
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Master’s Theses Theses and Dissertations

6-3-2001

WebALPS Implementation and Performance Analysis: Using WebALPS Implementation and Performance Analysis: Using

Trusted Co-servers to Enhance Privacy and Security of Web Trusted Co-servers to Enhance Privacy and Security of Web

Interactions Interactions

Shan Jiang
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jiang, Shan, "WebALPS Implementation and Performance Analysis: Using Trusted Co-servers to Enhance
Privacy and Security of Web Interactions" (2001). Master’s Theses. 2.
https://digitalcommons.dartmouth.edu/masters_theses/2

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of
Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/2?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR 2001-399

WebALPS Implementation and Performance Analysis: Using

Trusted Co-servers to Enhance Privacy and Security of Web

Interactions

Shan Jiang

Advisor: Professor Sean Smith

Dartmouth College

June 3, 2001

Copyright by
Shan Jiang

2001

Abstract

The client-server model of the Web poses a fundamental trust issue: clients are forced to trust in
secrecy and correctness of computation occurring at a remote server of unknown credibility. The
current solution for this problem is to use a PKI (Public Key Infrastructure) system and SSL
(Secure Sockets Layer) digital certificates to prove the claimed identity of a server and establish an
authenticated, encrypted channel between the client and this server. However, this approach does
not address the security risks posed by potential malicious server operators or any third parties who
may penetrate the server sites.

The WebALPS (Web Applications with Lots of Privacy and Security) approach [24] is proposed to
address these weaknesses by moving sensitive computations at server side into trusted co-servers
running inside high-assurance secure coprocessors.

In this thesis, we examine the foundations of the credibility of WebALPS co-servers. Then we will
describe our work of designing and building a prototype WebALPS co-server, which is integrated
into the widely-deployed, commercial-grade Apache server. We will also present the performance test
results of our system which support the argument that WebALPS approach provides a systematic
and practical way to address the remote trust issue.

ii

Acknowledgments

I am deeply grateful to Professor Sean Smith for his advisement, support, and encouragement
throughout this project. He has been extremely generous with his ideas and time. I have learned
a great deal about research as well as writing from him. I cannot imagine having a better advisor
both in terms of intellect and personality.

I want to express my gratitude to other members of my thesis committee – Professor Chris Hawblitzel
and Edward Feustel for carefully reading the draft of this thesis and providing invaluable feedbacks.

I want to thank Joan Dyer for her advice and tool support. I also want to thank Guanling Chen
for providing one of the machines that was used for testing and Qun Li for helping me with Linux
drawing tools.

This work was supported in part by U.S. Department of Justice, contract 2000-DT-CX-K001, by
Internet2/ATT, and by an equipment loan from IBM Watson. Therefore, my thanks go to them for
making this project possible.

Finally, I am very thankful to Mary for her unconditional support and understanding, and for always
being there for me.

iii

Contents

1 Introduction 1

1.1 The Challenge . 1

1.2 Current Solutions . 3

1.3 The WebALPS Approach . 5

1.4 The Thesis . 7

2 Project Outline 8

2.1 The Requirements . 8

2.1.1 Security . 8

2.1.2 Performance . 9

2.1.3 Scalability . 9

2.1.4 Configurability . 9

2.1.5 Ease of Deployment . 10

2.2 Road Map . 10

3 Enabling Technology I
— Secure Coprocessor 12

3.1 What is Secure Coprocessing . 12

3.2 IBM 4758 Secure Coprocessor . 13

3.2.1 Certified security properties . 13

iv

3.2.2 Hardware . 15

3.2.3 Software . 17

3.3 Design considerations . 21

4 Enabling Technology II
— SSL 23

4.1 How SSL works . 24

4.1.1 Structure Overview . 24

4.1.2 Record Layer Protocol . 25

4.1.3 Handshake Protocol . 26

4.1.4 Reuse a Previous Session . 29

4.2 How WebALPS-enabled SSL works . 31

4.2.1 Options with SSL . 31

4.2.2 Handshake with WebALPS co-server . 32

4.2.3 Session reuse with WebALPS co-server . 37

4.2.4 Record Layer protocol with WebALPS co-server 37

5 Apache, Mod SSL, and OpenSSL 40

5.1 Apache . 41

5.1.1 Life Cycle of Apache Server . 41

5.1.2 Modular Structure . 44

5.1.3 Support for Multiple Virtual Hosts . 46

5.2 Mod SSL . 46

5.3 OpenSSL . 47

5.4 How Apache, mod ssl, OpenSSL Interact Through Data Structures 49

5.4.1 Important Data Structures and Their Roles 49

5.4.2 How they interact . 50

v

6 WebALPS Implementation 53

6.1 Design and the System . 53

6.2 Configurability . 54

6.3 Porting WebALPS co-server’s Certificate . 55

6.4 Implement WebALPS-enabled SSL Protocol . 56

6.4.1 Storage of SSL Session Information in the Co-server 57

6.4.2 Implement WebALPS-enabled Handshake protocol and Record Layer protocol 57

6.5 The Design of a Simple Application . 59

7 Performance Analysis 63

7.1 Test Goal . 63

7.2 Speed Test . 64

7.2.1 Test Tool . 64

7.2.2 Testing Setup . 65

7.2.3 Testing Result . 66

7.3 Scalability Test . 70

7.3.1 Testing Tool . 70

7.3.2 Test Setup . 71

7.3.3 Test Results . 72

8 Conclusions and Future Work 75

8.1 Conclusions . 75

8.2 Future Work . 76

vi

List of Tables

5.1 mod ssl registered handler functions . 47

6.1 Implementation of WebALPS-enabled Handshake protocol and Record Layer protocol 58

7.1 Speed test and comparisons of WebALPS host, normal HTTPS host, and HTTP host 66

7.2 Comparisons of slowdowns caused by WebALPS with slowdowns caused by SSL . . . 67

vii

List of Figures

1.1 Web Communication with WebALPS Co-servers . 5

3.1 Hardware architecture of the IBM 4758 Secure Coprocessor 15

3.2 Software architecture of the IBM 4758 Secure Coprocessor 18

3.3 Certificate chain used during outbound authentication 21

4.1 SSL protocol components and Internet protocol stack 24

4.2 Record Layer protocol message format . 26

4.3 SSL Handshake protocol . 27

4.4 SSL protocol: reuse a previous session . 30

4.5 SSL Handshake process with WebALPS co-server (intuition) 33

4.6 SSL Handshake process with WebALPS co-server (real) 35

4.7 Session reuse with WebALPS co-server . 36

4.8 Record Layer protocol with WebALPS co-server . 38

5.1 Apache server life cycle . 42

5.2 The Apache request loop . 43

5.3 Apache server modular structure . 45

5.4 The lifetime of Apache, mod ssl, OpenSSL data structures 51

6.1 Implementation of Configurability . 55

6.2 The data structure that stores session information in the WebALPS co-server 58

viii

6.3 WebALPS application: secure password-based grade retrieval system 62

7.1 Comparisons of server speed among WebALPS host, normal HTTPS host, and HTTP
host . 68

7.2 Comparisons of connection time among WebALPS host, normal HTTPS host, and
HTTP host . 68

7.3 Comparisons of request process time among WebALPS host, normal HTTPS host,
and HTTP host . 69

7.4 Scalability comparisons between a WebALPS-enabled HTTPS host and a normal
HTTPS host (Requests/Second) . 73

7.5 Scalability comparisons between WebALPS-enabled HTTPS host and normal HTTPS
host (Throughput) . 74

ix

Chapter 1

Introduction

1.1 The Challenge

Ever since its origination in the early ’90s, the World Wide Web has grown explosively. From May

1999 to September 1999, according to Alexa Research’s Internet archiving project [3], the number of

Web hosts rose from 2.5 million to 3.4 million. That is a 31% growth rate in just 4 months, or 125%

per year. As to the number of Web pages, Cyveillance, an internet consulting company, estimated

that the Web contained 2.1 billion unique, public accessible pages by July 2000, and is growing at

a rate of 7.1 million pages per day [9]. Besides the growth in size, the Web also grows in terms

of the number of services it offers. Among many other things, people go to the Web for shopping,

banking, trading, training, and entertainment on a daily basis. The Web has evolved from a static

information provider to an interactive, dynamic environment, which has become an inseparable part

of many people’s lives. According to ActivMedia, global on-line population had reached 300 million

in 2000 [2]. The impact that the Web imposes on the business world is tremendous too. The retail

e-commerce sales in the fourth quarter of 2000 were $8.7 billion, an increase of 35.9% from the

1

previous quarter [28].

As the Web and e-commerce grow, so do cybercrimes. The most recent survey conducted by the

Computer Security Institute at Carnegie Mellon University on 538 U.S corporations and government

agencies [7] revealed that system penetration by outsiders grew by 60% in 2001. Unauthorized access

by insiders rose too, by 15%. The financial loss caused by these security breaches was reported to be

over $370 million. In addition to significant financial loss of big corporations, cybercrimes poses a

serious threat to internet users’ privacy. Cyberthefts of users’ private information have been reported

regularly. In March 2000, it was reported that a computer intruder stole information on more than

485,000 credit cards from an e-commerce site [5]. More recently, anti-globalization computer hackers

broke into the computer systems used by the World Economic Forum and stole personal information

of most of the participants in the Forum’s latest annual meeting [17]. The information stolen includes

27,000 names paired with e-mail addresses, phone numbers, travel schedule, Web-site passwords, and

credit card numbers.

From the above statistics and cases, it is not hard to see that as more mission and corporate-critical

information is provided via the Web, and as the sophistication and number of cyber-related crimes

continues to expand, to enhance privacy and security of Web interactions has become essential. How

to enforce Web security is a very broad problem. In this thesis, the writer will address one particular

trust issue that is intrinsic to the Web due to its distributive nature: Why should a user trust the

secrecy and correctness of computation occurring at some remote server, where an adversary might

be motivated to subvert it?

2

1.2 Current Solutions

For a client to have trust on sending sensitive information to some remote server for computation,

the following properties must be preserved and proved to the client:

• the authenticity of the server: the server must be able to prove its claimed identity to the

client before the client sends out any sensitive information;

• the secrecy of the communication channel: any sensitive information must be immune to

eavesdroppers during transmission;

• the confidentiality of the client’s information at the server: the server must employ strong

enough security measures to keep the user’s information secret, despite of any hacking attempts

from inside or outside;

• the correctness of the computation that provides the service: the service offered by the server

must do exactly what it claims to do, nothing less and nothing more.

A large amount of research, development, and standardization have been done to enforce these

properties. One field of research focuses on the design of secure Web communication protocols.

