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ABSTRACT

IoT (Internet of Things) based smart devices such as sensors and wearables have been

actively used in edge clouds i.e., ‘fogs’ to provide critical data during scenarios ranging

from e.g., disaster response to in-home healthcare. Since these devices typically operate

in resource constrained environments at the network-edge, end-to-end security protocols

have to be lightweight while also being robust, flexible and energy-efficient for data im-

port/export to/from cloud platforms. In this thesis, we present the design and implemen-

tation of a lightweight IoT security middleware for end-to-end cloud-fog communications

involving smart devices and cloud-hosted applications. The novelty of our middleware is

in its ability to cope with intermittent network connectivity as well as device constraints

in terms of computational power, memory and network bandwidth. To provide security

during intermittent network conditions, we use a Session Resumption concept in order to

reuse encrypted sessions from recent past, if a recently disconnected device wants to re-

sume a prior connection that was interrupted. The primary design goal is to not only secure

IoT device communications, but also to maintain security compatibility with an existing

core cloud infrastructure. Experiment results show how our middleware implementation

provides fast and resource-aware security by leveraging static pre-shared keys (PSKs) for

a variety of IoT-based application requirements. Thus, our work lays a foundation for

promoting increased adoption of static properties such as Static PSKs that can be highly

suitable for handling the trade-offs in high security or faster data transfer requirements

within IoT-based applications.

ix



Chapter 1

Introduction

1.1 Security in IoT Applications

Internet of Things (IoT) systems typically comprise of a network of connected devices with

limited computation and networking capacity. The term “thing” here can constitute any

smart device ranging from sensor devices in automobiles, bio-chemical sensing devices in

homeland security, to heart monitoring devices inside of a human body. In fact, any object

that has the ability to collect and transfer data across the network can be a part of the IoT

system.

As mentioned in [1], emerging IoT trends are set to completely change the way busi-

nesses, governments, and consumers interact with each other, and act in a data-driven econ-

omy. The use-case range of IoT applications is very broad. IoT devices are used in various

fields e.g., Geo Sensors collect all sorts of geographical information related to soil, for-

est terrains, and weather, and transmit related data sets to nearby fog computing platforms

for aggregation and analysis/visualization. They can also provide critical data during e.g.,

disaster response scenarios or in-home healthcare.
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An example of disaster response system utilizing IoT is Panacea’s Cloud [2, 3]. Such

systems aid in providing medical triaging and quick response during emergency disaster

situations. The system involves many remote and distributed IoT devices transmitting data

from various locations in a disaster region to a responding personnel’s handheld device

(IoT), which in turn utilizes a common core cloud system to provide visualization through

a dashboard. On the other hand, in-home healthcare systems such as [4] are aimed at

providing emergency services to the elderly, if the need arises. These involve IoT sensors

and cameras keeping track of movements made by the elderly, and notifying their primary

care contact if their movement signature appears to be an anomaly.

Hence, the sheer number and range of IoT applications is vast and varied.

‘Ubiquitous Computing’, as it is also referred to as, has been on the rise. As it gets more

and more intrusive into our lives, a serious facet to consider is the security of such systems

and applications. Considering the nature of confidentiality that many of the use-cases might

require, it is imperative to ensure secure transmission and reception between the devices in

an IoT systems, and between IoT systems and connected centralized services. Any loss of

data, confidentiality, integrity, or availability can be catastrophic to the system and people

involved, especially for applications of critical importance. At every stage there need to be

protocols in place to facilitate secure and reliable working.

1.2 Need for a Middleware

IoT devices typically operate in resource-constrained (computing, memory, storage, en-

ergy) environments at the network-edge. Consider the aforementioned case of disaster re-

sponse systems [3]; the edge network here comprises of IoT devices and network gateways

to the cloud. Such systems could become highly unstable and unreliable due to physical

infrastructure damage. On top of good level of security, more importance has to be placed

on the speed or quickness of transmitting the available emergency data from IoT sensors
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to the responders’ devices. The availability of IoT devices could be infrequent and in-

termittent, and there is no certainty to when the devices might run out of energy before

successfully sending or receiving critical data. To make matters worse, security associ-

ation and handshake between the IoT devices and the gateways could consume a lot of

the limited computing, memory, network, and energy resources available. Frequent drops

in connectivity would result in frequent handshakes, making loss of critical data a high

probability.

On the other end of the IoT use-case spectrum, the fog might be used for providing

ElderCare-as-a-Service, as in [4], that requires significant amount of resources to handle

the big data generated from patient homes. In this case, security needs to be configured

for data confidentiality and integrity, even if data transfer speeds are affected due to secu-

rity overhead. More importance has to be placed on securing the data end-to-end than to

transmit it with utmost speed. Any loss of confidentiality could result in extreme breach of

privacy for the patients involved, considering how invasive the systems can be.

Hence, IoT-based applications almost always have to tackle trade-offs, and can have

extremely contrasting use-cases which are hard to be generalized. Unfortunately, most im-

plementations exist in an ad-hoc manner, forcing developers or IoT users to fully tailor their

program around their needed application while keeping speed, security, and many other pa-

rameters in mind to suit their case. This is not ideal, specially since every IoT application

should be guaranteed some level of security, regardless of the developer’s choice or im-

plementation. Moreover, there exists a fundamental difference between systems involving

full desktop/server capabilities, and systems constituting remote, often battery-powered,

IoT devices. The needs and challenges of both different, and so are many of the protocols

involved.

To alleviate most of these issues, and to bridge the gap between the different kinds of

network systems connecting various devices of differing capabilities, there can be two ob-

vious ways of approaching the solution. (i) Develop a full set of protocols, or, (ii) Develop
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a middleware to wrap existing protocols to simulate the behavior of cross-compatibility.

Both have their advantages and disadvantages, and so considering that, we have decided

to go with developing a new middleware to make our solution more extensible, simpler

to implement, and to allow customizing the requirements, keeping the basic fundamental

requirements of security intact.

Hence, in this paper, we address the above challenges and propose the design and im-

plementation of an end-to-end IoT security middleware for cloud-fog communication that

can be suitably used with most IoT-based applications.

1.3 Intermittent and Flexible Security for Edge-Cloud

The core features of our end-to-end IoT security middleware, and the main thesis contribu-

tions are: (i) Intermittent Security, and (ii) Flexible Security.

1.3.1 Intermittent Security

Our middleware uses a Session Resumption concept in order to reuse encrypted sessions

from recent past. If a recently disconnected device wants to resume a prior connection that

was interrupted due to an unreliable network, this key feature has the potential to save a lot

of time, energy, computation, memory, and bandwidth, during the reconnection phase of

the associated devices.

1.3.2 Flexible Security

Our middleware has the ability to allow users to flexibly configure required security based

on the application resource-awareness, versus blindly following a rigid security configura-

tion. Every application has its own specific requirements, and implementing a trustable, re-

liable security is often a challenge to developers. This enables the user to consider the trade-
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offs for their IoT-based application, and thus configure higher security, prioritize faster data

transfer, or simply use the most energy efficient solution.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, we describe the thesis

background and literature review, that provide context to the solution approach. In Chapter

3, we elaborate on our solution and provide a detailed description of our approach with ref-

erence architecture. Chapter 4 evaluates the effectiveness of our middleware and compares

the state of an IoT-based application with and without the middleware. Chapter 5 discusses

future work and provides information on extending the many facets of the middleware.

