) = ∑
xj∈[`]

g′j(xj)

And finally the verification process will be completed in the last round by sending polyno-

mial g′d(Xd) by P, claimed as:

g′d(Xd) = h ◦ fa(r1, · · · , rd−1, Xd)

Followed by checking if g′d(rd) = h ◦ fa(r) by V.

4.3.3 Complexity Analysis

Protocol consists of d rounds, and in each of them a polynomial g′j with degree O(deg(h) ·
`) is sent by P, which can be communicated using O(deg(h) · `) words. This results in a

total communication cost of O(deg(h) · d`). V needs to maintain r, h ◦ fa(r) (each requires

O(d) words space) as well as computing and maintaining the value for a constant number
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of polynomials in streaming manner in each round of protocol (requires O(1) words of

space), which results in a total space of O(d) words of space. By selecting ` as a constant

(say 2), then we obtain communication cost O(deg(h) · log u) and space cost O(log u) words

for sum-check protocol which runs in log u rounds and the probability of error is deg(h)·`d
|F| .

Note that the number of variables over which the input polynomial to the sum-check

protocol is defined determines the number of rounds and for any frequency-based function

defined as F(a) = ∑i∈[u] h(ai) = ∑i∈[u] h ◦ f (i), in which h is a univariate function, the

number of variables will not change and will be the same as fa. This implies that by

applying the same trick as described above for reducing the number of variables in fa (by

setting ` = O(u
1
γ ) for some integer constant γ > 1 and d = γ = O(1)), we can obtain a

constant-round protocol for verifying any statistics F(a) defined by the frequency vector on

the input stream, with space cost γ = O(1) words and communication cost O(deg(h) · u 1
γ )

words, while keeping the probability of error as low as O(deg(h)
ub ) for some integer b > 1 (by

choosing |F| > ub).

Lemma 4.6 ( [66]). For any γ < log u, there is a SIP to verify that ∑i∈[u] h(ai) = K for some

claimed K, with γ rounds, space cost γ · log u = O(log u) bits and communication cost O(deg(h) ·
u

1
γ · log u) bits, while keeping the probability of error as low as O(deg(h)

ub ) for some integer b > 1

(by choosing |F| > ub).

Corollary 4.1 ( [66]). Let h be a univariate polynomial defined on the frequency vector a under our

model. For any γ < log u, there is a SIP for verifying the function F(τ) = ∑i∈[u] h(ai). The total

number of rounds is γ and the cost of the protocol is
(

γ log u, u
1
γ log u

)
.



CHAPTER 5

STREAMING VERIFICATION OF GRAPH

PROPERTIES

In this chapter, we present streaming interactive proofs (SIPs) for graph problems.

5.1 Overview
We present streaming interactive proofs (SIPs) for graph problems that are traditionally

hard for streaming, such as for the maximum matching problem (in bipartite and general

graphs, both weighted and unweighted) as well for approximating the traveling salesperson

problem. In particular, we present protocols that verify a matching exactly in a graph using

polylogarithmic space and polylogarithmic communication apart from the matching itself.

In all our results, we consider the input in the dynamic streaming model, where graph edges

are presented in arbitrary order in a stream and we allow both deletion and insertion of

edges. All our protocols use either log n rounds of communication or (if the output size is

sufficiently large or we are willing to tolerate superlogarithmic communication) constant

rounds of communication.

To prove the above results, we also need SIPs for subproblems like connectivity, min-

imum spanning tree and triangle counting. While it is possible to derive similar (and in

some cases better) results for these subroutines using known techniques [89], we require

explicit protocols that return structures that can be used in the computation pipeline for

the TSP. Furthermore, our protocols for these problems are much simpler than what can be

obtained by techniques in [89], which require some effort to obtain precise bounds on the

size and depth of the circuits corresponding to more complicated parallel algorithms.

Our model is also different from a standard multipass streaming framework, since

communication must remain sublinear in the input and in fact in all our protocols the

verifier still reads the input exactly once.

From a technical perspective, our work continues the sketching paradigm for designing
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efficient graph algorithms. All our results proceed by building linear sketches of the input

graph. The key difference is that our sketches are not approximate but algebraic: based on

random evaluation of polynomials over finite fields. Our sketches use higher dimensional

linearization (“tensorization”) of the input, which might itself be of interest. They also

compose: indeed, our solutions are based on building a number of simple primitives that

we combine in different ways. Figure 5.1 illustrates the interconnections between our tools

and results.

5.2 Related Work
There are several previous works on streaming verification and computation. Here we

present a brief overview of the related work:

5.2.1 Outsourced Computation

Work on outsourced computation comes in three other flavors in addition to SIPs: firstly,

there is work on reducing the verifier and prover complexity without necessarily making the

verifier a sublinear algorithm [80, 89, 107], in some cases using cryptographic assumptions

to achieve their bounds. Another approach is the idea of rational proofs [24, 55, 93, 94], in

which the verifier uses a payment function to give the prover incentive to be honest. Moving

to sublinear verifiers, there has been research on designing SIPs where the verifier runs in

sublinear time [96, 142].

5.2.2 General Streaming Verification Algorithms

Chakrabarti et al. [46, 47] introduced the notion of annotations in data streams, whereby

an all-powerful prover could provide annotations to a verifier in order to complete a stream

computation. Cormode et al. [66] introduced the model of Streaming Interactive Proofs

(SIPs), which extends the annotated data streaming model to allow for multiple rounds of

interaction between the prover and verifier. They introduced a streaming variant of the

classical sum-check protocol of Lund, Fortnow, Karloff, and Nisan [128], and used it to give

logarithmic cost protocols for a variety of well-studied streaming problems. In subsequent

works, protocols were developed in both models for graph problems and matrix-vector

operations [64], were extended to deal with sparse streams (where the annotation size

should be sublinear in the number of stream updates, rather than in the size of the data



76

Sum check

MSE Finv Subset

Verify Matching

Matchings (all 
variants)

Connectivity MST

Approx TSP

Triangles

Figure 5.1: Summary of our tools and results. Subroutines are in ovals and problems
are in rectangles. Shaded boxes indicate prior work. An arrow from A to B indicates
that B uses A as a subroutine.

universe [44]), and were even shown to be implementable on GPUs [63]. Most recently,

Chakrabarti et al. [48] developed streaming interactive proofs of logarithmic cost that

worked in O(1) rounds, making use of an interactive protocol for the Index problem.

Lower bounds on the cost of SIPs and their variants have also been studied [25, 44, 48,

118]. These results make use of Arthur-Merlin communication complexity and related notions.

A detailed description of this line of work is outside the scope of this dissertation.

5.2.3 Streaming Graph Verification

All prior work on streaming graph verification has been in the annotation model, which

in practice resembles a 1-round SIP (a single message from prover to verifier after the stream

has been read). In recent work, Thaler [149] gives protocols for counting triangles, and

computing maximum cardinality matching with both n log n space and communication

cost. For matching, Chakrabarti et al. [45] show that any annotation protocol with space

cost O(n1−δ) requires communication cost Ω(n1+δ) for any δ > 0. They also show that any

annotation protocol for graph connectivity with space cost O(n1−δ) requires communication

cost Ω(n1+δ) for any δ > 0.

It is also proved that every protocol for this problem in the annotation model requires

Ω(n2) product of space and communication. This is optimal up to logarithmic factors.

Furthermore, they conjecture that achieving smooth tradeoffs between space and communi-

cation cost is impossible, i.e., it is not known how to reduce the space usage to o(n log n)

without blowing the communication cost up to Ω(n2) or vice versa [45, 149]. Note that in

all our protocols, the product of space and communication is O(n poly log n).
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5.2.4 Streaming Graph Algorithms

In the general dynamic streaming model, poly log 1/ε-pass streaming algorithms [11, 12]

give (1 + ε)-approximate answers and require Õ(n) space. In one pass, the best results

for matching are [59] (a parametrized algorithm for computing a maximal matching of

size k using Õ(nk) space) and [23, 123] which give a streaming algorithm for recovering an

nε-approximate maximum matching by maintaining a linear sketch of size Õ(n2−3ε) bits. In

the single-pass insert-only streaming model, Epstein et al. [74] give a constant (4.91) factor

approximation for weighted graphs using O(n log n) space. Crouch and Stubbs [67] give a

(4 + ε)-approximation algorithm which is the best known result for weighted matchings in

this model. Triangle counting in streams has been studied extensively [32, 39, 42, 105, 138].

For dynamic graphs, the most space-efficient result is the one by [14] that provides the

aforementioned additive εn3 bound in polylogarithmic space. The recent breakthrough

in sketch-based graph streaming [13] has yielded Õ(n) semistreaming algorithms for

computing the connectivity, bipartiteness and minimum spanning trees of dynamic graphs.

For more details, see [132].

5.3 Overview of our Techniques
For all the problems that we discuss here the input is a data stream of edges of a graph

drawn from [n]× [n] along with weight information as needed, where for an edge e an

element in the stream is of the form (i, j, ∆). As is standard, we assume that edge weights

are drawn from [nc] for some constant c. We allow edges to be inserted and deleted but the

final edge multiplicity is 0 or 1, and also mandate that the length of the stream is polynomial

in n. Finally, for weighted graphs, we further constrain that the edge weight updates be

atomic, i.e., that an edge along with its full weight be inserted or deleted at each step. Now

all our protocols proceed as follows. We define a domain U of size u and a frequency vector

a ∈ Zu whose entries are indexed by elements of U . A particular protocol might define a

number of such vectors, each over a different domain. Each stream element will trigger a

set of indices from U at which to update a. For example in case of matching, we derive this

constraint universe from the LP certificate, whereas for counting triangles our universe is

derived from all O(n3) possible three-tuples of the vertices.

The key idea in all our protocols is that since we cannot maintain a explicitly due
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to limited space, we instead maintain a linear sketch of a that varies depending on the

problem being solved. This sketch is computed as follows. We will design a polynomial

that acts as a low-degree extension of f over an extension field F and can be written as

p(x1, . . . , xd) = ∑u∈U a[u]gu(x1, x2, . . . , xd). The crucial property of this polynomial is that

it is linear in the entries of a. This means that polynomial evaluation at any fixed point

r = (r1, r2, . . . , rd) is easy in a stream: when we see an update a[u]← a[u] + ∆, we merely

need to add the expression ∆gu(r) to a running tally. Our sketch will always be a polynomial

evaluation at a random point r. Once the stream has passed, V and the prover P will engage

in a conversation that might involve further sketches as well as further updates to the

current sketch. In our descriptions, we will use the imprecise but convenient shorthand

“increment a[u]” to mean “update a linear sketch of some low-degree extension of a function

of a”. It should be clear in each context what the specific function is.

As mentioned earlier, a single stream update of the form (i, j, ∆) might trigger updates

in many entries of a, each of which will be indexed by a multidimensional vector. We will

use the wild-card symbol ’∗’ to indicate that all values of that coordinate in the index should

be considered. For example, suppose U ⊆ [n]× [n]× [n]. The instruction “update a[(i, ∗, j)]”

should be read as “update all entries a[t] where t ∈ {(i, s, j) | s ∈ [n], (i, s, j) ∈ U}”.

We show later how to do these updates implicitly, so that verifier time remains suitably

bounded. Note that in the protocols presented in this chapter, we use the Finv protocol

introduced in Chapter 3 but here the input to the Finv is not the graph edges themselves,

but instead the Finv is applied to the derived stream updates triggered by each input stream

element. As stated before, a single stream update of the form (i, j, ∆) might trigger updates

in many entries of vector a, which is defined based on the problem.

There are three parameters that control the complexity of our protocols: the vector

length u, the length of stream s and the maximum size of a coordinate M = maxiai. In the

protocols discussed in this chapter, M will always be upper bounded by some polynomial

in u, i.e. log M = O(log u). All algorithms we present use linear sketches, and so the stream

length s only affects verifier running time. In Lemma 5.6 we discuss how to reduce even

this dependence, so that verifier update time becomes polylogarithmic on each step.
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5.4 Warm-up: Counting Triangles
The number of triangles in a graph is the number of induced subgraphs isomorphic to

K3. Here we present a protocol to verify the number of triangles in a graph presented as a

dynamic stream of edges. We will assume that at the end of the stream no edge has a net

frequency greater than 1.

1. V processes the input data stream consisting of tuples (i, j, ∆) representing edges in

the graph for F−1
3 with respect to a vector a indexed by entries from U = {(i, j, k) |

i, j, k ∈ [n], i < j < k}. For each edge e = (i, j, ∆), i < j in the stream, V increments

all entries a[(i, ∗, j)], a[(∗, i, j)] and a[(i, j, ∗)] by ∆. Note that the input to F−1
3 protocol

is in fact these derived incremental updates from the original stream of edges in the

input graph and not the tuples (i, j, ∆).

2. P sends the claimed value c∗ as the number of triangles in G.

3. V checks the the correctness of the answer by running the verification protocol for F−1

and checks if F−1
3 = c∗.

