
UNIVERSIDADE NOVA DE LISBOA

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

Supporting NAT Traversal

and Secure Communications in a

Protocol Implementation Framework

Por:

Pedro Arruda Pereira

Dissertação apresentada na Faculdade de Ciências e Tecnologia

da Universidade Nova de Lisboa para obtenção do Grau

de Mestre em Engenharia Electrotécnica e de Computadores.

Orientador: Prof. Doutor Paulo da Costa Lúıs Fonseca Pinto

Lisboa

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157624025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supporting NAT Traversal and Secure Communications in a
Protocol Implementation Framework

Copyright c© 2011 por Pedro Arruda Pereira, Faculdade de Ciências e Tecnologia e

Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-

emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio

conhecido ou que venha a ser inventado, e de a divulgar através de repositórios cient́ıficos

e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação,

não comerciais, desde que seja dado crédito ao autor e editor.

To my family

Preface

I would like to thank all those who in some way contributed and supported me during the

completion of my degree and this dissertation.

To Prof. Paulo Pinto, for giving me the honour of his advice, the availability and patience

to answer all my questions and the assertive guidance towards the completion of this

dissertation. It was very kind of him to accept being my supervisor under my exchange

studies period.

To Prof. Jarmo Harju for believing in my capabilities and giving me the opportunity

to work in the communications research group and for supporting with all the technical

material needed. I am very grateful for the support.

To Researcher Bilhanan Silverajan for the valuable help during the development of this

thesis. I would like to thank him for the patience in all this learning process and for all

the hours spent helping and guiding me towards the completion of this dissertation.

In my office at the Department of Communications Engineering at TUT I was surrounded

by knowledgeable and friendly people who helped me daily. I would like to express my

gratitude to my office mates Jani Peltotalo and Joona Kannisto for being so nice and

helpful.

To all my Portuguese friends in Finland especially Luis Sousa and Alberto Miranda who

treated me as family and supported me from very closely.

I would like to thank all of my colleagues and close friends from FCT-UNL that gave me

support since the beginning of my studies: Tiago Gaspar, Fábio Silva, Bruno Alves, Pedro

Neves, David Gonçalves, Filipe Correia, João Melo and Diogo Figueiredo.

iii

iv

I would like to show the most kind and special gratitude to my family especially my

parents Armando and Conceição, as well as my brother Ricardo, and my grandmother

Maria Teresa, who have been a constant source of support during my graduation years

and have always supported me during the most difficult times of my life. This thesis would

certainly not have existed without them.

Last but not least, a special gratitude goes to my beloved girlfriend Emma for her pa-

tience, understanding and support, who shared time towards the completion of this thesis,

and who always trusted in my abilities and encouraged me to follow my dreams without

disappointment and fatigue.

Abstract

The DOORS framework is a versatile, lightweight message-based framework developed in

ANSI C++. It builds upon research experience and subsequent knowledge garnered from

the use and development of CVOPS and OVOPS, two well known protocol development

frameworks that have obtained widespread acceptance and use in both the Finnish industry

and academia. It conceptually resides between the operating system and the application,

and provides a uniform development environment shielding the developer from operating

system specific issues. It can be used for developing network services, ranging from simple

socket-based systems, to protocol implementations, to CORBA-based applications and

object-based gateways.

Originally, DOORS was conceived as a natural extension from the OVOPS framework to

support generic event-based, distributed and client-server network applications. However,

DOORS since then has evolved as a platform-level middleware solution for researching the

provision of converged services to both packet-based and telecommunications networks,

enterprise-level integration and interoperability in future networks, as well as studying

application development, multi-casting and service discovery protocols in heterogeneous

IPv6 networks.

In this thesis, two aspects of development work with DOORS take place. The first is

the investigation of the Network Address Translation (NAT) traversal problem to give

support to applications in the DOORS framework that are residing in private IP networks

to interwork with those in public IP networks. For this matter this first part focuses on

the development of a client in the DOORS framework for the Session Traversal Utilities

for NAT (STUN) protocol, to be used for IP communications behind a NAT. The second

v

vi

aspect involves secure communications. Application protocols in communication networks

are easily intercepted and need security in various layers. For this matter the second part

focuses on the investigation and development of a technique in the DOORS framework

to support the Transport Layer Security (TLS) protocol, giving the ability to application

protocols to rely on secure transport layer services.

Keywords: DOORS, framework, NAT, NAT traversal, STUN, security, secure

communications, SSL, TLS.

Resumo

DOORS é um framework versátil e baseado em mensagens que foi desenvolvido em C++.

É fruto da experiência de investigação e conhecimento obtida pelas plataformas de de-

senvolvimento CVOPS e OVOPS. Estas plataformas têm sido bastante aceites tanto na

indústria como no campo de investigação Finlandesa. O DOORS reside entre o sistema

operativo e a aplicação, fornecendo um ambiente de desenvolvimento uniforme protegendo

o programador de questões espećıficas do sistema operativo. Pode ser usado tanto para o

desenvolvimento de serviços de rede, que vão desde sistemas simples com sockets, imple-

mentação de protocolos, como para aplicações baseadas em CORBA e gateways baseados

em objectos.

Originalmente o DOORS foi concebido como uma extensão natural da plataforma OVOPS

para suportar aplicações de redes genéricas baseadas em eventos, distribúıdas e cliente-

servidor. No entanto, desde então, o DOORS tem evolúıdo como uma solução de mid-

dleware para investigar a prestação de serviços convergentes para as redes de pacotes e

de telecomunicações, para a integração a ńıvel empresarial e de interoperabilidade em re-

des futuras. Também se pretende que sirva para estudar o desenvolvimento de aplicações

multi-casting e protocolos de descoberta de serviços em redes heterogéneas IPv6.

Esta tese cobre dois aspectos de desenvolvimento no framework DOORS. O primeiro é a

investigação do problema da penetração em routers Network Address Translation (NAT),

de modo a dar-se suporte às aplicações de redes IP privadas (para que possam interagir

com as redes IP públicas). Para tal, desenvolveu-se um cliente no framework DOORS que

suporta o protocolo Session Traversal Utilities for NAT (STUN), que pode ser utilizado

para comunicações IP com máquinas protegidas por um NAT. O segundo aspecto envolve

vii

viii

comunicações seguras. Protocolos de aplicação em redes de comunicação são facilmente

interceptados e precisam de segurança em várias camadas. Nesta segunda parte investigou-

se e desenvolveu-se uma técnica para suportar o protocolo Transport Layer Security (TLS)

no framework DOORS, permitindo que os protocolos de aplicação usem segurança na

camada de transporte.

Palavras-chave: DOORS, framework, NAT, penetração em NATs, STUN, segu-

rança, comunicações seguras, SSL, TLS.

Contents

Preface iii

Abstract v

Resumo vii

List of Acronyms xiii

List of Figures xviii

List of Tables xix

1 Introduction 1

1.1 Problem Statement and Motivation . 1

1.2 Objectives and Contributions . 2

1.3 Thesis Outline . 3

2 The DOORS Framework 5

2.1 Introduction . 5

2.2 Requirements . 5

2.3 Framework Architecture . 6

2.3.1 Scheduler . 9

2.3.2 I/O Handler and devices . 10

2.3.3 Tasks, Messages and Ports . 10

2.3.4 XML code generators . 11

2.3.5 Local Event Monitor (LEMon) . 12

3 Network Address Translation (NAT) 13

3.1 Introduction . 13

3.2 NAT Traversal . 15

3.3 Session Traversal Utilities for NAT (STUN) 16

3.3.1 Protocol analysis . 16

3.3.2 Protocol operation . 18

ix

x CONTENTS

3.3.3 STUN Message Structure . 20

3.3.4 STUN attributes . 22

4 Network Security 27

4.1 Introduction . 27

4.2 Approaches to Network Security . 28

4.3 Security Attacks . 31

4.3.1 Passive Attacks . 33

4.3.2 Active Attacks . 34

4.4 Security Services . 36

4.5 Cryptography . 37

4.5.1 Symmetric Encryption . 38

4.5.2 Public Key Encryption . 43

4.5.3 Hash Functions . 49

4.5.4 Digital Signatures . 49

4.5.5 Message Authentication Code . 50

4.5.6 Certificates . 51

4.6 Transport Layer Security (TLS) . 52

4.6.1 Introduction . 52

4.6.2 SSL/TLS Architecture . 53

4.6.3 Candidate Technologies . 60

5 Protocols’ Implementation 63

5.1 STUN Protocol . 64

5.1.1 Considerations and Choices . 64

5.1.2 Design Prototyping . 65

5.1.3 Design Architecture . 67

5.1.4 Modular Interaction and Behaviour 68

5.1.5 Implementation . 72

5.2 TLS Protocol . 75

5.2.1 Considerations and Choices . 75

5.2.2 Design Overview . 77

5.2.3 Modular Interaction and Behaviour 79

5.2.4 Implementation . 81

5.3 Development Environment . 84

6 Implementation Testing and Analysis 87

6.1 Test Network . 88

6.2 STUN Analysis . 89

6.2.1 Test Case . 89

6.2.2 Results . 90

CONTENTS xi

6.3 TLS Testing . 91

6.3.1 Test Case . 91

6.3.2 Results . 94

7 Conclusions 97

7.1 Synthesis . 97

7.2 Conclusions . 98

7.3 Future Work . 99

A Appendixes to the STUN Implementation 101

A.1 XML Specifications . 101

A.1.1 Peer/PDU Specifications . 101

A.1.2 State Machine Specifications . 103

A.1.3 Service Access Point Specifications 104

A.2 StunTask Class Code . 105

B Appendixes to the TLS Implementation 107

B.1 XML Specifications . 107

B.1.1 State Machine Specifications . 107

B.1.2 Service Access Point Specifications 108

B.2 TlsTask Class Code . 109

B.3 TlsConn Class Code . 110

Bibliography 115

xii CONTENTS

List of Acronyms

AES Advanced Encryption Standard

ANSI American National Standards Institute

API Application Programming Interface

CBC CipherBlock Chaining

CFB Cipher FeedBack

DES Data Encryption Standard

DH Diffie-Hellman

DH anon Anonymous Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DHE Ephemeral Diffie-Hellman

DOORS Distributed Object OpeRationS

DoS Denial of Service

DDoS Distributed Denial of Service

DTLS Datagram Transport Layer Security

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDHE Elliptic curve Diffie-Hellman

FTP File Transfer Protocol

FSM Finite-State Machine

GCM Galois/Counter Mode

GNU GNU’s Not Unix

HMAC Hash-based Message Authentication Code

HTTP Hypertext Transfer Protocol

xiii

xiv CONTENTS

ICE Interactive Connectivity Establishment

IDEA International Data Encryption Algorithm

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol

IPsec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISP Internet Service Provider

LAN Local Area Network

L2TP Layer 2 Tunneling Protocol

MAC Media Access Control

Message Authentication Code

NAT Network Address Translation

NIST National Institute of Standards and Technology

NSA National Security Agency

OFB Output FeedBack

P2P Peer to Peer

PDU Protocol Data Unit

PGP Pretty Good Privacy

PKI Public Key Infrastructure

PPTP Point-to-Point Tunneling Protocol

RC Rivest Cipher

RFC Request for Comments

SAP Service Access Point

SDU Service Data Unit

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SHTTP Secure HyperText Transfer Protocol

CONTENTS xv

SIP Session Initiation Protocol

SSL Secure Socket Layer

STL Standard Template Library

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TLS Transport Layer Security

TUT Tampere University of Technology

UDP User Datagram Protocol

VoIP Voice over IP

VPN Virtual Private Network

XML Extensible Markup Language

WAN Wide Area Network

WCDMA Wideband Code Division Multiple Access

WEP Wired Equivalent Privacy

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

WWW World Wide Web

xvi CONTENTS

List of Figures

2.1 DOORS architecture . 7

2.2 DOORS communication model . 8

2.3 Examples of some of the DOORS classes . 9

2.4 Sending and asynchronous message in DOORS 11

2.5 PDU definiton example . 12

3.1 Network address translation . 14

3.2 Possible STUN configuration . 17

3.3 Use STUN to find external IP/Port . 18

3.4 STUN Client-Server diagram . 19

3.5 Format of STUN message header . 21

3.6 Format of STUN Message Type field . 21

3.7 Format of STUN Attributes . 22

3.8 Format of XOR-Mapped-Address Attribute 23

3.9 Format of Error-Code Attribute . 24

3.10 Format of Unknown-Attributes Attribute 25

4.1 The Internet security protocols in the TCP/IP stack 29

4.2 Security Threats . 32

4.3 Passive and Active Security attacks . 33

4.4 Working principle of a symmetric encryption system 38

4.5 Public Key Cryptography . 44

4.6 Hierarchy of Thrust . 52

xvii

xviii LIST OF FIGURES

4.7 The SSL with its sub-layers and sub-protocols 54

4.8 SSL Protocol Stack . 54

4.9 SSL/TLS Record Protocol operation . 55

4.10 SSL/TLS Record format . 56

4.11 SSL/TLS Handshake Protocol . 57

4.12 Simplied SSL/TLS Handshake Protocol (Resuming Session) 58

5.1 Architecture overview of STUN support in DORRS 66

5.2 STUN Task support in DOORS . 67

5.3 The message sequence diagrams for the Stun Task 69

5.4 A STUN Request message . 70

5.5 A STUN SuccessfulResponse message 71

5.6 A STUN ErrorResponse message . 71

5.7 The state machine for the Stun Task . 72

5.8 Stun Implementation . 73

5.9 Architecture overview of TLS support in DORRS 78

5.10 The state machine for the TlsTask . 80

6.1 Test Network . 88

6.2 Test STUN . 89

6.3 A partial capture of the LEMon User output during the STUN test 90

6.4 A partial screen capture of Wireshark, during the STUN test 90

6.5 Graph Analysis of Wireshark, during the STUN test 90

6.6 Test TLS model . 92

6.7 Test HTTP over TLS . 93

6.8 A partial capture of a Connection Request in the LEMon user during the

TLS test . 94

6.9 A partial capture of a Dtreq and Dtind in the LEMon user during the TLS

test . 95

6.10 Messages sent by the agents and captured by ssldump during the TLS test 96

List of Tables

4.1 The three official versions of AES. 41

4.2 Applications for Public-Key Cryptosystems. 45

4.3 Content of an X.509 v3 Certificate. 51

4.4 Handshake Protocol Message Types. 58

4.5 Candidates’ Protocol Support. 61

4.6 Candidates’ Key Exchange Algorithms. 61

4.7 Candidates’ Encryption Algorithms. 61

4.8 Candidates’ Portability Concerns. 62

5.1 TlsConn states . 80

5.2 Tools used for Implementation . 85

5.3 Libraries used for Implementation . 85

xix

xx LIST OF TABLES

Chapter 1

Introduction

1.1 Problem Statement and Motivation

The rapid development of computers and communications technology is allowing more and

more devices to interact with each other. One of the most profound changes today is the

increase in mobility of portable yet powerful wireless devices capable of communicating via

several different kinds of wireless radio networks of varying link-level characteristics. Such

wireless networks include 802.11-based Wi-Fi Local Area Networks (LANs), Wideband

Code Division Multiple Access (WCDMA) cellular networks, and Bluetooth or Infrared

based short range communications. Low-power energy efficient radio networks such as

ZigBee are widely expected to play dominant roles in the medium to long-term future

wireless mobility.

Accordingly to Silverajan [1], such increase of mobile networks raises the importance of

taking into account the resilience and sustainability of the Internet of the future, and give

special effort on the way applications and protocols today are being designed. Designing

applications and protocols in the future requires a clean layered design while raising the

level of abstraction to represent multiple applications in a device, multiple devices for a

user and multiple users in a network.

Taking into account these needs, Distributed Object OpeRationS (DOORS) [2] is presented

as a highly interoperable and lightweight event-based framework capable of serving these

1

2 CHAPTER 1. INTRODUCTION

needs while modelling, monitoring and handling events intrinsically present in commu-

nication architectures. Technically, DOORS is a C++ network programming framework

developed for implementing protocols and network applications. The framework can also

be used for developing network services, ranging from simple socket-based systems, to dis-

tributed applications, object-based gateways as well as general event-based client-server

applications.

Therefore, developing protocols at the network and application layers must also be consid-

ered. In this thesis, two different aspects are discussed. The first is the investigation of the

Network Address Translation (NAT) traversal problem to give support to applications in

the DOORS framework that are residing in private IP networks to interwork with others

in public IP networks. For this matter this first part focuses on developing client support

in the DOORS framework for the Session Traversal Utilities for NAT (STUN) [3] proto-

col, to be used for IP communications behind a NAT. The second aspect involves secure

communications. Application protocols in communication networks are easily intercepted

and might need security in various layers. For this matter the second part focuses on the

investigation and development of a technique in the DOORS framework to support the

Transport Layer Security (TLS) [4] protocol, giving the ability to application protocols to

rely on secure transport layer services.

1.2 Objectives and Contributions

This thesis focuses on two different aspects, both important for developing protocols in

the DOORS framework.

The first aspect focuses on NAT traversal solutions. The presented solution is the imple-

mentation of the STUN protocol in the DOORS framework, a tool to be used for other

protocols in the context of NAT traversal solutions.

The second aspect focuses on security in the network. Many applications interworking in

a public network might need a security layer in order to ensure a secure communication.

The goal is to study the vulnerabilities in a network (especially in the Transport Layer),

1.3. THESIS OUTLINE 3

and give support to applications in the DOORS framework that need to ensure secure

transactions. The presented solution is the integration of the TLS protocol in the DOORS

framework, a protocol to be combined with other application protocols that might need

to provide communication security over the Internet.

The main contributions of this dissertation are the implementations themselves, that are

fully integrated in the DOORS framework and can be used in the future by other devel-

opers. The proposed models are meant to be easy to use and to be integrated with other

protocols. The implementations are tested in order to study their operation and their

interoperability.

1.3 Thesis Outline

The thesis is structured in seven chapters, including the introduction and the conclusions

chapter.

Chapter 2 introduces a brief state-of-the-art description of the DOORS framework. It

presents its architecture and some of its functionalities.

Chapter 3 introduces a brief state-of-the-art description for NAT. It presents the usage of

NAT and the problems of its usage. Later on, it presents a useful protocol (STUN), a tool

to provide NAT traversal solutions.

Chapter 4 introduces a brief state-of-the-art description for Security in the Network. It

starts by presenting the most typical problems in different layers of a network, and later

on presents useful solutions to provide security. Lastly, it presents the TLS protocol, that

combines all the algorithms explained before to provide a sense of security for the problems

described before.

Chapter 5 adds some considerations and introduces the design of models and the imple-

mentation for the following two protocols: STUN and TLS.

Chapter 6 shows the results and presents the analysis and validation of the proposed

models.

4 CHAPTER 1. INTRODUCTION

Finally, chapter 7 presents the final conclusions and remarks of this thesis, as well as some

future work perspectives.

Appendix A presents some technical information for the STUN implementation, and Ap-

pendix B presents technical information for the TLS implementation.

Chapter 2

The DOORS Framework

2.1 Introduction

Distributed Object OpeRationS (DOORS) [1] is an object-based software framework for

designing distributed systems in heterogeneous network environments, especially on the

Internet. It is a C++ network programming framework developed for implementing proto-

cols and network applications. It gives the possibility to the programmer to write callback

functions and invoke them by the event handlers. Besides, the framework gives a platform

to the programmer and all the user events are mapped into DOORS messages. In terms

of portability, DOORS is both portable and lightweight. The developer is not hindered

from exercising any of the advanced C++ language-level features such as templates and

exception handling, nor is prevented from using other frameworks and other libraries as

part of the developed application. The DOORS is a single-threaded framework that can

be compiled and used in the most of UNIX and Linux variants [5].

2.2 Requirements

Since DOORS is written in American National Standards Institute (ANSI) C++ language,

first it requires an ANSI-compliant compiler supporting features of the language includ-

ing Standard Template Library (STL), namespaces and template programming. Usually,

5

6 CHAPTER 2. THE DOORS FRAMEWORK

development platforms such as Solaris, FreeBSD, OpenBSD and Linux use GNU C++

compiler version 2.95.2 or later. Sun C++ compiler version 5 and later are used on Solaris

version 8 and 9 operating systems.

The operating system must also support many functions that are typically used in UNIX

systems such as pipe(), select(), malloc() and socket(). It must also support UNIX style

tty devices.

DOORS makes use of GNU autoconf and automake to determine the current compilation

environment in use. They are used during the build phase to create and configure a UNIX

shell script which is then included in the released versions of DOORS and used in the

target system to make several tests on the system. These tests consist of checking if the

required C or C++ header files are available, compiling various C source files to discover

characteristics of the compiler in use and to verify that the required external libraries exist

in the system. After a successful check, the configure script creates Makefile files that are

used by make command to build the DOORS system by calling the compiler with each

source file and finally linking them to one library or an executable application [6].

2.3 Framework Architecture

The DOORS framework is an extensible object-oriented framework for network enabled

application development. It is not just a set of libraries which can be utilised to implement

interconnectivity, but also a complete application development environment featuring ad-

vanced Scheduling, I/O Handling, and automatic code generation.

DOORS conceptually resides between the operating system (Unix based) and the applica-

tion developed by the programmer. The developer is shielded from the operation system

specific issues and is provided a uniform development environment. All the user events are

mapped into DOORS messages. When a developer wants to implement an application,

DOORS reduces this event-driven application into a set of interacting Tasks, Ports and

DOORS Messages. Tasks communicate with each other using Ports and passing messages

through the connected Ports. Each Message passed to the Task such as user input, incom-

2.3. FRAMEWORK ARCHITECTURE 7

ing protocol packet or time-outs represents a event. The result of any application and its

interaction with DOORS is largely asynchronous and message-based. Figure 2.1 depicts

how the various modules, subsystems and tools of the framework, together with the ma-

chine’s operating system and external libraries, can be architecturally represented.

Operating System (*nix-based)

Protocol ToolBox

Movement Detection

Module

Memory Management

Module

Event-monitoring

Subsystem
Protocols Store

RTP/RTCP SLPGIOP

TCPmuxUDP SAP

Asynchronous

CORBA Subsystem

Code Generators

Utilities

Module

Task Scheduling Subsystem

Scheduler
Tasks

Timer

Manager

I/O Handling Subsystem

I/O Handler
virtual

devices
External

LibrariesExternal

LibrariesExternal

Libraries

Applications

Host

Inspector

Figure 2.1: DOORS architecture1

The Protocols Store contains several existing protocols already implemented, and can be

directly used by the developer to accompany new applications, such as UDP, TCPmux,

RTP and SLP.

The Protocol Toolbox contains specialized Protocol Tasks for aiding protocol develop-

ment, finite state machine implementations, Service Access Points, and encoding/decod-

ing of Protocol Data Units, bi-directional Ports used by Tasks for message passing and

multiplexers that allow M:N communications between Tasks.

The Event-monitoring Subsystem consists of tools used at runtime to monitor various parts

of a running system such as the state of tasks, internal variables, the number of messages

processed, their types, timers as well as the scheduler load. The Subsystem contains a local

event monitor capable of inspecting intra-process events in a locally running application, a

distributed event monitor capable of inspecting events simultaneously in multiple DOORS

based applications running in a network, tools for logging events into files as well as

1Reprinted from Silverajan et. al [1]

8 CHAPTER 2. THE DOORS FRAMEWORK

a hierarchically organized symbol handling interface through which the event monitors

communicate with the application.