Finally, Chapter 6 concludes the thesis.
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Chapter 2

Background and Literature Survey

In this chapter, we provide some background information on fundamental concepts behind

the middleware. We then discuss the various literature work that have led to the idea and

implementation of this research.

2.1 Edge-Cloud Architecture

The architecture for IoT-based network, including Edge-Cloud systems, vary on a per-

application basis. But in general, the overview logical diagram can be visualized as shown

in Figure 2.1. The essential elements are (i) Core Cloud, (ii) Gateway, (iii) IoT Edge.

The Core Cloud is the most computationally powerful element in the system. It per-

forms data aggregation from various edges or gateways, as well as acts as the server for

most systems. It provides a scalable solution in the form of services to be used by gateways

or IoT edges. A few examples of Cloud can be seen in Amazon Web Services, Google

Cloud, Microsoft Azure, GENI, etc.

The Gateway acts as a network and data bridge between the IoT Edge and the Core

Cloud. It is usually used to collect data from the IoT devices wirelessly connected to it and

6



Core Cloud

Gateway

IoT Edge

Figure 2.1: Typical IoT-based application architecture

allows a translation of protocols between its two network ends. More often than not, the

gateway is geographically closer to the IoT Edge than to the Core Cloud. It can perform

various tasks, including routing, forwarding, buffering, etc.

And finally, the IoT Edge consists of a bunch of IoT devices all either interconnected, or

connected through the Gateway as a hop. Devices such as smartphones, cameras, sensors,

wearables, etc. are a few examples of IoT devices. The actual data collection at the source

is done through these devices. Commonly, Core Cloud might have multiple gateways in-

teracting with it, with each Gateway having many IoT devices in its network.

Typically, the cloud-gateway network has a set of protocols in use, while the gateway-

edge has its own set of protocols, due to the difference in the nature of the two networks.

Hence, the gateway has an additional task of translating the protocols to ensure exchange

between the two networks.

2.2 Security Protocols

Security is an extremely important requirement for most devices and applications. It is

commonly implemented using base set of instructions, called Security Protocols. These

protocols exist in many different forms, often in combinations. The types can include:

(i) Key Agreement, (ii) Entity Authentication, (iii) Application-level data encryption, (iv)
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Symmetric Encryption, (v) Asymmetric Encryption, (vi) Message Authentication, and many

others. It is often a challenge to decide on the level of best protocols to be used in a given

application. In addition, making them work together is not always easy.

Often, security is implemented using TLS (Transport Layer Security), or DTLS (Data-

gram TLS). This has replaced the older SSL (Secure Sockets Layer) technology. There’s

even more available options in the form of RTP (Real Time Protocol), and its new exten-

sion SRTP (Secure Real Time Protocol). All these protocols have a few things in common,

namely, (i) They ensure secure, encrypted communication among connected devices, (ii)

They work using a timed session, (iii) They undergo handshake, which usually involves

exchanging keys or certificates to establish authenticity, (iv) Data transmitted through them

is encrypted. Conversely, they also have a few key differences, such as (i) use-cases, (ii)

default underlying transport protocols in place, etc.

On top of this, protocols also differ based on the type of device it is aimed for. For

instance, a full fledged desktop computer might have all levels of crypto protocols in place,

but the same would not be feasible for an IoT-based application in an IoT Edge.

2.3 Panacea’s Cloud

Panacea’s Cloud [2, 3, 5] is an example of IoT-based application utilizing the power of

Cloud-Edge system. Its goal is to aid in emergency medical traiging, as part of incidence

response during any natural or man-made disaster. The architecture for this application

looks like Figure 2.2.

Similar to the basic Cloud-edge architecture shown in Figure 2.1, Panacea’s Cloud has

all the components from the previous architecture, but has an additional component, the

Edge Cloud. The application is novel in the sense that it utilizes a network mesh of IoT

devices to collect data from patients and transmit to the private Edge Cloud, for processing

and visualization.
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Figure 2.2: Panacea’s Cloud Disaster Response System architecture

The system has a major challenge to overcome, in the form of security trade-off. The

application deals with human patients, so confidentiality is crucial. But even more impor-

tant is the speed of data to be transferred, i.e., there is a need to quickly get the data into the

edge or core cloud so as to allow timely response. Hence, both speed and security need to

be as high as possible. Unfortunately, it’s almost impossible to have both of those charac-

teristics maxed-out. And so, there is a need of decision making to select the higher priority

and operate accordingly.

2.4 Literature Review

2.4.1 Constrained and Unconstrained Network

IoT-based application deployment is a relatively new trend. However, methods to secure

networked IoT devices have been explored in the past. Work in [6] is based upon the cat-

egorization of IoT-based network into two kinds: (i) Constrained Network (CN), and (ii)

Unconstrained Network (UCN). Constrained Network is said to typically consist of net-

work of low-resource devices, i.e., devices with limited computation, network, bandwidth,

etc. Such networks are usually designed to support low bandwidth transfers. An exam-

ple of a Constrained Network would be a few small IoT devices interconnected through

a gateway. On the other hand, Unconstrained Network involves network of high-resource

9



devices. Such networks are not constrained by bandwidth or energy limitations. An exam-

ple of this would be our home desktops connected to the Internet.

Figure 2.3: Constrained and Unconstrained Network

Figure 2.3 shows the role of gateway in connecting CN and UCN. Due to the funda-

mental differences in CNs and UCNs, use of full-fledged security suites is not feasible on

both network types. And so, the cited paper utilizes a separate protocols for CN and UCN.

In their case, the gateway acts as the bridge and performs translation from one protocol to

the other to allow end-to-end communication. This is a useful idea that has been extended

further in our middleware.

Although setting up of secure end-to-end channels isnt directly applicable to Con-

strained Network, the cited work provides a suitable security architecture for IoT discussing

the following objectives: a) No modifications in the security suites employed within the

Unconstrained Networks such that the unconstrained nodes do not notice any deviations

from their standard procedures. b) Security handshakes handled within the Constrained

Networks so that the constrained nodes handle their complexity being able to establish

end-to-end secure channels. In essence, an architecture to offload computation intensive

tasks to the gateway is proposed, which helps in reducing the cost of security encryptions
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at the IoT node side.

However, offloading at a large scale is a tedious task as mentioned in [7]. In addition, the

implementation itself is tailored around IPsec, and does not discuss usage with OpenVPN

and similar tunneling suites. Moreover, due to the stringent nature of the research, it might

not be flexible enough for unstable or dynamic topologies which might face infrequent

connectivity or many temporary nodes connecting transiently on a need-to basis.

Overall, the logical division of Constrained Network and Unconstrained Network is a

key takeaway from the paper, in addition to the idea of using gateways to offload computation-

intensive tasks.

