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ABSTRACT 

REAL-TIME VIRTUAL PATHOLOGY USING SIGNAL ANALYSIS AND 
SYNTHESIS 

Dennis L. Bergin 
Old Dominion University, 2012 
Director: Frederic D. McKenzie 

This dissertation discusses the modeling and simulation (M&S) research in the area of 

real-time virtual pathology using signal analysis and synthesis. The goal of this research 

is to contribute to the research in the M&S area of generating simulated outputs of 

medical diagnostics tools to supplement training of medical students with human patient 

role players. 

To become clinically competent physicians, medical students must become skilled 

in the areas of doctor-patient communication, eliciting the patient's history, and 

performing the physical exam. The use of Standardized Patients (SPs), individuals trained 

to realistically portray patients, has become common practice. SPs provide the medical 

student with a means to learn in a safe, realistic setting, while providing a way to reliably 

test students' clinical skills. The range of clinical problems an SP can portray, however, 

is limited. SPs are usually healthy individuals with few or no abnormal physical findings. 

Some SPs have been trained to simulate physical abnormalities, such as breathing 

through one lung, voluntarily and increasing blood pressure. But, there are many 

abnormalities that SPs cannot simulate. 

The research encompassed developing methods and algorithms to be incorporated 

into the previous work of McKenzie, et al. [1]—[3] for simulating abnormal heart sounds 

in a Standardized Patient (SP), which may be utilized in a modified electronic 

stethoscope. The methods and algorithms are specific to the real-time modeling of 

human body sounds through modifying the sounds from a real person with various 

abnormalities. The main focus of the research involved applying methods from tempo 

and beat analysis of acoustic musical signals for heart signal analysis, specifically in 

detecting the heart rate and heartbeat locations. In addition, the research included an 

investigation and selection of an adaptive noise cancellation filtering method to separate 



heart sounds from lung sounds. 

A model was developed to use a heart/lung sound signal as input to efficiently and 

accurately separate heart sound and lung sound signals, characterize the heart sound 

signal when appropriate, replace the heart or lung sound signal with a reference 

pathology signal containing an abnormality such as a crackle or murmur, and then 

recombine the original heart or lung sound signal with the modified pathology signal for 

presentation to the student. After completion of the development of the model, the model 

was validated. The validation included both a qualitative assessment and a quantitative 

assessment. The qualitative assessment drew on the visual and auditory analysis of 

SMEs, and the quantitative assessment utilized simulated data to verify key portions of 

the model. 
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CHAPTER 1 

INTRODUCTION 

This dissertation discusses the modeling and simulation (M&S) research in the area of 

real-time virtual pathology using signal analysis and modification. The goal of this 

research is to contribute to the research in the M&S area of generating simulated outputs 

of medical diagnostics tools to supplement training of medical students with human 

patient role players. The research encompassed developing methods and algorithms to be 

incorporated into the previous work of McKenzie, et al. [1]—[3] for simulating abnormal 

heart sounds in a Standardized Patient (SP), which may be utilized in a modified 

electronic stethoscope. The methods and algorithms are specific to the real-time 

modeling of human body sounds through modifying the sounds from a real person with 

various abnormalities. The main focus of the research involved applying methods from 

tempo and beat analysis of acoustic musical signals for heart signal analysis, specifically 

in detecting the heart rate and heartbeat locations. In addition, the research included an 

investigation and selection of an adaptive noise cancellation filtering method to separate 

heart sounds from lungs sounds. 

1.1 Motivation 

The physical examination of patients is integral to family practice, with cardiac 

auscultation playing a particularly important part. If performed well, assessment of 

cardiac pathology via auscultation correlates highly with the results of echocardiography 

or angiography at a fraction of the cost and with no risk to the patient. Cardiac 

auscultation allows for physical contact between patient and physician, which forms a 
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bond that cannot be replicated with diagnostic machinery. For these reasons, medical 

educators have placed significant emphasis on the value and clinical importance of 

cardiac auscultation. 

To become clinically competent physicians, medical students must become skilled 

in the areas of doctor-patient communication, eliciting the history, and performing the 

physical exam. These skills are emphasized in the medical student's early clinical 

training. The use of Standardized Patients (SPs), individuals trained to realistically 

portray patients, has become common practice to teach and assess medical students in 

these areas. SPs provide the medical student with a means to learn doctor-patient 

communication, the history, the physical exam, and other clinical skills in a safe, realistic 

setting, while providing a way to reliably test students' clinical skills. The range of 

clinical problems an SP can portray, however, is limited. SPs are usually healthy 

individuals with few or no abnormal physical findings. Some SPs have been trained to 

simulate physical abnormalities, such as breathing through one lung, voluntarily and 

increasing blood pressure. But, there are many abnormalities that SPs cannot simulate. In 

the past, it was thought that augmenting SPs with the ability to simulate abnormal 

physical findings would expand the opportunities for students to learn more and better 

clinical skills in a realistic setting with a live person, while practicing their doctor-patient 

communication skills. 

The practical benefits of this M&S research will work to further advance training 

related technology in the medical field, specifically to supplement training of medical 

students with human patient role players. Since there are many abnormalities that SPs 

cannot simulate, it is anticipated that augmenting SPs with the ability to simulate 



abnormal physical findings will expand the opportunities for students to learn more and 

better clinical skills in a realistic setting with a live person, while practicing their doctor-

patient communication skills. 

1.2 Influence on Modeling and Simulation Discipline 

Along with providing practical benefits to the medical field, this research can influence 

the discipline of modeling & simulation. In particular, the novelty of the research is in 

efficiently applying musical tempo and beat analysis algorithms to pathological sound 

signals in order to perform various signal analyses for modeling human body sounds in 

real-time. This study contributes to the exploding area of medical modeling and 

simulation. The constraints of efficiency, memory, and interfacing are dictated by the 

real-time nature of the intended application. The development of an accurate and 

efficient model provides modeling and simulation technology in the challenging 

environment of real-time medical applications. 

1.3 Thesis Statement 

To facilitate the training of medical students in auscultation, methods from tempo and 

beat analysis of acoustic musical signals can be applied to heart signal analysis to detect 

the heart rate and heartbeat locations in an efficient manner applicable to a real-time heart 

and lung sound signal modification. 

McKenzie, et al. in the area of augmented SPs have completed a great deal of work 

[1]—[3]. It has been identified that the identification of plausible signal modification 

systems would require further work in both heart and lung sound analysis, and heart 
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sound signal modification techniques to better define the requirements for the system. 