Netscape Communications proposed the Secure Socket Layer (SSL) protocol [12], which enables

the client and the server to agree on a set of ciphers before transmitting any higher-level protocol

(HTTP in most cases) messages. Integrated with a Public Key Infrastructure (PKI) system, SSL

also makes it possible for the server to authenticate itself with an SSL digital certificate. Through

these two measures, the client and server can establish an authenticated, encrypted channel for

communication, which

• protects the client’s information during transmission and

3

• makes certain that the client’s information reaches the desired destination.

Other standards that aim at the same goals include Secure HTTP (SHTTP) [21] proposed by

CommerceNet and IP Security Protocol (IPSec) [16] by The Internet Engineering Task Force (IETF).

However, these protocols do not address security risks posed by server-side insider attack. Nor do

they provide any assurance to the clients about the correctness of the service that the server provides

or what kind of security measures the server employs to guard the client’s sensitive information.

Another field of research aims at enhancing server-side security against attacks from inside and

outside. Firewalls are developed to thwart outside assaults. Many commercial server systems employ

techniques such as strong public key encryption, two-factor authentication, and policy-based access

control to ward off security threats posed by insiders as well as outside hackers. Even though these

measures make hacking and cybersabotage a lot harder, weaknesses remain:

• exploitable security holes still exist in the systems that use them;

• there is no valid means for the server to prove to the clients that it has employed these measures.

Moreover, even if it were possible to build a 100% secure server that could defeat any security attacks,

clients still may not trust this server because the site operator could be motivated to misuse clients’

sensitive information or cheat the clients by offering fraudulent services. Imagine a distributed on-

line blackjack gambling system; with the amount of money involved, why should a high-roller client

trust that the server is dealing the cards honestly?

Clearly, even with secure communication protocols and a server equipped with state-of-the-art se-

curity measures, the fundamental trust problem remains unsolved: Participants in distributed Web

services are forced to trust server integrity, but have no basis for this trust [24]. The WebALPS

(Web Applications with Lots of Privacy and Security) approach is proposed to provide a systematic

4

Co-server I
WebALPS WebALPS

Co-server II

Secure
Storage

Secure Communication

Channel

Secure Communication

Channel

Client

Web Server I Web Server II

Figure 1.1: Web Communication with WebALPS Co-servers

and practical way to establish the foundations of this trust.

1.3 The WebALPS Approach

WebALPS approach is based on the secure coprocessing architecture [22] built at IBM Watson. The

core idea of this approach is to augment Web servers with trusted co-servers running inside high-

assurance secure coprocessors that handle the sensitive computations that previously clients have

to blindly trust the servers with. The secure coprocessor offers a secure place to carry out those

sensitive computations beyond the observation or manipulation of insiders as well as adversaries

with direct physical access to the server system.

Figure 1.1 illustrates the model of Web communication with the participation of WebALPS co-

servers. When Client accesses services offered by Web Server I :

5

• WebALPS Co-server I opens an authenticated, encrypted communication channel with Client

via a secure communication protocol such as SSL;

• Client sends his request and sensitive information to WebALPS Co-server I through the

established channel;

• depending on the type of service the server offers, WebALPS Co-server I can take one or more

actions from below:

– process Client ’s request;

– selectively forward Client ’s information to Web Server I to process Client ’s request;

– selectively store Client ’s information in an encrypted format in some external storage

media;

– establish a new authenticated, encrypted channel with another trusted entity (WebALPS

Co-server II) and selectively forward Client ’s information to that entity to continue

processing Client ’s request.

• after request has been processed, WebALPS Co-server I writes the generated response back

to Client through the established secure channel.

In this scheme, it is still the secure communication protocol that assures the client of the authenticity

of the server and the privacy of his information during transmission. However, the introduction of

the trusted co-server brings two properties that cannot be guaranteed or proved before:

• the privacy of the clients’ information at the server: the client’s sensitive information is sent

over to the WebALPS co-server, which runs inside a highly tamper-proof secure coprocessor.

A third party, including the site operator with root/administrator privilege, will not be able

to steal this information even with physical access to the coprocessor;

6

• the correctness of the computation that provides the service: applications running inside the

coprocessor are normally publicly reviewed and have their correctness certified. Furthermore,

mechanisms are provided for these applications to authenticate their identities and status

during run-time to remote clients.

These properties, plus the ones provided by the secure communication protocol, build a solid foun-

dation for the clients to cast their trust on WebALPS-enabled Web services.

1.4 The Thesis

Although theoretically sound, the WebALPS approach will not be adopted into the current Web

model until it is prototyped and integrated into industrial-strength Web servers. Therefore, the

work presented in this thesis is aimed at making the WebALPS idea real by providing an efficient

prototype and analyzing its performance. Below is a brief sketch of what is in the remaining chapters:

• Chapter 2 outlines the project requirements and goals;

• Chapter 3 and Chapter 4 describes in detail the two important pieces of technology that

form the foundation of WebALPS approach: Secure coprocessors and SSL;

• Chapter 5 explains how Apache and OpenSSL implements the SSL protocol;

• Chapter 6 contains the details of the WebALPS implementation;

• Chapter 7 lists and analyzes the results of performance tests;

• Chapter 8 concludes the thesis and presents the directions for future work.

7

Chapter 2

Project Outline

This chapter lists the requirements for the implementation of WebALPS co-servers and outlines the

road map of the project.

2.1 The Requirements

The requirements on the prospective system directly determine its design. The following subsections

describe the major requirements.

2.1.1 Security

To enhance web security is the major motivation behind WebALPS approach. Naturally, security

becomes the top concern during the implementation of WebALPS co-servers. These co-servers will

be responsible for managing the clients’ sensitive data. To reduce the likelihood that this data could

be compromised, the co-servers must assume that the web servers may have been written or modified

8

by an adversary in an attempt to mount an attack on them. Defensive coding should be enforced

throughout the implementation. For example, the co-server’s code must thoroughly validate every

argument passed in from the web server.

2.1.2 Performance

As Figure 1.1 shows, WebALPS approach complicates the current Web communication model by

introducing extra entities (co-servers) and extra steps (interaction between co-servers and Web

servers) into the picture. Therefore, one can safely predict that this approach will degrade Web

servers’ performance. On one hand, just as SSL-enabled host is generally slower than non-SSL host,

it should be expected that WebALPS-enabled servers gain security at the cost of performance. On

the other hand, for the WebALPS approach to become widely accepted by the industrial world, the

performance it offers must be reasonable. Therefore, keeping the speed of the WebALPS-enabled

server from dropping too much is another requirement of the project.

2.1.3 Scalability

In addition to performance, scalability is another important standard for evaluating commercial Web

servers. To be ready for deployment in the real world, the performance of WebALPS-enabled server

should scale well under realistic server workloads.

2.1.4 Configurability

Because of the expected performance slowdown, it is not always desirable to use WebALPS co-

servers. For Web services that weigh performance far more than security and privacy, for example,

a host that acts as a non-interactive, static page provider, employing WebALPS approach may not

9

provide much advantage. This suggests that WebALPS should be an option that can be turned on

and off by site administrators according to their needs.

2.1.5 Ease of Deployment

The less difference there is between our implementation and the currently existing infrastructure, the

easier it is to make the world accept WebALPS. Partially for this reason we chose Apache server,

the most popular Web server in the world, as the server platform for the project. The ease-of-

deployment requirement also motivates the guideline that we should modify the Apache server as

little as possible. Presumably, asking the site administrators to install a small patch to their existing

servers would be much more acceptable than forcing them to install a whole new server.

2.2 Road Map

The following is the list of major milestones during the development of the project:

• background preparation: Thoroughly understand the SSL protocol, the Apache server SSL

implementation, and the IBM 4758 secure coprocessor software interface;

• system design: come up with a detailed diagram illustrating how client, Web server, and Web-

ALPS co-server interact with each other to establish an authenticated, secure communication

channel between the client and the WebALPS co-server;

• system implementation:

– generate a public keypair and the corresponding X.509 [13] certificate for the WebALPS

co-server, and integrate this certificate into Apache server. For this prototype implemen-

tation, the keypair and the certificate are both temporary. Live deployment of WebALPS

10

co-servers will require a formal certificate that can be used to verify that the keypair

really belongs to the co-server. [24] has a more detailed discussion about this ;

– port the server-side SSL session key generation code into the IBM 4758 secure coprocessor

installed on the server site;

– implement co-server session management and integrate it with the Apache server session

management;

– choose and design a prototype application.

• performance test and analysis: measure the performance of WebALPS-enabled server under

load, and compare with the performance of the same server without WebALPS in order to

validate that the implemented system actually works under real server loads.

11

Chapter 3

Enabling Technology I

— Secure Coprocessor

Secure coprocessing is an essential piece of enabling technology for the WebALPS approach. The

secure features that secure coprocessors offer lead to the credibility of WebALPS co-servers. This

chapter introduces the general secure coprocessing technology and describes the IBM 4758 secure

coprocessor, the foundation of our implementation, in detail. It also discusses the design decisions

made based on the features of the IBM 4758 coprocessor.

3.1 What is Secure Coprocessing

In distributed environments such as the Web, it is often very difficult and sometimes even impossible

to provide a secure physical environment for sensitive computing occurring at a remote site. Secure

coprocessing technology deals with this problem by offering secure, general-purpose computing de-

12

vices that can withstand all foreseeable physical and logical attacks, and thus can be trusted with

sensitive processings in a hostile environment. Such devices are called secure coprocessors. A secure

coprocessor must:

• correctly execute the program as it is supposed to;

• be able to prove the identities of itself and the applications running inside it upon the request

of a remote user.

In addition, secure coprocessors normally offer cryptographic support for secure communications

between coprocessor-resided applications and other distributed entities.

3.2 IBM 4758 Secure Coprocessor

The IBM 4758 PCI Cryptographic Coprocessor is the state of the art in the programmable secure

coprocessor industry. Model 023, one of the newest members from the Model 2 family of IBM 4758

products, was used for our co-server implementation. In the rest of this thesis, we will refer to this

coprocessor as the “IBM 4758” or the “card” and refer to the machine on which the IBM 4758

is installed as the “host”. In the following subsections, first we will take a look at the security

properties of the IBM 4758. Then we will describe its hardware and software architecture to see

how these properties are achieved.

3.2.1 Certified security properties

As we stated in Chapter 2, the top requirement for WebALPS project is security. Since WebALPS

co-servers rely on the IBM 4758 to provide a safe execution environment, for a Web client to trust

13

the WebALPS co-server’s security, he has to know what security properties the IBM 4758 offers and

have confidence in these properties.