2.4.2 Lightweight IoT Authentication Scheme

Publication [8] provides a lightweight authentication scheme for heterogeneous wireless

sensor networks in the context of IoT. The scheme uses nonce and Keyed-Hash Message

Authentication (HMAC) to check the integrity of authentication exchange. The authors use

a 3-step set up of the communication. Firstly, registration between nodes and gateway, and

then registration between gateway and the cloud/remote server. Secondly, authenticating

the connection. The authentication required directly link of the sensor to the remote user

before the gateway comes into play. The sensor creates a nonce N of not more than 8

bytes and sends it to the remote user. The remote user then creates a nonce of its own, M,

appends with that of the sensor and then sends it to the gateway creating ID for the sensor.

The gateway computes HMAC and checks if the information is valid. Then it processes it

with its own nonce, S, and sends it to the remote user. The remote user node then sends the

information for the sensor node to confirm. Thirdly, there is a session key establishment

between the sensor node and the remote user. The paper deals with different security issues

and present performance evaluation and analysis to support its approach. Impersonating

the sensor, replay message and so on. The mutual authentication is an advanced approach
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that enhance security. Along with this, the papers talk about the identity protection, data

integrity, and other features they cover. The work is scalable. Similar form of architecture

is used in [9] for creating an eHealth application based on the approach discussed in [8].

The properties of scalability, mutual authentication feature, lightweight schemes and direct

communication to the remote user/cloud are directly relevant to our work.

Since most of the encryption computation is offloaded, the beacons/nodes consume less

energy in computation of the connection establishment. It allows both users and Base sta-

tions to authenticate each others. However, there is multi-phase encryption and decryption

which increases overhead and takes a lot of time.

In comparison, our work investigates a security middleware which makes use of static

Pre-Shared Keys (PSKs) that is different from the paper’s multi-phase encryption and de-

cryption. A major advantage in doing this is that we are able to phase down to just one

iteration for authentication, and thus, our approach reduces security overhead and is quite

less time consuming.

2.4.3 Physical Unclonable Functions

We encountered use of different encryption techniques. Work in [10] makes use of Phys-

ical Unclonable Functions (PUF) over public key cryptography, which takes advantage of

existing physical properties of the device. For encryption and authentication services, they

combine this technology with Physical Key Generation (PKG) over wireless communica-

tion that use physical properties of the communication channel. PKG uses same compo-

nents as PUF making the combination cheaper than common public-key cryptography. The

authors show how the approach exploits random physical nature of noisy wireless channel

between devices by tapping the wireless channel itself for secret key generation.

Figure 2.4 shows that the cited paper utilizes a Hub/Gateway to keep track of various

IoT Devices {T1...Ti}. Using PUF has the added benefit of making security association
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Figure 2.4: Physical Unclonable Functions

faster. The idea of using physical properties of the device is quite useful, especially for

IoT-based applications, since it helps increase security. But, since the process of authen-

tication involves full re-enrollment from scratch, it turns into an expensive solution for

Constrained Network environments. Fortunately, we are able to go one step further in our

middleware while using physical static properties of the device in conjunction with session

ID to provide quick re-enrollment.

2.4.4 Secure End-to-End Protocol with Offloading

Paper [11] is a closely related finding. It provides a secure end-to-end protocol for resource-

constrained devices, especially in context of health-care sensors. Their work uses same

security functionality as Unconstrained Devices, but without computationally intensive op-

erations. Heavy computation at constrained devices are offloaded to the neighboring trusted

nodes/devices. The session, however, is secured using a session key. The key generated

has a short-time validity and hence is ephemeral in nature. This is great for security, but at

the expense of having to renegotiating handshake and security association all over again,

in case of any disconnection.

This paper also proposes a selection criteria based on trust level to select the assisting

nodes. Their protocol is compatible with other end-to-end security protocols, allowing
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extensibility. Our work builds on top of this work, and uses an easier, yet effective key

management scheme. Specifically, we allow creating static keys which are not short-lived,

significantly reducing the key exchange cost and time.

2.4.5 HIP and Session Resumption

Paper [12] provides a comprehensive session resumption mechanism. The work uses HIP

DEX i.e., Host Identity Protocol Diet EXchange, a key management protocol specially

designed for Constrained Networks, that provides secured end-to-end connections in IoT.

To this end, the authors present complementary lightweight protocol extension for HIP

DEX, i.e., a comprehensive session resumption mechanism. Ephemeral Diffie-Hellman

keys and digital signatures are forfeited and are replaced by a refined session establishment

handshake based on DH keys for mutual peer authentication and key agreement. Perfect

forward secrecy and non-repudiation properties of HIP result in significantly decreased

protocol handshake overhead and reduced handshake run-time. The peers only perform

expensive operations once during the initial sessions establishment. Storage of session

state after session tear-down enables efficient re-authentication and re-establishment of a

secure payload channel in an abbreviated session resumption handshake.

However, it is not the most secure solution. Our work utilizes the concept of session

resumption but makes a few changes for broader compatibility. Instead of HIP, we utilize

Device ID, which can additionally act as a static unique device property to quickly and

securely fetch stored sessions for re-use.

2.4.6 Security Configuration Frameworks for LLNs

Authors in [13] give a standard security complaint framework to secure the IEEE 802.15.4

networks in low power lossy network (LLNs). The framework aims at proposing: a) differ-

ent kinds of security architectures, b) an efficient mechanism for initializing a secure IEEE
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Figure 2.5: Interaction between FFDs and RFDs under the Framework

802.15.4 domain and c) a lightweight scheme to negotiate link keys among the devices.

The standard considers two types of nodes that can build peer-to-peer or star networks:

Full Function Devices (FFD) and Reduced Function Devices (RFD). The RFDs have lim-

ited resources, and low computational capabilities, while the FFDs have full computational

capabilities. The FFDs are able to coordinate the network and hold references to the RFDs.

The framework supports 5 different levels of security with their proposed security con-

figurations (i.e., Fully Secured, Unsecured, Partial Secured, Hybrid Secured and Flexible

Secured). Flexible secured configuration has the potential to change the level of security

based on requirements when needed, and shifts from full secured state to hybrid secured

state. Figure 2.5 shows a small instance of cross-interaction between RFDs and FFDs.

However, the approach is not quite scalable since re-entry of device request is not sup-

ported. This is a gap that can be filled by the presence of a flexible, dynamic security
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middleware to act as an interface for fast or secure encrypted communication. Hence, our

work takes the framework a step further towards a more practical layer for use within IoT-

based applications.
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Chapter 3

IoT End-to-End Security Scheme

3.1 Overview

As mentioned earlier, our work closely follows the idea of flexible security framework

described in [13]. We build upon the previous framework by adapting their implementation

for our core features suited for a variety of application use cases.

