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ABSTRACT 

Environmental, political, and availability concerns regarding fossil fuels in recent 

decades have garnered substantial research and development in the area of alternative 

energy systems. Among various alternative energy systems, fuel cells and batteries have 

attracted significant attention both in academia and industry considering their superior 

performances and numerous advantages. In this dissertation, the modeling and control of 

these two electrochemical sources as the main constituents of fuel cell-battery hybrid 

energy sources are studied with ultimate goals of improving their performance, reducing 

their development and operational costs and consequently, easing their widespread 

commercialization. More specifically, Paper I provides a comprehensive background and 

literature review about Li-ion battery and its Battery Management System (BMS). 

Furthermore, the development of an experimental BMS design testbench is introduced in 

this paper. Paper II discusses the design of a novel observer for Li-ion battery State of 

Charge (SOC) estimation, as one of the most important functionalities of BMSs. Paper III 

addresses the control-oriented modeling and analysis of open-cathode fuel cells in order 

to provide a comprehensive system-level understanding of their real-time operation and 

to establish a basis for control design. Finally, in Paper IV a feedback controller, 

combined with a novel output-injection observer, is designed and implemented for open-

cathode fuel cell temperature control. It is shown that temperature control not only 

ensures the fuel cell temperature reference is properly maintained, but, along with an 

uncertainty estimator, can also be used to adaptively stabilize the output voltage.  
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SECTION 

1. INTRODUCTION 

In the past few decades, there has been an increasing interest towards the 

employment of clean and sustainable energy sources in various applications. Although 

traditional fossil fuels such as gasoline and diesel have enabled the majority of industrial 

and transportation advancements, they introduce numerous concerns considering the 

political and economic implications of dependence on oil import, the environmental 

impacts such as global warming, and their sustainability issues. Therefore, federal 

regulations in recent years have mandated companies to invest their resources towards 

research and development of alternative and renewable energy sources to substitute their 

traditional counterparts. Among different such technologies, fuel cells and batteries have 

received a special attention both in industry and academia. These electrochemical energy 

sources offer efficient and clean operation and can be used to overcome the drawbacks of 

the traditional sources. Furthermore, they are the enabling technology behind some of the 

technological advancements in the past decades such as consumer electronics, portable 

applications, and the integration of renewable energy sources to the existing power grids. 

Fuel cells and batteries are also used alongside each other in hybrid energy sources to 

complement their individual advantages. Therefore, aiming to improve the performance 

and reduce the development and operational costs of these energy sources, this 

dissertation addresses modeling and control of fuel cells and batteries. More specifically, 

Li-ion batteries and open-cathode Polymer Electrolyte Membrane (PEM) fuel cells are 

considered in this dissertation.  
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1.1. LI-ION BATTERIES 

Li-ion batteries are electrochemical energy storage devices that operate by 

converting the chemical energy of their material into electrical energy. They were first 

introduced in 1976 [1], and subsequently commercialized in cell phones and laptops by 

Sony Corporation in 1991 [2]. A typical Li-ion battery has three main domains: negative 

electrode, positive electrode, and separator. The most commonly-used material for the 

negative electrode is graphite, whereas the positive electrode is typically composed of a 

metal oxide such as Lithium Cobalt Oxide (LiCoO2), Lithium Iron Phosphate (LiFePO4), 

Lithium Manganese Oxide (LiMn2O4) or Lithium Nickel Manganese Cobalt Oxide 

(LiNiMnCoO2/NMC), depending on the application. Furthermore, filler and binder 

materials are also added to both electrodes for structural integrity. The separator between 

the electrodes acts as an electron insulator. The electrodes and separator assembly are 

immersed inside an electrolyte, which is usually a lithium salt in an organic solvent. 

During discharge, in an intercalation process, lithium ions in the active material of the 

negative electrode diffuse to the surface where they transfer from the solid-phase to 

electrolyte-phase. They then travel via the mechanism of diffusion and migration to the 

positive electrode where they react with the active material and insert inside it. During 

this process, electrons released in the negative electrode travel through the external 

circuit to generate a flow of current. The processes occurring in the positive and negative 

electrodes are reversed during charging. 

Li-ion batteries were first employed in portable consumer electronics; however, in 

recent years, they have become the mainstream energy storage solution in a majority of 

battery-powered applications. Specially, they are being extensively adopted in electrified 

transportation and stationary energy storage systems. Furthermore, they play an important 
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role in the integration of various renewable energy sources to existing power 

infrastructures. Li-ion batteries can also significantly improve the reliability and 

efficiency of the utility industry and reduce its operational and capital costs [3]. 

To ensure the safe and efficient performance of Li-ion batteries, they must be 

equipped with advanced management strategies. Typical functionalities of any Battery 

Management System (BMS) include measurement and monitoring, cell balancing, 

thermal and electrical protection, and state estimation. Paper I in this dissertation 

describes the development of an experimental Li-ion BMS research testbed. This testbed 

is intended to facilitate in-depth research on BMS design and implementation. In addition 

to a thorough literature review about Li-ion batteries and BMSs, various BMS 

subsystems are described and important practical considerations that need to be taken into 

account while designing an advanced BMS are introduced. Some of the capabilities of the 

research testbed are illustrated through experimental investigations. This paper not only 

provides a theoretical and practical review regarding Li-ion batteries and BMSs, it also 

sheds light on some of the current research problems in this field and proposes possible 

directions to overcome these challenges.  

Paper II, on the other hand, focuses on one of the most important functionalities 

of BMSs, i.e. to predict the operating scope of the battery, usually expressed in terms of 

State of Charge (SOC). Accurate information about battery SOC is crucial in other BMS 

functionalities such as state of health estimation, cell balancing, and battery energy 

management, and can potentially result in improved utilization. The main challenge in 

determining a battery’s SOC is the fact that SOC is not directly measurable, necessitating 

an estimation routine. In Paper II, an electrochemical model-based SOC estimation 
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methodology is proposed. More specifically, a modified reduced-order model based on 

the Single Particle (SP) approximation of the electrochemical model, suitable for the real-

time implementation of SOC estimation, is employed in this work. This model, while 

maintaining some of the physical insight about the battery operation, provides a basis for 

an output-injection observer design to estimate the SOC. Output model uncertainties, 

originating primarily from the electrolyte-phase potential difference approximation and 

encountered mainly at higher discharge rates, are handled by incorporating an adaptation 

algorithm in the observer. Therefore, the proposed method, while being suitable for 

online implementation, provides an electrochemical model-based solution for battery 

SOC estimation over a wide range of operation. System stability and the robustness of the 

estimates given measurement noise are proved analytically using Lyapunov stability. 

Finally, accurate performance of the proposed SOC estimation technique is illustrated 

using simulation data obtained from a full-order electrochemical model of a Lithium 

Manganese Oxide (LMO) battery. 

1.2. OPEN-CATHODE PEM FUEL CELLS 

Fuel cells are devices that convert their fuel’s chemical energy into electrical 

energy through electrochemical reactions. The produced electrical energy can be used to 

power different applications such as vehicles, electronic devices, household applications, 

and backup power sources in electric grids. Fuel cells have clean by-products (e.g., 

water); thus, they are nearly zero-emission energy devices. Also, due to the lack of 

moving parts, fuel cells are quiet energy sources and they produce higher energy density 

and efficiency, around 40% electric efficiency, than traditional engine/generator sets. As 

different types of fuel cells employ various conventional and alternative fuels such as 

hydrogen, ethanol, methanol, and natural gas, which can be generated from renewable 
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energy sources, the dependence on oil for mechanical and electrical energy production is 

further reduced. Finally, easy scalability and low maintenance costs make fuel cells very 

desirable energy sources. 

Among different fuel cell types [4], PEM Fuel Cells (PEMFCs) have higher 

efficiency and power density, longer cell and stack life, lower electrolyte corrosion, and 

lower noise levels. The main advantage of PEMFCs is their low operating temperature, 

making them a great power source for portable applications such as consumer electronics 

and hybrid electric vehicles. PEMFCs use a solid polymer electrolyte which is usually 

made from a fluorinated sulfonic acid polymer. This Teflon-like electrolyte is a proton 

conductor and an electron insulator. At the anode, with the help of a platinum-based 

catalyst and during an oxidation reaction, hydrogen molecules are broken into electrons 

and hydrogen protons. The hydrogen protons travel across the membrane to the cathode 

surface where they react with oxygen molecules and electrons passing from the anode to 

the cathode through the external load in a reduction reaction and produce water. In order 

to achieve typical power requirements, multiple PEMFCs need to be stacked together. In 

addition to the PEMFC stack, auxiliary components are also required for the PEMFC 

operation. A complete PEMFC system consists of a cathode subsystem for air/oxygen 

supply and an anode subsystem for hydrogen supply. 

Open-cathode PEMFCs differ from typical PEMFCs in that they have cathode 

channels exposed to atmosphere, whereas typical PEMFCs are usually operated with a 

closed-cathode structure. In closed-cathode PEMFCs, the air is supplied by a compressor 

at pressures from near ambient to approximately 6 atm. On the other hand, open-cathode 

PEMFCs are usually operated near atmospheric pressure with the air being supplied 
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either by convection or low-power fans. Higher pressures in closed-cathode PEMFCs 

require cathode pressure regulation in order to match the anode pressure [5]. However, in 

open-cathode PEMFC systems, due to near-atmospheric operating pressures, pressure 

regulation is not required. It should also be noted that although operating at higher 

pressures results in better performance and higher voltages, it induces considerable 

parasitic loads and cost (e.g., compressor, cooling system, humidification system). On the 

other hand, open-cathode fuel cells do not require humidification and are usually supplied 

with dry reactants. Their design and structure guarantee rapid humidification and ensure 

that enough water is kept in the membrane [6]. Therefore, open-cathode PEMFCs have 

proved popular due to their portability and reduced number of required Balance-Of-Plant 

(BOP) components; no compressors, supply or return manifolds, no cooling system 

components, such as pumps and radiators, and no humidifiers. 

Despite the increasing popularity of open-cathode PEMFCs in low to medium 

power applications, they have not received much attention in the fuel cell systems 

literature. Furthermore, due to the low-cost nature of open-cathode fuel cell applications, 

they are usually equipped with simple open-loop controllers that, in turn, result in 

reduced overall system efficiency. However, by implementing advanced control 

algorithms, increased durability, safe operation, and optimal performance can be 

achieved. Therefore, Paper III in this dissertation provides a framework for the system-

level understanding of performance and practical implementation of open-cathode fuel 

cells. More specifically, the performance characterization and modeling required for 

control design are studied in this paper. The effects of various phenomena including 

temperature, humidity, and hydrogen and air supply systems are analyzed by combining 
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past research with experimental investigations. Then, a set of nonlinear control-oriented 

models are developed for the entire open-cathode fuel cell system. The models are taken 

such that they capture important dynamics of individual system components, as well as 

their interactions. Furthermore, applicability to practical control design and ease of 

identification are other factors considered in the model development. All of the 

developed models are identified and validated experimentally. 

Paper IV in the dissertation is built upon the foundation provided in Paper III. In 

this paper, temperature and voltage control, two of the important control problems in 

open-cathode fuel cells, are investigated. Temperature has an important effect on fuel cell 

performance. Higher operating temperatures result in an increased fuel cell output 

voltage, larger voltage variations during purging, and even cathode catalyst layer drying 

in the case of extreme temperatures [7]. Therefore, a controller capable of dynamically 

maintaining the desired temperature, while considering model and process uncertainties, 

is required in order to ensure the fuel cell’s desired performance. Temperature control in 

open-cathode fuel cells is typically handled in an open-loop fashion by running the fans 

continuously at a constant speed [8], which induces undesirable auxiliary power 

consumption. At lower current demands where increased temperature is actually 

desirable, the fans can operate at lower speeds, thereby minimizing power consumption. 

However, a non-zero minimum fan speed is essential in order to guarantee the minimum 

air flow required to prevent oxygen starvation. In spite of the aforementioned advantages 

of operating open-cathode fuel cells at constant temperatures, a gradual voltage decrease 

over time is observed during this mode of operation. This phenomenon, along with the 

strong dependence of the fuel cell voltage on operating conditions, causes large voltage 
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uncertainties for any given current draw; thereby increasing the complexity and cost of 

the required power electronics circuitry. In this paper, a novel observer is augmented to a 

feedback temperature controller. The observer is capable of simultaneously estimating 

both the internal fuel cell temperature and the output voltage uncertainties. The observer 

stability is proved using Lyapunov stability and its effectiveness, as part of the control 

scheme, is shown experimentally. The proposed observer/controller set is robust against 

model uncertainties and ensures a fixed and predictable output fuel cell voltage as the 

operating conditions change. This feature can greatly simplify the design of open-cathode 

fuel cell systems and the power electronics to which they interface. 
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PAPER 

I. DEVELOPMENT OF AN EXPERIMENTAL TESTBED FOR RESEARCH 
IN LITHIUM-ION BATTERY MANAGEMENT SYSTEMS 

ABSTRACT 

Advanced electrochemical batteries are becoming an integral part of a wide range 

of applications from household and commercial to smart grid, transportation, and 

aerospace applications. Among different battery technologies, lithium-ion (Li-ion) 

batteries are growing more and more popular due to their high energy density, high 

galvanic potential, low self-discharge, low weight, and the fact that they have almost no 

memory effect. However, one of the main obstacles facing the widespread 

commercialization of Li-ion batteries is the design of reliable battery management 

systems (BMSs). An efficient BMS ensures electrical safety during operation, while 

increasing battery lifetime, capacity and thermal stability. Despite the need for extensive 

research in this field, the majority of research conducted on Li-ion battery packs and 

BMS are proprietary works conducted by manufacturers. The available literature, 

however, provides either general descriptions or detailed analysis of individual 

components of the battery system, and ignores addressing details of the overall system 

development. This paper addresses the development of an experimental research testbed 

for studying Li-ion batteries and their BMS design. The testbed can be configured in a 

variety of cell and pack architectures, allowing for a wide range of BMS monitoring, 

diagnostics, and control technologies to be tested and analyzed. General considerations 

that should be taken into account while designing Li-ion battery systems are reviewed 



11 

 

and different technologies and challenges commonly encountered in Li-ion battery 

systems are investigated. This testbed facilitates future development of more practical 

and improved BMS technologies with the aim of increasing the safety, reliability, and 

efficiency of existing Li-ion battery systems. Experimental results of initial tests 

performed on the system are used to demonstrate some of the capabilities of the 

developed research testbed. To the authors’ knowledge, this is the first work that 

addresses, at the same time, the practical battery system development issues along with 

the theoretical and technological challenges from cell to pack level. 
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1. INTRODUCTION 

A battery is an energy storage device that can convert the chemical energy of its 

material into electrical energy. Lithium-ion (Li-ion) batteries were first introduced in 

1976 [1], and subsequently commercialized in cell phones and laptops by the Sony 

Corporation in 1991 [2]. Li-ion batteries are usually composed of a carbon-made anode, a 

lithium ion conducting material electrolyte, and a cathode. There are a wide range of 

commercial cathode materials including LiCoO2 and LiFePO4, each of which has its own 

advantages and disadvantages. The chemical reactions occurring in a LiFePO4 battery 

during charge and discharge are 

 

 

charge

4 4discharge

charge

6discharge
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Anode : Li e 6C LiC

 

 
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   (1) 

 

Li-ion batteries were first employed in consumer electronics; however, at the 

onset of 21st century, due to their advantages such as high energy density, low weight, 

low self-discharge and long life, they began to dominate energy storage in other fields as 

well. Other recent applications of Li-ion batteries include electric and hybrid electric 

vehicles, alternative energy systems such as wind and solar energy, and stationary energy 

storage. According to a recent study by [3], Li-ion batteries have been the dominant 

battery technology in electric and hybrid electric vehicles for over thirty years. They are 

projected to continue this dominance in transportation and other sectors. Figure 1.1 shows 

the distribution of different energy storage technologies in electric and hybrid electric 

vehicles. 
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In order to gain an insight about battery characteristics and investigate its 

performance, different tests need to be performed. These tests can be categorized as 

characterization, lifetime, reliability, and abuse tolerance tests [4]. Galvanostatic 

intermittent titration technique (GITT) [5], potentiostatic intermittent titration technique 

(PITT) [5], cyclic voltammetry (CV) [6], and impedance spectroscopy [6] are some of the 

commonly used characterization tests. Although these tests provide very useful detailed 

information about batteries, they typically address individual battery cell characteristics 

and require advanced and expensive test apparatuses. In order to overcome these issues, a 

number of tests have been devised to characterize battery cells and packs for 

transportation applications. A summary of the main international battery test standards is 

given in [4,7]. Although these tests are mainly designed for transportation applications, a 

majority of them, such as capacity and hybrid pulse power characterization (HPPC) tests 

[8], can be used for other Li-ion battery applications as well. 

 

 

 

Figure 1.1. Distribution of different battery technologies in the transportation sector 
during the last 30 years [3]. 

 

 

Mathematical modeling is used for battery performance analysis and prediction, 

design optimization, and management system design. There are numerous works in the 
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literature on modeling Li-ion batteries. Doyle et al. [9] pioneered electrochemical battery 

modeling. These models predict the battery performance under different operating 

conditions and also provide insight into internal battery phenomena. Since Doyle et al.’s 

seminal work [9], different research groups have worked on model order reduction for 

these electrochemical models with the goal of easing the computational effort [10,11]. 

Although successful, the time-consuming parameter identification process is still a major 

drawback for these models. On the other hand, equivalent-circuit models, in spite of their 

limited prediction capability, have been employed extensively due to their efficient online 

implementation and low computational burden. One of the most commonly-used 

equivalent-circuit models is the improved Thevenin circuit model proposed by [12]. 

Furthermore, Hu et al. [13] introduced and compared 12 common battery models for 

online implementation. In addition to capturing battery dynamics sufficiently for different 

operating conditions, it is also very easy to identify equivalent-circuit model parameters. 

There are different methods to identify model parameters. Some of the aforementioned 

characterization tests such as HPPC can be used for this purpose. 

One of the crucial components of a Li-ion battery is its battery management 

system (BMS). The most trivial task of a BMS is gathering and monitoring information 

about the battery operating conditions, namely, voltage, current, and temperature. For 

high voltage and current applications, multiple battery cells need to be connected 

together, in series and/or parallel, in order to meet the application requirements. In 

multiple battery configurations, balancing the battery cells is another responsibility of the 

BMS. More importantly, the BMS should be able to maintain a safe and reliable 

operation for the battery by controlling its operating voltage, current, and temperature. 
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Finally, based on the battery measureable signals, and typically a battery model, the BMS 

needs to be able to estimate unmeasurable battery states such as state of charge (SOC) 

and state of health (SOH). In summary, BMS functionalities include measurement and 

monitoring, cell balancing, thermal and electrical protection, and state estimation. These 

functionalities are discussed in more detail below. 

Measurement is undoubtedly one of the most important responsibilities of a BMS. 

Accurate voltage, current and temperature measurements are needed from battery 

characterization tests to BMS design. There are strict requirements for the accuracy and 

resolution of voltage and current sensors for Li-ion BMSs. Lu et al. [14] reviewed some 

of voltage measurement methods currently implemented in BMSs. 

Battery packs comprised of numerous cells require special attention from BMSs. 

Due to manufacturing variances, even matching battery cells have different internal 

characteristics. These differences cause the cells to charge and discharge at unequal rates. 

For that reason, the voltage across an entire series string of cells does not necessarily 

have a proportional voltage across each individual cell in that string. For example, a 

battery charger that only monitors the pack voltage will not fully charge certain cells and 

will subject other cells to overcharging. These issues can decrease the pack cycle life, 

cause a large loss in pack capacity over time, and result in safety hazards. To counteract 

these issues, a technique called cell balancing or charge equalization can be employed. 

This technique is implemented in a variety of ways; however, the concept for each 

method is similar. A balancing circuit maintains a uniform charge level among different 

cells by either dissipating excess energy from fully charged cells or by moving that 

excess energy to cells that are not fully charged. 
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Li-ion batteries have a typical operating temperature range of −20 °C to 55 °C for 

discharge and 0 °C to 45 °C for charging [15]. Temperature distribution across a battery 

pack is affected by numerous factors such as environmental variations, the physical 

structure of the battery pack, and charge and discharge cycles. The physical structure of 

the battery pack can be optimized in the design stage to guarantee proper heat dissipation. 

At the design stage, high fidelity three-dimensional (3D) models [16] are usually 

employed to develop an optimal structure. On the other hand, the environment and the 

battery current profile act as disturbances to the temperature distribution inside the pack. 

Despite these factors, the temperature inside the battery pack, as well as individual cell 

temperatures, should be maintained in prescribed ranges in order to ensure safe and 

efficient battery operation. It is graphically demonstrated in [15] that temperatures that 

are too low and too high can result in safety hazards and/or battery performance 

degradation. Therefore, a proper thermal management system is of great importance. As 

mentioned earlier, the BMS is responsible for thermal management in Li-ion batteries to 

guarantee their safety, efficiency and prolonged life. 

One of the most important BMS functionalities for Li-ion batteries is protection 

against operating beyond safe voltage and current limits. Battery manufacturers specify 

low and high voltage and current limits for each battery chemistry. As described in [17], 

violating these limits can have a wide range of undesirable effects from minor damage to 

the complete destruction of a battery to fire and explosion. Therefore, in order to increase 

the battery lifetime and ensure a safe and reliable operation, individual voltage and 

current values should be monitored constantly during its operation. As soon as any 

battery limit is approached, the BMS should take a corrective action in order to protect 
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the battery. The BMS reaction to any of these phenomena can be in the form of 

interrupting the current or limiting it to a safe value. Recently, researchers are trying to 

develop more advanced BMSs that are capable of determining less conservative current 

and voltage thresholds [11]. These works focus on electrochemical battery models in 

order to develop algorithms to extract maximum energy while ensuring a safe operation. 

State estimation mainly involves SOC and SOH estimation. The estimation is 

needed because these states are not usually measurable. The definition of SOC is the ratio 

of available battery capacity to its fully charged capacity. State of Charge is an indication 

of how much longer the battery will be able to power the device. State of Health, on the 

other hand, does not have an agreed upon definition. It can be defined based on change of 

battery capacity, internal resistance, alternating current (AC) impedance, self-discharge 

rate, or power density [14]. However, SOH is mainly used to analyze battery status 

compared to a new battery. There is a vast body of literature on battery state estimation, 

especially SOC estimation. Lu et al. [14] provide a comprehensive overview of different 

SOC estimation algorithms including their advantages and disadvantages, application, 

and corresponding estimation error. It should, however, be noted that the majority of 

these methods are designed for a single battery cell rather than a pack, and issues 

regarding battery pack SOC and SOH estimation have not received much attention in the 

literature. The developed testbed will be employed to investigate different practical SOC 

and SOH estimation methods with a special focus on battery packs. 