The IBM 4758 provides [22]:

• safe execution: Even placed in a hostile environment, the IBM 4758 provides a safe haven for

the execution of code from genuine, trusted sources. In more detail, if Authority M owns a

particular software layer L, the IBM 4758 guarantees two properties for M:

– control of software: only M, or a superior designated by N, can load code into layer L;

– access to secrets: only code trusted by M running in the appropriate context can access

secrets that belong to Layer L.

• authenticated execution: A remote client is able to authenticate:

– an untampered IBM 4758 device;

– the software configuration of this untampered IBM 4758 device.

The assurance of the above security promises can only be established through standard, independent

validations. Federal Information Processing Standards (FIPS) 140-1 is a set of testings established

by U.S. government for such purpose. FIPS 140-1 offers multiple levels of validation, among which

Level 4 is the highest possible standard. For a cryptographic module to pass level 4 validation, its

physical security must resist any attack the evaluation lab attempts, and its software documentation

must extend to a full formal mathematical model and formal proof of security with that model. IBM

4758 (model 01 or 02) was the first ever and is to date the only general purpose computing device

that has earned this level of certification [23]. Therefore, it provides solid ground for the clients’

trust that WebALPS is aiming to obtain.

14

Physical

Security

Sensing

and

Response

486

Processor

and

PC Support

DRAM

Battery-

Backed

RAM
ROM

FLASH,

Hardware Locks

Real-

Time

ClockGenerator

Number

Random

Physical Security Boundary

Math

Modular

DESRouting

Control

and

FIFOs

PCI Bus Interface

Host PCI Bus

Figure 3.1: Hardware architecture of the IBM 4758 Secure Coprocessor (originally appeared in [10])

3.2.2 Hardware

Physical security of the IBM 4758 is achieved through hardware. Figure 3.1 sketches the hardware

structure of the IBM 4758. These hardware components can be functionally divided into three

groups [15]:

General-purpose computing Components

• CPU: Intel 486 99MHZ;

15

• memory:

– DRAM: 4MB;

– Flash Memory: persistent storage for bootstrap software, operating system, and applica-

tions;

– BBRAM: 16KB, battery-backed SRAM for storing sensitive data. The content of this

memory is set to zero upon tamper detection.

• external interface: PCI bus and serial interface for communicating with the host;

• pipelining hardware: mainly FIFO buffers that are connected to the internal and external

DMA channels as well as to the DES engine. These buffers enable fast bulk data movements

between

– the host and the card;

– two points internal to the card (e.g., from RAM through DES and back);

– two points external to the card (e.g., bulk DES from host RAM through the card).

• internal Bus

Security components

• security enclosure: two sealed steel enclosures (separated by resin) with electrical circuits

embedded to detect physical penetration;

• physical security sensing and response: include tamper detectors and always-active circuit that

reposes to physical penetration, high and low temperatures, radiations, and abnormal power

sequencing. When any of these abnormal conditions is detected, the following actions will take

place:

– Zeroize BBRAM;

16

– Refresh DRAM;

– Shut down CPU.

• hardware locks: independent circuitry that controls the access to the Flash and to BBRAM

by the code executing on the main CPU. This measure protects crucial code and secrets from

possibly malicious or faulty application code.

Cryptography support components

• DES engine: provides DES encryption/decryption at high sustained rates;

• modular math engine: supports the computations that are the basis of public cryptographic

algorithms such as RSA, Diffie-Hellman, and DSA;

• hardware random number generator: consists of an electronic noise source and a random

bit-value accumulator.

3.2.3 Software

The IBM 4758 features a software system [10] that ensures the integrity of its software configuration,

and at the same time offers the flexibility of software installation and updates in a hostile environ-

ment. This section introduces IBM 4758’s multi-layer software architecture, code-loading scheme,

and its authentication feature.

Architecture

Figure 3.2 shows the multi-layer software architecture of the IBM 4758:

• miniboot layer: the bootstrap layer that manages security and configuration. It includes:

17

Application

Programs

Device

Driver

Host Machine Secure Coprocessor

Miniboot 0

Layer 0: (ROM)

Miniboot 1

Layer 1: (FLASH)

System Software / OS

Layer 2: (FLASH)

(FLASH)

Application

Layer 3:

Figure 3.2: Software architecture of the IBM 4758 Secure Coprocessor (originally appeared in [10])

– Miniboot 0: Permanent portion that supports DES operation and secret-key authentica-

tion;

– Miniboot 1: Rewritable portion that supports public-key cryptography and hashing, and

carries out code installation and update tasks.

• OS/control system layer: manages computational, storage, and cryptographic resources;

• application layer: the layer where WebALPS co-servers will reside and provide services to

WebALPS clients with the IBM 4758’s resources.

Code-loading scheme

A secure code-loading scheme is essential for WebALPS to earn clients’ trust. Without such a scheme,

a malicious web site operator could buy a secure coprocessor, install his own code to impersonate

as WebALPS co-servers in order to steal sensitive information from the client.

18

The IBM 4758 employs a complicated set of security measures to ensure the integrity of code

installation and update. Suppose Alice is the developer of WebALPS application and Bob is the

interested customer who operates a Web site, the WebALPS loading works like this (paraphrase

from [24]):

• Alice obtains the following things from IBM:

– a unique identifier;

– a signed command telling coprocessors that Alice can be the owner of their application

layers if there is no current owner;

– a signed command telling coprocessors that Alice has a specified public key.

• Alice signs the WebALPS code with her private key;

• Bob installs a coprocessor on his server machine and obtains the WebALPS code together with

IBM-provided commands from Alice;

• Bob presents the code and commands to the coprocessor for installation. First, the security

configuration software running inside the coprocessor validates the commands against the

built-in coprocessor’s public key and other parameters in a parameter store. If the validation

is successful, the coprocessor continues the installation:

– the parameter store is updated to record Alice’s unique ID and her public key, as well as

the fact that now Alice owns the application layer of this coprocessor

– WebALPS is installed to the application layer;

– a key pair is generated for WebALPS installation on this coprocessor;

– a certificate is generated using the coprocessor’s built-in key pair to assert that the newly

generated key pair belongs to WebALPS written by Alice running inside this coprocessor;

19

– the key pair and certificate are stored in the BBRAM and FLASH segments that is

accessible by WebALPS during run time.

With such a scheme, if Bob is not a valid coprocessor application developer, even if he has obtained

the commands from Alice, he cannot use his own code to impersonate as WebALPS because he

cannot provide Alice’s signature. Even if Bob has obtained his own set of commands from IBM so

that he is able to install code into the coprocessor, his code still cannot fool clients as WebALPS

written by Alice because the certificate for his code includes his identity which can be verified by

WebALPS clients during run time.

Outbound authentication

As mentioned above, a WebALPS co-server can authenticate its identity during run time to remote

clients – a feature called Outbound authentication [25]. Upon request, a WebALPS co-server pro-

vides a certificate chain to the remote client. As Figure 3.3 shows, this certificate chain starts from

WebALPS’s own certificate generated by the OS-layer software (IBM CP/Q++) inside the copro-

cessor, followed by the IBM CP/Q++’s certificate generated by this coprocessor, this coprocessor’s

certificate, and ends with the IBM class root certificate [14]. The co-processor’s certificate is gener-

ated and signed by the private half of IBM’s class root key pair before shipment. Therefore, as long

as the client has the public key of the certificate authority who signs the IBM class root certificate,

he will be able to verify the identity of WebALPS co-server as well as the software configuration on

this card through this certificate chain.

20

Certificate for

WebALPS

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Secure Coprocessor

Miniboot 0

Layer 0: (ROM)

Miniboot 1

Layer 1: (FLASH)

IBM CP/Q++

Layer 2: (FLASH)

(FLASH)Layer 3:

WebALPS Co-server
Certificate for

Certificate for

Certificate

CP/Q++

Coprocessor

IBM Class Root

Figure 3.3: Certificate chain used during outbound authentication

3.3 Design considerations

Reviewing the hardware and software architecture of the IBM 4758 not only helps to understand why

this device lays the foundation of trust that WebALPS needs, it also facilitates the decision-making

in designing the WebALPS system:

• the functional boundary between the host and the coprocessor: the IBM 4758 offers general

computing ability. But it does not offer network support. Nor does it provide a standard

operating system. These limitations make it impossible to port an entire web server inside the

card. Furthermore, the card’s limited CPU speed and memory size could become a bottleneck

for performance. For this reason and also for the reason that we want to keep the trusted

code base in our system as small as possible, we decided to keep the computation that the

WebALPS co-server carries in the coprocessor as simple as possible. In particular, the Web

21

server running on a powerful host will be responsible for TCP connections, book-keeping and

other non-sensitive functions of a Web server, while the co-server handles the establishment of

a secure communication channel with the client and performs computations that involve the

sensitive data from the clients;

• choice of cipher: To establish a secure, authenticated channel, the client and the co-server

first have to agree on a choice of the ciphers that will be used to encrypt the application data.

Because the IBM 4758 offers a fast DES engine, to boost the performance of WebALPS system,

we decided to use DES for this choice.

22

Chapter 4

Enabling Technology II

— SSL

The goal of WebALPS approach is to provide secure, trustworthy Web services to Web clients.

To achieve this goal, WebALPS co-servers have to communicate with clients through secure and

authenticated channels. The establishment of such channels require secure network protocols. We

chose SSL for this purpose because it is the most widely accepted and deployed secure communication

protocol among all the available ones. SSL is supported by nearly all the major commercial browsers,

including Netscape Navigator and Microsoft Internet Explorer, and Web servers, including the ones

from Netscape, Microsoft, and IBM.

Section 4.1 gives a brief introduction to SSL. Section 4.2 sketches our design of WebALPS-enabled

SSL protocol.

23

HTTP/FTP/NNTP

Change
Cipher

Hand-
shake

Record Layer

TCP

Secure
Sockets
Layer

Alert Application

IP

Figure 4.1: SSL protocol components and Internet protocol stack (based on [27])

4.1 How SSL works

Section 4.1.1 gives an overview of the design and components of SSL protocol. The next two sections

describe the record layer protocol and the handshake protocol, the two protocols that are directly

related with WebALPS implementation, in more detail.

4.1.1 Structure Overview

The designers of SSL decided to add a new protocol layer in the internet protocol stack for security

services. This approach has several advantages [27]:

• it requires very few changes to the existing protocols;

• it gives SSL the ability to support multiple applications.

24

Figure 4.1 illustrates the internet protocol stack after the introduction of the SSL protocol. There

are four SSL component protocols on two different layers:

• the upper layer consists of three protocols:

– Handshake protocol: negotiate the set of ciphers that will be used for secure communi-

cation between the server and the client;

– ChangeCipherSpec protocol: instruct the other party to use the ciphers negotiated through

the Handshake protocol;

– Alert protocol: signal the other party an error or caution condition.