3.1.1 Physical Infrastructure

Figure 3.1 illustrates a physical infrastructure perspective of our middleware in action. The

infrastructure primarily constitutes of a core cloud infrastructure, a gateway, and several

edge IoT devices. The core cloud has a communication channel with gateways at the

edge. The edge gateways form an interface to the network for the IoT devices. Parts of

the primary middleware are installed on both the gateway and the fog IoT devices. The

fog network can constitute any number or type of IoT device, such as heart monitor, bea-

con, geo sensor, etc. The primary middleware allows secure and fast data transfer between

the sensor devices and the gateway, using security schemes chosen through our ”flexible

security” module, and ensuring robustness using the ”intermittent security” feature to ac-
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commodate frequent disconnections. This is possible because the middleware stores and

tracks sessions, certificates, or keys,

Figure 3.1: Edge Cloud/Fog system architecture

between both the fog and the gateway. Once data has been securely transferred to the

gateway, it handles the translation of protocols to allow compatibility between the core

cloud protocols and the IoT protocols.

Optionally, secondary middleware can exist between the gateway and the core cloud to

provide flexibility and robustness, if needed. There is a key benefit of having this setup.

The presence of intermediate gateways allows for decoupling of services and protocols

between the cloud-gateway and gateway-iot subnets, essentially paving way for end-to-end

security via our intermediate middleware. Our model consists of a middleware in the core

cloud network side, and another middleware at the fog network side. Each middleware

consists of a server-client pair interacting with just each other. At the gateway, the client of

cloud interacts with the server of edge, allowing end-to-end secured communication. The

middleware supports flexible security by allowing different protocols for individual nodes

in the fog network, in addition to being ready to use static PSKs for quick encryption setup,

and support for intermittent security through session resumption.
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3.1.2 Logical Modules

A modular diagram of our proposed middleware is shown in Figure 3.2. The involved de-

vices keep track of (D)TLS sessions, PSKs, and the Device IDs. The security association

occurs first by letting the Intermittent Security module try and resume a past connection,

by first verifying session existence and validity. If the resumption fails, Flexible Security

module acts as an interface to allow configuration of required security schemes. These two

modules in conjunction form the middleware.

Figure 3.2: End-to-End IoT Security Middleware Module Diagram

Our middleware allows flexibility of security through various available protocols. The

reasoning behind providing flexibility is because all applications and devices are not built

with same level of security in mind. There is a trade-off between security and speed when

it comes to a preset of a security protocol. High level of security is usually desired, but

19



not always needed. Based on the application, it might be detrimental to have full-fledged

security. For instance, if an edge beacon (based on e.g., iBeacon technology) is transmitting

confidential medical information, the data security is a major priority. However, if the same

beacon is to be reused for emergency medical triage, the priority for speed and low power

consumption goes up, at the expense of high security.

3.1.3 Deployment

In practical IoT-based deployments, the middleware can be installed at various levels, in-

cluding System Level and Application Level. A System Level installation could involve

integrating the features of the middleware into the Operating System services of the de-

vice, ideally by the device manufacturer or software developer. This approach allows an

application developer to incorporate the features of the middleware for customization by

users. On the other hand, Application Level installation can allow an application developer

to directly integrate the middleware features into the application logic. This approach could

be useful if full device control is not available at the Application Level.

3.2 Intermittent Security

Intermittent security utilizes session resumption to quickly bring a disconnected device

back in the network when next needed. This concept closely follows the ideas proposed

in [12], and modifies a few factors. Our middleware implements intermittent security using

“Device ID”, instead of Host Identity Protocol (HIP). This allows compatibility with a

broader range of device types. The device IDs of the edge nodes are managed by the nearest

hop gateway. (D)TLS sessions are stored by the devices on disconnection for future use. If

such a recently disconnected edge node attempts to make a connection with the gateway, the

gateway uses the client Device IDs to determine the session to resume for that requesting
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node. This scheme allows security handshake steps and time to be minimized, and the data

to be transmitted can still successfully be transferred, in intermittent chunks.

A possible major concern in a session resumption implementation is the possibility

of Replay Attacks [14]. Given that the serialized sessions are tied to the property of the

device, i.e, the Device ID, replaying using the same session is made extremely difficult by

any malicious device, almost certainly having a different Device ID. To prevent an active

session from being replayed by a spoofing device, a simple flag is sufficient to block such

replay requests.
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Figure 3.3: Illustration of Intermittent Security handling with Session Resumption

Data Encryption is commonly done using keys established through Public Key Cryp-

tography (PKC). Instead of using PKC, our middleware chooses to go with static elements

such as Static Pre-shared Key (PSK) or Certificates. This is because PKC can be quite

slow, in addition to being intensive in terms of time, computation, bandwidth, and memory
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resources, [10]. Despite lacking in nonce and entropy compared to ephemeral schemes,

static PSKs still are capable of providing a reasonable level of encryption using the user’s

choice of cipher, such as block or stream ciphers. Hence, it is a preferred scheme for

most use cases, allowing a tradeoff balance between speed and security requirements of an

IoT-based application [15].

Algorithm 1: Intermittent Security Handler
Data: Device ID dID. Protocol p, either DTLS or TLS
Data: Authentication Scheme auth, Encryption Scheme en
Data: Message Authentication Code mac
Data: session variable holds encrypted session info
Data: stored session holds deserialized session fetched from device storage
Data: f irst connect is true if this is the first time connecting

Result: The latest session is stored on the respective devices to be quickly resumable

function initSession ()
/* Creates a new session from specified configuration */
session← f lex security vector(dID, {p, auth, en, mac})

end
function resume ()

/* Pulls the stored session and uses it as new session */
session← stored session

end
function serializeSession (x)

/* Store the session in storage of member devices */
while true do

sleep (x)
stored session← session

end
end
function main ()

/* Decide and create or resume a session */
if f irstConnect or stored session.isNull then

initSession()
else

resume()
end
serializeSession()
transmit()

end

22



Figure 3.3 shows a flowchart illustration of how our middleware leverages intermittent

security with session resumption for quick data transmission. A contingent flexible security

scheme is used to quickly establish lost connections with the fastest possible way, based on

the security needs of an IoT-based application.

Algorithm 1 shows our pseudocode for providing intermittent security. The main()

function gets executed first, to check whether the connection between the associated de-

vices is being made for the very first time. Or, if there already is a valid session cor-

responding to these devices. If so, we can simply fetch the stored session from device

storage and attempt to resume it, allowing quick reconnection between them. If not, a new

connection has to be established, plugging into the flexible security scheme, i.e., based on

chosen protocol, authentication scheme, encryption scheme, and message authentication

code algorithm, a new session would be initiated.

Once a session has been found (either new or resumed), two operations occur in paral-

lel: First, serializeSession() ensures that the current session state is serialized to the device

storage every few seconds, as represented by variable x. Based on the need, the value of x

can be made higher or lower. Higher value of x would result in more frequent writes to the

storage, providing more reliability for future session resumptions at the expense of using

higher computation and storage. Conversely, less frequent writes would be less reliable,

but faster and resource conservative. Second, transmit() keeps data flow active between the

connected devices.

3.3 Flexible Security

The first step for security association and communication initiation is selection of the secu-

rity protocols to be used. Our middleware supports different kinds of protocols and allows

switching between them. The possible choices all select one of the options in each cate-
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Figure 3.4: Illustration of Flexible Security handling with Protocol Selection

gory. The categories include (i) Protocol, (ii) Authentication Scheme, (iii) Bulk Encryption

Scheme, and (iv) Message Authentication Code (MAC) algorithm as shown in Figure 3.4.