Therefore, the main objectives of the research were to 1) determine an optimum 

technique of separating heart sounds from lung sounds from the fifteen techniques 

reviewed by Gnitecki and Moussavi [4] for the specific application of modifying the 

separated components and recreating a realistic signal. 2) To investigate and prove the 

plausibility of applying the acoustic music signal tempo and beat detection algorithms of 

Scheirer [5] to heart rate detection and heartbeat localization. Efficient and optimum 

techniques are defined as techniques that are conducive to supporting real-time pathology 

signal analysis and modification. 

1.4 Description of the Problem 

It would be very beneficial to present an augmented SP with various abnormalities in a 

real-time and realistic setting to the practicing doctor. The research by McKenzie, et al 

[l]-[3] has involved simulating abnormal heart or lung sounds in an SP to expand the 

breadth of sounds that can be heard by the medical student. The work of McKenzie, et 

al. [1]—[3] was successful in using a modified stethoscope combined with augmented SPs 

to increase the range of heart and lung abnormalities. While the previous work was 

successful in combining simulated crackles into real SP breath sounds, the system was 

not fully automated. The SP still had to signal the end of his/her inspiration to trigger the 

insertion of a pre-processed signal containing a heart abnormality. This is an example of 

the limitations in the capabilities provided by SPs with regards to realistic scenarios. 

Overcoming this specific limitation is the focus of this dissertation. 
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15 Proposed Solution 

The research referenced in this dissertation focused on developing methods and 

algorithms to extend the previous work of McKenzie, et al. [ 1 ]—[3] for simulating 

abnormal heart sounds in a Standardized Patient (SP), which may be utilized in a 

modified electronic stethoscope. The methods and algorithms are specific to the real

time modeling of human body sounds through modifying the sounds from a real person 

with various abnormalities. The research involved applying methods from tempo and 

beat analysis of acoustic musical signals for heart signal analysis, specifically in detecting 

the heart rate and heartbeat locations. 

To further the work of McKenzie, et al [1 ]—[3] in the area of augmented SPs, a 

model was developed to use a heart/lung sound signal as input, locate and separate the 

heart sound signal from the lung sound signal, modify the heart sound signal or lung 

sound signal by adding an abnormality such as a crackle or wheeze, respectively, and 

then providing output of a reconstructed modified signal. While developing the model, 

the aspect of supporting a real-time application was considered when researching and 

implementing algorithms. The intent is for the model to be used in an application 

involving the augmentation of medical equipment with pathological sounds to be used 

with virtual patients for training medical students. 

1.6 Contributions 

This dissertation provides an important contribution of investigating and proving the 

plausibility of applying an acoustic musical signal tempo and beat detection algorithm to 

heartbeat detection and localization. Specifically, the research focuses on 
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1. Applying the de facto standard tempo and beat detection algorithm developed by 

Eric Scheirer [5] to heart signal analysis in order to detect heart rate and location 

of heartbeats in a heart sound signal. 

2. Utilizing the algorithm to characterize separated heart sound signals (input) and 

reference pathology signals in order to modify the reference signal to better match 

the input signal in terms of heartbeat rate and location of the heartbeats. 

3. Utilizing the algorithm to verify the heartbeat rate of the adjusted signal. 

4. Implementing Scheirer's algorithm in MatLab, with only minor changes, such as 

adjusting the ranges of the six frequency bands [5]. 

5. Investigating techniques for modifying and substituting real heart and lung 

pathology signals in real-time. 

1.7 Dissertation Organization 

This dissertation includes some background of concepts related to the research, provides 

a discussion of influential work, provides a detailed description of the research, and 

presents validation results and conclusions based on the research. The dissertation starts 

by providing some background on heart and lung sound characteristics and a discussion 

of published adaptive noise cancelation filters for reducing heart sounds from lung 

sounds in breath sound signals. The discussion of influential work focuses on the areas of 

augmentation of standard patients, heart and lung sound analysis, including techniques 

for localizing, reducing and separating heart sounds from lung sounds, and tempo and 

beat analysis of acoustic musical signals. The detailed research description includes 

descriptions of the model, including details about the input heart/lung signals, and the 
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techniques used for heart/lung sounds signal analysis and modification. The description 

provides details about the investigation of two techniques for heart sound/lung sound 

signal separation: Recursive Least Squares and Wavelet Transform, as well as a well 

known acoustic musical tempo and beat detection algorithm which used for heart rate 

detection and heartbeat localization. The description also elaborates on the substitution 

of heart and lung pathology signals, and the resulting recombined heart/lung sounds 

signal. Validation results are presented, which include both qualitative and quantitative 

results. And lastly, the dissertation concludes with a discussion of formulated 

conclusions based on the research as well as a discussion of possible applications. 
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CHAPTER 2 

BACKGROUND 

Since this dissertation is focused on analyzing and modifying heart and lung sound 

signals, some details about the characteristics of heart sounds and lung sounds are 

necessary. The frequency range for lung sounds is 25 - 1500 Hz and that of the heart 

sound is from 20- 150 Hz. Characteristics of the heart sound signals are typically 

assessed in terms of both intensity and frequency. According to the pertinent literature 

review, though peak frequencies of heart sounds have been shown to be much lower than 

those of lung sounds, comparisons between lung sound recordings acquired over the 

anterior right upper lobe containing and excluding heart sounds show that power spectral 

density (PSD) in both cases is maximal below 150 Hz. 

A review of research in the area of heart and lung sound analysis was performed to 

acquire an understanding of current capabilities in the localization and separation of heart 

sounds from lung sounds. The various techniques were reviewed with a focus on their 

efficiency and plausibility for use in a real-time application to a modified electronic 

stethoscope. Many papers on heart and lung sound analysis included in the literature 

review were selected to provide knowledge and insight about heart and lung sounds, as 

well as different filtering methods that are applied to these types of biological sound 

signals. While these efforts focused more on the lung sounds and removing the heart 

sounds, the methods are relevant for focusing on localizing heart sounds and 

removing/separating heart sounds from lung sounds. In particular, Gnitecki and 
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Moussavi [4] reviewed various work in the area of separating heart and lung sounds. 

Fifteen techniques for filtering heart sounds from lung sound recordings were reviewed. 