• the lower layer has a single protocol:

– Record Layer protocol: format and frame the messages from the upper-layer protocols,

and passes them to TCP layer for transmission.

In addition to the three SSL component protocols, upper layer also includes application protocols,

such as Hyper Text Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Net News Transfer

Protocol (NNTP), that use the security service provided SSL.

4.1.2 Record Layer Protocol

All SSL messages are encapsulated through the Record Layer protocol. In addition to message

framing, typing and fragmentation, it also provides encryption, Message Authentication Code (MAC)

generation, as well as message verification. As Figure 4.2 shows, This protocol defines a universal

format to frame message from Handshake, ChangeCipherSpec, Alert, and application protocols. A

record layer protocol message contains two parts:

• header: including protocol, version, length;

25

Message Authentication Code (Optional)

VersionProtocol Length...

...Length

Protocol Message(s)

Encrypted (Optional)

Figure 4.2: Record Layer protocol message format (originally appeared in [27])

• message body: including messages from the upper layer protocol. If a security service has been

negotiated, the message body will also include the Message Authentication Code (MAC) of

those messages, and the whole message body will be encrypted using the agreed cipher.

4.1.3 Handshake Protocol

The Handshake protocol is of particular importance to WebALPS project because this protocol

is responsible for establishing a set of shared secrets between the client and the server, and for

authenticating the server to the client. Both of these processes will be changed with the introduction

of trusted co-servers. In this section we will describe the Handshake protocol in detail.

Figure 4.3 illustrates the whole handshake process:

• the client sends ClientHello message which contains Client Random, a 32-byte random number

to seed cryptographic calculations later for key materials, and the cipher suites that the client

prefers to use (each cipher suite contains a key-exchange algorithm, an encryption algorithm,

and a hash algorithm for MAC generation);

26

Server Random

Server’s Public Key

ClientHello

ClientKeyExchange

ChangeCipherSpec

Finished

Client Server

ChangeCipherSpec

Finished

ServerHelloDone

Certificate

ServerHello

Encrypted
Premaster Secret

Client Random

Client uses the agreed
cipher to send messages.

Client uses the agreed
cipher to read and send
messages.

Server uses the agreed
cipher to read messages.

Server uses the agreed
cipher to send and read
messages.

Figure 4.3: SSL Handshake protocol

27

• the server responds with ServerHello message which contains ServerRandom, a 32-byte random

number that functions the same as ClientRandom, and the cipher suite that server chooses to

use from the client’s propositions;

• the server sends its public key certificate within the Certificate message;

• the server concludes this part of handshake with ServerHelloDone message;

• after the client receives and verifies the server’s certificate, he will use the server’s pubic

key to encrypt another random number, known as Premaster Secret, and send it within the

ClientKeyExchange message;

• the client calculates the shared secrets for sending data based on ClientRandom, ServerRan-

dom, and Premaster Secret and sends a ChangeCipherSpec message to activate the negotiated

ciphers for all future messages it will send;

• the client sends a Finished message to let the server check the newly activated options. This

message contains MAC for all the previous handshake messages and is encrypted;

• after the server receives the ChangeCipherSpec message, it calculates the shared secrets for

reading data (the same as the secrets for the client to send data), and verifies the Finished

message from the client;

• the server now calculates the set of secrets for sending data and send a ChangeCipherSpec

message to activate the negotiated ciphers for all future messages it will send;

• the server sends a Finished message which is the first message sent from the server that uses

the negotiated ciphers.

At this point, the client and the server have negotiated a cipher suite and exchanged the shared keys

for data encryption and MAC generation. Because the key calculation is based on the premaster

secret, which is encrypted using the server’s public key during transmission, it is assured that no

28

third party can steal the shared secrets as long as the server keeps its private key secure. In

addition, the client has authenticated the server’s identity with the server’s certificate. Therefore,

an authenticated, secure communication channel is established between the client and the server.

4.1.4 Reuse a Previous Session

An SSL session refers to the state in which the client and the server have negotiated a cipher suite

and exchanged shared secret keys for communication. Each session is identified by a Session ID,

which is a random 32-byte number generated by the server. As demonstrated in the previous section,

using the Handshake protocol to establish a new SSL session is a complicated process that involves

a significant number of protocol messages as well as time-consuming cryptographic computations.

To reduce this overhead, SSL protocol offers the option of reusing a previous established SSL session

between the client and the server.

Figure 4.4 shows this process:

• the client proposes to reuse a previous session by including the Session ID of that previous

session in the ClientHello message that is sent to the server;

• the server decides to grant the client’s session-reuse request. So it includes the same SessionID

in its ServerHello message and send the message back to the client;

• then the server sends the ChangeCipherSpec message to activate the agreed cipher suite in the

previous session for all future messages it will send;

• the server sends the finished message to conclude its part;

• the client verifies the server’s Finished message and sends his ChangeCipherSpec message to

activate the agreed cipher suite in the previous session for all future messages he will send;

29

ClientHello

Client Server

ServerHello

Session ID, Client Random

same Session ID, Server Random

ChangeCipherSpec

Finished

ClientCipherSpec

Finished

cipher to read messages.

Client uses the agreed
cipher to read and send
messages.

Server uses the agreed
cipher to send messages.

Server uses the agreed
cipher to send and read
messages.

Client uses the agreed

Figure 4.4: SSL protocol: reuse a previous session

30

• the client concludes his part by sending the Finished message.

This process involves only six protocol messages and reduces the cryptographic calculation for secret

generation.

One thing worth noting is that the server can choose to decline the client’s session-reuse request

by putting a new session ID inside the ServerHello message. If this happens, the SSL session

establishment falls back to the normal Handshake protocol.

4.2 How WebALPS-enabled SSL works

With WebALPS approach, the previous two-party SSL protocol now has to accommodate three

parties. Besides, instead of servers, WebALPS co-servers become the trusted entities that will share

secrets with the clients. Therefore, components of SSL protocol has to be modified accordingly. In

particular, the Handshake protocol and the Record layer protocol will be changed. Section 4.2.2 and

Section 4.2.4 describe these changes. But before we talk about our revised protocol, we will first

take a look at some design choices we have to make regarding the variety of options SSL offers.

4.2.1 Options with SSL

In addition to the protocol described in the previous section, SSL offers a couple of variations. One

of such variation is that there are three different modes for authentication: no authentication, server

authentication, and mutual authentication. For WebALPS, no authentication is not an acceptable

choice. Client authentication is not common in real-world applications because there isn’t yet a

widely-deployed PKI system for authenticating clients. Normally, a client will use other means to

authenticate himself (through credit card number and billing address, for example). Therefore, for

31

the sake of simplicity, we chose to only implement the common case which requires server authenti-

cation.

Another option is which version of SSL to support in our project. The options are SSLv2.0, SSLv3.0,

and Transport Layer Security(TLS)v1.0. TLS is the new name for SSL protocol after its design was

taken over by IETF. Again, we decide to support the most common case — SSLv3.0.

4.2.2 Handshake with WebALPS co-server

Intuitively, the handshake process with the participation of the WebALPS co-server occurs as il-

lustrated in Figure 4.5. Interactions between co-servers and servers are added to accomplish two

goals:

• authentication of co-server to the client: The certificate message from the server to the client

now contains the certificate for WebALPS co-server generated by the secure coprocessor;

• shared-secret establishment between the co-server and the client:

– the server forwards Client Random and Server Random to the co-server since these num-

bers will be used in the secret generation process;

– the client uses the co-server’s public key to encrypt the Premaster Secret in the Clien-

tKeyExchange message. Consequentially, Premaster Secret is known to the co-server but

not to the server;

– the key calculation process takes place inside the co-server;

– the encrypted Finished message from the client becomes incomprehensible to the server.

The server has to send this message to the co-server for decryption and MAC verification;

– before the server sends the Finished message, it has to forward it to the co-server for

32

Server Random

Server’s Public Key

ClientHello

ClientKeyExchange

Finished

ChangeCipherSpec

ServerHelloDone

Certificate

ServerHello

Encrypted

Premaster Secret

Client Random

Client Server

Finished

Premaster Secret

Encrypted

Premaster

Secret

WebALPS
Co-Server

WebALPS Co-Server

Certificate for

*&^%$#@!

*&^%$#@!

ChangeCipherSpec

Client is ready to
use the agreed cipher
to send messages.

Client is ready to
use the agreed cipher
to read and send
messages.

Client Random

Server Random

ChangeCipherSpec

Client Random,
Server Random

Encrypted

ChangeCipherSpec

Co-Server is ready
to use the agreed

Co-Server is ready
to use the agreed
cipher to send and
read messages.

cipher to read messages.

Figure 4.5: SSL Handshake process with WebALPS co-server (intuition). In this figure and some
of the following figures, strings that contain random characters such as “*&ˆ%$#@!” are used to
denote illegible ciphertext and bold arrows are used to denote an established secure and authenticated
communication channel.

33

MAC generation and encryption. Otherwise, the client will not be able to verify this

message, and thus will not send any sensitive information to the server-side.

This process adds 8 messages to the previous SSL protocol. When there are vast numbers of hand-

shake requests, the message passing between the server and co-server could become a performance

bottleneck. Unlike the messages exchanged between the server and the remote client, the messages

between the server and the co-server do not need to carry any information about cipher negotiation.

Therefore, we can reduce the message-passing overhead by concatenating several messages together.

Figure 4.6 shows the revised diagram of the handshake process that we used in our implementation.

The following changes are made:

• elimination of Certificate message from the co-server to the server: the certificate for the

WebALPS co-server is stored in the server file system and is loaded into the server during

initialization. Therefore, the co-server does not need to send it again and again during hand-

shake;

• elimination of Client Random and Server Random messages from the server to the co-server:

Client Random and Server Random are piggybacked into the message that contains Encrypted

Premaster Secret ;

• elimination of ChangeCipherSpec message from the server to the co-server: once the co-server

receives Client Random, Server Random and Encrypted Premaster Secret, it will calculate the

shared secret for both reading and writing immediately.

With these improvements, the communication overhead between the server and the co-server are

reduced to 4 messages per handshake.

34

Server Random

Server’s Public Key

ClientHello

ClientKeyExchange

Finished

ChangeCipherSpec

ServerHelloDone

Certificate

ServerHello

Encrypted

Premaster Secret

Client Random

Client Server

Finished

Encrypted

Premaster Secret

Client Random,

Server Random

Encrypted

Premaster

Secret

WebALPS
Co-Server

WebALPS Co-Server

Certificate for

*&^%$#@!