In addition, the Utilities and Memory Management Modules provide basic support for

implementation and runtime memory management. The Utilities Module offers basic

datatypes, structures and class templates. Frame and cell classes provide flexible ways

in storing and manipulating large octet arrays. The Memory Management Module of-

fers advanced memory management featuring basic, statistical and block memory alloca-

tions.

Event-based
Client Apps

Event-based
Server Apps

Timer Tasks

I/O Handler

Protocol
Tasks

CORBA
Client Apps

CORBA
Server Apps

Scheduler

CORBA Subsystem

DII

DSI

POA

ORB/IIOP

External World

Timer devices

File devices

UNIX tty
devices

UNIX pipe
devices

User
implemented
devices

Socket devices

Figure 2.2: DOORS communication model2

Consequently, using this architecture it is possible to develop systems using DOORS to

communicate at multiple levels simultaneously, possessing the capacity of harnessing inter-

process communication, virtual devices, protocols and the asynchronous CORBA system

to interact with many types of external programs. Figure 2.2 illustrates the communication

model of DOORS [5]. A DOORS-process runs in a single UNIX-process with its own

scheduler and tasks that are controlled by a scheduler. A DOORS-process is a collection

of DOORS tasks and a scheduler running on one UNIX-process. A DOORS application

refers to a distributed application that may contain more than one DOORS-processes in

communication to each other. Some interesting modules of these subsystems and their

2Reprinted from Karvinen [6]

2.3. FRAMEWORK ARCHITECTURE 9

connections are described in detail in the following subsections.

DOORS contains several libraries and applications. Figure 2.3 shows the inheritance of

some of the C++ base classes in DOORS. A task in DOORS is an object that is represented

by the Otask base class and its derivations. Otask defines an abstract method run() which

is inherited and implemented by its descendants. That function is called by a scheduler

for execution of the task’s own routines. Address is a base class for all the address type

classes in DOORS. It is just shown in the figure as an example of DOORS types. It is

specialised to InetAddr which is an address handler for Internet Protocol version 4 (IPv4)

addresses and InetAddr6 for Internet Protocol version 6 (IPv6) [6].

Otask

+run()

EventTask
+messageQueue: LinkList*

PTask
+sm: StateMachine*

RTTask

Address

InetAddrInetAddr6

Port
+other: Port*

Iface

IoHandler

+inform(Device*)
+forget(Device*)

ClientTask

Message
+sender: Port*
+target: Port*

Scheduler
+ioHandler: IoHandler*
+timerTask: TimerTask*
+inform(Otask*)
+forget(Otask*)

TimerTask
+timers: TimerList

Device

+callbackWrite(): void
+callbackRead(): void

1

*

Figure 2.3: Examples of some of the DOORS classes3

2.3.1 Scheduler

The Scheduler is part of the Scheduling subsystem and is a task which is derived from Otask

but it is specialised in allocating execution turns to other tasks. Various tasks might have

calls to execute at the same time. In order to execute them in DOORS, a Task needs to

ask for a execution turn to the Scheduler. In a typical DOORS application, it is called in a

loop from the main() function. The Scheduler class is an implementation of Round-Robin

3Reprinted from Karvinen [6]

10 CHAPTER 2. THE DOORS FRAMEWORK

Scheduler and it is currently the only scheduler algorithm available within DOORS. The

Scheduler maintains a list of the tasks that are being scheduled. The methods inform()

and forget() are used to add a task for scheduling and to remove it, respectively [6].

2.3.2 I/O Handler and devices

It is essential for a protocol implementation framework to provide access to the device’s

interfaces and hardware configurations, as well as to have a flexible yet efficient input/out-

put handling system. The responsibility of such service is handled by the I/O Handling

subsystem.

The I/O Handling subsystem is directly responsible for allowing event-driven tasks and

applications to communicate with external entities by introducing the concept of a Virtual

device. Such virtual devices currently include IPv4 and IPv6 network devices that perform

both unicast and multicast communication, and stream I/O facilities such as files and

pipes. Virtual devices possesses identifiers represented by file descriptors and perform

a uniform interface to tasks using functions such as open(), close(), read() and write().

However data transfer is asynchronous. Hence when writing to a device, the data is stored

in a buffer until the execution turn is obtained from the Scheduler, and a callback function

is invoked to perform the actual bytewise transmission.

Therefore, the Handling Subsystem relies on a I/O Handler. The I/O Handler is derived

from Otask and it is responsible to manage the devices required for communication. It

is responsible to obtain execution turns from the Scheduler and ensure callback routines

from the devices to handle events[1].

2.3.3 Tasks, Messages and Ports

Ports provide a way to connect DOORS Tasks to each other. It has the methods putMes-

sage() and getMessage() for putting and getting a Message object in a port for transition.

Figure 2.4 illustrates how to send a message between DOORS tasks.

In practice, the message object is instantiated from a specialised Message class. That

2.3. FRAMEWORK ARCHITECTURE 11

specialised class contains attributes for the data being delivered through the ports. For

simplicity, this is not shown in the Figure. EventTask is derived from Task and it supports

message queues and connecting to another EventTask or its descendant via a Port.

EventTask1

run()
MessagePort1

EventTask2

run()
Port2

message queue

Scheduler

Figure 2.4: Sending and asynchronous message in DOORS4

Tasks in general communicate with each other using Ports and passing messages through

the connected Ports. The connection is established using connect() method provided by

Port. The Scheduler calls the run() method of a EventTask to make possible the execution

of each Task. PTask is a descendant of EventTask and it is specialised to tasks featuring

a finite state machine [6].

2.3.4 XML code generators

Implementing a protocol with a computer language typically follows the same pattern

of writing encoders and decoders for messages and because even the simplest protocols

feature a state machine, a programmer must also write a state machine in his protocol

implementation. Using a code generator which reads generalised representation of the

protocol messages and its state machine and creates skeleton code for the programmer to

use in his implementation speeds up the coding work.

The Code Generators are used to compile XML code parsed by the programmer. DOORS

provides three code generators:

• dpeerg : Responsible for defining Protocol Data Unit PDU’s between protocol peers;

• dsapg : Responsible for defining Service Access Point (SAP);

• dsmg : Responsible for defining finite state machines.

4Reprinted from Karvinen [6]

12 CHAPTER 2. THE DOORS FRAMEWORK

XML specifications are then parsed by generators in DOORS at compile time to produce

corresponding framework specific C++ classes such as Messages, Service Access Points,

Service Primitives as well as extended finite state machines. The example of the figure 2.5

provides a rough idea of a XML specification for the Protocol Data Units (PDUs) of the

Real-time Transport Protocol (RTP) in DOORS.

<Peer Name="RtpPeer">

<Message Name="DATA">

<Field> InetAddr srcIP </Field>

<Field> InetAddr destIP </Field>

<Field> Uint8 version </Field>

<Field> Uint8 padding </Field>

<Field> Uint8 extension </Field>

<Field> Uint8 csrc_count </Field>

<Field> Uint8 marker </Field>

<Field> Uint8 payload_type </Field>

<Field> Uint16 sequence_number </Field>

<Field> Uint32 timestamp </Field>

<Field> Uint32 ssrc </Field>

<Field> Frame payload </Field>

</Message>

</Peer>

Figure 2.5: PDU definiton example

2.3.5 Local Event Monitor (LEMon)

As an example on how to monitor a DOORS-process, this section describes the Local Event

Monitor (LEMon). It was originally developed for OVOPS in Lappeenranta University of

Technology as the Textual Protocol Tracer (TPT) but was renamed to follow the naming

conventions in DOORS. Initially, it was not included in DOORS but was later adopted to

DOORS because at the time there were no monitoring tools available in DOORS. LEMon

is also useful as a protocol programming teaching and debugging tool.

LEMon provides a text-based debugging environment for tracing events and also for send-

ing user-defined events to a process. The user is not required to make changes in his

code during testing but makes it possible to try various execution scenarios using the user

interface and textual representation of the messages [6].

Chapter 3

Network Address Translation

(NAT)

3.1 Introduction

Internet as a global and huge network has been growing exponentially. As millions of new

users and devices have been connecting every day, lack of Internet addresses has becoming

an increasingly demanding challenge. Traditionally, home and business customers connect

to the Internet with dial-up connections using an Internet Service Provider (ISP) that

dynamically assign Internet Protocol (IP) addresses that should be unique on the Internet.

Originally IP addresses were defined by IPv4 protocol. However, the number of addresses

provided by IPv4 is limited. That was one of the reasons why a complete redesign of the

protocol was started, known as IPv6. However, in order to respond to the shortage of

IPv4 addresses in the short-term, Network Address Translation (NAT) was proposed [7,

pp. 444–448], which is described in RFC 3022 [8].

The basic idea is to let a NAT-based router rewrite the address information in outgoing

and incoming messages. By changing the source private IP address and port number to

public ones for outgoing connection requests, NAT creates a mapping to allow the return

packets to reach the original initiator, and in this case, NAT is “transparent”to both

endpoints.

13

14 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

Internet

S= 10.0.0.1, 3345

D= 207.192.75.61, 80

1

S= 138.76.29.7, 5001

D= 207.192.75.61, 80

10.0.0.4

138.76.29.7

2

S= 207.192.75.61, 80

D= 138.76.29.7, 5001
3

S= 207.192.75.61, 80

D= 138.76.29.7, 3345
4

A:

10.0.0.1

B:

10.0.0.2

C:

10.0.0.3

S:

207.192.75.61

NAT translation table

WAN side LAN side

138.76.29.7, 5001

...

10.0.0.1, 3345

...

Figure 3.1: Network address translation1

A NAT router residing at home, can be used as a gateway connection to the Internet,

having at least one network interface connected to the internal network and at least one

network interface connected to the Internet (possessing a routable IP address), in order to

connect all the machines to the Internet. Therefore, to multiple hosts in the same network,

NAT provides different private IP addresses, and a single public IP address.

Figure 3.1 is one example, and shows the operation of a NAT-enabled router. Hosts

A, B and C are in the same home network and connected to a router. The router is

a NAT-enabled router, and provides for all the computers different private IP addresses,

respectively 10.0.0.1, 10.0.0.2, 10.0.0.3, and provides a single public IP address 138.76.29.7.

Therefore, the NAT-enabled router behaves to the outside world as a single device with

single public IP address, and hides the details of the home network. This is possible due to

the fact that the NAT-enabled router maintains a NAT translation table with IP addresses

in the table entries including port numbers.

Usually the NAT-enabled routers use Dynamic Host Configuration Protocol (DHCP) to

provide addresses in the home network. Considering the example of the figure 3.1, the

host A: 10.0.0.1 wishes to reach Internet, and opens a browser to read the news in the

1Adapted from Ross et. al [9]

3.2. NAT TRAVERSAL 15

Server S: 207.192.75.61. The host A: 10.0.0.1 assigns the (arbitrary) source port 3345

locally and sends the packet into the LAN (transaction 1). The NAT router receives the

IP packet, checks the source port and destination, and generates a new source port 5001

for the packet, creating a new entry in the NAT translation table. Then, the NAT router

replaces the source IP address and port with its WAN-side address 138.76.29.7 and the

generated source port 5001 and sends the packet into the Internet to reach the destination

server (transaction 2). The Web server completely unaware of these changes, receives the

packet and reads the source IP address and port, sending a response back to the router

(transaction 3). The NAT router gets the response, and checks its NAT translation table

to compare the destination port number 5001 of the packet to the entries in the table.

Obtained the appropriate IP address 10.0.0.1 and destination port number 3345, the NAT

router replaces the destination port and IP address and route the packet to the host A

(transaction 4) [9].

3.2 NAT Traversal

Problems arise when a peer wants to initiate a new communication with another peer

that is connected to the Internet via NAT. Without further arrangements, the NAT-based

router will deny this communication request and will drop incoming messages. Thus, the

peer is unreachable from other peers [10]. For example, services that require Transmis-

sion Control Protocol (TCP) connections initiated from outside of the NAT (public IP

addresses), or stateless protocols such as those using User Datagram Protocol (UDP), can

be disrupted and the functionality of the protocol may be compromised. Developed ser-

vices following the Peer-to-peer (P2P) paradigm such as file sharing, instant messaging

and Voice over IP (VoIP) are examples of applications that suffer from the existence of

NAT.

One possible solution for this problem is to let users configure the router manually, chang-

ing the NAT tables. However, this is very inconvenient for the user and requires admin-

istration rights. Then, to allow incoming messages to reach the peer, a so-called NAT

traversal approach is required.

16 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

NAT traversal techniques are typically required for clients that need to start a protocol

and the communication is affected by the NAT-based routers. Since NAT behaviour is

not standardized, many techniques of NAT traversal exist, but just one can be applied

[11]. In the next section 3.3, the Session Traversal Utilities for NAT (STUN) protocol is

described as a tool to be used in the context of NAT Traversal solutions.

3.3 Session Traversal Utilities for NAT (STUN)

As explained in section 3.2, NAT traversal techniques are required for clients that need

to start a specific protocol that is affected by the NAT-based routers. In the original

specification Simple Traversal of User Datagram Protocol (UDP) through Network Address

Translators (NATs) (STUN) described in the RFC 3489 [12], sometimes called “classic

STUN”, was proposed as a complete NAT traversal technique. However, experience since

the publication of RFC 3489 has found that classic STUN simply does not work sufficiently

well to be a deployable solution. Therefore, a specification of an updated set of methods

published in RFC 5389 [3], Session Traversal Utilities for NAT (STUN) was proposed,

retaining the same acronym but with some differences. STUN is not a NAT traversal

solution by itself. Rather, just a tool to be used in the context of NAT traversal. This is

an important change from the previous specification (RFC 3489) that is now deprecated.

In the next sections, the STUN protocol is explained.

3.3.1 Protocol analysis

Many NAT traversal techniques require assistance from a computer server located in the

public Internet. Session Traversal Utilities for NAT (STUN) is a light-weight client-server

protocol that appeared as a tool to be used in the context of one or more NAT traversal

solutions. Interactive Connectivity Establishment (ICE) [13], Traversal Using Relay NAT

(TURN) [14], Client-Initiated Connections in the Session Initiation Protocol (SIP) [15]

and NAT Behavior Discovery Using Session Traversal Utilities for NAT (STUN) [16] are

four defined usages of STUN at the time. Other STUN usages may be defined in the

future.

3.3. SESSION TRAVERSAL UTILITIES FOR NAT (STUN) 17

A STUN server can be located in the public Internet in order to give useful information

to the clients behind a NAT-router and allow the private IP networks behind a NAT to

interwork with public IP networks. Therefore, the STUN server allows a client to find

out its public address/port pair that they are associated in the NAT-router. A possible

configuration is shown in the figure 3.2.

STUN

Client

STUN

Server

NAT 1 NAT 2

Private

Network 1

Private

Network 2 Internet

Figure 3.2: Possible STUN configuration

Typically hosts are connected to the internet through 1 or more NAT routers. In this

configuration two main entities (called STUN agents) exist, a STUN client and a STUN

server. The lower agent STUN client is connected to a private network 1. This network is

then connected to a private network 2 through NAT 1, and consequently private network

2 connects to the Internet through NAT 2. The upper agent resides in the public Internet

and it is the STUN server.

The STUN Client is the entity that starts the protocol. It sends STUN requests to the

STUN Server, and receives STUN responses. The STUN Server is the entity responsible

to give to the client the information that it requests. In this case, the Server receives the

STUN requests and sends the STUN responses.

Figure 3.3 is one example of a STUN protocol communication and shows the operation

of the STUN protocol using the configuration of the figure 3.2. The client A is in a

private network 1. This network is then connected to a private network 2 through NAT

1, and consequently connected to the Internet through NAT 2. In the STUN protocol

communication, the client A is the lower agent STUN client. The client A with private

IP address 10.0.0.1 needs to find its external IP/Port in order to send this information to

the client B. Then, it sends a STUN message (1) to the STUN server asking “What is my

18 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

NAT 1Client A

(Private IP/Port =

10.0.0.1:6112)

NAT 2

Public IP

138.76.29.7

Client B

1

2

3

What is my public

IP/Port?

You look like:

138.76.29.7:5001

Contact me to:

138.76.29.7:5001

NAT rewrites source to:

Public IP/Port

138.76.29.7:5001

STUN

Server

Figure 3.3: Use STUN to find external IP/Port

public IP/Port?”. The message passes through NAT 1 and NAT 2 and reaches the STUN

server with the source IP/Port from the NAT 2 (138.76.29.7:5001). The STUN server

reads the message, writes the reflexive IP/Port in the message (2) and sends it back to the

source IP/Port that corresponds to the NAT 2. At this point NAT 2 receives the message

2 and sends it to the NAT 1, and NAT 1 sends it to the client A. Now client A knows

its own public IP/Port used to external communications and sends a message (3) to the

client B with its own information. Now the client B knows how to contact the client A,

and it can combine this information with many NAT traversal techniques to contact the

client A.

3.3.2 Protocol operation

In detail, STUN is a client-server protocol and supports two types of transactions: re-

quest/response transactions and indication transactions. Request/response transactions

are the ones in which a client sends a request to a server, and the server returns a re-

sponse. Indication transactions are the ones in which either agent client or server sends

an indication that generates no responses.

All STUN messages must start with a fixed header that includes a method, class and a

transaction ID. The transaction ID is a 96-bit randomly selected number used to identify

3.3. SESSION TRAVERSAL UTILITIES FOR NAT (STUN) 19

each transaction, helping the client to associate the server responses to the requests gener-

ated. The class indicates the type of the message, which may be request, success response,

error response or indication. The method indicates which of the various requests or indi-

cations it refers to. Currently binding is the only method defined, but other methods are

expected to be defined in future documents. The RFC 5389 only defines a single method

binding, which is used either in request/response transactions or in indication transac-

tions. The binding method when used in request/response transactions can be used to

determine the particular “binding”a NAT has allocated to the STUN client. When used in

either request/responses or indication transactions, the binding method can also be used

to keep these “bindings”alive [3].

STUN Client NAT 1 NAT 2 STUN Server

S= 10.0.0.1:6112

D= 75.121.23.17:3478 S= 192.168.1.2:5001

D= 75.121.23.17:3478 S= 138.76.29.7:5001

D= 75.121.23.17:3478

S= 75.121.23.17:3478

D= 138.76.29.7:5001S= 75.121.23.17:3478

D= 192.168.1.2:5001S= 75.121.23.17:3478

D= 10.0.0.1:6112 Reflexive Address

138.76.29.7:5001Reflexive Address

138.76.29.7:5001Reflexive Address

138.76.29.7:5001

1: STUN Binding Request

6: STUN Binding Response
5: STUN Binding Response

3: STUN Binding Request

4: STUN Binding Response

2: STUN Binding Request

Figure 3.4: STUN Client-Server diagram

Typically, a STUN binding request/response is based on a scheme illustrated in the figure

3.2. The agent STUN client sends a STUN binding request message to the STUN server

and it might pass through one or more NATs between the two agents. In this example

two NATs are shown. When the STUN binding request passes through each NAT, the

NAT modifies the source transport address of the packet. As a result, the source transport

address of the packet received by the STUN server corresponds to the public IP address

and port created by the closest NAT to the server. This is called transport reflexive

address. Then, the STUN server copies the source transport address and makes it an

attribute of the body for the STUN binding response packet. This response packet passes

back through the two NATs that modify the destination address of the packet, but the

20 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

reflexive address in the body remains untouched. In this way, the client can learn its

reflexive transport address.

STUN usually operates on a User Datagram Protocol (UDP). When running a STUN over

UDP it is possible that some STUN messages are dropped by the network. Reliability

of STUN request/response can be accomplished with retransmissions by the client that

should retransmit request messages. However, UDP does not provide reliable transport

guarantees. Other way is to run STUN over Transmission Control Protocol (TCP). When

reliability is mandatory TCP may be used in order to provide a connection between the

client and the server. Besides, in order to provide security, Transport Layer Security (TLS)

may be used to accompany the TCP. For this, the STUN messages may be transported

and encrypted via TCP/TLS.

3.3.3 STUN Message Structure

As explained in chapter 1, this thesis focus is a UDP implementation of the STUN pro-

tocol. Therefore, this section focuses in the specific information to reach the required

specifications.

Typically in the Internet Protocol (IP), the messages are encoded in binary using the stan-

dard network bite order (also known as big-endian, in the sense that the most significant

byte or octet is sent first). The transmission order is described in detail in Appendix B of

RFC 791 [17].

STUN messages consist of one header field followed by data (attributes) fields. Therefore,

the STUN messages must start with the same header format. A 20-byte header followed

by zero or more attributes. Then, the STUN header contains a STUN message type,

message length, magic cookie and transaction id.

Figure 3.5 illustrates the structure of the STUN header. The most significant 2 bits must

be zeroes. This is used to differentiate the STUN messages from the messages of other

protocols. The header contains the following fields:

• STUN Message Type: A 14-bit STUN Message Type defines the message class

3.3. SESSION TRAVERSAL UTILITIES FOR NAT (STUN) 21

00 STUN MESSAGE TYPE (14 bits) MESSAGE LENGTH (16 bits)

MAGIC COOKIE (32 bits)

TRANSACTION ID (96 bits)

Figure 3.5: Format of STUN message header

M

11

M

10

M

9

M

8

M

7

C

1

M

6

M

5

M

4

C

0

M

3

M

2

M

1

M

0

Figure 3.6: Format of STUN Message Type field

(request, success response, error response or indication) and the message method

(this specification defines a single method, binding). Although there are four mes-

sage classes, there are only two types of transactions: request/response transactions

(which consist of a request message and a response message) and an indication

(which consists of a single indication message). Requests and indications have just

one form, although the responses are split into two forms, success messages and error

messages. The structure of the STUN Message Type is illustrated in figure 3.6. In

the message type field, the bits are order from the most significant (M11) until the

least significant (M0). The 12-bit M11 to M0 represent the encoding of the method.

The C1 and C0 represent the 2-bit encoding of the class. The class 0b00 is defined

as a request, the class 0b01 is an indication, the 0b10 is the success response, and

the 0b11 is a error response. However, this specification defines a single method,

binding, so it takes the value 0b000000000001. The bits of the method and the class

may be disposed as illustrated in figure 3.6.

• Message Length: These 16 bits must contain the size, in bytes, of the message

body (not including the 20-byte header).

• Magic Cookie: These 16 bits must contain the fixed numeric value 0x2112A442.

This field was part of the transaction ID in the older specification RFC 3489. Now is

placed in this location and it allows the server to detect if the client will understand

22 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

certain new attributes that were added in the new specification RFC 5389.

• Transaction ID: The transaction ID is a 92-bit randomly selected number by the

initiator of the communication. It is used uniquely to identify STUN transactions.

For request/response transactions it is randomly selected by the client, and echoed

by the Server. For indications it is chosen by the agent that is sending the indication.

This field is very important. It primarily serves to correlate requests with responses,

but it also improves the security and helps to prevent certain types of attacks [3].

The details of the attributes are given in the next section.

3.3.4 STUN attributes

As explained before, the STUN messages contain a header and a data field which must

contain attributes. Each attribute must be TLV (Type-Length-Value) encoded with 16-bit

Type, 16-bit Length and a Value with variable length.

TYPE (16 bits) LENGTH (16 bits)

VALUE (variable)

Figure 3.7: Format of STUN Attributes

The format of the STUN attributes is illustrated in figure 3.7. Each attribute contains

the following three fields:

• Type: The Type field specifies the type of the attribute. It must be a hex number

in the range 0x0000 - 0xFFFF. Values between 0x0000 and 0x7FFF are compression-

required attributes, which means that these attributes have to be understandable

by the agent and cannot successfully process the message unless it understands the

attribute. Values between 0x8000 and 0xFFFF are compression-optional attributes,

which means that these attributes can be ignored by the agent if it does not under-

stand them. The most common attributes, those that will be used in this project

are: 0x0009f for Error-Code, 0x000A for Unkown-Attributes and 0x0020 for XOR-

Mapped-Address.

