4,813 research outputs found

    Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology

    Get PDF
    open4noIn this paper an overview of Vanadium Redox Flow Battery technologies, architectures, applications and power electronic interfaces is given. These systems show promising features for energy storage in smart grid applications, where the intermittent power produced by renewable sources must meet strict load requests and economical opportunities. This paper reviews the vanadium-based technology for redox flow batteries and highlights its strengths and weaknesses, outlining the research lines that aim at taking it to full commercial success.openSpagnuolo, Giovanni, Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni;Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni; Spagnuolo, Giovann

    Mathematical Modeling and Simulation in Mechanics and Dynamic Systems

    Get PDF
    The present book contains the 16 papers accepted and published in the Special Issue “Mathematical Modeling and Simulation in Mechanics and Dynamic Systems” of the MDPI “Mathematics” journal, which cover a wide range of topics connected to the theory and applications of Modeling and Simulation of Dynamic Systems in different field. These topics include, among others, methods to model and simulate mechanical system in real engineering. It is hopped that the book will find interest and be useful for those working in the area of Modeling and Simulation of the Dynamic Systems, as well as for those with the proper mathematical background and willing to become familiar with recent advances in Dynamic Systems, which has nowadays entered almost all sectors of human life and activity

    Real-time adaptive parameter estimation for a polymer electrolyte membrane fuel cell

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, we propose real-time adaptive parameter estimation methods for a polymer electrolyte membrane fuel cell (PEMFC) to facilitate the modeling and the subsequent control synthesis. Specifically, the electrochemical model of this fuel cell is in a nonlinearly parametric formulation. Hence, most of existing parameter estimation techniques for PEMFC mainly rely on the optimization approaches, requiring heavy computational costs or even offline implementation. In comparison to those methods, real-time adaptive parameter estimation methods for nonlinearly parametric system are developed in this paper. First, the nonlinearly parametric function is linearized by using the Taylor series expansion. Then, adaptive parameter estimation methods are proposed for estimating the constant or time-varying parameters of PEMFC. Different from the well-recognized adaptive parameter estimation methods, the proposed adaptive laws are driven by the extracted estimation errors, so that exponential convergence of the parameter estimation error can be guaranteed, without using any predictors or observers. Finally, practical experiments in a H-100 PEMFC system are conducted, which illustrate satisfactory performances of the presented parameter estimation methods under different operation scenariosPeer ReviewedPostprint (author's final draft

    Modeling and control of fuel cell-battery hybrid energy sources

    Get PDF
    Environmental, political, and availability concerns regarding fossil fuels in recent decades have garnered substantial research and development in the area of alternative energy systems. Among various alternative energy systems, fuel cells and batteries have attracted significant attention both in academia and industry considering their superior performances and numerous advantages. In this dissertation, the modeling and control of these two electrochemical sources as the main constituents of fuel cell-battery hybrid energy sources are studied with ultimate goals of improving their performance, reducing their development and operational costs and consequently, easing their widespread commercialization. More specifically, Paper I provides a comprehensive background and literature review about Li-ion battery and its Battery Management System (BMS). Furthermore, the development of an experimental BMS design testbench is introduced in this paper. Paper II discusses the design of a novel observer for Li-ion battery State of Charge (SOC) estimation, as one of the most important functionalities of BMSs. Paper III addresses the control-oriented modeling and analysis of open-cathode fuel cells in order to provide a comprehensive system-level understanding of their real-time operation and to establish a basis for control design. Finally, in Paper IV a feedback controller, combined with a novel output-injection observer, is designed and implemented for open-cathode fuel cell temperature control. It is shown that temperature control not only ensures the fuel cell temperature reference is properly maintained, but, along with an uncertainty estimator, can also be used to adaptively stabilize the output voltage --Abstract, page iv

    A Novel Type-2 Fuzzy Logic for Improved Risk Analysis of Proton Exchange Membrane Fuel Cells in Marine Power Systems Application

    Get PDF
    A marine energy system, which is fundamentally not paired with electric grids, should work for an extended period with high reliability. To put it in another way, by employing electrical utilities on a ship, the electrical power demand has been increasing in recent years. Besides, fuel cells in marine power generation may reduce the loss of energy and weight in long cables and provide a platform such that each piece of marine equipment is supplied with its own isolated wire connection. Hence, fuel cells can be promising power generation equipment in the marine industry. Besides, failure modes and effects analysis (FMEA) is widely accepted throughout the industry as a valuable tool for identifying, ranking, and mitigating risks. The FMEA process can help to design safe hydrogen fueling stations. In this paper, a robust FMEA has been developed to identify the potentially hazardous conditions of the marine propulsion system by considering a general type-2 fuzzy logic set. The general type-2 fuzzy system is decomposed of several interval type-2 fuzzy logic systems to reduce the inherent highly computational burden of the general type-2 fuzzy systems. Linguistic rules are directly incorporated into the fuzzy system. Finally, the results demonstrate the success and effectiveness of the proposed approach in computing the risk priority number as compared to state-of-the-art methods

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    Fuel Cell Renewable Hybrid Power Systems