In this paper, the development of an experimental Li-ion research testbed is 

described. This testbed is intended to facilitate in-depth research on BMS design and 

implementation. Important considerations that need to be taken into account while 
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designing an advanced BMS are introduced; furthermore, various BMS subsystems are 

described. The experimental testbed provides three separate research platforms to test and 

study BMS technologies. The first platform focuses on cell level characterization, 

modeling, and protection system design. The second platform is specifically intended to 

address cell balancing by comparing currently available algorithms and developing 

optimal cell balancing strategies. The last research platform will address battery pack 

challenges and issues such as thermal management, individual and pack SOC estimation, 

and finally, protection system design for the entire battery pack. The test results will 

enable the development and improvement of novel BMS technologies with the goal of 

achieving safe, reliable, and efficient Li-ion battery systems. Some of the capabilities of 

the research testbed are illustrated through experimental results. The main contribution of 

this work is its focus on studying the technologies and challenges of entire Li-ion battery 

systems. These challenges are introduced during the description of the experimental 

testbed development. This paper not only addresses technical problems regarding Li-ion 

batteries and BMSs, it also sheds light on practical considerations in battery system 

development. To the authors’ knowledge, this paper is the first work that addresses 

practical system development in parallel with theoretical and technological challenges in 

this field from cell to pack level. 
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2. EXPERIMENTAL LI-ION BATTERY RESEARCH TESTBED 

In this section, some of the general design considerations during battery system 

development are discussed. These considerations include the requirements for protection 

circuitry, sensors, processing and data acquisition system, and BMS complexity. 

Furthermore, individual system components that are chosen based on these 

considerations are introduced and discussed. 

Protection circuitry includes all the circuits and devices that are used to protect 

the battery from undesirable scenarios such as over/under voltage, current, and 

temperature. A typical response to such a scenario is current interruption. Current 

interruption is usually achieved by using fuses and relays or contactors. Fuses are used to 

autonomously interrupt the current once it maintains a certain level for a certain amount 

of time. The most important parameters in choosing a fuse for a specific battery 

application are the voltage rating, current rating and opening time. The relationship 

between the opening time and current is usually provided by the manufacturer in the form 

of a graph. Relays or contactors are other means of interrupting the current by an external 

command. Contact voltage and current ratings and coil voltage and current ratings are 

among the important parameters to consider when selecting a relay. The majority of high 

power relays and contactors require a drive or an amplifier in order to open/close using 

digital output signals. Another form of protection can be achieved by limiting the battery 

current to a set value. Current limiting is usually performed by commanding the battery 

load controller to facilitate drawing a lower current. 

Accurate, reliable, and cost-effective sensing is undoubtedly one of the most 

important requirements of any battery system. In addition to being used in signal 
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monitoring, voltage, current, and temperature measurements in batteries are used in 

battery protection, cell balancing, and state estimation. In addition to the sensor’s 

sensitivity and accuracy, its robustness to changes in the ambient conditions is also very 

important. Considering the great importance of voltage measurement in different BMS 

functionalities, a voltage measurement technique with a precision of approximately a few 

millivolts is desirable for most applications [14]. Furthermore, in bigger battery packs, a 

large number of battery cells necessitate the use of numerous voltage sensors, which in 

turn induces noise susceptibility and common mode rejection issues. Li [18] summarized 

different voltage measurement technologies. Current measurement, on the other hand, is 

mainly performed in three ways, namely, shunts with and without galvanic isolation, 

open-loop Hall effect sensors, and closed-loop Hall effect sensors. In addition to the 

aforementioned factors, there are many application-specific factors such as linearity, 

hysteresis, current range, output signal range, gain stability with respect to temperature 

variations, etc., which affect the choice of current sensors [19]. As the number of current 

sensors required in a typical battery system is considerably smaller than the number of 

voltage sensors, there are less strict cost limitations on selecting current sensors. There 

are not many studies on the choice of temperature sensors for Li-ion battery systems. 

Temperature measurements are typically used for monitoring and protection of individual 

cells and/or the entire pack. Therefore, sensor sensitivity and range are among the most 

important factors when selecting a temperature sensor for battery systems. It is worth 

mentioning that there is not a best choice in selecting the sensors for Li-ion battery 

systems. Sensor selection should be done based on BMS requirements, system scale, and 
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cost considerations. In summary, sensitivity, output type and level, and robustness are the 

most important criteria when selecting sensors for Li-ion batteries. 

In large scale Li-ion battery systems, electronic control units (ECUs) or 

microcontrollers may be used for data acquisition, processing, storage, and 

communication with sensors and also outside systems. Restrictions on data acquisition 

and processing include sampling rate and resolution, clock frequency and processing 

power. The data storage capacity depends primarily on the BMS architecture and system 

requirements. For example, advanced BMS technologies that use electrochemical models 

for battery management require an extensive amount of storage memory. As mentioned 

earlier, the BMS needs to communicate with lower-level sensors to acquire the 

measurements and also coordinate with higher-level outside systems. The main 

communication protocol used in Li-ion BMSs is controller area network (CAN). This 

protocol, which was originally introduced in 1986 by Bosch for the automotive industry 

[20], has recently gained widespread acceptance in a large number of applications. 

While the specific methods may be different for different battery chemistries [21], 

some of the BMS functionalities such as protection, cell balancing, and state estimation 

are common to different Li-ion battery systems. However, as mentioned earlier, one of 

the main obstacles facing Li-ion batteries is their cost. Depending on the cost limitations 

and system requirements, some other tasks might be required from BMSs, or some of the 

aforementioned functionalities might be performed using more advanced techniques. 

Active cell balancing and thermal management versus passive methods and advanced 

SOC and SOH estimation algorithms versus traditional algorithms are some of the BMS 

responsibilities that are usually more costly. These methods require large processing 
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power and storage capabilities. They might also need more expensive equipment during 

implementation. 

The battery cells chosen for the experimental testbed presented in this paper are 

20 Ah, LiMnPO4 prismatic cells manufactured by GBS (Zhejiang, China). These 

prismatic cells offer high energy density, safety, and improved cycle life. They are also 

easier to assemble in battery packs compared to pouch cells. Some of the important 

specifications of the LiMnPO4 battery cells, provided by the manufacturer, are 

summarized in Table 2.1. 

 

 

Table 2.1. LiMnPO4 battery cell specification [22]. 

Specification Value Unit 

Nominal capacity 20 Ah 
Single cell charging voltage limit 3.8 V 

Single cell discharging voltage limit 2.5 V 
Maximum continuous discharge current 3C A 

Maximum impulse discharge current 10C A 
Maximum charging current 3C A 
Standard charging current 0.3C–0.8C A 

Best charging current 0.5C A 
Single cell cycle life at 80% depth of discharge 

(DOD) 
≥1500 

times 

Charging temperature >0 °C 
Discharging temperature −20 to 65 °C 

Self-discharge rate ≤3 % 
Energy density 85–100 Wh/kg 
Power density >800 W/kg 

 

 

Two types of controllers (processers) are implemented in the experimental 

system. The first unit is a PXI chassis from National Instruments (Austin, TX, USA). An 

NI-PXI-6229 multifunction card with 32 analog input channels with 16 bit resolution and 
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a 250 kS/s sampling rate, four analog output channels with 16 bit resolution and a 833 

kS/s update rate, and 48 digital I/O channels is utilized inside the PXI chassis. National 

Instrument’s LabVIEW is used as the computer interface. The reason for the inclusion of 

this controller is its reliability, high resolution for accurate measurements, high 

processing power for computationally challenging algorithms and data storage capacity 

for lengthy Li-ion characterization tests. In addition to the PXI chassis, an Arduino Mega 

microcontroller (SmartProjects, Strambiro, Italy), which is a board based on the 

ATmega1280, is also utilized. The Arduino has 16 analog inputs with 10 bit resolution 

that can be sampled at 10 kS/s and 54 digital I/O (14 of which can be used as PWM 

outputs). Despite the lower computational and storage capabilities of the Arduino Mega 

microcontroller, as compared to the NI system, it is very suitable for on-board and real-

time applications due to its low cost. Considering BMS cost requirements, 

microcontrollers would be the ideal choice for most of the cases. Therefore, the Arduino 

microcontroller is included in the experimental system to facilitate research on the real 

world computational, storage, and communication issues facing BMS applications. It 

should be noted that PXI Chassis and Arduino microcontroller will be used individually, 

in order to handle BMS implementation from research and real-world points of view, 

respectively. 

The voltage sensor used for individual cell and pack voltage measurements is a 

Phidgets precision voltage sensor (Phidgets Inc., Calgary, AB, Canada). It provides 

voltage measurements in the range of −30 V to 30 V with ±0.7% typical measurement 

error. The senor output is a voltage between 0 V and 5 V. Two types of current sensors 

are used in the experimental testbed. The first type, which is based on an ACS714 Hall 
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effect-based linear current sensor from Allegro (Allegro MicroSystems, LLC, Worcester, 

MA, USA), is able to measure bidirectional DC currents up to 30 A with a sensitivity of 

66 mV/A. It will be used to monitor current flows in cell balancing circuitry. The other 

current sensor which is used for the pack current measurements is based on Allegro’s 

ACS758 Hall effect-based current sensor IC. It is capable of measuring bidirectional 

currents up to 100 A with a sensitivity of 20 mV/A. Finally, temperature measurements 

across the battery cells and pack are acquired using LM35 precision centigrade 

temperature sensors from Texas Instruments (Dallas, TX, USA). They have a linear scale 

factor of 10 mV/°C and are rated for −55 °C to 150 °C. 

The desired maximum current for the overall system is 100 A. Therefore, the 

protection circuitry which comprises of a fuse and a contactor is chosen accordingly. The 

selected fuse is a 40 A bolt-down fuse from Littlefuse (Chicago, IL, USA) which is rated 

for 32 VDC and interrupting current of 2000 A at 32 VDC. Figure 2.1 shows the opening 

time versus current value for a family of this fuse. As can be seen from this figure, it 

takes about 5 s at a current value of 100 A for the fuse to open. 

The protection unit has a 600 VDC, 100 A hermetically sealed DC contactor. Its 

coil is rated for 9–32 VDC and a maximum pickup current of 1–5 A at 20 °C. A 

MOSFET amplifier is designed in order to drive the contactor with the digital output 

from the controller. 

Finally, a programmable power supply and electronic DC load pair from BK 

Precision (Yorba Linda, CA, USA) is used in order to charge and discharge the battery. 

The programmable power supply (model number XlLN6024) is capable of delivering 

1.44 kW power in constant current and voltage modes. The model 8514 programmable 
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DC load can absorb a maximum power of 1.2 kW in constant current, voltage, resistor, 

and power modes. Communication with the DC load and power supply is established 

through serial ports using NI LabVIEW. 

 

 

 

Figure 2.1. Characteristic curve for a 32 V rated Mega fuses from Littlefuse. 
 

 

The experimental Li-ion research testbed is designed to operate in three 

configurations in order to cover a wide variety of research areas in Li-ion battery 

systems. The first configuration is a single cell research platform. The focus of this 

platform, which is shown in Figure 2.2, is to perform different tests on individual battery 

cells. These tests target electrical and thermal characterization and modeling of the 

individual cells and the analysis of discrepancies between seemingly identical cells. 

Efficient thermal and electrical protection unit architectures can also be studied. Finally, 
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high power performance and modeling analysis for battery cells can be addressed using 

this platform. 

 

 

Figure 2.2. Single cell research platform with its schematic diagram. 
 

 

The second platform addresses cell balancing during battery operation. Cell 

balancing is undoubtedly the most significant during charging as any imbalance among 

cells can result in overvoltage and, therefore, safety hazards. In order to study this 

important functionality, the second platform consists of three battery cells in series with 

each other. In addition to individual voltage sensors for cells, they are also equipped with 

individual current sensors to facilitate examining their current and, therefore, capacity 

evolution during different cell balancing strategies. This configuration is depicted in 

Figure 2.3. 

The last platform is a complete eight cell battery pack with voltage and 

temperature sensors for each cell and a pack current and voltage sensor. This platform is 

devised to address issues encountered in battery packs such as battery pack modeling and 

state estimation, temperature distribution and thermal management, a cell balancing 

strategy addressing both charging and discharging, and efficient electrical protection of 

the battery packs. Figure 2.4 shows the battery pack setup with its corresponding 

schematic diagram. 
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In the following sections, different BMS functionalities are discussed in more 

detail. Considerations that should be taken into account in designing each subsystem and 

future improvements that can be integrated in BMS technologies are introduced. Some 

initial characterization test results are also reported. 

 

 

Figure 2.3. Cell balancing research platform with its schematic diagram. 
 

 

 

 

Figure 2.4. Battery pack research platform with its schematic diagram. 
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3. EXPERIMENTAL BATTERY CHARACTERIZATION AND MODELING 

Battery characterization, for both cells and packs, is the initial stage in any battery 

system development. It aims to validate the battery parameters given in the manufacturer 

datasheet and identify those not provided by the manufacturer. Furthermore, it provides 

additional information that might be required by the BMS. This additional information 

includes electrochemical battery parameters, charge and discharge capabilities, 

temperature distribution, etc. Some of the battery characterization procedures such as 

GITT, PITT, impedance spectroscopy, and CV provide internal information about battery 

performance and structure. These tests require advanced testing equipment and are 

usually conducted by electrochemists. On the other hand, characterization tests such as 

the ones proposed by the Partnership for a New Generation of Vehicles or FreedomCAR 

[8] mainly deal with external battery performance. These tests typically make use of 

voltage, current, and temperature sensor measurements. Both types of characterization 

tests can provide the means of identifying different battery model parameters. An 

overview of different battery models and their applications will follow the 

characterization subsection. Temperature distribution along the cells and the pack and 

also the temperature effect on battery performance is not included in this paper and will 

be studied in the future work. 

3.1. CHARACTERIZATION 

The characterization tests that will be run on individual battery cells are chosen 

among the enhanced tests proposed in [4]. It should, however, be noted that charge and 

discharge current magnitudes for these tests are modified due to limitations on the power 

supply and electronic load ratings. These tests cover the majority of general 
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characterization experiments required for battery system development. The 

characterization tests are initialized with a charge/discharge cycle of 0.5C, which 

corresponds to 10 A. Figures 3.1 and 3.2 show the evolution of battery signals during this 

charge/discharge, respectively. 

Battery charging is performed in constant current constant voltage (CCCV) 

regime. This is a common battery charging scenario in which a constant current is applied 

to the battery until its voltage reaches a specified upper limit (in this case 3.8 V). At this 

voltage limit, the battery will be kept at a constant voltage until its current decays to zero. 

Charge and discharge profiles are terminated according to upper/lower voltage limits 

prescribed by the manufacturer. As can be seen in Figures 3.1 and 3.2, despite the fact 

that the cells have a 20 Ah capacity, this nominal capacity cannot be achieved during 

charge/discharge. The reason for this can be attributed to either inaccurate upper/lower 

voltage limits in the protection subsystem or incorrect battery nominal capacity. These 

results magnify the need for characterization tests before any battery system 

development. Determination of exact battery capacity will be studied in the next 

subsection. On the other hand, choosing appropriate protection limits for the battery is 

discussed in the protection system subsection. The rest of the characterization tests are 

described below. 
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Figure 3.1. Battery charge profile. 
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Figure 3.2. Battery discharge profile. 
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3.1.1. Static Capacity Test.  The static capacity test is performed at three discharge 

rates of 0.5C, 1C, and 2C. Charging, on the other hand, is performed at rates of 0.5C, 1C, 

and 1C. Charging rate is always kept below or equal to 1C in order to ensure safe 

charging. After each (dis)charge, the cell is allowed to rest for approximately half an 

hour. Figures 3.3 and 3.4 illustrate battery voltage, current, SOC, and capacity evolution 

during these three discharge tests. 
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Figure 3.3. Voltage and current evolution during discharge tests for static capacity 
determination. 
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Figure 3.4. State of charge (SOC) and capacity evolution during discharge tests for static 
capacity determination. 

 

 

It can be seen from Figures 3.3 and 3.4 that battery capacity is dependent on 

discharge current rate. The same holds true for charging current. Table 3.1 includes 

battery capacity values for different charge and discharge current rates. 

 

 

Table 3.1. Battery capacity values. 

Current (A) 
Battery capacity (Ah) 

Discharge Charge 

10 18.35 18.67 
20 18.23 18.95 
40 16.21 - 
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Battery capacity tests are not performed with 40 A charging current and that is the 

reason, the corresponding capacity is not reported in Table 3.1. Battery capacity change 

due to its current rate is usually characterized by Peukert’s Law, which is an empirical 

relationship [23] 

 

  tC I t
     (2) 

 

where ∆C is the battery capacity change (Ah); It is battery terminal current (A); γ is the 

Peukert constant, which is usually between 1.05 and 1.3; and t is the corresponding 

charge/discharge time (h). Battery capacity change due to its current rate is usually 

ignored in BMS design which might introduce errors. This effect will be considered in 

the BMS design for the experimental testbed. 

3.1.2. HPPC Test. The HPPC test is a commonly used test profile, comprising 

charge and discharge pulses, that is used to determine the battery’s dynamic power 

capabilities during its operation. Its main objective is to determine, according to some 

pre-defined requirements, the maximum and minimum battery voltage levels, as a 

function of depth of discharge (DOD), after charge and discharge pulses, respectively. 

These requirements are usually based on goals established for the FreedomCAR energy 

storage development program by the Idaho National Engineering and Environmental 

Laboratory (INEEL, Idaho Falls, ID, USA) [8]. The HPPC test can also be used to derive 

battery equivalent-circuit model parameters. These parameters are used in simulating 

battery behavior as well as determining battery status in its life cycle tests. The HPPC test 

profile is shown in Figure 3.5. 
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Figure 3.5. Hybrid pulse power characterization (HPPC) test profile [8]. 
 

 

The current values shown in Figure 3.5 are relative and their actual values are 

determined based on the rated maximum current scaled to two different values: in the low 

current HPPC test, the pulse discharge current is 25% of the absolute maximum pulse 

discharge current specified by the manufacturer for 10 s. However, if the manufacturer 

does not specify the maximum pulse current, the maximum pulse current will be taken as 

the 5C rate. In the high current HPPC test, the pulse discharge current is taken as 75% of 

the maximum pulse current. As mentioned earlier, due to power supply and electronic 

load constraints in the experimental system, the current values for the HPPC experiments 

are taken as: 20 A continuous discharge current, 40 A pulse discharge current, 16 A 

continuous charge current, and 20 A pulse charge current. 

Overall, the HPPC procedure is comprised of nine repetitions of the profile shown 

in Figure 3.5, separated by a 10% DOD constant current discharges at a 1C rate. The 
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constant current discharge is followed by an hour rest period. The rest period is intended 

to let the battery reach thermal and electrochemical equilibrium. This procedure is 

continued until 90% DOD is achieved, after which another 1C rate discharge is 

performed until the battery reaches 100% DOD. Figure 3.6 shows a complete HPPC test 

sequence. 

 

 

0 2 4 6 8 10 12
-20

-10

0

10

20

30

40

C
u

rr
e

n
t 

(A
)

Time (h)

Discharge

Charge

 

Figure 3.6. Complete HPPC test sequence. 
 

 

The time evolution of battery voltage and SOC during the HPPC profile is shown 

in Figure 3.7. 

The HPPC test on the experimental testbed is interrupted at 90% DOD in order to 

ensure battery safety. Analysis details of HPPC test results can be found in Section 4 of 

FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles [8]. 
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Figure 3.7. Battery voltage and SOC evolution during HPPC profile. 
 

 

3.1.3. Open-Circuit Voltage Test. Open-circuit voltage tests are comprised of nine 

repetitions of constant current, fixed discharge intervals. As an example, starting with a 

fully charged battery, it is discharged with a current of 0.5C until it reaches 90% SOC. 

After a rest period of about half an hour, the battery is discharged again with the same 

current until it reaches 80% SOC. A similar rest period is then included. These discharge-

rest sequences are repeated until the battery SOC reaches 10%. Figure 3.8 shows the first 

open-circuit voltage test that starts from SOC = 100%. 
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Figure 3.8. First step in open-circuit voltage tests. 
 

 

Open-circuit voltage tests are mainly used to determine the exact relationship 

between battery SOC and open-circuit voltage. The rest periods in these tests are included 

in order to allow the battery terminal voltage to reach its equilibrium point so that it can 

be considered as the battery open-circuit voltage.  

The test results can also be used to identify model parameters such as internal 

resistance and resistor-capacitor (RC) networks values [24]. Figure 3.9 demonstrates 

battery open-circuit voltage and internal resistance as a function SOC based on the results 

of open-circuit tests. The open-circuit voltage values are obtained from the steady-state 

battery voltage measurements. Battery internal resistance, on the other hand, can be 

calculated by dividing the voltage difference right before and after current interruption by 
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the current. In other words, if the voltage increase in Figure 3.8 at the instance of current 

interruption is ∆V, the internal resistance at SOC = 90% would be ∆V/10. 
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Figure 3.9. Battery open-circuit voltage and internal resistance versus SOC. 
 

 

3.2. MODELING 

There are numerous works in the literature on Li-ion battery modeling. The 

complexity and structure of the battery model greatly depend on the application 

requirements. High fidelity electrochemical models describing the performance of Li-ion 

batteries were first introduced by Doyle et al. [9]. These models have been used 

extensively for battery design and performance analysis. On the other hand, for real-time 

applications such as BMSs in which there are strict limitations on cost and processing 

power, equivalent-circuit models have been proposed. In these types of models, electrical 

circuit elements are used to describe the behavior of the Li-ion battery. Although these 
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models do not have a high prediction capability, they require very low computational 

power. Hence, they are widely used in model-based BMS applications. Hu et al. [13] 

presented an overview of twelve commonly used equivalent-circuit battery models. 

According to model complexity, accuracy and robustness, these twelve models have been 

evaluated. The authors concluded that first-order RC model with one-state hysteresis, 

proposed by [25], provides the best voltage prediction. The schematic of this model is 

shown in Figure 3.10. 

 

 

 

Figure 3.10. First-order resistor-capacitor (RC) model with one-state hysteresis [25]. 
 

 

Differential equations describing the dynamics of the model illustrated in Figure 

3.10 are 
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where Cnom is the nominal battery capacity (F); and z(t) is the SOC (%). The first 

equation in Eq. (3) is obtained from the definition of SOC, the second equation is from 

Kirchhoff’s current law, and the last equation is proposed in [25] to take battery’s 

hysteresis effects into consideration. In the last equation, the term SD denotes the battery 

self-discharge rate which is considered to be a function of temperature and battery SOC 

 

    ,
0 exp A S

D
g

E
S t k z t

R T

 
   

 
   (4) 

 

where T is battery temperature (K); and the parameters β, ηIt, ε, Vh,max, k0, EA,S, and Rg are 

constants to be identified. The battery output voltage can also be written as 

 

      t OC h s tV V t V t R I t      (5) 

 

One other commonly-used battery model is the equivalent-circuit model 

introduced in [12]. Figure 3.11 shows a schematic of this model. This model has been 

extensively used in various BMS subsystem designs including the SOC estimation 

subsystem [24,26]. 