3.3. SESSION TRAVERSAL UTILITIES FOR NAT (STUN) 23

• Length: The Length field is a 16-bit numeric value and must contain the length,

in bytes, of the attribute which will be posted in the Value field (not including the

32-bit Type plus Length).

• Value: The Value field must contain the attribute specified in the Type field and it

has variable length.

The next sections describe in detail the format of the most common attributes used in

this project.

XOR-Mapped-Address

The XOR-Mapped-Address attribute contains the reflexive transport address, and it is

obfuscated through the XOR function. Consequently the former (STUN server) encodes

the transport address by making a XOR operation with the Magic Cookie contained in

the header.

XXXXXXXX (8 bits) X-PORT (16 bits)

X-ADDRESS (variable)

FAMILY (8 bits)

Figure 3.8: Format of XOR-Mapped-Address Attribute

The format of the XOR-Mapped-Address attribute is illustrated in figure 3.8. The most

significant 8 bits specified in the older RFC 3489 [12] were zeroes, and the address was

defined simply as Mapped-Address and was not encoded. However, deployment experience

found that some NATs rewrite the 32-bit binary payloads (IPv4 addresses), containing

the NATs public address (Mapped-Address attribute). Such behaviour was interfering the

operation of STUN [3]. Now in the new RFC [3] the address is obfuscated through the

XOR function, which means that the most significant 8 bits must be unknown value X (do

not care) and must be ignored by the receivers. This attribute also contains the following

fields:

• Family: The Family field is an 8-bit numeric value which represents the IP address

family of the X-Address field: 0x01 for IPv4 and 0x02 for IPv6.

24 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

• X-Port: The X-Port field is an 16-bit numeric value which represents the transport

mapped port received in the request. This field must be computed making the XOR

operation with the most significant 16 bits of the Magic Cookie.

• X-Address: The X-Address is the transport mapped address received in the re-

quest. If the IP family is IPv4, the result should be computed by taking the mapped

IP address in host byte order and making the XOR operation with the Magic Cookie

of the header. If the IP family is IPv6, the result should be computed by taking

the mapped IP address in host byte order and making the XOR operation with the

concatenation of the MAGIC COOKIE and the TRANSACTION ID of the header.

The length depends of the family, so it has a variable length.

Error-Code

The Error-Code attribute is used to identify an error response message. It usually contains

a numeric error code between 300 and 699 plus a textual reason phrase encoded in UTF-8

defined in the RFC 3629 [18] whose semantics are consistent with SIP [19] and HTTP

[20].

RESERVED, should be 0 (21 bits) NUMBER (8 bits)

REASON PHRASE (variable, maximum 763 bytes)

CLASS

(3 bits)

Figure 3.9: Format of Error-Code Attribute

The format of the Error-Code attribute is illustrated in figure 3.9. The most significant

21 bits should be zeroes and are for alignment on 32-bit boundaries and receivers must

ignore these bits. The Class and the Number are encoded separately, just to make the

processing easier. Therefore, this attribute contains the following fields:

• Class: The Class field is a 3-bit numeric value which contains the hundredth digit

of the error code and must be between 3 and 6.

• Number: The Number field is a 8-bit numeric value which contains the last 2 digits,

tens and units of the error code.

3.3. SESSION TRAVERSAL UTILITIES FOR NAT (STUN) 25

• Reason Phrase: The Reason Phrase field is encoded in UTF-8 and is a textual

phrase which has a brief description of the error. It has variable length, depending

of the extension of the phrase.

As mentioned above, it is recommended to use phrases defined in other protocols, such

as HTTP and SIP. The most common errors are defined below and the reason phrase is

defined by the sender:

• 300: “Try Alternate ”. The client should contact an alternate server for this request.

• 400: “Bad Request”. The request was malformed.

• 401: “Unauthorized”. The request did not contain the correct credentials to proceed.

The client should retry later with proper credentials.

• 420: “Unknown Attribute”. The attribute contained in the message is not under-

standable by the server.

• 500: “Server Error”. The server has suffered a temporary error, and the client should

try again later.

Unknown-Attribute

The Unknown-Attributes attribute is only used in the presence of an Error-Code 420.

This attribute must contain a list of 16-bit attribute types that were not understood by

the server. The format of this list is illustrated in figure 3.10.

ATTRIBUTE 1 TYPE (16 bits) ATTRIBUTE 2 TYPE (16 bits)

ATTRIBUTE 3 TYPE (16 bits)

Figure 3.10: Format of Unknown-Attributes Attribute

Software

The Software attribute is an attribute with variable length. It can be sent by clients

and servers, and must contain a textual description of the software that is used by the

26 CHAPTER 3. NETWORK ADDRESS TRANSLATION (NAT)

agent that sends the STUN message. Typically the attribute has no impact in the main

operation of the protocol and is used as a tool for diagnosis and debugging purposes. It

must contain a UTF-8 encoded textual message smaller than 128 characters (which can

be a maximum of 763 bytes).

Chapter 4

Network Security

4.1 Introduction

In the early nineteenth century it took weeks and weeks for government agencies to send a

message to different cities. In the late nineteenth century the telegraph cut this time and

only took a few hours. At the dawn of the twenty and twenty-first century, the time has

been cut to a fraction of second with the telephone and Internet, and not just governmental

institutions but most of the citizens and companies can easily communicate with each

other. The result is that we now conduct more our communications, whether personal,

business, or civic, via electronic channels. The availability of such easy communications

has transformed not just the internationalization of the commerce, but also governmental

and personal relations in remote parts of the world.

These developments in technology have also had a profound impact in terms of privacy.

Today, most people use telephone (including cellphones) daily, and a constant use of

electronic mail, electronic commerce and much more services on the World Wide Web.

However, the reality is that the Internet and the web are extremely vulnerable and can

compromise communications, that by their essence can be naturally intercepted with dif-

ferent methods [21].

This chapter introduces the web security and its considerations, cryptography, and the

Transport Layer Security (TLS) protocol, providing the essential information to under-

27

28 CHAPTER 4. NETWORK SECURITY

stand the implementation of a secure channel between two entities. It begins with a very

brief look at Network security and electronic commerce, followed by cryptography focus-

ing on the issues that led to the creation of the Secure Socket Layer (SSL) protocol. The

next section contains a brief description of the SSL protocol and its transformation into

TLS.

4.2 Approaches to Network Security

The rapid development of the networks and the communications naturally led to business

companies, government agencies, and many individuals to easily access the World Wide

Web, and the usage of graphical Web browsers became popular. They become responsi-

ble for a big part of the traffic on the Internet, and privacy issues become more serious.

Unfortunately the reality is that the Internet and the Web are extremely vulnerable, and

communications can be easily intercepted. Business, governmental agencies and individu-

als woke up to this reality, and the demand for secure Web services grows [21].

Accordingly to Oppliger [22] in the first half of the 1990s, people started to purchase items

electronically. As an example, among the electronic payment systems, credit card trans-

actions are the most widely used. Thus, providing Web transactions security, is nowadays

a demanding challenge and extremely important. The greatest common dominator of all

these possibilities was the use of cryptographic techniques. However, for the TCP/IP

stack, there was hardly any consensus about which cryptographic techniques to use and

what layer to apply them. The remaining paragraphs of this section are based on the

chapter 3 of SSL and TLS: Theory and Practice by Rolf Oppliger [22].

After analysis and discussions, many security protocols were proposed. There are many

possibilities to invoke cryptographic techniques at various layers of the TCP/IP protocol

stack, in order to secure web transactions. Several Internet security protocols and their

placement in the TCP/IP stack are illustrated in figure 4.1 and explained below:

• Network Access Layer: On the Network Access Layer (often called Link Layer

on RFC 1122 [23]), IEEE 802.1AE [24] (also known as MACsec), defines data origin

4.2. APPROACHES TO NETWORK SECURITY 29

PGP / OpenPGP / S/MIME

S-HTTP Kerberos

SSL / TLS / DTLS

IPsec / IKE

Application Layer

Transport Layer

Network Layer

Network Access Layer
IEEE 802.1AE

PPTP / L2TP (IPsec/IKE)

Figure 4.1: The Internet security protocols in the TCP/IP stack1

authentication, connectionless confidentiality and integrity services to MAC frames.

Also, there are several virtual private networking (VPN) technologies and protocols,

such as the Point-to-Point Tunneling Protocol (PPTP) or the Layer 2 Tunneling

Protocol (L2TP) combined with IPsec/IKE, to provide users secure access to their

organization’s network (see next bullet). These protocols can also be used to estab-

lish secure connections in web transactions.

• Network Layer: On the Network Layer (often called Internet Layer on RFC 1122

[23]), to establish secure connections between two IP entities, there are Internet

Protocol Security (IPsec) and Internet Key Exchange (IKE) [25]. These protocols

can be used to establish secure connections in web transactions. The nice thing

about applying security at this level is that it co-resides with IP, and hence all

Internet applications are layered on top of them. Thus, it can be used to secure all

the Internet connections. However, the minus side about IPsec/IKE is that protocols

are overly complex and this makes the deployment and operation of IPsec/IKE quite

tricky.

• Transport Layer: On the Transport Layer, the goal is to enhance the current

transport protocols and invoke cryptographic techniques to provide secure commu-

nications and basic security services for web transactions. SSL/TLS is the choice to

enhance Transmission Control Protocol (TCP) on which protocols such as HTTP,

SMTP and FTP are layered. Datagram Transport Layer Security (DTLS) is the

1Adapted from Oppliger [22]

30 CHAPTER 4. NETWORK SECURITY

choice to provide security over User Datagram Protocol (UDP) connections.

• Application Layer: On the Application Layer, the goal is to provide security

enhancing the actual application or protocol in use. In this case, it is possible either

to invoke cryptographic techniques to enhance HTTP (called S-HTTP, that is the

alternative to HTTPS), or to invoke an authentication and key distribution system

such as Kerberos to actually archieve the same level of security.

Beyond these protocols, there is also the possibility to protect web transactions in a way

that is independent from the transmission techniques. For this purpose we can have a

layer above the application layer, for example to provide secure messaging like Pretty

Good Privacy (PGP), OpenPGP or Secure MIME (S/MIME) [26].

The placement of the security protocols in the TCP/IP stack have different reasons and

consequences, and all the possibilities have advantages and disadvantages. Providing secu-

rity at a low layer has the advantage that higher layers (for example applications) become

immune and need not to be modified or to care about security in web transactions. Pro-

viding security at a high layer has the advantage that it has no impact on the networking

infrastructure, and hence the infrastructure need not to be modified.

For this approach, there is a famous principle that strongly recommends to provide security

services at a high layer. Accordingly to the end-to-end principle in system designs [27],

whenever possible, communications protocol operations should be defined to occur at

the end-points of a communications system, or as close as possible to the resource being

controlled. As an exception, the principle also states that protocol features are only

justified at lower layers of the system just if there is a performance optimization.

Following the end-to-end principle, the Internet Engineering Task Force (IETF) chartered

a Web Transaction Security (WTS) Working Group (WG) in the early 1990s 2. The

goal of the Web Transaction Security Working Group was to develop requirements and a

specification for the provision of security services to Web transaction, e.g., transactions

using HTTP. In late 1993 Allan Schiffman and Eric Rescorla, then with Enterprise In-

tegration Technologies (EIT), came up with a proposal to enhance the HTTP protocol

2http://www.ietf.org/html.charters/OLD/wts-charter.html

4.3. SECURITY ATTACKS 31

with the possibility to encrypt data over the communication. This proposal was named

Secure HyperText Transfer Protocol (S-HTTP or SHTTP), and was a message-oriented

application-layer protocol. The IETF Web Transaction Security (WTS) working group

was chartered in 1995 to consider this protocol and it concluded and published S-HTTP

as an experimental RFC 2660 [28] authored by Rescorla and Schiffman (then with Terisa

Systems) in 1999.

However, things evolved differently and independently from the end-to-end principle and

the S-HTTP protocol proposal, and the developers at Netscape Communications (com-

monly known as Netscape) sustained the claim that security at the Transport Layer pro-

vides interesting security between the low and high layers. They wanted to create a

protocol that could establish secure connections to applications as simply as possible. To

achieve this goal, they decided to create an intermediate layer between the Application

Layer and the Transport Layer, which was called Secure Sockets Layer (SSL). Its job was

to provide to application developers an easy way to handle security, meaning that it had to

establish secure connections and transmit data over the secure connections. The first SSL

version was the SSL 1.0, and later upgraded to SSL 2.0 and SSL 3.0. Later, the Transport

Layer Security (TLS) was defined as an upgrade to the SSL 3.0. The TLS 1.0 (also called

as SSL 3.1) was the first version, and then upgraded to TLS 1.1 (also called as SSL 3.2).

Nowadays, the TLS protocol is already in the version TLS 1.2 (also called as SSL 3.3),

and it provides security with more cryptographic algorithms and extensions.

As explained in Chapter 1, this thesis focus in a TLS protocol implementation. Hence, the

next sections focus on the essential contents to better understand the SSL/TLS protocol

in the section 4.6.

4.3 Security Attacks

As explained before, communications can be easily intercepted by skilled programmers or

hackers, that gain access to a network to intercept the normal flow of communications.

The easiest way to protect a network from an outside attack is to close it off completely

from the outside world. A closed network provides connectivity only to trusted known

32 CHAPTER 4. NETWORK SECURITY

parties and sites. A closed network does not allow a connection to public networks.

However, if we are talking about a private building, or campus, not everyone is trustable,

or a attacker can somehow gain access to the private network. This section is based on

the chapter 1 of Network Security Essentials: Applications and Standards, by William

Stallings, 2010.

In general, there is a flow of information between two peers. The first peer A can be

considered the information source that sends information to a destination peer B. Different

threats are depicted in Figure 4.2. The first figure 4.2(a) shows the normal flow in a

communication, and the following four are the general categories of threats:

A

Information

source

Information

destination

B

(a) Normal flow

A B

(b) Interruption

A B

T

(c) Interception

A B

T

(d) Modification

A B

T

(e) Fabrication

Figure 4.2: Security Threats3

• Interruption: Part of the communication system between two entities is destroyed

or becomes unavailable or unusable. This can be considered an attack of availabil-

ity. Examples include destruction of pieces of hardware such as hard disk, cutting

3Adapted from Stallings [29]

4.3. SECURITY ATTACKS 33

off the communication line, disabling management system, etc.

• Interception: An unauthorized Peer T gains access to the network and intercepts

the information that is going on the communication line. This is an attack of con-

fidentiality. The unauthorized peer can be a person, a computer or a program.

Examples include capturing data in a network and unauthorized copy of programs

and files.

• Modification: An unauthorized Peer T not only gains access to the network to

intercept the information, but tampers it to send to the destination B. This is an

attack of integrity. The unauthorized peer can be a person, a computer or a

program. Examples include modifying the content of messages transmitted in a

network, changing values in a data file or altering a program to perform differently.

• Fabrication: An unauthorized Peer T inserts data into the communication system.

This is an attack of authenticity. Examples include the insertion of messages in a

network or the addition of records to a file.

The following figure 4.3 represents these attacks in terms of passive and active attacks.

Passive Attacks

Security Attacks

Active Attacks

Traffic

Analysis
Passive

Eavesdropping

Tampering Spoofing Hijacking Replay Denial of

Service

Figure 4.3: Passive and Active Security attacks

4.3.1 Passive Attacks

A passive attack is an attack where an unauthorized attacker monitors or listens the

communication between two parties. Passive attacks are in the nature of eavesdropping on,

or monitoring of, transmissions, and the goal is to obtain information being transmitted.

34 CHAPTER 4. NETWORK SECURITY

There are two types of passive attacks:

• Traffic Analysis: Usually, before mounting an active attack, attackers have to

collect sufficient information about the network or the user. The operation of traffic

analysis gives to the attacker a basic information going on the network, such as,

network information, activity on the network, protocols being used, etc.

• Passive Eavesdropping: This attack is very similar to the traffic analysis attack,

because the attacker collects information from the network, but at the same time also

accesses and reads the sensitive contents of the message. If the message is encrypted

it requires the attacker to break the encryption to read the message.

Passive attacks are very difficult to detect because they do not involve modification of the

data. However, dealing with passive attacks is on prevention rather than detection. The

common technique for masking messages is encryption.

4.3.2 Active Attacks

An active attack is an attack where an unauthorized attacker modifies a data stream or

creates a false stream. The attacker has the ability to transmit data to one or both of the

parties, or block the data stream in one or both directions. There are 5 types of active

attacks:

• Tampering: Tampering or modification of messages, is when an attacker monitors

the network traffic and maliciously captures the message and modifies the content.

The messages can be simply altered, delayed or reordered, to produce an unautho-

rized effect.

• Spoofing: Spoofing or masquerading, is when an attacker forges network data and

successfully masquerades as another by falsifying data and thereby gaining an illegit-

imate advantage. This sort of attack can be used to thwart systems that authenticate

based on host information. Man-in-the-middle attack is a common attack where the

attacker tricks both communicating parties into communicating with him. Both

parties think they are talking to each other when in fact the entire conversation is

4.3. SECURITY ATTACKS 35

controlled by the attacker. Other examples of known attacks are IP spoofing, URL

spoofing and phishing, referrer spoofing, poisoning of file-sharing networks, caller ID

spoofing and e-mail address spoofing.

• Hijacking: Hijacking is the next step after the authentication of a legitimate user.

A spoofing attack can be used to “hijack” the connection. Session hijacking is

a common attack that involves taking control of the session. The attacker takes

control of the session and the victim thinks that the session is no longer in operation

whatever the cause. Usually this attack can make use of the session cookies to gain

unauthorized access to information or services in a computer system. A common

method to hijack a web session is using the technique Session Sidejacking. Another

common attack is the technique SSL Hijacking that is used to hijack SSL connections.

• Replay: Replay attack involves the passive capture of data in a network, and its

subsequent retransmission to produce unauthorized effect. An attacker can record

and replay network transactions. For example in web commerce, if the protocol is

not properly designed and secured, an attacker can record a single transaction and

then replay it later when the stock price has dropped, doing it repeatedly until all

the stock is gone.

• Denial of Service: Denial of service (DoS) attack is often used and famously known

to bring down systems. The main aim is to bring down systems to prevent them

from responding to the users requests. Usually this is done by sending huge amount

of traffic to the system, in order to prevent a computer or service from functioning

efficiently or at all, temporarily or indefinitely. Other level of a DoS attack, a

Distributed Denial of Service (DDoS), is the version of a DoS in a distributed way,

in which an attacker makes use of multiple computers previously compromised by

taking advantage of security vulnerabilities or weaknesses, to launch the DoS attack.

Active attacks have the opposite characteristics of passive attacks. As explained before

in the section 4.3.2, passive attacks are very difficult to detect but solutions to prevent

the success of these attacks are available. In the case of active attacks, they are very

difficult to prevent absolutely. For this reason, the goal should be to detect the security

36 CHAPTER 4. NETWORK SECURITY

attacks and somehow recover from them. However, past detections also contribute to

future preventions, so it has a direct effect in prevention as well.

4.4 Security Services

As explained before, the primary goal in network security is to prevent attacks and to

secure important data that passes through the network. There are many different ways

to secure data, for example with cryptography, that can provide security services to ap-

plications. There is no universal agreement about security services. However, accordingly

to Stallings [29], one useful classification of security services agrees with both ITU-T rec-

ommendation X.800 [30] and RFC 2828 [31], and is the following:

• Authentication: The authentication service is used to prove the identity of an

entity, assuring that a communication is authentic. In single messages or connections,

authentication is usually used to assure to the recipients that the message is from the

source that it claims to be. In bidirectional communications it can be required for

both parties of the communication to perform authentication. In both situations the

service must ensure that the connection is not interfered by a third party that can

masquerade as one of the two legitimate parties, to transmit and receive messages.

• Data Confidentiality: The idea of confidentiality is to keep secret information

or data from others without proper credentials. Confidentiality can be seen as the

protection of transmitted data from passive attacks. In practice, in data commu-

nications between two entities, the goal is to prevent attackers to read the data.

Nowadays, cryptography is the key to provide data confidentiality. In addition, a

brief clarification of cryptography will be given in the next sections.

• Data Integrity: As with confidentiality, data integrity service is used to keep

secret messages, not just from being read, but avoiding modifications in the original

messages. Integrity service relates to active attacks. The goal is to ensure that

messages are received as sent, with no duplication, insertion, modification, reordering

or replays. The service must cover the destruction of the data as well. Plenty of

4.5. CRYPTOGRAPHY 37

well-known checksums exist and are discussed in the next sections.

• Non-repudiation: Non-repudiation service is used to prevent either sender and

receiver from denying having transmitted messages. Thus, with cryptography (Dig-

ital Signatures) it is possible to enable the receiver of a message to prove that the

message he received was sent by the alleged sender. Similarly the sender is enabled

to prove that the message was in fact sent to the alleged receiver.

• Access Control: The Access Control service is used to limit and control the access

to host systems and applications. To make such control and deny entities to gain

unauthorized access, each entity should be first identified or authenticated, and then

access rights can be tailored to the individual.

• Availability Service: Loss or reduction of availability can be caused by a variety

of attacks. The goal is that a system should be able to prevent or recover from loss

of availability of elements of a distributed system.

4.5 Cryptography

As explained in the previous section, there are many different ways to secure data, one of

them being cryptography. Cryptography is the science that studies ways to keep secrecy of

information. People might want to send secure information over insecure channels. A com-

puter network or telephone line are examples of insecure channels. The common example

assumes a sender Alice that wants to send a message m to a receiver Bob. The message can

be intercepted and read by the eavesdropper Trudy. Or even worse, the message can be

intercepted and modified. For this purpose, the communication might require authentica-

tion, confidentiality, integrity and non-repudiation services. Cryptography is then used to

provide methods or services to prevent the type of attacks described in section 4.3. In this

section we provide a brief introduction to cryptography, giving a basic overview and basic

principles of cryptography as far as they are relevant for a proper understanding of the

SSL/TLS protocols. Five types of cryptographic algorithms are discussed: symmetric key

encryption, public key encryption, cryptographic hash functions, message authentication

38 CHAPTER 4. NETWORK SECURITY

codes, and digital signatures.

4.5.1 Symmetric Encryption

Symmetric Encryption, also referred to as conventional encryption, secret-key, or single-

key encryption, allows encrypted communication between two endpoints using a single

shared key. It is called symmetric encryption because it uses the same key for encryption

and decryption. This encryption is actually used to provide Confidentiality.

Plaintext
input

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., AES)

Decryption algorithm
(reverse of encryption

algorithm)

K

X

Y = E[K, X] X = D[K,Y]

K

Figure 4.4: Working principle of a symmetric encryption system4

The working principle of a symmetric encryption system is illustrated in figure 4.4. On

the left side, the sender Alice wants to send a message to the receiver Bob. Alice and

Bob share the same key K to encrypt and decrypt messages. Then, Alice encrypts the

plaintext message X with the encryption function E (parametrized with the key K). The

resulting ciphertext Y = E[K,X] is sent to the recipient Bob over a potentially insecure

channel. On the right side, the recipient Bob receives the ciphertext Y and decrypts with

the decryption function D (again parametrized with the key K). If the decryption process

is successful, the recipient is able to recover the plaintext message X = D[K,Y] sent by

Alice.