3.3.1 Protocol Selection

The Protocol selection allows a choice between {TLS, DTLS}. TLS (Transport Layer

Security) and DTLS (Datagram Transport Layer Security) are both extremely secure pro-

tocols enforcing network encryption between participants. Both of these protocols ensure

confidentiality and integrity of data. DTLS is a better choice for stream-based applications,

and can work over UDP (User Datagram Protocol). For use with TCP based applications,

TLS is the preferred choice. The difference in performance and bandwidth requirements of

TLS and DTLS can get noticeably high when adding the impact of the ideal authentication,

encryption, and MAC schemes.

24



3.3.2 Authentication Scheme Selection

Next, Authentication Scheme can be {PSK, Certificate}. Furthermore, each of these enti-

ties can either {Ephemeral, Static}. Ephemeral PSKs or Certificates require full security

handshake and key exchange before use. On the other hand, Static authentication elements

do not require repeated key exchange, and hence can save a lot of time and bandwidth. In

our middleware, if PSK is found to be an ideal candidate, the default setup goes for Static

PSK. In fact, Static PSK can exist as a device property on the IoT devices, allowing many

benefits, such as quick connection, resumption, low memory footprint, low bandwidth con-

sumption, low CPU usage. If the requirement is for even higher security, ephemeral PSK

or Certificate can be generated using Key Exchange algorithms, such as RSA, DH (Diffie-

Hellman), etc.

3.3.3 Bulk Encryption Scheme Selection

Once authentication is chosen, the Bulk Encryption scheme is the next option. Encryption

can be done using either Block Ciphers, or Stream Ciphers. Block Ciphers are useful

for sending large chunk of data, and can consume a lot of bandwidth and memory if the

payload is small. This is due to the padding added to each block of data being sent. For

example, AES uses 128-bit (16-byte) padding by default. If the data being transmitted is

1024-bit in length, then the total packets sent would be d1024/128e = 8. But, if the data

size is 130-bit, the number of packets sent would be d130/128e = 2. The second packet

would have 126 empty reserved bits. Hence, for small payload applications (such as video

streams) it is better to opt for Stream Cipher, which encrypts small chunks of data before

sending. The most common Stream Cipher is RC4, but ChaCha20 is starting to take over

as the next generation of much faster and more secure stream ciphers. All ciphers can be

configured to various key sizes (if applicable), including 128-bit, 224-bit, 256-bit, and so

on.
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3.3.4 Message Authentication Code Selection

Lastly, the chosen Message Authentication Code algorithm is used to generate checksum,

to ensure integrity of data being sent. The available options are MD5, SHA {1/2/3}, and

a few lesser-used options. SHA2 or SHA3 should be used whenever possible, since MD5

and SHA1 have been found vulnerable to various checksum attacks [16, 17] and collision

attacks [18]. Through permutation and combination, the possible choices for the security

scheme can be many. Table 3.1 shows a few of the possible schemes.

Table 3.1: Different security schemes for flexible security
Security Scheme Protocol Authentication Encryption MAC Description

DTLS PSK WITH CHACHA20 SHA256 DTLS Static PSK ChaCha20 SHA2(256) Very fast, secure. Excellent for secure video streaming

DTLS DHE WITH NULL SHA384 DTLS Certificate - SHA2(384) Fast scheme, high security

DTLS DHE PSK WITH 3DES EDE SHA DTLS PSK 3DES (EDE) SHA1 Fast, but risk of integrity loss due to SHA1.

TLS PSK WITH AES 128 CBC SHA TLS Static PSK AES128(CBC) SHA1 Fast, highly secure, suitable for moderately heavy data

TLS PSK WITH CHACHA20 POLY1305 TLS Static PSK ChaCha20 POLY1305 Fast, highly secure, suitable for quick bulk data transfer

TLS ECDHE WITH AES 256 GCM SHA384 TLS Certificate AES256(GCM) SHA2(384) Very high security, suitable for confidential data on a reliable network

3.4 Optimal Scheme Decider

As discussed in the previous sections, our middleware allows picking and choosing pieces

of security protocols as per the user’s requirement. But when it comes to actually choosing

the best scheme for an application, the decision is hard to make. It becomes even more of a

challenge due to the fact that not every user might be well versed with the various security

components, or have a strong understanding of the differences between the schemes, their

advantages, disadvantages, etc. Hence, just having the option to choose is not enough.

This is where the optimal scheme decider comes in. With close to 200 possible security

scheme choices, the decider is able to find the optimal choice of security scheme for any

application, IoT-based or otherwise. This is done in two phases: (i) Offline Phase, and (ii)

Online Phase.
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3.4.1 Offline Phase

The Offline Phase is a step used to narrow down the searchable space of security schemes

by filtering a database of around 200 schemes. Although schemes can be quite varied, but

there exist many schemes that have close similarities in all practical aspects. Moreover, it

is possible to find alternative schemes to any chosen scheme when the requirements and

priorities are adjusted according to the needs of the application. Hence, it turns out, every

Figure 3.5: Scheme Groups based on configuration

permutation or combination of protocols is not a necessary option for all IoT application
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developers. In fact, as shown in Figure 3.5, we are able to group security schemes based

on their protocol choices.

In the current implementation, three groups {Group-A, Group-B, Group-C} have been

formed. Group-A represents all configurations utilizing TLS as the base protocol, and using

no session resumption. Group-B represents all configurations under TLS, but with support

for session resumption. Group-C houses all DTLS schemes with no session resumption.

A fourth group, Group-D can additionally be formed for all DTLS schemes with session

resumption. The logic from start to end of the offline-phase will be the same for all groups,

and hence will also be applicable for Group-D.

The reason why Session Resumption has been made an optional configuration is be-

cause there is a trade-off of having the feature. The resumption feature itself requires some

periodic disk I/O to serialize active session. In addition, the serialized files are stored on

the device, utilizing some disk space. This process also ends up consuming some energy.

In most cases, these factors are trivial. But for certain extremely limited IoT devices, the

middleware’s option to not support session resumption can prove beneficial.

Figure 3.6 shows a part of a table with raw benchmark data of many possible scheme

choices. The data is organized by protocol {TLS, DTLS}, authentication schemes {DHE-

RSA, PSK, ECDSA, etc.}, encryption schemes {AES, ChaCha20, etc.}, MAC {SHA,

MD5, etc.}, and session resumption support. The benchmarking is done for total mem-

ory allocations on server and client, total bytes transferred on server and client, connect

times, resume times, and many similar parameters.

