38 research outputs found

    River bed sediment surface characterisation using wavelet transform-based methods.

    Get PDF
    The primary purpose of this work was to study the morphological change of river-bedsediment surfaces over time using wavelet transform analysis techniques. The wavelettransform is a rapidly developing area of applied mathematics in both science andengineering. As it allows for interrogation of the spectral made up of local signalfeatures, it has superior performance compared to the traditionally used Fouriertransform which provides only signal averaged spectral information. The main study ofthis thesis includes the analysis of both synthetically generated sediment surfaces andlaboratory experimental sediment bed-surface data. This was undertaken usingtwo-dimensional wavelet transform techniques based on both the discrete and thestationary wavelet transforms.A comprehensive data-base of surface scans from experimental river-bed sedimentsurfaces topographies were included in the study. A novel wavelet-basedcharacterisation measure - the form size distribution ifsd) - was developed to quantifythe global characteristics of the sediment data. The fsd is based on the distribution ofwavelet-based scale-dependent energies. It is argued that this measure will potentiallybe more useful than the traditionally used particle size distribution (psd), as it is themorphology of the surface rather than the individual particle sizes that affects the nearbed flow regime and hence bed friction characteristics.Amplitude and scale dependent thresholding techniques were then studied. It was foundthat these thresholding techniques could be used to: (1) extract the overall surfacestructure, and (2) enhance dominant grains and formations of dominant grains withinthe surfaces. It is shown that assessment of the surface data-sets post-thresholding mayallow for the detection of structural changes over time

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica)

    Get PDF
    La ingeniería de sistemas, definida generalmente como arte y ciencia de crear soluciones integrales a problemas complejos, se aplica en el presente documento a dos sistemas naturales, a saber, un sistema acuífero kárstico y un sistema glaciar, desde una perspectiva hidrológica. Las técnicas de identificación, desarrolladas típicamente en ingeniería para representar sistemas artificiales por medio de modelos lineales y no lineales, pueden aplicarse en el estudio de los sistemas naturales donde se producen fenómenos de acoplamiento entre el clima y la hidrosfera. Los métodos evolucionan para afrontar nuevos campos de identificación donde se requieren estrategias para encontrar el modelo idóneo adaptado a las peculiaridades del sistema. En este sentido, se han considerado especialmente las herramientas basadas en la transformada wavelet utilizadas en la preparación de series temporales, suavizado de señales, análisis espectral, correlación cruzada y predicción, entre otros. Bajo este enfoque, una aplicación a mencionar entre las tratadas en esta tesis, es la determinación analítica del núcleo efectivo estacional (SEC) a través del estudio de la coherencia wavelet entre temperatura del aire y la descarga del glaciar, que establece un conjunto de períodos de muestreo aceptablemente coherentes, a partir del cual se crearán los modelos del sistema glacial. El estudio está dirigido específicamente a estimar la influencia de la precipitación sobre la descarga del acuífero kárstico de Fuenmayor, en San Julián de Banzo, Huesca, España. De la misma manera, se ocupa de las consecuencias de la temperatura del aire en la fusión del hielo glaciar, que se manifiesta en la corriente de drenaje del glaciar Collins, isla King George, Antártida. En el proceso de identificación paramétrica y no paramétrica se buscan los modelos que mejor representen la dinámica interna del sistema. Eso conduce a pruebas iterativas, donde se van creando modelos que se verifican sistemáticamente con los datos reales del muestreo, de acuerdo a un criterio de eficiencia dado. La solución mejor valorada según los resultados obtenidos en los casos tratados apuntan a estructuras de modelos en bloques. Esta tesis significa una exposición formal de la metodología de identificación de sistemas propios de la ingeniería en el contexto de los sistemas naturales, que mejoran los resultados obtenidos en muchos casos de la hidrología kárstica que comúnmente usaban métodos ad hoc ocasionales de carácter estadístico; así mismo, los enfoques propuestos en los casos de glaciología con el análisis wavelet y los modelos orientados a datos raramente considerados en la literatura, revelan información esencial ante la imposibilidad de precisar la totalidad de la física que rige el sistema. Notables resultados se derivan en la caracterización de la respuesta del manantial de Fuenmayor y su correlación con la precipitación, desde la perspectiva de un sistema lineal, que se complementa con los métodos de identificación basados en técnicas no lineales. Así mismo, la implementación del modelo para el glaciar Collins, obtenido también mediante métodos de identificación de caja negra, puede revelar una inestabilidad de los límites de los periodos activos de la descarga, y consecuentemente la variabilidad en la tendencia actual en el cambio climático global

    Experimental investigations of two-phase flow measurement using ultrasonic sensors