*&^%$#@!

ChangeCipherSpec

Client is ready to
use the agreed cipher
to send messages.

Client is ready to
use the agreed cipher
to read and send
messages.

Co-Server is ready
to use the agreed
cipher to send and
read messages.

Figure 4.6: SSL Handshake process with WebALPS co-server (real)

35

Server Random

Client Random,

Finished
*&^%$#@!

ChangeCipherSpec

ClientHello

ServerHello

Client Server
WebALPS
Co-Server

Client Random, Session ID

same Session ID, Server Random

ChangeCipherSpec

Finished
*&^%$#@!

Client is ready to

to read messages.

Client is ready to
use the agreed cipher
to read and send
messages.

Co-Server is ready
to use the agreed
cipher to send and
read messages.

use the agreed cipher

Figure 4.7: Session reuse with WebALPS co-server

36

4.2.3 Session reuse with WebALPS co-server

Figure 4.7 shows how reusing a previous session is done with the participation of WebALPS co-server:

• after the server receives the client’s ClientHello message and agrees to reuse a previous session,

it sends the new Client Random and Server Random to the co-server;

• the co-server will calculate the new set of secret keys using the new Client Random, the new

Server Random, and the old master secret (an intermediate result during key generation) from

the previous session;

• the server sends the ChangeCipherSpec message to the client;

• the server asks the co-server to generate the MAC for and encrypt the Finished message;

• the client sends the ChangeCipherSpec message to the server;

• the client sends the Finished message to the server and the server asks the co-server to decrypt

and verify this message.

4.2.4 Record Layer protocol with WebALPS co-server

Now that the shared keys for encryption and MAC are in the co-server, the record layer protocol

has to call for the co-server to carry on security services.

In our revised protocol, the client-side remains unchanged. But on the server-side, the record layer

uses the server only for framing, typing and fragmenting the application layer messages, and uses the

co-server for data encryption/decryption and MAC generation/verification. Figure 4.8 illustrates this

process. It shows how the server’s record layer uses the security services provided in the WebALPS

co-server in the process of retrieving a HTTP request from the client and sending the HTTP response

back in fragments:

37

HTTP
Request

Header

MAC

Header

MAC

MAC

HTTP
Request

HTTP
Response

HTTP
Request

MAC

MAC

MAC

Header

MAC

Header

MAC

MAC

Fragmenta-
tion

Decryption
MAC
Verification

MAC
Generationn
Encryption

Framing

HTTP
Layer

Record
Layer

Record
Layer

HTTP
Layer

Client Server
WebALPS
Co-Server

Figure 4.8: Record Layer protocol with WebALPS co-server

38

• after the server’s record layer receives the encapsulated HTTP request message from the client,

it deframes the message by taking off the header and then sends the rest of the message to the

WebALPS co-server;

• the co-server’s record layer decrypts the message, verifies the MAC, and sends the plaintext

HTTP request back to the server. The co-server’s application layer (not drawn in this diagram)

can process this request before sending it back to the server;

• the server’s HTTP layer processes the request and generates an HTTP response;

• the server’s record layer cuts the large HTTP response into several fragments and sends them

to the WebALPS co-server;

• the co-server’s record layer generates MAC for each segment, encrypts it, and sends the en-

capsulated fragment back. If there is an application layer in the co-server, it can process the

HTTP response message before the cryptographic processings take place;

• the server’s record layer adds a header for each fragment and sends it to the client.

39

Chapter 5

Apache, Mod SSL, and OpenSSL

As described in Chapter 3, because of the secure coprocessor’s system restrictions, WebALPS co-

servers are designed to only provide necessary functionalities to ensure the security of sensitive

services. Therefore, to be fully functional, a WebALPS co-server has to be supported by a Web

server, which deals with TCP connection, logging, forwarding requests from clients into the co-

server, and other non-sensitive tasks. When we started implementation, the very first decision to

make was on which server platform we should build WebALPS co-server. We decided to choose

Apache HTTP server [4] for this purpose because:

• according to Netcraft’s most recent survey, it is the most popular web server in the world with

62.55% market share [18]. Since the goal of the project is to integrate WebALPS approach

with an industrial-strength server, Apache seems the best fit;

• it is open source, which facilitates our implementation.

40

This chapter starts with an introduction to Apache. Then it describes mod ssl [19], the Apache

module that supports SSL, and OpenSSL [8], a crypto toolkit that mod ssl relies on for its SSL

implementation. This chapters finishes with the description of the major data structures used by

Apache, mod ssl, and OpenSSL and how these data structures interact with each other to enable

the configurable SSL support in Apache server.

5.1 Apache

As an HTTP server, the primary task of Apache server is to listen to TCP connections for incoming

HTTP requests and serve these requests. In addition, Apache server supports functionalities such

as Common Gateway Interface (CGI), HTTP authentication, access check, through an extensible,

modular structure. Apache also allows users to host multiple web sites in a single server by setting

up multiple virtual hosts. Section 5.1.1 describes the basic model that Apache employs to serve

HTTP requests. Section 5.1.2 gives an outline of Apache’s modular structure. Section 5.1.3 talks

about the support for virtual hosts in Apache.

5.1.1 Life Cycle of Apache Server

On Unix systems, Apache server employs a pre-forking model to serve multiple requests from different

connections at the same time. The handling of each request is divided into a set of phases. Figure 5.1

illustrates this model and the life cycle of Apache server:

• server startup and configuration: after the server starts, it parses the command-line arguments,

initializes resources such as memory pool, processes the directives in the configuration files,

and open all the configured log files;

41

 Loop

Request

 Loop

Request

Child Exit

 Loop

Request

Module Initialization

Server Startup

 and

 Configuration

Child Initialization Child Initialization Child Initialization

Child Exit

ForkFork Fork

Child Exit

Figure 5.1: Apache server life cycle (originally appeared in [26])

42

Request

post-read-request

MIME Type Checking

(wait)

cleanup

logging

Response

fixups

authorization

authentication

access control

header parsing

URI translation

Figure 5.2: The Apache request loop (originally appeared in [26])

43

• Module initialization: initialize all the modules that are loaded into the server (modules are

described in the next section);

• pre-forking and child initialization: the server spawns off several copies of itself to run as

unprivileged processes. The parent process will stick around to monitor the status of its

children and will fork off more children if the incoming requests become overwhelming;

• request loop: each child will do the actual work of accepting and processing incoming requests.

Each request goes through a set of fixed phases that form a loop (Figure 5.2). Through each

phase, a decision is made about the current request. For example, the URL translation phase

decides which document/CGI script is being requested and the Response phase decides how

to generate the response;

• child exit: When a child has served a maximal number of requests (set in the configuration file)

or the entire server receives a shutdown or restart signal, the child exits and thus completes

its life cycle.

5.1.2 Modular Structure

Apache offers great flexibility and extensibility through its modular structure:

• users can add/delete functionalities of their Apache servers to meet the requirements for their

individual web sites by adding/deleting modules;

• users can add a previously non-existing functionality to his Apache server by writing his own

module.

Figure 5.3 sketches the modular structure of Apache server. Conceptually, an Apache server consists

of a Core which offers the minimum set of functionalities for a Web server, and a set of standard

44

Core

mod_access

mod_auth

mod_mime

mod_includes

mod_alias

mod_cgi

Figure 5.3: Apache server modular structure

modules that interact with the core and are responsible for other important functions including

access control (mod access), authentication (mod auth), MIME type checking (mod mime), CGI

script support (mod cgi), Server-Side Includes (SSI) support (mod includes), and file name looking-

up (mod alias).

As described in the previous section, Apache breaks down the request loop into several phases.

Modules participates in a particular phase during the request handling by registering a handler, a

small function with standard signature, for this phase. Each phase can have multiple handlers from

multiple modules registered. When this phase is reached during request handling, the Apache core

will pass the control to these handlers by calling them one by one, in a sequence determined by

module loading sequence at server startup time. If there are no module handlers that are registered

to handle this phase, a default handler provided by Apache Core will be called. The results of

request processing by each handler are collected through a data structure called request rec, which

contains the information of the current request, current connection and current server.

45

5.1.3 Support for Multiple Virtual Hosts

Very often people want to host more than one web site. To use a separate server for each site would

be highly inefficient. Apache supports the mechanisms of using virtual hosts to address this problem.

Each virtual host acts like a separate server – it can have its own set of configurations including

document root location, server name, error log. One common exercise for Apache servers providing

E-commerce services is to configure a virtual host to listen to port 443, from which comes the SSL

communication, and to serve HTTPS requests.

As stated in Chapter 2, we want to make WebALPS configurable – it is an option that can be turned

on or off for a server. To be able to show this and also to facilitate the performance testing, we

decide to set up our Apache server to include:

• a normal HTTPS virtual host that employs the original SSL protocol;

• a WebALPS-enabled virtual host that uses our revised SSL protocol as described in Chapter 4.

5.2 Mod SSL

Among all the modules, the one that concerns us the most is mod ssl, the module that enables

Apache server to provide SSL support.

As all the other modules, mod ssl accomplishes its functionalities by registering handlers for particu-

lar phases. Table 5.1 sketches those phases and the actions taken by mod ssl handlers. Two phases,

new connection and close connection, are not from the request loop (Figure 5.2). They are related

to connections, which have longer life time than requests – multiple requests can come through one

connection. mod ssl has to register handlers for these phases to deal with the establishment and

46

Phases Actions
post-read-request Link the data structure about this request to the

data structure that contains information about the
current SSL connection

URI translation Log information about incoming HTTPS requests
access control Check if the settings of current SSL connection sat-

isfy the requirement set by the directory being ac-
cessed, and either declines the access or forces an
SSL renegotiation if not;

authentication Use the name in the client’s certificate to authenti-
cate the client;

authorization Deny the access if the directory is marked as Stric-
tRequire and SSL is not enabled for the current di-
rectory

response Return an error message if a plain HTTP request is
received on an SSL-enabled server port

new connection Establish an SSL session through handshake protocol
close connection Terminate an SSL connection by flushing the com-

munication buffer, sending alert to the other party,
and deallocating data structures for this SSL connec-
tion

Table 5.1: mod ssl registered handler functions

termination of SSL communication channels.

In addition to providing handler functions to carry on SSL-related tasks during the life time of a

connection, mod ssl is also responsible for processing SSL-related configuration directives that a user

defines in his server configuration file. In a way, mod ssl works like an interface between Apache

and OpenSSL. It understands what the Apache server is configured to do, and relies on the crypto

library and SSL protocol implementations provided by OpenSSL to do the real work.