 

 

 

Figure 3.11. Equivalent circuit battery model [12]. 
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Using the SOC definition and Kirchhoff’s current law for the model in Figure 3.11, the 

set of first-order differential equations describing the battery dynamics is 
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   (6) 

 

Furthermore, using Kirchhoff’s voltage law, the output battery voltage is 

 

         t OC TS TL s tV V z t V t V t R I t       (7) 

 

These two models will be used in the BMS design for the experimental research 

testbed. Different algorithms have been proposed to identify the model parameters of the 

above models. A majority of the identification procedures employ HPPC data in order to 

identify the model parameters. Details of model identification process can be found in 

[13,24,27]. 

It is also worth mentioning that despite the high computational cost of 

electrochemical models, a number of research groups have focused their attention on 

employing these models in BMS design, due to the models’ high accuracy and prediction 

capability. One of the first efforts in this area was described in Santhanagopalan et al. 

[28]. They introduced the single particle approximation of the full order electrochemical 

models and used it for SOC estimation. Domenico et al. [29] and Moura et al. [30] used 

this single particle model for SOC estimation. Smith et al. [10] and Chaturvedi et al. [11] 
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employed model order reduction techniques to facilitate on-line implementation of 

electrochemical models in BMSs. 
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4. CELL BALANCING 

Cell balancing is a technique used to establish uniformity among cells in a battery 

pack. Internal differences among battery cells, despite similar specifications and type, are 

inevitable. The imbalance among battery cells can arise from differences in voltage, 

SOC, capacity, internal resistance, self-discharge and their change rate [14]. An efficient 

balancing algorithm can be employed by the BMS to make use of the available battery 

pack capacity. Lack of proper cell balancing might results in under/over voltage of some 

battery cells in the pack which, in turn, can have undesirable effects ranging from battery 

life degradation to safety hazards. Cell balancing can be performed based on the voltage 

and remaining capacity (SOC). Due to the immaturity of SOC estimation techniques for 

individual battery cells and battery packs, cell balancing based on voltage uniformity is 

more feasible and common. 

Cell balancing techniques can be divided into passive and active. In passive cell 

balancing, the existing excess energy or capacity among cells is wasted in a passive 

circuit element such as a resistor. Passive cell balancing is easy to implement and does 

not introduce large costs. Active cell balancing, on the other hand, employs active circuit 

elements such as capacitors and switches to shuttle charge between the unbalanced cells. 

Although active cell balancing is more efficient, it introduces complexity, unreliability, 

and difficulty in implementation. Current active cell balancing techniques include 

switched capacitor, double-tiered switched capacitor, single-switched capacitor, step 

up/boost converter module, and multi-winding transformers [31–34]. Some of the most 

common cell balancing techniques with their corresponding advantages and drawbacks 

are summarized below. 
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4.1. RESISTIVE SHUNTING 

This method of cell balancing, shown in Figure 4.1, is simple and effective. It is a 

passive method because it dissipates excess energy into heat. The system works by 

monitoring each cell’s voltage and comparing them to one another. If a cell’s voltage 

becomes higher than the voltages of other cells, a shunt resistor is connected across that 

cell using a transistor or a relay. The resistor turns the excess energy from that cell into 

heat until a balanced voltage is achieved among different cells. 

 

 

 

Figure 4.1. Resistive shunting configuration. 
 

 

Resistive shunting is usually performed in two methods. In the first method, cell 

balancing is performed during the whole battery operation. As soon as a cell voltage 

deviates from other cells’ voltage, the corresponding switch closes and transfers the 

excess charge to the resistors. The amount of energy wasted in resistors is very low due 

to small variances in cell voltages. However, this scenario introduces larger switching 

losses due to frequent switching. The second method initiates cell balancing at the end of 

charge cycle. In this case, once a cell reaches its maximum voltage, its corresponding 

switch closes and transfers the battery current to the resistor. High power resistors are 
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usually required for this method, as large current values can pass through the resistors. 

The second method is not applicable for cell balancing during discharge cycles. 

4.2. SWITCHED CAPACITOR 

Switched capacitor cell balancing works by shuttling charge from higher voltage 

cells to lower voltage cells. The circuit for a switched capacitor configuration is shown in 

Figure 4.2. The capacitors each switch between two cells. When connected to the higher 

voltage cell in the pair, the capacitor will be charged. On the other hand, when the 

capacitor switches to the lower voltage cell, it will discharge. This approach requires no 

intelligent control, only a clock cycle is needed to trigger the switching between cells. 

 

 

 

Figure 4.2. Switched capacitor configuration. 
 

 

4.3. DOUBLE-TIERED SWITCHED CAPACITOR 

This method is implemented in the same way as the switched capacitor method, 

but with an additional tier of capacitors as shown in Figure 4.3. The second tier of 

capacitors switches between two series pairs of cells. This greatly reduces the balancing 

time for the pack, especially if cells with different charge levels are located far apart from 

one another in the pack. 
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Figure 4.3. Double-tiered switched capacitor configuration. 
 

 

4.4. SINGLE-SWITCHED CAPACITOR 

The single switched capacitor configuration uses one capacitor and an array of 

switches, as illustrated in Figure 4.4. The cell voltages are monitored and used to 

intelligently control the connections to the capacitor. Rather than cycling through 

individual cells, the system chooses to cycle between two cells in the pack with the 

greatest voltage difference. 

 

 

 

Figure 4.4. Single-switched capacitor configuration. 
 

 

4.5. STEP-UP/BOOST CONVERTER 

The step-up/boost converter balancing circuit is shown in Figure 4.5. The circuit 

is comprised of isolated converters for each cell in the series string. The inputs of the 
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converters are connected across each cell and the outputs from the converters are 

paralleled across the pack. The system monitors each cell’s voltage and intelligently 

controls the converters to remove energy from higher voltage cells and redistribute it to 

the rest of the cells in the pack. 

 

 

BOOST  
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BOOST  
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BOOST  
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Figure 4.5. Boost converter configuration. 
 

 

Comprehensive and in-depth comparisons between different balancing methods, 

discussed in this paper, are conducted in [35–37]. These studies consider cost and number 

of circuit components in their comparisons. There is not a single cell balancing method 

that is the best across all categories. Depending on the application requirements, any of 

these methods may be the appropriate choice. A tradeoff should be made between system 

cost and efficiency while designing cell balancing circuitry. An optimal switching 

schedule, considering system losses in order to increase the overall system efficiency, is 

one of the future studies to be conducted on this experimental Li-ion research testbed. 
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5. PROTECTION 

The protection subsystem in the BMS is intended to guarantee the battery operates 

in its safe region. Battery voltage, current, and temperature are factors determining the 

safe operating region. Some of the harmful effects of running the battery outside of this 

region were briefly reviewed in the Introduction based on information from [15]. Two 

important aspects should be taken into account when designing a battery protection 

subsystem: when to react to a detected range violation and how to handle such a 

condition. In this section, these aspects will be studied for voltage, current, and 

temperature protection. Furthermore, the protection subsystem architecture devised for 

the experimental battery testbed is discussed. 

The operating voltage of Li-ion batteries is dictated by their chemistry. More 

specifically, the material used in the cathode structure determines the battery voltage 

limits. For the battery chemistry used in the experimental testbed, which is described in 

Table 2.1, the operating voltage should be between 2.5 V and 3.8 V. Therefore, the BMS 

should ensure the individual cell voltages remain in this range at all times. It should be 

noted that it is more efficient to impose voltage limits on the battery open-circuit voltage 

rather than the battery terminal voltage. However, battery open-circuit voltage is not 

measurable during battery operation and an estimation algorithm should be implemented 

to obtain battery open-circuit voltage from its measurable signals, i.e., voltage, current, 

and temperature. The easiest method to estimate battery open-circuit voltage is to use the 

equivalent-circuit model shown in Figure 5.1. 

 

 



49 

 

 

Figure 5.1. Equivalent-circuit battery model. 
 

 

Applying Kirchhoff’s voltage law to the circuit in Figure 5.1, the battery open-

circuit voltage is 

 

 OC t s tV V R I     (8) 

 

where RS is calculated from open-circuit voltage tests, as described in Section 3.1.3. In 

order to estimate battery open-circuit voltage using Eq. (8), the average value of RS, 

which is 0.0189 Ω, is used. 

Another method to obtain battery open-circuit voltage, assuming an accurate SOC 

estimate is available, is to use the open-circuit voltage-SOC relationship. This 

relationship can be obtained from fitting the following model to the experimental data in 

Section 3.1.3 

 

      3.186 exp 0.00047114 10.88 exp 0.2469OCV SOC SOC SOC          (9) 
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Figure 5.2 shows the fitted model in Eq. (9) and the experimental results. It is 

proposed in [17] that the time average of the battery terminal voltage should be used as 

the protection criteria instead of the terminal voltage. 
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Figure 5.2. Experimental and modeled battery open-circuit voltage. 
 

 

Figure 5.3 shows the evolution of terminal voltage, open-circuit voltage obtained 

using the above two methods, and the time average of terminal voltage during a complete 

battery discharge. 

As can be seen from Figure 5.3, more energy can be extracted from the battery, 

before the manufacturer’s low cut-off voltage is approached, if the open-circuit voltage 

obtained from Eq. (8) is used in the protection system. It should however, be noted that 

Eq. (8) is just an approximation of the open-circuit battery voltage. Substantial research is 
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still needed in designing less conservative and more efficient Li-ion battery protection 

systems. The results presented in Figure 5.3 are obtained from a constant-current 

discharge profile. Investigating the performance of protection system during dynamic 

current profiles is also an important research topic in BMS development. 

 

 

20 40 60 80 100

2.5

3

3.5

V
o

lt
a

g
e

 (
V

)

 

Terminal Voltage Open-circuit Voltage (Eq. 9) Open-circuit Voltage (Eq. 8) Average Voltage

(a) 

11 11.5 12 12.5 13 13.5 14

2.2

2.4

2.6

2.8

SOC (%)

V
o

lt
a

g
e

 (
V

)

 

 

Terminal Voltage Open-circuit Voltage (Eq. 9) Open-circuit Voltage (Eq. 8) Average Voltage

2.5 Volts

(b) 
Figure 5.3. Comparison of different voltage levels during a discharge profile: (a) the 

whole profile; and (b) end of discharge. 
 

 

Finally, there are some recent studies which focus on observing internal battery 

parameters such as lithium concentration in the negative electrode instead of battery 

voltage as the protection criteria [11,38]. The authors claim that by considering such 

protection criteria for batteries more energy can be extracted while maintaining safe 

battery operation. More research still needs to be conducted to facilitate on-line 

implementation of such algorithms. 
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Once a voltage limit is being approached, the battery’s protection system will 

react to it in one of the following three ways: interrupt the current, ask an external system 

component to interrupt the current, or communicate with the load and command it to 

limit the current it is drawing from the battery.  

The protection units, which will interrupt the current autonomously, are called 

protectors [17] but are not studied here. The other two reactions of the protection unit, 

however, are implemented in the experimental testbed. The choice of which reaction to 

choose depends on the application. Specifically, current limiting is usually preferred in 

applications where continuous current supply is vital. 

The safe operating range for the battery current is usually determined by its 

physical structure and manufacturing specifications. As can be seen in Table 2.1, four 

current limits are specified for batteries in the datasheet: continuous charging, peak 

charging, continuous discharge, and peak discharge. As soon as the continuous battery 

charge/discharge current is exceeded, the protection unit needs to monitor the excess 

current duration and calculate the SOC variation in this period. It then only has to take 

action if the SOC reaches 0% or 100%. In this way, peak charge/discharge currents will 

also be tolerated for specific time periods. The protection unit reaction can be any of the 

scenarios described for voltage range violation. It should also be noted that in order to 

achieve the protection for both charge and discharge, the BMS needs to be able to 

differentiate between charge and discharge by assigning a current sign convention, e.g., 

positive for discharge and negative for charge. 

The operating temperature range for Li-ion batteries which is usually between 

−20 °C and 55 °C is very likely to be violated in applications such as transportation. In 
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order to circumvent the undesirable effects of temperature range violation, an efficient 

thermal management subsystem is required. The thermal management subsystem 

monitors cells and/or pack temperatures and maintains their temperatures within desired 

ranges. Depending on the BMS complexity and ambient battery temperature, the thermal 

management system might incorporate passive cooling, active air or liquid cooling, or 

refrigeration. Another important issue regarding the temperature of Li-ion batteries is a 

phenomenon called “thermal runaway.” Thermal runaway can occur due to ambient 

conditions, structural defects, or battery abuse. In any case, thermal runaway is usually 

not detectable by temperature sensor measurements as the internal temperature of li-ion 

battery cells is significantly higher than their casing temperature. This issue may be 

prevented by implementing an estimation algorithm capable of monitoring internal cell 

temperature. Thermal management system design and internal battery temperature 

estimation are among two future studies that will be conducted on the experimental 

testbed. 
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6. INDICATION OF BATTERY STATES 

Li-ion battery states include the battery’s operational conditions that affect the 

performance of the battery and also the systems connected to it. These states include SOC 

and SOH. SOC shows the amount of charge remaining in the battery compared to a full 

battery. In other words, it is an indication of the operation scope of the battery-powered 

device. From an electrochemical point of view, SOC is the ratio of the lithium ion 

concentration to the maximum lithium ion concentration in the negative electrode 

(limiting electrode). It is mathematically defined by 
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where Qnom is the nominal capacity (Ah); It(t) is the battery terminal current; t0 is the 

initial time (s); and t is the elapsed time (s). Equation (10) cannot be used in practice to 

obtain SOC due to issues arising from measurement noise in It and also the unavailability 

of SOC(t0) in different applications. Therefore, since SOC is not measurable, an 

estimation algorithm is usually required to estimate the SOC using the battery’s 

measurements, i.e., current, voltage, and temperature. Although the majority of SOC 

estimation algorithms rely on a battery model to acquire SOC, some non-model based 

methods have also been proposed. Among these types of methods, a combination of 

battery current integration, using Eq. (10), and the voltage translation method is the most 

common one. The voltage translation method is based on the battery voltage versus SOC 

relationship and is typically used to calibrate the current integration method. Model-based 
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methods, on the other hand, employ either an electrochemical model or an equivalent-

circuit model. As mentioned earlier, [10,11,28–30] are some of the works recently 

conducted on SOC estimation based on full-order or reduced-order electrochemical 

models. However, due to the aforementioned implementation simplicity of equivalent-

circuit models, there is a large body of literature using equivalent-circuit models to 

estimate battery SOC. In these works, different battery models are used along with an 

estimation algorithm such as Extended Kalman  

Filter [26,39], sliding-mode observers [24,40], adaptive observers [41], and linear 

parameter varying (LPV) observers [42]. 

Battery SOH is an indication of battery status compared to a fresh battery. In 

other words, it captures battery cycle life and aging effects. There is not a universal 

definition for SOH and different battery parameters are considered as indications of SOH. 

Among these parameters, battery capacity and internal resistance are the most popular 

ones. Due to the arbitrary definition of SOH, different authors [40–43] have used 

different methods and criteria to obtain SOH. The majority of SOH estimation algorithms 

employ a parameter identification method such as Kalman filtering [44] or adaptive 

estimators [45] in order to obtain some battery parameters. In these studies, the changes 

in parameters such as internal resistance or battery capacity are considered to be the 

SOH. 

At the initial stages of the experimental testbed development, battery state of 

charge is obtained using the combination of current integration and voltage translational 

methods, as explained earlier. Although this combination is one of the most-commonly 

used SOC indication algorithms, the sliding-mode observer introduced in [24] will be 
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used in the future due to this method’s intrinsic robustness against model uncertainties. 

As mentioned earlier, the main focus of this testbed in the future will be to design SOC 

and SOH algorithms for battery packs. This research area is of utmost importance in real 

world applications; however, it has not received much attention in the literature. 
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7. SUMMARY AND CONCLUSIONS 

In this paper, the development of an experimental Li-ion battery research testbed 

was presented. The main purpose of this testbed is to investigate current BMS 

technologies, determine their weaknesses and strengths, and identify future research paths 

to improve existing BMS methodologies. After a detailed description of design 

considerations and system development, battery characterization and modeling were 

studied, and some of the essential functionalities of BMSs were reviewed. These 

functionalities include: electrical and thermal protection, cell balancing, and battery state 

indication. The most commonly-used algorithms for each of these subsystems, along with 

their advantages and disadvantages, were introduced and open research areas in BMS 

design were reviewed. The need for further research is significant in areas such as 

thermal modeling, protection, optimal cell balancing, and SOC estimation. Specifically, 

battery packs require special attention as it is not very trivial to extend cell-level 

algorithms such as SOC estimation and protection system, to battery packs. In order to 

address these issues and challenges, the experimental testbed can be configured in three 

platforms, namely; single cell, cell balancing, and battery pack research platforms. Some 

initial experimental test results were presented to illustrate the capabilities of the testbed. 

Future work involves further tests on battery characterization and modeling and 

developing novel algorithms based on optimal control theory that can address cell 

balancing issues. Finally, as the main focus of future work, challenges in battery packs 

including protection and individual cell and pack SOC indication will be addressed. The 

ultimate goal of the testbed is to provide a platform to facilitate the improvement of 
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existing BMS technologies in order to have more efficient and reliable Li-ion battery 

systems. 
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II. REDUCED-ORDER ELECTROCHEMICAL MODEL-BASED SOC 
OBSERVER WITH OUTPUT MODEL UNCERTAINTY ESTIMATION 

ABSTRACT 

As an integral part of energy storage systems, Li-ion batteries require extensive 

management to guarantee their safe and efficient operation. Estimation of the remaining 

energy capability of the battery, usually expressed in terms of State of Charge (SOC), 

plays an important role in any battery-powered application. Electrochemical model-based 

estimation techniques have proven very attractive for this purpose due to the additional 

information they provide regarding the internal battery operating conditions. A modified 

reduced-order model based on the Single Particle (SP) approximation of the 

electrochemical model, suitable for the real-time implementation of SOC estimation, is 

employed in this work. This model, while maintaining some of the physical insight about 

the battery operation, provides a basis for an output-injection observer design to estimate 

the SOC. Output model uncertainties, originating primarily from the electrolyte-phase 

potential difference approximation and encountered mainly at higher discharge rates, are 

handled by incorporating an adaptation algorithm in the observer. Therefore, the 

proposed method, while being suitable for online implementation, provides an 

electrochemical model-based solution for battery SOC estimation over a wide range of 

operation. System stability and the robustness of the estimates given measurement noise 

are proved analytically using Lyapunov stability. Finally, accurate performance of the 

proposed SOC estimation technique is illustrated using simulation data obtained from a 

full-order electrochemical model of a Lithium Manganese Oxide (LMO) battery. 
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1. INTRODUCTION 

Recently Li-ion batteries have become the mainstream energy storage solution in 

a majority of battery-powered applications. They are already well-established as energy 

sources in portable consumer electronics and are being extensively adopted in electrified 

transportation and stationary energy storage systems. Lithium-ion batteries play an 

important role in the integration of various renewable energy sources to existing power 

infrastructures. Furthermore, they can significantly improve the reliability and efficiency 

of the utility industry and reduce its operational and capital costs [1]. 

A typical Li-ion battery has three main domains: negative electrode, positive 

electrode, and separator. The most commonly-used material for the negative electrode is 

graphite, whereas the positive electrode is typically composed of a metal oxide such as 

Lithium Cobalt Oxide (LiCoO2), Lithium Iron Phosphate (LiFePO4), Lithium Manganese 

Oxide (LiMn2O4) or Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2/NMC), 

depending on the application. Furthermore, filler and binder materials are also added to 

both electrodes for structural integrity. The separator between the electrodes acts as an 

electron insulator. The electrodes and separator assembly are immersed inside an 

electrolyte, which is usually a lithium salt in an organic solvent. During discharge, in an 

intercalation process, lithium ions in the active material of the negative electrode diffuse 

to the surface where they transfer from the solid-phase to electrolyte-phase. They then 

travel via the mechanism of diffusion and migration to the positive electrode where they 

react with the active material and insert inside it. During this process, electrons released 

in the negative electrode travel through the external circuit to generate a flow of current. 
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The processes occurring in the positive and negative electrodes are reversed during 

charging. 

To ensure the safe and efficient performance of Li-ion batteries, they must be 

equipped with advanced management strategies. One of the most important 

functionalities of any Battery Management System (BMS) is to predict the operating 

scope of the battery, which is usually expressed in terms of State of Charge (SOC). 

Furthermore, accurate information about battery SOC is crucial in other BMS 

functionalities such as state of health estimation, cell balancing, and battery energy 

management, and can potentially result in improved utilization [2]. The main challenge in 

determining a battery’s SOC is the fact that SOC is not directly measurable, necessitating 

an estimation routine. Model-based estimation algorithms are the most commonly-used 

techniques in order to obtain battery SOC. In these methods, SOC is considered as a state 

of a battery model and an estimator, combined with current, voltage, and temperature 

measurements, is used to estimate SOC. 

Equivalent-circuit models, in which the battery internal characteristics are 

emulated through circuit elements, are widely used in the SOC estimation literature due 

to their low complexity and ease of online implementation. They, however, have low 

fidelity and limited prediction capability; therefore, higher accuracies can only be 

attained by considering time-variant model parameters which, in turn, dramatically 

increase the estimator’s complexity. The SOC estimation methods based on equivalent 

circuit models include different model variations along with various control and 

estimation methods. Some of these works include stochastic filters such as Extended [3-
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8] and Unscented [9] Kalman filters and deterministic approaches such as sliding-mode 

[10-13], adaptive [14-16], linear parameter-varying [17] observers, and H∞ filters [18]. 

Electrochemical models, on the other hand, can facilitate a more accurate insight 

about the performance of a Li-ion battery cell, based on porous electrode and 

concentrated solution theories. The Pseudo Two-Dimensional (P2D) electrochemical 

model proposed by Fuller et al. [19] is among the first such models. This P2D model 

describes the performance of a Li-ion battery through the time evolution of its solid-

phase Li-ion concentration and potential, electrolyte-phase concentration and potential, 

and reaction current density and overpotential, using a set of coupled Partial Differential 

Equations (PDEs). 