The primary disadvantage of this approach, is the distribution of the key, that must remain

secret. In particular, the difficulty remains in exchanging the secret key, since one has to

exchange the keys in the same insecure channel. Sending the key in cleartext leaves open

the possibility for attackers to capture the key. The solution for this problem is to use

4Reprinted from Stallings [29]

4.5. CRYPTOGRAPHY 39

a cryptographic key exchange protocol, also known as public key infrastructure, and is

explained in the next section.

Secret key cryptography schemes are generally categorized as being either stream ciphers

or block ciphers:

• Block cipher: it operates on a single bit (byte or computer word) at a time and

implements some form of feedback mechanism so that the key is constantly changing.

• Stream cipher: it operates on individual bits or bytes, and the actual transformation

varies during the encryption process.

Block ciphers, are often used in many secure Internet protocols including PGP, SSL/TLS,

and IPsec. A block cipher can operate for example in the Electronic Code Book (ECB), or

more preferably in the CipherBlock Chaining (CBC) mode. Alternatively, a block cipher

can be turned into a stream cipher by operating in the Cipher FeedBack (CFB) or in the

Output FeedBack (OFB) [22]. For more information read the literature [32].

In SSL/TLS protocol, symmetric encryption is commonly used for data bulk encryption,

just after the two parties agreed on a shared key. However, encrypting a message does not

guarantee that the message is not changed while encrypted. Hence often a Message Au-

thentication Code (MAC) is added to a ciphertext to ensure that changes to the ciphertext

will be noted by the receiver.

Today, there are a number of popular block cipher and stream cipher algorithms. Thus, we

are going to explain the most relevant symmetric encryption algorithms for the SSL/TLS

protocol.

Data Encryption Standard (DES)

The DES was designed by IBM in the 1970s and it was adopted as a standard in FIPS PUB

46 [33] by the National Institute of Standards and Technology (NIST). DES is a block-

cipher that has an effective key length of only 56 bits, and operates on 64-bit blocks. DES

is the most common scheme used today. It has a complex set of rules and transformations

that were designed specifically to yield fast hardware implementations and slow software

40 CHAPTER 4. NETWORK SECURITY

implementations, although this last point is becoming insignificant since the computers are

much faster today than twenty years ago. The overall security of DES seems to be good and

the encryption algorithm is surprisingly resistant against the most powerful cryptanalytical

attacks (differential and linear attacks). The major weakness and vulnerability of DES is

the restricted key length of 56 bits. This means that an exhaustive key search (brute force

attack) can be done in 256 operations in the worst case, with an average 255 operations.

Thus, with this method, specialists have built algorithms to break DES keys very easily

and it became perfectly feasible today. One feasible attack is the EFF DES cracker [34],

and in 1999 the duration of brute-force attack against DES could be less than 24 hours

[35].

Because of the short times of the brute force attacks, the use of DES cannot be recom-

mended anymore. In many applications, DES is replaced with a multi-iteration version

of it. Triple DES (3DES) is one DES variant and consists of three DES keys, employing

168-bit keys (three times 56), making three encryption/decryption passes over the block.

3DES is also described in FIPS PUB 46-3 [33]. The major disadvantage of 3DES is per-

formance, since a 3DES implementation is roughly three times slower than a normal DES

implementation [22].

Advanced Encryption Standard (AES)

In 1997, the U.S. NIST initiated a public competition to develop a new cryptosystem to

be the successor of DES. The result of this competition was the Advanced Encryption

Standard (AES), that became the official successor of DES, and was published in FIPS

PUB 197 [36]. AES uses secret key cryptography scheme called Rijndael, a block cipher

designed by Belgian cryptographers Joan Daemen and Vincent Rijmen. The algorithm

uses a fixed block size of 128 bits, and allows any combination of keys lengths of 128, 192

or 256 bits. The three official versions of AES are shown on table 4.1.

Unlike DES, the AES has a clean mathematical structure. Until today, there is no register

of techniques to break the AES more efficiently than a brute force attack. A related-key

attack can break 256-bit AES with a complexity of 299.5, which is faster than brute force

4.5. CRYPTOGRAPHY 41

Block size Key length Number of rounds

AES-128 128 128 10

AES-192 128 192 12

AES-256 128 256 14

Table 4.1: The three official versions of AES.

but is still infeasible. 192-bit AES can also be defeated in a similar manner, but at a

complexity of 2176 which is also infeasible. 128-bit AES is not affected by this attack

[22].

RC4

Designed by Ron Rivest in 1987, Rivest Cipher 4 (RC4) stands as a trademark, so it is

often referred to as ARCFOUR or ARC4. RC4 is a stream cipher that uses variable-

sized keys, meaning that it generates a stream of pseudo-random bits (a keystream). This

ability to handle variable-length keys is one of the advantages of RC4. RC4 is widely used

in commercial applications including Oracle SQL, Microsoft Windows and the SSL.

In spite of the fact that RC4 is more than 20 years old, no serious vulnerability had been

found so far. However, while remarkable for its simplicity and speed in software, weak-

nesses have been found in RC4 that argue against its use in new systems. The keystream

generated is biased in varying degrees towards certain bit sequences. This weakness has

been exploited and can lead to very insecure cryptosystems in Wired Equivalent Privacy

(WEP) encryption used in Wireless Local Area Networks (WLANs). In 2001 Scott Fluhrer,

Itsik Mantin, and Adi Shamir published an analysis of the RC4 stream cipher [37]. Some

time later, it was shown that this attack could be applied to WEP and the secret key

could be recovered from about 4,000,000 to 6,000,000 captured data packets. In 2004 a

hacker named KoReK improved the attack and the complexity of recovering a 104 bit

secret key was reduced to 500,000 to 2,000,000 captured packets. In 2005, Andreas Klein

presented another analysis of the RC4 stream cipher [38]. Klein showed that there are

more correlations between the RC4 keystream and the key than the ones found by Fluhrer,

Mantin, and Shamir which can additionally be used to break WEP in WEP like usage

modes. Finally in 2007, Erik Tews, Ralf-Philipp Weinmann and Andrei Pyshkin extended

42 CHAPTER 4. NETWORK SECURITY

Klein’s attack and optimized it for usage against WEP, breaking a 104 bit WEP key in

40,000 captured packets with 50% success probability. For 60,000 available data packets,

the success probability is about 80% and for 85,000 data packets about 95% [39].

RC2

Also designed by Ron Rivest in 1987, Rivest Cipher 2 (RC2) is a 64-bit block cipher that

uses variable-sized keys between 8 and 128 bits, to replace DES. The algorithm operates

in 18 rounds. In 1997 John Kelsey, Bruce Schneier and David Wagner published an

analysis to various block ciphers, including RC2 that was cryptanalysed using 234 chosen

plaintexts [40]. Consequently, nowadays RC2 is considered to be weak, and its usage

should be avoided (at least for any security-critical application).

International Data Encryption Algorithm (IDEA)

The International Data Encryption Algorithm (IDEA) is a block cipher that was originally

designed by James Massey and Xuejia Lai, intended to substitute DES and was first

described in 1991. IDEA also stands as a trademark, and it is best known for its usage

in former versions of the Pretty Good Privacy (PGP). IDEA is a 64-bit block cipher and

uses 128 bits of key length. The algorithm operates in 8.5 rounds. IDEA was designed

to be resistant against differential cryptanalysis and related attacks. Consequently it has

been very successful, as no successful linear or algebraic weaknesses have been reported

so far [22]. In 2007 Eli Biham, Orr Dunkelman and Nathan Keller published the best

attack, a high-order differential-linear attack requiring 264-252 chosen plaintexts, reducing

its operation to 6 rounds (instead of the original 8) with a complexity of 2126.8 encryptions

[41].

Skipjack

The Skipjack is a block cipher that was developed by the U.S. National Security Agency

(NSA) and it was intended for use in the controversial Clipper chip. The Clipper chip

was not successful, so they decided to implement also in FORTEZZA cards, in addition

4.5. CRYPTOGRAPHY 43

to a digital signature system, SHA-1 and a key exchange algorithm (KEA) (known as

FORTEZZA KEA). Skipjack is a 64-bit block cipher and uses 80 bits of key length. The

algorithm operates in 32 rounds [42]. In terms of weaknesses, there are no registers of a full

version attack to Skipjack. In 1999 Eli Biham, Alex Biryukov and Adi Shamir published

one article explaining an attack against 31 of the 32 rounds of Skipjack [43], but they

were not been able to find attacks against the full version. Up to today, this is the best

cryptanalysis of Skipjack known to the public.

Camelia

Camelia is a block cipher that was developed by Mitsubishi and Nippon Telegraph and

Telephone (NTT) in 2000. It is a 128-bit block cipher and similarly to AES can use

128, 192 or 256 bits of key length. The number of rounds is 18 (for 128-bit keys) or 24

(for 192-bot or 256-bit keys) [44][45]. Also Camelia was designed to be suitable for both

software and hardware implementations and to be resistant against known block cipher

attacks. Due to the fact that its definition is similar to AES, theoretically, in the future,

it might be possible to break Camelia (and AES) using an algebraic attack. With today’s

technology, such an attack would take years to compute, and thus it is not realistic.

4.5.2 Public Key Encryption

Asymmetric Encryption, also commonly referred to as Public Key Encryption, allows

encrypted communication between two parties without the need for prior negotiation of

secret keys. It is called asymmetric encryption because it uses different keys for encryption

and decryption. In the most popular form of public key cryptography, each party has two

keys, the private key that must remain secret, and the public key that can be freely

distributed. The two keys have a special mathematical relationship. A necessary (but

usually not sufficient) condition for a public key cryptosystem to be secure is that it is

computationally infeasible to compute the private key from the public key.

The working principle of a asymmetric encryption system is illustrated in figure 4.5(a).

On the left side, the sender Bob wants to send a message to the receiver Alice. Alice had

44 CHAPTER 4. NETWORK SECURITY

Plaintext
input

Bobs's
public key

ring

Transmitted
ciphertext

Y = E[PUa, X]

X =
D[PRa, Y]

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Joy

Mike

Ted

Alice

X

Alice's public
key

PUa PRa Alice's private
key

Bob Alice

(a) Encryption with public key. Working principle of an asymmetric encryption
system.

Plaintext
input

Transmitted
ciphertext

Y = E[PRb, X]

X =
D[PUb, Y]

Plaintext
outputEncryption algorithm

(e.g., RSA)

X

Bob's public
key

PUbBob's private
key

PRb

Decryption algorithm

Alice's
public key

ring

Joy
Ted

Bob Alice

(b) Encryption with private key. Working principle of a digital signature system.

Figure 4.5: Public Key Cryptography5

previously generated a pair (public key PUA, private key PRA). Bob knows Alice public

key, and encrypts the plaintext message X with the encryption function E (parametrized

with Alice’s public key PUA). The resulting ciphertext Y = E[PUA, X] is sent to the

recipient Alice over a potentially insecure channel. On the right side, the recipient Alice

receives the ciphertext Y and decrypts it with the decryption function D (parametrized

with her private key PRA). If the decryption process is successful, the recipient Alice is

able to recover the plaintext message X = D[PRA, Y] sent by Bob, and Bob is assured

5Reprinted from Stallings [29]

4.5. CRYPTOGRAPHY 45

that the message can just be read by Alice.

The primary disadvantage of this approach, is that a public key cryptosystem is compu-

tationally slower and less efficient than secret key cryptography, thus it is not efficient

for data bulk transfer. Thus public key cryptosystems are mainly used for authentication

and key management and symmetric encryption for data bulk transfers. The result of

combining secret and public key cryptosystems are often called hybrid cryptosystems and

are frequently used in practice, including for example the SSL/TLS protocols.

As explained above, public key systems are commonly characterized by the use of a cryp-

tographic type of algorithm with two keys, one private and one public. Depending on the

application, the sender uses either the sender’s private key, the receiver’s public key, or

both to perform some type of cryptographic function. In broad terms, we can classify the

use of public-key cryptosystems into three categories [29]:

• Encryption/Decryption: The sender encrypts the message with the recipient’s

public key.

• Digital Signature: The sender signs the message with its private key. Signing is

achieved by a cryptographic algorithm applied to the message or to a small block of

data that is a function of the message.

• Key Exchange: The two sides cooperate to exchange a session key. Several different

approaches are possible, involving the private key(s) of one or both parties.

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes
Diffie-Helman No No Yes
DSS No Yes No
Elliptic Curve Yes Yes Yes

Table 4.2: Applications for Public-Key Cryptosystems.

Some algorithms are suitable for all three applications, whereas others can be used only

for one or two of these applications. Table 4.2 indicates the applications supported by four

main algorithms briefly described below: RSA, Diffie Hellman, Digital Signature Standard

(DSS) and elliptic-curve cryptography [29].

46 CHAPTER 4. NETWORK SECURITY

RSA

The RSA public key cryptosystem was originally designed by Ronal Rivest, Adi Shamir

and Lenoard Adleman in 1978 [46], and the letters RSA are the initials of their surnames,

listed in the same order as on the paper. RSA is used in hundreds of software products and

can be used for key exchange, digital signatures or encryption of small bulks of data. RSA

uses a variable size encryption block and variable size key. The key-pair is derived from a

very large number, n, that is the product of two prime numbers chosen according to special

rules. These primes may be 100 or more digits in length each, yielding an n with roughly

twice as many digits as the prime factors. The public key information includes n and a

derivative of one of the factors of n. An attacker cannot determine the prime factors of n

(and, therefore, the private key) from this information alone. This is what makes the RSA

algorithm so secure [47]. Just if someone finds an efficient integer factorization algorithm,

then the RSA public key cryptosystem would be broken. A more worrisome picture would

be the possibility to break RSA without having to factorize integers. However, it has not

been shown so far [22].

Diffie-Hellman Key Exchange

After publishing the article [48], Whitfield Diffie and Martin Hellman came up their own

implementation for key exchange. Diffie-Hellman (D-H) is used for secret-key exchange

only, and not for authentication or digital signatures. The purpose of the algorithm is to

enable two users to exchange a secret key securely that then can be used for subsequent

encryption of messages. The algorithm itself is limited to the exchange of the keys.

Like any other protocol that employs public key cryptography, the Diffie-Hellman key

exchange protocol is vulnerable to the man-in-the-middle attack. A person in the middle

may establish two distinct Diffie-Hellman key exchanges, one with Alice and the other

with Bob, effectively masquerading as Alice to Bob, and vice versa, allowing the attacker

to decrypt (and read or store) then re-encrypt the messages passed between them. A

method to authenticate the communicating parties to each other is generally needed to

prevent this type of attack. So, in practice, D-H protocol is usually combined with mutual

4.5. CRYPTOGRAPHY 47

authentication protocols to come up with an authenticated key exchange protocol. To

accomplish that, usually D-H is authenticated using RSA signatures. Consequently, digital

signatures and PKIs must be used to securely deploy authenticated key exchange protocols.

More information about Diffie-Helman can be found in the book [47]).

Digital Signature Standard (DSS)

The algorithm Digital Signature Standard (DSS) was published in FIPS PUB 186 by the

National Institute of Standards and Technology (NIST) and provides digital signature

capability for the authentication of messages. DSS makes use of SHA-1 and presents a

new digital signature technique, the Digital Signature Algorithm (DSA). The DSS was

originally proposed in 1991 and revised in 1993 in response to public feedback concerning

the security of the scheme. There was a further minor revision in 1996. The last release

is the FIPS PUB 186-3. The DSS uses an algorithm that is designed to provide only the

digital signature function. Unlike RSA, it cannot be used for encryption or key exchange

[47].

Elliptic Curve Cryptography (ECC)

The vast majority of algorithms and standards on Internet use public key cryptograpghy

for encryption and RSA for digital signature to be secure. RSA has been increasing the

bit length of its algorithm, giving higher levels of security but increasing the processing

time making a heavier processing load to the application. A heavier processing has per-

formance consequences in systems such as electronic commerce that support large number

of transactions, or light equipment such as Personal Digital Assistant (PDAs) that have

limited compute power and/or memory.

Elliptic Curve Cryptography (ECC) came up to compete with RSA. It is a public key

algorithm based on elliptic curves that appears to offer equal security than RSA for a far

smaller bit size, thereby reducing processing overhead. Its theory has been around for

some time but just recently a few implementations have begun to appear, as well as the

interest in probing for weaknesses. Thus, the confidence level in ECC is not yet as high

48 CHAPTER 4. NETWORK SECURITY

as that in RSA [29]. More information can be found in the RFC 6090 [49].

Other Public-Key Cryptography Algorithms

One famous algorithm is FORTEZZA KEA, already mentioned above. It was designed

by NSA in 1994, and it basically refers to a modified Diffie-Hellman key exchange protocol.

In short, a long-term certificate-based Diffie-Hellman key exchange is combined with a

ephemeral Diffie-Hellman key exchange. Furthermore it used the block cipher Skipjack,

that is used to reduce the key to 80 bits long. The FORTEZZA KEA algorithm is not

going to be explained, since the full mathematical description is beyond the scope of this

thesis.

Another often used algorithm is the Secure Remote Password (SRP) protocol, and

it is a password-authenticated key agreement protocol. SRP allows a user to authenticate

himself to a server, it is resistant to dictionary attacks mounted by an eavesdropper, and

it does not require a trusted third party. SRP creates a large private key shared between

the two parties in a manner similar to Diffie-Hellman, then verifies to both parties that the

two keys are identical and that both sides have the user’s password. SRP is an agorithm

often used in SSL/TLS implementations. More information can be found in the RFC 2945

[50] and RFC 5054 [51].

Finally, another often used algorithm is the Pre-Shared Key (PSK), that is more often

called Transport Security Layer Pre-Shared Key (TLS-PSK) in SSL/TLS imple-

menations. TLS-PSK is a set of cryptographic protocols that provide secure communica-

tions using shared keys (symmetric keys). The main goal is to combine PSK with other

algorithms and provide a secured way to create secure communications. Nowadays there

are several ciphersuites: the first set of ciphersuites uses only symmetric key operations

for authentication; the second set uses a Diffie-Hellman key exchange authenticated with

a pre-shared key; the third set combines public key authentication of the server with pre-

shared key authentication of the client. More information can be found in the RFC 4279

[52] and RFC 4785 [53].

4.5. CRYPTOGRAPHY 49

4.5.3 Hash Functions

Hash functions, also called message digests or one-way encryption, are algorithms that,

in some sense, use no key. Instead, a fixed-length hash value is computed based upon

the plaintext that makes it impossible for either the contents or length of the plaintext

to be recovered. Hash algorithms are typically used to provide a digital fingerprint of a

file’s contents, often used to ensure that the file has not been altered by an intruder or

virus. Hash functions are also commonly employed by many operating systems to encrypt

passwords. Hash functions, then, provide a measure of the integrity of a file [47].

Examples of cryptographic hash functions are MD5 and SHA-1.

MD5

Message-Digest algorithm 5 (MD5) was originally designed by Ron Rivest and it generates

hash values of 128 bits (independent from the input message length). In terms of security,

many cryptographers have been successfully exploiting the algorithm, and have been able

to generate rogue CA certificates [22].

SHA

Secure Hash Algorithm (SHA), an algorithm for NIST’s Secure Hash Standard (SHS) was

designed by Ron Rivest as well. Its algorithm is conceptually similar to MD5, but a little

stronger and slower. SHA-1 produces a 160-bit hash value and was originally published as

FIPS 180-1 and RFC 3174. FIPS 180-2 (aka SHA-2) describes five algorithms in the SHS:

SHA-1 plus SHA-224, SHA-256, SHA-384, and SHA-512 which can produce hash values

that are 224, 256, 384, or 512 bits in length, respectively. SHA-224, -256, -384, and -512

are also described in RFC 4634 [47].

4.5.4 Digital Signatures

As illustrated in figure 4.5(b), public key encryption can be used in other ways. Instead

of encrypting with the public key (ensuring secrecy), a sender Bob wants to encrypt the

50 CHAPTER 4. NETWORK SECURITY

message with his private key (ciphertext) and then send it to the receiver Alice, ensuring

that the message is indeed from him. Alice receives the message and can decrypt it using

Bob’s public key, thus proving that the message must have been encrypted by Bob. No

one else knows Bob private key, so he is the only one that can create such ciphertext to be

decrypted with his public key. A secure hash code such as SHA-1 can be used to encrypt

the message with the sender’s private key. Therefore the message cannot be altered.

Thus, if Bob sends the ciphertext and the message in cleartext to the receiver Alice, she

can decrypt and compare the messages, checking its authenticity. Thus the message is

authenticated both in terms of source and in terms of data integrity. Digital signatures

can also provide non-repudiation, meaning that the signer cannot successfully claim he

did not sign a message, while also claiming their private key remains secret. However, it is

good to emphasize that this method does not provide confidentiality. When the message

is sent in clear text, it can be safe from alteration but not from eavesdropping.

4.5.5 Message Authentication Code

It is not always necessary to encrypt messages to protect their confidentiality. Sometimes it

can be sufficient to provide message authentication and integrity (meaning that a recipient

can receive a message and verify its authenticity and integrity). For this purpose, Message

Authentication Code (MAC) are used. A MAC algorithm accepts as input a secret key and

an arbitrary length message to be authenticated, and outputs a MAC (known as a tag).

The MAC value provides message data integrity and authenticity, by allowing verifiers

(who also possess the secret key) to detect any changes to the message content.

The most widely used MAC is Hash-based Message Authentication Code (HMAC). HMAC

is a specific construction for calculating a message authentication code (MAC) involving

a cryptographic hash function in combination with a secret key. Any cryptographic hash

function, such as MD5 or SHA-1, may be used in the calculation of an HMAC, and the

resulting MAC algorithm is termed HMAC-MD5 or HMAC-SHA1 accordingly.

4.5. CRYPTOGRAPHY 51

4.5.6 Certificates

In a Public Key Infrastructure, although Bob could have sent a private message to Alice,

signed it, and ensured the integrity of the message, he still needs to be sure that he is

really communicating with Alice. In this case Alice can be a bank. This means that Bob

needs to be sure that the public key he is using corresponds to the bank’s private key.

Similarly, the bank may also want to verify that the message signature really corresponds

to Bob’s signature. If each party has a certificate which validates the other’s identity,

confirms the public key, and is signed by a trusted agency, then they both will be assured

that they are communicating with whom they think they are. Such a trusted agency

is called a Certificate Authority (CA), and Certificates are used for authentication and

prevent someone from impersonating a party with false key.

Usually SSL/TLS uses digital certificates to authenticate servers. However, it can be used

to authenticate clients as well. SSL and TLS uses X.509 certificates to validate entities.

X.509 certificates contain information about the entity, and the structure of an X.509 v3

digital certificate is shown in the table 4.3:

Certificate
Version
Serial Number
Signature Algorithm ID
Issuer Name
Validity
• Not Before Date
• Not After Date

Subject Name
Subject Public Key Info
• Public Key Algorithm
• Subject Public Key

Issuer Unique Identifier (optional)
Subject Unique Identifier (optional)
Extensions (optional)
Subject Public Key Info

Table 4.3: Content of an X.509 v3 Certificate.

As explained above, a trusted third party outside the server and client pair is needed to

validate the certificate, which is the certificate authority. Reputable certificate authorities,

such as VeriSign, are responsible for ensuring the trust of all World Wide Web entities.

In some cases it may be necessary to create a chain of certificates, each one certifying

the previous one. This hierarchy of trust is vital to the authentication of an entity. This

52 CHAPTER 4. NETWORK SECURITY

process is called certificate chaining and is illustrated in figure 4.6.