5.3 OpenSSL

OpenSSL is an open-source cryptography toolkit that implements the SSL and TLS protocols, as

well as the related cryptography standards required by these protocols. Functionally, this toolkit

can be divided into three parts:

47

• SSL library: implements SSLv2.0, SSLv3.0, and TLSv1.0 protocols with the following major

APIs:

– SSL library init : initialize the library;

– SSL CTX new : create a data structure SSL CTX as a framework to establish TLS/SSL

connections. This data structure accommodates options regarding certificates, crypto

algorithm choices, etc.;

– SSL new : after a TCP connection is established, a data structure SSL is created based

on the previous SSL CTX structure and is bound to that connection;

– SSL accept/SSL connect : performs the handshake process for server/client;

– SSL read/SSL write: after the handshake, use the agreed cipher suite to read/write to

the SSL/TLS connection;

– SSL shutdown: terminates the secure communication, send alert messages about the

shutdown of connection, and clean up data structures related to this connection.

• Crypto library: supports following cryptographic functions:

– symmetric ciphers: DES, IDEA, RC2, RC4, Blowfish;

– public key cryptography: RSA, DSA, Diffie-Hellman (DH);

– MAC and hash functions: MD2, MD4, MD5, HMAC, SHA;

– certificates: X.509.

• OpenSSL: a command-line tool that supports the following functions:

– encryption and Decryption with symmetric ciphers;

– calculation of message digests;

– creation of RSA, DH and DSA key parameters;

– creation of X.509 certificates, certificate requests, and Certificate Revocation Lists (CRLs).

48

Because OpenSSL implements the SSL Handshake protocol and Record Layer protocol, the Web-

ALPS implementation interacts closely with OpenSSL code.

5.4 How Apache, mod ssl, OpenSSL Interact Through Data

Structures

Three different layers of code, Apache, mod ssl, and OpenSSl, work together to provide the support

for configurable SSL communications in the Apache server. It is important for us to understand the

implementation details about how these three parties work, because our own implementation will

be based on this knowledge.

5.4.1 Important Data Structures and Their Roles

For Apache [26]

• ap global ctx: the global context that stores the global configurations of the server that come

from each module;

• server rec: per-server data structure to store configuration of each virtual host including the

server name, port, log file name, etc.;

• conn rec: per-connection data structure to store the connection-related information including

the local and remote sockets for the communicating parties, the IP of the remote client, the

user name of the remote client, if the connection should be kept alive, etc.;

• request rec: per-request data structure to store request-related information including the

request protocol, the request method, the requested file name, among many other things.

49

For mod ssl

• SSLModConfigRec: stores the global configuration defined by mod ssl for each httpd pro-

cess;

• SSLSrvConfigRec: stores the per-server configuration defined by mod ssl for each virtual

host.

For OpenSSL

• SSL CTX: stores the information that will be used to create new SSL/TLS connections

including the list of supported cipher suites, the server’s certificate (when used with servers),

the SSL session cache, among many other things. When used with Apache, the contents of

this data structure will be filled in according to the configuration of each HTTPS virtual host;

• SSL: stores information about each SSL connection including the negotiated cipher suited and

established secret keys. During initialization, the contents of this data structure is filled in

from the corresponding SSL CTX.

5.4.2 How they interact

Figure 5.4 shows the lifetime of the aforementioned data structures:

• ap global ctx and SSLModConfigRec exists almost throughout the lifetime of the server

process;

• server rec is created during the configuration time based on information from SSLMod-

ConfigRec and other module configurations;

• SSL CTX is created based on SSLSrvConfigRec;

50

Request Duration

Connection Duration

Configuration Time

Startup, Runtime, Shutdown

ap_global_ctx

SSL_CTX

server_rec

SSLModConfigRec

conn_rec

SSL

request_rec

t

SSLSrvConfigRec

Figure 5.4: The lifetime of Apache, mod ssl, OpenSSL data structures (based on [20])

51

• conn rec and SSL exists during the lifespan of a connection;

• request rec has the shortest life time – it exists during the processing of a particular request.

With this data structure hierarchy, the configuration information of the server is passed from

SSLModConfigRec, through server rec, SSL CTX, and eventually reaches SSL so that the

correct subset of the functionalities provided by OpenSSL will be used to serve requests as the

server operator desired.

52

Chapter 6

WebALPS Implementation

The previous chapters introduced the two important pieces of enabling technology for WebALPS,

described the structure of the web server that will host the WebALPS co-server, and discussed im-

portant design considerations about the project. Now is the time to talk about the implementation.

This chapter starts with a summary of all the aforementioned design issues and the specification of

the system we used, and then describes how we actually implemented the project.

6.1 Design and the System

Based on the previous discussions, here are the design decisions that we made and the system we

chose to use:

• about the secure coprocessor:

– we chose to use IBM 4758 PCI cryptographic coprocessor model 023;

– we decided to only port functionalities that are necessary for providing security services

53

into the coprocessor;

– we decided to use DES as the choice of symmetric cipher for WebALPS-enabled SSL

connection.

• about the SSL protocol:

– we chose to support SSLv3.0 without client authentication;

– we revised the Handshake process and session reuse process to accommodate the intro-

duction of trusted WebALPS co-servers;

– we revised the Record Layer protocol to accommodate the introduction of trusted Web-

ALPS co-servers.

• about the web server:

– we chose Apache server (v1.3.14)/mod ssl (v2.7.1)/OpenSSL (v0.9.6) to host the Web-

ALPS co-servers (these versions had been the most recent stable release by the time we

started the project);

– we will configure our server to include a normal HTTPS virtual host and a WebALPS-

enabled HTTPS virtual host.

6.2 Configurability

The following changes were made to achieve the goal of configurability:

• we added a new configuration directive, SSLWebalps, to mod ssl, which takes either On or Off

as argument;

• we added a state variable bWebalps to the mod ssl per-server data structure SSLSrvConfi-

gRec;

54

..

.

..

.

..

.

..

.
bWebalps = 1

SSLSrvConfigRec

..

.

..

.
bWebalps = 1

SSL_CTX

..

.

..

.
bWebalps = 1

SSL

SSLWebalps on

Configuration File

Parse

Figure 6.1: Implementation of Configurability

• we added the configuration handler functions ssl cmd SSLWebalps to parse the SSLWebalps

configuration directive and set SSLSrvConfigRec->bWebalps accordingly;

• we added a state variable bWebalps to the OpenSSL per-server data structure SSL CTX;

• we added a state variable bWebalps to the OpenSSL per-connection data structure SSL.

With these changes, when a user include SSLWebalps on in his server configuration file, this infor-

mation will be passed through SSLSrvConfigRec, SSL CTX, and eventually reaches SSL, the

data structure that keeps all the information about an SSL connection (Figure 6.1). Then all the

functions that deal with handshake protocol and record layer protocol can check SSL to see if they

should use co-servers or not. This effectively accomplishes the goal of a configurable WebALPS

system.

6.3 Porting WebALPS co-server’s Certificate

As illustrated in Figure 4.6, the Apache server should cache the certificate provided by WebALPS

co-server that can be used to authenticate co-servers to a remote client. Unfortunately, the IBM

55

4758 does not provide built-in mechanisms for parsing and generating X.509 certificate (the format

that SSL uses) yet. To avoid being distracted by the complexity of implementing this mechanism

by ourselves, we decided to reuse the OpenSSL certificate generation utility in our prototype imple-

mentation. The whole process involves three steps:

• key generation: we rewrote part of the OpenSSL code so that the generated key pair contains:

– the WebALPS co-server’s public key as the public part;

– some garbage value as the private part;

• certificate request (CSR) generation: we rewrote the OpenSSL code so that the last step of

CSR generation sends the CSR into the secure coprocessor to be signed by the co-server’s

private key;

• certificate generation: just as the CSR generation process, last step of certificate generation

is rewritten to send the certificate into the secure coprocessor to be signed using co-server’s

private key.

The certificate generated is a self-signed temporary certificate. When a client tries to access this

server using a commercial browser, a warning for unrecognized Certificate Authority (CA) will

pop up. However, this temporary solution suffices for our prototype-testing purpose. For real

deployment, we will need a formal certificate signed by a CA, so that it can be used to verify that

a keypair really belongs to the WebALPS co-server. [24] has more discussions about this.

6.4 Implement WebALPS-enabled SSL Protocol

This section describes the central piece of implementation work in the project.

56

6.4.1 Storage of SSL Session Information in the Co-server

In the WebALPS co-server, we use a hash table (Figure 6.2) to store the minimal set of information

of all the alive SSL sessions. Each entry in the hash table stores a data structure that contains the

following data about one particular SSL session:

• session id: the session ID of the session. This is used as the key for this entry in the hash

table since each session has a unique ID;

• client ms, client key, client iv: the MAC secret, DES key, and initialization vector for

verifying and reading messages from the client;

• server ms, server key, server iv: the MAC secret, DES key, and initialization vector for

MAC generation and encryption of messages to be sent from the co-server;

• master secret: an intermediate result during the key generation process and will be reused

if the server decides to reuse this session;

• read sequence, write sequence: the number of messages that the co-server has received

from the client and number of messages that the co-server has sent to the client. These state

information is needed during the MAC generation process;

• app data: the application-specific data.

6.4.2 Implement WebALPS-enabled Handshake protocol and Record Layer

protocol

With the clear design of the Webalps-enabled Handshake protocol and Record Protocol shown in

Chapter 4, the implementation follows naturally. Table 6.1 outlines the major functions that are

involved in this process.

57

...
...

client_iv

session_id

client_ms

server_key

client_key

server_ms

Hash (session_id)

server_iv

read_sequence

write_sequence

app_data

Figure 6.2: The data structure that stores session information in the WebALPS co-server

State Host SSL functions Card WebALPS functions

read Client Hello ssl3 get client hello
write Server Hello ssl3 send server hello

webalps resume session handler
write Certificate ssl3 send server certificate

write ServerHelloDone ssl3 send server done
send TCP frame BIO flush

read ClientKeyExchange ssl3 get client key exchange webalps new session handler
read ChangeCipherSpec do change cipher spec

ssl3 final finish mac webalps ssl3 finish mac
read Finished ssl3 get finished

ssl3 get record webalps retrieve message
webalps des cipher
webalps ssl3 mac

write ClientKeyExchange ssl3 send change cipher spec
write Finished ssl3 send finished

do ssl3 write webalps assemble message

Table 6.1: Implementation of WebALPS-enabled Handshake protocol and Record Layer protocol

58

Among these functions,

• webalps retrieve message and webalps assemble message are the co-server’s record layer func-

tions. They use webalps des cipher to provide message encryption/decryption and use web-

alps ssl3 mac to calculate the MAC of a message. These two functions also each accommodate

a hook function, which will be called to carry on application-specific tasks;

• webalps new session establishes a new SSL session by calculating the shared secret and storing

them inside the hash table described previously;

• webalps resume session deals with session reuse by retrieving the stored master secret of the

previous session and recalculating the shared secret.