Since our server is considered a FFD (Full Function Device), it can be safely assumed

that client benchmarks are the bottleneck, and hence sufficient for forming clusters. Since

the clusters are to choose the optimal security scheme targeted for the IoT-devices involved,

we are able to discard the benchmark values for the server side without any negative impact

on the decider.
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Table 3.2: Parameters used for client benchmark analysis
Client Parameter Description Desired Level for RFD

CPU Usage The security scheme’s CPU usage Smaller value

Bandwidth Usage The bandwidth of the security schemes network usage Smaller value

Peak Bytes The peak memory consumption on device Smaller value

Connection Time The elapsed time to successfully connect with server Smaller value

TX The speed of transmitting data Higher value

RX The speed of receiving data Higher value

Table 3.2 shows the parameters used for client benchmark analysis. The desired level

represents whether high value is optimal, or lower, when operating on a Reduced Function

Device. These 6 metrics can next be used to form the clusters. To move forward, we need

to perform a set of operations on the raw data to successfully filter the schemes into appro-

priate clusters under each group. Hence, the following steps are followed:

1. Scale the raw data

2. Identify Principal Components and generate weighted formula for clustering

3. Calculate the weight value for data elements

4. Identify number of clusters needed per group

5. Final clustering

1. Scale the raw data

This step is needed to decrease the correlation between each metric, in addition to

decreasing the influence of units, i.e., Normalization. Hence, we perform data scal-

ing on the raw data in Table 3.6 using the scaling formula:
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x′ =
xi j− xm j

σ j

where

x′ : scaled value

xi j : value of ith row, jth column data

xm j : mean value of j column data

σ j : standard variance for the j column data

2. Identify Principal Components and generate weighted formula for clustering

Next step involves applying Principal Component Analysis (PCA) to decide the num-

ber of clusters that may exist in each for the groups {Group-A, Group-B, Group-C}.

The formula for each potential cluster can be as below:

zi1 = φ11 · xi1 +φ12 · xi2 + · · ·+φ1p · xip

zi2 = φ21 · xi1 +φ22 · xi2 + · · ·+φ2p · xip

· · ·

zip = φp1 · xi1 +φp2 · xi2 + · · ·+φpp · xip

where

zip : value of pth principal component

φp1 : weight of each element

xip : value of element
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3. Calculate the weight value for data elements

Once we have the principal component formula, we need to calculate the value of

weight φ of every element. This is an optimization problem to calculate the weight φ :

maximize
φ11,··· ,φp1

1
n

n

∑
i=1

(
p

∑
j=1

φ j1 · xi j

)2


subject to
p

∑
j=1

φ
2
j1 = 1.

Figure 3.7 shows our results for Principal Components of Group-A. Every column

is now categorized as per metric value similarity. For example, PC1 might have all

schemes with maximum CPU consumption, PC2 might represent all schemes with

maximum network bandidth, and so on. Similarly, Principal Component Analysis

generates the data shown in Figure 3.8 and Figure 3.9 for Group-B and Group-C,

respectively.

Figure 3.7: Group-A Principal Component Results

Figure 3.8: Group-B Principal Component Results
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Figure 3.9: Group-C Principal Component Results

4. Identify number of clusters needed per group

The number of clusters that need to be generated per group can next be calculated, us-

ing Proportion of Variance Explained (PVE). We apply the following on the dataset:

p

∑
j=1

Var
(
X j
)
=

p

∑
j=1

1
n

n

∑
i=1

x2
i j

The PVE result for each group is shown in Figures 3.10, 3.11, and 3.12. Analyzing

Group-A PVE in Figure 3.10 tells us that 89.1% (∼ 90%) of the schemes in this

group can be taken into consideration if we use three clusters. Any higher cluster

count would provide only trivial advantage. For Group-B, the PVE in Figure 3.11

suggests taking four clusters to encompass 90.4% (∼ 90%) of the schemes. Sim-

ilarly, Group-C can benefit by housing four clusters, i.e., 90.6% (∼ 90%) of the

schemes. Hence, we accept 3 clusters in Group-A, and 4 clusters each in Group-B

and Group-C.

Figure 3.10: Group-A Proportion of Variance Explained results

Figure 3.11: Group-B Proportion of Variance Explained results
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Figure 3.12: Group-C Proportion of Variance Explained results

5. Final clustering

Once we have decided on number of clusters in each group, we can use k-means

clustering by calculating Euclidean distance for each observation. This can be done

by applying the following:

W (Ck) =
1
|Ck| ∑

i,i′εCk

p

∑
j=1

(
xi j− xi′ j

)2
. (3.1)

We want to cluster together the observations with minimum distance between them.

Hence, we find the minimum distance in Equation 3.1:

minimize
C1,··· ,CK

{
K

∑
k=1

W (Ck)

}
.

In essence, clustering allows us to reduce the overhead of storing hundreds of redun-

dant security schemes, and instead finds the best alternative from smaller scope containing

equivalent schemes. We are able to choose the most optimal cluster in each group, hence

allowing a small subset of schemes under the hood. These subsets should ideally be able

to provide all the benefits of equivalent schemes.

3.4.2 Online Phase

Once the offline-phase has been executed at the development stage of our middleware, its

job is done. Unless any major changes are required in the available schemes, such as addi-

tion or removal of new/old schemes, the generated set of can be reused by the middleware

for finding the optimal scheme, when being run by a potential user of the middleware. The
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online phase can be accessed using a set of RESTful APIs for the middleware on the IoT

device, the gateway, and the core cloud. Figure 3.13 shows a table of available APIs for

use. The Decider is our decision making engine which finds the optimal security scheme

for our use-case. But first, it needs to collect the metrics to find the best-match security

scheme as needed by the application. The metrics taken into consideration are:

• Type of Data

• Estimated size of data transfer

• Energy available to the device

• Computation power available

• Memory available

• Session Resumption requirement

The options chosen by the user are each internally mapped to a value in the range

{1,2, · · · ,10}. The mapping has been done by surveying many devices ranging from lower

end of the spectrum in the metric to the higher end. For example, CPU frequency of over

750 MHz can be safely categorized as a Level-4 device, considering it is higher than most

IoT devices. a full description of the acceptable parameter values can be viewed in Fig-

ure 3.14.

Once the internal map has been generated, the decider algorithm kicks in to filter good

candidate schemes from the cluster chosen in offline-phase. Algorithm 2 describes the

various filters applied to narrow down to a single security scheme from the input metrics.

We have decided to prefer Stream Cipher over Block Cipher for all multimedia applications,

as well as for general applications with smaller payloads. For further filtering, we have tied

DTLS protocol with STREAM ciphers, and TLS protocol with BLOCK ciphers. This

is because utilizing TLS with STREAM ciphers or DTLS with BLOCK ciphers would

essentially undo the benefits offered by the protocol or cipher.
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Figure 3.13: RESTful APIs for Online Phase

In the algorithm, once the data type and size has been used to filter according to protocol

and cipher type, we make the remainder of the decisions based on the device specifications.

The priority is given to energy level of the device in question, since IoT-based applications

are almost invariably limited by energy consumption or availability to securely handle data.