Tier 1

CA #1

Tier 1

CA #2

Tier 2

CA #3

Tier 2

CA #4

Tier 2

CA #5

Tier 2

CA #6

Root CA

Figure 4.6: Hierarchy of Thrust6

4.6 Transport Layer Security (TLS)

After discussing many techniques to provide security, it is time to give one entire solution

to provide secure communications, for example in web commerce or bank transactions.

Transport Layer Security (TLS) protocol is the successor of the Secure Sockets Layer

(SSL) protocol. In this section we will provide a historical and global overview of the

TLS 1.2 protocol, already including all the enhancements from the previous SSL and TLS

versions.

4.6.1 Introduction

Originally designed by Netscape, SSL 1.0 was the first version of SSL. The protocol was

updated to SSL 2.0 and SSL 3.0, which introduced authentication methods, digital signa-

tures and more security algorithms in order to provide more security. Afterwards, TLS 1.0

was first defined in RFC 2246 [55] in 1999 as an upgrade to SSL Version 3.0. As stated in

the RFC, “the differences between this protocol and SSL 3.0 are not dramatic, but they

are significant enough that TLS 1.0 and SSL 3.0 do not interoperate.”However, TLS 1.0

does include a means by which a TLS implementation can downgrade the connection to

6Reprinted from Cisco [54]

4.6. TRANSPORT LAYER SECURITY (TLS) 53

SSL 3.0. Therefore TLS 1.0 can be viewed as essentially SSL 3.1. The same happens with

TLS 1.1 (SSL 3.2) defined in the RFC 4346 [56] and TLS 1.2 (SSL 3.3) defined in the

RFC 5246 [4]. The main upgrades between the new versions of the protocol were basically

the addition of protection against CBC attacks, authentication and hash algorithms, and

finally TLS extensions [22]. In the next sections we will provide a global overview of the

TLS 1.2 protocol, already including all the enhancements and previous protocols.

4.6.2 SSL/TLS Architecture

In the previous section we explained how the SSL protocol evolved in three versions (SSL

1.0, SSL 2.0 and SSL 3.0) to finally become the protocol we know today, TLS. The SS-

L/TLS protocol is a client/server protocol that provides the following basic security ser-

vices to the communication peers:

• Authentication services (peer entity and data origin authentication);

• Connection confidentiality services;

• Connection integrity services (without recovery);

In spite of the fact that the SSL/TLS protocol uses public key cryptography, it does

not provide non-repudiation services [22]. In terms of cryptography, all the algorithms

explained in section 4.5 can be used in SSL and TLS. As explained before, a public key

cryptosystem is computationally slower and less efficient than secret key cryptography,

thus is not efficient for data bulk transfer. For this reason, the common scheme is the

usage of Public Key Infrastructure (PKI) to exchange a secret key between the two peers.

Then the data bulk can be done using symmetric algorithms.

In terms of architecture, Netscape developers designed the SSL protocol as a separate

layer just for security. Looking at the TCP/IP stack, an application layered protocol

sends messages to the below transport layer protocol, that sends the message to the next

network layer below. SSL was created right between the application layer and the transport

layer, as shown in figure 4.7.

54 CHAPTER 4. NETWORK SECURITY

Network Access Layer

Network Layer

Transport Layer

Application Layer
SSL Record Protocol

IP

UDP TCP

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL
Alert

Protocol

Application
Data

Protocol

Application Layer Protocol

Figure 4.7: The SSL with its sub-layers and sub-protocols7

SSL was initially designed to make use of TCP to provide reliable end-to-end secure service

(however today is possible to provide over UDP with DTLS). SSL is not a single protocol,

but rather two layers of protocols. TLS inherited the SSL architecture and its sub-layers

and sub-protocols are illustrated in figure 4.8.

SSL

Handshake

Protocol

SSL Change

Cihper Spec

Protocol

SSL Altert

Protocol

Application

Data Protocol

SSL Record Protocol

Figure 4.8: SSL Protocol Stack

The SSL/TLS protocol can be divided into two layers. The first layer consists of the

application protocol and the three sub-protocols: the Handshake Protocol, the Change

Cipher Spec Protocol, and the Alert Protocol. The Application data protocol just refers

to the application protocol that needs security (e.g. HTTP).

The second layer is the Record Protocol and it is used for encapsulation of higher-layer pro-

tocol data. Its purpose is to encrypt, authenticate, and optionally compress packets.

7Reprinted from Stallings [29]

4.6. TRANSPORT LAYER SECURITY (TLS) 55

SSL/TLS Record Protocol

The Record Protocol is responsible for encapsulating messages for transmission over under-

lying communication protocols, usually TCP/IP. It takes messages from the upper layers

to be transmitted, fragments the data into manageable blocks, optionally compresses the

data, applies a MAC, encrypts, and transmits the result. Received data is decrypted,

verified, decompressed, reassembled, and then delivered to higher-level clients. Figure 4.9

indicates the overall operation of the SSL/TLS Record Protocol [29].

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL

record header

Figure 4.9: SSL/TLS Record Protocol operation8

As explained before, just encrypting a message does not guarantee that this message is not

changed while encrypted. Hence often in SSL/TLS Record protocol a MAC is added to the

ciphertext to ensure that changes to the ciphertext will be noted by the receiver. Message

authentication codes can be constructed from symmetric ciphers (e.g. CBC-MAC).

The algorithms used in the record protocol operation depends on the parameters defined in

the Handshake protocol. A set of parameters are defined during the Handshake protocol,

and the record message is going to be encrypted accordingly to the parameters defined

during the handshake (in the cipher suite). In terms of encryption algorithms used to

encrypt the SSL/TLS record, there are several TLS cipher suites defined in the RFC 5246

8Adapted from Stallings [29]

56 CHAPTER 4. NETWORK SECURITY

[4]. For more information read the section 4.6.2 about the Handshake Protocol.

The SSL/TLS Record format is illustrated in figure 4.10. It begins with a header. The

header includes the Content Type that refers to the higher layer protocol being used (refers

to one of the four sub-protocols, e.g. Alert); a protocol Version that referes to version

of the SSL protocol in use (e.g. SSL 3.3 aka TLS 1.2); and the Length in bytes of the

plaintext fragment. The body of the SSL/TLS record contains the message plus the MAC

in encrypted form.

Type Version Length MACSSLCiphertext structure (optionally compressed)

Encrypted

Major
version

Minor
version

Figure 4.10: SSL/TLS Record format

SSL/TLS Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the three sub-protocols that use the Record

Protocol, and it is the simplest. This protocol consists of a single message, which consists

of a single byte with the value 1. It is sent immediately after the handshake concludes

and before any application data messages are sent. Its purpose is to cause the pending

state to be copied into the current state, which updates the cipher suite to be used on the

connection [29].

SSL/TLS Alert Protocol

The Alert Protocol is used to send messages to indicate a change of status or an error

condition to the peer. A full list of messages can be found in RFC 5246 [4]. Alerts are

commonly sent when the connection is closed, an invalid message is received, a message

cannot be decrypted, or the user cancels the operation.

SSL/TLS Handshake Protocol

The Handshake Protocol is responsible for selecting a cipher suite and generating a master

secret, which together comprise the primary cryptographic parameters associated with a

4.6. TRANSPORT LAYER SECURITY (TLS) 57

secure session. The handshake protocol can also optionally authenticate parties who have

certificates signed by a trusted certificate authority. The session information consists of

a session ID, peer certificates, the cipher suites to be used, the compression algorithm to

be used, and a shared secret that is used to generate keys. The protocol and its message

flows are illustrated in figure 4.11.

Client Server

Client Hello

Server Hello

Certificate *

Server Key Exchange *

Certificate Request *

Server Hello Done

Certificate *

Client Key Exchange

Certificate Verify *

[Change Cipher Spec]

Finished

[Change Cipher Spec]

Finished

Handshake Protocol

Record Protocol
Application Data

* Optional or situation-dependent messages

[Change Cipher Spec] is not a TLS handshake message but

is an independent

Figure 4.11: SSL/TLS Handshake Protocol

Note that there are mandatory and optional messages, depending on the need in specific

situations. Note also that Change Cipher Spec is not actually an SSL/TLS Handshake

protocol message but represents an SSL/TLS protocol of its own, and hence a content

type. Table 4.4 lists the defined messages types in the handshake protocol.

The message flow with optional messages can adapt to different situations. Figure 4.12

illustrates the message flow of a Resuming Session, where the ID of the session will be

resumed, and there is no need of renegotiation of ciphers.

Establish Security Capabilities

This phase is used to initiate logical connections and to establish the security capabilities

58 CHAPTER 4. NETWORK SECURITY

Message Type Parameters

Hello Request Null
Client Hello Version, random, session id, cipher suite, compression method
Server Hello Version, random, session id, cipher suite, compression method
Certificate Chain of X.509v3 certificates
Server Key Exchange Parameters, signature
Certificate Request Type, authorities
Server Hello Done Null
Certificate Verify Signature
Client Key Exchange Parameters, signature
Finished Hash Value

Table 4.4: Handshake Protocol Message Types.

Client Server

Client Hello

Server Hello

[Change Cipher Spec]

Finished

[Change Cipher Spec]

Finished

Handshake Protocol

Record ProtocolApplication Data

[Change Cipher Spec] is not a TLS handshake message but

is an independent

Figure 4.12: Simplied SSL/TLS Handshake Protocol (Resuming Session)

that will be associated with it. The Client sends a Client Hello which includes the cipher

suite. After sending the Client Hello message, the client waits for the Server Hello from the

server, which will contain a single cipher suite selected by the server from those proposed

by the client.

A Cipher Suite is a combination of authentication, encryption, and Message Authentica-

tion Code (MAC) algorithms that are used to negotiate the security settings for security

protocols. In SSL/TLS it defines a key exchange algorithm and CipherSpec (encryption

algorithm for data bulk transfer, a message authentication code (MAC) algorithm and

others).

An example of a cipher suite is TLS RSA WITH DES CBC SHA, where TLS is the pro-

tocol version, RSA is the algorithm that will be used for the key exchange, DES CBC

4.6. TRANSPORT LAYER SECURITY (TLS) 59

is the encryption algorithm (using a 56-bit key in CBC mode), and SHA-1 is the hash

function. For detailed information about supported cipher suites in the TLS 1.2 protocol

read the Appendix C and Appendix A.5 of the RFC 5246 [4].

The first element of the Cipher Suite is the Key Exchange method. The following key

exchange methods are supported:

• RSA: Key exchange and server authentication are combined with RSA. The secret

key is encrypted with the server’s public key previously sent in the server’s certificate;

• Fixed Diffie-Hellman (abbreviated DH): Key exchange with Diffie Hellman and

authentication using certificates certified by a certificate authority (CA). The server’s

certificate contains fixed Diffie-Hellman public parameters signed by the certificate

authority (CA). The client provides its Diffie-Hellman public key parameters either

in a certificate, if client authentication is required, or in a key exchange message;

• Ephemeral Diffie-Hellman (abbreviated DHE): Key exchange with Diffie Hell-

man and authentication using DSA or RSA. DHE is used to create ephemeral (tem-

porary, one-time) secret keys. In this case, the Diffie-Hellman public keys are ex-

changed, signed using the sender’s private RSA or DSS key. The receiver can use

the corresponding public key to verify the signature. Certificates are used to au-

thenticate the public keys. This would appear to be the most secure of the three

Diffie-Hellman options because it results in a temporary, authenticated key;

• Anonymous Diffie-Hellman (abbreviated DH anon): The base Diffie-Hellman

algorithm is used, with no authentication. That is, each side sends its public Diffie-

Hellman parameters to the other, with no authentication. This approach is vul-

nerable to man-in-the-middle attacks, in which the attacker conducts anonymous

Diffie-Hellman with both parties;

• Fortezza: The technique defined for the Fortezza scheme.

Many possible solutions (in TLS 1.2) are also using Diffie-Hellman or RSA key exchange

with PSK or SRP authentication, or ECC. For more information read the literature [22].

Following the key exchange algorithm is the CipherSpec, which includes the following most

60 CHAPTER 4. NETWORK SECURITY

common fields:

• Ciphers: RC2, RC4, DES, 3DES, AES, IDEA, Fortezza (some of them can be

combined with CBC);

• MACs: SHA and MD5.

4.6.3 Candidate Technologies

There are several implementations of the SSL and TLS protocol, which are free and open-

source. Sometimes choosing between the available implementations can be tough. In

this section we will provide a limited comparison of several of the most prominent li-

braries.

Due to the specifications of all the implementations, some of them do not fit in our list of

possible choices for different reasons. For example, Java Secure Socket Extension (JSSE)

implements SSL and TLS in Java environment, and such language was not compatible

with the framework. Therefore, our list of choices is limited to three options:

• GnuTLS: The GNU Transport Layer Security Library [57];

• NSS: Network Security Services [58];

• OpenSSL: A Open Source toolkit implementing the SSL and TLS protocols [59].

The following sections are based on the material of GnuTLS - Comparison of different

free TLS implementations[60] and gives a brief comparison between these three libraries,

comparing the features that directly relate to the SSL and TLS protocol.

Protocol Support

One of the initial comparisons is the protocol support. GnuTLS is presented as a technol-

ogy that implements the most advanced protocol versions, from the SSL 3.0 to the TLS

1.2. SSL 2.0 has been deprecated since 1996 and it has serious security flaws, but NSS

and OpenSSL opted to implement it. NSS and OpenSSL only support versions from the

SSL 2.0 to the TLS 1.0.

4.6. TRANSPORT LAYER SECURITY (TLS) 61

Implementation SSL 2.0 SSL 3.0 TLS 1.0 TLS 1.1 TLS 1.2

GnuTLS No Yes Yes Yes Yes

NSS Yes Yes Yes No No

OpenSSL Yes Yes Yes No No

Table 4.5: Candidates’ Protocol Support.

Key Exchange, Encryption and MAC Algorithms

In order to provide different variations of security in the Handshake protocol, the Key Ex-

change Algorithms implemented by the three options are significantly important. GnuTLS

implements all the algorithms except the Elliptic curve Diffie-Hellman (ECDHE). NSS

only provides RSA, DHE-RSA, DHE-DSS and SRP-DSS. OpenSSL provides the most used

algorithms such as RSA, DHE-RSA, DHE-DSS, DH-ANON, PSK and ECDHE.

Library RSA
DHE-
RSA

DHE-
DSS

DH-
ANON

SRP-
DSS

SRP-
RSA

SRP PSK
DHE-
PSK

ECDHE

GnuTLS Yes Yes Yes Yes Yes Yes Yes Yes Yes No

NSS Yes
Yes

(client
only)

Yes
(client
only)

No Yes No No No No No

OpenSSL Yes Yes Yes Yes No No No Yes No Yes

Table 4.6: Candidates’ Key Exchange Algorithms.

The Encryption Algorithms implemented by the three options are significantly important

as well. GnuTLS implements all the algorithms showed on table 4.7 except DES-CBC

because DES is considered insecure. NSS and OpenSSL implements all of them except the

AES-GCM, the Galois/Counter Mode (GCM) for the AES algorithm operation.

Library
AES-
CBC

AES-
GCM

3DES-
CBC

DES-
CBC

RC4-
128

RC4-
40

CAMELLIA-
CBC

GnuTLS Yes Yes Yes No Yes Yes Yes

NSS Yes No Yes Yes Yes Yes Yes

OpenSSL Yes No Yes Yes Yes Yes Yes

Table 4.7: Candidates’ Encryption Algorithms.

In terms of MAC functions, all the technologies presented implement HMAC-MD5, HMAC-

SHA-1 and HMAC-SHA-256. In addition, all technologies implement the DEFLATE com-

pression method.

62 CHAPTER 4. NETWORK SECURITY

Development Environment

Other important comparison is the development environment. GnuTLS uses autoconf,

automake and libtool as building tools, it is very well documented with manuals and

Application Programming Interface (API) reference (both online and PDF format), and

it has limited compatibility with OpenSSL. NSS uses makefile as building tool, it is well

documented with a online manual, and it has compatibility with OpenSSL with a separate

package. OpenSSL uses makefile as building tool, and it is not so well documented as the

others, since the only known manuals are the man pages.

Portability Concerns

In terms of portability, GnuTLS requires the support of C89 (sometimes called ANSI C),

and the libraries libgcrypt and libtasn1. It operates in most of the POSIX platforms or

Windows, including GNU/Linux, MacOS X, Solaris and major BSD variants. It is also

thread-safe when using mutex hooks.

Library
Platform

Requirements
Thread Safety Supported Operating Systems

GnuTLS
C89, libgcrypt,

libtasn1

Thread-safe, needs
custom mutex hooks if

neither POSIX or
Windows threads are

available.

Generally any POSIX platforms or Windows,
commonly tested platforms include GNU/Linux,

Win32/64, Mac OS X, Solaris, OpenWRT,
FreeBSD, NetBSD, OpenBSD.

NSS C89, NSPR Thread-safe

AIX, Android, FreeBSD, NetBSD, OpenBSD,
BeOS, HP-UX, IRIX, Linux, Mac OS X, OS/2,

Solaris, OpenVMS, Amiga DE, Windows,
WinCE, Sony Playstation

OpenSSL C89 Needs mutex callbacks
Unix, DOS (with djgpp), Windows, OpenVMS,

MacOS, NetWare

Table 4.8: Candidates’ Portability Concerns.

NSS is thread-safe, requires support for C89 and Netscape Portable Runtime (NSPR),

and it operates in most of Unix based platforms (including Android), Windows, Sony

Playstation and others. Lastly, OpenSSL requires support for C89, needs mutex callbacks

for thread safety and it operates in most of Linux platforms, DOS, Windows, MacOS and

others. These differences are showed on table 4.8.

Chapter 5

Protocols’ Implementation

Currently there is no standardized way in DOORS to implement a communication proto-

col. Deploying or implementing a protocol in the DOORS framework depends on a lot of

factors, and its design depends not just on its specifications but can also derive from an

integration of external libraries.

The most typical case, the deployment of simple protocols applies software engineering

principles in combination with formal methods towards the design of communication pro-

tocols. In this case, developers can use DOORS tools, such as Code Generators, to generate

code compatible with DOORS messages and Tasks, as explained in chapter 2. Thus, it

is possible to facilitate the deployment or implementation of a protocol using this set of

tools. However, a protocol may not have simple specifications and may be advantageous

to use external libraries. In this case other approaches may be investigated in order to

make possible a perfect integration in the DOORS framework.

The main objective of this chapter is to introduce the design of the protocols, to provide

a NAT traversal solution and secure communications in the DOORS framework. This

chapter is important to later on present the implementations. Since this dissertation

focuses on two different solutions (two protocols), this chapter is divided in two parts.

Firstly, as a NAT traversal solution, the design of the STUN protocol is presented in

the DOORS framework, that was previously discussed in chapter 3. Secondly, to provide

secure communications the choice is the TLS protocol previously discussed in chapter

63

64 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

4. Since the two protocols have different specifications, their design is different in the

DOORS framework. In this chapter, a brief overview and discussion of the designs are

provided.

5.1 STUN Protocol

As explained before, Session Traversal Utilities for NAT (STUN) is a lightweight client-

server protocol to be used in the context of NAT traversal solutions. Not a solution itself,

STUN is rather a tool to be used with other protocols. In this section, the steps for the

design and implementation of this client-server protocol in the DOORS framework are

explained.

5.1.1 Considerations and Choices

After considering the STUN protocol’s specifications and several design ideas for the

DOORS framework architecture, the following design choices were made:

1. Client support for the STUN protocol;

2. STUN protocol operating over UDP;

3. Simple design and implementation of a STUN Task without external libraries;

STUN used in the context of NAT traversal solutions, needs a client and a server to

exchange information. As shown in chapter 3, the client party is the one interested to know

its public IP and port to somehow contact other parties and give them useful information

to be contacted back. For this reason, for the first design choice it was decided to provide

client support for the STUN protocol in the DOORS framework, assuming that there is

already a public STUN server in the network to provide server responses.

In terms of operation, STUN protocol can transmit messages in different ways. The goal of

this implementation is to provide NAT traversal solution for the most popular cases, and

gather a better understanding of the DOORS architecture. For this reason, for the second

design choice it was decided to simplify the implementation and send STUN messages just

5.1. STUN PROTOCOL 65

over UDP. It is also important to refer that this implementation must support IPv4 only.

The deployment of IPv6 eliminates the problem of NATs and certainly it is reasonable

to observe that achieving high address utilization densities is no longer the objective.

Probably IPv6 NATs will be implemented and used in the future, however it is out of the

scope of this thesis.

Looking at the integration perspective in the DOORS architecture, it is important to

understand the framework structure and how things work there. After considering sev-

eral design ideas in the DOORS architecture, it was decided to design and implement

the STUN protocol without help from other external libraries. Since STUN is a simple

client-server protocol, it would be easier just to create a STUN task inside DOORS and

use a auxiliary UDP task to send and receive messages over UDP. The resultant design

and implementation of this application should result in asynchronous and message-based

interactions between modules. Therefore, all these considerations are taken into account

in designing the STUN module.

5.1.2 Design Prototyping

This section describes the design prototyping for using STUN protocol in the DOORS

framework. It starts off with the background on how this design came about, and in the

next section it focuses on the details of the design itself.

The presented design was approached from creating a STUN task in the DOORS envi-

ronment that could give the support for the STUN protocol. The STUN task, called

StunTask, is the main creation of this architecture and its architecture is illustrated in

figure 5.1.

StunTask is located between a LEMon User task and the UdpTask. It should send and

receive messages from other tasks to use its functionalities, not calling functions or point-

ers, but rather just exchanging DOORS messages. In the DOORS environment, a Service

Data Unit (SDU) is used to identify exchanged DOORS messages between tasks. The

StunTask has a upper port and a lower port. User messages come from the upper port

and all the encoded and decoded PDUs should be connected to the lower port and sent to

66 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

LEMon User

StunTask

SAP

FSM
peer

UdpTask

SDUs

SDUs

PDUs

UDPSockConn

Scheduler

I/O Handler

Figure 5.1: Architecture overview of STUN support in DORRS

the lower task. The structural modulation of the StunTask is presented in the sub-section

5.1.4.

The LEMon User Task is the environment responsible to monitor User events. It inherits

the EnvTask and gets inputs from the User, and sends user-defined messages to the Service

Access Point (SAP) of the StunTask.

The UdpTask is the intermediate between the Operating System (OS) and the StunTask,

and it is responsible to give UDP support. It is the one responsible to receive messages

from the StunTask and use a UDPSockConn device to send them via UDP to the network.

Messages coming from the device are sent to the StunTask.

In terms of overall architecture, the tasks are controlled by the Scheduler, and the I/O Han-

dler should be responsible to manage the devices required for the communication.

5.1. STUN PROTOCOL 67

5.1.3 Design Architecture

The previous section introduced the main blocks of the architecture. This section con-

tains a more detailed description, focusing on the StunTask. The design architecture is

illustrated in figure 5.2.