6.5 The Design of a Simple Application

With the implementation of WebALPS-enabled SSL protocol done, our prototype WebALPS co-

server has emerged. Unlike the previous situation in which a client has to blindly trust a remote

server, now the client can put well-founded trust on the remote party, the WebALPS co-server,

that he is communication with. How to make use of this nice feature and turn it into a meaningful,

appealing real-world application is the very first thing on our future task list. To illustrate in general

how WebALPS can provide meaningful services, in this section we describe the paper design of a

simple application.

Imagine the common grade-retrieval system where a student provides a password to a server and

the server returns his grade. With the help of WebALPS-enable co-server, we can build a system in

which the password is totally invisible to the server. Figure 6.3 sketches such a system:

• the client, a student named Shan, sends the request of retrieving his grade to the server together

59

with his name and password (for the sake of illustration, we assume this request uses GET

method);

• the server can not get the client’s password from the request or even understand the request

since it does not know the secret key the client uses to encrypt the request. The server forwards

the request to the co-server;

• the co-server gets the encrypted request, decrypts it, and gets the submitted password;

• the co-server calls a hook function from inside webalps retrieve message to erase the password

part of the request and gives the modified plain-text request back to the server;

• the server now knows the name of the client and looks up Shan’s record in its database. The

record, which is encrypted using a key only known to the co-server, contains three pieces of

information:

– name of the student;

– password of the student;

– the grade of the student.

In a real application, this record should also contain mechanisms to ensure its integrity (such

as an internal MAC) as well as mechanisms to defeat replay attacks.

• the server sends the encrypted record back to the co-server;

• the co-server decrypts the record and calls a hook function from within webalps assemble message

to check:

– if the name in the record matches the name in the request;

– if the password in the record matches the password in the request.

and generate an HTML page dynamically according to the result of the check: if the check

succeeded, Shan’s grade will be included in the responsec.

60

• the co-server sends the generated page back to the client using the secure channel established

during the handshake.

In a real world application, the response sent back to the client often contains a significant amount

of non-sensitive information (images, for example) for presentation, advertisement, and many other

purposes. To accommodate for this, during the response phase, we can ask the server to generate a

HTML template that contains the non-sensitive part of the response, as well as a tag marking where

in the page the co-server should insert the sensitive information. The co-server then finds this tag

and put the necessary information in there. This can be achieved through an HTML extension or

maybe a new standard defined through XML.

61

tgimicw

http://secure.edu/grade?
name=Shan&passwd=

(Shan, tgimicw)
Store the pair

Encrypted record

(Shan, tgimics, A) (shan, tgimicw, A)

Encrypted Decrypt

(shan, tgimicw, A)

search for
Shan’s
record

http://secure.edu/grade?
name=Shan&passwd=
@@@

check it against the
stored pair

ServerClient
Co-Server
WebALPS

*&^%$#@! http://secure.edu/grade?
name=Shan&passwd=
tgimicw

and
modify the passwd
part of the request

http://secure.edu/

grade?name=Shan
&passwd= @@@

and

<html>
Your grade: A

</html>

!@^%*&%&(
<html>

Your grade: A

</html>

Figure 6.3: WebALPS application: secure password-based grade retrieval system

62

Chapter 7

Performance Analysis

As stated in Chapter 2, performance and scalability are two important requirements for the WebALPS-

enabled server. This chapter presents the results of out performance testing on the prototype

WebALPS-enabled server (without any application processings) using popular web server bench-

marking tools, and analyzes these results.

7.1 Test Goal

We are interested to see:

• how much does the communication overhead introduced by the co-server slow down the per-

formance of the WebALPS-enabled server;

• how well can WebALPS-enabled server sustain heavy workload.

63

In addition to these two goals, we also want to establish the correctness of our implementation

through intensive testings.

In the next two sections, we will describe the performance test and the scalability test respectively.

These tests are done on a WebALPS co-server with no application level processing.

7.2 Speed Test

Speed here refers to how fast a server serves requests from the clients. It is normally measured in

number of requests served per second.

7.2.1 Test Tool

For speed test, we used http load [1], a free, easy-to-use, and effective tool from ACME software. The

test with http load can be configured by specifying a value for the following command line options:

• parallel : how many test clients;

• rate: how many requests each client sends out per second;

• seconds : in terms of time, how long the test lasts;

• fetches : in terms of served request numbers, how long the test lasts.

Normally, only one from parallel and emph, and one from seconds and fetches needs to be specified.

64

7.2.2 Testing Setup

Workload

We chose to use a randomly generated file of size 2KB as our test load. All the requests during the

test are for this file.

http load Parameter Setup

What we are interested to know through this speed test is that for one single connection, how fast the

WebALPS-enabled server serves a single request. This information can tell us how much overhead is

produced by the interaction between the server running in the host CPU and the co-server running

inside a PCI card. Therefore we set parallel to 1 and set seconds to 2. Section 7.3 will talk about

the server’s performance under multiple connections for prolonged tests.

Data Collection

For the sake of comparisons, we will run the same tests on three types of hosts:

• WebALPS-enabled HTTPS host;

• normal HTTPS host;

• HTTP host.

On each type of host, we perform the same test ten times and each time we collect the following

three pieces of information:

• speed: the number of served requests per second. This tells us the speed of the host from the

65

Speed (requests/sec) Connection Time (msec) Request Time (msec)
WebALPS host 9.8922 0.7235 100.368

normal HTTPS host 67.7246 0.6335 14.1461
HTTP host 858.7989 0.1832 0.9060

Table 7.1: Speed test and comparisons of WebALPS host, normal HTTPS host, and HTTP host

experience of the client – how long it takes from when client starts trying to talk to the host

until the client gets back the response. This time is the sum of the following two measurements;

• connection time: the amount of time taken to establish the connection. For HTTPS hosts,

this time includes both the TCP connection time and the SSL handshake time;

• request time: the amount of time taken to process a request once the connection is established.

The results from all ten tests will be averaged to get the final result that we present in the next

section (more elaborate statistical analysis will be done in the future).

7.2.3 Testing Result

Table 7.1 shows the results from our tests. Not surprisingly, in all three measurements, plain HTTP

server offers the best performance, while WebALPS server performs the worst. We knew this result

even before the test. What we really want to learn from these results is:

• how does the slowdown from normal HTTPS host to WebALPS-enabled host compare to the

slowdown from plain HTTP host to HTTPS host?

• which phase is the major factor for the slowdown of the WebALPS-enabled server, connection

phase or request phase?

66

Speed Connection Time Request Time
Slowdown caused by SSL
(HTTP -> HTTPS)

11.68 2.46 14.6

Slowdown caused by
WebALPS (HTTPS ->
WebALPS-HTTPS)

5.85 14.2% 6.1

Table 7.2: Comparisons of slowdowns caused by WebALPS with slowdowns caused by SSL

Comparing the slowdown Caused by WebALPS to the slowdown Caused by SSL

The data in Table 7.2 shows how much SSL slows down HTTP communication and how much

WebALPS slows down SSL communication:

• for the overall speed, normal HTTPS host is 11.68 times slower than HTTP host while Web-

ALPS host is 5.85 times slower than normal HTTPS host;

• for the connection time, normal HTTPS host is 2.36 times slower than HTTP host while

WebALPS host is only 14.2% slower than normal HTTPS host;

• for the request time, normal HTTP host is 14.6 times slower than HTTP host while WebALPS

host is 6.1 times slower than normal HTTPS host.

Figure 7.1, Figure 7.2, and Figure 7.3 provide a more direct view of these comparisons. In ev-

ery category, SSL technology has a far greater negative performance impact on HTTP than what

WebALPS technology has on SSL.

Despite of the performance slowdown, SSL technology still prevails in today’s e-commerce world.

We think that there are at least two reasons behind SSL’s success:

• SSL offers security communication channel which is essential to many applications;

• communications that go through SSL channel only occupy a very small percentage of total web

67

1 2 3
0

100

200

300

400

500

600

700

800

900

H
os

t P
er

fo
rm

an
ce

 (
fe

tc
he

s/
se

co
nd

)

WebALPS Host

Normal HTTPS Host

HTTP Host

Figure 7.1: Comparisons of server speed among WebALPS host, normal HTTPS host, and HTTP
host

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
S

L
S

es
si

on
 S

et
up

 T
im

e
(m

se
cs

)

WebALPS Host

Normal HTTPS Host

HTTP Host

Figure 7.2: Comparisons of connection time among WebALPS host, normal HTTPS host, and HTTP
host

68

1 2 3
0

20

40

60

80

100

120

R
eq

ue
st

 P
ro

ce
ss

 T
im

e
(m

se
cs

)

WebALPS Host

Normal HTTPS Host

HTTP Host

Figure 7.3: Comparisons of request process time among WebALPS host, normal HTTPS host, and
HTTP host

traffic. A user’s experience about a server’s speed is built up based on the overall performance

of the server, which is largely determined by non-SSL communications.

These two arguments remain true for WebALPS-enabled server. The kind of security and privacy

that WebALPS co-server offers will enable a variety of applications that are hard or even impossible

to realize before [24]. Based on this similarity with SSL, we argue that although WebALPS approach

slows down the secure communication, it could still win as a technology because of the important

security features it offers.

Where is the Bottleneck

From table 7.2, there is little difference (14.2%) between the connection (TCP plus SSL handshake)

phase for WebALPS-enabled host and normal HTTPS host. This could be attributed to the fact

that WebALPS co-server uses the IBM 4758’s fast modular math engine for RSA operations that

69

are required during the SSL handshake process.

However, for request time, WebALPS-enabled Host is 6.1 times slower than normal HTTPS host.

The time-limiting factor could be one or more from the following:

• bulk data transfer rate between the host and the coprocessor;

• bulk data DES operation and MAC calculation rate in the coprocessor.

The exact reason is still not clear. More tests are being devised to pinpoint the performance bottle-

neck here.

7.3 Scalability Test

7.3.1 Testing Tool

For scalability testing, we chose to use WebBench [11], a commercial-grade, web server benchmarking

product from Ziff eTesting Labs Inc. We made the choice because:

• it offers a very easy way to create large test suites – different combinations of testings that can

run for hours, a feature that is essential to scalability test;

• it offers several standard test workloads, which are widely acknowledge and used to test com-

mercial web servers.

