1,267 research outputs found

    WebALPS Implementation and Performance Analysis: Using Trusted Co-servers to Enhance Privacy and Security of Web Interactions

    Get PDF
    The client-server model of the Web poses a fundamental trust issue: clients are forced to trust in secrecy and correctness of computation occurring at a remote server of unknown credibility. The current solution for this problem is to use a PKI (Public Key Infrastructure) system and SSL (Secure Sockets Layer) digital certificates to prove the claimed identity of a server and establish an authenticated, encrypted channel between the client and this server. However, this approach does not address the security risks posed by potential malicious server operators or any third parties who may penetrate the server sites. The WebALPS (Web Applications with Lots of Privacy and Security) approach is proposed to address these weaknesses by moving sensitive computations at server side into trusted co-servers running inside high-assurance secure coprocessors. In this report, we examine the foundations of the credibility of WebALPS co-servers. Then we will describe our work of designing and building a prototype WebALPS co-server, which is integrated into the widely-deployed, commercial-grade Apache server. We will also present the performance test results of our system which support the argument that WebALPS approach provides a systematic and practical way to address the remote trust issue

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research

    Performance evaluation of CoAP and MQTT with security support for IoT environments

    Get PDF
    World is living an overwhelming explosion of smart devices: electronic gadgets, appliances, meters, cars, sensors, camera and even traffic lights, that are connected to the Internet to extend their capabilities, constituting what is known as Internet of Things (IoT). In these environments, the application layer is decisive for the quality of the connection, which has dependencies to the transport layer, mainly when secure communications are used. This paper analyses the performance offered by these two most popular protocols for the application layer: Constrained Application Protocol (CoAP) and Message Queue Telemetry Transport (MQTT). This analysis aims to examine the features and capabilities of the two protocols and to determine their feasibility to operate under constrained devices taking into account security support and diverse network conditions, unlike the previous works. Since IoT devices typically show battery constraints, the analysis is focused on bandwidth and CPU use, using realistic network scenarios, since this use translates to power consumption.This work was supported in part by the Ministry of Economy and Competitiveness (Spain) under the project MAGOS (TEC2017-84197-C4-1-R) and by the Comunidad de Madrid (Spain) under the projects: CYNAMON (P2018/TCS-4566), co-financed by European Structural Funds (ESF and FEDER), and the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M21), in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    A Practical Evaluation of a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications

    Get PDF
    [Abstract] Fog computing extends cloud computing to the edge of a network enabling new Internet of Things (IoT) applications and services, which may involve critical data that require privacy and security. In an IoT fog computing system, three elements can be distinguished: IoT nodes that collect data, the cloud, and interconnected IoT gateways that exchange messages with the IoT nodes and with the cloud. This article focuses on securing IoT gateways, which are assumed to be constrained in terms of computational resources, but that are able to offload some processing from the cloud and to reduce the latency in the responses to the IoT nodes. However, it is usually taken for granted that IoT gateways have direct access to the electrical grid, which is not always the case: in mission-critical applications like natural disaster relief or environmental monitoring, it is common to deploy IoT nodes and gateways in large areas where electricity comes from solar or wind energy that charge the batteries that power every device. In this article, how to secure IoT gateway communications while minimizing power consumption is analyzed. The throughput and power consumption of Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) are considered, since they are really popular, but have not been thoroughly analyzed when applied to IoT scenarios. Moreover, the most widespread Transport Layer Security (TLS) cipher suites use RSA as the main public key-exchange algorithm, but the key sizes needed are not practical for most IoT devices and cannot be scaled to high security levels. In contrast, ECC represents a much lighter and scalable alternative. Thus, RSA and ECC are compared for equivalent security levels, and power consumption and data throughput are measured using a testbed of IoT gateways. The measurements obtained indicate that, in the specific fog computing scenario proposed, ECC is clearly a much better alternative than RSA, obtaining energy consumption reductions of up to 50% and a data throughput that doubles RSA in most scenarios. These conclusions are then corroborated by a frame temporal analysis of Ethernet packets. In addition, current data compression algorithms are evaluated, concluding that, when dealing with the small payloads related to IoT applications, they do not pay off in terms of real data throughput and power consumption.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-RGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/0

    Supporting NAT traversal and secure communications in a protocol implementation framework

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe DOORS framework is a versatile, lightweight message-based framework developed in ANSI C++. It builds upon research experience and subsequent knowledge garnered from the use and development of CVOPS and OVOPS, two well known protocol development frameworks that have obtained widespread acceptance and use in both the Finnish industry and academia. It conceptually resides between the operating system and the application, and provides a uniform development environment shielding the developer from operating system speci c issues. It can be used for developing network services, ranging from simple socket-based systems, to protocol implementations, to CORBA-based applications and object-based gateways. Originally, DOORS was conceived as a natural extension from the OVOPS framework to support generic event-based, distributed and client-server network applications. However, DOORS since then has evolved as a platform-level middleware solution for researching the provision of converged services to both packet-based and telecommunications networks, enterprise-level integration and interoperability in future networks, as well as studying application development, multi-casting and service discovery protocols in heterogeneous IPv6 networks. In this thesis, two aspects of development work with DOORS take place. The rst is the investigation of the Network Address Translation (NAT) traversal problem to give support to applications in the DOORS framework that are residing in private IP networks to interwork with those in public IP networks. For this matter this rst part focuses on the development of a client in the DOORS framework for the Session Traversal Utilities for NAT (STUN) protocol, to be used for IP communications behind a NAT. The second aspect involves secure communications. Application protocols in communication networks are easily intercepted and need security in various layers. For this matter the second part focuses on the investigation and development of a technique in the DOORS framework to support the Transport Layer Security (TLS) protocol, giving the ability to application protocols to rely on secure transport layer services

    Lightweight IoT security middleware for end-to-end cloud-fog communication

    Get PDF
    Dr. Prasad Calyam, Thesis Supervisor.Field of study: Computer science."May 2017."IoT (Internet of Things) based smart devices such as sensors and wearables have been actively used in edge clouds i.e., 'fogs' to provide critical data during scenarios ranging from e.g., disaster response to in-home healthcare. Since these devices typically operate in resource constrained environments at the network-edge, end-to-end security protocols have to be lightweight while also being robust, flexible and energy-efficient for data import/ export to/from cloud platforms. In this thesis, we present the design and implementation of a lightweight IoT security middleware for end-to-end cloud-fog communications involving smart devices and cloud-hosted applications. The novelty of our middleware is in its ability to cope with intermittent network connectivity as well as device constraints in terms of computational power, memory and network bandwidth. To provide security during intermittent network conditions, we use a Session Resumption concept in order to reuse encrypted sessions from recent past, if a recently disconnected device wants to resume a prior connection that was interrupted. The primary design goal is to not only secure IoT device communications, but also to maintain security compatibility with an existing core cloud infrastructure. Experiment results show how our middleware implementation provides fast and resource-aware security by leveraging static pre-shared keys (PSKs) for a variety of IoT-based application requirements. Thus, our work lays a foundation for promoting increased adoption of static properties such as Static PSKs that can be highly suitable for handling the trade-offs in high security or faster data transfer requirements within IoT-based applications.Includes bibliographical references (pages 58-60)

    The Role of Cryptography in Security for Electronic Commerce

    Get PDF
    Many businesses and consumers are wary of conducting business over the Internet due to a perceived lack of security. Electronic business is subject to a variety of threats such as unauthorised access, misappropriation, alteration and destruction of both data and systems. This paper explores the major security concerns of businesses and users and describes the cryptographic techniques used to reduce such risks

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF
    • …
    corecore