Lemma 5.1. The above protocol correctly verifies (with a constant probability of error) the number

of triangles in a graph with cost (log2 n, log2 n).

Proof. Follows from Lemma 4.1 and observation that maximum frequency of any entry in a

is 3.

5.5 SIP for MAX-MATCHING in Bipartite Graphs
We now present a SIP for maximum cardinality matching in bipartite graphs. The prover

P needs to generate two certificates: an actual matching, and a proof that this is optimal. By

König’s theorem [122], a bipartite graph has a maximum matching of size k if and only if it

has a minimum vertex cover of size k. Therefore, P’s proof consists of two parts: i) Send the

claimed optimal matching M ⊂ E of size k. ii) Send a vertex cover S ⊂ Vof size k. V has

three tasks: i) Verify that M is a matching and that M ⊂ E. ii) Verify that S covers all edges

in E. iii) Verify that |M| = |S|. We describe protocols for first two tasks and the third task is

trivially solvable by counting the length of the streams and can be done in log n space. V

will run the three protocols in parallel.
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5.5.1 Verifying a Matching

Verifying that M ⊂ E can be done by running the Subset protocol from Lemma 4.2 on

E and the claimed matching M. A set of edges M is a matching if each vertex has degree

at most 1 on the subgraph defined by M. Interpreted another way, let τM be the stream

of endpoints of edges in M. Then each item in τM must have frequency 1. This motivates

the following protocol, based on Theorem 4.1. V treats τM as a sequence of updates to

a frequency vector a ∈ Z|V| counting the number of occurrences of each vertex. V then

asks P to send a stream of all the vertices incident on edges of M as updates to a different

frequency vector a′. V then runs the MSE protocol to verify that these are the same.

5.5.2 Verifying that S is a Vertex Cover

The difficulty with verifying a vertex cover is that V no longer has streaming access to E.

However, we can once again reformulate the verification in terms of frequency vectors. S is

a vertex cover if and only if each edge of E is incident to some vertex in S. Let a, a′ ∈ Z(n
2)

be vectors indexed by U = {(i, j), i, j ∈ V, i < j}. On receiving the input stream edge

e = (i, j, ∆), i < j, V increments a[(i, j)] by ∆.

For each vertex i ∈ S that P sends, we increment all entries a′[(i, ∗)] and a′[(∗, i)]. Now

it is easy to see that S is a vertex cover if and only if there are no entries in a− a′ with value

1 (because these entries correspond to edges that have not been covered by a vertex in S).

This yields the following verification protocol.

1. V processes the input edge stream for the F−1
1 protocol, maintaining updates to a

vector a.

2. P sends over a claimed vertex cover S of size c∗ one vertex at a time. For each vertex

i ∈ S, V decrements all entries a[(i, ∗)] and a[(∗, i)].

3. V runs Finv to verify that F−1
1 (a) = 0.

The bounds for this protocol follow from Lemmas 4.1, 4.2 and Theorem 4.1:

Theorem 5.1. Given an input bipartite graph with n vertices, there exists a streaming interactive

protocol for verifying the maximum-matching with log n rounds of communication, and cost

(log2 n, (c∗ + log n) log n), where c∗ is the size of the optimal matching.
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5.6 SIP for MAX-WEIGHT-MATCHING in Bipartite
Graphs

Consider now a bipartite graph with edge weights, with the goal being to compute a

matching of maximum weight (the weight of the matching being the sum of the weights of

its edges). Our verification protocol will introduce another technique we call “flattening”

that we will exploit subsequently for matching in general graphs.

Recall that we assume a “dynamic update” model for the streaming edges: each edge is

presented in the form (e, we, ∆) where ∆ ∈ {+1,−1}. Thus, edges are inserted and deleted

in the graph, but their weight is not modified. We will also assume that all weights are

bounded by some polynomial nc.

As before, one part of the protocol is the presentation of a matching by P: the verification

of this matching follows the same procedure as in Section 5.5.1 and we will not discuss it

further. We now focus on the problem of certifying optimality of this matching.

For this goal, we proceed by the standard LP-duality for bipartite maximum weight

matching. Let the graph be G = (V, E) and A is its incidence matrix (a matrix in {0, 1}V×E

where aij = 1 iff edge j is incident to vertex i). Let δ(v) denote the edge neighborhood of a

vertex v and Pmatch represent the convex combination of all matchings on G, and note that

for a bipartite graph:

Pmatch =

x ∈ RE
+ : ∀v ∈ V, ∑

e∈δ(v)
xe ≤ 1

 (5.1)

Applying the LP duality theorem to the bipartite max-weight matching problem on G, and

letting w be the weight vector on the edges, we see that:

max{wTx : x ∈ Pmatch(G)} = max

wTx : x ≥ 0 and ∀v ∈ V, ∑
e∈δ(v)

xe ≤ 1


= max

{
wTx : x ≥ 0, Ax ≤ 1

}
= min

{
1Ty : ATy ≥ w, y ≥ 0

}
= min

{
1Ty : y ≥ 0 and ∀ei,j ∈ E, yi + yj ≥ wi,j

}
Considering this formulation, a certificate of optimality for a maximum weight matching of

cost c∗ is an assignment of weights yi to vertices of V such that ∑ yi = c∗ and for each edge

e = (i, j), yi + yj ≥ we.
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A protocol similar to the unweighted case would proceed as follows: P would send

over a stream (i, yi) of vertices, and the verifier would treat these as decrements to a vector

over edges. V would then verify that no element of the vector had a value greater than zero.

However, by Lemma 4.1, this would incur a communication cost linear in the maximum

weight (since that is the maximum value of an element of this vector), which is prohibitively

expensive.

The key is to observe that the communication cost of the protocol depends linearly on

the maximum value of an element of the vector, but only logarithmically on the length of the

vector itself. So if we can “flatten” the vector so that it becomes larger, but the maximum

value of an element becomes smaller, we might obtain a cheaper protocol.

Let a be indexed by elements of U = {((i, j), w, yi, yj) | (i, j) ∈ E, w, yi, yj ∈ [nc], i <

j, w ≤ yi + yj}. |U | = O(n3c+2). The protocol proceeds as follows.

Intuitively, each entry of a corresponds to a valid dual constraint. When V reads the

input stream of edges, it will increment counts for all entries of a that could be part of a valid

dual constraint. Correspondingly, when P sends back the actual dual variables, V updates

all compatible entries.

1. V processes the input edge stream for F−1
3 (with respect to a).

2. Upon seeing (e, we, ∆) in the stream, V accordingly updates all entries a[(e, w, ∗, ∗)] by

∆.

3. P sends a stream of (i, yi) in increasing order of i.

4. V verifies that all i ∈ [n] appear in the list. For each i, it increments all entries

a[((i, ∗), ∗, yi, ∗)] and a[(∗, i), ∗, ∗, yi)].

5. V verifies that F−1
3 (a) = m and accepts.

5.6.1 Protocol Correctness

Suppose the prover provides a valid dual certificate satisfying the conditions for

optimality. Consider any edge e = (i, j), the associated dual variables yi, yj and the entry

r = (e, wij, yi, yj). When e is first encountered, V will increment a[r]. When P sends yi, r will

satisfy the compatibility condition and a[r] will be incremented. A similar increment will

happen for yj. Note that no other stream element will trigger an update of a[r]. Therefore,

every satisfied constraint will yield an entry of a with value 3.

Conversely, suppose the constraint is not satisfied, i.e., yi + yj < wij. There is no
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corresponding entry of a to be updated in this case. This proves that the number of entries

of a with value 3 is exactly the number of edges with satisfied dual constraints. The

correctness of the protocol follows.

5.6.2 Protocol Complexity

The maximum frequency in a is at most 3 and the domain size u = O(n3c+2). Note that

this is in contrast with the representation first proposed that would have domain size n2

and maximum frequency O(nc). In effect, we have flattened the representation. Invoking

Lemma 4.1, as well as the bound for verifying the matching from Section 5.5, we obtain the

following result.

Theorem 5.2. Given a bipartite graph with n vertices and edge weights drawn from [nc] for some

constant c, there exists a streaming interactive protocol for verifying the maximum-weight matching

with log n rounds of communication, space cost O(log2 n) and communication cost O(n log n).

We can make a small improvement to Theorem 5.2. First note that the prover need only

send the non-zero yi in ascending order along with label to the verifier, who can implicitly

assign yj = 0 to all absent weights. This then reduces the communication to be linear in the

cardinality and thereby also the cost of the maximum weight matching. Namely, we now

have:

Theorem 5.3. Given an input bipartite graph with n vertices and edge weights drawn from [nc]

for some constant c, there exists a streaming interactive protocol for verifying the maximum-weight

matching with log n rounds of communication, space cost O(log2 n) and communication cost

O(c∗ log n), where c∗ is the cardinality of the optimal matching over the input.

Note that we assume that V knows the number of edges in the graph. This assumption

can be dropped easily by merely summing over all updates ∆. Since we assume that every

edge will have a final count of 1 or 0, this will correctly compute the number of edges at the

end of the stream.
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5.7 SIP for Maximum-Weight-Matching in General
Graphs

We now turn to the most general setting: of maximum weight matching in general

graphs. This of course subsumes the easier case of maximum cardinality matching in

general graphs, and while there is a slightly simpler protocol for that problem based on

the Tutte-Berge characterization of maximum cardinality matchings [35, 150], we will not

discuss it here.

We will use the odd-set based LP-duality characterization of maximum weight match-

ings due to Cunningham and Marsh. Let O(V) denote the set of all odd-cardinality subsets

of V Let yi ∈ [nc] define non-negative integral weight on vertex vi, zU ∈ [nc] define a

non-negative integral weight on an odd-cardinality subset U ∈ O(V), wij ∈ [nc] define the

weight of an edge e = (i, j) and c∗ ∈ [nc+1] be the weight of a maximum weight matching

on G. We define y and z to be dual feasible if yi + yj + ∑U∈O(V)
i,j∈U

zU ≥ wi,j, ∀i, j

A collection of sets is said to be laminar if any two sets in the collection are either disjoint

or nested (one is contained in the other). Note that such a family must have size linear in

the size of the ground set. Standard LP-duality and the Cunningham-Marsh theorem state

that:

Theorem 5.4 ( [68]). For every integral set of edge weights W, and choices of dual feasible integral

vectors y and z, c∗ ≤ ∑v∈V yv + ∑U∈O(V) zU

⌊
1
2 |U|

⌋
. Furthermore, there exist vectors y and z

that are dual feasible such that {U : zU > 0} is laminar and for which the above upper bound

achieves equality.

We design a protocol that will verify that each dual edge constraint is satisfied by the

dual variables. The laminar family {U : zU > 0} can be viewed as a collection of nested

subsets (each of which we call a claw) that are disjoint from each other. Within each claw, a

set U can be described by giving each vertex v in order of increasing level `(v): The number

of sets in which v is contained (see Figure 5.2). The prover will describe a set U and its

associated zU by the tuple (LI, `, rU , ∂U), where 1 ≤ LI ≤ n is the index of the claw U is

contained in, ` = `(U), rU = ∑U′⊇U′ zU′ and ∂U = U \ ∪U′′⊂UU′′. For an edge e = (i, j) let

re = ∑i,j∈U,U∈O(V) zU represent the weight assigned to an edge by weight vector z on the

laminar family. Any edge whose endpoints lie in different claws will have re = 0. For a
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LI = 1 LI = 2

` = 1 ` = 2` = 3` = 2` = 1

Figure 5.2: A laminar family

vertex v, let rv = minv∈U rU . For an edge e = (v, w) whose endpoints lie in the same claw,

it is easy to see that re = min(rv, rw), or equivalently that re = rarg min(`(v),`(w)). For such

an edge, let `e,↓ = min(`(u), `(v)) and `e,↑ = max(`(u), `(v)). We will use LI(e) ∈ [n] to

denote the index of the claw that the endpoints of e belong to.

5.7.1 The Protocol

V prepares to make updates to a vector a with entries indexed by U = U1 ∪ U2. U1

consists of all tuples of the form {(i, j, w, y, y′, LI, `, `′, r)} and U2 consists of all tuples of the

form {(i, j, w, y, y′, 0, 0, 0, 0)} where i < j, i, j, LI, `, `′ ∈ [n], y, y′, r, w ∈ [nc] and tuples in U1

must satisfy 1) w ≤ y + y′ + r and 2) it is not simultaneously true that y + y′ ≥ w and r > 0.

Note that a ∈ Zu where u = O(n4c+5) and all weights are bounded by nc.

1. V prepares to process the stream for an F−1
5 query. When V sees an edge update of

form (e, we, ∆), it updates all entries a[(e, we, ∗, ∗, ∗, ∗, ∗, ∗)].
2. P sends a list of vertices (i, yi) in order of increasing i. For each (i, yi), V increments

by 1 the count of all entries a[(i, ∗, ∗, yi, ∗, ∗, ∗, ∗, ∗] and a[(∗, i, ∗, ∗, yi, ∗, ∗, ∗, ∗)] with

indices drawn from U1. Note that P only sends vertices with nonzero weight, but since

they are sent in increasing order, V can infer the missing entries and issue updates to

a as above. V also maintains the sum of all yi.