These techniques include linear adaptive filters, autoregressive modeling, moving 

average modeling, least mean square, fourth order statistics, recursive least squares, block 

fast transversal, and reduced order Kalman filters. Gnitecki and Moussavi [4] note that 

none of the reviewed studies examined the performance of heart-sound cancellation in the 

presence of spontaneous artifacts, and more importantly, that a common, standard method 

for separating HS from LS in chest-wall recordings has not been selected by the scientific 

community. They recommend that future studies on filtering heart sounds from lung 

sounds and on heart sound localization focus on challenging the performance of 

employed techniques by incorporating conditions in data recording that are relevant to 

clinical application in the areas of environment and respiratory and cardiac abnormalities 

[4]. In addition, it is clear that there is a need for an investigation of the performance of 

these different techniques when used for filtering heart sounds from lung sounds and 

heart sound localization in clinical applications of respiratory and cardiac abnormalities. 

Other methods of heart and lung sound analysis were also summarized as part of the 

literature review. These include additional work by Gnitecki, Moussavi, and Pasterkamp 

[6], [12], in reducing heart sounds from lung sounds, Chien, Huang, Lin, and Chong's [7] 

work, and the work presented by Yip and Zhang [8], as well as the multiple papers 

included in the review [6]-[16]. There is a need for more research of the technique of 

reducing heart sounds from lung sounds by automated control and adaptive filtering. The 

previous work by Yip and Zhang [8] is limited in its possible application of extracting 

and interpreting breath sounds, due to the fact that the processing occurs on a separate pc 
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and not on the medical instrument. More investigating to speed up their algorithm may 

be needed to support the signal processing being performed real-time in the electronic 

stethoscope. In addition, the technique of using independent component analysis to 

separate heart and lung sounds should be further investigated to analyze its plausibility 

for use in an electronic stethoscope. Various functions should be investigated to provide 

an alternative to the FastICA function to ensure that heart and lung sounds are clearly 

discriminated [8]. FastICA is an popular algorithm, known for its efficiency for 

independent component analysis. FastICA is based on a fixed-point iteration scheme to 

maximize non-Gaussianity as a measure of statistical independence. Concern over the 

need for at least two input recording sources to separate heart sounds and lung sounds, 

precluded its use for signal separation in this study [8]. 

This thorough review of various techniques of filtering heart and lung sound signals 

helped narrow down the selection of the Recursive Least Squares and Wavelet Transform 

filtering techniques as possible candidates accurate and efficient separation and 

preservation of heart and lung sound signals. 

The literature review resulted in identifying promising work by various researchers 

in the areas of augmenting medical equipment, heart and lung sound analysis, and tempo 

and beat estimation to support the hypothesis involving the M&S research for generating 

simulated outputs of medical diagnostics tools to supplement the training of medical 

students with human patient role players. A main focus was given to the limitations and 

needed enhancements of the work performed by McKenzie, et al. [1]—[3] in the area of 

simulating abnormal heart or lung sounds in an SP, as this is the foundation upon which 

the heart modification procedure is applied. A review of research in the area of heart and 



11 

lung sound analysis was performed to acquire an understanding of current capabilities in 

the localization and separation of heart sounds from lung sounds. The various techniques 

were reviewed with a focus on their efficiency and plausibility for use in a real-time 

application to a modified electronic stethoscope. Work on heart signal analysis was also 

reviewed to investigate techniques for identifying and analyzing normal and abnormal 

characteristics of the heart sound signal. Lastly, the algorithm for tempo extraction and 

beat detection by Eric Scheirer [5] was identified as a possible method for heart sound 

localization. Additional tempo and beat analysis research, more current than that of Eric 

Scheirer [5], was reviewed [17]-[36]. The goal of the investigation was to find an 

alternate beat detection algorithm, to that of Scheirer [5], for use in detecting heart rate 

and localizing heart sounds in heart sound signal. 

2.1 Augmented Standardized Patients 

As stated, a main focus of the research evaluation was on the work performed by 

McKenzie, et al. [1]—[3] in the area of simulating abnormal heart or lung sounds in an SP 

through the use of a modified electronic stethoscope and previously recorded heart 

sounds. This research is presented in the paper, "Augmented standardized patients now 

virtually a reality," [1] and drew on the advanced the work of Hubal, Kizakevich, 

Merino, and West [36], Hubal, et al. [36] utilized natural language processing and virtual 

patients to provide completely automatic yet unscripted training sessions, while providing 

a useful tool for outlining the steps for patient interaction and diagnosis. 
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While they were limited due to the human-computer interaction paradigm, McKenzie, et 

al. [1]—[3] attempted to provide a completely realistic experience by drastically 

enhancing this accepted medium of instruction. 

It was noted that with a real or standardized patient, the learner was limited to 

hearing only the sounds of that single person, and that learning a variety of sounds would 

require examining many patients over time, often without direct supervision and 

feedback. Commercially available recordings of heart and lung sounds exist, but utilizing 

them would ignore the process of listening for the sounds, with the correct placement of 

the stethoscope, and would exclude simultaneous interactions with the patient. It was 

realized that augmenting SPs with the capability of portraying patients with an increased 

range of abnormalities would make the use of SPs an even more valuable teaching tool. 

The work of McKenzie, et al. [1 ]—[3] was performed in multiple phases. The first 

phase of the research involved simulating abnormal heart and lung sounds in an SP. A 

student listened to an SP's heart and lungs through a modified stethoscope and heard pre

recorded sounds rather than the SP's. A functional prototype, consisting of a mannequin 

fitted with an electromagnetic generator and a movable sensor connected to the 

stethoscope head, was constructed. A tracking system was used to track the placement of 

the stethoscope, and when the tracking software detected that the sensor/stethoscope head 

was placed in an appropriate location, the software triggered the corresponding sound file 

to be played into headphones that the student was wearing. The researchers planned for 

the replacement of the mannequin with an augmented SP, which was incorporated into 

the follow on phases of research, as presented in "Medical student evaluation using 

augmented standardized patients: Preliminary results" [2] and "Medical student 
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evaluation using augmented standardized patients: New development and results" [3]. 

McKenzie, et al. [1] were successful in an initial validation of the augmented SP 

prototype, a mannequin, for listening to pre-recorded heart and lung sounds through a 

modified stethoscope. The sounds were heard when the head of the modified stethoscope 

was placed at any of four locations on a mannequin torso. The authors noted that there 

was nothing special in the use of the mannequin, and that a real human (SP) could have 

been augmented with their system [1]. These authors addressed this point in their follow 

on phase of research. 