WebBench’s standard test suites produce two overall scores for the server being tested:

• speed as measured in requests per second

70

• throughput as measured in bytes per second.

WebBench offers both static standard test suites and dynamic standard test suites. The test requires

one or more client machines running Windows 95/98/NT/2000, as well as a controller machine that

runs Window NT/2000.

7.3.2 Test Setup

Workload Document Tree

We used the standard workload tree provided by WebBench. It contains of 6,160 HTML or GIF files

with file sizes ranging from 223 bytes to 529KB. The file type and size distribution of this workload

tree is determined by the data collected from popular commercial web sites including the Internet

Movie Database, Microsoft, USA Today, and ZDNet.

The Test Suite

Among all the standard test suites offered by WebBench, we chose to use the e-commerce standard

test suite. As stated in Section 7.2.3, a user’s satisfaction about a web server’s performance is

built on the server’s overall performance when executing the set of workloads that this user enforces

on the server. The e-commerce test suite is a good representation of the kind of workloads our

WebALPS-enabled server might face in the real life.

Below is the characteristics of the e-commerce test suite:

• 80% static requests and 20% dynamic requests (invoke a CGI program on the server side);

• 92% HTTP requests and 8% HTTPS requests;

71

• For each client, the minimum number of session reuse is 5 and the maximum number is 15.

Number of Clients

Due to the limited number of Windows machines available to us, we ran 8 clients on two machines

with 4 clients per machine and 3 threads per client. During the whole test process, we monitored

the system usage on the client machines and found that it never exceeded 50%. This fact ensures

us that the test results are not restricted by the ability of the clients to send out requests.

7.3.3 Test Results

In this section, we compare the test result we obtained from using the same WebBench e-commerce

test suite on the WebALPS-enabled HTTPS virtual host and the normal HTTPS virtual host.

Figure 7.4 shows the scalability comparisons between WebALPS-enabled host and normal HTTPS

host in terms of the server’s ability to sustain its serving speed (measured in number of requests

served per second) under high workload. From the figure, it is clear that both hosts scale well under

the workload provided in the e-commerce suite. As for the performance, on average, WebALPS-

enabled host is about 25% slower than a normal HTTPS host.

Figure 7.5 shows the scalability comparisons in terms of throughput. The result is similar to what

we got from the previous figure. Both hosts show good scalability and on average, the throughput

provided by WebALPS-enabled host is about 28% less than normal HTTPS host.

From these data, we can safely conclude that within our test range, WebALPS-enabled server are

scalable under real-life e-commerce workloads.

Another thing worth to mention is that in this test, with the introduction of the non-secure com-

72

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

R
eq

ue
st

s/
Se

co
nd

Number of Clients (3 threads/client)

WebALPS-Enabled HTTPS Host
Normal HTTPS Host

Figure 7.4: Scalability comparisons between a WebALPS-enabled HTTPS host and a normal HTTPS
host (Requests/Second)

ponents in the workload that represents real life scenario, the performance slowdown of WebALPS-

enabled server has reduced from over 500% (as shown in Section 7.2.3) to only about 25%. This

proves our previous argument that to users in real life, the performance slowdown of WebALPS

approach would not be as dramatic as what Table 7.2 shows.

73

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

B
yt

es
/S

ec
on

d)

Number of Clients (3 threads/client)

WebALPS-Enabled HTTPS Host
Normal HTTPS Host

Figure 7.5: Scalability comparisons between WebALPS-enabled HTTPS host and normal HTTPS
host (Throughput)

74

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis work, we successfully designed and implemented a prototype WebALPS co-server

which is able to establish an authenticated and secure communication channel to a remote client

through our revised SSL process. Based on the certified security features offered by IBM secure

coprocessors, this prototype co-server is able to act as a trusted entity in the Web interactions and

has the potential of offering sensitive web-based services to remote clients.

The performance test of this prototype shows that the WebALPS co-server can offer security and

privacy to web clients at a reasonable performance cost compared with how much SSL technol-

ogy sacrificed for similar goals. Moreover, when tested with a real-life e-commerce workload, our

prototype demonstrates good performance and scalability that are comparable to what a normal

SSL-enabled Apache server offers, proving WebALPS to be a practical technology. The fact that

the prototype has survived the intensive tests also establishes our confidence about the correctness

75

of our implementation. To further test this, we plan to make our code and demos publicly available.

We also illustrate the scheme of implementing WebALPS-based applications through our simple

secure grade-retrieval system. Now we are working on building more complicated systems based on

our WebALPS co-servers.

In summary, our work in this thesis realized the WebALPS approach and proved its feasibility. We

are confident that the WebALPS trusted co-server will become a critical piece of enabling technology

for security and privacy in web-based services.

8.2 Future Work

First, several things can be done to improve the prototype co-server:

• the coprocessor has a limited memory. Under heavy workload, it could become a bottleneck

piling up with session information. Moreover, the single connection between the co-server and

multiple server processes could also become a performance concern. One way to address this

problem is to use multiple coprocessors to implement a one-server-multiple-co-server structure.

This approach has the potential of improving the WebALPS-enabled server’s performance with

the introduced parallelism;

• we plan to add support for more SSL options including more cipher suites and client authen-

tication;

• as illustrated in Figure 1.1, many services cannot be done at one web site (for example, the

Dartmouth basement web mail system needs to talk to the DND server for user authentica-

tion). We need to give the co-server the functionality of acting as a client to open a new SSL

connection to another server and accomplish the services it needs to provide to the clients.

76

Second, the WebALPS approach not only requires the server-side work, it also needs support from

the client side. For example, for this approach to work, users have to be able to distinguish the traffic

from trusted WebALPS co-servers from the traffic from untrusted servers. However, current com-

mercial browsers don’t even offer a clear and secure way to indicate which CA signed the certificate

provided by a server.

Moreover, we are also considering other ways of implementing the WebALPS approach. For example,

if the IBM 4758 is improved to provide a larger memory, networking support, as well as a standard

OS, to build a whole web server inside the coprocessor would become a valid option [6].

Finally, the successful prototype implementation invites application development. We need to iden-

tify the application scenarios that can benefit from using WebALPS co-servers, design the scheme for

the interactions between the server and the co-server for those scenarios, and eventually implement

these applications.

77

Bibliography

[1] ACME Laboratories. http://www.acme.com/software/http load

[2] ActivMedia Report. “Real Numbers Behind Net Profits 2000.” June 2000.

http://www.activmediaresearch.com/real numbers 2000.htm

[3] Alexa Research. “Grow Web, Grow! Internet Trends Report: 1999 Review.” February 1, 2000.

http://www.alexaresearch.com/top/report 4q99.cfm

[4] Apache Software Foundation. “Apache HTTP Server Project.” http://httpd.apache.org

[5] APBNEWS news. “Massive Cybertheft Case Revealed.” March 17, 2000.

http://apbnews.com/newscenter/internetcrime/2000/03/17/credit0317 01.html

[6] Paula Austel, Ron Perez. Personal communication. 2001.

[7] Computer Security Institute Press Release. “Financial losses due to internet intrusions, trade

secret theft and other cyber crimes soar.” Mar 12, 2001.

http://www.gocsi.com/prelea 000321.htm

[8] Mark J. Cox, Ralf S. Engelschall, Stephen Henson, Ben Laurie, et. al. “OpenSSL project.”

http://www.openssl.org

[9] Cyveillance press release. “Internet Exceeds 2 Billion Pages.” July 10, 2000.

http://www.cyveillance.com/web/us/newsroom/releases/2000/2000-07-10.htm

78

[10] Joan Dyer, Ron Perez, Sean Smith, Mark Lindemann. “Application Support Architecture for a

High-Performance, Programmable Secure Coprocessor.” Proceedings, 22nd National Informa-

tion Systems Security Conference. October 1999.

[11] eTesting Labs, Ziff Davis Media Inc.

http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2326243,00.html

[12] Alan O. Freier, Philip Karlton, Paul C. Kocher. “The SSL Protocol Version 3.0.” November 18,

1996. http://home.netscape.com/eng/ssl3/draft302.txt

[13] R. Housley, W. Ford, W. Polk, D. Solo. “Internet X.509 Public Key Infrastructure Certificate

and CRL Profile.” January 1999. http://www.ietf.org/rfc/rfc2459.txt

[14] IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface Reference Version 2:

4758-002 and 4758-023. March 2001.

[15] IBM 4758 PCI Cryptographic Coprocessor Models 001, 013, 002, and 023 General Information

Manual. January 2000.

[16] S. Kent, R. Atkinson. “Security Architecture for the Internet Protocol.” November 1998.

http://www.ietf.org/rfc/rfc2401.txt

[17] MSNBC news. “Hackers breached Davos security.” February 5, 2001.

http://www.msnbc.com/news/526270.asp?cp1=1

[18] Netcraft. “The Netcraft Web Server Servey.” April 2001. http://www.netcraft.com/survey

[19] Ralf S. Engelschall, Ben Laurie. “mod ssl project.” http://www.modssl.org

[20] Ralf S. Engelschall. Figure Apache+mod ssl+OpenSSL Data Structure Overview. Included in

the mod ssl source distribution.

[21] E. Rescorla, A. Schiffman. “The Secure HyperText Transfer Protocol.” May 1996.

http://www.terisa.com/shttp/1.2.1.txt

79

[22] Sean W. Smith, Steve Weingart. “Building a High-Performance, Programmable Secure Copro-

cessor.” Computer Networks. (Special Issue on Computer Network Security). 31:831-860. April

1999.

[23] Sean W. Smith, Ron Perez, Steve Weingart, Vernon Austel. “Validating a High-Performance,

Programmable Secure Coprocessor.” Proceedings, 22nd National Information Systems Security

Conference. October 1999.

[24] Sean W. Smith. “WebALPS: Using Trusted Co-Servers to Enhance Privacy and Security of Web

Interactions.” Research Report RC-21851, IBM T.J. Watson Research Center. October 2000.

[25] Sean W. Smith. “Outbound Authentication for Programmable Secure Coprocessors.” Draft,

March 2001.

[26] Lincol Stein , Doug MacEachern. Writing Apache Modules with Perl and C O’Reilly, 1999

[27] Stephen Thomas. SSL and TLS Essentials: securing the Web John Wiley & Sons, 2000

[28] United States Department of Commerce News. “Estimated Quarterly U.S. Retail E-commerce

Sales: 4th Quarter 1999 - 1st Quarter 2001.” May 2001.

http://www.census.gov/mrts/www/current.html

80

	WebALPS Implementation and Performance Analysis: Using Trusted Co-servers to Enhance Privacy and Security of Web Interactions
	Recommended Citation

	tmp.1594758963.pdf.Hyche

