1,258 research outputs found

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    A review of physics-based models in prognostics: application to gears and bearings of rotating machinery

    Get PDF
    Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing, health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health condition monitoring. The main contribution of this article is the identification of potential physics-based models for prognostics in rotating machinery

    Health-aware model predictive control of wind turbines using fatigue prognosis

    Get PDF
    This is the peer reviewed version of the following article: Sánchez, H. E., Escobet, T., Puig, V., Fogh, P. Health-aware model predictive control of wind turbines using fatigue prognosis. "International journal of adaptive control and signal processing", 1 Abril 2018, vol. 32, núm. 4, p. 614-627, which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.2784. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsWind turbine components are subject to considerable fatigue because of extreme environmental conditions to which they are exposed, especially those located offshore. Wind turbine blades are under significant gravitational, inertial, and aerodynamic loads, which cause their fatigue and degradation during the wind turbine operational life. A fatigue problem is often present at the blade root because of the considerable bending moments applied to this zone. Interest in the integration of control with fatigue load minimization has increased in recent years. This paper investigates the fatigue assessment using a rainflow counting algorithm and the blade root moment information coming from the sensor available in a high-fidelity simulator of a utility-scale wind turbine. Then, the integration of the fatigue-based system health management module with control is proposed. This provides a mechanism for the wind turbine to operate safely and optimize the trade-off between components' life and energy production. In particular, this paper explores the integration of model predictive control with the fatigue-based prognosis approach to minimize the damage of wind turbine components (the blades). A control-oriented model of the fatigue based on the rainflow counting algorithm is proposed to obtain online information of the blades' accumulated damage that can be integrated with model predictive control. Then, the controller objective function is modified by adding an extra criterion that takes into account the accumulated damage. The scheme is implemented and tested in a well-known wind turbine benchmark.Peer Reviewe

    Prognostic-based Life Extension Methodology with Application to Power Generation Systems

    Get PDF
    Practicable life extension of engineering systems would be a remarkable application of prognostics. This research proposes a framework for prognostic-base life extension. This research investigates the use of prognostic data to mobilize the potential residual life. The obstacles in performing life extension include: lack of knowledge, lack of tools, lack of data, and lack of time. This research primarily considers using the acoustic emission (AE) technology for quick-response diagnostic. To be specific, an important feature of AE data was statistically modeled to provide quick, robust and intuitive diagnostic capability. The proposed model was successful to detect the out of control situation when the data of faulty bearing was applied. This research also highlights the importance of self-healing materials. One main component of the proposed life extension framework is the trend analysis module. This module analyzes the pattern of the time-ordered degradation measures. The trend analysis is helpful not only for early fault detection but also to track the improvement in the degradation rate. This research considered trend analysis methods for the prognostic parameters, degradation waveform and multivariate data. In this respect, graphical methods was found appropriate for trend detection of signal features. Hilbert Huang Transform was applied to analyze the trends in waveforms. For multivariate data, it was realized that PCA is able to indicate the trends in the data if accompanied by proper data processing. In addition, two algorithms are introduced to address non-monotonic trends. It seems, both algorithms have the potential to treat the non-monotonicity in degradation data. Although considerable research has been devoted to developing prognostics algorithms, rather less attention has been paid to post-prognostic issues such as maintenance decision making. A multi-objective optimization model is presented for a power generation unit. This model proves the ability of prognostic models to balance between power generation and life extension. In this research, the confronting objective functions were defined as maximizing profit and maximizing service life. The decision variables include the shaft speed and duration of maintenance actions. The results of the optimization models showed clearly that maximizing the service life requires lower shaft speed and longer maintenance time