    Get PDF
    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measurement of the parameters of the two- phase slug flow. The use of the HHT technique is sensitive enough to detect the hydrodynamics of the slug flow. The results of the experiments are compared with correlations in the literature and are in good agreement. Next, experimental data of air-water two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow regimes were used to develop an objective flow regime classification of two-phase flow using the ultrasonic Doppler sensor and artificial neural network (ANN). The classifications using the power spectral density (PSD) and discrete wavelet transform (DWT) features have accuracies of 87% and 95.6% respectively. This is considerably more promising as it uses non-invasive and non-radioactive sensors. Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz and 7.5MHz were used to measure two-phase flow both in horizontal and vertical flow pipes. The liquid level measurement was compared with the conductivity probes technique and agreed qualitatively. However, in the vertical with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were attenuated. Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward flow were measured using a combination of an ultrasound Doppler sensor and gamma densitometer. The results showed that the flow gas and liquid flow rates measured are within ±10% for low void fraction tests, water-cut measurements are within ±10%, densities within ±5%, and void fractions within ±10%. These findings are good results for a relatively fast flowing multiphase flow

    Real-Time Virtual Pathology Using Signal Analysis and Synthesis

    Get PDF
    This dissertation discusses the modeling and simulation (M& S) research in the area of real-time virtual pathology using signal analysis and synthesis. The goal of this research is to contribute to the research in the M&S area of generating simulated outputs of medical diagnostics tools to supplement training of medical students with human patient role players. To become clinically competent physicians, medical students must become skilled in the areas of doctor-patient communication, eliciting the patient\u27s history, and performing the physical exam. The use of Standardized Patients (SPs), individuals trained to realistically portray patients, has become common practice. SPs provide the medical student with a means to learn in a safe, realistic setting, while providing a way to reliably test students\u27 clinical skills. The range of clinical problems an SP can portray, however, is limited. SPs are usually healthy individuals with few or no abnormal physical findings. Some SPs have been trained to simulate physical abnormalities, such as breathing through one lung, voluntarily and increasing blood pressure. But, there are many abnormalities that SPs cannot simulate. The research encompassed developing methods and algorithms to be incorporated into the previous work of McKenzie, el al. [1]–[3] for simulating abnormal heart sounds in a Standardized Patient (SP), which may be utilized in a modified electronic stethoscope. The methods and algorithms are specific to the real-time modeling of human body sounds through modifying the sounds from a real person with various abnormalities. The main focus of the research involved applying methods from tempo and beat analysis of acoustic musical signals for heart signal analysis, specifically in detecting the heart rate and heartbeat locations. In addition, the research included an investigation and selection of an adaptive noise cancellation filtering method to separate heart sounds from lung sounds. A model was developed to use a heart/lung sound signal as input to efficiently and accurately separate heart sound and lung sound signals, characterize the heart sound signal when appropriate, replace the heart or lung sound signal with a reference pathology signal containing an abnormality such as a crackle or murmur, and then recombine the original heart or lung sound signal with the modified pathology signal for presentation to the student. After completion of the development of the model, the model was validated. The validation included both a qualitative assessment and a quantitative assessment. The qualitative assessment drew on the visual and auditory analysis of SMEs, and the quantitative assessment utilized simulated data to verify key portions of the model

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    APPLICATION OF DATA FUSION TO FLUID DYNAMIC DATA

    Get PDF
    In recent years, there have been improvements in the methods of obtaining fluid dynamic data, which has led to the generation of vast amounts of data. Extracting the useful information from large data sets can be a challenging task when investigating data from a single source. However, most experiments use data from multiple sources, such as particle image velocimetry (PIV), pressure sensors, acoustic measurements, and computational fluid dynamics (CFD), to name a few. Knowing the strengths and weaknesses of each measurement technique, one can fuse the data together to improve the understanding of the problem being studied. Concepts from the data fusion community are used to combine fluid dynamic data from the different data sources. The data is fused using techniques commonly used by the fluid dynamics community, such as proper orthogonal decomposition (POD), linear stochastic estimation (LSE), and wavelet analysis. This process can generate large quantities of data and a method of handling all of the data and the techniques in an efficient manner is required. To accomplish this, a framework was developed that is capable of tracking, storing, and, manipulating data. With the framework and techniques, data fusion can be applied. Data fusion is first applied to a synthetic data set to determine the best methods of fusing data. Data fusion was then applied to airfoil data that was obtained from PIV, CFD, and pressure to test the ideas from the synthetic data. With the knowledge gained from applying fusion to the synthetic data and airfoil data, these techniques are ultimately applied to data for a Mach 0.6 jet obtained from large-window PIV (LWPIV), time-resolved PIV (TRPIV), and pressure. Through the fusion of the different data sets, occlusion in the jet data were estimated within 6% error using a new POD based technique called Fused POD. In addition, a technique called Dynamic Gappy POD was created to fuse TRPIV and LWPIV to generate a large-window time-resolved data set. This technique had less error than other standard techniques for accomplishing this such as pressure-based stochastic estimation. The work presented in this document lays the groundwork for future applications of data fusion to fluid dynamic data. With the success of the work in this document, one can begin to apply the ideas from data fusion to other types of fluid dynamic problems, such as bluff bodies, unsteady aerodynamics, and other. These ideas could be used to help improve understanding in the field of fluid dynamics due to the current limitations of obtaining data and the need to better understand flow phenomena