The second phase of the research involved augmenting the SP and performing a 

study using medical students evaluated in the annual Observed Structured Clinical 

Examination (OSCE), to formulate conclusions about the validity of using augmented 

SPs as a reliable medical assessment tool. With the augmented SP, the student would 

listen to an SP's heart and lungs through a modified stethoscope and hear pre-recorded 

sounds rather than the SP's. The main objective of the study was to determine the 

validity of using augmented SPs as a reliable assessment tool by presenting abnormal 

pathology. The study subjects were 105 fourth year medical students, and the study was 

completed in two halves over fourteen different days. The subjects listened for a carotid 

artery bruit (sound). It was noted that in patients with atherosclerosis, one might hear a 

characteristic sound (or bruit) caused by restricted or turbulent blood flow in one or more 

carotid arteries. In this study, subjects were asked if they detected an abnormal sound as 

they auscultated the neck areas of SPs. The students conducted physical exams on 

augmented SPs, including an auscultation of the left and right side of the SPs neck and 

reported whether or not they heard a carotid bruit. Of the 105 students, many were 
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excluded for the following criteria: the tracker did not indicate a stethoscope sensor in the 

hot zone, the bruit sound did not play, the student did not place the stethoscope in a 

correct anatomic position, or the student did not use the electronic stethoscope as their 

only instrument. Data from the remaining 53 students were organized as follows: 16 

heard the sound when on, 19 did not hear when the sound was off, 1 heard when the 

sound was off, and 17 did not hear when the sound was on, a Chi-Squared test with 1 

degree of freedom for the factors of sound on/sound off) vs. (heard/not heard) was used, 

and gave a value equivalent to 0.00101 chance that the sample distribution was attributed 

to randomness. The researchers had a high confidence that using the augmented SP 

system was a valid assessment tool, and planned for additional studies using more 

experienced trainees and clinicians as subjects to assess the realism of the augmented SP 

system and its validity for assessment. 

McKenzie, et al. [2] were successful in using their augmented SP system to 

evaluate medical students in their standard OSCE testing environment. However, the 

results indicated that 1/3 of the students did not appropriately diagnose the abnormality. 

The authors noted that this might have been due to incorrect assumptions on their part. 

These assumptions included the thoughts that the students' hearing was normal so they 

should be able to detect a bruit; that students would note that a bruit was heard if in fact 

they heard one on their exam; and that the sound played into the earpiece at the correct 

time. For example, it is possible that students did not hear the bruit due to hearing loss 

from modern-day headphone usage. Another cause could have been limited exposure of 

the student to carotid bruits. It was noted that further analysis of non-augmented portions 

student examinations needed to be performed. The authors noted that the system was 
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limited in the sounds that it was capable of simulating [2]. The researchers planned to 

add additional abnormal sounds to their database. As with most technology, the desire to 

minimize the system components was present. An increase in realism would be gained 

by making the components smaller. 

While the second phase of research involved simulating abnormal heart or lung 

sounds in an SP through the use of a modified electronic stethoscope and previously 

recorded heart sounds, the third phase of research activities included overlaying fine 

crackles along with real breadths of SPs. A student would hear this sound at the anterior 

lung bases after a maximal expiration or after the patient was recumbent for a prolonged 

period of time. The pre-recorded crackle and real breath sound were combined in real

time and played through the modified electronic stethoscope, to provide a realistic 

abnormal pathology to enhance the medical student hands on training. The focus of the 

research was in synchronizing the virtual crackle sound with the SP's real breath sound. 

The authors noted that fine crackles are heard mostly at the end of inspiration, and in 

specific locations upon chest auscultation [3]. Instead of using a tracking system, as in 

the previous phase, this phase used a simple method of identifying both the correct point 

of inspiration to combine the virtual crackles and the location on the body at which the 

sounds should be combined. This method used a SP with a wireless remote controller to 

allow the SP to signal the correct timing of respiration. The SP clicked the controller 

towards the end of his/her inspiration, and then when the computer detected the signal, 

the virtual crackle sound was played to computer audio, and the student would hear the 

combined virtual sound and real breath sound through the modified electronic-

stethoscope, which was connected to the computer using a wireless transducer and 
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receiver. This method allowed for the real breath sound directly from the SP to be 

combined with a pre-recorded crackle sound at the SP's end of inspiration upon chest 

auscultation in real-time. 

The third phase of research furthered the concept of augmented SPs. The system 

was not fully automated, as the SP still had to signal the end of his/her inspiration. The 

authors concluded that it would be more beneficial for medical student training if the 

system was capable of providing fine crackle and additional abnormalities, without 

requiring SP manually controlling when sounds are heard, but instead triggering sound 

presence based on the natural biological functions of the SP. The research described in 

this dissertation has focused on this need. 

There is great promise in furthering the work of McKenzie, et al. [l]-[3] in the area 

of augmented SPs. The previous work of McKenzie, et al. [ 1 ]—[3 ] has been very 

successful in using a modified stethoscope combined with augmented SPs that have the 

capability of portraying patients with an increased range of heart and lung abnormalities, 

and will make the use of SPs an even more valuable teaching tool for medical students. 

The third phase of research of McKenzie, et al. [3] was successful in combining 

simulated crackles into real SP breath sounds. This proof of concept system evaluation 

was performed by an EVMS doctor experienced in SPs and training auscultation, and 

provided evidence that the system could be a useful and integral part of auscultation 

education with expanded fields of interest with abnormalities. The next logical step in 

the research was to make the system more automated by removing the "human in the 

loop" control of the simulation. In the third phase of research, the augmented SP system 

was not fully automated, as the SP still had to signal the end of his/her inspiration. 
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It was recognized that it would be more beneficial for medical student training if 

the system was capable of providing fine crackle and additional abnormalities without 

requiring SP manually controlling when sounds are heard, but instead triggering sound 

presence based on the natural biological functions of the SP. This is the identified need 

that prompted the research described by this dissertation. 

2.2 Heart and Lung Sound Analysis 

This dissertation research involves the real-time modifying of the lung and heart sound 

signal, specifically the heart signal. To accomplish this, the heart sound signal is 

separated from the lung sound signal. In this case, the heart sound signal is the signal of 

interest, not the lung sound, as presented in most of the reviewed papers on heart and 

lung sound analysis. The papers on heart and lung sound analysis included in the 

literature review were selected to provide knowledge and insight about heart and lung 

sounds, as well as different filtering methods that are applied to these types of biological 

sound signals. While these efforts focused more on the lung sounds and removing the 

heart sounds, the methods are relevant for focusing on localizing heart sounds and 

removing/separating heart sounds from lung sounds. In particular, Gnitecki and 

Moussavi [4] reviewed various work in the area of separating heart and lung sounds. 

Fifteen techniques for filtering heart sounds from lung sound recordings were reviewed. 