LEMon User

(EnvTask)

StunTask

SAP

FSM
peer

StunSAP::User usr

StunSAP::Provider up

UdpTask::User down

UdpTask

UdpTask::Provider up

DevIf::User down

Addr_req
Addr_ind

Error_ind

Dtreq Dtind

REQUEST

SUCCESSRESPONSE

ERRORRESPONSE

Figure 5.2: STUN Task support in DOORS

As explained before, the StunTask is the main creation of this architecture, and its imple-

mentation depends on three important formal protocol specifications:

• A Finite State Machine (FSM) to define the Task behaviour;

• A Service Access Point (SAP) to receive and transmit messages to the upper Task;

• A peer responsible to encode and decode Protocol Data Units (PDU);

The Finite State Machine (FSM) is a state machine that defines the behaviour of the

task. The Service Access Point (SAP) is a DOORS port through where the StunTask

sends/receives SDUs for/from the LEMon User. The port is called up, and the SDUs

exchanged are:

68 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

• Addr req: Address request. The user wants to send a STUN Request and know

its reflexive address;

• Addr ind: Address indication. The StunTask received a SuccessResponse and

sends it to the user;

• Error ind: Error indication. The StunTask received a ErrorResponse and sends

it to the user;

Lastly, the peer is the one responsible to encode and decode PDUs. The defined PDUs

are:

• Request: It defines a STUN Request;

• SuccessResponse: It defines a STUN Successful Response;

• ErrorResponse: It defines a STUN Error Response;

The PDUs are encoded and automatically passed to the lower port down, to be sent using

the format required by the lower layer (UdpTask).

5.1.4 Modular Interaction and Behaviour

Traditionally, when designing a module in a system, it is required to evaluate the protocol

to implement and use its specifications for the modulation itself. In this case, from the

architecture shown before, the module to implement is the StunTask and it inherits from

PTask. The basis of designing the StunTask specifications depends on the following UML

and structure diagrams:

• Message Sequence Diagrams: Message sequence diagrams to define the network in-

teractions between peers;

• Protocol Data Unit (PDU): Structure of messages to be exchanged with other peers;

• Finite State Machine (FSM): A state machine defining the client behaviour;

These formal protocol specifications are based on the specifications of the STUN protocol

of chapter 3 and the RFC 5389 [3], and are explained below.

5.1. STUN PROTOCOL 69

Message Sequence Diagrams

The communication between two peers in the STUN protocol is a Request/Response

interaction. The STUN Client is the one interested to know its own reflexive address, and

starts the communication sending a STUN Request message to the STUN Server. The

Server reads the Request message and responds with a STUN Response message. The

Request message can be a SuccessfulResponse or an ErrorResponse. Regardless

of the type of message, if the STUN Client receives the Response correctly, the STUN

communication ends right there. The figure 5.3(a) illustrates this scheme.

STUN Client STUN Server

2: Response (1)

1: Request (1)

(a) Message sequence diagram for normal flow

STUN Client STUN Server

1: Request (1)

2: Response (1)

4: Response (1)

3: Request (1)

(b) Message sequence diagram with retrans-
missions

Figure 5.3: The message sequence diagrams for the Stun Task

However, as stated before in section 5.1.1, the STUN protocol is operating over UDP, a non-

reliable transport protocol. Therefore a message might be dropped by the network. For

this reason, reliability of STUN transactions is accomplished through retransmissions of

the Request message. A STUN Client waits on a timeout for Responses and retransmits

the STUN Request message if no message was received. This scheme is illustrated in

figure 5.3(b).

70 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

Protocol Data Unit (PDU)

When sending messages through the network, it is important to define the content of

each STUN message. In this section three different PDUs are illustrated: Request,

SuccessfulResponse and ErrorResponse.

As mentioned above in the message sequence diagrams, the client sends a Request mes-

sage to the server in order to ask its own reflexive address. As illustrated in figure 5.4, a

STUN Request message starts with the usual 20-byte header and it can be followed by a

Software attribute. The Software attribute is optional and is just used for debug purposes.

Therefore, this field is quite often empty.

00 STUN MESSAGE TYPE (14 bits) MESSAGE LENGTH (16 bits)

MAGIC COOKIE (32 bits)

TRANSACTION ID (96 bits)

Software

Attribute

(optional)

Header

TYPE (16 bits) LENGTH (16 bits)

SOFTWARE (variable)

Figure 5.4: A STUN Request message

After having received the Request message, the server responds with a Response message:

SuccessfulResponse or ErrorResponse.

If nothing fails and the communication occurs normally, the Client might receive a Suc-

cessfulResponse. As illustrated in figure 5.5 a SuccessfulResponse starts with the

usual 20-byte header and it can be followed by an XOR-Mapped-Address attribute that

contains the client’s reflexive address.

If something goes wrong the communication might fail, and the Client might receive an

ErrorResponse. As illustrated in figure 5.6 an ErrorResponse starts with the usual

20-byte header and it can be followed by an Error-code attribute containing the error code

and the reason of the error. For certain errors, additional attributes might be added to

5.1. STUN PROTOCOL 71

TYPE (16 bits) LENGTH (16 bits)

XXXXXXXX (8 bits) X-PORT (16 bits)

X-ADDRESS (variable)

FAMILY (8 bits)

00 STUN MESSAGE TYPE (14 bits) MESSAGE LENGTH (16 bits)

MAGIC COOKIE (32 bits)

TRANSACTION ID (96 bits)

Header

Xor-

mapped-

Address

Attribute

Figure 5.5: A STUN SuccessfulResponse message

the message, for example with the error 420 (Unknown Attribute).

TYPE (16 bits) LENGTH (16 bits)

ATTRIBUTE 1 TYPE (16 bits) ATTRIBUTE 2 TYPE (16 bits)

ATTRIBUTE 3 TYPE (16 bits)

TYPE (16 bits) LENGTH (16 bits)

RESERVED, should be 0 (21 bits) NUMBER (8 bits)

REASON PHRASE (variable, maximum 763 bytes)

CLASS

(3 bits)

Unknown

Attributes

00 STUN MESSAGE TYPE (14 bits) MESSAGE LENGTH (16 bits)

MAGIC COOKIE (32 bits)

TRANSACTION ID (96 bits)

Header

Error-

code

Attribute

Figure 5.6: A STUN ErrorResponse message

72 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

Finite State Machine (FSM)

The state machine of the StunTask consists of two states. The initial state is “Idle”and

the StunTask waits for a Addr req to trigger the jump to the next state “Wait”. When

StunTask processes the trigger it will take two actions. It sends a Request message to

the peer and starts a timer.

After successful registration in the state “Wait”, the StunTask waits for Responses. If

the Response is not correct it waits for more responses. If there is a timeout and the

retry variable is less than five, then the StunTask should retransmit the Request and

restart the timer with the double of its initial time. StunTask will return to the initial

state “Idle”under two conditions: if there was an error during the communication and

no messages are received, then the fifth timeout triggers and StunTask should stop the

timer and gets ready to try again; if the Response received was correct, then everything

went well, and the StunTask should send a Addr ind or a Error ind to the LEMon user,

depending on the type of message received from the peer. Therefore, the communication

is completed and timer is set to off. The state machine of the StunTask is illustrated in

figure 5.7.

Idle Wait

Addr_req / (REQUEST, Start_timer(t))

RESPONSE not OK / Wait for more Responses

(Timeout, retry < 5) /

(Retransmit REQUEST, Restart_timer (2t))

RESPONSE OK /

(Addr/Err_Ind, EOT)

(Timeout, retry = 5) / Failed

Figure 5.7: The state machine for the Stun Task

5.1.5 Implementation

The STUN protocol design presented in figure 5.2, focuses on the implementation of a

StunTask module that is used to handle STUN requests and responses. The implemen-

5.1. STUN PROTOCOL 73

tation can be divided in two parts: Firstly the XML specifications for the C++ code

generators, and secondly the coding of the StunTask itself.

PTB Offline Tools

FSM Specs

(.sm)

SAP Specs

(.sap)

State Machine

Generator

(dsmg)

SAP Generator

(dsapg)

Peer Generator

(dpeerg)

Peer Specs

(.pdu)

I

M

P

L

E

M

E

N

T

A

T

I

O

N

<stunsm>.h/.C

<stunsap>.h/.C

<stunpdu>.h/.i

<stunpdu>.C

<stuntask>.h/.C

DOORS

Libraries

Figure 5.8: Stun Implementation

The implementation scheme is illustrated in figure 5.8. The files generated by the gener-

ators are C++ files and are used in the implementation.

XML-based Specifications

As explained in the section 5.1.3, the implementation of StunTask depends on three im-

portant formal protocol specifications: A Finite State Machine (FSM), a Service Access

Point (SAP) and a peer. Based on the diagrams illustrated and explained in the subsec-

tion 5.1.4, it was possible to create the XML specifications to be supplied to the Code

generators and transform them into C++ classes.

The PDUs were implemented using the dpeerg tool and its XML specification is included

in Appendix A.1.1. The state machine was implemented using the dsmg tool and its XML

specification is included in Appendix A.1.2. Finally, the SAP was implemented using the

dsapg tool and its XML specification is included in Appendix A.1.3.

The generated files are part of the implementation. The stunpdu.C file is not generated,

and it has to be manually coded, in order to give encode and decode functionality to the

74 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

PDUs. Therefore, all these files are used in implementation of the task, that is explained

in the next sub-section.

StunTask Implementation

The StunTask inherits from PTask and it is the main task of this implementation. The

job of this task is to give the main behaviour to the STUN protocol. With the help of the

generated files and other DOORS functionalities, this task is manually coded taking care

of incoming events and giving action to the behaviour defined in the figures of the section

5.1.4.

As shown in figure 5.2, StunTask inherits from PTask and it communicates with the

LEMon user through the SAP port, and uses the peer to send PDUs. The StunTask class

is included in Appendix A.2.

5.2. TLS PROTOCOL 75

5.2 TLS Protocol

TLS is a security protocol to be used in the context of secure communications. It makes

usage of cryptographic algorithms in order to offer security to Application layer protocols.

In this section, the steps for the design and implementation of this security protocol in

the DOORS framework are explained.

5.2.1 Considerations and Choices

Chapter 4 presented TLS as a security protocol. TLS uses cryptographic algorithms to

offer a security layer between Application Layer and Transport Layer protocols. However,

cryptographic algorithms and other features presented in the TLS protocol are quite dif-

ficult to implement and requires special attention. Thus, integrating a security protocol

might require help from external libraries. Section 4.6.3 presented candidate technologies

of TLS implementations and evaluated each implementation according to the following

considerations:

1. Open Source library;

2. C/C++ Application Programming Interface (API) with proper documentation;

3. Implements the last version TLS 1.2;

4. Build automation tool with make;

5. Possibility of using callback functions;

As a result, GnuTLS is chosen over the others, mainly due to the fact that it has a good

API and good documentation, but also due to the fact that it gives the possibility of

using callbacks that might be used with event handlers in the DOORS framework. The

implementation of the newest version of TLS and the usage of the build automation tool

make are also relevant factors in this choice.

TLS is a client-server protocol to provide secure communications. Hence it needs a client

and a server to exchange information. For this implementation it was decided to provide

client support for the TLS protocol in the DOORS framework, expecting that during

76 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

a communication the other peer is the server that supports TLS and provide server re-

sponses.

In terms of operation, TLS protocol operates over TCP. It is possible to provide a security

layer over UDP with Datagram Transport Layer Security (DTLS), but this protocol is out

of the scope of this thesis. The goal of this implementation is to provide a TLS protocol

operating over TCP for the most popular cases. The general idea is to give to the client the

ability of creating a secure communication using the most typical cases. The most typical

cases relies on RSA or Diffie-Hellman handshake sequences with server authentication

using certificates. Thus, the implementation should support X.509 certificates, and it

should be able to resume sessions as well.

Looking at the integration perspective, after considering several design ideas in the DOORS

framework architecture, it was decided to support the TLS functionality with the help of

GnuTLS. Since TLS is a complex client-server protocol, it was decided to create a DOORS

virtual device for TLS communications over TCP, and a TLS task to test the protocol.

The resultant design and implementation of this application should result in asynchronous

and message-based interactions between modules. However asynchronous communications

depends on the library functionalities, and some function calls might be blocking. For this

reason, the handshake, send and receive data calls might block and not give a full asyn-

chronous architecture. These matters will be discussed in the next sections.

For this implementation it was decided to give support to as many algorithms as possible,

giving more flexibility to the programmer. Considering the GnuTLS library, it was decided

to support the following algorithms and modes:

• Certificate types: X.509;

• Protocols: SSL3.0, TLS1.0, TLS1.1, TLS1.2;

• Ciphers: AES-256-CBC, AES-128-CBC, 3DES-CBC, DES-CBC, ARCFOUR-128,

ARCFOUR-40, RC2-40, CAMELLIA-256-CBC, CAMELLIA-128-CBC, NULL;

• MACs: SHA1, MD5, SHA256, SHA384, SHA512, MD2, RIPEMD160, MAC-NULL;

• Key exchange algorithms: ANON-DH, RSA, RSA-EXPORT, DHE-RSA, DHE-

5.2. TLS PROTOCOL 77

DSS, SRP-DSS, SRP-RSA, SRP, PSK, DHE-PSK;

• Compression: DEFLATE, NULL;

• Public Key Systems: RSA, DSA;

• PK-signatures: RSA-SHA1, RSA-SHA256, RSA-SHA384, RSA-SHA512, RSA-

RMD160, DSA-SHA1, RSA-MD5, RSA-MD2.

5.2.2 Design Overview

This section explains the design prototyping for the TLS protocol in the DOORS frame-

work based on the considerations of section 5.2.1. It starts off with the background on

how this design came about, and in the next section it focuses in the details of the design

itself.

TLS is a protocol that resides between the transport layer and application layer. For

this reason it is important to create a module that can control the transport layer (i.e

sockets). Thus, the presented design is approached from creating a TLS device and a TLS

task to control the device. The TLS device and TLS task are the main creation of this

architecture and are illustrated in figure 5.9.

The TLS device called TlsConn is the object responsible to initialize the socket for TCP

communications, and is the one that makes use of the external library GnuTLS to take

care of the security matters. The TLS task called TlsTask is the object responsible to use

the functionalities of the device TlsConn and to give the behaviour of the TLS protocol

to other DOORS tasks.

The TlsTask is the lowest layer task in the architecture. It is located right below a con-

ceptual Application Protocol task in order to provide security to any application protocol

that might be developed (e.g. HTTP).

The hypothetical Application Protocol task might need to communicate with a LEMon

User task in order to provide testing of the protocol. The hypothetical exchanged messages

can be called App req and App ind.

78 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

LEMon User

(EnvTask)

Application Layer

Task

SAP

FSM
peer

AppSAP::User usr

AppSAP::Provider up

TlsTask::User down

TlsTask

TlsTask::Provider up

App_req App_ind

Creq Cind

PDUs

FSM

TlsConn

Dtreq Dtind

DevIf::User down

Figure 5.9: Architecture overview of TLS support in DORRS

Any application protocol that needs to communicate with the TlsTask might exchange

the following messages:

• Creq: Connection request. An application protocol might send this message to the

TlsTask in order to request for a TLS connection;

• Dtreq: Data transfer request. An application protocol might send this message to

the TlsTask in order to send data, and depending on the protocol might wait for a

response;

• Cind: Connection indication. Is the response to a Creq. Gives positive answer

when a TCP connection and TLS handhshake are performed, and negative if some

problem occurred;

• Dtind: Data transfer indication. It returns data received from the device. Usually

is a response to a Dtreq.

5.2. TLS PROTOCOL 79

When the TlsTask receives a message from the upper layer (Application Protocol), the

TlsTask must use the TlsConn device to maintain the TLS connection.

To give behaviour to the TLS protocol, the TlsTask depends on a formal protocol speci-

fication: A Finite State Machine (FSM) that defines the task behaviour.

In terms of overall architecture in the DOORS environment, the tasks are controlled by

the Scheduler, and the I/O Handler is responsible to manage the devices required for the

communication.

5.2.3 Modular Interaction and Behaviour

Traditionally, when designing a module in a system, it is required to evaluate the protocol

to implement and use its specifications for the modulation itself. As explained in the

section 5.2.2 this implementation focus on the TlsConn device and the TlsTask. This

section explains the modulation of the two modules.

TlsConn

TlsConn is designed to be a device in the DOORS environment, and to be responsible

to control the transport layer in a TLS communication. For this matter, the table 5.1

describes different states of a TLS communication in two different perspectives: func-

tionalities from the device perspective, and functionalities from the external GnuTLS

library.

There are four main states. The first state is an Initialization state, where TlsConn should

initialize all the variables and parameters necessary to stablish a TLS connection. The

second state is called the Connect or Open state, where TlsConn first opens a socket with

a TCP connection and after establishes a TLS session. From here on, the handshake is

accomplished, and it is time to exchange data. The third state is called Data Transfer

state, where it is possible to write/send data and read/receive data. Finally, the fourth

state is called Close state, and is where the socket and TLS session are closed and other

variables are deinitialized.

80 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

State Device GnuTLS

1) Init
Initialization of socket and

local variables.

Initialization of credentials,
certificates and other TLS

session parameters.

2) Open
Opens the socket and

establishes TCP connection.
Performs a TLS handshake /

Opens a TLS session.

3) Write
Reads data received from the
Task and writes it to a buffer.

Sends the buffer thru the
present session.

Read
Reads buffer and sends it to

the Task.

Reads data from the present
session and writes it to a

buffer.

4) Close
Close socket and

deinitialization of local
variables.

Close TLS session and
deinitialization of credentials,
certificates and other session

parameters.

Table 5.1: TlsConn states

TlsTask

Other module to implement is the TlsTask and it makes use of the TlsConn device.

TlsTask inherits from the DOORS PTask. The base of designing the TlsTask specifications

depends on a Finite State Machine (FSM), a state machine that defines the TLS protocol

behaviour. There are other protocol specifications that are hidden by the GnuTLS. Thus,

it is not required to design PDUs and message sequence diagrams, since these are already

used in the function calls of the library.

Closed Open

Dev::Open / Cind(ok)

Dreq(data) / dev.write(data)

dev.read(data) / Dtind(data)

Dev::Close / Cind(closed)

Creq(addr) / dev.connect(addr)

Figure 5.10: The state machine for the TlsTask

The state machine of the TlsTask consists of two states and is illustrated in figure 5.7.

5.2. TLS PROTOCOL 81

The initial state, “Closed”, is active when there is no TLS connection and the device is

ready to use. TlsTask waits for a Creq from the Application protocol, calls the device

to connect to the destination and waits for the device response. If the device connects

successfully to the peer, it must send a “open”message to the TlsTask, and TlsTask sends

a positive Cind message to the Application protocol and triggers the jump to the second

state “Open”.

While in this state “Open”, the TlsTask waits for data from the Application protocol or

from the device. If a Dreq is received from the Application protocol, then TlsTask must

call the device to write and send the data to the destination. If data is received from the

device, then TlsTask must send it in a Dtind message to the Application protocol.

Lastly, TlsTask returns to the first state when the device sends a “close”message to the

TlsTask. This operation might happen if, for some reason, the peer closed the connection

or if the TlsTask or device classes are destroyed.

5.2.4 Implementation

The TLS protocol design presented in figure 5.9 focuses on the implementation of a

TlsConn device and StunTask task modules to handle TLS connections. For this ap-

proach, the implementation can be divided in two parts. Firstly, the TlsConn device class

and secondly the TlsTask task which includes XML code and the TlsTask class itself.

TlsConn

The class TlsConn is the core of the DOORS virtual device implementation for TLS. It

makes use of the GnuTLS library and it is used to provide useful TLS functionalities to

the TlsTask. This means that TlsTask connects to another application by encapsulating

the functionalities provided by GnuTLS and TlsConn, as described in section 5.2.3. This

class is derived from class SocketConnectionAC and SockHelper which are provided in

DOORS.

As described in the section 5.2.3, TlsConn is designed to provide functionalities to dif-

82 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

ferent states of TLS-based communications. The following paragraphs will give a brief

explanation of the most important public functions to be used.

The TlsConn class is included in Appendix B.3. Not all the functionalities provided by

TlsConn and GnuTLS are used since they might not all be needed. Firstly, the Initializa-

tion provides the instances of the DOORS I/O handler and the driver task to the device

instance.

class TlsConn : public SocketConnectionAC, public SockHelper {

public:

TlsConn (IoHandler *io, EventTask *t);

~TlsConn (void);

}

There are extra initializations that might be needed to a TLS connection. Depending

on the protocol and user’s demands, the following functions might be used. The extra

initialization functions are listed below.

bool tls_init_params(char *priority_list, int debug, int insecure, int

disable_ext);

bool tls_init_x509 (char *cafile, char *crlfile, char *keyfile, char *

certfile);

bool tls_init_srp (char *srpuser, char *srppass);

bool tls_init_psk (char *pskuser, char *pskkey);

tls init params() is used to initialize priority lists, debugging mode, insecure mode (to skip

some verifications) and extensions. The priority list refers to the cipher suite preferences,

and its initialization may contain some high level keyword that can be found at GnuTLS

documentation [61]. tls init x509() might be used to initialize parameters required for

X.509 certification, and might indicate the path of the following files: Certification Au-

thority List, Certificate Revocation List, Private Key and Client Certificate. If the pointer

is set to NULL to any of the arguments, the device assumes that the file does not exist. The

function tls init srp() is used to initialize username and password for the SRP protocol,

and tls init psk() for the PSK protocol.

The connect functions listed below are used in the Open state, where the device actually

establishes a TLS connection with another application:

5.2. TLS PROTOCOL 83

bool connect (Address *a);

bool connect (Address *a, Frame sessiondata);

The first connect() is used to connect to a specified address for the first time, meaning

that the device establishes a session for the first time. The second connect() call might be

used to connect to a specific address using Session Resuming capability, meaning that it

resumes a session established before.

The third state is the Data Transfer state, where actually the device is already connected

to a peer. The functions are listed bellow.

virtual int getFd (void) const;

Frame getSession (void);

void callbackWrite (void);

void callbackRead (void);

When a TLS connection is established with a peer, the connection file descriptor is stored

and set to read mode. This means that when the I/O handler runs, it checks all the devices

that are read enabled, and retrieves the associated file descriptor for them. getFd() is a

simple function call that retrieves the file descriptor. When the read mode is enabled,

some data is available to be read for this device, the I/O handler calls the callbackRead()

and it saves the data in a buffer and sends it to the TlsTask. When the write mode is

enabled, there is some data to be sent and the I/O handler calls the callbackWrite() to

send the data to the destination. Lastly, getSession() saves the current session data in a

Frame. This function call might be used to store the session data, and can be used later

for Session Resuming.

The last state is the Close state. The function is listed below.

virtual bool close (void);

This virtual call close() is actually called when the device disconnects from the peer. For

some reason some error might have occurred and the peer might have disconnected or

the TlsTask might want to close the connection. This function call takes care of the file

descriptors and deinitializes all the variables and settings set previously.

84 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

There are more functions in the TlsConn class, but they are less significant for the TlsTask

to work properly. Many of them are public and other private, but all are used to internally

manage the device and the GnuTLS library.

TlsTask

The TlsTask is the main task of this implementation. The job of this task is to use TlsConn

device functions and give the main behaviour to the TLS protocol.

The implementation of TlsTask depends on two important XML specifications: A Finite

State Machine (FSM) and a Service Access Point (SAP). Based on the diagram illustrated

and explained in subsection 5.2.3, it was possible to create the XML specifications to be

supplied to the Code generator and transform it into C++ classes. The state machine was

implemented using the dsmg tool and its XML specification is included in Appendix B.1.1.

The SAP was implemented using the dsapg tool and its XML specification is included in

Appendix B.1.2.

TlsTask inherits from PTask and it communicates with the Application Protocol Task

from the SAP port, as shown in figure 5.9 and its class is included in Appendix B.2.

5.3 Development Environment

This section describes related components, tools and systems which were used to imple-

ment the designed prototypes explained in the sections above. The work was done mostly

under C/C++ programming language in the Linux environment. Also several tools were

used for project management, testing and debugging.