Although electrochemical P2D models can provide accurate predictions of the cell 

behavior over a wide range of operating conditions, they have high computational 

complexity and, therefore, are not suitable for online implementation. To overcome this 

issue, various model reduction techniques have been proposed [20-22]. The Single 

Particle (SP) model, originally proposed by Santhanagopalan et al. [20], which assumes a 

uniform current density distribution across each electrode and, therefore, approximates 

each electrode with a single spherical intercalation particle, is the most common reduced-

order model. Further model simplification is achieved by ignoring the electrolyte-phase 

potential and assuming a constant electrolyte-phase concentration [20]. Such assumptions 

are valid only for low C-rates and the cells with small electrode thicknesses or high 

electrode conductivities [23]. Despite its simplicity, radial-domain PDEs in the SP model 

still need to be solved in order to obtain the solid-phase Li-ion concentration. Therefore, 

further approximations are required to simplify these equations. Subramanian et al. [24] 
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proposed a polynomial approximation in which the polynomial coefficients correspond to 

average and surface lithium concentrations and fluxes and can be solved using a set of 

Ordinary Differential Equations (ODEs). Other approximations include finite difference 

methods which transform the original problem into a set of ODEs whose dimension is 

dependent on the discretization length [25, 26] and the eigenfunction expansion method 

[27]. Most of the reduced-order electrochemical models lack accuracy at high C rates as 

higher model fidelity can only be achieved by incorporating high-dimension 

approximations that, in turn, will increase the model complexity. 

In the past few years, a great deal of attention has been given to the use of 

electrochemical models, especially SP models, for SOC estimation. The estimation 

techniques that utilize these models include steady-state Kalman filter [28], Unscented 

Kalman filter [29], Extended Kalman filter [25], Particle filter [30], and Iterated 

Extended Kalman filter [31]. Despite their promising implementation results, issues such 

as time-consuming estimator parameter tuning, high computational cost, and lack of 

analytical stability analysis limit the applicability of these methods. The SP model was 

used with a finite difference approximation of the solid-phase lithium concentration in 

Dey et al. [26] to design a sliding-mode observer for SOC estimation. The proposed 

observer is augmented with update laws to adapt some of the model parameters online 

and is shown to have acceptable state estimation both in simulations and practice. The 

authors in Wang et al. [32] used a second-order polynomial approximation of the solid-

phase lithium concentration to obtain an SP model composed of a single ODE along with 

the output voltage equation. They then used state transformations in order to transform 

the system dynamics into a form suitable for observer design and, using geometric 
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approaches, proposed an observer to adaptively estimate the SOC as one of the output 

equation model parameters. Moura et al. [23] proposed an adaptive backstepping 

observer for SOC estimation based on the SP model with the original radial-domain PDE 

for solid-phase concentration. The stability analysis and the identification procedure for 

some of the model parameters were discussed in this work. Finally, a Luenberger 

observer based on an almost full-order P2D electrochemical model of a Li-ion cell 

composed of various active materials was proposed in [33]. A fourth-order polynomial 

approximation of the solid-phase lithium concentration is the only model simplification 

which was considered in this paper. Simulation and experimental results were presented 

that demonstrate good performance of the proposed observer. Despite promising results 

of the existing electrochemical model-based SOC estimation algorithms, there is still 

need for a single solution having analytical stability analysis, high accuracy, and low 

computational cost, especially in resource-constrained applications. 

In this paper, an output-injection observer for SOC estimation based on the SP 

model and a fourth-order polynomial approximation of the solid-phase concentration is 

proposed. An empirical current-dependent approximation for the output equation 

uncertainty is augmented to the model in order to increase the model fidelity. 

Furthermore, an adaptation algorithm based on least squares is incorporated within the 

observer to estimate the coefficients of the output equation uncertainty approximation 

online. This adaptation algorithm enables accurate SOC estimation even at high C rates. 

In addition to simulation studies validating the performance of the proposed estimation 

method, the convergence of the state estimates to their true values and the boundedness 

of the estimation errors in the presence of voltage and current measurement noises are 
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proved using Lyapunov stability. Therefore, the proposed electrochemical model-based 

observer can facilitate an accurate online SOC estimation methodology without imposing 

any constraints on the battery input current. 
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2. MODELING 

Inside the active material of each electrode, the Li-ion concentration in spherical 

coordinates can be described by Fick’s law 
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where cs,j is the solid-phase Li-ion concentration (mol/m3), t is time (s), r is the radial 

coordinate (m), Ds,j is the solid-phase diffusion coefficient (m2/s), and the subscript j = 

p/n denotes the positive/negative electrode. The PDE in Eq. (1) is subject to the following 

boundary conditions 
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where Rj is the particle radius (m) and Jj is the Li-ion molar flux density on the active 

material surface (mol/(m2/s)) 
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where it,j is the cell current density (A/m2), εs,j is the solid-phase volume fraction, lj is the 

electrode length (m), and F is Faraday’s number (C/mol). The sign in Eq. (3) is positive 

for the negative electrode and negative for the positive electrode. 
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In this work, the radial dependence of the solid-phase concentration in each 

electrode is approximated by a fourth-order polynomial [24] 
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By substituting the polynomial approximation in Eq. (4) into Eq. (1), the coefficients a(t), 

b(t), and c(t), respectively, are 
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where cs,j,surf is the particle surface concentration (mol/m3), cs,j,avg is the average solid-

phase concentration (mol/m3), and qs,j,avg is the average solid-phase flux (mol). By using 

the boundary conditions in Eq. (2) after substituting the polynomial approximation in Eq. 

(4) into Eq. (1), the following ODEs are obtained to describe the average solid-phase 

concentration and average solid-phase flux, respectively 
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Furthermore, the normalized particle surface concentration is 
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The Li-ion molar flux density, Jj, is an indication of the electrochemical reaction rate for 

the Li-ion intercalation/deintercalation at the solid/solution interface. It is related to the 

individual electrodes overpotential through the Butler-Volmer kinetics 
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where kj is the reaction rate constant (m2.5mol-0.5s-1), ce is the electrolyte concentration 

(mol/m3), which is assumed to be constant, R is the universal gas constant (J/mol.K), T is 

the ambient temperature (K), and ηj is the reaction overpotential (V) defined as ηj = Фs,j – 

Фe,j – Uj, where Фs,j is the solid-phase potential, Фe,j is the electrolyte-phase potential, and 

Uj is the Open Circuit Potential (OCP), which, in general, is a function of xs,j,surf and 

temperature. By solving Eq. (9) for the overpotential ηj [27] 
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where 
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Finally, the Li-ion battery terminal voltage is 
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As compared to the P2D model, other terms are required to be incorporated into 

this equation to account for the inaccuracies resulting from the model simplifications and 

battery degradation mechanisms. These terms, along with the electrolyte-phase potential 

difference, will be referred to as output model uncertainties. There are not explicit 

equations to completely describe the output model uncertainties; however, they are 

typically modeled as an ohmic voltage drop, RcellIt(t), where It(t) is the terminal current 

(A). The resistance value Rcell depends on various mass and charge transfer phenomena 

[19]. In [27] it is approximated as an empirical function of the ambient temperature and 

the battery terminal current. The authors in [25] approximate Rcell as a function of the 

electrode’s ionic conductivities and thicknesses. In general, the ohmic voltage drop 

approximation of the output model uncertainties is shown to improve the model accuracy. 

In this work, the output model uncertainties are approximated as a second-order 

polynomial of the input current. The second-order polynomial approximation is based on 

the common assumption in the literature which describes the resistance Rcell to be a linear 
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function of the terminal current [27]. Therefore, the ohmic voltage drop, which is the 

product of the resistance Rcell and the terminal current, is expressed as a quadratic 

function of the current in this work. As will be discussed later, updating the polynomial 

coefficients online can greatly improve model accuracy, which is needed for reliable 

SOC estimation. 

The total number of lithium ions in a single particle Li-ion battery model is 
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where Acell is the electrode surface area (m2). By substituting the solid-phase 

concentration approximation in Eq. (4) into Eq. (13) and replacing the corresponding 

coefficients from Eq. (5) 

 

    , , , , , ,Li s p p cell s p avg s n n cell s n avgn l A c t l A c t      (14) 

 

By taking the derivative of Eq. (14) with respect to time and replacing the corresponding 

ODEs in Eq. (6), it can be observed that the change in the total number of lithium ions is 

zero. This observation coincides with conservation of mass. Furthermore, by rearranging 

Eq. (14) 
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where the parameters ν and ω, respectively, are 
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Considering the relationship between the average electrode concentrations in Eq. 

(15) and defining the state vector as z(t) = [z1(t), z2(t), z3(t)]T = [cs,n,avg(t), qs,p,avg(t), 

qs,n,avg(t)]T, the input as u(t) = It(t), and the output as y(t) = Vt(t), the system dynamics can 

be expressed by the following set of state equations 
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and the output equation 
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where φ = [1, u, u2]T, η = [η1 η2 η3]T, and the normalized particle surface concentrations 

xs,n,surf  and xs,p,surf, respectively, are 
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For the simulation studies conducted in this paper, the P2D model is simulated by 

the finite element method in COMSOL Multiphysics® using the parameters of an LMO 

Li-ion battery [34, 35] and the modified SP model, presented in Eqs. (17)-(19), is 

simulated in Matlab. The parameters used for the SP model simulations are summarized 

in Table 2.1. Furthermore, the coefficients of the polynomial approximation of the output 

model uncertainties in Eq. (18), denoted by η, are obtained offline. More specifically, the 

current and voltage values obtained from the P2D model simulations for 0.2C and 1C 

constant discharge tests are used to fit these parameters 

 

 2
1 2 30 2.646 7.1850 10            (20) 

 

Finally, the OCPs of the individual electrodes as functions of their corresponding 

normalized surface concentrations are shown in Figure 2.1 [34, 35]. 
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Table 2.1. Reduced-order model parameters. 

Parameter Description Value 

it,1C 1C discharge current density (A/m2) 17.5 

Ds,n solid-phase Li diffusivity, negative electrode (m2/s) 3.9×10-14

Ds,p solid-phase Li diffusivity, positive electrode (m2/s) 1×10-13 

Rn particle radius, negative electrode (m) 12.5×10-6 

Rp particle radius, positive electrode (m) 8×10-6 

R universal gas constant (J/mol.K) 8.314 

T ambient temperature (K) 298.15 

F Faraday’s constant (C/mol) 96487 

εs,p solid-phase volume fraction, positive electrode 1- εe,p-0.259 

εe,p electrolyte-phase volume fraction, positive electrode 0.444 

εs,n solid-phase volume fraction, negative electrode 1- εe,n-0.172 

εe,n electrolyte-phase volume fraction, negative electrode 0.357 

cs,n,max max solid-phase concentration, negative electrode 

(mol/m3) 
26390 

cs,p,max max solid-phase concentration, positive electrode 

(mol/m3) 
22860 

cs,n,0 initial solid-phase concentration, negative electrode 

(mol/m3) 
14870 

cs,p,0 initial solid-phase concentration, positive electrode 

(mol/m3) 
3900 

kn reaction rate coefficient, negative electrode  

(m2.5mol-0.5s-1) 
2×10-6 

kp reaction rate coefficient, positive electrode (m2.5mol-

0.5s-1) 
2×10-6 

ln negative electrode length (m) 100×10-6

lp positive electrode length (m) 183×10-6

ce initial electrolyte concentration (mol/m3) 2000 
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Figure 2.1. OCP of (a) negative electrode and (b) positive electrode as a function of 
normalized surface concentrations [34, 35]. 

 

 

Figure 2.2 shows a comparison between the reduced order model and the P2D 

electrochemical model outputs simulated in Matlab and COMSOL Multiphysics®, 

respectively, during (a) 0.2C, (b) 1C, (c) 3C, and (d) 5C constant discharges. Each 

simulations is halted when the battery voltage reaches 3.05 V, as this is the minimum 

voltage for which LMO batteries can be safely operated. The Mean Average Percentage 

Error (MAPE) values between the two models for these tests are 3.920×10-2%, 0.2076%, 

1.015%, 1.829%, respectively. For current rates above 1C, the states’ spatial 

dependencies become increasingly significant and, therefore, a fixed-coefficient 

polynomial approximation increases model uncertainty. 
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Figure 2.2. Voltages for P2D and reduced-order electrochemical models during (a) 0.2C, 
(b) 1C, (c) 3C, and (d) 5C constant current discharge tests.  
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3. SOC OBSERVER DESIGN 

The change in the average lithium concentration of the negative electrode in the 

reduced-order model can be related to the change in the battery SOC as 

 

 , , ,SOC
3600

s n n cell s n avg

nom

l A F c

Q

 
     (21) 

 

where Qnom is the nominal battery capacity (Ah). Equation (21) is based on the 

assumption that the overall cell capacity is limited by the negative electrode [36]. 

Therefore, the estimation of the reduced-order model states will be addressed in this 

section with the goal of estimating the battery SOC. 

3.1. OBSERVER FORMULATION 

In this section, a Luenberger-like output-injection observer, similar to [33], is 

proposed for the estimation of the SP model states. The modified SP model in Eqs. (17)-

(19) can be written in a more compact form as 
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where 
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and the nonlinear function fc is 
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In order to facilitate online implementation, the continuous-time state-space 

representation in Eq. (22) is transformed into the discrete-time domain using a Zero-

Order Hold 
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where 
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and ts is the sampling time (s). The discrete-time state-space representation of the SP 

model in Eq. (25) is used as a basis to design the following observer 
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where the output error term is defined as      ˆy k y k y k  . As seen in Eq. (27), the 

output error injection is only added to the 1ẑ  dynamics. The states z2 and z3 are weakly 

observable from the output voltage measurements due to their numerical conditioning; 

therefore, considering their intrinsic stable dynamics, they are estimated in open-loop. 

Therefore, the error system dynamics are 
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where      1 1 1̂z k z k z k  ,      2 2 2ˆz k z k z k  , and      3 3 3ˆz k z k z k  . In order to 

analyze the stability of the error system dynamics in Eq. (28), the following candidate 

Lyapunov function is proposed 
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for positive constants γ1, γ2, and γ3. Therefore, the change in the Lyapunov function is 
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By substituting the error system dynamics, Eq. (31) can be written as 
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Using Eqs. (25) and (27), the output error term is 
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Therefore, Eq. (32) can be written as 
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The term  df k  can be rewritten as 
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The first term on the Right Hand Side (RHS) of Eq. (35) can be thought of the slope of 

the function fd w.r.t. z1. Analytically, this slope is 
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By investigating Eq. (19), it can be observed that 
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For any given input current, it can be seen from simulations that the function fd is 

a monotonically decreasing function w.r.t. xs,p,surf and a monotonically increasing function 

w.r.t. xs,n,surf. This conclusion is also reported in literature [23, 33]. Therefore, the 

derivative term ∂fd / ∂z1 has a positive value 
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The maximum bound on the derivative is due to the continuity of the fd function. 

Therefore, Eq. (34) can be expressed in the form of the following inequality 
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Due to the fact that the coefficients 
2ca  and 

3ca  in Eq. (22) are positive, 
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Therefore, 
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Furthermore, the first term on the RHS of the inequality (39) is negative as long as 
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which, according to the Lyapunov Stability theorem, is an indication of the asymptotic 

stability of the states’ estimation errors. 

3.2. EFFECT OF MEASUREMENT NOISE ON THE STATE ESTIMATION 

In practice, the current and voltage measurements needed for the SOC observer 

are contaminated with noise. In this section, the measurement noise effect on the stability 

properties of the proposed observer is investigated. The sensor outputs us and ys are 

assumed to have the forms us[k] = u[k] + nu[k] and ys[k] = y[k] + ny[k], respectively, 

where nu and ny are the corresponding measurement noises with  u un t c  and 

 y yn t c  where the upper bounds on the measurement noises are assumed to be 

known. Therefore, by using the sensor outputs in Eq. (27), the observer dynamics will be 
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   (43) 

 

where the term h(nu[k]) is a nonlinear function of the current measurement noise induced 

in Eq. (43) from the nonlinear dependency of , ,surfˆs nx , , ,surfˆs px , and therefore, ŷ , on the 

input current. By defining the measurement noise vector as n[k] = [nu[k], ny[k]]T, Eq. (43)

can be written as 
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Therefore, the error system dynamics are 
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Using the assumption in Eq. (38) and rearranging, the change in the Lyapunov function 

candidate in Eq. (29) along the trajectories of the error system dynamics in Eq. (45) can 

be expressed as 
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which can be written as 
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The inequality in Eq. (47) can be written as 
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1 2 31 z zV k V k k k            (48) 

 

where ψ1 = λmin(Ψ1), ψ2 = ǁΨ2ǁ, and ψ3 = ǁΨ3ǁ. From the inequality in Eq. (48), it can be 

concluded that there always exist a lower bound for z  such that if z  , then V [k+1] 

– V [k] ≤ 0. The bound ζ is the solution of equation    2

1 2 3 0z zk k        and is 

given by 
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Therefore, it can be inferred that  z k  is ultimately bounded. This ultimate bound is 

calculated as follows: The Lyapunov function in Eq. (29) can be written as 
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          2 2

min maxΓ z Γ zk V k k       (50) 

 

From the RHS of the inequality in Eq. (50), it can be seen that for z  , 

    2
maxz ΓV   . On the other hand, it was previously shown that for z  , 

   1 – 0V k V k  . Therefore, the maximum value of the Lyapunov function is 

  2
max Γ   and the inequality in Eq. (50) is 
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Γ z Γ z
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k k
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From the inequality in Eq. (51), it can be observed that a decrease in the value of ζ 

will decrease the ultimate bound on the estimation errors. By investigating Eqs. (47) and 

(49), it can be concluded that the value of the ultimate bound can be decreased by 

decreasing the maximum noise magnitude and also decreasing the observer gain. 

3.3. IMPLEMENTATION RESULTS 

In order to validate the performance of the proposed observer in Eq. (27), the 

observer is implemented on the simulation data obtained from the P2D electrochemical 

model and shown in Figure 2.2. In each simulation, the initial SOC is assumed to be 60% 

of the actual initial value in order to demonstrate the observer’s insensitivity to initial 

conditions. Furthermore, the observer is implemented only during the loaded operation of 

the battery. During rest, the battery SOC can easily be obtained using the open-circuit 

voltage measurements whereas it is challenging to do so while the battery is being 

charged/discharged as the open-circuit voltage measurement is not practically possible. 
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Finally, as mentioned earlier, the tests are stopped as soon as the battery terminal voltage 

reaches about 3.05 V. 

For the LMO battery chemistry considered in this work, the maximum and 

minimum values of the derivative in Eq. (38) and the maximum bound on the observer 

gain, according to Eq. (42), for different constant-current discharge tests are summarized 

in Table 3.1. The observer gain is chosen as κ = 1000 so that the observer can provide a 

fast convergence while maintaining a stability margin from the maximum bounds shown 

in Table 3.1. 

 

 

Table 3.1. Maximum and minimum slopes in Eq. (38) and maximum bound for observer 
gain 

 0.2C 1C 3C 5C 

δmin 3.97510-5 4.40710-5 4.93810-5 4.93810-5 

δmax 1.95010-4 1.95010-4 1.95010-4 1.95010-4 

κmax 2090 2317 2596 2596 

 

 

Figures 3.1 and 3.2 show the estimated versus the actual voltage and SOC, 

respectively, for four constant discharge tests, 0.2C, 1C, 3C, and 5C. As seen in Figure 

3.2, the observer is capable of estimating the actual SOC with MAPE values of 0.3211%, 

1.655%, 5.005%, and 9.862% for simulations with 0.2C, 1C, 3C and 5C discharge rates, 

respectively. The errors for these tests are due to the discrepancy between the voltage 

measurements obtained from the full-order electrochemical model simulations and the 

reduced-order model used in the observer structure. The observer achieves SOC 

estimation errors of less than 0.02 for low C rates, i.e., 0.2C and 1C, in 0.6356 and 0.6806 
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min, respectively; however, its performance clearly deteriorates for increased discharge 

rates (see Figure 3.2). Therefore, the proposed model-based observer is not capable of 

handling the increased output model uncertainties at higher discharge rates by simple 

output-injection. To overcome this drawback, the observer is augmented with an 

adaptation algorithm in the next section in order to identify the output model 

uncertainties online and to facilitate a more accurate voltage model for SOC estimation. 
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Figure 3.1. Actual versus estimated output voltage for (a) 0.2C, (b) 1C, (c) 3C, and (d) 5C 
constant discharge tests with the output injection observer. 
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Figure 3.2. Actual versus estimated SOC for (a) 0.2C, (b) 1C, (c) 3C, and (d) 5C constant 
discharge tests with the output injection observer. 

 

 

In order to investigate the effect of current and voltage measurement noises in 

simulation, it is assumed that the current measurements, used in the observer structure, 

have a bias of C/16 and are contaminated with a white noise with a variance of C/120. 

The voltage measurements are also assumed to be contaminated with a white noise with 

10 mV variance. These noise magnitudes are typical for Li-ion batteries as previously 

reported in the literature [33]. Subplot (a) in Figure 3.3 shows the observer performance 

in estimating SOC with κ = 1000 for a 1C constant discharge test while exposed to the 

aforementioned measurement noises, which results in a MAPE of 1.902%. Subplots (b) 

and (c) in Figure 3.3 show the observer performance when the observer gain is multiplied 

by 1/5 and 5, respectively. The MAPE values for subplots 3.3(b) and 3.3(c), respectively, 
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are 1.566% and 2.880%. Furthermore, the observer estimates reach their true values in 

subplots 3.3(a), 3.3(b), and 3.3(c) in 0.5083, 3.412, and 0.1000 min, respectively. 

Therefore, increasing the observer gain has a positive effect on convergence speed. In 

order to have a consistent comparison, the MAPE values for all the subplots in Figure 3.3 

are calculated after the SOC estimates reach the steady state. The increase in the MAPE 

values by increasing the observer gain is consistent with the analysis presented in the 

previous section. Based on the results presented in Figure 3.3, a trade-off should be made 

between the convergence speed and noise sensitivity when selecting the observer gain. 
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Figure 3.3. Actual versus estimated SOC when subject to current and voltage 
measurement noise with (a) κ = 1000, (b) κ = 200, and (c) κ = 5000, with the output 

injection observer. 
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The effect of increasing noise magnitudes on the SOC estimation MAPE values of 

a 1C constant discharge test is shown in Figure 3.4. In this figure, the three noise levels 

introduced earlier, namely current measurement noise with variance of C/120, current 

bias of C/16, and voltage measurement noise with variance of 10 mV, are taken as the 

baseline and MAPE values corresponding to increase in each of these noise levels are 

shown. As seen in Figure 3.4, the estimation bounds increase by increasing the noise 

levels which coincides with the analytical results obtained in the previous section. 
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Figure 3.4. SOC estimation MAPE values with increasing (a) current noise variance, (b) 
current bias, and (c) voltage noise variance with the output injection observer. 
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4. IMPROVED SOC OBSERVER BASED ON OUTPUT MODEL 
UNCERTAINTY ESTIMATION 

4.1. FORMULATION AND STABILITY ANALYSIS 

As mentioned previously, despite the asymptotic convergence proof of the 

observer estimates to their true values, the observer performance deteriorates at high C 

rates (i.e., above 1C). At such current values, neglecting concertation and potential 

gradients over the spatial domain is no longer valid and, therefore, a constant-coefficient 

polynomial approximation of the output model uncertainties is not sufficient, resulting in 

large model uncertainties when using the reduced-order model. In order to overcome this 

issue, a Recursive Least Squares (RLS) algorithm with exponential forgetting is 

employed to identify the polynomial coefficients of the output model uncertainties in Eq. 