3. P sends the description of the laminar family in the form of tuples (LI, `, rU , ∂U),

sorted in lexicographic order by LI and then by `. V performs the following operations.

(a) V increments all entries of the form (i, ∗, ∗, yi, ∗, 0, 0, 0, 0) or (∗, i, ∗, ∗, yi, 0, 0, 0, 0)

by 2 to account for edges which are satisfied by only vector y.

(b) V maintains the sum ΣR of all rU seen thus far. If the tuple is deepest level for a

given claw (easily verified by retaining a one-tuple lookahead) then V adds rU to

another running sum Σmax.

(c) V verifies that the entries appear in sorted order and that rU is monotone
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increasing.

(d) V updates the fingerprint structure from Theorem 4.1 with each vertex in ∂U.

(e) For each v ∈ ∂U, V increments (subject to our two constraints on the universe)

all entries of a indexed by tuples of the form (e, we, ∗, ∗, LI, ∗, `, ∗) and all en-

tries indexed by tuples of the form (e, we, ∗, ∗, LI, `, ∗, rU), where e is any edge

containing v as an endpoint.

(f) V ensures all sets presented are odd by verifying that for each LI, all |∂U| except

the last one are even.

4. P sends V all vertices participating in the laminar family in ascending order of

vertex label. V verifies that the fingerprint constructed from this stream matches

the fingerprint constructed earlier, and hence that all the claws are disjoint.

5. V runs a verification protocol for F−1
5 (a) and accepts if F−1

5 (a) = m, returning Σr and

Σmax.

Define cs as the certificate size, which is upper bounded by the matching cardinality. Then:

Theorem 5.5. Given dynamic updates to a weighted graph on n vertices with all weights bounded

polynomially in n, there is a SIP with cost (log2 n, (cs + log n) log n), where cs is the cardinality of

maximum matching, that runs in log n rounds and verifies the size of a maximum weight matching.

Proof. In parallel, V and P run protocols to verify a claimed matching as well as its optimality.

The correctness and resource bounds for verifying the matching follow from Section 5.5.

We now turn to verifying the optimality of this matching. The verifier must establish the

following facts: (i) P provides a valid laminar family of odd sets. (ii) The lower and upper

bounds are equal. (iii) All dual constraints are satisfied.

Since the verifier fingerprints the vertices in each claw and then asks P to replay all

vertices that participate in the laminar structure, it can verify that no vertex is repeated

and therefore that the family is indeed laminar. Each ∂U in a claw can be written as the

difference of two odd sets, except the deepest one (for which ∂U = U). Therefore, the

cardinality of each ∂U must be even, except for the deepest one. V verifies this claim,

establishing that the laminar family is comprised of odd sets.

Consider the term ∑U zUb|U|/2c in the dual cost. Since each U is odd, this can be

rewritten as (1/2)(∑u zu|U| − ∑U zU). Consider the odd sets U0 ⊃ U1 ⊃ . . . ⊃ Ul in
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a single claw. We have rUj = ∑i≤j zUi , and therefore ∑j rUj = ∑j ∑i≤j zUi . Reordering,

this is equal to ∑i≤j ∑j zUi = ∑i zUi |Ui|. Also, rUl = ∑i zUi . Summing over all claws,

Σr = ∑U zU |U| and Σmax = ∑U zU . Therefore, ∑i yi + Σr − Σmax equals the cost of the dual

solution provided by P.

Finally we turn to validating the dual constraints. Consider an edge e = (i, j) whose

dual constraints are satisfied, i.e., P provides yi, yj and zU such that yi + yj + rij ≥ we.

Firstly, consider the case when rij > 0. In this case, the edge belongs to some claw

LI. Let its lower and upper endpoints vertex levels be s, t, corresponding to odd sets

US, Ut. Consider now the entry of a indexed by (e, yi, yj, LI, s, t, rij). This entry is updated

when e is initially encountered and ends up with a net count of 1 at the end of input

processing. It is incremented twice when P sends the (i, yi) and (j, yj). When P sends Us this

entry is incremented because rij = rUs = min(rUS , rUt) and when P sends Ut this entry is

incremented because Ut has level t, returning a final count of 5. If rij = 0 (for example when

the edge crosses a claw), then the entry indexed by (e, we, yi, yj, 0, 0, 0, 0) is incremented

when e is read. It is not updated when P sends (i, yi) or (j, yj). When P sends the laminar

family, V increments this entry by 2 twice (one for each of i and j) because we know that

yi + yj ≥ we. In this case, the entry indexed by (i, j, we, yi, yj, 0, 0, 0, 0) will be exactly 5. Thus,

for each satisfied edge there is exactly one entry of a that has a count of 5.

Conversely, suppose e is not satisfied by the dual constraints, for which a necessary

condition is that yi + yj < we. Firstly, note that any entry indexed by (i, j, we, ∗, ∗, 0, 0, 0, 0)

will receive only two increments: one from reading the edge, and another from one

of yi and yj, but not both. Secondly, consider any entry with an index of the form

(i, j, we, ∗, ∗, LI, ∗, ∗, ∗) for LI > 0. Each such entry gets a single increment from reading

e and two increments when P sends (i, yi) and (j, yj). However, it will not receive an

increment from the second of the two updates in Step 3(e), because yi + yj + rij < we and so

its final count will be at most 4. The complexity of the protocol follows from the complexity

for Finv, Subset and the matching verification described in Section 5.5.
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5.8 Streaming Interactive Proofs for Approximate
MST

For verifying the approximate weight of MST, we follow the reduction to the problem of

counting the number of connected components in graphs, which was initially introduced

in [53] and later was generalized to streaming setting [13]. Here are the main results which

we use here:

Lemma 5.2 ( [13]). Let T be a minimum spanning tree on graph G with edge weights bounded

by W =poly(n) and Gi be the subgraph of G consisting of all edges whose weights is at most

wi = (1 + ε)i and let cc(H) denote the number of connected components of graph H. Set r =

blog1+ε Wc. Then,

w(T) ≤ n− (1 + ε)r +
r

∑
i=0

λicc(Gi) ≤ (1 + ε)w(T)

where λi = (1 + ε)i+1 − (1 + ε)i.

Based on this result, we can design a SIP for verifying the approximate weight of mini-

mum spanning tree using a verification protocol 5.6 for number of connected components

in a graph.

Theorem 5.6. Given a weighted graph with n vertices, there exists a SIP protocol for verifying the

number of connected components Gi with (log n) rounds of communication, and (log2 n, n log n)

cost.

Corollary 5.1. Given a weighted graph with n vertices, there exists a SIP protocol for verifying MST

within (1+ ε)-approximation with (log n) rounds of communication, and (log2 n, n log2 n/ε) cost.

Proof. As the verifier processes the stream, each edge weight is snapped to the closest power

of (1 + ε). Note that given an a priori bound nc on edge weights, G can be partitioned into

at most log n
ε graphs Gi. We run this many copies of the connected components protocol in

parallel to verify the values of cc(Gi), ∀i.

We now present the proof of theorem 5.6. For simplicity, consider V = (V1 ∪ · · · ∪Vr) as

the r connected components and T = (Ti ∪ · · · ∪ Tr) as r spanning trees on r corresponding

connected components, provided by prover as the certificate. Now verifier needs to check if

the certificate T is valid by considering the following conditions:
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1. Disjointness: All the spanning trees are disjoint, i.e., Ti ∩ Tj = ∅ for all the pairs of

trees in T.

2. Subset: Each spanning tree in T = (T1 ∪ · · · ∪ Tr) is a subgraph of the input graph G.

This may be handled by Subset protocol described before in Lemma 4.2.

3. r-SpanningTree: Each component in T = (T1 ∪ · · · ∪ Tr) is in fact a spanning tree.

4. Maximality: Each component in T = (T1 ∪ · · · ∪ Tr) is in fact maximal, i.e., there is no

edge between the components in original graph G.

We assume that the certificate T is sent by the prover in streaming manner in the following

format and both players agree on this at the start of the protocol:

T : {|T|, r, (T1, · · · , Tr)}

For the representation of spanning trees, we consider a topological ordering on each tree Ti,

starting from root node rooti, and each directed edge (vout, vin) connects the parent node

vout to the child node vin:

Ti : {rooti,∪e(vout, vin)}

Here we present the protocols for checking each of these conditions. The following

Disjointness protocol will be called a subroutine in our r-SpanningTree main protocol.

5.8.1 Protocol: Disjointness

1. P sends over r components of Ti in T in streaming manner.

2. P “replays" all the edges T′ in the tuple form (ei,j, `) for i, j ∈ [n] and ` ∈ [r] denotes the

component ei,j is assigned to. The edges in T′ are presented according to a canonical

total ordering on the edge set, and hence V can easily check that T′ has no repeated

edge; i.e., the same edge presented in two distinct components.

3. Fingerprinting can then be used to confirm that T′ = ∪iTi with high probability, and

hence that each edge occurs in at most one tree.

4. A similar procedure is run to ensure that no vertex is repeated in more than one Ti

and that every vertex is seen at least once.

To check if each component in the claimed certificate T sent by the prover is in fact spanning

tree, the verifier needs to check that each Ti is cycle-free and also connected. For this goal we

present the following protocol:



90

5.8.2 Protocol: r-SpanningTree

1. P sends over the certificate T : {|T|, r, (T1, · · · , Tr)} in which each Ti is of the form

{i,∪e(vout, vin)} and the root ui of Ti is presented first.

2. V runs the Disjointness protocol to ensure that in the certificate T : {|T|, r, (T1, · · · , Tr)}
all Ti and Tj are edge and vertex disjoint for all i 6= j.

3. V has the prover again similarly replay ∪iTi ordered by the label of the in-vertex of

each edge to ensure that each vertex except the root ui has exactly one incoming edge,

i.e., that all Ti are cycle free and connected.

We now need to check that there is no edge between sets Vi and Vj for i 6= j:

5.8.3 Protocol: Maximality

1. We define an extended universe U now of size n3, with elements (ei,j, k) where k ∈ [n]

represents the label of the component.

2. V initiates the F−1
−1 protocol on the input stream. Upon seeing any edge ei,j, V

increments by 1 all tuples containing ei,j.

3. P sends the label of each vertex (vi, j) where j ∈ [n] represents the label of the

component in the certificate. (Note that the verifier can ensure this input is consistent

with the T = ∪iTi sent earlier by simply fingerprinting as described before).

4. V considers each vertex vi ∈ Vj as a decrement update by 2 on all n possible tuples

compatible with vi and component label j. This step can be assumed as continuing

the process for F−1
−1 mentioned in the first step.

5. F−1
−1 corresponds to exactly the set of edges observed in stream and crossing between

two Vi and Vj for i 6= j. To see this, we enumerate the cases explicitly:

(a) {−3,−4} are the possible values for an edge (ea,b, i) with both endpoints con-

tained in a single Vi corresponding to whether ea,b was originally in the stream

or not. (The edge is decremented twice by 2 in the derived stream.)

(b) {−1,−2} are the possible values for any edge (ea,b, i) and (ea,b, j) with one

endpoint in a Vi and the other in Vj for i 6= j, corresponding to whether ea,b

was originally in the stream or not. (ea,b is decremented exactly once by 2 in each

of the two copies corresponding to i and j, respectively.)

6. V runs F−1 with P and accepts that there are no edges between the Vi if and only if
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F−1
−1 = 0.

5.8.4 Complexity Analysis of the Protocol

We know the cost of F−1
−1 protocol is (log2 n, log2 n) for frequency ranges bounded by a

constant, whereas the costs of the remaining fingerprinting steps and sending the certificate

are at most (log n, n log n). Hence the cost of our protocol is dominated by (log2 n, n log n)

in the worst case. The verifier update cost on each step is bounded as O(n2).

5.8.5 Testing Bipartiteness

As a corollary of Theorem 5.6 it is also possible to test whether a graph is bipartite.

This follows by applying the connectivity verification protocol described before on the

both input graph G and the bipartite double cover of G, say G′. The bipartite double cover

of a graph is formed by making two copies u1, u2 of every node u of G and adding edges

{u1, v2} and {u2, v1} for every edge {u, v} of G. It can be easily shown that G is bipartite if

and only if the number of connected components in the double cover G′ is exactly twice the

number of connected components in G.

Corollary 5.2. Given an input graph G with n vertices, there exists a SIP protocol for testing

bipartiteness on G with (log n) rounds of communication, and (log2 n, n log n) cost.

We note here that while we could have used known parallel algorithms for connectivity

and MST combined with the protocol of Goldwasser et al. [89] and the technique of

Cormode, Thaler and Yi [66] to obtain similar results, we need an explicit and simpler

protocol with an output that we can fit into the overall TSP protocol described later in next

section.

5.9 Streaming Interactive Proofs for Approximate
Metric TSP

We can apply our protocols to another interesting graph streaming problem: that of

computing an approximation to the min cost travelling salesman tour. The input here is a

weighted complete graph of distances.