Both STUN protocol and TLS protocol were developed and tested in the GNU/Linux

operating system. In this case Fedora Core 12 distribution was used over the kernel

version 2.6.32.26-175. The tools used for STUN and TLS implementation are listed in

table 5.2. The external libraries are listed in table 5.3.

5.3. DEVELOPMENT ENVIRONMENT 85

Protocol Name Version Description

Gedit 2.28.3 Gnome editor

STUN GCC 4.4.4 GNU Compiler Collection

and GNU Make 3.81 Generation of executables

TLS GNU DDD 3.3.12 Data Display Debugger

Wireshark 1.2.11 Network protocol analyser

STUN reTurnServer 0.4 STUN/TURN Server component of the reSIProcate projects

TLS Certtool 2.10.2 GnuTLS tool to generate X.509 certificates

ssldump 0.9b3 SSLv3/TLS network protocol analyzer

Table 5.2: Tools used for Implementation

Protocol Name Version Description

STUN and TLS DOORS 0.6 DOORS framework

TLS

GnuTLS 2.10.2 GNU Transport Layer Security Library

Libgcrypt 1.4.6 GNU’s library of cryptographic building blocks

Libtasn1 2.8 ASN.1 library

Zlib 1.2.5 Compression/Decompression library

libc 2.11.2 GNU C library

libstdc++ 6.0.13 GNU Standard C++ Library v3

Table 5.3: Libraries used for Implementation

86 CHAPTER 5. PROTOCOLS’ IMPLEMENTATION

Chapter 6

Implementation Testing and

Analysis

Testing is the process of trying to find errors in the system implementations by means of

experimentation. This experimentation is carried out in a special environment in order

to simulate normal and exceptional procedures of the protocols. The aim of testing is to

gain confidence and make sure that the system works satisfactorily during the normal and

exceptional procedures. In other hand, testing only shows the presence of errors, not their

absence, so it is not possible to ensure complete correctness. In this case, a successful test

of the implementations means that the protocol is working correctly for the most typical

cases, and is almost ready to fully integrate in the DOORS framework. Almost ready to

integrate means that the implementation works satisfactorily in the framework, and can

be fully integrated as soon as a specialist validates the feasibility of its usage. In the next

sections some test cases for each implementation are presented. Corresponding test results

will be presented based on the performance of the various tested modules.

87

88 CHAPTER 6. IMPLEMENTATION TESTING AND ANALYSIS

6.1 Test Network

This section presents the topology of the network used for the testing of the protocols.

The testing of the protocols were performed in the TLT network at the Department of

Communications Engineering at Tampere University of Technology (TUT). Figure 6.1

illustrates the principal layout of the network used.

Firewall

(omo-gw)

Switch

(product-gw)

Router

(surf-gw)TLT

Internet

(Funet)

NAT Router

(my-router)
192.168.1.1

130.230.52.180

Virtual Server

(stun.rd.tut.fi)

130.230.141.165

Client

192.168.1.2
Google Mail

(mail.google.com)

209.85.149.17

GnuTLS Test

(test.gnutls.org)

207.192.75.61

Figure 6.1: Test Network

The computer used as a client in the whole testing process is the same used for developing

the protocol: a HP COMPAQ Pentium 4 running the linux distribution Fedora Core 12.

The computer is connected to an Asus WL-500W router with NAT enabled, and has the IP

address 192.168.1.2. The router is connected to the TLT network and has the static public

IP 130.230.52.180. For the client to contact the Server, it has to pass thru the product-gw

switch, the omo-gw firewall and the router surf-gw. The Virtual Server stun.rd.tut.fi with

the public IP address 130.230.141.165 is a Ubuntu virtual machine connected to a router

still inside TUT network. Other possible Servers such as Google Mail Server and GnuTLS

Test Server are available on Internet and are used for testing as well.

6.2. STUN ANALYSIS 89

6.2 STUN Analysis

This section presents the testing of the STUN protocol. Firstly, a general test case is de-

scribed and then there are some important details of the results that validate the proposed

test case.

6.2.1 Test Case

Considering the network of the section 6.1, the STUN client was tested in the TLT network

and was connected with a router with NAT enabled. The STUN client gets the private

IP address 192.168.1.2 via DHCP. The STUN server is a Virtual Server (stun.rd.tut.fi),

a reTurnServer listening in the UDP port 3478 [62]. The test case is illustrated in figure

6.2.

LEMon User StunTask UdpTask

device

STUN Client

192.168.1.2

STUN Server

stun.rd.tut.fi

STUN Request

STUN Response

Addr_req

Dtreq

Addr_ind

Dtind

Figure 6.2: Test STUN

Considering the implementation of the protocol in section 5.1, the Client must use a

LEMon user task to communicate with the STUN task. The client must send a Addr req

90 CHAPTER 6. IMPLEMENTATION TESTING AND ANALYSIS

to the STUN task and should wait for a Addr ind response.

When testing a protocol some problems can occur. The encoding of the PDUs and other

network errors are some examples of problems that might occur. This test case is validated

if the Addr ind response is received properly without any errors.

6.2.2 Results

This section presents the results and their validation for the test cases of the previous

section. Firstly the output of the LEMon User and the content of the received messages

will be presented. The results from the network were captured using the well known

Wireshark, a network protocol analyzer.

***** stun BEFORE run 19:33:20.015148

*** Message from env:usr to stun:up ***

Message ’addr_req’ = {

Frame data = request

}

***** env BEFORE run 19:33:20.017114

*** Message from stun:up to env:usr ***

Message ’addr4_ind’ = {

InetAddr req_addr = 130.230.52.180:39950

}

Figure 6.3: A partial capture of the LEMon User output during the STUN test

Figure 6.4: A partial screen capture of Wireshark, during the STUN test

192.168.1.2 130.230.141.165

| |

| Binding Request |

|(39950) -------------------> (3478) |

| Binding Success Resp |

|(39950) <------------------- (3478) |

Figure 6.5: Graph Analysis of Wireshark, during the STUN test

During the STUN test it was possible to get the following results: Figure 6.3 illustrates a

6.3. TLS TESTING 91

partial capture of the LEMon user output; Figure 6.4 illustrates a partial screen capture of

the network analyser Wireshark, detailing the messages sent by the agents and captured

by the device; Figure 6.5 illustrates a graph analysis generated by Wireshark.

The Client sends an Addr req and receives a successful Addr ind. From figure 6.3 it is pos-

sible to verify the behaviour of the implementation, checking that the message Addr4 ind

contains the reflexive address for the STUN client:

• Public IP Address: 130.230.52.180

• Public Port: 39950

From figure 6.4 and figure 6.5 it is possible to analyse the packets and validate the protocol,

since Wireshark automatically recognizes the protocol as STUN2 and in the Information

column it gives the type of the STUN message.

Comparing figure 6.3 and figure 6.4 it is possible to conclude that when the client sends a

UDP message, the NAT router uses the same source port 39950 (if available), and changes

the source IP to its public address 130.230.52.180 to transmit the packet.

6.3 TLS Testing

This section presents the testing of the TLS protocol. Firstly a general test case is de-

scribed and then some important details of the results that validates the test case are

proposed.

6.3.1 Test Case

First of all, testing the TLS protocol involves the choice of an Application protocol to

combine with security. In this test case, a HTTPS test case is provided, which is a

combination of the HTTP protocol with the SSL/TLS protocol.

Looking at the design perspective, figure 6.6 illustrates the simple test case chosen to test

HTTPS.

92 CHAPTER 6. IMPLEMENTATION TESTING AND ANALYSIS

LEMon User

(EnvTask)

Application Layer

Task

TlsSAP::User usr

TlsTask

SAPTlsTask::Provider up

Dtreq

Cind

FSM

TlsConn

Dtind

Creq

DevIf::User down

Figure 6.6: Test TLS model

Since HTTP is a simple request/response protocol with simple PDUs that only sends

string commands to the server, it was decided to skip the implementation of a HTTP

task, and simply leave the LEMon User to communicate straight with the TlsTask. Using

this structure, the LEMon user only needs to use the TlsTask SAP to send SDUs. It only

needs to connect to the Server and send string commands. Figure 6.7 illustrates a message

sequence diagram of the TLS test case.

Considering the network architecture of the figure 6.1, the TLS client is tested in the TLT

network and is connected to a router with NAT enabled. The TLS client gets the private

IP address 192.168.1.2 via DHCP. It is quite important to note that the usage of the

HTTP protocol in the TLT network is quite vulnerable, either because the client is in a

private LAN, and also because of the TLT network where there are many other computers

connected. If there is the necessity of sending sensitive information, the packets can be

captured by a eavesdropper, and secrets can be discovered. Man-in-the-middle attacks

are other often common attacks, where an attacker fools both parties of a communication.

6.3. TLS TESTING 93

LEMon User TlsTask

TlsConn

TLS Client

192.168.1.2

TLS Server

mail.google.com

Creq

Cind

Dtreq

TCP Connection

TLS Handshake

GET / HTTP/1.0

<html>...<\html>

Dtind

GET / HTTP/1.0

<html>…<\html>

Figure 6.7: Test HTTP over TLS

Thus it is decided to test the HTTPS protocol and the chosen HTTPS test server is the

Google Mail Server (mail.google.com) listening in the TCP port 443.

Considering the message sequence diagram of figure 6.7, the Client must use the LEMon

user task to communicate with the TlsTask. First it sends a Creq to connect to the

server and waits for the confirmation Cind. When the TLS connection is established it

sends a Dtreq message to send a GET command to the Server. In the HTTP protocol,

a GET command requests a representation of the specified resource. If everything goes

well the Server might send a response and the LEMon user receives it back in the message

Dtind.

When testing a protocol some problems can occur. Connection problems, not accepted

ciphers, error in the validation of certificates, and network errors are some examples of

94 CHAPTER 6. IMPLEMENTATION TESTING AND ANALYSIS

problems that might occur. This test case is validated if the Client successfully connects

to the Server, and if it is able to send and receive responses without any errors.

6.3.2 Results

This section presents the results and its validation for the test cases of the previous section.

At first it presents the output of the LEMon User and the content of the received messages.

Then, it presents the results captured from the Network using ssldump, a SSLv3/TLS

network protocol analyzer.

During the TLS test it was possible to get the following results: Figure 6.8 illustrates a

partial capture of a Connection Request in the LEMon user; Figure 6.9 illustrates a partial

capture for a Dtreq and Dtind in the LEMon user; Figure 6.10 illustrates the output of

the network analyser ssldump, detailing the messages sent by the agents and captured by

the device.

***** tls BEFORE run 21:28:24.477376

*** Message from env:usr to tls:up ***

Message ’creq’ = {

Frame priorities = SECURE256

Frame cafile = certificates/x509-trust.pem

}

***** env BEFORE run 21:28:25.115928

*** Message from tls:up to env:usr ***

Message ’cind’ = {

InetAddr addr = 209.85.149.83:443

Frame message = TLS Connected!

}

Figure 6.8: A partial capture of a Connection Request in the LEMon user during the TLS
test

From the DOORS perspective, the LEMon User sends a Creq and receives a successful

Cind. From figure 6.8 it is possible to validate the connection request and connection indi-

cation, meaning that the TLS Session/Connection was successfully established. From that

on, the application data transfer starts with a Dtreq, when the client runs the command

“GET / HTTP/1.0”and receives two Dtind messages. From figure 6.9 it is possible to

validate the application data transferred during the TLS session, meaning that the Server

6.3. TLS TESTING 95

***** tls BEFORE run 21:28:31.295547

*** Message from env:usr to tls:up ***

Message ’dtreq’ = {

Frame data = GET / HTTP/1.0

}

***** env BEFORE run 21:28:31.329310

*** Message from tls:up to env:usr ***

Message ’dtind’ = {

InetAddr source = 209.85.149.83:443

Frame data = HTTP/1.0 302 Found

Location: https://encrypted.google.com/

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Set-Cookie: PREF=ID=4d6097fcb0aa379a:FF=0:TM=1311008591:LM

=1311008591:S=bdGrjSR1Rh2r1TZM; expires=Wed, 17-Jul-2013

17:03:11 GMT; path=/; domain=.google.com

Date: Mon, 18 Jul 2011 17:03:11 GMT

Server: gws

Content-Length: 226

X-XSS-Protection: 1; mode=block

}

***** env BEFORE run 21:28:31.336593

*** Message from tls:up to env:usr ***

Message ’dtind’ = {

InetAddr source = 209.85.149.83:443

Frame data =

<HTML><HEAD><meta http-equiv="content-type" content="text/html;

charset=utf-8">

<TITLE>302 Moved</TITLE></HEAD><BODY>

<H1>302 Moved</H1>

The document has moved

here.

</BODY></HTML>

}

Figure 6.9: A partial capture of a Dtreq and Dtind in the LEMon user during the TLS
test

receives the requests and answers accordingly to the protocol, and the device successfully

decodes the messages to plaintext.

From figure 6.10 it is possible to analyse the packets and validate the protocol, since

ssldump automatically recognizes the SSLv3/TLS protocol and recognizes the type of

each message. From this output is also possible to recognize the new tcp connection, the

96 CHAPTER 6. IMPLEMENTATION TESTING AND ANALYSIS

New TCP connection #1: pedro.tut(65000) <-> mail.google.com(443)

1 1 0.1374 (0.1374) C>S Handshake ClientHello

1 2 0.1676 (0.0302) S>C Handshake ServerHello

1 3 0.1677 (0.0000) S>C Handshake Certificate

1 4 0.1677 (0.0000) S>C Handshake ServerHelloDone

1 5 0.3504 (0.1826) C>S Handshake ClientKeyExchange

1 6 0.4195 (0.0691) C>S ChangeCipherSpec

1 7 0.4195 (0.0000) C>S Handshake

1 8 0.4489 (0.0293) S>C ChangeCipherSpec

1 9 0.4489 (0.0000) S>C Handshake

1 10 6.8182 (6.3693) C>S application_data

1 11 6.8495 (0.0313) S>C application_data

1 12 6.8495 (0.0000) S>C application_data

1 6.8496 (0.0001) S>C TCP FIN

1 13 6.8530 (0.0034) C>S Alert

1 6.8531 (0.0000) C>S TCP FIN

Figure 6.10: Messages sent by the agents and captured by ssldump during the TLS test

successful handshake, the application data transfer, and the connection closing.

Even though it is not shown in the outputs, the TLS handshake is performed with the

following parameters:

• Key Exchange: RSA

• Protocol: TLS1.0

• Certificate Type: X.509

• Compression: NULL

• Cipher: ARCFOUR-128

• MAC: SHA1

The application data transfer is encrypted with ARCFOUR-128 and cannot be understood

by an eavesdropper that might attack the network. Using TLS with PKI and certificates,

and the data transfer fully encrypted with a symmetric algorithm and MAC, it is provided

a true sense of security with authentication, confidentiality and integrity.

Chapter 7

Conclusions

The current chapter discusses the thesis’ conclusions based on previous chapters. Section

7.1 is a small synthesis where the main contents of each chapter are highlighted and section

7.2 summarizes the main conclusions. Section 7.3 enumerates a few topics to address in

future investigation.

7.1 Synthesis

This section briefly describes each chapter’s content.

Chapter 1 explains that the scope of this thesis is the investigation and integration of the

STUN and TLS protocols in the DOORS framework environment. It also highlights their

architecture and functionalities for their usage and further developments.

Chapter 2 describes the DOORS framework architecture and its usage. Moreover, it

presents the general system functionalities that are used in the following chapters.

Chapter 3 overviews the NAT traversal problem and the STUN protocol as a tool to

improve protocols in penetrating the NAT. This is an important chapter because it explains

the importance of NAT traversal and gives some important information of the STUN

specifications used for the further chapters.

Network security is discussed in Chapter 4. Here, it is discussed relevant aspects of the

97

98 CHAPTER 7. CONCLUSIONS

usage of security in different layers on the TCP/IP stack, and important services to provide

when securing a network. Further, it provides the importance of cryptography and some

algorithms and methods to provide different services in network security. Finally the TLS

protocol is described as a final solution to secure the transport layer, merging all the

algorithms and methods discussed previously.

Chapter 5 describes the protocols’ implementation. STUN and TLS protocols integration

in the DOORS framework is the aim, illustrating important diagrams for its design and

many other specifications for its final usage.

Chapter 6 validates the protocols’ functionality. It discusses the validity of the STUN and

TLS protocol in the DOORS framework presenting their usage with some outputs and

network flows and compares the obtained results with the theoretical specifications.

7.2 Conclusions

The main objective of this thesis is focused on the study and integration of two different

protocols for the DOORS framework.

The importance of NATs is a crucial theme to some protocols that might not work properly.

DOORS as a framework for implementing protocols and network applications was not

prepared for this problematic. New protocols or applications developed in the DOORS

framework might be working behind a NAT, and the necessity of a NAT traversal solution

might be useful. For this purpose, a design for the STUN protocol was proposed in the

DOORS framework, to be used by developers as a tool to help in NAT traversal. Using this

implementation, it is possible to enable applications to communicate with the StunTask

presented in the section 5.1 to discover their reflexive address. It is proved with section

6.2 that the presented design is feasible in the DOORS framework and we can ensure that

any application protocol can use StunTask to help NAT traversal solutions. With this

design it is possible to prove the idea of loosely de-coupled objects that handle incoming

events and communicate with other objects using messages. This section also tested an

application sending messages to the StunTask, and receiving responses accordingly to the

7.3. FUTURE WORK 99

protocol specifications and the DOORS requirements. Since NAT traversal only makes

sense for IPv4, the STUN solution only works for IPv4 addresses, but in the future IPv6

can be easily integrated.

The importance of security is a crucial theme for most of the protocols exchanging messages

in an insecure channel. New protocols or applications developed in the DOORS frame-

work might need to provide an extra layer of security. The goal is to provide security to

application protocols at the transport layer in the DOORS framework, encapsulating the

protocol through an encrypted SSL/TLS connection. For this purpose, it was proposed

the integration of the TLS protocol in DOORS framework with the help of the GnuTLS

library, and its design is presented on section 5.2. The solution for this protocol goes to

a lower level architecture and focuses on an implementation of two objects, a TLS device

and a TLS task. It is proved with section 6.3 that the presented design is feasible in the

DOORS framework and we can ensure that any application protocol can use TlsTask to

begin a secure communication in the transport layer. With this design we proved that

it is possible to use external libraries to integrate new protocols in the DOORS frame-

work. Using a virtual device for the external communication and the usage of the TlsTask

to control the device was definitely an effective solution. To prove the funcionality of

this architecture it was decided to simulate the HTTPS protocol. The application layer

protocol HTTP communicates successfully with the TlsTask, and a TLS connection is

established providing a security layer to the HTTP protocol. After the successfull hand-

shake, the application protocol sent a GET command, and received responses accordingly

to the protocol specifications. This implementation supports IPv4 and IPv6 addresses.

In terms of DOORS requirements, the GnuTLS library uses some blocking calls causing

some synchronization problems to DOORS. However, if a full asynchronous environment

is not necessary, it works perfectly.

7.3 Future Work

During the development of the proposed solutions, some assumptions were made to support

our architecture models.

100 CHAPTER 7. CONCLUSIONS

Firstly for the case of the STUN protocol, it was decided to support UDP for the most

typical cases using IPv4 addresses. In the future this model can be extended for TCP

connections and IPv6 addresses. More testing and performance evaluation is needed to

ascertain that it is feasible and beneficial in practice.

Further work in the TLS integration can be conducted to improve the asynchronism of the

architecture. GnuTLS function calls such as gnutls handshake(), gnutls record send() and

gnutls record recv() are blocking calls that do not allow a full asynchronous architecture

in the DOORS framework. The goal must be to use callback functions instead and give a

full asynchronous architecture to fully integrate the DOORS requirements.

Appendix A

Appendixes to the STUN

Implementation

A.1 XML Specifications

A.1.1 Peer/PDU Specifications

<?xml version="1.0"?>

<Peer Name="StunPeer" HIncludeFiles="stunheader.h, doors/inetaddr.h"

IIncludeFiles="stunpdu.h">

<Message Name="REQUEST">

<Parent>STUNHeader</Parent>

<Field> Uint16 type </Field>

<Field> Uint16 length </Field>

<Field> Frame software </Field>

<Field> InetAddr addr </Field>

</Message>

<Message Name="SUCCESSRESPONSE">

<Parent>STUNHeader</Parent>

<Field> Uint16 type </Field>

<Field> Uint16 length </Field>

<Field> Uint8 reserved </Field>

<Field> Uint8 family </Field>

<Field> Uint16 xport </Field>

<Field> Uint32 xaddress4 </Field>

<Field> Frame xaddress</Field>

101

102 APPENDIX A. APPENDIXES TO THE STUN IMPLEMENTATION

<Field> InetAddr srcIP </Field>

<Field> InetAddr destIP </Field>

</Message>

<Message Name="ERRORRESPONSE">

<Parent>STUNHeader</Parent>

<Field> Uint16 type </Field>

<Field> Uint16 length </Field>

<Field> Uint16 reserved </Field>

<Field> Uint8 reserved_class </Field>

<Field> Uint8 number </Field>

<Field> Frame reason_phrase</Field>

<!-- new attribute -->

<Field> Frame unknown_attr </Field>

<Field> InetAddr srcIP </Field>

<Field> InetAddr destIP </Field>

</Message>

</Peer>

A.1. XML SPECIFICATIONS 103

A.1.2 State Machine Specifications

<?xml version="1.0"?>

<SM Name="StunTaskSM" PTask="StunTask" CIncludeFiles="stunsm.h, stuntask.h

, stunsap.h, stunpdu.h">

<SAP-File Name="stunsap.sap"/>

<Peer-File Name="stunpdu.pdu"/>

<From StunSAP="up"/>

<From StunPeer="peer"/>

<State Name="Idle" Default="idle_Default">

<Interface Name="up">

<Input Name="Addr_req">idle_Addr_req</Input>

</Interface>

</State>

<State Name="Wait" Default="wait_Default">

<Interface Name="peer">

<Input Name="SUCCESSRESPONSE">wait_SUCCESSRESPONSE</Input>

</Interface>

<Interface Name="peer">

<Input Name="ERRORRESPONSE">wait_ERRORRESPONSE</Input>

</Interface>

<Timer>wait_Timeout</Timer>

</State>

</SM>

104 APPENDIX A. APPENDIXES TO THE STUN IMPLEMENTATION

A.1.3 Service Access Point Specifications

<?xml version="1.0"?>

<SAP Name="StunSAP" CIncludeFiles="stunsap.h">

<User>

<Message Name="Addr_req">

<Field>Frame data</Field>

</Message>

</User>

<Provider>

<Message Name="Addr4_ind">

<Field>InetAddr req_addr</Field>

</Message>

<Message Name="Error_ind">

<Field>Frame data</Field>

</Message>

</Provider>

</SAP>

A.2. STUNTASK CLASS CODE 105

A.2 StunTask Class Code

#ifndef STUNTASK_H

#define STUNTASK_H

#include <string>

#include <doors/ptb.h>

#include <doors/udp.h>

#include <doors/ptask.h>

#include <doors/inetaddr.h>

#include <doors/timer.h>

#include "stunsap.h"

#include "stunsm.h"

#include "stunpdu.h"

#include "stunheader.h"

#include "stundef.h"

#define MAX_RETRIES 5

class StunTaskSM;

class StunTask : public PTask {

public:

StunTask (std::string name, Scheduler* s, StunTaskSM* sm, InetAddr addr

);

virtual ~StunTask();