(22) in order to improve the SOC estimation accuracy. The following observer output 

equation is proposed 

 

           ˆˆ ˆ , 1η φT
dy k f z k u k k k      (52) 

 

where η̂  is an estimate of the coefficient vector η in Eq. (25). Therefore, the output 

estimation error is 

 

            ˆ 1η φd
Ty k y k y k f k k k         (53) 

 

where    ˆη η ηk k  . In order to identify the vector η̂  online, the following RLS 

algorithm is used 
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where α is the forgetting factor and P is the covariance matrix. In order to investigate the 

stability of the overall system, the following quadratic Lyapunov function candidate is 

considered 
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where Γ is defined in Eq. (30). The change in the Lyapunov function candidate is 
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Using the RLS formulation in Eq. (54), it can be concluded that 
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where the matrix P-1[k-1] can be calculated by applying the Matrix Inversion Lemma to 

the covariance matrix definition in Eq. (54) 

 

        1 1 1 11P P φ φTk k k k          (58) 
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Using Eqs. (57) and (58), and algebraically manipulating the last two terms in Eq. (56), 

the change in the Lyapunov function candidate is 
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Furthermore, by substituting for  y k from Eq. (53) and grouping the like terms together, 

the change in the Lyapunov function candidate can be written as 
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By defining 
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for any positive q, Eq. (60) can be written as 
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Furthermore, based on the assumption in Eq. (38), Eq. (62) can be expressed by the 

following inequality 
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The inequality in Eq. (63) can be written in a more compact form as 
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In order for the matrix A to be negative definite, its first leading minor principle 

should be negative; furthermore, its determinant should be positive. The determinant of A 

is 

 

      1det det det 22 21 111 1 21A A A AA A      (65) 

 

The first leading principle minor of A, which is A11, is negative-definite if 

 

    2
max mi1 n2 0k q         (66) 

 

The other two diagonal entries of A11 are negative according to Eq. (40).  Therefore, since 

the determinant of A11 is negative, in order for A to be negative-definite, the second 

determinant on the right-hand side of Eq. (65) 
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should be negative. Considering the properties of matrix determinants and the dimension 

of the matrix    φ φTk k , the determinant in Eq. (67) is negative if 
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By performing a few algebraic manipulations, the inequality in Eq. (68) can be written as 

 

 
 

1

2 2
max min

q


 
    (69) 

 

Satisfying the condition in Eq. (69) will automatically satisfy the positive constraint on q. 

Furthermore, by substituting for q from Eq. (61), the inequalities in Eqs. (66) and (69) 

will be expressed as the following quadratic inequalities in terms of the observer gain κ 
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In order to find the range of the acceptable observer gain κ from the above inequalities, 

the polynomials on the left-hand side of Eqs. (70) and (71) must have real roots. It can be 

shown that the polynomial in Eq. (70) always has real roots; however, for the polynomial 

in Eq. (71), the following condition must hold 
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Therefore, the inequalities in Eqs. (70), (71), and (72) should be taken into account when 

tuning the observer. The first step in this process is to select the forgetting factor α. 

Decreasing the forgetting factor will result in smoother observer estimates, along with a 

reduced steady-state estimation error. Secondly, the observer gain should be chosen as a 

fraction of the maximum root of the polynomial on the left-hand side of the inequality 

(70), scaled such that it lies in the range admissible by the inequality in Eq. (71), resulting 

in a dynamic gain for the observer. The scaling factor will, then, replace the gain as an 

observer tuning parameter. Smaller scaling factors result in larger observer gains which, 

in turn, expedite the observer convergence; however, this is at the cost of larger steady-

state estimation errors. By obtaining the observer gains following this procedure, the 

matrix A will be negative-definite. Therefore, the change in the Lyapunov function along 

the error system trajectories will be negative, which is a sufficient condition for the 

asymptotic convergence of the observer estimates to their true values. 

4.2. SIMULATION RESULTS 

As was shown in Section 3.3, the output-injection observer in Eq. (27) failed to 

asymptotically estimate the actual SOC values during 3C and 5C constant discharge 
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simulations due to large model uncertainties and, therefore, resulted in estimation 

MAPEs of 5.005% and 9.861%, respectively. In order to illustrate the effectiveness of the 

augmented observer, it is implemented on the same 3C and 5C datasets. Note that a 

discharge rate of 4C is typically considered as a high-rate in batteries used as energy 

sources [36]. Figures 4.1 and 4.2 show the estimated versus actual voltage and SOC for 

both of these tests. The initial SOC estimates in both of these tests are 60% of the actual 

initial values. As seen from Figures 4.1 and 4.2, the voltage estimates reach within 

2.631% and 5.357% of their actual values in about 0.73 and 0.33 minutes for 3C and 5C 

tests, respectively, after which the SOC estimates remain in 0.2625% and 0.1974% on 

average of the actual values, respectively. Both of these MAPE values are considerably 

improved compared to the estimation MAPE values obtained with only the output-

injection observer in Section 3.3 and also compared to the results of Dey et al. [26] in 

which the authors reported an error of about 9.000% for SOC estimation of 5C discharge 

test based on P2D model data. 

Figure 4.3 shows the time evolution of the output model uncertainty 

approximation coefficients identified online for 3C and 5C constant-current discharge 

tests as well as their offline values. As described earlier, the offline coefficients in Eq. 

(20) were obtained by fitting the modified SP model to voltage and current values from 

the P2D model simulations for 0.2 and 1C constant-discharge tests. Furthermore, as was 

shown in Figure 2.2, the constant-coefficient approximation is not sufficient for an 

accurate description of the battery voltage, especially at high C rates. Therefore, the 

proposed adaptation algorithm adjusts the model coefficients online to account for 

uncertainties in the voltage model, as seen in Figure 4.3. It can be seen in this figure that 
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the evolution of the coefficient estimates is dictated by the error between the SP and P2D 

models, shown in Figure 2.2. Therefore, by providing an accurate voltage model, the 

online identification scheme can greatly improve the estimation capability of the output-

injection observer and facilitate state estimation at discharge rates as high as 5C. 
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Figure 4.1. Actual versus estimated output voltage for (a) 3C and (b) 5C constant 
discharge simulations with the adaptive observer. 
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Figure 4.2. Actual versus estimated SOC for (a) 3C and (b) 5C constant discharge 
simulations with the adaptive observer. 

 

 

Finally, the proposed observer is implemented on data corresponding to two real-

world driving profiles, i.e., Urban Dynamometer Driving Schedule (UDDS) and Highway 

Fuel Economy Test (HWFET). The data are obtained from a Hardware-in-the-Loop 

(HiL) Hybrid Electric Vehicle (HEV) test bench [37] which emulates an actual HEV. 

Figure 4.4 shows a photograph of this test bench. The vehicle is assumed to run in pure-

electric mode with the parameters reported in [37]. The battery emulator current profile is 

scaled to the battery cell in Table 2.1 and used as the input to the P2D model and the 

observer. The current profiles, along with their time derivative corresponding to UDDS 

and HWFET drive cycles, are shown in columns (a) and (b) of Figure 4.5, respectively. 

As seen in this figure, the current derivative exhibits fast jumps in the current profile 
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which can potentially be limiting in electrochemical model-based SOC estimation 

techniques requiring a smooth current profile [32]. 

 

 

0 5 10
-0.06

-0.04

-0.02

0

0.02
(a)

2̂ 1

 

 

online
offline

0 5 10

-2.652
-2.65

-2.648
-2.646
-2.644

2̂ 2

 

 

online
offline

0 5 10

-0.0725

-0.072

-0.0715

Time [min]

2̂ 3

 

 

online
offline

0 2 4

0

0.05

0.1

(b)

 

 

online
offline

0 2 4
-2.65

-2.64

-2.63

-2.62

 

 

online
offline

0 2 4
-0.072

-0.07

-0.068

-0.066

Time [min]

 

 

online
offline

 

Figure 4.3. Output model uncertainty coefficients identified offline and online for (a) 3C 
and (b) 5C current profiles. 
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Figure 4.4. HiL test bench for emulating HEVs. 
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Figure 4.5. Current profile and current profile time derivative for (a) UDDS and (b) 
HWFET drive cycles. 
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The actual voltage and SOC obtained from the P2D model versus the observer 

estimates can be seen in Figures 4.6 and 4.7, respectively. Despite the fast changes in the 

current profiles, the observer implementation on the UDDS and HWFET datasets shows 

a good performance with MAPE values of 0.2751% and 0.2910%, respectively. 

Furthermore, Table 4.1 shows the sampling time, the time length of the current profile, 

the observer computational time, and the normalized computational time (i.e., 

computational time/time length) for the UDDS and HWFET current profiles. As can be 

seen in Table 4.1, the observer is capable of calculating the state estimates within one 

tenth of the sampling period. It should be noted that the proposed observer is 

implemented in Matlab on a desktop computer without any code optimization. Careful 

attention to optimizing the code structure and implementing the code on dedicated real-

time processors, such as field programmable gate arrays, will dramatically decrease the 

observer computational time. 
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Figure 4.6. Actual versus estimated output voltage for (a) UDDS and (b) HWFET 
simulations with the adaptive observer. 
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Figure 4.7. Actual versus estimated SOC for (a) UDDS and (b) HWFET simulations with 
the adaptive observer. 

 

 

Table 4.1. Observer computational time for UDDS and HWFET current profiles 

 UDDS HWFET 

Sampling Time [s] 0.1 0.1 

Total Time [s] 1400 780 

Computation Time [s] 8.084 4.530 

Normalized Computation Time 5.774×10-3 5.807×10-3 
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5. SUMMARY AND CONCLUSIONS 

In this paper, a reduced-order electrochemical model-based SOC estimation 

algorithm is proposed. The algorithm is based on a Luenberger-like observer coupled 

with an RLS with exponential forgetting parameter identification routine to compensate 

for the reduced-order model uncertainties. The asymptotic convergence of the state 

estimates to their true values is proved analytically using Lyapunov Stability. 

Furthermore, accurate SOC estimation with low MAPE values is achieved for a wide 

range of C rates. It is also observed that the state estimates reach their actual values in 

less than one minute, despite incorrect initial state estimates for these tests. As the 

proposed observer does not involve any PDE solution or matrix inversion, does not 

require any constraints on the battery current profile, and is analytically supported by 

Lyapunov theorem, it can provide an accurate and reliable electrochemical model-based 

solution for SOC estimation. As future work, the observer will be applied in other BMS 

functionalities such as State of Health (SOH) estimation. The identified output model 

uncertainties can be used as an indication of the battery SEI layer resistance. 

Furthermore, the state estimates obtained from the observer can be employed to provide 

an estimate of the total number of lithium ions inside the battery and, therefore, battery 

capacity, during open-circuit battery operation. Finally, the proposed observer design is a 

generic solution for state estimation in dynamic systems with output model uncertainty. 

In a recent work by the authors, a similar topology was implemented for internal 

temperature estimation of Polymer Electrolyte Membrane Fuel Cells, while 

simultaneously identifying the output voltage model uncertainties. The observer outputs 

were then used in a feedback controller to successfully regulate the output voltage. 
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Therefore, the proposed methodology can prove useful for state estimation in this class of 

dynamic systems. 
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III. PERFORMANCE CHARACTERIZATION AND CONTROL-ORIENTED 
MODELING OF OPEN-CATHODE FUEL CELL SYSTEMS 

ABSTRACT 

Open-cathode Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have 

experienced increasing popularity in low to medium power applications in the recent 

years. However, they have not received much attention in the fuel cell systems literature. 

Furthermore, due to their low-cost nature, in practice they are usually equipped with 

simple open-loop controllers that, in turn, result in a reduced overall system efficiency. 

Aiming to overcome the control challenges regarding open-cathode PEMFCs, this paper 

is focused on establishing a foundation for analysis and control-oriented modeling of this 

type of fuel cells. More specifically, a literature survey about the temperature, humidity, 

and hydrogen and air supply effects on system performance, combined with experimental 

investigations comprise the analysis. Control-oriented nonlinear models, capable of 

capturing important system dynamics, are then developed and validated experimentally 

for individual components of air-forced open-cathode fuel cell systems. The 

comprehensive system-level understanding of the real-time operation of open-cathode 

PEMFCs and the control-oriented models developed in this paper can be used as a basis 

for advanced control and estimation design with ultimate goals of improving their 

performance, reducing their development and operational costs, and therefore, easing 

their widespread commercialization.  
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1. INTRODUCTION 

While open-cathode Polymer Electrolyte Membrane Fuel Cells (PEMFCs) 

possess all of the advantages of closed-cathode PEMFCs, such as high efficiency and 

power density, long cell and stack life, low electrolyte corrosion, low noise levels, and 

low operating temperatures, they differ in that they have cathode channels exposed to 

atmosphere. In closed-cathode PEMFCs, the air is supplied by a compressor at pressures 

from near ambient to approximately 6 atm. On the other hand, open-cathode PEMFCs are 

usually operated near atmospheric pressure with the air being supplied either by 

convection or low-power fans. Higher pressures in closed-cathode PEMFCs mandate 

simultaneous cathode and anode pressure regulation in order to minimize their pressure 

difference [1]. However, in open-cathode PEMFC systems, due to near-atmospheric 

operating pressures, pressure regulation is not required. It should also be noted that 

although operating at higher pressures results in higher voltages, it induces considerable 

parasitic loads and cost (e.g., compressor, cooling system, humidification system). On the 

other hand, open-cathode fuel cells do not require humidification and are usually supplied 

with dry reactants. Novel materials such as composite catalysts in the catalyst layers, 

hydrophobic oxides in the Nafion membrane that increase the water uptake, and platinum 

catalyst in the Nafion membrane to locally generate the water [2], in addition to low 

operating temperatures, guarantee rapid humidification and ensure enough water is 

maintained in the membrane [3]. Furthermore, low humidity fuel cell operation has 

proved to be beneficial [4]. Therefore, open-cathode PEMFCs have become popular due 

to their portability and reduced number of required Balance-Of-Plant (BOP) components; 
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no compressors, supply or return manifolds, no cooling system components such as 

pumps and radiators, and no humidifiers. 

There are two open-cathode PEMFC system configurations; air-breathing and air-

forced. The air-breathing open-cathode PEMFC system does not have any components 

for air flow management; thus, air is acquired by diffusion and natural convection from 

the surrounding atmosphere [5]. Also, the produced water in the cathode is removed via 

evaporation. This configuration is suitable for applications such as cell phone emergency 

chargers. However, for higher powers, the generated heat needs to be actively dissipated; 

therefore, more air is required for the cathodic reaction [5-6]. In this case, air-forced 

systems, in which the cathode system consists of a fan or a blower to provide airflow 

through the cathode channels, are more desirable. 

Water transport and content inside different fuel cell compartments are some of 

the important factors affecting its performance. Water is produced in the catalyst layers 

during reactions in the cathode and due to the water concentration gradient between the 

cathode and anode, water molecules diffuse through the membrane towards the anode, a 

process called back diffusion. These water molecules help humidify the membrane, 

which is essential for proton conductivity from the anode to the cathode. Membrane 

humidity and water content have a direct effect on the membrane resistance against 

proton transport. On the other hand, protons drag water molecules as they cross the 

membrane in a process called electro-osmotic drag. It is observed that at higher current 

draws, water transport through electro-osmotic drag exceeds the back diffusion [1]. 

The new generation open-cathode fuel cells design eliminates the need for 

external anode humidification. Water inside the fuel cells can be present as both liquid 
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and vapor. In the dead-end anode operation of fuel cells, liquid water molecules will 

settle to the bottom of the anode channels. Excess water accumulation in the anode 

channel can prevent hydrogen molecules from reaching the catalyst surfaces, and 

therefore, can result in a noticeable voltage drop. Furthermore, hydrogen starvation 

resulting from channel flooding can result in the corrosion of the carbon support in the 

cathode catalyst layer [3]. The corrosion rate is a function of the accumulated water. In 

addition to the water molecules, during back diffusion nitrogen and other impurities 

present in the air stream inside the cathode channels may be transported to the anode Gas 

Diffusion Layer (GDL). This nitrogen accumulation is sometimes referred to as nitrogen 

blanketing. Similar to water, these molecules can also displace hydrogen molecules from 

the reaction sites, causing hydrogen starvation. Although the nitrogen accumulation rate 

is much slower compared to water accumulation, it can still have detrimental effects. The 

detrimental effects of liquid water, water vapor, and nitrogen in the anode channel are 

discussed in Pokphet et al. [7] and Chen et al. [8]. 

Catalyst layer drying, on the other hand, can also have undesirable effects on fuel 

cell performance. Dry conditions inside closed-cathode fuel cells is mainly the result of 

high temperatures. However, for open-cathode fuel cells, dry reactants and high air mass 

flow rates that force the water molecules out of the cathode channels can intensify the 

drying. Pukrushpan et al. [9] and Pokphet et al. [7] state that both dry membranes/catalyst 

layers and flooded channels can cause high voltage losses, which negatively impact the 

performance and lifetime of PEMFCs. In [10], it is stated that dry membranes in open-

cathode fuel cells used as backup units can be a major issue considering their long 

standby usage times. To this end, the authors employed modified Electrochemical 
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Impedance Spectroscopy (EIS) in order to estimate the membrane hydrations status. This 

information is used in order to monitor the fuel cell’s capability for fast start-ups, in 

addition to designing standby humidity controllers. 

The distributed nature of water propagation and water content inside the fuel cell 

necessitates the use of Partial Differential Equations (PDEs) to model their 

characteristics. In the last decade, a number of research groups have employed PDEs of 

various complexities to this end. A set of nonlinear PDEs is presented in [11] to describe 

the water distribution and propagation across the stack. A zero-dimensional moving front 

model is introduced in [12] in order to capture the water movement across the fuel cell 

while considering the location of the water phase transition inside the GDL. This model 

is later augmented with a channel model and then parameterized using in-situ 

measurements obtained from neutron imaging [13]. The authors in [14] use a similar 

moving front model to describe water propagation and accumulation in the fuel cell. This 

scheme represents the water propagation inside the GDL, water spilling into the anode 

channel, and filling and plugging of the anode channel. Finally, a multiscale model of an 

open-cathode fuel cell using Computational Fluid Dynamics is introduced in [15]. This 

model is aimed at demonstrating the effect of temperature-dependent water transport and 

filling dynamics of the electrode pores on the output voltage. Although the proposed 

models are shown to capture the coupled temperature and humidity effects on the fuel 

cell voltage, their high complexity and computational burden limit their applicability to 

control design. 

Considering the aforementioned humidity effects, a proper water management 

strategy can greatly influence fuel cell stack life and efficiency. Optimal water 
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management would maintain an almost fully humidified membrane while preventing 

channel flooding [16]. There are numerous works in the literature on water management 

design for closed-cathode fuel cells [17-19]. The authors in [16] propose a dynamic water 

management methodology by controlling the durations of dry and humidified air flows. It 

is shown that by using this method the fuel cell voltage can be maintained in a narrow 

band. In general, water management is usually accomplished using occasional anode 

purging. Purging is traditionally performed as a sequence of purge pulses in two fashions: 

open-loop and current-based purging [20]. Inert nitrogen, water molecules, and other 

impurities present with the hydrogen are removed from the anode during purging, 

resulting in improved fuel cell performance. 

An optimal purging sequence ensures improved hydrogen utilization, stack 

efficiency, and stack longevity while taking the fuel cell operating conditions into 

account. Ideally, the purge interval should be scheduled such that all of the accumulated 

water, nitrogen, and impurities are purged and as soon as the hydrogen front reaches the 

end of the channel purging stops. The period and width of the purge pulses depend 

mainly on the hydrogen purity and hydrogen and water permeation rates through the 

membrane. Special care should be given to the purge scheduling as purging too often will 

result in excessive hydrogen loss in addition to membrane drying. The amount of 

hydrogen loss depends on anode pressure, purge duration, temperature, and water and 

nitrogen accumulation. In addition to the hydrogen waste, long-term carbon corrosion 

rate, voltage losses during a purge cycle, and pressure fluctuations should also be taken 

into account [21-22]. It is also important to determine when to perform purging. Purging 

when the anode is still dry will decrease voltage due to a decrease in water and hydrogen 
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partial pressures. However, when the anode is flooded, purging will result in voltage 

recovery due to water molecule removal and an increase in the fuel cell active area [3]. 

Dumercy et al. [23] develop a stack model in order to determine the optimal purge 

frequency. They employ a constant purge pulse width; however, the purging is performed 

whenever one of the cell voltages drops below a certain threshold. The authors in [7-8] 

address the purge dynamics by investigating their effect on the fuel cell active area, 

hydrogen consumption, and voltage response and, therefore, the overall fuel cell system 

efficiency. The effect of purging on the water front propagation in the GDL and the 

anode channels and, subsequently, its effect on the fuel cell voltage is studied in detail in 

[8,14]. Based on the developed models in these works, optimization strategies are devised 

for the anode purge scheduling. Although the implementation results in these papers look 

promising, more research still needs to be conducted on the model identification and real-

time implementation of the proposed methods. In open-cathode fuel cells, simple current-

based purging is typically performed. Strahl et al. [3] study purging effects on the voltage 

considering cell location inside the stack, current density, and temperature in an open-

cathode fuel cell. Voltage drop between purges is shown to be drastically smaller for cells 

closer to the anode entrance. Also, higher current densities result in larger voltage drops 

due to increased water generation and accumulation. Temperature increase is correlated 

to smaller voltage drops due to accelerated water evaporation. They conclude a trade-off 

should be made between the maximum power, stability, and system efficiency when 

creating a purge schedule. 