We briefly recall the Christofides heuristic: compute a MST T on the graph and add to T

all edges of a min-weight perfect matching on the odd-degree vertices of T. The classical
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Christofides result shows that the sum of the costs of this MST and induced min-weight

matching is a 3/2 approximation to the TSP cost. In the SIP setting, we have protocols

for both of these problems. The difficulty however is in the dependency: the matching is

built on the odd-degree vertices of the MST, and this would seem to require the verifier to

maintain many more states as in the streaming setting. We show that this is not the case,

and in fact we can obtain an efficient SIP for verifying a (3/2 + ε)-approximation to the

TSP.

Assume T is a (1 + ε) approximate MST provided by the prover in the verification

protocol and let T∗ be the optimum MST on G. Also, let A be the optimum solution to TSP.

Since graph G is connected, we have w(A) ≥ w(T∗) and because (1 + ε) · w(T∗) ≥ w(T),

thus (1 + ε) · w(A) ≥ w(T). Further, let M be the min-cost-matching over the odd degree

set O. By a simple reasoning, we can show that w(M) ≤ w(A)
2 , thus w(M) + w(T) ≤

(1 + ε) · w(A) + w(A)
2 and from the triangle inequality it follows that the algorithm can

verify the TSP cost within ( 3
2 + ε)-approximation.

We use first the protocol for verifying approximate MST described in Section 5.8. What

remains is how we verify a min-cost perfect matching on the odd-degree nodes of the

spanning tree. We employ the procedure described in Section 5.7 for maximum weight

matching along with a standard equivalence to min-cost perfect matching. In addition

to validating all the LP constraints, we also have to make sure that they pertain solely to

vertices in ODD. We do this as above by using the fingerprint for ODD to ensure that we

only count satisfied constraints on edges in ODD.

Here we describe the protocol for verifying approximate metric TSP in full details, which

results in Theorem 5.7:

5.9.1 Protocol: TSP Verification

1. P presents a spanning tree which is claimed to be MST and can be verified within

(1 + ε)-approximation by V (as described in Section 5.8). V maintains a fingerprint on

the vertices by using the MSE algorithm and updating the frequency of each vertex

seen as an endpoint of an edge in the tree. This results in a fingerprint where each

vertex has multiplicity equal to its degree in the MST.

2. P then lists all vertices of the spanning tree in lexicographic order annotated with their
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degree. V verifies that this fingerprint matches the one constructed in the previous step

and builds a new fingerprint for the set ODD of all odd-degree vertices (disregarding

their degree).

3. P presents a claimed min-weight perfect matching on the vertex set ODD

4. V verifies that this list of edges is indeed a matching using the protocol from Section

5.5. In addition, it verifies that the vertices touched by these edges comprise ODD by

using MSE to validate the fingerprint from the previous step.

5. To verify the lower bound on min-weight perfect matching, we first reduce to max-

weight matching. Let W = nc be the a priori upper bound on the weight of each

edge. Replace all weights w by W + 1− w. Clearly now on a complete graph the

max-weight matching corresponds to the min-weight perfect matching.

6. First, V needs to ensure that the entire certificate C is contained inside the ODD set.

Recall that V has maintained a fingerprint of ODD, so we may use a variant of MSE.

P replays C, along with any vertices which are in ODD but not in C and V checks the

fingerprints match.

7. Then, V needs to check that all the constraints for the problem are satisfied by the

certificate. This step is identical to what we described before for Maximum-Weight-

Matching 5.7 (counting the “good” tuples), but here the satisfied constraints must be

counted only on ODD set.

8. For this goal, we amend the protocol of Section 5.7 so that P streams the subset V −
ODD to the verifier and then V can simply decrement the frequency of all the tuples

defined on V−ODD by 1. Now all tuples corresponding to edges not containing both

endpoints in ODD may achieve frequency at most 4 and hence will not be counted by

the F−1
5 query.

9. Again, the accuracy of the claimed V −ODD can be checked by using MSE. Let D be

the claimed V −ODD. P streams D to V, which checks by MSE that the fingerprint of

D ∪ODD matches that of the entire vertex set. (Note that fingerprints are linear, so

the fingerprint of D ∪ODD is just the fingerprint of D plus the fingerprint of ODD.)

10. Now, V accepts the max-weight matching certificate if and only if the number of

“good” tuples (which determines the count of satisfied edge constraints) is (|ODD|
2 )

(i.e., the number of edges in complete graph induced by the ODD set). As discussed
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earlier, these correspond to the value of F−1
5 in our extended universe.

Finally, the approximate TSP cost is the sum of the min-weight perfect matching on ODD

and the MST cost on the graph.

Theorem 5.7. Given a weighted complete graph with n vertices, in which the edge weights satisfy

the triangle inequality, there exists a streaming interactive protocol for verifying optimal TSP cost

within ( 3
2 + ε)-approximation with (log n) rounds of communication, and (log2 n, n log2 n/ε) cost.

5.10 Boolean Hidden Hypermatching and Disjointness
Boolean Hidden Matching (BHHt

n) is a two-party one-way communication problem in

which Alice’s input is a boolean vector x ∈ {0, 1}n where n = kt for some integer k and

Bob’s input is a (perfect) hypermatching M on the set of coordinates [n], where each edge

Mr contains t vertices represented by indices as {Mr,1, ..., Mr,t}, and a boolean vector w of

length n
t . We identify the matching M with its edge incidence matrix. Let Mx denote the

length n
t boolean vector (

⊕
1≤i≤t xM1,i , · · · ,

⊕
1≤i≤t xM n

t ,i
). It is promised in advance that

there are only two separate cases:

YES case: The vector w satisfies Mx
⊕

w = 0
n
t .

NO case: The vector w satisfies Mx
⊕

w = 1
n
t .

The goal for Bob is to differentiate these two cases.

The following lower bound result for BHHt
n is obtained in [154]:

Lemma 5.3. ( [154]) Any randomized one-way communication protocol for solving BHHt
n when

n = kt for some integer k, with error probability at most 1
4 requires Ω(n1− 1

t ) communication.

Lemma 5.4. Consider the streaming version of BHHt
n problem, in which the binary vector x comes

in streaming, followed by edges in M along with the boolean vector w for weights. There exists

a streaming interactive protocol with communication and space cost O(t · log n(log log n)) for

BHHt
n problem.

Proof. Considering the promise that we have in YES and NO case of BHHt
n communication

problem, it is enough to query the weights of vertices on only one of the hyperedges on

the matching and compare it to the corresponding weight in vector w. This way the BHHt
n

problem can be reduced to t instances of INDEX problem. Assume the vector x as the input
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stream and take one of the followed hyperedges, say Mr = {Mr,1, ..., Mr,t}, as the t query

index. In this scenario the verifier just need to apply the verification protocol INDEX in t

locations {Mr,1, ..., Mr,t} on x and check if
⊕

1≤i≤t xMr,i

⊕
wr = 0 or

⊕
1≤i≤t xMr,i

⊕
wr = 1.

According to [49], the verification (communication and space) cost for INDEX problem is

O(log n(log log n)) and this results in O(t · log n(log log n)) cost for BHHt
n.

We now show a similar result for Disjointness(DISJn). DISJn is a two-party one-way

communication problem in which Alice and Bob each have a boolean vector x and y ∈
{0, 1}n, respectively, and they wish to determine if there is some index i such that ai = bi = 1.

Razoborov [141] shows an Ω(n) lower bound on the communication complexity of this

problem for one-way protocols. We show now however that DISJn is easy in the SIP model.

Lemma 5.5. Consider the streaming version of DISJn problem, in which the binary vector x

comes in streaming, followed by binary vector y. There exists a streaming interactive protocol with

communication and space cost O(log2 n) for DISJn.

Proof. The verifier maintains a universe U corresponding to [n]. When the verifier sees the

ith bit of x, it increments the frequency of universe element i by xi. Now when the verifier

streams yi, the verifier again increments the frequency of element i by yi. Clearly, x and y

correspond to disjoint sets if and only if F−1
2 = 0. We can then simply run the Finv protocol,

and the bound follows by Lemma 4.1

Lemma 5.4 and 5.5 shows that while BHHt
n and DISJn are lower bound barriers to

computations in the streaming model, however they are easily tractable in the streaming

verification setting. This gives a first suggestion that for problems such as MAX-CUT and

MAX-MATCHING where most of the known lower bounds go through BHHt
n or DISJn,

streaming verification protocols may prove more effective, as was the initial motivation for

our study.

5.11 Verifier Update Time Complexity
Note that while all the graph verification protocols presented in this chapter achieve

very small space and communication costs, the update time could be high (polynomial in

n) since processing a single stream token may trigger updates in many entries of a. But

by using a nice trick found in [49], the verifier time can be reduced to polylog n. Here we
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state the main results which can be applied to all the verification protocols in this chapter to

guarantee polylog n verifier update time.

Lemma 5.6. Assume a data stream τ in which each element triggers updates on multiple entries of

vector a, and each entry in this vector is indexed by a multidimensional vector with b coordinates

and let U ⊆ [nc]b. In all the SIP protocols for graph problems in this chapter, the updates in

the form of a[(β1, β2, · · · , βq, ∗, · · · , ∗)] (which is interpreted as: update all entries β where β ∈
{(β1, · · · , βq, s1, · · · , sb−q)|si ∈ [nc], i ∈ [b− q], (β1, · · · , βq, s1, · · · , sb−q) ∈ U}) can be done

in polylog n time.

Here we present the proof for Lemma 5.6. The main ideas are extracted from [49], in

which this trick is used for reducing verifier time in Nearest Neighbor verification problem.

For more details, refer to Section 3.2 in [49].

Proof. Suppose the boolean function φ which takes two vectors β and x as inputs, in which

β = (β1, · · · , βb) is a vector with b coordinates each βi ∈ [n]c and x = (x1, · · · , xq) is a vector

with q < b coordinates each xi ∈ [n]c. Here we assume β is an index in the vector a defined

over the input stream and x the update vector defined by the current stream element(i.e.

specifies which indices in a must be updated). Define φ(β, x) = 1 ↔ βi = xi, 1 ≤ ∀i ≤ q

with O(log n)-bits inputs (since we can assume b as a small constant). Let define the length

of the shortest de Morgan formula for function φ as fsize(φ). Obviously, the function φ is

essentially the equality check on O(logn)-bits input and we know that the addition and

multiplication of s-bits inputs can be computed by Boolean circuits in depth log s, resulting

in Boolean formula of size poly(s). Thus, fsize(φ) = polylog n. Considering the boolean

formula for φ, we associate a polynomial G̃ with each gate G of this formula, with input

variables W1, · · · , Wb log n and X1, · · · , Xq log n, as follows:

G = βi ⇒ G̃ = Wi

G = xi ⇒ G̃ = Xi

G = ¬G1 ⇒ G̃ = −G̃1

G = G1 ∧ G2 ⇒ G̃ = G̃1G̃2

G = G1 ∨ G2 ⇒ G̃ = 1− (1− G̃1(1− G̃2))
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Let φ̃(W1, · · · , Wb log n, X1, · · · , Xq log n) to be the polynomial associated with the output

gate, which is in fact the standard arithmetization of the formula. We consider φ̃ as a

polynomial defined over F[W1, · · · , Wb log n, X1, · · · , Xq log n] for a large enough finite field

F. By construction, φ̃ has total degree at most fsize(φ) and agree with φ on every Boolean

input. Define the polynomial Ψ(W1, · · · , Wb log n) = Σi=1φ̃((W1, · · · , Wb log n), x(i)), in which

x(i) is the update vector defined by the element i in the stream. Now we can observe that

the vector a defined by the stream updates, can be interpreted as follows:

a[β] = Σi=1φ(β, x(i)) = Σi=1φ̃(β, x(i)) = Ψ(β)

It follows that Ψ is the extension of a to F with degree equal to fsize(φ) and can be defined

implicitly by input stream. Also, the verifier can easily evaluate Ψ(r) for some random point

r ∈ Fb log n, as similar to polynomial evaluation in Sum-Check protocol. Considering that

fsize(φ) = polylog n, the complexity result of update time follows. Note that this approach

adds an extra space cost fsize(φ) =poly log n for the size of Boolean formula, but in general

this does not affect the total space cost of the protocols discussed in this chapter.

5.12 Revisit the Graph Protocols with Constant-Rounds
Communication

Note that sum-check is used as the core of all the graph verification protocols. In this

section, we study the possibility of reducing the round-complexity of these protocols to

constant-rounds using the results stated in Section 4.3. In all the (log n)-rounds verification

protocols which we presented before the space cost is log2 n bits and with changing the

protocol to constant γ-rounds, we improve the space to O(log n) bits. On the other hand,

in most of these protocols the communication cost is dominated by the size of certificate,

which is generally bounded by O(n log n). Thus, while using constant-round sum-check

as the core of verification protocols will increase the related communication cost by a n
1
γ

factor, but that will not change the total communication cost of SIPs for matching and TSP,

in which the communication cost is dominated by the certificate size.