These techniques include linear adaptive filters, autoregressive modeling, moving 

average modeling, least mean square, fourth order statistics, recursive least squares, block 

fast transversal, and reduced order Kalman filters. Gnitecki and Moussavi [4] note that 

none of the reviewed studies examined the performance of heart-sound cancellation in the 
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presence of spontaneous artifacts, and more importantly, that a common, standard method 

for separating HS from LS in chest-wall recordings has not been selected by the scientific 

community. 

In the study presented in their paper, "Recursive least squares adaptive noise 

cancellation filtering for heart sound reduction in lung sound recordings," Gnitecki, 

Moussavi, and Paterkamp [6] discuss their research in applying recursive least squares 

(RLS) adaptive noise cancellation (ANC) filtering for heart sounds reduction. Based on 

both quantitative and qualitative results, the authors indicate that the RLS-ANC may be 

used to adequately and accurately localize and remove HS in a single, automated method 

for filtering HS from LS. They did discuss the large processing time of the RLS-ANC, 

but feel this is insignificant to achieve LS preservation. The RLC-ANC method is 

capable of HS localization, but requires a separate procedure to localize HS and apply the 

locations to the reference. Though there was a concern of the efficiency of the algorithm 

due to the need dynamically create the reference signal, this method was selected as 

candidate heart and lung sound separation technique, due to the results presented by ," 

Gnitecki, Moussavi, and Paterkamp [6]. 

Other methods of heart and lung sound analysis were also summarized as part of 

the literature review. In their paper, "Reduction of heart sounds from lung sounds by 

adaptive filtering," Iyer, Ramamoorthy, Fan and Ploysongsang [9], note that due to its 

simplicity and non-invasiveness, auscultation of the chest is a widely used diagnostic 

method of physicians. They note the interest in lung sound analysis using time and 

frequency domain techniques to increase its usefulness in diagnosis, and the common 

problem of lung sounds being contaminated by incessant heart sounds, which interfere in 



the diagnosis based on, and analysis of, lung sounds [9]. To minimize the effect of heart 

sounds, the authors present an alternative to using linear high pass filters, which, also 

eliminates the overlapping spectrum of breath sounds. They show how adaptive filtering 

can be used to reduce heart sounds without significantly affecting breath sounds. The 

technique is found to reduce the heart sounds by 50-80 percent. This work influenced the 

decision to utilize adaptive filters for separation of heart sounds and lung sounds as part 

of the research described in this dissertation. 

In their paper, "Adaptive reduction of heart sounds from lung sounds using fourth-

order statistics," Hadjileontiadis and Panas [10] present an adaptive heart-noise reduction 

method, based on fourth order statistics (FOS) of the recorded signal. Without requiring a 

recorded "noise-only" reference signal, this algorithm uses adaptive filtering to preserve 

the entire spectrum, and the filter is independent of Gaussian uncorrelated noise and 

insensitive to the step size parameter. The authors note that the algorithm converges fast 

with small excess errors, and requires a very small number of taps, due to the narrowband 

nature of HS [10]. Results from experiments with healthy subjects indicate a local HS 

reduction equal to or greater than 90%. 

In their paper, "A Wavelet-based reduction of heart sound noise from lung sounds," 

Hadjileontiadis and Panas [11] present another method of reducing heart sounds from 

lung sounds. The method utilizes a wavelet transform domain filtering technique as an 

adaptive de-noising tool for lung sounds analysis. The wavelet transform produces 

multiresolution representations of the signal, which are used for signal structure 

extraction. In addition, a separation of the non-stationary part of the input signal (heart 

sounds) from the stationary part (lung sounds) occurs from the use of hard thresholding in 
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the wavelet transform domain. As a result, the location of the heart sound noise (first and 

second heart sound peaks) is automatically detected, without requiring any noise 

reference signal. The authors present experimental results, which show that the 

application of this wavelet-based filter on lung sound signals, which include heart sounds, 

results in an efficient reduction of the heart sound, producing an almost noise-free output 

signal. The authors feel that, due to its simplicity and its fast implementation, the 

presented method can easily be used in clinical medicine. 

Gnitecki, Hossain, Pasterkamp, and Moussavi presented their continued research of 

adaptive filtering techniques in the paper, "Qualitative and quantitative evaluation of 

heart sound reduction from lung sound recordings" [12]. Gnitecki, Hossain, Pasterkamp, 

and Moussavi [12]-[14] have completed considerable research in studying lung sounds 

(LS) to monitor lung airway status. They realized that the presence of heart sounds 

combined with complicates the signal processing needed to evaluate flow-specific lungs 

sounds as a function of airway conditions for diagnostic purposes. With the need to filter 

heart sounds from lung sounds and the fact that there is not an established filtering 

method, the researchers performed an assessment of utilizing the RLC linear adaptive 

filter and the wavelet and the wavelet transform (WT) - based de-noising, in an effort to 

identify an acceptable method for separating heart sounds from lung sounds in chest-wall 

recordings [12]. 

Based on both the quantitative and qualitative results, the authors indicate that the 

RLS-ANC filter was superior to the WN-ANC filter for the specific tested signals [12]. 

The processing time of the RLS-ANC filter was ten times that of the WT-ANC filter, but 

the authors feel this is insignificant to achieve lung sound preservation. Both methods 
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were capable of heart sound localization, with RLS-ANC requiring a separate procedure 

to localize heart sound and apply the locations to the reference. With its superior 

performance, the authors propose that RLS-ANC may be used to adequately and 

accurately localize and remove heart sound in a single, automated method for filtering 

heart sound and lung sound. 

The work by Hadjileontiadis and Panas [10], [11], [15] heavily influenced the 

presented research. Both the FOS and WT methods are useful for filter signals. 

However, due to the published results of the extended research by Hadjileontiadis and 

Panas [11], [15], and Gnitecki, Hossain, Pasterkamp, and Moussavi [12], the WT was 

selected as a candidate along with RLS for separating heart and lung sounds in the 

presented research. The work by Gnitecki, Hossain, Pasterkamp, and Moussavi [4], [6], 

[12], and Hadjileontiadis and Panas [10], [11], [15] on applying adaptive filtering to 

separating heart and lung sound signals helped focus the dissertation study. The 

published results of the work of both sets of researchers showed the RLS and WT 

filtering methods are viable solutions for separating heart and lungs in an effective and 

efficient manner relevant for the application address by this study. 