Hence, low energy availability and extremely-high security scheme will not be clubbed

together, being a recipe for disaster. Next, the best choice of scheme is picked based on

the limiting value between available CPU and available Memory. For instance, a Level-2

CPU in conjunction with Level-9 Memory will still be incapable of running high security

schemes. The same would be true if the CPU and Memory levels are reversed. Finally,

the result generated is the choice of scheme to be used, which gets used by the transmitter

program to generate the appropriate secure session.
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Figure 3.14: RESTful API Parameter Values
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Algorithm 2: Optimal Security Scheme Decider
Data: Data to be transmitted data
Data: Protocol to be used for transmission protocol
Data: Cipher to be used for encryption mac
Data: Energy Level classification of the device energyLevel
Data: CPU level classification of the device cpuLevel
Data: Memory level classification of the device memLevel

Result: The best security scheme is chosen

/* data.SIZE in bits */
if data.TYPE = MULTIMEDIA or data.SIZE < 128 then

protocol ← DT LS
cipher.TYPE← ST REAM

else
protocol ← T LS
cipher.TYPE← BLOCK

end

if energyLevel < 6 then
Eliminate heavy encryption schemes

end

if min(cpuLevel,memLevel) < 4 then
Choose low-level security scheme

else if min(cpuLevel,memLevel) < 7 then
Choose medium-level security scheme

else
Choose high-level security scheme

end
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Chapter 4

Middleware Testbed and Evaluation

In this section, we compare the performance of various schemes accessible on our mid-

dleware to randomly selected schemes. This allows us to check the difference in impact

caused by a better selection. Since the middleware has multiple submodules capable of

working independently, we perform our middleware evaluation using two test cases: (i)

Impact Test of Flexible and Intermittent Security, and (ii) Test of Optimal Scheme Decider.

4.1 Case I: Impact Test of Flexible and Intermittent
Security

This test aims to check the impact of utilizing the middleware to switch from ephemeral,

high security protocol schemes to using static properties such as PSK for secure session.

This test accounts for: (i) Memory Footprint, including number of memory allocations

and total size of allocation, and (ii) Time taken for security association, for initial session

establishment and session resumption scenario. A minimum viable implementation of the

middleware has been used on a GENI [19] Cloud testbed.

Figure 4.1 shows the network setup using the GENI Cloud infrastructure.

The first step for security association and communication initiation is selection of the
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Figure 4.1: Testbed setup over the GENI Cloud Infrastructure

security protocols to be used. Our middleware supports different kinds of protocols and al-

lows switching between them. The possible choices all select one of the options in each cat-

egory. The categories include Protocol, Authentication Scheme, Bulk Encryption Scheme,

and Message Authentication Code (MAC) algorithm.

Our implementation of crypto and authentication uses WolfSSL [20], an embedded

SSL implementation library. Live video stream is supported using OpenCV [21]. The

application itself is built completely using C/C++, using GCC compiler.

Figures 4.2 and 4.3 show an instance of our client and server prototype implementation.

The server is hosted on core cloud and gateway, and listens for client requests from gateway

and IoT nodes. The client side of the system provides an interactive interface where one can

choose from five different levels of security. The image representing the server side shows

the server when DTLS-PSK cipher scheme is being used. In general case, we choose and

recommend the static PSK scheme.

Figure 4.4(a) gives the graph generated by comparing different cipher schemes. The
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Figure 4.2: Prototype of client UI

schemes we compared are Datagram TLS (DTLS), and TLS. The schemes were evaluated

using Pre-shared Keys (PSKs) and certificates. Likewise, Figure 4.4(b) shows how much

memory allocation size it takes to have the connection established. DTLS-PSK comes out

to be low, by order of millions. We can see that certificate generation takes more size.

Hence, choosing PSK for the resumption can be quite an excellent choice. Even better

results are obtained using Static PSK, if high security is not critical to the use case.

Figure 4.5 shows results for the connection and resumption time for the four different

schemes we compared in our experiments with our prototype middleware. Even though

using DTLS-certificate gives consistently low time spent, we see that DTLS-PSK is the

fastest scheme. DTLS can offer speed-up of over a few hundred times, regardless of cases

where there is a fresh handshake or resumed session. Hence, our results show how use-
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Figure 4.3: Prototype of server UI

ful Intermittent security in IoT systems can be, all the while without compromising the

security, by allowing flexibility in configuration.

4.2 Case II: Testing Optimal Scheme Decider

In Case I test, we established the usefulness of utilizing Session Resumption, as well as

having the option to choose from a few different security schemes. In Case II test, we

will be taking things further and allow the middleware to form clusters from almost 200

security schemes. To test the offline phase, we check (i) Validity of the clusters formed

using our method, (ii) The optimal cluster chosen, and (iii) whether limiting scope is a safe

and accurate way of choosing the optimal scheme, through visualization.

In the offline phase, we attempted forming clusters to narrow down the choices to a few

viable ones. Following the logic and analysis described in Chapter 3, the optimal clusters

were formed. For our statistical threshold, the within-cluster sum of squares ratio of at least

60% proves that the cluster formed is valid and successful. Figures 4.6, 4.7, and 4.8 show

the within-cluster sum of square ratio for the optimum cluster chosen in Group-A, B and C,

respectively. As can be observed, the ratios 61.1%, 69.4%, and 62.1% are generated, and
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(a) Number of memory allocations

(b) Memory allocated (in bytes)

Figure 4.4: Memory footprint for different encryption schemes

hence, the clusters are successful. This increases the certainty of optimal schemes being

made available to be sifted through in the online phase. The schemes in the chosen cluster

are shown in Figures 4.9, 4.10, and 4.11.

Figures 4.12, 4.13, and 4.14 show the selection of best cluster in each category, as

chosen by the decider’s offline phease. The figures show a plot of each of the clusters in

each group, after normalization of computation index. The computation index is nothing

but the benchmark metrics used for clustering and decision making. Each of the chosen

clusters have their advantages and disadvantages. These can be filtered in the online phase.
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Figure 4.5: Time for connection vs. resumption for different encryption schemes

Figure 4.6: Within-cluster sum of squares for Group-A

Figure 4.7: Within-cluster sum of squares for Group-B

Figure 4.8: Within-cluster sum of squares for Group-C
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Figure 4.9: Group-A Cluster

Figure 4.10: Group-B Cluster

To verify that clustering and choosing a narrow scope is still able to provide us an

optimal scheme, a visual representation through Dendrogram can be used. The dendrogram

portrays the relationship between various schemes in a group.

As can be observed in Figures 4.15 and 4.16, multiple schemes in each group have

siblings at the same level. This implies extreme similarities in the sibling schemes, and

not considerable performance benefit. This redundancy can be easily handled by randomly

picking one of the leaves and discarding the other scheme. Dendrogram for Group-C has

not been shown since due to small number of available schemes in the cluster.
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Figure 4.11: Group-C Cluster

Cluster 3 is chosen, 
due to collectively 
lowest bandwidth 
usage, lowest CPU 
usage, fastest 
connection speed, 
and data exchange 
speed

Figure 4.12: Chosen cluster in Group-A

And finally, the online phase requires collecting software requirements for the applica-

tion to be utilized. The current requirement collection can be done by making an API call

to

/api/gateway/:device_id endpoint. The application user may send the required

information using the parameter list to the gateway. The response from these queries help

form the metrics that are later used by the decider.