CHAPTER 6

STREAMING VERIFICATION ALGORITHMS

FOR DATA ANALYSIS

In this chapter, we initiate a study of streaming interactive protocols for problems in

data analysis.

6.1 Technical Overview
The main components of our technical contribution are as follows.

(i) We give an improved result for rectangular matrix multiplication. We use this in a new

annotated data streaming protocol for verifying eigenvectors of a symmetric matrix presented

as a stream of updates to entries. Verifying the eigenstructure of a matrix is an important

subroutine in many matrix analysis problems, and this result is likely to be of independent

interest (Section 6.3). Concretely, our protocol can verify k eigenvectors of an n× n matrix,

with communication cost k2 · h and space cost v, for any desired pair of positive integers

h, v satisfying h · v ≥ n. This improves on the communication cost of prior work by a factor

of k. In our annotated data streaming protocol for matrix multiplication, we first observe

that multiplying a k× n matrix A with an n× k′ matrix B is equivalent to performing k′

matrix-vector multiplications, one for each column of B. One could naively verify these

products by simply executing k′ independent instances of the matrix-vector verification

protocol from prior work [64]. We show how to improve on this naive solution by exploiting

the fact that the k′ matrix-vector multiplications are not independent, because the matrix A

is held fixed in all of them. This leads to an improved subroutine for rectangular matrix

multiplication that in turn allows us to verify eigenvectors of a matrix.

(ii) We give 3-message SIPs that can verify a minimum enclosing ball and the width of

a point set exactly with polylogarithmic space and communication costs. Note that it is

known that the MEB cannot be approximated to better than a
√

2 factor by a streaming

algorithm with polylogarithmic space: this provides an example where a SIP is strictly
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exponentially more efficient than any streaming algorithm (other examples were known

previously). Separately, we show that the hardness result for the MEB problem holds even

when the points are chosen from a discrete cube: this is important because our interactive

proofs require discrete input (Section 6.4). (iii) We also show a simple 3-message protocol for

verifying a 2-approximation to the k-center in a metric space, via simple adaptation of the

Gonzalez 2-approximation for k-center (Section 6.4). (iv) We present polylogarithmic round

protocols with polylogarithmic communication and verifier space for verifying optimal

k-centers and k-slabs in Euclidean space (note that computing the MEB and width of a point

set correspond to the 1-center and 1-slab problems, respectively). In order to do this, we

use a prefix sum-check protocol that might be of independent interest (Section 6.5). For the

k-center and k-slab problems, our verification protocols consist of checking that the claimed

solution is both feasible and optimal. We show how to verify feasibility by reducing to a

carefully constructed instance of the Range Counting problem; we then apply a 2-message

SIP for Range Counting due to prior work [48]. Optimality, on the other hand, is harder

to verify, because the prover must convince the verifier that no other feasible solution has

lower cost. When k = 1, we show that there is a sparse witness of optimality, which the

verifier can check directly using 3 messages, by reduction to Range Counting. For general

k, we cannot show that there is a sparse witness of optimality. However, we observe that

the “for-all” constraint on feasible solutions can be expressed as a sum over all solutions

of lower cost. Choosing a cost-based ordering of solutions converts this into a partial sum

over a prefix of the ordered set of solutions. Our main tool is a way to verify such a sum

in general, using polylogarithmically many messages, even when the relevant prefix is only

known after the stream has passed.

6.2 Preliminaries
The streaming verification protocol proposed in this chapter also follow the two models

SIPs and annotated data streams which were introduced in Chapter 4 and we skip the

details here.
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6.2.1 Input Model

All of the protocols we consider can handle inputs specified in a general data stream

form. Each element of the stream is a tuple (i, δ), where each i lies in a data universe U of

size u, and δ ∈ {+1,−1}. Negative values of δ model deletions. The data stream implicitly

defines a frequency vector a = (a1, . . . , au), where ai is the sum of all δ values associated

with i in the stream.

6.2.2 Protocol Costs

As stated in Chapter 4, there are two principal costs associated with a SIP: the space

used by with the verifier, and the total amount of communication, expressed as the number

of bits exchanged between V and P. Our goal will be to ensure that V uses sublinear space

and that the protocol uses sublinear communication, because in settings involving massive

data, it is essential that V and P avoiding shipping around the entire input. Of course, we

will also desire protocols in which V and P can run quickly. In most of our protocols, both V

and P can run in time quasilinear in the size of the input stream.

6.2.3 Discretization

The protocols we employ make extensive use of finite field arithmetic. In order to

apply these techniques to geometric problems, we must assume that all input points are

drawn from the [0, 1]d cube, discretized to form a grid [m]d. That is, we assume that

the data universe for these problems is U = [m]d. Thus all points have coordinates of

the form j/m, j ∈ Z. It also follows that the distance D(x, y), between any two points

x, y ∈ [m]d is a multiple of ε ≥ 1/md. Importantly, the costs of our protocols will depend

only logarithmically on m, enabling the grid to be exceedingly fine while still yielding

tractable costs.

6.3 Verifying Matrix Eigenstructure
Many algorithms in data analysis (principal component analysis and multidimensional

scaling, to mention two of the most prominent) require computation of the eigenpairs

(eigenvalues and eigenvectors) of a large data matrix. Eigenvalues of a streamed n× n

matrix can be computed approximately without a prover [19], but there are no streaming

algorithms to compute the eigenvectors of a matrix, mainly because storing these can be
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costly.

Verifying the eigenstructure of a symmetric matrix A is more difficult than merely

verifying that a claimed (λ, v) is an eigenpair. This is because the prover must convince the

verifier not only that each (λi, vi) satisfies Av = λv, but that the collection of eigenvectors

together are orthogonal. For example, the prover could supply repeated copies of the same

eigenvectors. Or if there is a repeated eigenvalue, then it could generate repeated vectors

in the linear span of the eigenvectors of this eigenvalue and claim them as independent

eigenvectors.

The key here is orthogonality: the prover must prove that VV> = D where V is the

collection of eigenvectors and D is some diagonal matrix. Note however that this matrix

multiplication check is rectangular: if we wish to verify that a collection of k eigenvectors

are orthogonal, we must multiply a k× n matrix V by an n× k matrix V>, the result being

a k× k matrix. We present an annotation protocol called MatrixMultiplication to verify such a

rectangular matrix multiplication.

Theorem 6.1. Let A be a k× n matrix and B an n× k′ matrix, both with entries in a finite field F

of size 6n3 ≤ |F| ≤ 6n4. Let (h, v) be any pair of positive integers such that h · v ≥ n. There is a

annotated data streaming protocol for computing the product matrix C = A · B with communication

cost O(k · k′ · h · log n) bits and space cost O(v · log n) bits.

In particular, by setting h = max
(

1,
√

n/(k · k′)
)

, and v = min
(

n,
√

k · k′ · n
)

in

Theorem 6.1, one obtains a protocol in which the communication cost is as follows:

O
(

max
(

k · k′,
√

k · k′ · n
)
· log n

)
and the space cost is O

(
min

(
n,
√

k · k′ · n
)
· log n

)
. With this setting of parameters, both

the communication and space costs are sublinear in the input size (k + k′) · n · log n if either

k or k′ is in o(n). In contrast, when both k, k′ are in Ω(n), the amount of communication

required just to specify the answer C is linear in the input size. Thus, whenever it is even

conceivable to have communication and space costs both be sublinear in the input size, our

matrix multiplication protocol achieves it. Most importantly, Theorem 6.1 is strictly better

than doing repeated matrix-vector verifications [64] by a factor of k in the communication

cost.
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Before proving Theorem 6.1, we first show how to use Theorem 6.1 to verify that a

claimed set of k eigenvalues and eigenvectors are indeed eigenpairs of a given symmetric

matrix A.

Problem 6.2 (Verifying eigenpairs). Let A be a real symmetric matrix that is updated by streaming

entries of the form (i, j, δij) which encode the update Aij = Aij + δij. The prover returns a set of k

pairs (λi, vi) and claims that these are eigenpairs of A.

6.3.1 The Eigenpair Verification Protocol

The eigenpair verification protocol invokes MatrixMultiplication twice. In the first invo-

cation, MatrixMultiplication is used to simultaneously verify that all claimed eigenpairs are

indeed eigenpairs (i.e., to check that A ·V = D ·V, where V is the matrix whose ith column

equals vi, and D is some diagonal matrix). In the second invocation, MatrixMultiplication is

used to check that the claimed eigenvectors are orthogonal, by verifying that V>V = D′ for

some diagonal matrix D′ provided by the prover.

Theorem 6.3. Let A be a symmetric n × n matrix over a field F of size 6n3 ≤ |F| ≤ 6n4, let

k ≤ rank(A) be an integer, and let h, v be positive integers satisfying h · v ≥ n. Then there

is an annotated data streaming protocol for verifying a collection of k eigenpairs that has total

communication cost O(k2 · h log n) and requires verifier space O(v · log n), where α > 0.

Just as with Theorem 6.1 itself, if k = o(n), then it is possible to choose h, v in Theorem

6.3 to ensure that both the communication and space costs are sublinear in the input size.

Proof of Theorem 6.1. Our protocol builds on the optimal annotations protocols for inner

product and matrix-vector multiplication from [47] and [64]. In order to compute the inner

product between two vectors a, b ∈ Rn, the verifier treats the n entries of a and b as a grid

[h]× [v], and considers the unique bivariate polynomials ã(X, Y) and b̃(X, Y) over F of

degree at most h in X and v in Y satisfying ã(x, y) = a(x, y) and b̃(x, y) = b(x, y) for all

(x, y) ∈ [h]× [v]. The verifier picks a random r ∈ F, and evaluates ã(r, y) and b̃(r, y) for

all y ∈ [v]. As observed in [47], the verifier can compute ã(r, y) for any y ∈ [v] in space

O(log |F|), with a single streaming pass over the input. Hence, the verifier’s total space

usage is O(v · log |F|). The prover then sends a univariate polynomial s(X) of degree at

most h, claimed to equal g(X) = ∑y∈[v] ã(X, y) · b̃(X, y). The verifier accepts ∑x∈[h] s(X) as
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the correct answer if and only if s(r) = ∑y∈[v] ã(r, y) · b̃(r, y).

Let us denote the rows of A by a1, . . . , ak and the columns of B by b1, . . . , bk. Notice that

each entry Cij of C is the inner product of ai and bj.

6.3.2 The Prover’s Computation

In our matrix multiplication protocol, the prover simply runs the above inner product

protocol k · k′ times, one for each entry Cij of C. This requires sending k · k′ polynomials,

sij(X) : (i, j) ∈ [k]× [k′], each of degree at most h. Hence, the total communication cost is

O(k · k′ · h · log n).

6.3.3 The Verifier’s Computation while Observing Entries of A

The verifier does not keep separate state for each row of A as she would if she were

to running a separate inner product protocol for each row of A. Rather the verifier picks

a random α in the relevant finite field, for each y ∈ [v], the verifier computes a fingerprint

of the values {ãi(r, y)}, as i ranges from 1 to k, using the random value α to define the

fingerprinting function. That is, the verifier picks a random α and computes, for each y ∈ [v],

the quantity sy := ∑i ãi(r, y)αi. Using standard techniques [47], the verifier can compute

each sy with a single streaming pass over the entries of A, in O(log n) space. Hence, the

verifier can compute all of the sy values in total space O(v log n).

6.3.4 The Verifier’s Computation while Observing Entries of B

As the verifier observes the vectors b1, . . . , bk′ , she computes a fingerprint for each y ∈ [v]

of the b̃(r, y) values. But in this fingerprint she replaces the random value α with αk. More

specifically, for each y ∈ [v], the verifier computes the quantity s′y := ∑j∈k′ b̃j(r, y)αk·j. The

reason that we define s′y in this way is because it ensures that sy · s′y = ∑(i,j)∈[k]×[k′] ãi(r, y) ·
b̃j(r, y)αk·j+i, which is just a fingerprint of the set of values {ãi(r, y) · b̃j(r, y)} as (i, j) ranges

over [k]× [k′].

To check that all sij polynomials are as claimed, the verifier does the following. As the

verifier reads the sij polynomials, she computes a fingerprint of the si,j(r) values, i.e., the

verifier computes ∑i,j si,j(r) · αj·k+i. The verifier checks whether this equals ∑y(sy · s′y). If so,

the verifier is convinced that Aij = ∑x∈[h] sij(x) for all (i, j) ∈ [k]× [k′]. If not, the verifier

rejects. The protocol is complete and has is sound with constant error:
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6.3.5 Proof of Completeness

If the si,j polynomials are as claimed, then:

∑
i,j∈[k]×[k′]

gi,j(r) · αj·k+i = ∑
i,j∈[k]×[k′]

∑
y∈[v]

ãi(r, y) · b̃j(r, y)αj·k+i

= ∑
y∈[v]

∑
i,j∈[k]×[k′]

ãi(r, y) · b̃j(r, y)αj·k+i = ∑
y∈[v]

sy · s′y.