Temperature has a strong effect on the fuel cell performance especially its 

humidity. High temperatures will increase the reactants’ thermal activities, and therefore 



123 

 

the reaction rate, which results in a higher PEMFC system output voltage. The high 

temperatures can also help mitigate the water accumulation in the anode GDL through 

accelerating water evaporation rate. However, further temperature increase might result 

in cathode catalyst layer drying, which will dominate the positive effects of the 

temperature increase and lead to degradation and structural damage. In the fuel cell 

literature, substantial research has been conducted on the thermal modeling of PEMFC 

systems. The models developed in [24-27] account for ideal power generation, electrical 

power consumption, heat removed by a cooling fluid, and heat loss by convection to the 

environment. Meyer et al. [28] consider more details in their closed-cathode PEMFC 

thermal models than typical thermal models by describing the temperatures of the anode, 

cathode, cooling loop components, and the entire stack using the reactants’ mass-flow 

rates. 

Thermal management in air-forced open-cathode fuel cell systems is performed 

using air-delivery fans at the cathode entry. However, due to the long time constant of the 

temperature dynamics compared to other subsystem time constants and despite its 

importance in fuel cell system performance, thermal management is usually achieved 

through constant-speed fan operation and its effects are not studied rigorously. The 

authors in [29] propose a detailed procedure for the design and analysis of the cooling 

fans in a 2 kW air-forced open cathode fuel cell. Barreras et al. [30] introduce a non-

model-based control strategy for a PEMFC used in a fuel cell hybrid vehicle. This 

controller is designed to regulate the fans’ speed to some pre-defined values if the fuel 

cell temperature goes beyond a threshold. A high-temperature open-cathode fuel cell is 

developed and characterized using polarization voltage and single cell spectroscopy by 
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[31]. The authors, then, investigate the thermal effects on the start-up performance and 

polarization curve of the open-cathode fuel cells and develop a switching control 

algorithm to perform the coupled thermal and air flow management. Finally, aiming to 

maximize the fuel cell voltage and considering temperature effects, the authors in [27] 

design a non-model-based temperature controller and are able to show some promising 

simulation results. 

This study provides a framework for the system-level understanding of 

performance and practical implementation of open-cathode fuel cells. More specifically, 

the performance characterization and modeling required for control design are studied in 

this paper. The effects of various phenomena including temperature, humidity, and 

hydrogen and air supply systems are analyzed by combining past research with 

experimental investigations. Then, a set of nonlinear control-oriented models are 

developed for the entire open-cathode fuel cell system. The modeling presented in this 

paper is built upon the authors’ work in [32]. The models are taken such that they capture 

important dynamics of individual system components, as well as their interactions. 

Furthermore, applicability to practical control design and ease of identification are other 

factors considered in the model development. All of the developed models are identified 

and validated experimentally. These models were recently used as the basis for the design 

of an adaptive voltage regulation scheme in [33]. 
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2. EXPERIMENTAL PERFORMANCE INVESTIGATIONS 

In this section, important performance characteristics of open-cathode fuel cell 

systems are demonstrated using experimental observations. These results are also 

compared to previous work in literature. 

The experimental open-cathode fuel cell system used in this work, along with 

some of its auxiliary components, is shown in Figure 2.1. A 500 W air-forced open-

cathode PEMFC stack manufactured by Pearl Hydrogen and purchased from 

FuelCellsEtc is used. The fuel cell system runs in Dead-End Anode (DEA) mode. The 

DEA operation involves the direct feed of hydrogen to the anode using a manual pressure 

regulator. Two solenoid valves are used at the entrance and exit of the anode channels: 

the supply valve and purge valve, respectively. The former is used to initiate/stop the 

hydrogen flow into the fuel cell, whereas the latter is used for purging. Two 12 VDC 30 

W fans with internal tachometers from NMBTM (Model No. NMB 3615KL-04W-B96) 

are located at the cathode exit in order to provide the air required for the fuel cell reaction 

and control its temperature. A mass-flow controller from Aalborg (Model No. GFC17) is 

used to measure the hydrogen mass-flow rate passing through the anode and also set the 

maximum hydrogen mass flow rate. The voltage sensor used for the stack terminal 

voltage measurement is a custom-made high-precision voltage divider. The current 

measurements are obtained using a Honeywell current senor (Model No. CSLA2CD). 

Furthermore, ten temperature sensors manufactured by US Sensor (Model No. 

USP12397) are evenly placed among cathode channels in order to measure the internal 

fuel cell temperature. Two pressure sensors from Omega (Model No. PX209-015G5V) 

are used to measure the tank and anode inlet pressures. Finally, a programmable 
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electronic DC load from BK Precision (Model No. 8514) is used to emulate different fuel 

cell loads. Data acquisition (DAQ) and real-time control are achieved using two National 

Instruments cards. A multifunction card (NI-PCI 6225) is used for collecting sensor 

measurements and an analog output card (NI-PCI 6713) is used for supply and purge 

valve control, fan speed control, and communication with the mass-flow controller. The 

user interface with the DAQ cards is established using the Matlab xPC target toolbox. 

 

 

 

Figure 2.1. Experimental air-forced open-cathode PEMFC system. 
 

 

As mentioned in the Introduction, temperature increase in open-cathode fuel cells 

results in improved reaction kinetics and, therefore, increased fuel cell voltage. Figures 

2.2 and 2.3 show the temperature effect on the output voltage of the experimental open-

cathode fuel cell stack for current densities of 0.16 A cm-2 and 0.24 A cm-2, respectively. 

The temperature shown in these figures is the average of the ten temperature sensors 

placed inside the cathode channels. Continuous exposure of these sensors to the cathodic 
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air flow causes the noise observed in the temperature measurements in Figures 2.2 and 

2.3. Furthermore, the temperature profiles (subplot (b)) are achieved by adjusting the 

fans’ PWM commands, as seen in subplot (a). The details of the temperature controller 

design and implementation are presented in [33]. 

As seen in Figures 2.2 and 2.3, an increase in the fuel cell temperature has an 

overall positive effect on the fuel cell performance as it results in an increase in the fuel 

cell output voltage. It can, however, be observed that there is a gradual decrease in the 

fuel cell voltage over time which can be attributed to cathode catalyst layer drying. This 

slow phenomenon is a result of water evaporation and desorption in the cathode catalyst 

layer pores which causes a reduction in the active reaction sites for protons and, 

therefore, voltage decline over time [15]. The gradual voltage drop is intensified at higher 

temperatures due to an increased evaporation rate. When the open-cathode fuel cell 

temperature reaches approximately 50 °C, the fuel cell voltage will start to drop 

drastically due to the lack of sufficient reaction sites in the dried catalyst layers. This 

effect was similarly observed and analyzed by Strahl et al. [15,27]. 

Another interesting observation is the effect of the operating temperature on the 

voltage and current density variations during purging in open-cathode fuel cells. Figures 

2.4 and 2.5 show the voltage variations during purging for the different temperatures in 

Figures 2.2 and 2.3, respectively. The voltage drop during purging at 35 °C is a result of 

reduced hydrogen partial pressure. As the temperature increases to 40 °C, the voltage 

drop during purging decreases. It is speculated that this effect is attributed to an improved 

excess water removal from the anode channels due to increased evaporation rates. As the 

temperature further increases, the combination of purging and increased water 
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evaporation rate results in improved water removal, increasing the voltage more than the 

hydrogen partial pressure drop reduces it. Further investigation is needed in order to 

characterize this effect. 
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Figure 2.2. Fans’ PWM command (a) in order to maintain the temperature profile (b) and 
the corresponding fuel cell voltage for 0.16 A cm-2 current density. 
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Figure 2.3. Fans’ PWM command (a) in order to maintain the temperature profile (b) and 
the corresponding fuel cell voltage for 0.24 A cm-2 current density. 
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Figure 2.4. Fuel cell voltage during purging for test performed in Figure 2.2. 
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Figure 2.5. Fuel cell voltage during purging for test performed in Figure 2.3. 
 

 

From these experimental observations, it can be seen that temperature has an 

important effect on open-cathode fuel cell performance. A trade-off between the different 

temperature effects discussed above can result in a temperature value which increases the 

fuel cell voltage while reducing its variations. After choosing the proper temperature set-

point based on these considerations, a thermal management system capable of 

maintaining the reference temperature needs to be designed. The temperature controller 

design procedure is discussed in detail in [33]. 

Finally, a number of tests were performed in order to investigate the effect of 

purging duration and period on the output fuel cell voltage. Purging period and duration 

recommended by the manufacturer for the experimental open-cathode fuel cell system are 

15 s and 600 ms, respectively. Figure 2.6 shows the results of three tests performed to 
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investigate the purging period effects. In each test, a current density of 0.2 A cm-2 and a 

temperature of 35 °C were chosen. During the first 290 s of the experiments, the 

manufacturer recommended purge period is used; however, for the remainder of the tests, 

the purge period is changed to 7.5 s and 30 s as seen in subplots (a) and (c), respectively. 

In the second test, shown in subplot (b), the purge period is not changed. By comparing 

these subplots, there does not seem to be a significant difference between the voltage 

values after changing the purge period. 
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Figure 2.6. Output fuel cell voltage when changing the purge period from (a) 15 to 7.5 s, 
(b) 15 to 15 s, and (c) 15 to 30 s. 

 

 

Similarly, Figure 2.7 shows the results of three tests performed in order to 

investigate the purging duration effects on the output voltage. Each test was conducted 
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for a current density of 0.2 A cm-2 and a temperature of 35 °C. Again, during the first 290 

s of the experiments, the manufacturer recommended purge duration is used; however, 

for the remainder of the tests, the purge duration is changed to 300 ms and 1200 ms as 

seen in subplots (a) and (c), respectively, and remains constant for the second test, as seen 

in subplot (b). Similar to the purging period, the purging duration does not appear to have 

a significant effect on the output voltage. 
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Figure 2.7. Output fuel cell voltage when changing the purge duration from (a) 600 to 
300 ms, (b) 600 to 600 ms, and (c) 600 to 1200 ms. 

 

 

Based on these results, it can be concluded that changes in the purge duration and 

period do not have a significant effect on the steady-state values of the open-cathode fuel 

cell output voltage. However, long-term purging effects, such as carbon corrosion, that 
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directly affect the fuel cell lifetime require further investigations and cannot be ignored. 

In this work, the purge duration and period recommended by the manufacturer are used. 
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3. MODELING 

There are numerous papers in the literature on fuel cell modeling. In addition to 

the many efforts directed to high-fidelity electrochemical fuel cell modeling, control-

oriented models have also attracted a fair amount of attention in the last decade [1,34-37]. 

The main focus of these works, however, has been on closed-cathode fuel cells. With an 

increased use of open-cathode fuel cells, control-oriented modeling of the entire open-

cathode fuel cell system must be rigorously addressed. 

3.1. VOLTAGE 

For both closed and open-cathode fuel cells, the output voltage can be calculated 

as the ideal thermodynamic voltage resulting from the electrochemical reaction, minus 

voltage losses occurring inside the fuel cell. The voltage losses, namely activation, 

ohmic, and concentration losses, are due to the electrochemical energy barrier, ionic and 

electrical resistances, and reactant concentrations, respectively. In-depth discussions 

regarding thermodynamic fuel cell voltage and voltage losses can be found in [38]. Zhang 

et al. [6] describe the output voltage of air-forced open-cathode PEMFCs by modeling the 

activation and concentration effects. This model accounts for fuel cell stack temperature 

and hydrogen and oxygen flow rates, but not purging effects. Mokmeli et al. [20] develop 

an electrical model for an air-forced open-cathode PEMFC in which voltage losses due to 

hydrogen impurities are also taken into account. In other studies [1,35], a capacitance 

effect is introduced into the model to account for the fast dynamic behavior known as the 

charge double-layer effect. Temperature dependency of the fuel cell voltage is physically 

modeled in [15,27]. In these models, the main temperature effect is on the exchange 

current density. Experimental data show promising results for the model validation. 
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Further research on these models’ identification and implementation procedures is 

required in order to make them suitable for control design. In order to reduce the 

computational complexity and facilitate control implementation, the transient effects of 

current density and temperature change on the fuel cell output voltage are ignored in this 

work and the control-oriented voltage models introduced in [1,39-40] are used as a basis 

for the modeling conducted in this paper. It should also be noted that the parameters’ 

values of any model will change over time due to aging effects. A robust control and 

estimation methodology, such as the one presented in [33], will be able to handle these 

uncertainties in addition to other disturbances. Therefore, despite all of the complicated 

phenomena affecting the open-cathode fuel cell performance, proper control-oriented 

modeling can be used to design and implement robust control techniques that can account 

for modeling inaccuracies and systems disturbances. The control-oriented models are 

specifically chosen because of their ability to capture the positive temperature effects on 

the fuel cell voltage. In order to adapt these models to open-cathode fuel cells, two other 

assumptions are made. First, due to the near-atmospheric operation of open-cathode fuel 

cells, the cathode pressure is taken to be equal to atmospheric pressure. Secondly, 

saturation pressure is assumed to be independent of temperature due to the narrow 

operating temperature range of the open-cathode fuel cells. 

The reversible or ideal voltage of a PEMFC, E0, can be computed using the Gibbs 

free energy change for the fuel cell electrochemical reactions at standard conditions, i.e., 

298.15 °K and 1 atm [38]. Under non-standard conditions, the reversible voltage of a 

PEMFC can be calculated using the Nernst equation 
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where t is the time (s), Voc is the reversible or open-circuit fuel cell voltage (V), ∆s = -

44.43  is the entropy change of the reaction (J mol-1 K-1), F = 96485.34 is Faraday’s 

number (C.mol-1), TFC is the operating fuel cell temperature (°K), 0 298.15FCT   is the 

standard fuel cell temperature (°K), R = 8.3144621 is the universal gas constant (J mol-1 

K-1), and pH2 and pO2 are unitless hydrogen and oxygen partial pressures in the anode and 

cathode, respectively, with respect to atmospheric pressure. Due to near atmospheric 

operation of the fuel cell, the oxygen partial pressure is pO2 = 0.21; whereas, the hydrogen 

partial pressure pH2 is considered as one of the measureable system states. It should be 

noted that the hydrogen partial pressure also depends on the generated water pressure and 

therefore, the assumption of a measureable hydrogen partial pressure might not always 

hold true and can potentially introduce errors in the voltage model. As it is shown in [33], 

such uncertainties in the model can be taken care of by an uncertainty estimator. 

The Nernst equation describes the open-circuit voltage of the PEMFC; however, 

as soon as current is drawn from the fuel cell, the output fuel cell voltage will be 

 

          FC oc act ohm concV t V t V t V t V t       (2) 

 

where Vact is the activation overvoltage (V), Vohm is the ohmic overvoltage (V), and Vconc 

is the concentration overvoltage (V). As can be seen in [38], equations describing 

different voltage losses in a fuel cell can be complicated and might require the 

identification of numerous parameters; however, it is shown in [1] that some semi-
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empirical control-oriented models can be used to accurately describe the fuel cell output 

voltage. The activation overvoltage, induced by the fuel cell reaction kinetics, is the 

amount of voltage that is lost in order to overcome the reaction energy barrier. It is 

typically described by the Butler-Volmer equation or the simpler Tafel equation; 

however, in this work, the following control-oriented model will be used [1] 

 

         1

0 1 FCc i t
act aV t v t v t e      (3) 

 

where  iFC(t) = IFC(t)/AFC is the current density (A cm-2), AFC  is the fuel cell active area 

(cm2), and 
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    1 2a FCv t bT t b     (5) 

 

where the constant coefficients a1, a2, b1, b2, and c1 are identified empirically. 

The ohmic overvoltage, which is due to resistance against charge transfer in the 

fuel cell, obeys Ohm’s law of conduction and can be expressed by 

 

    ohm ohm FCV t R i t    (6) 

 

where Rohm is the ohmic resistance (Ω·cm2). While the fuel cell ohmic resistance is 

attributed to electrolyte, electrodes, and interconnect resistances, it is mainly dominated 

by electrolyte conductivity against ionic charge transfer. Electrolyte conductivity strongly 
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depends on the water content in the electrolyte which, in turn, is a function of the fuel cell 

temperature. The models describing the relationship between temperature, humidity, and 

ionic conductivity are complex and require the identification of numerous model 

parameters. In this work, the ohmic resistance is approximated by a linear relationship 

with the temperature, similar to the model introduced in [40-41], as 

 

    1 2ohm FCR t d d T t     (7) 

 

where d1 and d2 are constant coefficients to be identified empirically. 

Finally, the concentration overvoltage stems from voltage losses caused by poor 

mass transport in the supply and removal of reactants and products in the fuel cell. The 

concentration and mass transport losses depend mainly on the fuel cell geometry and 

mass transport properties. The concentration overvoltage is expressed by [1] 

 

       n

conc FC FCV t i t mi t    (8) 

 

where m and n are constant coefficients. More details on the voltage losses occurring 

inside the fuel cell can be found in [38]. By substituting for the voltage losses in Eq. (2) 

from Eqs. (3)-(8), and combining similar terms, the fuel cell voltage can be written as 
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   (9) 

 

The total fuel cell stack voltage is 
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    ,FC st FC FCV t N V t    (10) 

 

where NFC is the number of cells. 

There are NFC = 40 fuel cells in the experimental open-cathode fuel cell stack used 

in this paper. Furthermore, the fuel cell active area is AFC = 50 cm2. Identification 

experiments were performed in order to obtain the other model parameters in Eq. (9). In 

these tests, the input PWM command to the fans was kept constant at 70% while the fuel 

cell current density increased from 0 to 0.28 A cm-2, in 2 A steps. Using a constrained 

nonlinear least squares algorithm in Matlab’s Optimization Toolbox, the model 

parameters are identified by fitting the experimental data. These parameters are a = -

4.6×10-2, b = 2.9×10-3, c = 5.41×10-4, d = -9.80×10-3, e = 514, f = -3.88, g = 4.90×10-3, m 

= 2.72×10-7, and n = -0.0760. 

Figure 3.1 shows the experimental voltage and the model output voltage in Eq. 

(10) as a function of the fuel cell current density. The experimental dataset shown in 

Figure 3.1 is a validation dataset obtained at 50% fan PWM command with current 

density steps of 300 s. The average output voltage in the last 120 s of each step was taken 

as the experimental voltage value corresponding to the specific current density in Figure 

3.1. As seen in this figure, there is a good consistency between the measured and 

modeled voltage values with a Mean Average Percentage Error (MAPE) of 2.55%. 
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Figure 3.1. Experimental and model fuel cell voltages with 50% fan PWM command. 
 

 

3.2. AIR DELIVERY SYSTEM DYNAMICS 

In this section, the air-delivery subsystem for open-cathode fuel cells is analyzed. 

In open-cathode fuel cells, air-delivery is achieved using fans which pull the air through 

the cathode channels. In this section, fan dynamics will be discussed and an empirical 

model describing the relationship between the fan PWM command and rotational 

velocity will be developed. 

3.2.1. Fan Operating Point Determination. In open-cathode PEMFCs, the 

pressure drop opposing the air flow in the air channels is [5] 
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where the first term describes the friction loss due to air flow along the cathode channels 

and the second term accounts for the minor losses at the entry and exit sections of the 

cathode. In Eq. (11) ∆ptotal is the total pressure drop (Pa), fr is the friction factor, lc is the 

channels’ length (m), DH is the hydraulic diameter (m), ρ = 1.1839 is the air density at 

Standard Temperature and Pressure (STP) (kg m-3), and v(t) is the air velocity (m s-1). 

The parameters KL,entry and KL,exit are the minor loss coefficients at the cathode entry and 

exit, respectively, and can be approximated using tabulated values [42] 

 

 2
,entry ,exit5.00 10 1.00L LK K      (12) 

 

The hydraulic diameter is 
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where wc and hc are the channel width (m) and height (m), respectively. 

In [5], Reynolds numbers below and above 500 are found to distinguish between 

laminar and transitional-turbulent flows, respectively, in open-cathode PEMFCs where 

the Reynolds number is 
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where μ = 1.85×10-5 is the air dynamic viscosity at STP (Pa·s). For the laminar region, 

the following empirical equation is proposed for the friction factor [5] 
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For the turbulent region, the friction factor is empirically modeled as [5] 
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The relationship between air velocity v (m s-1) and air volumetric flow rate Q (m3 s-1) is 

 

    CaQ t A v t    (17) 

 

where ACa is the fuel cell cathode cross-sectional area (m2). Using Eq. (17), the air mass-

flow rate passing through the fuel cell stack is 

 

    airm t Q t    (18) 

 

For a given fan, the performance curve illustrates the relationship between fan 

volumetric flow rate and pressure drop at the nominal rotational speed. In order to 

determine the fan operating point, its performance curve is intersected with the fuel cell 

pressure drop-air flow rate relationship. To this end, for a range of air flow rates, the 

corresponding air velocity is calculated via Eq. (17). The pressure drop is then computed 

as a function of air velocity using Eqs. (11)-(16). The intersection of the fan performance 

curve with the fuel cell pressure drop-air flow rate will result in the fan operating point. 

For other rotational speeds, the fan’s operating flow rate is 
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where ω1 is the nominal fan speed (rpm), ω2 is an arbitrary fan speed (rpm), Q1 is the fan 

operating flow rate (m3 s-1), and Q2 (m3 s-1) is the resulting flow rate corresponding to ω2 

(rpm). 

3.2.2. Modeling Experimental Fuel Cell Fans. For the experimental system used 

for the studies in this paper, Table 3.1 summarizes the important fuel cell system physical 

parameters and their numerical values. The fans’ performance curve and the fuel cell 

pressure drop-air flow rate curve are shown in Figure 3.2. Equations (15) and (16) are 

used to compute the friction factor in generating the fuel cell performance curve. Using 

the maximum air flow rate through the fans, i.e., 7.16×10-2 m3 s-1, the maximum 

Reynolds number that can be achieved is approximately 2200. Therefore, depending on 

the air velocity, air flow rate through the cathode channels can exhibit laminar or 

turbulent behavior. The intersection of the two curves is used in order to determine the 

fans’ operating point, which is ∆ptotal = 104 Pa and Q = 2.22 m3 min-1. It is assumed that 

the fans’ performance curve is expressed at the fan speed mentioned in the datasheet and 

Table 3.1. Therefore, for any given rotational speed, the air flow rate through the fans is 

calculated using Eq. (19) where ω1 = 6000 rpm is assumed to be the speed at which the 

performance curve is expressed and Q1 is obtained from Figure 3.2. 
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Table 3.1. Experimental fuel cell system physical parameters 

Parameter Value 

Cathode channel length, lc  5.54×10-2 m 

Cathode channel width, wc 3.61×10-3 m 

Cathode channel height, hc 1.07×10-3 m 

Cathode cross-sectional area, ACa 6.81×10-3 m2

Performance curve fan speed, ω1 6.00×103  rpm 

Fan maximum air flow rate 7.16×10-2 m3 s-1
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Figure 3.2. Fans’ performance curve and fuel cell pressure drop-air flow rate curves. 
 