    Get PDF
    Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it

    Developing Energy Harvest Efficient Strategies with Microbial Fuel Cells

    Get PDF
    Nowadays, thinking of energetic efficiency is to determine how to decrease consumption and to reuse resources. This is a major concern when addressing hydric resources. The consumption of drinking water is seeing an unaffordable growth and, although most of it is replenished to the environment, the water quality is affected by pollutants and impurities. As such, using wastewater, a by-product of our routine and way of life, as resource is an asset. Even more when thinking about the heightened energy costs of a wastewater treatment station. The hypotheses of this work show how to achieve this goal by using microbial fuel cells. The organic composition of this water increases its energy production potential, where the bacterial metabolism can be used to, simultaneously, produce energy and help to clean the water. This document is divided in 5 chapters. The strategic positioning of the theme happens in chapter 1. Chapter 2 explains how the main elements of microbial fuel cell technology can work and determine its operation. In chapter 3, the power management systems used with microbial fuel cells are presented and discussed, with the identification of optimization strategies. The second-to-last chapter corresponds to the experimental results discussion and validation, while focusing improved energy production efficiencies. The outputs of this chapter pilot the future work analysis on chapter 5, together with the main conclusions and research trends. The validity and usefulness of this work is cleared with an application example.Pensar em economia energética é, hoje, considerar soluções para a redução de consumo e reutilização de recursos. Esta preocupação é importante ao examinar a utilização dos recursos hídricos. O consumo de água potável está a crescer insustentavelmente e, apesar de grande parte desse consumo ser restituído ao meio ambiente, a qualidade da água é afetada por poluentes ou impurezas. A utilização de água residual, um produto da nossa rotina e qualidade de vida, como um recurso é, por isso, uma mais valia. É ainda mais evidente ao considerar os elevados consumos energéticos de uma estação de tratamento de água residual. As hipóteses abordadas neste trabalho mostram como é possível atingir este objetivo usando células microbianas de combustível. A composição orgânica desta água faz com que o seu potencial energético possa ser explorado, usando o metabolismo bacteriano para produzir energia e, simultaneamente, auxiliar na limpeza da água. Este documento está dividido em 5 capítulos. O posicionamento do tema ocorre no capítulo 1. O capítulo 2 observa os principais elementos da tecnologia das células microbianas de combustível, permitindo compreender o seu funcionamento e conhecer que variáveis afetam o seu funcionamento. No capítulo 3 são apresentadas as tipologias de abordagem à gestão energética para esta pilha bacteriológica, discutindo-se as vantagens e otimizações de cada sistema. O penúltimo capítulo corresponde à exploração de resultados experimentais e à validação de hipóteses, orientadas para a maior eficiência energética. Surgem assim recomendações que servirão para guiar os trabalhos futuros, discutidos no capítulo final. Este, o capítulo 5, conta ainda com a apresentação das principais conclusões e das tendências de pesquisa. O trabalho termina com um exemplo de aplicação que solidifica a validade e utilidade da aplicação desta tecnologia

    Predicting Performance Degradation of Fuel Cells in Backup Power Systems

    Get PDF

    Characterization of PEM Electrolyzer and PEM Fuel Cell Stacks Using Electrochemical Impedance Spectroscopy

    Get PDF
    In order to compete with currently available hydrogen production technologies, proton exchange membrane (PEM) water electrolysis must be cost effective and efficient. Characterization of the PEM electrolyzer stack can provide better understanding of the processes at the electrode level and losses during the operation to help improve its energy efficiency, important understanding to shape future research and the optimization of stack designs. PEM fuel cells have seen significant developments in recent years due to their capability as an efficient and environment friendly solution for energy conversion. Understanding the behavior of the PEM fuel cell stack at varying loads is vital for optimizing hybrid systems efficiency. Therefore, it is important to characterize all aspects of a fuel cell when it is running under realistic operating conditions. Electrochemical impedance spectroscopy (EIS) is the sophisticated method to study the PEM cell behavior due to its electrochemical nature. Characterizing PEM cell stacks using EIS technique has a major advantage of differentiating between contributions of each process towards the overall performance of PEM cell stacks. The contributions of ohmic, kinetic and mass transport losses can be differentiated using EIS studies. A 1.2 kW PEM fuel cell and 6 kW PEM electrolyzer were characterized using this technique. Fuel cell EIS testing was accomplished using a frequency response analyzer (FRA) and programmable electronic DC load over a frequency range from 20 kHz to 50 mHz. EIS studies of 6 kW PEM electrolyzer were carried using the FRA, modified linear DC power supply and custom build current transformer core. The experimental impedance data were analyzed using Nyquist and Bode plots for different types of losses. Electrolyzer modeling was also done based on thermodynamic principles. Stack parameters such as membrane conductivity, anode and cathode exchange current densities were extracted using Mathematica from experimental data obtained at various temperatures. Some aspects of hydrogen conditioning and compression are also addressed as a part of this study. A novel technique of hydrogen drying using thermoelectric coolers was developed and tested. Hydrogen compression using electrochemical cell was studied, mathematically modeled and compared with its counterpart mechanical compressor
    corecore