6.3.6 Proof of Soundness

If any of the si,j polynomials are not as claimed (i.e., if sij(X) 6= gij(X) as formal

polynomials), then with probability at least 1− h/|F| over the random choice of r ∈ F, it will

hold that si,j(r) 6= gij(r). In this event the verifier will wind up comparing the fingerprints

of two different vectors, namely the k · k′-dimensional vector whose (i, j)’th entry is si,j(r),

and the k · k′-dimensional vector vector whose (i, j)’th entry is ∑y∈[v] ãi(r, y) ∗ b̃j(r, y).

These fingerprints will disagree with probability at least 1− k · k′/|F|. Hence, the total

probability that the prover convinces the verifier to accept is at most h/|F|+ k · k′/|F|. If

|F| ≥ 100 · h · k · k′, the soundness error will be bounded by 1/50.

6.3.7 On V’s and P’s Runtimes

Using Fast Fourier Transform techniques (cf. [63, Section 2]), the prover the protocol of

Theorem 6.1 can be made to run in O(k · k′ · n log n) total time, assuming the total number

of updates to the input matrices A, B is O(k · k′ · n log n). The verifier can be made to run in

time O(log n) per stream update.

6.4 Solving Geometric Problems in a Few Rounds
In this section, we give 3-message SIPs of polylogarithmic cost for the problems of

finding a Minimum Enclosing Ball, and for computing the width of a point set. The key

to obtaining constant-round protocols for these problems lies in identifying a a sparse

dual witness that proves optimality (or near-optimality) of the claimed (primal) solution.

The verifier is then convinced of both the feasibility and optimality of the claimed primal

solution, so long as V can confirm that the primal and dual solutions are both feasible. We

show how the verifier can perform both feasibility checks via a careful reduction to an

instance of the RangeCount problem (for which an O(1)-round SIP of logarithmic cost was

given in prior work; cf. Theorem 4.3).
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6.4.1 Minimum Enclosing Balls

Consider the Euclidean k-center problem with k = 1, otherwise known as the MEB:

given a set of n points P in Rd and distance function D, find a ball B∗ of minimum radius

that encloses all of them. As stated in Section 6.2, we assume a grid structure U = [m]d

over the space of the possible points, where d is the dimensionality of the data and for all

x, y ∈ [m]d, D(x, y) ≤ 1 is an integer multiple of a small parameter ε ≥ 1
md .

The MEB presents an interesting contrast between our model and the classical streaming

model. It is known that no streaming algorithm that uses polynomial (in d) space can

approximate the MEB of a set of points to better than a factor of
√

2 [7]. However, we will

show here that the MEB can be computed to within an ε additive error by a 3-message SIP

using space and communication that grow just logarithmically in m and 1/ε (and linearly

in the dimension d of the input point set). In contrast, the best streaming multiplicative

(1 + ε)−approximation for the MEB uses (1/ε)d space.

6.4.2 Protocol

At the start of the protocol, the prover first sends the (claimed) minimum enclosing ball

B for the input point set. Our protocols reduces checking feasibility and optimality of B to

carefully constructed instances of the RangeCount problem.

6.4.3 Checking Feasibility

We consider a new range space, in which the range set B is defined to consist of all balls

with radius jε : j ∈ {0, 1, . . . , md} and with centers in [m]d. Notice that |B| = O(m2d). Using

the protocol for RangeCount (Theorem 4.3), we can verify that the claimed solution B does

in fact cover all points (because this will hold if and only if the range count of B equals the

cardinality of the input point set |P| = n).

6.4.4 Checking Optimality

We will make use of the following well known fact about minimal enclosing balls first

proved by Goel, Indyk and Varadarajan [73, 84]:

Lemma 6.1. Let B∗ be the minimal enclosing ball of a set of points P in Rd. Then there exist at

most d + 2 points of P that lie on the boundary ∂B∗ of B∗ and contain the center of B∗ in their
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convex hull.

Sketch. This certificate of optimality can be constructed by writing the linear program for

the MEB and considering its dual. Complementary slackness gives us the desired sparse

witness.

6.4.5 Putting it All Together

The complete 3-message MEB protocol works as follows.

1. V processes the data stream for RangeCount (with respect to B and P).

2. P computes the MEB B∗ of P, then rounds the center c of the MEB to the nearest grid

vertex. Denote this vertex by c∗. P sends c∗ to V, as well as the radius r of B∗, and a

subset of points T ∈ P in which MEB(T) = MEB(P). (Note that based on Lemma 6.1,

|T| ≤ d + 2 suffices).

3. V first computes the center c of the MEB for the subset T and checks if c∗ is actually

the rounded value of c. Then V runs a RangeCount protocol with P to verify that the

ball of radius r + ε and center c∗ contains all of the input points. It then runs multiple

copies of PointQuery to verify that the subset |T| ≤ d + 2 points provided by P are

actually in the input set P.

Theorem 6.4. There exists a 3-message SIP for the Minimum Enclosing Ball (MEB) problem with

communication and space cost bounded by O(d2 log2 m).

6.4.6 On V’s and P’s Runtimes

Assuming the distance function D under which the instance of MEB is defined sat-

isfies mild “efficient-computability” properties, both V can be made to run in total time

polylog(md) per stream update in the protocol of Theorem 6.4. Specifically, it is enough

that for any point x ∈ P, there is a De-Morgan formula of size polylog(md) that takes as

input the binary representation of a ball B ∈ B and outputs 1 if and only if x ∈ B. Under

the same assumption on D, the prover P can be made to run in time T + n · polylog(md),

where T is the time required to find the MEB of the input point set P. For details, we direct

the interested reader to the full description of the PointQuery protocol of [48].
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6.4.7 Streaming Lower Bounds on the Grid

A priori, it may be possible that our assumption that the input points all lie on a grid

[m]d makes the MEB problem easy, in the sense that it may be solvable by a small-space

streaming without access to an untrusted prover. Here we show that this is not the case, and

that the standard lower bound for streaming MEB due to Agarwal and Sharathkumar [7]

can be modified to work even if the points lie on a grid. The key lemma in Agarwal and

Sharathkumar’s lower bound is a construction of a collection of almost orthogonal vectors

that are centrally symmetric. Let Sd−1 denote the unit sphere in Rd.

Lemma 6.2 (Agarwal and Sharathkumar [7]). There is a centrally symmetric point set K ⊂ Sd−1

of size Ω(exp(d
1
3 )) such that for any pair of distinct points p, q ∈ K if p 6= −q, then

√
2(1− 2

d
1
3
) ≤ ‖p− q‖ ≤

√
2(1 +

2

d
1
3
) (6.1)

This point set is then used by an adversary to “defeat” any algorithm claiming a
√

2− δ

approximation. Note that the “almost orthogonal” property follows from the observation

that for unit vectors p, q, ‖p− q‖2 = 2− 2〈p, q〉 and therefore the condition of the lemma

above implies that 〈p, q〉 ≤ 4

d
1
3

It turns out that this “almost-orthogonal” property can be achieved by vectors with

integer coordinates. The proof is in the same spirit of the proofs that sign matrices can

be used in the Johnson-Lindenstrauss lemma, and follows from an observation by Ryan

O’Donnell [136]. We recreate the proof here for completeness.

Lemma 6.3 (Bernstein’s inequality). Let X1, . . . , Xd be independent Bernoulli variables taking

values in {+1,−1} with equal probability. Then

Pr[|1
d ∑

i
Xi| ≥ ε] ≤ 2 exp

(
−dε2/ (2 (1 + ε/3))

)
.

Lemma 6.4. Let t = exp( ε2d
4 ) . Let u1, . . . , ut be random vectors in which each entry is set to

1/
√

d or −1/
√

d, with probability 1
2 each. There is a positive probability of |〈ui, uj〉| ≤ ε holding

for all i 6= j.

Proof. We define variables xij as the Bernoulli variables corresponding to Lemma 6.4, where

i ≤ k, j ≤ d. That is, define the xij variables such that:

ui =
1√
d
(xi1, . . . , xid).
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We want to analyze the behavior of 〈ui, uj〉. Set Yij
k = xikxjk and write 〈ui, uj〉 as 1

d ∑k Yij
k .

Note that for each i, j, and k, Yij
k is a Bernoulli variable with range {−1,+1}, and for any

fixed i, j, the variables Yij
k are independent. Therefore, we can apply Bernstein’s inequality

to the collection {Yij
k } for a fixed i, j.

For simplicity, assume that ε ≤ 1. Then Bernstein’s inequality implies that

Pr[|〈ui, uj〉| ≥ ε] ≤ 2 exp(−dε2/4).

It follows that the probability that |〈ui, uj〉| ≥ ε is at most 2 exp(−dε2/4). Now if we set

t = exp( dε2

4 ), then this probability value equals 2
t2 by choice of t and hence by taking a union

bound over at most (t
2) ≤ t2

2 pairs of (i, j) we conclude that there is a positive probability of

|〈ui, uj〉] ≤ ε holding for all i 6= j.

6.4.8 Verifying the Width of a Point Set

The approach underlying the 3-message SIP for the MEB problem of Section 6.4.1 can be

applied to another shape fitting problem that has been studied extensively in computational

geometry. We define a slab as the region between a pair of parallel hyperplanes, with the

width of the slab being the distance between the two hyperplanes (with respect to a fixed

distance function D). The width of a point set is the minimum width of a slab that covers

the entire set. Like the MEB problem, the width of a point set can be approximated by a

streaming algorithm using O(1/εO(d)) space [50], without access to a prove. Unlike the

MEB, however, there are no known lower bounds for computing the width of a stream of

points.

We describe an efficient constant-round SIP to exactly compute the width of a point set.

As before, we study the problem in the discrete setting, i.e., we assume that the data stream

elements are a subset of points over a grid structure U = [m]d. LetR denote the set of all

the ranges defined by single slab (i.e., each range consists of the area between some two

parallel hyperplanes).

6.4.9 Certificate of Optimality

Given a slab S that is claimed to be a minimal-width slab covering the input point set P,

the following lemma (akin to Lemma 6.1) guarantees the existence of a sparse witness of

optimality for S.
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Lemma 6.5. Given the input point P in d-dimension, every optimal-width single slab S consisting

of the area between parallel hyperplanes h1, h2 covering P can be described by a set of k + k′ = d + 1

points from input point set P, in which k points lie on the hyperplane h1 and k′ points lie on the

hyperplane h2.

Proof. We express S as an optimal solution to a certain linear program. We then infer the

existence of the claimed witness of optimality for S via strong linear programming duality

and complementary slackness.

Assume the two hyperplanes specifying S are of the form h1 : 〈w, x〉 = 1 and h2 :

〈w, x〉 = `, where w ∈ Rd. Then the pair (w, `) corresponds to an optimal solution of the

following linear program:

min `

s.t. ∀i ∈ {1, . . . , |P|} 〈w, xi〉 ≥ 1

∀i ∈ {1, . . . , |P|} 〈w, xi〉 ≤ `

We write the LP in the standard form:

max − `

s.t. ∀i ∈ {1, . . . , |P|} (−xT
i ) ·w ≥ 1

∀i ∈ {1, . . . , |P|} xT
i ·w− ` ≤ 0

Let xij denote the jth entry of input point xi ∈ [m]d. Standard manipulations reveal the

dual.

min
|P|
∑
i=1

yi

s.t. ∀j ∈ {1, . . . , d}
|P|
∑
i=1

(yi − zi)xij = 0.

|P|
∑
i=1

zi = 1.

Let y = (y1, . . . , y|P|) and z = (z1, . . . , z|P|) denote an optimal solution to the above dual.

Claim 6.5. For any i, yi and zi cannot both be nonzero.

Proof. By complementary slackness, yi and zi are both nonzero only if both of the corre-

sponding primal inequalities are tight, which can only hold if the width is zero.
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Claim 6.6. In total, the number of nonzero entries in y and z must be at least d + 1.

Proof. Fix any j ∈ {1, . . . , d} and consider the constraint

|P|
∑
i=1

yixij =
|P|
∑
i=1

zixij (6.2)

from the dual. Note that by Claim 1, all the xij’s with a nonzero coefficient yi in the left

hand side of Equation (6.2) are distinct from the xij’s with a nonzero coefficient zi on the

right hand side of Equation (6.2). Suppose by way of contradiction that there are at most

d nonzero entries in total in y and z. Fix one such nonzero entry, say, zk. We can rewrite

Equation (6.2) as:

zkxkj =
|P|
∑
i=1

yixij −∑
i 6=k

zixij

and by dividing by zk and relabeling the coefficients, we get:

xkj =
|P|
∑
i=1

αixij

for some coefficients α1, . . . , α|P| ∈ R, where at most d− 1 of the αi’s are nonzero. But this

says that there exist d points not in general position, which is a contradiction. Therefore

Claim 2 is true.

This completes the proof of Lemma 6.5.

Now using Lemma 6.5, we can give the following upper bound for the size of the range

setR, in the one-slab problem on U = [m]d.

Lemma 6.6. Given a grid U = [m]d, the size of the range setR consisting of all slabs is O(md2+d).