 

A static model is used to express the relationship between the input PWM 

command to the fans and their rotational speed. This static model is identified with the 

least squares method using the experimental data. The experimental fan rotational 
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velocity, used for model identification, is obtained by step changes of 10% in the input 

PWM command. The model is 

 

      fan ,min fan ,max159.1 1211, fan fant u t u u t u        (20) 

 

where ufan  is the PWM command to the fans (%), which has a lower threshold of ufan,min 

= 20% and an upper threshold of ufan,max = 100%. The minimum threshold is taken so that 

the minimum air flow rate for the fuel cell reaction is provided. As shown in Figure 3.3, 

comparing the static model output in Eq. (20) versus validation data obtained by 15% 

increments in PWM command to the fans results in MAPE = 4.25%. 
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Figure 3.3. Validation results for fan rotational speed model versus experimental data. 
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3.3. TEMPERATURE 

The temperature dynamics inside the open-cathode PEMFC stack is described 

using the following lumped-parameter energy balance 

 

 
       FC

t total FC coolant

dT t
C P t P t Q t

dt
       (21) 

 

where Ct  is the thermal capacitance (J °K-1), TFC is the fuel cell stack temperature (°K), 

which is assumed to be the average temperature inside the fuel cell, Ptotal is the total 

power released by the electrochemical reactions (W), PFC  is the electrical power output 

(W), and coolantQ  is the heat lost due to cooling from the air flow (W). The total power 

released from the electrochemical reactions as a function of the hydrogen consumption 

rate, and therefore, the fuel cell current is 
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where 
2 ,H usedM  is the used hydrogen molar flow rate (mol s-1) and ∆H = 285.5×103 is the 

enthalpy change of hydrogen (J mol-1). The electrical output power is 

 

      FC FC FCP t V t I t    (23) 

 

In open-cathode PEMFC systems, cooling is performed by the fans pulling air 

through the cathode. The amount of heat removed by the blown air is 

 

       coolant fan air p FC ambQ t m t c T t T      (24) 
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where ηfan is the cooling efficiency, airm  is the air mass-flow rate (kg s-1), cp = 1006 is 

specific heat coefficient of air (J kg-1 °K-1), and Tamb is the ambient temperature (°K). 

The values of the cooling efficiency and thermal capacitance obtained by fitting 

the experimental data to the model in Eq. (21) are 

 

 3 11.00 10 J K and 43.7%t fanC       (25) 

 

The same identification dataset used in the voltage modeling section is employed 

in order to obtain the parameters above. Figure 3.4 shows the modeled temperature using 

these parameters versus the validation dataset used in the voltage modeling section in 

which the fan PWM command was set to 50% and the current density was increased from 

0.02 to 0.3 A cm-2 with 0.04 A cm-2 steps. As seen in this figure, there is a good 

consistency between the experimental temperature measurements and the modeled 

temperature, which results in an MAPE = 1.79%. It should be noted that the internal fuel 

cell temperature is a spatially distributed state inside the fuel cell and, as mentioned 

earlier, the experimental temperature measurements shown in Figure 3.4 are the average 

of ten temperature sensors placed evenly among the cathode channels. Therefore, the 

proposed model is capable of accurately describing the average internal fuel cell 

temperature. 
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Figure 3.4. Experimental and model temperatures for step changes in current density. 
 

 

3.4. PURGING 

One of the advantages of dead-end fuel cells is that they will only consume as 

much hydrogen as required. The nominal hydrogen mass flow rate [38] is 
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where 
2 ,H OCVm  is the hydrogen mas flow rate (g s-1) required to generate the fuel cell 

open-circuit voltage and MH2 = 2 is the hydrogen molar mass (g mol-1). 

In this section, based on purging tests performed on the experimental open-

cathode fuel cell, empirical control-oriented models are developed that address the 

purging effects on the hydrogen pressure and mass flow rate dynamics. Purging is usually 

performed using a solenoid valve which is controlled by an on/off digital signal. It was 
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observed that the pressure and hydrogen mass-flow rate dynamics inside the anode 

channels are strongly dependent on the purge valve state. Depending on the solenoid 

valve state, the hydrogen pressure dynamics inside the anode channels can be expressed 

as 
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where  
2HP s  is the hydrogen pressure Laplace transform, U (s) is the unit step function, 

ptank is the hydrogen tank pressure (kPa), and ∆pp is the pressure drop during purging 

(kPa). Furthermore, 
1p  and 

2p  are the pressure dynamics empirical time constants (s) 

when the purge valve is open and closed, respectively. Finally,  
2 tank0Hp p  when the 

purge valve is open and  
2 tank0H pp p p  , when the purge valve is closed. 

The hydrogen mass-flow rate inside the fuel cell is not only a function of the 

purge pulse, it also depends on the hydrogen pressure dynamics. Depending on the purge 

valve state, the hydrogen mass flow rate can be expressed as 
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where  
2HM s  is the hydrogen mass flow rate Laplace transform, 

2 ,maxHm  is the 

maximum hydrogen mass flow rate (g s-1) allowed by the mass-flow controller, 
2 ,H nomm  is 
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given in Eq. (26), τd is the time delay (s) after which the mass flow rate reacts to the 

purge valve closing, and 
2Hm   is the mass flow rate empirical time constant (s) when the 

purge valve is closed. It should be noted that based on the experimental observations, the 

hydrogen mass flow rate and pressure dynamics’ time constants, when the purge valve is 

closed, are equal, i.e. 
22Hm p  . Finally, the initial hydrogen mass flow rate when the 

purge valve closes is  
2 2 ,max0H Hm m  . 

In order to identify and validate the models in Eqs. (27) and (28),  the dataset used 

for Figure 2.2 is employed. The hydrogen pressure and mass flow rate measurements at 

35 °C are used for the model identification and the measurements at 40 and 45 °C are 

used for validation. The empirical parameters obtained during the identification process 

are ptank = 112 kPa, ∆pp = 21.9 kPa, 
1p = 5.00×10-2 s, 

2p = 9.51×10-2 s, 
2 ,maxHm = 0.150 g 

s-1, 
2 ,H OCVm = 1.30×10-3 g s-1, and τd = 0.400 s. Figure 3.5 shows the identification and 

validation results for the pressure and hydrogen mass flow rate models. The MAPEs 

between the model outputs and the experimental data shown in Figure 3.5 are presented 

in Table 3.2. 

 

 

Table 3.2. MAPE of pressure and mass flow rate models for data in Figure 3.5. 

 T = 35 °C T = 40 °C T = 45 °C 

Pressure Model 0.439% 0.417% 0.417% 

Mass Flow Rate Model 6.85% 11.5% 7.84% 
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The larger MAPE values for the hydrogen mass flow rate model are due to the 

constant mass flow rate assumption during purging. As can be seen in Figure 3.5 as soon 

as the purge valve opens the hydrogen flow exhibits an oscillatory response. This 

response is mainly due to the turbulent hydrogen flow during purging, which is not 

studied in this work. Finally, the control-oriented anode pressure and hydrogen mass flow 

rate models, presented in this section, can be used in future studies to design optimal 

purging strategies. 
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Figure 3.5. Anode pressure and hydrogen mass flow rate models versus experimental data 
during purge pulse. 
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4. SUMMARY AND CONCLUSIONS 

Considering the numerous advantages of open-cathode fuel cells and their 

increasing use in low to medium power applications in recent years, rigorous studies are 

required to characterize their performance in order to design control methodologies 

capable of improving their efficiency and reliability, reducing their costs, and therefore, 

help with their widespread commercialization. To this end, this paper is specifically 

designated to provide a comprehensive understanding of the important aspects of open-

cathode fuel cells operation and to develop models capable of describing their behavior. 

Performance characteristics such as humidity, purging, and temperature, were reviewed 

and then the temperature and purging effects were investigated experimentally. 

Furthermore, a set of nonlinear control-oriented models was proposed specifically for air-

forced open-cathode fuel cells. The effectiveness of the proposed models to capture the 

coupled dynamics inside the fuel cell was validated experimentally. The framework 

provided in this paper can be used as a foundation for developing advanced control and 

estimation methodologies for open-cathode fuel cells. One of the important control 

challenges in open-cathode fuel cells, namely, voltage regulation was recently studied in 

another work by the authors based on the background provided in this paper. 
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IV. ACTIVE DISTURBANCE REJECTION CONTROL FOR VOLTAGE 
STABILIZATION IN OPEN-CATHODE FUEL CELLS THROUGH 

TEMPERATURE REGULATION 

ABSTRACT 

Temperature regulation is an important control challenge in open-cathode fuel cell 

systems. In this paper, a feedback controller, combined with a novel output-injection 

observer, is designed and implemented for fuel cell stack temperature control. The first 

functionality of the observer is to smooth the noisy temperature measurements. To this 

end, the observer gain is calculated based on Kalman filter theory which, in turn, results 

in a robust temperature estimation despite temperature model uncertainties and 

measurement noise. Furthermore, the observer is capable of estimating the output voltage 

model uncertainties. It is shown that temperature control not only ensures the fuel cell 

temperature reference is properly tracked, but, along with the uncertainty estimator, can 

also be used to stabilize the output voltage. Voltage regulation is of great importance for 

open-cathode fuel cells, which typically suffer from gradual voltage decay over time due 

to their dead-end anode operation. Moreover, voltage control ensures predictable and 

fixed fuel cell output voltages for given current values, even in the presence of 

disturbances. The observer stability is proved using Lyapunov theory, and the observer’s 

effectiveness in combination with the controller is validated experimentally. The results 

show promising controller performances in regulating fuel cell temperature and voltage 

in the presence of model uncertainties and disturbances. 
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1. INTRODUCTION 

While open-cathode Polymer Electrolyte Membrane Fuel Cells (PEMFCs) 

possess the advantages of closed-cathode PEMFCs, such as high efficiency and power 

density, long cell and stack life, low electrolyte corrosion, low noise levels, and low 

operating temperatures, they differ in that they have cathode channels exposed to the 

atmosphere. In closed-cathode PEMFCs, the air is supplied by a compressor at pressures 

from near ambient to approximately 6 atm. On the other hand, open-cathode PEMFCs are 

usually operated near atmospheric pressure with the air being supplied by either 

convection or low-power fans. Higher pressures in closed-cathode PEMFCs mandate 

simultaneous cathode and anode pressure regulation in order to minimize their pressure 

difference and avoid potential damage. However, in open-cathode PEMFC systems, due 

to near-atmospheric operating pressures, pressure regulation is not required. It should 

also be noted that although operating at higher pressures results in higher voltages, it 

induces considerable parasitic loads (e.g., compressor, cooling system, humidification 

system) and corresponding costs. However, open-cathode fuel cells do not require 

humidification and are usually supplied with dry reactants; therefore, open-cathode 

PEMFCs have become popular due to their portability and reduced number of required 

Balance-Of-Plant (BOP) components: compressors, supply or return manifolds, pumps 

and radiators for cooling, and humidifiers. 

In spite of the numerous advantages of fuel cells, their safe, reliable, and efficient 

operation is still among the main challenges facing their widespread commercialization. 

The use of advanced and robust control methodologies capable of considering the 

complex interactions between different subsystems in fuel cells can greatly help 
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overcome these obstacles and ease their further development and employment. Open-

cathode fuel cells, in particular, have not received much attention in the fuel cell 

literature. Due to their low cost, they are typically equipped with simple controllers 

which, in turn, results in their underutilization. 

The majority of the papers on the control of PEMFCs focus on the challenges in 

closed-cathode PEMFC systems, specifically, their application in hybrid fuel cell-

battery/supercapacitor systems and the optimization of the energy flow between different 

system components [1,2]. Another important control problem in closed-cathode fuel cells 

has been the cathode air flow management in order to prevent oxygen starvation and 

improve the overall system efficiency. Suh et al. [3] proposed a decentralized controller 

in order to minimize oxygen starvation by properly manipulating air flow. An explicit 

constrained model predictive controller was proposed in [4,5] for this purpose. Oxygen 

excess ratio i.e., the ratio of the supplied oxygen to the oxygen used in the fuel cell 

reaction, has been used as an indicator of the sufficiency of the oxygen supply [6]. A 

feedforward controller was developed in [7] in order to control the oxygen excess ratio, 

while the authors in [8,9] augmented the feedforward controller with a linear quadratic 

regulator structure for this purpose. Finally, the desired oxygen excess ratio was 

maintained using a nonlinear model-based controller in [10]. 

Other research in the closed-cathode PEMFC controls field has considered the 

minimization of fuel and consumed energy. In these studies, the hydrogen and/or oxygen 

flow rates are adjusted in such a way that minimum auxiliary and fuel consumption is 

achieved. Tekin et al. [11] used fuzzy logic in determining an air flow set-point in order 

to minimize energy consumption. In [12], air flow rate and output current were used as 



160 

 

control variables to minimize fuel consumption for different load demands. Air and 

hydrogen flow rate adjustments have also been employed for output voltage regulation. 

An adaptive air flow rate controller capable of the voltage regulation in the presence of 

plant uncertainties was developed in [13]. Furthermore, Wang et al. [14] used a 

multivariable H∞ controller to regulate the output voltage by adjusting air and hydrogen 

flow rates. 

Another important consideration for fuel cell performance is to maintain the stack 

temperature in a desired range. A PI controller was proposed in [15] for temperature 

regulation, whereas the authors in [16] achieved this objective by manipulating the 

coolant mass flow rate using a feedback linearization controller. Furthermore, an 

incremental fuzzy controller with integral action was proposed in [17]. In [18], a 

systematic approach was introduced to calculate the optimal temperature as a function of 

input air relative humidity and stoichiometry, which was then used as the temperature 

reference for the controller. 

Although some of these works can readily be applied to open-cathode fuel cells, 

there are few studies specifically addressing their real-world control challenges. Strahl et 

al. [19] proposed an extremum seeking algorithm in order to determine the maximum 

voltage of an open-cathode fuel cell for a given current draw considering coupled 

temperature and humidity effects. The authors combined the extremum seeking algorithm 

with a PI controller in order to regulate the fuel cell voltage at its maximum value. 

Although the authors demonstrated promising simulation results, practical 

implementation of the proposed controller requires further investigation. A detailed 

procedure for the design and analysis of the cooling fans in a 2 kW air-forced open-
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cathode fuel cell was presented in [20]. Also, Barreras et al. [21] proposed a non-model-

based temperature control strategy for an open-cathode PEMFC used in a fuel cell hybrid 

vehicle. The controller adjusts the fans’ speed to some predefined setpoints when the 

temperature exceeds a threshold. 

Another important control challenge for open-cathode fuel cell systems is the 

design of purging strategies. Purging is mainly intended to remove excess water and other 

impurities in the anode channels, thereby maintain the desired humidity level. Purging is 

traditionally performed with a constant duration and period, as recommended by the fuel 

cell manufacturer. It can also be performed in a closed-loop manner using the fuel cell 

current as the feedback signal [22]. Recently, optimization strategies have been used in 

order to determine the optimal purging schedule based on its effect on the fuel cell active 

area, hydrogen consumption, voltage response and, therefore, the overall fuel cell system 

efficiency [23-25]. 

In this paper, temperature and voltage control, two of the important control 

problems in open-cathode fuel cells, will be investigated. Temperature has an important 

effect on fuel cell performance. Higher operating temperatures result in an increased fuel 

cell output voltage, larger voltage variations during purging, and even cathode catalyst 

layer drying in the case of extreme temperatures [26]. Therefore, a controller capable of 

dynamically maintaining the desired temperature, while considering model and process 

uncertainties, is required in order to ensure the fuel cell’s desired performance. 

Temperature control in open-cathode fuel cells is typically handled in an open-loop 

fashion by running the fans continuously at a constant speed [27], which induces 

undesirable auxiliary power consumption. At lower current demands where increased 
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temperature is actually desirable, the fans can operate at lower speeds, thereby 

minimizing power consumption. However, a non-zero minimum fan speed is essential in 

order to guarantee the minimum air flow required to prevent oxygen starvation. In spite 

of the aforementioned advantages of operating open-cathode fuel cells at constant 

temperatures, a gradual voltage decrease over time is observed during this mode of 

operation. This phenomenon, along with the strong dependence of the fuel cell voltage on 

operating conditions, causes large voltage uncertainties for any given current draw; 

thereby increasing the complexity and cost of the required power electronics circuitry. In 

a previous work by authors [28], this issue was addressed by manipulating the 

temperature reference in order to maintain a constant output voltage. In this paper, this 

objective is achieved by augmenting a novel observer to the feedback temperature 

controller. The observer is capable of simultaneously estimating both the internal fuel cell 

temperature and the output voltage uncertainties. The observer stability is proved using 

Lyapunov stability and its effectiveness, as part of the control scheme, is shown 

experimentally. The proposed observer/controller set is robust against model 

uncertainties and ensures a fixed and predictable output fuel cell voltage as the operating 

conditions change. This feature can greatly simplify the design of open-cathode fuel cell 

systems and the power electronics to which they interface. 
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2. TEMPERATURE CONTROL 

2.1. EXPERIMENTAL SYSTEM 

The open-cathode fuel cell used in this work is a 500 W air-forced open-cathode 

PEMFC stack with 40 cells and an active area of 50 cm2. The auxiliary components for 

the fuel cell stack include a hydrogen supply valve, a mass flow controller, a purge valve, 

two fans for combined air delivery and thermal management, and sensors for pressure, 

voltage, current, and internal and ambient temperature measurements. Details of the fuel 

cell stack and its auxiliary components can be found in [29]. Data acquisition and real-

time control are achieved using two National Instruments cards. The multifunction card 

(NI-PCI 6225) is used for collecting sensor measurements and the analog output card 

(NI-PCI 6713) is used for supply and purge valve control and fan speed control. Supply 

and purge valve control are performed using digital signals; whereas, fan speed control is 

achieved using a Pulse Width Modulation (PWM) signal. The purge duration and period 

are chosen to be the manufacturer’s original settings of 0.6 s and 15 s, respectively. The 

user interface with the National Instruments cards is created in Simulink using the 

Simulink Real-Time toolbox. The implemented code is executed on a target computer for 

real-time implementation with a sampling period of 100 ms. 

2.2. CONTROLLER DESIGN 

The internal temperature and voltage dynamics, respectively, can be written in 

compact form as [28] 

 

 
                 
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where t is time (s), TFC is the operating fuel cell temperature (K), IFC is the fuel cell 

current (A), ṁair is the air mass-flow rate (kg s-1), Tamb is the ambient temperature (K), 

and pH2 and pO2 are unitless hydrogen and oxygen partial pressures with respect to 

atmospheric pressure in the anode and cathode, respectively. Finally, the functions f (·), g 

(·), h (·), and l (·), respectively, are 
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where NFC is the number of cells, iFC(t) = IFC(t)/AFC is the current density (A cm-2), AFC is 

the fuel cell active area (cm2), R = 8.3144621 is the universal gas constant (J mol-1 K-1), F 

= 96485.34 is Faraday’s number (C mol-1), Ct  is the thermal capacitance (J K-1), ∆H = 

285.5×103 is the enthalpy change of hydrogen (J mol-1), ηfan is the cooling efficiency, cp = 

1006 is specific heat coefficient of air (J kg-1 K-1), and the coefficients a1, a2, a3, a4, a5, 

a6, a7, a8, and a9  are identified experimentally [29]. 

In order to design the temperature controller, at each sampling time t = t*, Eq. (1)

is linearized about an equilibrium point  ,FC airT m , which can be obtained by solving 
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The temperature about which the linearization is performed is taken as the reference 

temperature  *
,FC FC refT T t . Therefore, using Eq. (4), the corresponding equilibrium air 

mass flow rate is 
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Finally, the linearized temperature dynamics can be written as 
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where the incremental fuel cell temperature and incremental air mass flow rate, 

respectively, are    FC FC FCT t T t T    and    air air airm t m t m     . Using the state 

feedback control law 

 

      air air air c FCm t m t m k T t          (7) 

 

the linearized closed-loop system is 

 



166 

 

 
     FC

c FC

d T t
k T t

dt


       (8) 

 

If the gain kc is chosen such that α - βkc is negative, then the temperature closed-

loop system is asymptotically and locally stable, the transient dynamics will be 

overdamped, and the settling time can be adjusted by manipulating kc. Using Eq. (7), the 

air mass flow rate is 

 

     air air c FC FCm t m k T t T       (9) 

 

Finally, the actual control input, i.e., the input PWM command to the fans, is obtained 

using the empirical relationship [29] 
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   (10) 

 

where ω1 (rpm) and Q1 (m3 s-1) are the nominal fan rotational speed and air flow rate, 

respectively. Furthermore, the limits ,minairm = 0.0144 kg s-1 and ,maxairm = 0.108 kg s-1 are 

obtained from the fans operating constraints, i.e., ufan,min = 20% and ufan,max = 100%. 

In order to investigate controller performance, a constant current density of 0.2 A 

cm-2 is drawn from the experimental fuel cell. The control objective for this test is to 

regulate the fuel cell temperature at 35, 40, and 45 °C. The controller gain kc is obtained 

by linearizing the system at each time instant and solving the equation α - βkc = -q. The 

variable q is taken as 1 in order to guarantee closed-loop stability and generate a desirable 
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transient performance. Figure 2.1 shows the average fuel cell temperature, the fans’ input 

duty cycle, and the fuel cell output voltage. 
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Figure 2.1. (a) Controlled average fuel cell temperature, (b) fan duty cycle, and (c) output 
voltage for iFC = 0.2 A cm-2. 

 

 

The temperature sensors are placed inside the cathode channels in order to 

measure the internal fuel cell temperature. The sensors’ exposure to air flow, which is not 

smooth in the cathode channels, created by the fans’ operation causes the measurement 

noise seen in Figure 2.1. Due to this noise, the control objective is achieved at the 

expense of continuous saturation of the control signal. In other words, the noisy nature of 

the temperature measurement, which is used as the feedback signal, causes the fans to 

start and stop continuously. This saturation can lead to long-term structural damage to the 
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fuel cell membrane and catalyst layers. Furthermore, as shown in subplot (c) of Figure 

2.1, this behavior results in undesirable oscillations in the fuel cell output voltage. 