UdpSAP :: User down; // SAP to UDP task

StunSAP :: Provider up; // SAP to a user task

StunPeer peer; // SAP to Stun peer

// Idle state

bool idle_Default (Message* msg);

bool idle_Addr_req (Message* msg);

// Wait state

bool wait_Default (Message* msg);

bool wait_SUCCESSRESPONSE (Message* msg);

bool wait_ERRORRESPONSE (Message* msg);

bool wait_Timeout (Message* msg);

// Helper functions

private:

void sendRequest ();

void retransmitRequest ();

void receiveSuccessResponse (Message* msg);

void receiveErrorResponse (Message* msg);

106 APPENDIX A. APPENDIXES TO THE STUN IMPLEMENTATION

bool is_valid_header (STUNHeader header);

// Class variables

InetAddr destaddr_; //destination addr structure (contain just the

value, but we don’t use yet)

Timer timer_; //timer

Uint16 retries_; //retries

TidStruct tid_; //transaction_id sent in the REQUEST

StunPeer :: REQUEST *buffer_msg; //message sent in the REQUEST

};

#endif

Appendix B

Appendixes to the TLS
Implementation

B.1 XML Specifications

B.1.1 State Machine Specifications

<?xml version="1.0"?>

<SM Name="TlsTaskSM" PTask="TlsTask" CIncludeFiles="tlssm.h, tlstask.h,

tlssap.h">

<SAP-File Name="tlssap.sap"/>

<From TlsSAP="up"/>

<From DevIf="down"/>

<State Name="closed" Default="closed_Default">

<Interface Name="up">

<Input Name="creq">closed_Creq</Input>

</Interface>

<Interface Name="down">

<Input Name="open">closed_Conn</Input>

</Interface>

</State>

<State Name="open" Default="open_Default">

<Interface Name="up">

<Input Name="dtreq">open_Dtreq</Input>

</Interface>

<Interface Name="down">

<Input Name="read">open_Data</Input>

<Input Name="close">open_Disconn</Input>

</Interface>

</State>

</SM>

107

108 APPENDIX B. APPENDIXES TO THE TLS IMPLEMENTATION

B.1.2 Service Access Point Specifications

<?xml version="1.0"?>

<SAP Name="TlsSAP" CIncludeFiles="tlssap.h">

<User>

<Message Name="Creq">

<Field>Frame priorities</Field>

<Field>Frame cafile</Field>

</Message>

<Message Name="Dtreq">

<Field>Frame data</Field>

</Message>

</User>

<Provider>

<Message Name="Cind">

<Field>InetAddr addr</Field>

<Field>Frame message</Field>

</Message>

<Message Name="Dtind">

<Field>InetAddr source</Field>

<Field>Frame data</Field>

</Message>

</Provider>

</SAP>

B.2. TLSTASK CLASS CODE 109

B.2 TlsTask Class Code

#ifndef TLSTASK_H

#define TLSTASK_H

#include <string>

#include <doors/ptb.h>

#include <doors/devif.h>

#include <doors/inetaddr.h>

#include <map>

#include "tlsconn.h"

#include "tlssap.h"

#include "tlssm.h"

class TlsTask : public PTask {

public:

TlsTask (std::string n, Scheduler *s, IoHandler *io, Address *a1,

TlsTaskSM* sm);

~TlsTask (void);

TlsSAP :: Provider up;

DevIf :: User down;

bool closed_Default (Message* msg);

bool closed_Creq (Message* msg);

bool closed_Conn (Message* msg);

bool open_Default (Message* msg);

bool open_Dtreq (Message* msg);

bool open_Data (Message* msg);

bool open_Disconn (Message* msg);

Frame session_data;

int resume;

protected:

TlsConn tlsdevice;

InetAddr rem_addr; //remote address

Address *addr_; //same as rem_addr

};

#endif // TLSTASK_H

110 APPENDIX B. APPENDIXES TO THE TLS IMPLEMENTATION

B.3 TlsConn Class Code

//tlsconn.h

#ifndef TLSCONN_H

#define TLSCONN_H

#ifdef HAVE_CONFIG_H

include <config.h>

#endif

#include <doors/hsi.h>

#include <doors/soconnac.h>

#include <doors/buffer.h>

#include <doors/sockhelper.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/extra.h>

#include <gnutls/x509.h>

#define MAX_BUF 4096

/** TlsConn can be seen as a client that tries to

connect into SockEnt. When connection is established

another TlsConn instance is also created into the

peer entity and the actual data transfer is done between

these two instances. The device informs different event to the

controlling task by sending message with proper parameters.

TlsConn is read-write device. */

class TlsConn : public SocketConnectionAC, public SockHelper {

public:

/** Initializes the base class and own variables. This constructor is

used when instance is created without actually connecting to

the peer entity. It can be done later with connect function call.

@param io I/O handler of the system

@param t the task that holds the device*/

TlsConn (IoHandler *io, EventTask *t);

/** Initializes the base class and own variables. Constructor is

used when instance is created with given file decriptor. This

usually happens in server side where descriptor is created by

B.3. TLSCONN CLASS CODE 111

SocketEntity.

@param ioh the i/o handler of the system.

@param t the task that holds the device

@param sd is descriptor for connection to be

communicate with peer entity. */

//TlsConn (IoHandler *io, EventTask *t, Uint32 sd);

/** Initializes the base class and own variables. Constructor is

used when instance is created with given peer entity address.

This usually happens in client side where connection is established

by the instance itself.

@param ioh the i/o handler of the system,

@param t the task that holds the device

@param a an address of the peer entity. */

//TlsConn (IoHandler *io, EventTask *t, Address *a);

/**Delete connector and stream instances. */

~TlsConn (void);

/** Function is used for connecting to peer entity. The type of

connection is checked from the type of address and proper

connector and stream is created.

The controlling task is informed both the success of failure

of the connection establishement through the DevIf.

@param a The address of peer entity.*/

bool connect (Address *a);

/** Function is used for connecting to peer entity with a

previous TLS Session. The type of connection is checked

from the type of address and proper connector and stream

is created. The controlling task is informed both the success

of failure of the connection establishement through the DevIf.

@param a The address of peer entity.

@param a The Session data of a previous TLS Session.*/

bool connect (Address *a, Frame sessiondata);

/** Function is used for connecting to peer entity. The type of

connection is checked from the type of file descriptor and

proper stream is created.

@param sd The filedescriptor of peer entity */

bool connect (Uint32 sd);

/**Close device and send proper message to the

controlling task. */

virtual bool close (void);

/** @return File descriptor of this connection */

virtual int getFd (void) const;

112 APPENDIX B. APPENDIXES TO THE TLS IMPLEMENTATION

/** Function is runned when something is to be writen into the

socket. <p>

If it is possible to write all data into the socket it is done without

any breaks. If it is not possible then writing is done only partially

and it is continued when data can be sended.<p>

If for some reason error happens then controlling task is informed

with DevIf :: Close message. */

void callbackWrite (void);

/** Function is runned when something is to be read from the

socket. <p>

If there is all data availeble then it is read without any breaks

and SocketData message is send to the controlling task. If there

is not enough data availeble then partial reading is used and reading

is continued when there is new data availeble.

The data is sent in DevIF :: Read message to the task when either

packetlenght is zero or wsize is set for -1 (StreamDevice :: immediate

).

wsize is set to zero after data is sent and it must be set with

devices readBytes function before every reading for the

sake of synchronising. <p>

If for some reason error happens then controlling task is informed

with DevIf :: Close message. */

void callbackRead (void);

/** Function wraps the system call getpeername.

@return the address of the peer entity. */

Address *getRemoteAddress (void);

/** Function wraps the gnutls_session_t.

@return the actual session */

Frame getSession (void);

bool setSession (Frame sessiondata);

bool tls_init_params(char *priority_list, int debug, int insecure, int

disable_ext);

bool tls_init_x509 (char *cafile, char *crlfile, char *keyfile, char *

certfile);

bool tls_init_srp (char *srpuser, char *srppass);

bool tls_init_psk (char *pskuser, char *pskkey);

protected:

int bindPort(int sock, int addrType);

int get_portnumber(int s);

void reset_global_var (void);

bool tls_global_init (void);

void tls_global_deinit (void);

bool tls_init_session (void);

B.3. TLSCONN CLASS CODE 113

bool tls_handshake (void);

static int cert_verify_callback (gnutls_session_t session);

static int srp_username_callback (gnutls_session_t session, char **

username, char **password);

static int psk_callback (gnutls_session_t session, char **username,

gnutls_datum_t * key);

int print_info (gnutls_session_t session);

void print_x509_certificate_info (gnutls_session_t session);

void print_cert_vrfy (gnutls_session_t session);

void check_alert (gnutls_session_t session, int ret);

static void tls_log_func (int level, const char *str);

static const char *bin2hex (const void *bin, size_t bin_size);

/* GNUTLS stuff here */

const char *hostname; //hostname of the peer (server)

//int verbose; //verbose mode != 0

int debug; //debug > 0; if debug == 0 then no_debug_verbose

int insecure; //if insecure != 0 -> protocol insecure -> skip

verifications

int disable_extensions; //only extension until now -> GNUTLS_NAME_DNS

int resume; //if resumed session

bool flag_x509; //true if X.509 auth is used

bool flag_anon; //true if auth is anonimous (DH)

bool flag_psk; //true if PSK auth is used

bool flag_srp; //true if SRP auth is used

char *x509_cafile; //path of the CAs trusted file

char *x509_crlfile; //PKI -> path of the CRL file

//not in use yet

char *x509_keyfile; //path of the Private Key File

char *x509_certfile; //path of the Certificate File

gnutls_x509_crt_fmt_t x509ctype;

char *psk_username;

gnutls_datum_t psk_key;

char *srp_passwd;

char *srp_username;

char *priorities; //priorities list

gnutls_session_t session; //session data

114 APPENDIX B. APPENDIXES TO THE TLS IMPLEMENTATION

gnutls_certificate_credentials_t xcred; //X.509 credentials

gnutls_anon_client_credentials_t anon_cred; //Anon DH credentials

gnutls_srp_client_credentials_t srp_cred; //SRP credentials

gnutls_psk_client_credentials_t psk_cred; //PSK credentials

static TlsConn *myclass;

/*

//->To Use Client Authentication with certificate

#define MAX_CRT 6

unsigned int x509_crt_size;

gnutls_x509_crt_t x509_crt[MAX_CRT];

gnutls_x509_privkey_t x509_key;

*/

/*

//->To Use Client Authentication with certificate

static int cert_callback (gnutls_session_t session, const gnutls_datum_t

* req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos, int sign_algos_length,

gnutls_retr_st * st);

static void load_keys (void);

static gnutls_datum_t load_file (const char *file);

static void unload_file (gnutls_datum_t data);

*/

/*

static int protocol_priority[PRI_MAX];

static int kx_priority[PRI_MAX];

static int cipher_priority[PRI_MAX];

static int comp_priority[PRI_MAX];

static int mac_priority[PRI_MAX];

static int cert_type_priority[PRI_MAX];

*/

};

#endif

Bibliography

[1] B. Silverajan and J. Harju, “Developing network software and communications proto-

cols towards the internet of things,” in Proceedings of the Fourth International ICST

Conference on COMmunication System softWAre and middlewaRE, COMSWARE

’09, (New York, NY, USA), pp. 9:1–9:8, ACM, 2009.

[2] Tampere University of Technology, “DOORS - Distributed Object OpeRationS.”

http://www.cs.tut.fi/~doors/, February 2002. [Online; accessed 11-April-2011].

[3] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal Utilities for

NAT (STUN),” RFC 5389, Internet Engineering Task Force, Oct. 2008.

[4] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version

1.2,” RFC 5246, Internet Engineering Task Force, Aug. 2008.

[5] B. Silverajan, I. Karvinen, J. Mäkihonka, and J. Harju, “The design of a flexibly

interworking distributed message-based framework,” in Proceedings of the EUNICE

2000 Summerschool, pp. 39–46, September 2000.

[6] I. Karvinen, “Distributed Event Monitoring within DOORS Middleware,” Master’s

thesis, Tampere University of Technology, Finland, 2002.

[7] A. S. Tanenbaum, Computer Networks. New Jersey, USA: Prentice Hall, 4th ed.,

2003.

[8] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Tradi-

tional NAT),” RFC 3022, Internet Engineering Task Force, Jan. 2001.

115

http://www.cs.tut.fi/~doors/

116 BIBLIOGRAPHY

[9] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach (5th

Edition). Addison Wesley, 5 ed., March 2009.

[10] A. Wacker, G. Schiele, S. Holzapfel, and T. Weis, “A NAT traversal mechanism for

Peer-to-Peer networks,” in Peer-to-Peer Computing , 2008. P2P ’08. Eighth Interna-

tional Conference on, pp. 81 –83, 2008.

[11] A. Muller, G. Carle, and A. Klenk, “Behavior and classification of NAT devices and

implications for NAT traversal,” Network, IEEE, vol. 22, no. 5, pp. 14 –19, 2008.

[12] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple Traversal

of User Datagram Protocol (UDP) Through Network Address Translators (NATs),”

RFC 3489, Internet Engineering Task Force, Mar. 2003.

[13] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245, Internet

Engineering Task Force, Apr. 2010.

[14] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” RFC

5766, Internet Engineering Task Force, Apr. 2010.

[15] C. Jennings, R. Mahy, and F. Audet, “Managing Client-Initiated Connections in the

Session Initiation Protocol (SIP),” RFC 5626, Internet Engineering Task Force, Oct.

2009.

[16] D. MacDonald and B. Lowekamp, “NAT Behavior Discovery Using Session Traversal

Utilities for NAT (STUN),” RFC 5780, Internet Engineering Task Force, May 2010.

[17] J. Postel, “Internet Protocol,” RFC 0791, Internet Engineering Task Force, Sept.

1981.

[18] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” RFC 3629, Internet

Engineering Task Force, Nov. 2003.

[19] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, Internet

BIBLIOGRAPHY 117

Engineering Task Force, June 2002.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616, Internet Engineering

Task Force, June 1999.

[21] W. Diffie and S. Landau, Privacy on the Line: The Politics of Wiretapping and

Encryption, Updated and Expanded Edition. The MIT Press, 2007.

[22] R. Oppliger, SSL and TLS: Theory and Practice. Norwood, MA, USA: Artech House,

Inc., 2009.

[23] R. Braden, “Requirements for Internet Hosts - Communication Layers,” RFC 1122,

Internet Engineering Task Force, Oct. 1989.

[24] “IEEE Standard for Local and Metropolitan Area Networks - Media Access Control

(MAC) Security,” IEEE Std 802.1AE-2006, pp. 1–142, 2006.

[25] S. Frankel, Demystifying the Ipsec Puzzle. Norwood, MA, USA: Artech House, Inc.,

2001.

[26] R. Oppliger, Secure messaging: with PGP and S/MIME. Norwood, MA, USA: Artech

House, Inc., 2001.

[27] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,”

ACM Trans. Comput. Syst., vol. 2, pp. 277–288, November 1984.

[28] E. Rescorla and A. Schiffman, “The Secure HyperText Transfer Protocol,” RFC 2660,

Internet Engineering Task Force, Aug. 1999.

[29] W. Stallings, Network Security Essentials: Applications and Standards. Upper Saddle

River, NJ, USA: Prentice Hall Press, 4th ed., 2010.

[30] ITU, Security architecture for Open Systems Interconnection for CCITT applications

(ITU-T Recommendation X.800). International Telecommunications Union, March

1991.

[31] R. Shirey, “Internet Security Glossary,” RFC 2828, Internet Engineering Task Force,

May 2000.

118 BIBLIOGRAPHY

[32] U.S. Department of Commerce, National Institute of Standards and Technology, Com-

puter Systems Laboratory, “DES Modes of Operation,” FIPS PUB 81, December

1980.

[33] National Institute of Standards and Technology, FIPS PUB 46-3: Data Encryption

Standard (DES). National Institute for Standards and Technology, October 1999.

supersedes FIPS 46-2.

[34] Electronic Frontier Foundation (EFF), “DES Cracker Project.” http://w2.eff.org/

Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html,

1998. [Online; accessed 11-April-2011].

[35] Electronic Frontier Foundation (EFF), “DES Challenge III Broken in Record

22 Hours.” http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/

19990119_deschallenge3.html, January 1999. [Online; accessed 11-April-2011].

[36] National Institute of Standards and Technology, FIPS PUB 197: Specification for the

Advanced Encryption Standard (AES). National Institute for Standards and Tech-

nology, November 2001. supersedes FIPS 46-2.

[37] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algorithm

of RC4,” Lecture Notes in Computer Science, vol. 2259, 2001.

[38] A. Klein, “Attacks on the RC4 stream cipher,” February 2006.

[39] E. Tews, R.-P. Weinmann, and A. Pyshkin, “Breaking 104 bit wep in less than 60

seconds.” Cryptology ePrint Archive, Report 2007/120, 2007. http://eprint.iacr.

org/.

[40] J. Kelsey, B. Schneier, and D. Wagner, “Related-key cryptanalysis of 3-way, biham-

des, cast, des-x, newdes, rc2, and tea,” in Proceedings of the First International

Conference on Information and Communication Security, (London, UK), pp. 233–

246, Springer-Verlag, 1997.

[41] O. D. Eli Biham and N. Keller, “A new attack on 6-round IDEA,” 2007.

http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19990119_deschallenge3.html
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19990119_deschallenge3.html
http://eprint.iacr.org/
http://eprint.iacr.org/

BIBLIOGRAPHY 119

[42] National Institute of Standards and Technology, Skipjack and KEA Algorithm Spefi-

cications. National Institute for Standards and Technology, May 1998.

[43] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of skipjack reduced to 31

rounds using impossible differentials,” in Proceedings of the 17th international con-

ference on Theory and application of cryptographic techniques, EUROCRYPT’99,

(Berlin, Heidelberg), pp. 12–23, Springer-Verlag, 1999.

[44] M. Matsui, J. Nakajima, and S. Moriai, “A Description of the Camellia Encryption

Algorithm,” RFC 3713, Internet Engineering Task Force, Apr. 2004.

[45] A. Kato, M. Kanda, and S. Kanno, “Camellia Cipher Suites for TLS,” RFC 5932,

Internet Engineering Task Force, June 2010.

[46] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126,

1978.

[47] G. C. Kessler, “An Overview of Cryptography.” http://www.garykessler.net/

library/crypto.html, March 2011. [Online; accessed 11-April-2011].

[48] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions

on Information Theory, vol. IT-22, pp. 644–654, Nov. 1976.

[49] D. McGrew, K. Igoe, and M. Salter, “Fundamental Elliptic Curve Cryptography

Algorithms,” RFC 6090, Internet Engineering Task Force, Feb. 2011.

[50] T. Wu, “The SRP Authentication and Key Exchange System,” RFC 2945, Internet

Engineering Task Force, Sept. 2000.

[51] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin, “Using the Secure Remote

Password (SRP) Protocol for TLS Authentication,” RFC 5054, Internet Engineering

Task Force, Nov. 2007.

[52] P. Eronen and H. Tschofenig, “Pre-Shared Key Ciphersuites for Transport Layer

Security (TLS),” RFC 4279, Internet Engineering Task Force, Dec. 2005.

http://www.garykessler.net/library/crypto.html
http://www.garykessler.net/library/crypto.html

120 BIBLIOGRAPHY

[53] U. Blumenthal and P. Goel, “Pre-Shared Key (PSK) Ciphersuites with NULL En-

cryption for Transport Layer Security (TLS),” RFC 4785, Internet Engineering Task

Force, Jan. 2007.

[54] Cisco Systems, “Introduction to Secure Socket Layer.” http://www.cisco.com/

warp/public/cc/so/neso/cxne/cxdimng/wpsot_wp.pdf, 2002. [Online; accessed

11-April-2011].

[55] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, Internet Engi-

neering Task Force, Jan. 1999.

[56] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version

1.1,” RFC 4346, Internet Engineering Task Force, Apr. 2006.

[57] Free Software Foundation, Inc, “The GNU Transport Layer Security Library

(GnuTLS).” http://www.gnu.org/software/gnutls/, 2011. [Online; accessed 11-

April-2011].

[58] Individual Mozilla contributors, “Network Security Services (NSS).” http://www.

mozilla.org/projects/security/pki/nss, 2011. [Online; accessed 11-April-2011].

[59] OpenSSL Core and Development Team, “OpenSSL Project.” http://openssl.org,

2009. [Online; accessed 11-April-2011].

[60] Free Software Foundation, Inc, “GnuTLS - Comparison of different free TLS im-

plementations.” http://www.gnu.org/software/gnutls/comparison.html, 2011.

[Online; accessed 18-November-2010].

[61] Nikos Mavrogiannopoulos and Simon Josefsson, “GnuTLS - Priority Strings.”

http://www.gnu.org/software/gnutls/manual/html_node/Priority-Strings.

html#Priority-Strings, April 2011. [Online; accessed 11-April-2011].

[62] reSIProcate Development Team, “reSIProcate projects.” http://www.resiprocate.

org, 2007. [Online; accessed 23-May-2010].

http://www.cisco.com/warp/public/cc/so/neso/cxne/cxdimng/wpsot_wp.pdf
http://www.cisco.com/warp/public/cc/so/neso/cxne/cxdimng/wpsot_wp.pdf
http://www.gnu.org/software/gnutls/
http://www.mozilla.org/projects/security/pki/nss
http://www.mozilla.org/projects/security/pki/nss
http://openssl.org
http://www.gnu.org/software/gnutls/comparison.html
http://www.gnu.org/software/gnutls/manual/html_node/Priority-Strings.html#Priority-Strings
http://www.gnu.org/software/gnutls/manual/html_node/Priority-Strings.html#Priority-Strings
http://www.resiprocate.org
http://www.resiprocate.org

	Preface
	Abstract
	Resumo
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Problem Statement and Motivation
	Objectives and Contributions
	Thesis Outline

	The DOORS Framework
	Introduction
	Requirements
	Framework Architecture
	Scheduler
	I/O Handler and devices
	Tasks, Messages and Ports
	XML code generators
	Local Event Monitor (LEMon)

	Network Address Translation (NAT)
	Introduction
	NAT Traversal
	Session Traversal Utilities for NAT (STUN)
	Protocol analysis
	Protocol operation
	STUN Message Structure
	STUN attributes

	Network Security
	Introduction
	Approaches to Network Security
	Security Attacks
	Passive Attacks
	Active Attacks

	Security Services
	Cryptography
	Symmetric Encryption
	Public Key Encryption
	Hash Functions
	Digital Signatures
	Message Authentication Code
	Certificates

	Transport Layer Security (TLS)
	Introduction
	SSL/TLS Architecture
	Candidate Technologies

	Protocols' Implementation
	STUN Protocol
	Considerations and Choices
	Design Prototyping
	Design Architecture
	Modular Interaction and Behaviour
	Implementation

	TLS Protocol
	Considerations and Choices
	Design Overview
	Modular Interaction and Behaviour
	Implementation

	Development Environment

	Implementation Testing and Analysis
	Test Network
	STUN Analysis
	Test Case
	Results

	TLS Testing
	Test Case
	Results

	Conclusions
	Synthesis
	Conclusions
	Future Work

	Appendixes to the STUN Implementation
	XML Specifications
	Peer/PDU Specifications
	State Machine Specifications
	Service Access Point Specifications

	StunTask Class Code

	Appendixes to the TLS Implementation
	XML Specifications
	State Machine Specifications
	Service Access Point Specifications

	TlsTask Class Code
	TlsConn Class Code

	Bibliography