Proof. Based on Lemma 6.5, each slab on the grid [m]d can be determined by two parallel

hyperplanes including d + 1 points. Thus we have:

|R| =
d+1

∑
k=1

(|U |
k

)( |U |
d + 1− k

)
≤

d+1

∑
k=1

(
md

k

)(
md

d + 1− k

)
=

(
2md

d + 1

)
= O(md2+d)



111

6.4.10 The Protocol

The protocol works as follows.

1. V processes the data stream as if for a RangeCount query with respect toR, defined as

the set of single slabs including k + k′ = d + 1 points.

2. P returns a candidate slab S consisting of two parallel hyperplanes h1, h2, claimed as

the slab with minimum width which covers all the points P in input data stream. P

also sends a set T1 of k points and a set T2 of k′ points claimed to satisfy the properties

of Lemma 6.5.

3. V verifies that if k + k′ = d + 1, checks that all points in T1 lie on h1 and all points in

T2 lie on h2, and runs the PointQuery protocol d + 1 times to check that all points in

T1 ∪ T2 actually appeared in the input set P.

4. V initiates a RangeCount query for the range corresponding to the slab S, and verifies

that the answer is n = |P|, i.e., that S covers all the input points.

Perfect completeness of the protocol is immediate from Lemma 6.5 and the completeness of

the PointQuery and RangeCount protocols. The soundness error of the protocol is at most

(d + 2) · εs, where εs ≤ 1
3(d+2) is an upper bound on the soundness errors of the PointQuery

and RangeCount protocols. To see this, note that if T1 and T2 are as claimed, then there is

no slab of width less than that of S covering the input points. And the probability that the

verifier accepts when T1 and T2 are not as claimed is bounded by (d + 2) · εs, via a union

bound over all (d + 1) invocations of the PointQuery protocol and the single invocation of

the RangeCount protocol. Theorem 6.7 follows.

Theorem 6.7. Given a stream of n input points from U = [m]k, there is a three-message SIP for

verifying the width of the input with space and communication cost bounded by O(d4 log2 m).

In the protocol of Theorem 6.7, the prover and verifier can be made to satisfy the same

runtimes bounds as in the MEB protocol of Section 6.4.1, assuming the distinct function D

satisfies the same “efficient computability” condition discussed there.

6.4.11 Verifying Approximate Metric k-Centers

Using the same ideas as for the MEB, we can verify a 2-approximation to the metric

k-center problem via a three message SIP with polylogarithmic space and communication
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costs. At a high level, the SIP works as follows. Given a claimed solution, we reduce

checking feasibility of the solution to a carefully constructed instance of the RangeCount

problem, where the range space is defined as the set of all unions of k “balls” of radius

r in the metric space. To verify that the solution is 2-approximate, we use the witness

constructed by Gonzalez’ [90] approximation algorithm: namely, k + 1 points that are at

least distance r apart (where r is the claimed 2-approximate radius). This sparse witness

can be verified using the PointQuery protocol. Details follow.

6.4.12 Formalization of the Metric k-Center Problem

A k-center clustering of a set of points p1, . . . , pn in a metric space (X, d) is a set of k

centers C = {c1, . . . ck}. The cost of such a clustering is

cost(C) = max
i

min
j

d(pi, cj).

Then we have the following definition.

Definition 6.8. Let (X, d) be a metric space. Let p1, p2, . . . , pn, k be a stream of points from (X, d)

followed by parameter k. An SIP computing a 2-approximation for the metric k-center problem with

completeness error εc and soundness error εs has the following form. The prover begins the SIP by

claiming that there exists a k-center clustering of cost r∗.

• If this claim is true, the verifier must accept with probability at least 1− εc.

• If there is no k-center clustering of cost at most r∗/2, the verifier must reject with probability

at least 1− εs.

It is easy to provide a protocol that works deterministically if the verifier is not required

to process the input in a streaming manner. This is the standard 2-approximation algorithm

of Gonzalez: the prover provides the following two proofs:

1. Proof of Feasibility: A set of centers c1, . . . , ck satisfying maxi minj d(pi, cj) ≤ r∗ and

2. Proof of Approximate Optimality: A set of k+ 1 points u1, u2, . . . , uk+1 from the stream

with the promise that mini,j d(ui, uj) ≥ r∗.

This guarantees a 2-approximation by the standard argument relying on the triangle

inequality [90]. The verifier can easily check that the relevant conditions hold.
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6.4.13 The SIP

Let Bd,r(x) = {y ∈ X | d(x, y) ≤ r} be a ball of radius r with center x in the metric space.

We define a range spaceR consisting of all unions of k balls of radius r for all values of r:

R = {∪z∈ZBd,r(z) | Z ⊂ X, |Z| = k, ∃x, y ∈ X, d(x, y) = r}

Note that |R| = O(mk+2), where m is the size of metric space, i.e. |X| = m.

The protocol works as follows:

1. V processes the data stream as if for a RangeCount query using range spaceR, as well

as for k + 1 parallel PointQuery queries.

2. P returns a candidate clustering c1, c2, . . . , ck with the claimed cost r∗, as well as k + 1

points u1, . . . , uk+1 from the stream witnessing (approximate) optimality.

3. V initiates a RangeCount query for the range ∪k
i=1Bd,r∗(ci) and verifies that the answer

is n = |P|.
4. V verifies that the distance between all distinct pairs of points (ui, uj) is at least r∗,

and invokes (k + 1) PointQuery queries to ensure that each ui appeared in the input

stream.

The correctness of the protocol follows from the correctness of Gonzalez’s algorithm and

Theorem 4.3. Note that approximating metric k-center to within a factor of 2− ε is NP-hard

[76]. The above protocol is a streaming variant of an MA protocol. Under the widely-

believed assumption that MA = NP, there is no 2− ε approximation for metric k-center

with a polynomial-time verifier, regardless of whether the verifier processes the input in a

streaming manner.

Theorem 6.9. Let (X, d) be a metric space in which |X| = m. There is a streaming interactive

protocol for verifying k-center clustering with space and communication complexity bounded by

O(k + log(|R|) log(|R|n)), in which |R| ≤ mk+2.

As with our protocols for the MEB problem and computing the width of a point set,

V and P can be made to run in quasilinear time if the metric d satisfies mild efficient-

computability properties.
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6.5 SIPs for General Clustering Problems
In this section, we give SIPs for two very general clustering problems: the k-center

problem, and the k-slab problem. In the k-center problem, given a set of n points in [m]d,

the goal is to find k centers so as to minimize the maximum point-center distance. In the

k-slab problem, the goal is instead to find k hyperplanes so as to minimize the maximum

point-hyperplane distance. We gave a 3-message SIP for both problems in the special

case where k = 1 in Section 6.4, as these cases are equivalent to the MEB and 1-slab

problems. In order to handle the much harder case where k ≥ 2 while keeping the costs

polylogorithmic, we have to exploit sum-check techniques (cf. Section 4.2.6 and 4.3), which

yields polylogarithmic-round SIPs.

6.5.1 k-Slabs

We first consider the k-slab problem. Even when k = 2, this problem appears to be

difficult to solve efficiently without access to a prover: in fact, it was the first problem

that does not admit a core set [97] (a small witness that yields a good approximation).

The problem is therefore particularly ripe for outsourcing, as a computationally bounded

algorithm is unlikely to solve it on worst case inputs, without access to a prover.

In the k-slab problem, it is convenient to think of each “cluster” as described not by a

single hyperplane, but as the area between two parallel hyperplanes that contain all the

points in that cluster (this was the viewpoint we took in the 1-slab protocol of Section

6.4). The width of this cluster is the distance between the two hyperplanes. We can now

equivalently think of the k-slab objective as minimizing the maximum width of a cluster,

and we will refer to this quantity also as the width of the k-slab. For any k-slab σ ∈ <, let

w(σ) denote this width.

6.5.2 Defining the Relevant Range Space

Each slab can be described by d + 1 points (that define the hyperplane) in U = [m]d

and a width parameter. A k-slab is a collection of k of such slabs. Let < be the range space

consisting set of all k-slabs. This range space has size |<| = mkd2+2kd. We will assume a

canonical ordering of the ranges σ1, σ2, . . . , in increasing order of width (with an arbitrary

ordering among ranges having the same width), as well as an effective enumeration
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procedure that given an index i returns the ith range in the canonical order. We will

also assume the existence of a mapping functionM : w → {0, . . . , |<| − 1} which maps

w to the smallest index i such that w(σi) = w. Notice that the verifier can compute this

mapping function by explicit enumeration, using only enough space to store one range.

This explicit enumeration requires extremely high runtime of up to |<|. However, it is

possible to reduce the runtime of V to polylog(|<|) per stream update using the techniques

from [48] which we also stated in previous section.

6.5.3 Stream Observation Phase of the SIP

Let P = (p1, p2, . . . , pn) be the stream of input points. As the verifier sees the data

points, it generates a derived stream τ′ as follows. For each point pi in the actual input

stream τ, V inserts into τ′ all k-slabs σ ∈ < which contain the point pi. Notice that τ′ is a

deterministic function of τ, and hence the prover P, who sees τ, can also materialize τ′, with

no communication from V to P required to specify τ′. While the construction of this derived

stream does not affect the space and communication costs of the protocol, it increases the

verifier and prover running time dramatically. This can be avoided at the cost of a slight

increase in communication. The details of this trick are described in [48]: the main idea

is to observe that the frequency vector fa is not arbitrary, since it tracks membership in

ranges. This allows us to modify the extension polynomial used to report entries of the

vector without needing to write down the explicit derived stream. By design, is that the

frequency fσ of the range σ in this derived stream τ′ is the number of points that σ contains:

fσ = |σ ∩ P|.

6.5.4 Proving Feasibility

After the stream τ has passed, the prover supplies a candidate k-slab σ∗ and claims that

this has optimal width w∗ = w(σ∗). By applying the RangeCount protocol from Theorem

4.3 to the derived stream τ′, the verifier can check that f ∗σ = n and is therefore feasible. This

feasibility check requires only 3 messages. It is the optimality check below that requires a

super constant number of rounds.
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6.5.5 Proving Optimality

The verifier must now check if the optimal width is w. Given a subset S ⊆ < of

k-slabs, let IS : {0, 1}log |<| → {0, 1} denote the indicator function that evaluates to 1 on

the binary representation a range σ of a k-slab if σ ∈ S, and evaluates to 0 otherwise. Let

S := {σ : w(σ) < w∗}, and let T = {σ : fσ = n}. Let F = ∑σ∈< IS(σ)IT(σ). Then the prover

has supplied an optimal range σ∗ if and only if F = 0.

Let F be a field of prime order satisfying 6n2 ≤ |F| ≤ 6n3. Let ÎS : Flog |<| → F be the

multilinear extension of IS, and let ÎT be the multilinear extension of IT. That is, ÎS is the

unique multilinear polynomial over F satisfying ÎS(σ) = IS(σ) for all σ ∈ {0, 1}Plog |<|,
and similarly for ÎT. It is standard that

ÎS = ∑
σ∈{0,1}log<

IS(σ) · χσ, (6.3)

where

χσ(x1, . . . , xlog |<|) :=
log |<|
∏
i=1

(x1σi + (1− xi)(1− σi)), (6.4)

and similarly for ÎT. To compute F, it suffices to apply the sum-check protocol to the

polynomial g := ÎS · ÎT. The protocol requires log |<| rounds, and the total communication

cost is O(log |<|) field elements. To perform the necessary check in the final round of this

protocol, V needs to evaluate g at a random point r ∈ Flog |<|. By definition of g, it suffices for

V to evaluate ÎT(r) and ÎS(r). Since the set S does not depend on the stream (S depends only

on the claimed optimal width w∗), V can evaluate ÎS(r) after the stream has passed, using

O(log(|<|) · log |F|) bits of space, using standard techniques (see for example [66, Section

2]). However, it is not possible for V to evaluate ÎT(r) in a streaming manner. Instead, V

asks P to tell her ÎT(r), and checks that ÎT(r) by invoking the streaming implementation of

the GKR protocol (cf. Lemma 4.3). More precisely, similar to [63, Section 3.3], we observe

that Fermat’s Little Theorem implies that fσ = n if and only if ( fσ − n)|F|−1 ≡ 1 mod |F|.
This implies via Equation (6.3) that IT(r) = ∑σ∈{0,1}log |<|( fσ − n)|F|−1 · χσ(r), where χσ was

defined in Equation (6.4). As in [63, Section 3.3], it is possible to compute the right hand side

of this equality by an arithmetic circuit C of size O(|<|) and depth O(log |F|) = O(log n)

over F. By applying the GKR protocol to C, V forces P to faithfully provide ÎT(r). This

completes the protocol. Completeness and soundness follow from completeness and

soundness of the sum-check protocol and of the GKR protocol.
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6.5.6 Protocol Costs

The total communication cost of the protocol O(log(n) · log(|<|) · log |F|) = O(k · d2 ·
log(m) · log2 n) bits. The total space cost is O(log(|<|) · log(|F|)) = O(k · d2 · log(m) ·
log(n)) bits. The total number of rounds required is O(log(n) · log(|<|)) = O(k · d2 ·
log(m) · log(n)).