In our test case, we tested the decider by using random values as input requirements

to check the scheme chosen by the middleware. The results are shown in Figure 4.17. As

expected, for a low-security low-resource multimedia application, PSK-CHACHA20 com-

bination was found to be the optimal choice. In addition, we analyze the trade-off charac-
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Cluster 4 is chosen, 
due to collectively 
lowest bandwidth 
usage, lowest CPU 
usage, fastest 
connection speed, 
and data exchange 
speed

Figure 4.13: Chosen cluster in Group-B

Cluster 11 is chosen, 
due to collectively 
lowest bandwidth 
usage, lowest CPU 
usage, fastest 
connection speed, 
and data exchange 
speed

Figure 4.14: Chosen cluster in Group-C

teristics for various use-cases of IoT. A radar diagram in Figure 4.18 of the same portrays

the trade-offs made. As can be seen, this scheme was found to have plenty of memory

requirements and good re/connection speed, and not quite advance level of security.

Similarly, results from a second test are shown in Figure 4.19. The new requirement

47



Figure 4.15: Group-A Dendrogram

Figure 4.16: Group-B Dendrogram
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Figure 4.17: Chosen scheme for a low resource device for frequent disconnections

Figure 4.18: Radar representation of scheme DTLS-PSK-CHACHA20-POLY1305

priority being high security on a low-resource multimedia application, Epehemeral (DHE)

PSK-CHACHA20 combination was found to be the optimal choice. A radar diagram in

Figure 4.20 shows the security mapping of the same. In this case, security was found to be

the most important criteria, even if at the expense of re/connection speed. Hence, public key

cryptography scheme was chosen for key exchange, along with a highly reliable integrity

check MAC algorithm (POLY1305).

In many other test cases, we have observed the radar diagram to visualize the trade-offs.

This has also been used to analyze when session resumption is found useful, and when
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Figure 4.19: Chosen scheme for a low resource device for high security

Figure 4.20: Radar representation of scheme DTLS-DHE-PSK-CHACHA20-POLY1305

it is not. For instance, Figure 4.21 shows the specifications for a chosen scheme for an

application requiring high reconnection speed through session resumption, having lower

memory and security requirements. This application appears to be a good candidate for

‘lost-edge‘ IoT use-cases. Contrasting this application to a different application’s chosen

scheme trade-off specifications, as shown in Figure 4.22, we can observe that a very high

level of security can be obtained at expense of faster reconnection. Such application is a

good candidate for ‘smart-edge‘ IoT use-cases.
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Similarly, for another lost-edge IoT application, chosen scheme’s specifications are vi-

sualized in Figure 4.23. Very high reconnection speed appears to be a requirement, hence

speed over security. And finally, for a similar application without session resumption sup-

port, the chosen scheme specifications can be visualized in Figure 4.24. This application

must be another one of ‘smart-edge‘ IoT application, as an all-rounded security scheme is

needed, with a higher priority for security and initial connection speed.

Figure 4.21: Radar representation of scheme TLS-DHE-PSK-AES256-GCM-SHA384 w/
Session Resumption

Hence, we can see that using the optimal scheme decider we are able to determine the

optimal scheme for a given device in an IoT-based application, and support many different

kinds of IoT applicationsl
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Figure 4.22: Radar representation of scheme TLS-DHE-PSK-AES256-GCM-SHA384 w/o
Session Resumption

Figure 4.23: Radar representation of scheme TLS-PSK-AES256-CBC-SHA w/ Session Re-
sumption

52



Figure 4.24: Radar representation of scheme TLS-PSK-AES256-CBC-SHA w/o Session Re-
sumption
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Chapter 5

Future Work

The future work scope for this middleware is massive, and extension of this research can

span across multiple facets. Some of the natural extensions for this research can be in the

form of automating the process of collecting device parameter and software requirements,

and adding many other protocols, ciphers, and MAC to the offline process.

Another nifty feature that could be implemented in close future is dynamic switching

of security scheme (protocols in use), based on various factors, such as resources available,

data context, importance or confidential requirements of data, and so on.

In addition, there is an opportunity to explore ‘deferred security’. Deferred security

could allow: (a) an ex-member node transmit encrypted data to be decrypted at a later

time, using a buffer, (b) an ex-member node to back-off until a later point, until it has been

authenticated which in turn could allow the system to be more reliable, even in relatively

unreliable network.

Other future work could focus on trust management through device reputation. Using

the history of devices’ past security associations, a trust management framework could be

integrated with our middleware. Reputation for a device can be measured using the record

of how many times the devices has been disconnected and/or compromised by adversaries.
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With high reputation, devices can reconnect to the network with minimal security checks

whereas, if a device has a spotty reputation, the device will have to undergo comprehensive

security handshake process.

Another branch of work could be development of transient reputation scheme, that can

collect and use short-term knowledge about the connecting devices to build a short-lived

reputation. This would deprecate the need to maintain trust state in the network amongst

the IoT devices.

Among many other possible extensions, an excellent scope could be explored by having

the middleware adopt the concept of ‘Privilege De-escalation’ followed by re-establishment

of trust. What this involves is the gateway delegating trivial tasks to a new node to estab-

lish trust. If the node is able to build up trust by accomplishing multiple trivial tasks, its

privilege can get escalated and the gateway could decide to trust the node with more sensi-

tive and important data transfer. All of this is achieved without relying on long-term trust

framework.
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Chapter 6

Summary and concluding remarks

In this thesis, we developed an end-to-end IoT security middleware between devices at the

network edge and the core cloud side of an application system. Our middleware is based

on a novel security scheme, which provides flexibility for securing IoT-based application

data, along with offering quick re-connections to aid in situations of unreliable network

conditions within cloud-fog communication platforms.

Our results demonstrate the need for flexibility in choice of an IoT security scheme

based on resource constraints in computation, bandwidth, memory, network reliability, as

well as the application for which the IoT system is being designed. We show that when-

ever feasible and acceptable, the use of static properties such as Static PSK can notably

speed-up secure communications. Static PSKs in prior literature have not received much

attention, however they could be a useful tool for low-resource, moderate-security within

IoT systems.

Additionally, we have successfully shown an all-encompassing solution to IoT-based

application security requirements. A standardized version of this could result in seamless

end-to-end, robust, reliable, and secure connectivity between multiple networks, IoT or

otherwise. The middleware is able to provide security compatibility with existing core
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cloud network.

This middleware can have a number of use-cases. One of the biggest impact can be

considered in disaster response systems which utilize Cloud and Edge Fog architecture

involving edge IoT nodes and beacons, for instance in [2]. In general, any system that

requires the node data security to be flexible and dynamic, based on security association,

or data context, should be able to utilize this middleware. Key impact would be the speed

of secure communication, since the protocol does not enforce full security all the time, but

instead allows flexibility to decide. Time, and other critical resources can be saved in this

way. The benefit of being able to handle trade-off can prove extremely useful for a many

different kinds of IoT-based applications. Hence, many complementing use-cases can be

managed using our middleware without getting overwhelmed by protocols.
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