    Prognostics and health aware model predictive control of wind turbines

    Get PDF
    Wind turbines components are subject to considerable stresses and fatigue due to extreme environmental conditions to which they are exposed, especially those located offshore. Also, the most common faults present in wind turbine components have been investigated for years by the research community and that has led to propose a fault diagnosis and fault tolerant control wind turbine benchmark which include a set of faults that affect the sensors and actuators of several wind turbine components. This thesis presents some contributions to the fields of fault diagnosis, fault-tolerant control, prognostics and its integration with wind turbine control which leads to proposing a control approach called health-aware model predictive control (HAMPC). The contributions are summarized below: - Model-based fault diagnosis: to perform fault detection and isolation interval-based observers together with a set of analytical redundant relations (ARRs) are obtained based on a structural analysis and the fault signature matrix that relates the ARRs with the faults. - Fault tolerant control: it is proposed a fault tolerant control scheme that integrates fault detection and an algorithm for fault accommodation. The scheme has the objective to avoid the increment of blades and tower loads when a fault in the rotor azimuth angle sensor occurs using the individual pitch control technique (IPC). - Wind turbine blades fatigue prognostics and degradation: fatigue is assessed using the rainflow counting algorithm which is used to estimate the accumulated damage and for degradation, it is used a stiffness degradation model of blades material which is used to make predictions of remaining useful life (RUL). - Wind turbines health control: the module for the health of the system based on fatigue damage estimation and RUL predictions is integrated with model predictive control (MPC) leading to the proposed control approach (HAMPC). The contributions presented in this thesis have been validated on a wind turbine study case that uses a 5MW wind turbine reference model implemented in a high fidelity wind turbine simulator (FAST).Els components dels aerogeneradors estan sotmesos a considerable estrès i fatiga, degut a les condicions ambientals extremes a les quals estan exposats, especialment els localitzats en alta mar. Per aquest motiu, al comunitat científica durant els últims anys ha investigat les averies més comunes presents en els aerogeneradors, fet que ha portat a proposar un cas d'estudi de diagnosi i control tolerant de fallades que inclou un conjunt de fallades que afecten a diversos components dels aerogeneradors. Aquesta tesi presenta algunes contribucions en els camps de la diagnosi de fallades, el control tolerant de fallades i la prognosi, així com la seva integració amb el control d'aerogeneradors, fet que ha portat a proposar una tècnica de control anomenada control predictiu basada en models conscients de la salut del sistema (HAMPC). Concretament les aportacions es poden resumir en: - Diagnosi de fallades basada en models: per a la detecció s'utilitzen observadors intervalars i l'aïllament de la fallada es fa en base el conjunt d'ARRs obtinguts de l'anàlisi estructural i de la matriu de signatures de fallades que relaciona les ARRs amb les fallades. - Control tolerant de fallades: es proposa un esquema de control tolerant a fallades que integra la detecció de fallades i algoritme d'acomodació de fallades, i té per objectiu evitar l'augment de càrregues en la pala i la torre quan es produeix una fallada en el sensor azimuth quan es fa un control individual de la inclinació de les pales (IPC). - Prognosi de la fatiga i la degradació de les pales: la fatiga s'avalua amb un algorisme denominat "rainflow counting" amb el qual es fa estimació del dany acumulat i per a la degradació es fa servir un model de degradació de la rigidesa del material amb el qual es fan prediccions de la vida útil restant (RUL). - Control de la salut d'aerogeneradors: s'ha integrat la gestió de la salut del sistema basat en danys per fatiga o prediccions de RUL amb control predictiu basat en models (MPC) donant lloc al control que anomenem HAMPC. Les contribucions presentades en aquesta tesi han sigut validades en un cas d'estudi d'aerogeneradors basat en un aerogenerador de referència de 5MW de potència implementat en el simulador d'aerogeneradors d'alta fidelitat conegut amb el nom de FAST.Postprint (published version

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    A Review of Predictive and Prescriptive Offshore Wind Farm Operation and Maintenance

    Get PDF
    Offshore wind farms are a rapidly developing source of clean, low-carbon energy and as they continue to grow in scale and capacity, so does the requirement for their efficient and optimised operation and maintenance. Historically, approaches to maintenance have been purely reactive. However, there is a movement in offshore wind, and wider industry in general, towards more proactive, condition-based maintenance approaches which rely on operational data-driven decision making. This paper reviews the current efforts in proactive maintenance strategies, both predictive and prescriptive, of which the latter is an evolution of the former. Both use operational data to determine whether a turbine component will fail in order to provide sufficient warning to carry out necessary maintenance. Prescriptive strategies also provide optimised maintenance actions, incorporating predictions into a wider maintenance plan to address predicted failure modes. Beginning with a summary of common techniques used across both strategies, this review moves on to discuss their respective applications in offshore wind operation and maintenance. This review concludes with suggested areas for future work, underlining the need for models which can be simply incorporated by site operators and integrate live data whilst handling uncertainties. A need for further focus on medium-term planning strategies is also highlighted along with consideration of the question of how to quantify the impact of a proactive maintenance strategy

    Using SCADA data for wind turbine condition monitoring - a review

    Get PDF
    The ever increasing size of wind turbines and the move to build them offshore have accelerated the need for optimised maintenance strategies in order to reduce operating costs. Predictive maintenance requires detailed information on the condition of turbines. Due to the high costs of dedicated condition monitoring systems based on mainly vibration measurements, the use of data from the turbine Supervisory Control And Data Acquisition (SCADA) system is appealing. This review discusses recent research using SCADA data for failure detection and condition monitoring, focussing on approaches which have already proved their ability to detect anomalies in data from real turbines. Approaches are categorised as (i) trending, (ii) clustering, (iii) normal behaviour modelling, (iv) damage modelling and (v) assessment of alarms and expert systems. Potential for future research on the use of SCADA data for advanced turbine condition monitoring is discussed
    • …
    corecore