2.3 Heart Sound Analysis Using Tempo, Onset, and Beat Analysis of Acoustic 

Musical Signals 

In order to modify the heart sounds in a real-time manner, research is needed to select 

powerful, yet computationally efficient algorithms for analyzing and modifying heart 

sound signals. Published work in this area has highlighted a need for further research to 

identify efficient techniques for heart signal analyzes. As noted by Ellis et al. [17], the 



derivation, from beat tracking, of a sequence of beat instants, involves satisfying two 

constraints. First, the selected instants should generally correspond to moments in the 

audio where a beat is indicated, for instance by the onset of a note played by one of the 

instruments. Secondly, the set of beats should reflect a locally constant inter-beat-

interval, since it is this regular spacing between beat times that defines musical rhythm. 

These dual constraints also match the characteristics of the human heartbeat contained in 

the heart and lung sounds signal. 

The need for further research to explore applying a tempo and beat analysis 

algorithm to the heart sounds signal to perform heart sound analysis, including detecting 

the heart rate and location of the heartbeats, was identified. The summaries of previous 

research in beat and tempo estimation provide possible techniques that may successfully 

be applied to heart and lung sound analysis. While the reviewed algorithms use some 

similar techniques, they each incorporate different assumptions of the input signal as well 

as variations in the techniques. 

In the paper, "Tempo and beat analysis of acoustic musical signals," [5] Scheirer 

presents a method for using a small number of band-pass filters and banks of parallel 

comb filters to analyze the tempo of, and extract the beat from, musical signals. It was 

noted that the analysis is performed causally, and can be used to estimate when beats will 

occur in the future. The author provides a brief summary with noted limitations of past 

(prior to 1998) work in the area of tempo and beat analysis, and points out that this work 

is characterized as a transcriptive metaphor for analysis, i.e. the music is first segmented 

into notes, onsets, timbres, etc. Post processing algorithms are then used to group 

rhythms and track beats. 
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In this paper [5], Sheirer presents psychoacoustic demonstrations, which lead to 

processing simplifications for beat tracking, a detailed description of the utilized 

algorithms, a description of the validation process, and a discussion of future work. Two 

important realizations that the author discusses are 1) that "notes" are not required for 

hearing rhythm. It is possible to develop algorithms for pulse extraction to rhythmically 

analyze a musical signal (for human listeners), which operate on the preserved amplitude 

envelopes of the filter banks output and not on "notes". 2) Separating the signal into 

subbands and maintaining the subband envelopes separately is necessary to do accurate 

rhythmic processing. A description of the algorithm is as follows: A filter bank is used 

to divide the input signal into six subbands. The amplitude envelope and derivative are 

calculated for each of the subbands. These derivatives are passed on to another filter 

bank of tuned resonators. The resonator, whose frequency matches the rate of periodic 

modulation of the envelope derivative, will phase-lock. The outputs of the resonators are 

examined to identify the phase-locked resonator. This information is tabulated for each 

of the band pass channels, summed across the frequency filter bank to arrive at the 

frequency (tempo) estimate for the signal, and then referenced back to the peak phase 

points in the phase-locked resonators to determine the phase of the signal. The algorithm 

was tested for audio sampling rates from 8 kHz to 44.1 kHz, and gave equivalent 

qualitative performance for all of the tested rates in this range. Scheirer [5] goes on to 

show that the beat-tracking procedure can be run in real-time on an advanced desktop 

workstation. 

Scheirer [5] describes an algorithm, which can successfully beat-track digital audio 

signals representing many different musical types. The music does not have to contain 
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drums or other specific timbres, and does not have to conform to any predetermined set 

of musical templates. Scheirer [5] identifies various areas where further development or 

improvement could occur. These include the frequency filter bank, envelope sampling 

rate, analysis of frame rate, and behavior tuning. He recommends that further testing 

with different frequency filter banks other than a six-channel sixth-order IIR. It is 

important to investigate various types of filters to reduce computational cost, as there is 

CPU load for implementing high-order filters in real-time on high bandwidth audio. The 

author notes various areas that need to be investigated to control the tradeoff between 

program speed and accuracy. One area addresses the fact that the decimation rate of the 

channel envelopes affects the speed and performance of the system. A slow envelope-

sampling rate is important because there are many resonator frequencies that cannot be 

accurately represented with integer delays in comb filters, and the phase extraction can 

only be performed with accuracy equal to the envelope-sampling rate. If a fast envelope 

sampling rate is used then the comb filters will have more computations, since the 

number of multiplies in the filter varies proportionately to this sampling rate. While the 

author recommends an envelope-sampling rate of 100 Hz, more analysis of envelope 

sampling rates should be investigated. The author notes that the frequency of examining 

and summing outputs and internal states of the resonators strongly affects the 

performance of the program. Therefore analysis of optimum frame rate should be 

performed. The behavior of the algorithm can be tuned with the a parameters in the 

comb filters. These values control whether to value old information or new information 

more highly. The author notes that manipulating these parameters is computationally 

similar to manipulating the windowing function of a narrowed autocorrelation. The work 
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of Eric Scheirer [5] has become the de facto reference for most in the area of tempo and 

beat analysis. The accuracy and efficiency of the algorithm indicated its relevance to 

heart and lung sound analysis. It was noted that further research of utilizing Scheirer's 

algorithm [5] for heart sound analysis should be performed. This includes utilizing 

different frequency filter banks, investigating various types of filters to reduce 

computational cost, as there is CPU load for implementing high-order filters in real-time 

on high bandwidth audio. In addition, the author had noted various areas that need to be 

investigated to control the tradeoff between program speed and accuracy; these areas 

include envelope sampling rate, analysis of frame rate, and behavior tuning. 

LaRoche [18] based his research on the previous work of Scheirer [5], but 

incorporated the assumption of constant tempo. Generally, this assumption may be 

acceptable for heartbeat sound analysis. But, it may preclude performing heartbeat sound 

analysis and signal modification on inputs of irregular heartbeats. This needs to be 

further investigated. LaRoche [18] noted that his algorithm does not perform well on 

tracks that do not contain sharp attacks or transients. Research is needed to see if 

heartbeats have sufficiently sharp transients. LaRoche [18] notes that the algorithm is 

computationally expensive and offers multiple areas to improve the algorithm's 

efficiency. This is a very important research area for applying the algorithm in an 

embedded, real-time system. 

Alonso, David, and Richard's work [19], [20] improves LaRoche's work [18] by 

using an optimal filter to approximate the derivative and obtain a high performance onset 

detector, which is integrated into a tempo tracking algorithm. Further research is needed 

to see if the algorithm would provide valid results when applied to heart sound signals to 



address the previously discussed limitations of the algorithm [19], [20]. In addition, 

further research should address the previously mentioned issues for a real-time 

implementation. It may be difficult to overcome the need for future signal samples for 

block-wise processing. The non-causality of the thresholding filter used in the detection 

function would have to be addressed, as well. This algorithm also assumes a constant 

tempo and would need similar analysis to that of LaRoche's algorithm [18]. 