Theorem 6.10. Given a stream of n points, there is a streaming interactive proof for computing the

optimal k-slab, with space and communication bounded by O(k · d2 · log(m) · log2 n). The total

number of rounds is O(k · d2 · log(m) · log(n)).

We remark that it is possible to reduce the number of rounds in Theorem 6.10 by a factor

of log(n), using a technique introduced by Gur and Raz [95], and applied by Klauck and

Prakash [120] to obtain an O(log |<|)-round SIP for computing the number of distinct items

in a data stream. However, these techniques sacrifice perfect completeness, and increase the

communication complexity of the protocol by polylogarithmic factors. We omit the details

of this technique for brevity.

6.5.7 k-Center

We can use the same idea as in Section 6.5.1 to verify solutions for Euclidean k-center.

The primary difference in the proof is in defining the relevant range space, which here

consists of unions of k balls of radius r, for all choices of centers and radii in the grid. The

size of this range space is m2kd, compared to mkd2+2kd in the case of the k-slab problem. Here

we provide k-center verification protocol in more details:

Here the notion of “cluster” is described by a ball centered at one of the input points

with some certain radius which contains all the points in that cluster. Equivalently, the

k-center objective is minimizing the maximum radius of a cluster, referred as the radius of

k-center and for any k-center σ ∈ Bk, let r(σ) denote this radius.

6.5.8 Range Space

Let B = {B(c, jε) : c ∈ U = [m]d, j ∈ Z, 0 ≤ j ≤ 1
ε} be the set of all balls of radius

between 0 and 1 (which is quantized by ε). A k-center is a collection of k of such balls. Let

Bk be the set of all such ranges. This range space has size |Bk| = m2kd. As before, we will

assume a canonical ordering of the ranges σ1, σ2, . . . , in increasing order of radius and the
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existence of a mapping functionM : r → [|Bk|] which maps r to the smallest index i such

that r(σi) = r, and is efficiently computable by the verifier.

6.5.9 Preprocessing

The verifier generate a derived stream from the input P (as described before) which

the frequencies are computed over that and the frequency fσ of the range σ in this derived

stream is the number of points it contains: fσ = |σ ∩ P|.

6.5.10 Feasibility

After the stream has passed, the prover supplies a candidate k-center σ∗ and claims that

this has optimal radius r∗ = r(σ∗). Using the RangeCount protocol from Theorem 4.3 the

verifier can check that f ∗σ = n and is therefore feasible.

6.5.11 Optimality

The verifier must now check if the optimal radius of k-center clustering is in fact r∗.

Following the analysis in previous section for k-slab, we can re-express the certificate

of optimality in k-center in a similar manner as: r∗ is the optimal radius if and only if

F′ =M(w∗)− 1, in which :

F′(r∗) = ∑
σ∈Bk

I(r(σ) < r∗)I( f ′σ > 0)

M(r∗)− 1 = ∑
σ∈Bk

I(r(σ) < r∗)

Accordingly, the problem reduces to the prefix distinct elements (F0) again which was

studied in detail in the last section. This way we obtain a streaming interactive protocol for

checking the feasibility and optimality of Euclidean k-center clustering problem (similar to

what we presented for k-slab), but with different range space. We skip restating the protocol

here and just summarize the main result:

Theorem 6.11. Given a stream of n input points, there is an SIP for computing the optimal k-center

with space and communication bounded by O(k · d · log(m) · log2 n). The total number of rounds

is O(k · d · log(m) · log(n)).



CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we developed novel sublinear algorithms for various optimization

and data analysis problems including data summarization and coreset, clustering, matrix

problems and massive graphs.

In Chapter 2, we presented the first results for constructing small size coresets with

theoretical guarantees for various types of range counting queries on uncertain data,

modeled by the indecisive locational uncertainty, where each uncertain point has a prob-

ability density describing its locations described as k distinct locations. These can be

essential tools for monitoring a subset of a large noisy data set, as a way to approximately

monitor the full uncertainty. The summary of results can be found in Table 7.1. There

are many future directions on this topic, in addition to tightening the provided bounds

especially for other range spaces. Can we remove the dependence on k without random

sampling? How can we generalize our results and techniques to the family of continuous

distributions over the uncertain data? Another interesting direction is to extend the problem

of computing coreset over uncertain data to streaming settings. After our work, Munteanu,

Sohler and Feldman [134] presented a polynomial time approximate algorithm for the

probabilistic enclosing ball problem with extension to streaming setting which uses coreset

techniques. We hope that the new techniques and ideas presented in this dissertation open

new directions for generalizing the existing lines of research in shape fitting, clustering and

machine learning problems to their probabilistic versions.

In Chapter 3, we presented an algorithm for constructing a sublinear size coreset on

massive graphs to compute a (1 + ε)-approximation to maxcut size and objective function

for correlation clustering. This algorithm is based on a biased sampling procedure on the

vertices and edges. The vertex sampling obtain a smaller subgraph with sublinear size

set of vertices, which can be used as a coreset with approximation guarantee on maxcut
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size. Given this small coreset, then an edge sampling algorithm can be used to sparsify the

resulted subgraph further by sampling the edges and obtain a sublinear size subgraph (with

regards to vertices and edges), used as a sparse coreset for obtaining a (1+ ε)-approximation

to maxcut size and correlation clustering objective value. The summary of related results is

presented in Table 7.2. There are several future research directions for our work: First, the

core set construction algorithms presented here can be adapted to produce 2-pass streaming

algorithms that use Õ(n1−δ) space and yield (1− ε)-approximations for both problems. The

main idea is to use the properties of CountMin sketch [65] and `1-sampling [17, 106, 133] to

obtain the coreset resulted from biased vertex sampling procedure. In the case of maxcut,

this would be the first example of obtaining a sublinear algorithm without relying either on

large density or strong regularity assumptions. In the case of correlation clustering, this

improves the semistreaming algorithms (space Õ(n)) proposed by Ahn et al. [9], albeit

using an extra pass. Furthermore, our algorithm is based on a biased sampling procedure

with regard to degree distributions and edge weights. One crucial question here is whether

we can use instead an uniform random sampling algorithm for constructing coreset while

obtaining the same approximation guarantees? Note that in [77], it is shown that for special

graphs where the input is near-regular (i.e., di ≤ c · daverage), uniform random sampling

on vertices obtains a coreset for computing a (1 + ε)-approximation to maxcut size, but

it seems that the technical proofs presented in [77] rely heavily on the near-regularity

assumptions and cannot be easily adapted to the graphs with general degree distributions.

The other interesting direction is to explore if the ideas presented in our work can be used for

constructing a small size coreset or designing a sublinear space steaming algorithm for other

graph problems. We expect ideas from our analysis (for the behavior of random induced

subprograms of linear programs) to be applicable to other settings as well, especially ones

for which the framework of [22] is applicable. An example that we have not presented is

the so-called cut norm problem (which is easier than the so-called ‘Max Cut-Gain’, which is

related to maxcut). Here, our methods give additive εn∆ (where ∆ is the average degree)

approximations, which, for appropriate parameter choices, can be much better than results

obtained via more analytic methods [143].

In Chapter 4, we gave an overview of basic known tools and techniques used for

designing our streaming verification algorithms.
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In Chapter 5, we presented efficient streaming interactive proofs for exact verification of

graph matching (bipartite, nonbipartite and weighted). We also designed SIPs for metric TSP,

exact triangle counting, number of connected components, bipartiteness minimum spanning

tree and connectivity. These protocols have polylog space and sublinear (in number of

edges) communication complexity. The protocols presented for weighted matching and

metric TSP are the first results in any streaming verification model. Interestingly, our

work shows in several cases an exponential improvement in the product of space and

communication versus a single round of communication in annotation model (for which

an Ω(n2) lower bound exists), showing that while a prover can help, it needs to have an

extended conversation with the verifier. The summary of related results is presented in

Table 7.3. Our matching protocol requires the prover to send back an actual matching and

a certificate for it. Suppose we merely wanted to verify a claimed cost for the matching.

Is there a way to verify this with less communication? Another interesting question is to

consider designing SIPs for graph problems which are known to be NP-hard or the ones

with known space lower bounds in streaming model. For example, is there any efficient

SIP for verifying Max Cut in streaming graphs? In our SIPs for matching, we assume that

the edge weight updates are atomic. Can we relax this constraint? Justin Thaler [148]

observed that by using techniques from [64], we can design a SIP with log2 n space cost

and O(W(log W + log n) log n) bits of communication, in which W is the upper bound

on the edge weights (i.e. wij ≤ W). Both protocols will result in similar costs for any

instance where the edge weights are at most O(n), while having the advantage of handling

incrementally-specified edge weights in the second approach. However, in the general case

where wij ∈ [nc], our solution still has lower communication cost (worst case n log n).

Finally, in Chapter 6 we initiated the study of streaming interactive proofs for problems

in data analysis and presented efficient SIPs for various fundamental problems such as

clustering, shape fitting and matrix analysis. The related results are summarized in Table

7.4. As an interesting future research direction, we can explore outsourcing computations

for solving large scale machine learning problems, which necessitate designing efficient

verification protocols. For example, how we can do verification for fundamental learning

tasks such as regression, classification and more complicated clustering tasks? This requires

developing new tools and techniques in the field of streaming verification.
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Table 7.1: Our Results for coreset size for different range queries. In random sampling, v is
the VC-dimension of the associated range space with the corresponding family of range
R. In discrepancy-based approach the corresponding range R is defined as axis-aligned

rectangles. For RQ queries, the value αε,t = ε +
√
( 1

2t ) log( 2
ε ), in which t is the size of

coreset.

Problem Random Sampling Discrepancy-based Approach
ε-RE coreset O(( 1

ε2 )(v + log( k
δ ))) O((

√
k

ε ) · log
3d−1

2 ( k
ε ))

ε-RC coreset O(( 1
ε2 )(v + log( 1

δ ))) O(( k3d+ 1
2

ε ) log6d− 1
2 ( k

ε ))

(ε, αε,t)-RQ coreset O(( 1
ε2 )(v + log( k

δ ))) O((
√

k
ε ) · log

3d−1
2 ( k

ε ))

Table 7.2: Our results on coreset size for computing (1 + ε)-approximation to maxcut size
and correlation clustering objective value. The input graph has O(n1+δ) edges, where
0 ≤ δ ≤ 1 and average degree ∆ = nδ. The ε-coreset is obtained by biased vertex sampling
algorithm and sparse ε-coreset is resulted from applying edge sampling algorithm on
ε-coreset.

Maxcut/ Correlation Clustering Space Complexity
ε-coreset Õ(n1−δ) vertex size
sparse ε-coreset Õ(n1−δ)

Table 7.3: Our results on streaming graph verification problems. All bounds expressed in
bits, upto constant factors. For the matching results, ρ = min(n, C) where C is the cost of
the optimal matching (weighted or unweighted). Note that for the MST, the verification is
for a (1 + ε)-approximation. For the TSP, the verification is for a (3/2 + ε)-approximation.
Parameter γ′ is a linear function of γ and is strictly more than 1 as long as γ is a sufficiently
large constant.

log n rounds γ = O(1) rounds
Problem Verifier Space Communication Verifier Space Communication
Triangle Count log2 n log2 n log n n1/γ log n
Matchings log2 n (ρ + log n) log n log n (ρ + n1/γ′ ) log n
Connectivity log2 n n log n log n n log n
MST∗ log2 n n log2 n/ε log n n log2 n/ε

TSP∗ log2 n n log2 n/ε log n n log2 n/ε
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Table 7.4: Results for geometric and data analysis problems. In the Euclidean space the
points are taken from the universe U [m]. In metric space, the points are taken from (X, d) in
which d is the space dimension and |X| = m and |R| ≤ mk+2. In matrix related problems,
(h, v) is any pair of positive integers such that h, v ≥ n. Also the cost of annotation
protocols is described as a pair of values for (space, communication) complexity. In matrix
multiplication A is a k× n matrix and B is an n× k matrix and the goal is to verify the matrix
product C = A · B. In eigenstructure, the goal is to verify the collection of k eigenpairs
(λi, vi) are orthogonal, and each satisfy ||Avi − λivi|| ≤ ε.

Problem Cost (Communication/Space) Rounds of Interaction
Minimum Enclosing Ball O(d2 · log2 m) 3-messages SIP
Width O(d4 · log2 m) 3-messages SIP
Metric k-Centers O(k + log(|<|) · log(n · |<|)) 3-messages SIP
k-slab covering O(k · d2 · log m · log2 n) k · d2 · log m · log n
Euclidean k-center O(k · d · log m · log2 n) k · d · log m · log n
Matrix Multiplications (v log n, k · k′ · h log n) Annotation model
Matrix Eigenstructure O(v · log( n

ε ), k2 · h · log( n
ε )) Annotation model
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