    Modulation Domain Image Processing

    Get PDF
    The classical Fourier transform is the cornerstone of traditional linearsignal and image processing. The discrete Fourier transform (DFT) and thefast Fourier transform (FFT) in particular led toprofound changes during the later decades of the last century in howwe analyze and process 1D and multi-dimensional signals.The Fourier transform represents a signal as an infinite superpositionof stationary sinusoids each of which has constant amplitude and constantfrequency. However, many important practical signals such as radar returnsand seismic waves are inherently nonstationary. Hence, more complextechniques such as the windowed Fourier transform and the wavelet transformwere invented to better capture nonstationary properties of these signals.In this dissertation, I studied an alternative nonstationary representationfor images, the 2D AM-FM model. In contrast to thestationary nature of the classical Fourier representation, the AM-FM modelrepresents an image as a finite sum of smoothly varying amplitudesand smoothly varying frequencies. The model has been applied successfullyin image processing applications such as image segmentation, texture analysis,and target tracking. However, these applications are limitedto \emph{analysis}, meaning that the computed AM and FM functionsare used as features for signal processing tasks such as classificationand recognition. For synthesis applications, few attempts have been madeto synthesize the original image from the AM and FM components. Nevertheless,these attempts were unstable and the synthesized results contained artifacts.The main reason is that the perfect reconstruction AM-FM image model waseither unavailable or unstable. Here, I constructed the first functionalperfect reconstruction AM-FM image transform that paves the way for AM-FMimage synthesis applications. The transform enables intuitive nonlinearimage filter designs in the modulation domain. I showed that these filtersprovide important advantages relative to traditional linear translation invariant filters.This dissertation addresses image processing operations in the nonlinearnonstationary modulation domain. In the modulation domain, an image is modeledas a sum of nonstationary amplitude modulation (AM) functions andnonstationary frequency modulation (FM) functions. I developeda theoretical framework for high fidelity signal and image modeling in themodulation domain, constructed an invertible multi-dimensional AM-FMtransform (xAMFM), and investigated practical signal processing applicationsof the transform. After developing the xAMFM, I investigated new imageprocessing operations that apply directly to the transformed AM and FMfunctions in the modulation domain. In addition, I introduced twoclasses of modulation domain image filters. These filters produceperceptually motivated signal processing results that are difficult orimpossible to obtain with traditional linear processing or spatial domainnonlinear approaches. Finally, I proposed three extensions of the AM-FMtransform and applied them in image analysis applications.The main original contributions of this dissertation include the following.- I proposed a perfect reconstruction FM algorithm. I used aleast-squares approach to recover the phase signal from itsgradient. In order to allow perfect reconstruction of the phase function, Ienforced an initial condition on the reconstructed phase. The perfectreconstruction FM algorithm plays a critical role in theoverall AM-FM transform.- I constructed a perfect reconstruction multi-dimensional filterbankby modifying the classical steerable pyramid. This modified filterbankensures a true multi-scale multi-orientation signal decomposition. Such adecomposition is required for a perceptually meaningful AM-FM imagerepresentation.- I rotated the partial Hilbert transform to alleviate ripplingartifacts in the computed AM and FM functions. This adjustment results inartifact free filtering results in the modulation domain.- I proposed the modulation domain image filtering framework. Iconstructed two classes of modulation domain filters. I showed that themodulation domain filters outperform traditional linear shiftinvariant (LSI) filters qualitatively and quantitatively in applicationssuch as selective orientation filtering, selective frequency filtering,and fundamental geometric image transformations.- I provided extensions of the AM-FM transform for image decompositionproblems. I illustrated that the AM-FM approach can successfullydecompose an image into coherent components such as textureand structural components.- I investigated the relationship between the two prominentAM-FM computational models, namely the partial Hilbert transformapproach (pHT) and the monogenic signal. The established relationshiphelps unify these two AM-FM algorithms.This dissertation lays a theoretical foundation for future nonlinearmodulation domain image processing applications. For the first time, onecan apply modulation domain filters to images to obtain predictableresults. The design of modulation domain filters is intuitive and simple,yet these filters produce superior results compared to those of pixeldomain LSI filters. Moreover, this dissertation opens up other research problems.For instance, classical image applications such as image segmentation andedge detection can be re-formulated in the modulation domain setting.Modulation domain based perceptual image and video quality assessment andimage compression are important future application areas for the fundamentalrepresentation results developed in this dissertation
    corecore