2.3. OUTPUT-INJECTION OBSERVER DESIGN 

In order to address the noisy temperature measurements and generate a smooth 

temperature estimate to use as the feedback signal in the controller, an output-injection 

observer is proposed in this subsection. To this end, the system dynamics in Eq. (1) are 

expressed in the state-space representation 

 

            , ,d dx t l u t t x h u t t     (11) 

 

where x(t) = TFC(t) is the system state,    airu t m t   is the control input which is 

assumed to be known, and the term d(t) is assumed to be the vector of measureable fuel 

cell system disturbances, i.e.,        
2 2

d amb FC H Ot T t I t p t p    . Finally, by 

defining the output vector as y(t) = [TFC(t)  VFC(t)]T, the output equation is 

 

        y C Dt t x t t     (12) 

 

where the vectors C(t) and D(t), respectively, are 

 

          
1 0

C D
d d

t t
g t f t

   
    
   

   (13) 

 

Considering significant uncertainty in the voltage model [28], it is assumed that the 

function f(·) can be written as f(d(t)) = f1(d(t)) + f2(d(t)) where f1(d(t)) is the nominal part 



169 

 

of this function, expressed in Eq. (3), and f2(d(t)) is the unknown and unmolded part of 

Eq. (2). Therefore, 

 

     
 

  
 

1 2

0 0

1 2D D

D
d d

t t

t
f t f t

   
    
    

   (14) 

 

The following observer is then proposed for temperature estimation 
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where  x̂ t ,  ŷ t , and  ˆ
2D t  are estimates of the state, output, and output uncertainty, 

respectively, and K(t) is the observer gain. By defining the state and uncertainty 

estimation errors as      ˆx t x t x t   and      ˆ
2 2 2D D Dt t t  , respectively, the state 

estimation error system dynamics are 
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The observer gain K(t) is calculated based on Kalman filter theory to result in a smooth 

temperature estimate while being robust to model uncertainty and measurement noise 

[30] 

 

       -1
cK C RTt p t t    (17) 
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where Rc is the measurement noise covariance matrix and p(t) is the covariance which is 

propagated using 

 

                21 2 ,cC R C dT
cp t t t p t p t l u t t q       (18) 

 

where qc is the standard deviation of the temperature model uncertainty. It should be 

mentioned that the measurement noise and temperature model uncertainty are assumed to 

be zero-mean Gaussian noises. At each sampling time, by substituting the input and 

disturbance measurements in Eqs. (17) and (18) to calculate for the observer gain K(t), a 

stable closed loop, i.e., l(u(t),d(t)) – K(t)C(t) < 0 will be achieved. 

The output equation uncertainty estimation error  2D t  can be written as 

 

        2

0ˆ
2 2 2D D Dt t t

tf

 
    

 


    (19) 

 

where      2 2 2
ˆt t tf f f   is the estimation error of the uncertain function f2(t). It is 

assumed that this function can be approximated using a set basis functions  and a 

coefficient vector η 

 

     2 η φ dTt tf     (20) 

 

The basis functions can, in general, be polynomial functions of all of the measureable 

inputs to the output equation. While the order of the polynomials and therefore, number 

of the unknown coefficients, depend on the typical errors seen in the output model, 

higher-order polynomials result in higher approximation accuracies; however, the 
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implementation cost will also increase accordingly. The unknown coefficient vector η is 

estimated based on recursive least squares theory as 

 

           ˆη̂ S φ d FC FCV Vt t t t t   
    (21) 

 

where  η̂ t  is the estimated coefficient vector and the matrix S(t) is the solution to the 

following differential equation 

 

              S S S φ d φ d STt t t t t t     (22) 

 

where λ is the forgetting factor. In order to investigate the stability of the proposed 

observer, the following candidate Lyapunov function is considered 
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2 2
η S ηTtV t tx t        (23) 

 

wherer γ is a positive constant. By taking the time derivative of the Lyapunov function 

along the trajectories of the systems in Eqs. (16) and (21) 
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   (24) 

 

As mentioned earlier, the observer gain K(t) = [k1(t)  k2(t)], which is calculated 

using the Kalman filter formulation in Eqs. (17) and (18), results in a negative closed-
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loop eigenvalue, denoted lc(t) = l(u(t),d(t)) – K(t)C(t). Furthermore, by applying the 

matrix inversion lemma to Eq. (22) 
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Therefore, the Lyapunov function derivative in Eq. (24) can be written as 
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This inequality can be expressed in a more compact form 
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   (27) 

 

By investigating the matrix Q, it can be easily observed that by proper choice of 

the coefficient γ the matrix Q will be positive-definite. Therefore, the Lyapunov function 

derivative is negative, implying asymptotic convergence of the estimation errors to zero. 

The observer performance in estimating the temperature is shown in the next subsection 
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in conjunction with the feedback controller. Furthermore, the estimated voltage model 

uncertainty will later be used in the voltage controller structure. 

2.4. TEMPERATURE CONTROLLER PERFORMANCE 

In this section, the temperature controller performance when using the estimated 

temperature from the observer is investigated. To this end, a current density of 0.2 A cm-2 

is drawn from the fuel cell. Furthermore, the desired fuel cell reference temperature as 

shown in Figure 2.2 is similar to the test performed in Figure 2.1. The parameters tuned 

for the observer implementation are p(0) = 100, qc = 1, S(0) = 100, λ = 0.95, Rc = [1 0;0 

20]. Furthermore, based on experimental investigations, it was observed that a scalar 

approximation was sufficient to capture the output model uncertainties. 

The estimated and reference fuel cell temperatures are shown in Figure 2.2(a). As 

seen in this figure, the controller can closely track the desired reference temperature using 

the observer estimate in the feedback loop resulting in a Mean Average Percentage Error 

(MAPE) of 0.932% between the estimated and reference temperatures. The convergence 

speed is mainly limited by the fans’ saturation limits. The fan input duty cycle is shown 

in Figure 2.2(b). As seen in this figure, the controller accomplishes its objective without 

frequent control signal saturation compared to when the observer is not utilized. 

However, when TFC,ref = 35 C the fans operate near their full load in order to maintain 

the low reference temperature, resulting in excessive saturation of the PWM command 

signal. Finally, as seen in Figure 2.2(c), the fuel cell voltage is less noisy compared to the 

fuel cell voltage when implementing temperature control without the observer, as was 

shown in Figure 2.1(c). The oscillations seen in the voltage in this figure occur due to 

pressure variations during purging. Considering the previous test results with the 
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experimental fuel cell [28], this temperature-dependent phenomenon is considerably 

intensified, which can be attributed to the structural degradation and aging of the fuel 

cell. 

A gradual voltage decrease over time can also be seen in Figures 2.1(c) and 

2.2(c). This is due to the cathode catalyst layer drying, which typically occurs during the 

dead-end anode operation of the fuel cell. This slow phenomenon is a result of water 

evaporation and desorption in the cathode catalyst layer pores that cause a reduction in 

the active proton reaction sites and, therefore, voltage decline over time [26]. This 

behavior in the fuel cell output voltage will be compensated for by the voltage regulation 

scheme in the next section. 
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Figure 2.2. (a) Reference and estimated temperatures when using controller with 
temperature estimate from observer as feedback signal and corresponding (b) control 

signal and (c) output voltage. 
 

The effect of the controller gain q (and therefore, kc) on its performance is 

investigated using experimental data. To this end, for iFC = 0.2 A cm-2, a reference 

temperature of 35 °C is set for the temperature controller. Figure 2.3 shows the steady 

state tracking errors and fan input duty cycle for two cases in which the controller gain, q 

is taken as 0.5 and 5. As seen in this figure, the controller gain of 0.5 (column (a)) results 

in an average absolute steady state error of 0.455 °C, whereas this error is reduced to 

0.122 °C (73.2% decrease) for the gain of 5 (column (b)). The MAPE values between the 

reference and estimated temperatures for gains of 0.5 and 5 are 0.147 °C and 0.0395 °C, 

respectively. On the other hand, the controller gain of 0.5 results in a smoother control 

signal (40% peak-to-peak variations) compared to the gain of 5 (80% peak-to-peak 
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variations). Due to non-smooth fan operation for q = 5, there are more oscillations in the 

fuel cell temperature as seen in Figure 2.3. Therefore, a compromise needs to be made in 

choosing the controller gain. For the subsequent experiments in this paper, a gain of q = 2 

is chosen for the temperature controller. 
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Figure 2.3. Temperature tracking error and duty cycle for iFC = 0.2 A cm-2 and (a) q = 0.5 
and (b) q = 5. 
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3. VOLTAGE CONTROL 

As seen in Figures 2.1 and 2.2, constant temperature operation of the open-

cathode fuel cell can result in a gradual voltage decrease over time. Furthermore, as 

various operating conditions in open-cathode fuel cells can cause a considerable amount 

of uncertainty in the fuel cell voltage, it is essential to maintain a fixed and predictable 

output voltage. Considering the voltage model in Eq. (2), voltage control can be achieved 

by manipulating its controllable inputs, i.e. hydrogen partial pressure, pH2 and 

temperature, TFC. The dead-end anode operation of the open-cathode fuel cells guarantees 

that they consume as much hydrogen as required. Therefore, as current densities change, 

the hydrogen mass flow rate is automatically adjusted to provide sufficient fuel for the 

fuel cell operation. Although increasing hydrogen mass flow rate can potentially be used 

to modulate the output voltage, this will be achieved at the cost of higher hydrogen 

consumption and added auxiliary components such as hydrogen mass flow controllers 

and pressure regulators. Therefore, in this section, voltage regulation is achieved by 

manipulating the reference fuel cell temperature. 

Using the voltage model in Eq. (2), the temperature reference corresponding to a 

given voltage reference, VFC,ref, is 

 

     
  

     
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d d d

d d
FC ref FC ref
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V f t V f t f t
T t

g t g t
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As previously shown, the uncertain part of the voltage model, i.e., f2(d(t)) can be 

approximated by estimating the unknown coefficient vector  η̂ t  using the proposed 
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observer. By substituting the estimated uncertainty in Eq. (28), the temperature reference 

corresponding to VFC,ref  can be calculated on-line using 

 

          
  

, 1
,

ˆd η φ d

d

T
FC ref

FC ref

V f t t t
T t

g t

 
    (29) 

 

Therefore, if the reference temperature in Eq. (29) is used as the input to the temperature 

controller, the fuel cell output voltage will approach the desired value, VFC,ref. Figure 3.1 

shows a block diagram of the voltage regulation scheme employed in this paper. As seen 

in this figure, fuel cell voltage, temperature, current, anode pressure, and input command 

to the fans are used as measurements for the voltage regulation scheme. The air mass 

flow rate passing through the cathode channels is obtained using the fan model. Any 

uncertainties in the temperature and fan model are accounted for in the observer design, 

whereas the voltage model uncertainties are accounted for using the estimated output 

uncertainty. 

 

 

 

Figure 3.1. Fuel cell stack voltage regulation scheme. 
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Figure 3.2 shows the experimental results of a comparison between constant-

temperature (column (a)) and constant-voltage (column (b)) operations of the open-

cathode fuel cell system for iFC = 0.2 A cm-2. In this figure, the measured and reference 

voltages, the estimated and reference temperatures, and the temperature tracking errors 

are shown. The desired constant voltage for the fuel cell operation corresponding to iFC = 

0.2 A cm-2 is taken to be 22.5 V, which is chosen in the fuel cell voltage range 

corresponding to iFC = 0.2 A cm-2 as seen in Figure 2.2(c). Furthermore, the reference 

fuel cell temperature used in the constant-temperature operation is selected to be a typical 

operating temperature, in this case 35 °C. As seen in Figure 3.2, running the fuel cell 

solely in constant-temperature mode results in a decrease of approximately 4% in the 

output voltage within 2000 s. Moreover, as seen in this figure, the temperature controller 

is capable of closely tracking the reference temperature for both cases. The MAPEs 

between the estimated and reference temperatures for the constant-temperature and 

constant-voltage tests are 0.360% and 0.312%, respectively, which are within the 

temperature variations and less than 1.00% of the constant temperature reference. For the 

constant-voltage test, it can be seen that voltage regulation is achieved by gradually 

increasing the temperature controller reference signal resulting in a MAPE = 0.252%. 

The voltage controller performance for iFC = 0.16, 0.22, and 0.28 A cm-2 is shown 

in Figure 3.3. The reference voltages corresponding to iFC = 0.16, 0.22, and 0.28 A cm-2 

are 25.5, 23.0, and 20.5 V, respectively. These reference voltages for the given current 

densities are chosen based on the observed voltage measurements in the typical operating 

temperature range for the experimental open-cathode fuel cell used in this study. As seen 

in Figure 3.3(a), the controller is able to closely regulate the output fuel cell voltages at 
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the corresponding reference values with a MAPE = 1.27% between the measured and 

reference fuel cell voltages. In addition to steady-state voltage regulation, the transient 

fuel cell voltage is also properly controlled by the proposed controller as seen in Figure 

3.3. In other words, the fast temperature effect on the fuel cell voltage dominates the 

slower transient effects due to current density changes and, consequently, the controller 

manages to regulate the voltage at its steady state value in about 60 s for a current density 

change from 0.16 to 0.22 A cm-2 and in about 35 s for a current density change from 0.22 

to 0.28 A cm-2. The reason for the change in the transient response is that the controller 

has fixed gains, while the operating condition varied to a degree where the system 

dynamics changed appreciably. However, the time constant of the voltage dynamics due 

to current density changes without the controller is between 100 and 200 s. Furthermore, 

Figure 3.3(b) shows the reference and estimated fuel cell temperatures and the tracking 

error, which has a MAPE = 0.797%. Again, the reference temperature is being increased 

by the voltage controller in order to overcome the voltage drop and facilitate voltage 

regulation. As seen in Figure 3.3, the fuel cell voltage for iFC = 0.28 A cm-2 exhibits a 

non-smooth behavior in the form of oscillations with a magnitude of approximately 1.8 

V. In addition to the aforementioned aging of the experimental fuel cell, this phenomenon 

is also due to estimation errors in the output equation uncertainty. From the voltage 

measurements in Figures 2.1 and 2.2, it can be observed that there is a significant 

variation between the fuel cell voltage behavior during purging at different temperatures. 

The control-oriented voltage model in Eq. (2), especially, the function g(.) is not capable 

of capturing this effect. Therefore, the proposed estimation methodology fails to correctly 

identify the output equation uncertainties. The uncertainties in the function g(.) also 
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contribute to the errors in reference temperature determination in Eq. (29). Incorporating 

control-oriented models capable of describing the effect of this phenomenon on the fuel 

cell voltage can significantly improve the performance of the proposed observer and 

therefore, voltage regulation scheme. This modeling work is currently under 

development. 

In order to investigate the limitations of the proposed voltage controller, two tests 

have been performed as shown in Figure 3.4. In the first test (column a), a voltage 

reference of 22.5 V is chosen corresponding to iFC = 0.2 A cm-2; whereas, in the second 

test (column b), a higher voltage reference of 23.5 V is selected for the same current 

density. In column (a) of Figure 3.4, the fuel cell voltage and temperature for the first test 

are shown. As seen in these subplots, in order to facilitate voltage regulation, the 

reference temperature increases gradually from 31.7 °C to about 36.6 °C in 

approximately 27 min and remains constant afterwards. On the other hand, for VFC,ref = 

23.5 V, the fuel cell reference temperature rise is much faster as can be seen in column 

(b) of Figure 3.4 and, as soon as the temperature reaches approximately 52 °C, the 

voltage starts to drop due to intensified cathode catalyst layer drying. After reaching 55 

°C, the temperature stops increasing; however, the fuel cell voltage keeps dropping. One 

possible solution to this problem is to alternatively switch between voltage and 

temperature control. In other words, as soon as the reference temperature for the voltage 

controller reaches a temperature where the voltage starts decreasing, the controller should 

regulate the temperature at a lower setpoint. This would result in an increase in the 

dropping fuel cell voltage until it reaches the original voltage reference at which point the 
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controller will switch back to voltage control. This algorithm is currently under 

development by the authors. 

 

0 500 1000 1500
21

22

23

Temperature Control
(a)

V
o

lt
ag

e 
[V

]

0 500 1000 1500
21

22

23

Voltage Control
(b)

 

 

measured
reference

0 500 1000 1500
32

34

36

38

T
em

p
er

at
u

re
 [

o
C

]

 

 

estimated
reference

0 500 1000 1500
32

34

36

38

 

 

estimated
reference

0 500 1000 1500
-1

0

1

T
ra

ck
in

g
 E

rr
o

r 
[o

C
]

Time [s]
0 500 1000 1500

-1

0

1

Time [s]

 

Figure 3.2. Measured and reference voltages, estimated and reference temperatures, and 
temperature tracking error for (a) constant-temperature and (b) constant-voltage fuel cell 

operations. 
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Figure 3.3. Reference and measured (a) fuel cell voltage and (b) temperature for voltage 
regulation experiments. 

 

 

In summary, by properly choosing a voltage reference in the typical operating 

range for a given current density, the proposed voltage controller can guarantee a fixed 

polarization curve for the fuel cell and eliminate voltage model uncertainties. This 

polarization curve could be determined at the design stage. Any uncertainty in this 

polarization curve during the lifetime of the fuel cell would be compensated for by the 

voltage controller. Thus, the voltage controller can not only be used to compensate for the 

gradual voltage decrease, it can also be used to ensure a predictable output voltage for 

each current demand. 
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Figure 3.4. Fuel cell voltage and temperature for voltage regulation at (a) VFC,ref = 22.5 V 
and (b) VFC,ref = 23.5 V. 

 

 



185 

 

4. SUMMARY AND CONCLUSIONS 

In this paper, temperature and voltage control problems in air-forced open-

cathode fuel cells were formulated and solved for a laboratory fuel cell system. The 

temperature controller was shown to be able to accurately maintain the fuel cell 

temperature for constant and time-varying references. Also, the voltage controller was 

shown to result in a constant output voltage for constant current draws, and was able to 

improve the transient voltage response during current density changes. Finally, the 

performance of the proposed controller strongly depends on the selected voltage 

reference. While lower voltage references exhibit a stable performance, higher voltage set 

points can result in a faster temperature rise and, therefore, the possibility of reaching 

high temperatures which will, in turn, result in performance degradation. Future work 

will include incorporating adaptation into the controller to reduce voltage oscillations at 

high power demands and maintain the reference fuel cell voltage if the reference 

temperature reaches the system temperature limits by using a switching controller. The 

use of the voltage controller can eliminate undesirable uncertainty in the fuel cell output 

voltage, resulting in a fixed pre-determined polarization curve and simplifying the design 

of the interfacing power electronics circuitry. 
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SECTION 

2. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

This dissertation provides a foundation for the characterization, performance 

analysis, and modeling of Li-ion batteries and open-cathode PEM fuel cells with the 

ultimate goal of designing control methodologies to improve their performance and 

reduce their costs and help with their widespread commercialization. Some of the most 

important control problems, namely temperature control and voltage stabilization in 

open-cathode PEM fuel cells and SOC estimation in Li-ion batteries, are formulated and 

solved based on a novel estimation approach that is proposed in this dissertation. A 

summary of the individual papers in the dissertation along with the future research 

directions are presented in the following subsections: 

2.1. SUMMARY AND CONCLUSIONS 

In Paper I, the development of an experimental Li-ion battery research testbed is 

presented. After a detailed description of design considerations and system development, 

battery characterization and modeling are studied, and some of the essential 

functionalities of BMSs are reviewed. The most commonly-used algorithms for each of 

these subsystems, along with their advantages and disadvantages, are introduced and 

open research areas in BMS design are reviewed. Finally, some initial experimental test 

results are presented to illustrate the capabilities of the testbed. 

In Paper II, a reduced-order electrochemical model-based SOC estimation 

algorithm is proposed. The algorithm is based on a Luenberger-like observer coupled 

with an RLS with exponential forgetting parameter identification routine to compensate 

for the reduced-order model uncertainties. The asymptotic convergence of the state 



190 

 

estimates to their true values is proved analytically using Lyapunov Stability. 

Furthermore, accurate SOC estimation with low MAPE values is achieved for a wide 

range of C rates. It is also observed that the state estimates reach their actual values in 

less than one minute, despite incorrect initial state estimates for these tests. As the 

proposed observer does not involve any PDE solution or matrix inversion, does not 

require any constraints on the battery current profile, and is analytically supported by 

Lyapunov theorem, it can provide an accurate and reliable electrochemical model-based 

solution for SOC estimation.  

Paper III is designated to investigate the important aspects of open-cathode fuel 

cells operation including their performance and modeling with the ultimate goal of 

designing controllers to improve the overall system performance. In this paper important 

performance characteristics of open-cathode fuel cells, i.e., humidity, purging, and 

temperature, are reviewed, and then the temperature and purging effects are investigated 

experimentally. Furthermore, a set of nonlinear control-oriented models is proposed 

specifically for air-forced open-cathode fuel cells. The effectiveness of the proposed 

models to capture the coupled dynamics inside the fuel cell is validated experimentally. 

The framework provided in this paper can be used as a foundation to develop other 

control methodologies to improve the efficiency and performance of the open-cathode 

fuel cells. 

Finally, in Paper IV, temperature and voltage control problems in air-forced open-

cathode fuel cells are formulated and solved for a laboratory fuel cell system. The 

temperature controller is shown to be able to accurately maintain the fuel cell temperature 

for constant and time-varying references. Also, the voltage controller is shown to result in 



191 

 

a constant output voltage for constant current draws, and is able to improve the transient 

voltage response during current density changes. The use of the voltage controller can 

eliminate undesirable uncertainty in the fuel cell output voltage, resulting in a fixed pre-

determined polarization curve and simplifying the design of the interfacing power 

electronics circuitry. 

2.2. FUTURE WORK 

Despite an extensive number of publications in the area of Li-ion batteries and 

BMS design, there are still numerous research opportunities in this field, including 

battery State of Health (SOH) modeling and estimation, thermal modeling, and battery 

protection. Specially, BMS challenges specific to battery packs such as extending cell-

level SOC estimation and protection to packs, optimal cell balancing, and thermal 

management require more rigorous research. The developed experimental research 

testbed can be used for electrical, thermal, and lifetime characterization of Li-ion 

batteries in addition to validating the effectiveness of the aforementioned BMS 

functionalities.  

The proposed output-injection observer in Paper II can also be applied in other 

BMS functionalities such as SOH estimation. The identified output model uncertainties 

can be used as an indication of the battery SEI layer resistance. Furthermore, the state 

estimates obtained from the observer can be employed to provide an estimate of the total 

number of lithium ions inside the battery and, therefore, battery capacity, during open-

circuit battery operation.  

In the area of open-cathode PEM fuel cells, it was observed that the performance 

of the proposed voltage controller in Paper IV strongly depends on the selected voltage 

reference. While lower voltage references exhibit a stable performance, higher voltage set 
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points can result in a faster temperature rise and, therefore, the possibility of reaching 

high temperatures which will, in turn, result in performance degradation. Therefore, 

future work includes designing a switching controller to maintain the reference fuel cell 

voltage if the reference temperature reaches the system temperature limits. Furthermore, 

designing an optimal and real-time purge scheduling considering the fuel cell degradation 

mechanisms is another important challenge in open-cathode PEM fuel cells that needs to 

be studied. 

Finally, the proposed output-injection adaptive observer design is a generic 

solution for state estimation in dynamic systems with output model uncertainty. 

Analytical stability proof and the effectiveness of this methodology, shown in Papers II 

and IV, demonstrate its potential for state estimation in other uncertain dynamic systems.  
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