105 research outputs found

    Applying DLM and DCM concepts in a multi-scale data environment

    Get PDF
    This extended abstract presents work in progress in which we explore the DLM and DCM concepts in a multi-scale topographic data environment. The abstract is prepared a

    Derivation of continuous zoomable road network maps through utilization of Space-Scale-Cube

    Get PDF
    The process of performing cartographic generalization in an automatic way applied on geographic information is of highly interest in the field of cartography, both in academia and industry. Many research e↔orts have been done to implement di↔erent automatic generalization approaches. Being able to answer the research question on automatic generalization, another interesting question opens up: ”Is it possible to retrieve and visualize geographic information in any arbitrary scale?” This is the question in the field of vario-scale geoinformation. Potential research works should answer this question with solutions which provide valid and efficient representation of geoinformation in any on-demand scale. More brilliant solutions will also provide smooth transitions between these on-demand arbitrary scales. Space-Scale-Cube (Meijers and Van Oosterom 2011) is a reactive tree (Van Oosterom 1991) data structure which shows positive potential for achieving smooth automatic vario-scale generalization of area features. The topic of this research work is investigation of adaptation of this approach on an interesting class of geographic information: road networks datasets. Firstly theoretical background will be introduced and discussed and afterwards, implementing the adaptation would be described. This research work includes development of a hierarchical data structure based on road network datasets and the potential use of this data structure in vario-scale geoinformation retrieval and visualization.:Declaration of Authorship i Abstract iii Acknowledgements iv List of Figures vii Abbreviations viii 1 Introduction 1 1.1 Problem Definition 2 1.1.1 Research Questions 2 1.1.2 Objectives 3 1.2 Proposed Solution 3 1.3 Structure of the Thesis 4 1.4 Notes on Terminology 4 2 Cartographic Generalization 6 2.1 Cartographic Generalization: Definitions and Classifications 6 2.2 Generalization Operators 9 2.3 Efforts on Vario-Scale Visualization of Geoinformation 10 2.4 Efforts on Generalization of Road Networks and Similar Other Networks 16 2.4.1 Geometric Generalization of Networks 17 2.4.2 Model Generalization of Networks 18 2.5 Clarification of Interest 20 3 Theory of Road Network SSC 21 3.1 Background of an SSC 21 3.1.1 tGAP 21 3.1.2 Smoothing tGAP 23 3.2 Road Network as a ’Network’ 24 3.2.1 Short Background on Graph Theory 5 3.3 Formation of Road Network SSC 26 3.3.1 Geometry 26 3.3.2 Network Topology 27 3.3.3 Building up tGAP on The Road Network 28 3.3.4 Smoothing of Road Network SSC 31 3.3.4.1 Smoothing Elimination 32 3.3.4.2 Smoothing Simplification 32 3.4 Reading from a road network SSC 34 3.4.1 Discussion on Scale 34 3.4.2 Iterating Over The Forest 35 3.4.3 Planar Slices 35 3.4.4 Non-Planar Slices 36 4 Implementation of Road Network SSC 37 4.1 General Information Regarding The Implementation 37 4.1.1 Programming Language 37 4.1.2 RDBMS 38 4.1.3 Geometry Library 39 4.1.4 Graph Library 39 4.2 Data Structure 40 4.2.1 Node 40 4.2.2 Edge 41 4.2.3 Edge-Node-Relation 41 4.3 Software Architecture 42 4.3.1 More Detail on Building The SSC 42 4.3.1.1 Initial Data Processing 42 4.3.1.2 Network Processing 43 4.3.2 More Detail on Querying The SSC 46 4.3.2.1 Database Query 46 4.3.2.2 Building Geometry 46 4.3.2.3 Interface and Visualization 47 4.4 Results 48 5 Conclusions and Outlook 49 Bibliography 5

    Cartographic Generalization in Digital Environment

    Get PDF
    Throughout the world numerous efforts to automate generalization are in progress. The results are yet to be satisfactory. Ample reasoning can be given to justify the lack of success, the most important being that generalization is an ambiguous process, highly subjective which lacks definitive rules, guidelines or systematization. This paper deals with the problem of generalization of vector data bases through the analysis of recent developments and research in the field. These developments tend to establish a promising framework which, with subsequent refinements and the utilization of state-of-the-art computer technology, may lead to successful results. What is needed is what lacks: Definitive rules in structuring the digital image of the world and development of expert systems which will intelligently manipulate this image

    The doctoral research abstracts. Vol:6 2014 / Institute of Graduate Studies, UiTM

    Get PDF
    Congratulations to Institute of Graduate Studies on the continuous efforts to publish the 6th issue of the Doctoral Research Abstracts which ranged from the discipline of science and technology, business and administration to social science and humanities. This issue captures the novelty of research from 52 PhD doctorates receiving their scrolls in the UiTM’s 81st Convocation. This convocation is very significant especially for UiTM since we are celebrating the success of 52 PhD graduands – the highest number ever conferred at any one time. To the 52 doctorates, I would like it to be known that you have most certainly done UiTM proud by journeying through the scholastic path with its endless challenges and impediments, and by persevering right till the very end. This convocation should not be regarded as the end of your highest scholarly achievement and contribution to the body of knowledge but rather as the beginning of embarking into more innovative research from knowledge gained during this academic journey, for the community and country. As alumni of UiTM, we hold you dear to our hearts. The relationship that was once between a student and supervisor has now matured into comrades, forging and exploring together beyond the frontier of knowledge. We wish you all the best in your endeavour and may I offer my congratulations to all the graduands. ‘UiTM sentiasa dihati ku’ Tan Sri Dato’ Sri Prof Ir Dr Sahol Hamid Abu Bakar , FASc, PEng Vice Chancellor Universiti Teknologi MAR

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps?  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype. &nbsp

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps? To address the above research question, this research has been conducted using the following outline:  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype

    Development of a simulation tool for flight dynamics and control investigations of articulated vtol unmanned aircraft

    Get PDF
    A simulation tool for flight dynamics and control investigations of three different Vertical Take Off and Landing (VTOL) unmanned aircraft configurations has been developed. A control concept has been proposed in order to take advantage of the fast response characteristics of the ordinary small engine/propeller propulsion systems in such aircraft, as well as replacing the complex rotors used previously in VTOL concepts for small unmanned aircraft. The simulation model has been established on the basis of the proposed concept so that it can also be used to study the feasibility of this idea. An Object-based methodology has been introduced so as to reduce the amount of aerodynamic required data for the simulation model. The equations of motion associated with the aircraft multibody system with ten degrees of freedom have been derived using the Newton-Euler method. The modelling of various subsystems including the propeller model, the airframe aerodynamics and the engine model has been carried out. A method for calculating the propellers' slipstream effects on the other components has been presented. Input data for the simulation model have been estimated, using different sources. The Advanced Continuous Simulation Language (ACSL) has been used for the programming of the mathematical model. A series of comprehensive tests have been carried out in order to demonstrate the validity of the simulation model. The ability of the simulation model to explain the aircraft modes of motion as well as to discover unknown nonlinear behaviours and to describe them has been demonstrated

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example
    • 

    corecore