Because Scheirer's algorithm [5] was ground breaking, it was felt that none of the 

published research that built on his work is better suited to support real-time heart sound 

signal analysis; therefore, Scheirer's algorithm [5] was selected for this dissertation. 

2.4 Development Environment 

The development environment included the MatLab software programming language, 

and use of both the Signal Processing Toolbox and Wavelet Transform (WT) Library as a 

basis to implement the heart and lung sound separation, modification and heartbeat 

detection and localization algorithms. The MatLab Signal Processing Toolbox™ 

provides standard algorithms for digital signal processing. The toolbox and WT library 

were used to visualize the heart and lung sound signals in both the time and frequency 

domains; to compute FFTs for frequency domain computations including convolution; to 

implement FIR low pass, high pass and band pass filters; to implement modulation, 

resampling, and other signal processing techniques. 

The Welch Allyn Meditron™ electronic stethoscope system was used to acquire 

sound files from live patients. The stethoscope system was configured for various 

frequency settings to attempt to isolate heart and lung sounds, which occur at specific 
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frequencies. While this attempt was made to isolate heart and lung sounds, the recording 

process still picks up other body sounds, which were included in the input files and may 

affect the results of the separation, modification and heartbeat detection and localization 

portions of the model. 

The sound recordings were provided in the Waveform Audio File format, WAV. 

The WAV files are digital representations of the recorded biological sound signals. It is 

recognized that the processing including reading and writing, of these sound files can 

affect the accuracy of the sound signals. When possible, the use of the files was 

minimized and the signal data manipulated at various portions of the model was stored in 

memory rather than being read and written to files. 
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CHAPTER 3 

RESEARCH DESCRIPTION 

The dissertation study was performed, in order to further the work of McKenzie, et al. 

[l]-[3] in the area of augmented SPs. The study focused on the identification of 

techniques that are conducive to supporting real-time pathology signal analysis and 

modification. The research focused on two areas: 1) the plausibility of applying the 

acoustic music signal tempo and beat detection algorithms of Scheirer [5], 2) determining 

an optimum technique of separating heart sounds from lung sounds from the two of the 

techniques reviewed by Gnitecki, Pasterkamp, and Moussavi [12]: including the RLS-

ANC and the WTC-ANC algorithm developed by Hadjileontiadis and Panas [11]. 

3.1 Model Description 

To further the work of McKenzie, et al. [1 ]-[3] in the area of augmented SPs, a study was 

conducted to develop a model to use a heart/lung sound signal as input, locate and 

separate the heart sound signal from the lung sound signal, modify a reference pathology 

heart signal to resemble the original separated heart sound signal in terms of heart rate 

and heartbeat locations, combine the modified pathology heart sound signal with the 

original lung sound signal, and then provide output of a reconstructed modified signal in 

an acceptable real-time time-frame. It is intended that the model will be used in an 

application involving the augmentation of medical equipment with pathological sounds to 

be used with virtual patients for training medical students. A description of the model is 

presented in Fig. 1. The functionality of each stage of the model is described in the 

following sections. The model was developed using the previously described 
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including use of both the Signal Processing Toolbox and Wavelet Transform Library. 
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Fig. 1. Overview of model for virtual pathology using signal analysis and 
modification. 

3.2 Heart/Lung Signals (Input and Reference Data) 

Various audio files of normal and abnormal hearts sounds, as well as lung sounds, and 

combined heart/lung sound were acquired, from the Medical Imaging Diagnosis and 

Analysis Laboratory of Old Dominion University, for use in the dissertation study. The 

input files, are in the WAV format. The signals in the files are sampled at 44.1 KHz and 

included signals from normal breathing, deep breathing, breath holding as well as signals 

from the aortic, pulmonary, mitral, and tricuspid auscultation sites. In addition, various 

files containing heart and lung pathology, such as a heart murmur, a lung asthma wheeze, 

and lung crackles were also utilized. A list of files, with descriptions, is included in 

Appendix A: Description of Input and Reference Heart/Lung Signals. 
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The ECG and sound signals, used in the research, were collected from the 

pulmonary region. The Welch Allyn Meditron™ electronic stethoscope was used to 

gather the data. For better signal acquisition by reducing noise, all of the signals where 

collected using conductive gel. The built-in filter of the stethoscope was set to low 

frequency, medium frequency, or high frequency levels. Each signal was collected for 

15.5-seconds. Examples of signals collected in the pulmonic region, with a medium 

frequecny setting, are shown in Fig. 2. 

Fig.2. contains three sets of plots corresponding to the acquired signal when a 

patient was exhibiting a) normal breathing, b) holding breath, and c) deep breathing. 

Each of the three sets contains two (approximately) 15.5-second duration plots. The 

upper plots show the ECG signal and the lower plost show the heart/lung sound signals. 

Each plot has a time domain in seconds and a voltage range in millivolts. It can be seen 

from each of the ECG plots and clearly in the holding breath plot (which lacks lung 

sounds) that there are approximately 15 heartbeats in a 15.5-second sample time period, 

which indicates the patient's heart rate at approximately 60 bpm. 



(a) Normal breathing (b) Holding breath 

(c) Deep breathing 

Fig. 2. Pulmonic area reference signals. 
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Input. HmA and Lung Sound Signal (DowmampM. 4410Hz) 
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(a) Original Heart/Lung Sound Signal (b) Downsampled Heart/Lung Sound Signal 

Fig. 3. Original and down sampled input signal. 

The input signals were preprocessed prior to being filtered for heart and lung sound 

separation. The preprocessing included lowpass filtering, downsampling by a factor of 

10, and normalization. The original input signal was sampled at a frequency of 44.1 KHz 

and, after downsampling, the new sampling frequency was 4.41 KHz. To preclude 

aliasing of frequency components higher than the Nyquist rate of 2.2 KHz, an order 30 

FIR filter with cutoff frequency of 1764 Hz [0.8*(44100/2)/10] was applied prior to 

downsampling. The cutoff frequency was well above any heart or lung sound frequency 

components. Examples of a original input signal and down sampled signal are shown in 

Fig. 3. The 15.5-second original has a time domain measured in time samples at a 

sampling rate of 44100 Hz and a signal value range in millivolts. The 15.5-second 

filtered and downsampled (factor of 10) signal in Fig. 3b. shows time domain samples 

with a sampling rate of 4410 Hz and a signal value range in millivolts. It can be seen, 

when comparing both plots, that the filtering and downsampling reduced the data set for 

efficient processing without affecting the integrity of the signal. 



33 

3.3 Heart/Lung Sounds Signal Analysis: Heart Sound/Lung Sound Separation 

While it was envision that the heart sounds and lung sounds would be required to be 

separated prior to applying the heartbeat detection and localization algorithm to 

characterize the heart signal, an investigation into the feasibility of applying the 

algorithm to the input signal without heart and lung sound separation was conducted. The 

heartbeat detection and localization algorithm was applied to a subset of input files used 

for the study, as previously described. The set included signals acquired for two different 

patients exhibiting "normal breathing" from the aortic, pulmonic, tricuspid and mitral 

auscultation sites. From visual inspection of the ECG signal plots, one patient exhibited a 

heart rate of approximately 60 bpm and the second patient exhibited a heart rate of 

approximately 80 bpm. For each file, an estimate of the location of the first heart beat 

was acquired from visual inspection of the time domain representation of the input heart 

and lung sound signal. The beat detection algorithm was applied to a total of 8 sound 

signal data sets. The results are shown in TABLE I. For sound signal files corresponding 

to the patient with a beat rate of approximately 80 bpm, the beat detection algorithm 

calculated rates ranging from 46 to 124 bpm. For sound signal files corresponding to the 

patient with a beat rate of approximately 60 bpm, the beat detection algorithm calculated 

rates of 95 and 117. In addition, the WTC-ANC filter was applied to each of the input 

files to separate the heart sounds from the lung sounds. The beat detection algorithm was 

then applied to each of the separated heart sound signals. The calculated heart rates and 

first heartbeat locations are comparable to the estimates. The results are also included in 

TABLE I. Both the variance in calculated heart rates and first beat locations from the 

input heart and lung sound signals and the consistent and accurate calculations for the 
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separated heart sound signals shows that the beat detection does not accurately detect 

heart rate on signals containing both heart and lung sounds and that sounds must be 

separated prior to utilizing the algorithm to detect heart rate. 

TABLE I 

BEAT DETECTION OF INPUT HSLS SIGNAL 

Input Visual Separated 
HSLS 1st HS 

InputHSLS 1st Visual Location Separated 1st 
Signal HR Location HR (sample HS Location 

(bpm) (sample #) (bpm)* HR (bpm) (sample #) 

Pulmonic mid 
Normal Breathing 82.95 1262 -80 -2200 81.67 2179 

Mitral Normal 
Breathing 124.42 44 -80 -1200 84 1219 

Middle Normal 116.89 1282 - 60 - 1200 56.26 1323 

" Visual estimation from ECG signal plot. Visual estimation from sound signal plot. 

In order to perform heart signal analysis, the heart sound signal was separated from 

the lung sound signal. Unlike what was presented in most of the reviewed papers on 

heart and lung sound analysis, the heart sound signal was the signal of interest, not the 

lung sound signal. Research was performed to select an optimum technique for 

separating the heart sound signal from the lung sound signal of an SP in an efficient 

manner, while preserving both signals. 

3.3.1 Heart and Lung Sounds Separation Techniques 

Various methods of heart and lung sound analysis have been summarized in Cection 2.2 
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Heart and Lung Sound Analysis. These include Gnitecki's and Moussavi's review [4] of 

research in the area of separating heart and lung sounds. While these efforts focused 

more on the lung sounds and removing the heart sounds, the methods are relevant for 

focusing on heart sounds and removing/separating lung sounds. Gnitecki and Moussavi 

[4] summarized fifteen techniques for filtering heart sounds from lung sound recordings, 

including linear adaptive filters, autoregressive modeling, moving average modeling, 

least mean square, fourth order statistics, recursive least squares, block fast transversal, 

and reduced order Kalman filters. 

Utilizing an efficient algorithm is critical to separating the heart sounds from the 

real-time pathology of the patient in training medical students in auscultation. Upon 

further review of the research identified in the literature review, two methods were 

identified to fulfill this requirement, and were implemented. The first method is the 

Recursive Least Squares adaptive noise cancellation (RLS-ANC) method developed by 

Gnitecki, Pasterkamp, and Moussavi [6]. The RLS adaptive filtering scheme consists of 

a transversal filter with finite-duration impulse response (FIR) and an RLS adaptation 

algorithm, which updates the tap weights of the transversal filter so that the mean square 

error (MSE) is minimized and an estimate of the desired output, lung sound signal results, 

with the heart sound signal being provided in the filter output error. 

The second implementation is a wavelet transform adaptive noise cancellation 

(WT-ANC) filter, based on the work by Hadjileontiadis and Panas [11]. This filtering 

technique was also used for the localization of the heart sounds. The authors have shown 

that the application of this wavelet-based filter on lung sound signals, which include heart 

sounds, produces an almost noise-free, i.e. heart sound-free, output signal. It was 
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anticipated that this would be a viable solution based on the simplicity of the algorithm 

and its fast implementation, as well as based on both the qualitative and quantitative 

results presented by Gnitecki, Hossain, Pasterkamp, and Moussavi [12]. As shown in the 

work of Gnitecki, Hossain, Pasterkamp, and Moussavi [12], [based on both a quantitative 

and qualitative assessment, both techniques are capable of heart and lung sound signal 

separation and heart sound localization. Gnitecki, Hossain, Pasterkamp, and Moussavi 

[12] identified advantages and disadvantages to applying each technique. For instance, 

the processing time of the RLS-ANC filter was ten times that of the WT-ANC filter. 

This was a concern due to the objective of efficiency. It was anticipated that WT-ANC 

filter processing time would be adequate. While, both methods are capable of HS heart 

sound localization, the RLS-ANC requires a separate procedure to localize heart sounds 

and apply the locations to the reference. 

The research investigated using the RLS-ANC filter developed by Gnitecki, 

Pasterkamp, and Moussavi [6] and the WT-ANC filter developed by Hadjileontiadis and 

Panas [11], as well as a combination of both filters for the separation of the heart sound 

signal from the lung sound signal, to enable the heart sound signal to provide localization 

of heart sounds (first and second heart sound peaks), which were then used in the heart 

signal analysis and modification. 

For this study, acceptable separation is defined as separated signals having minimal 

lung sound components in the heart sound signal and visually unnoticeable or at least 

minimal heart sound components in the lungs sound signal. The PSD of the separated 

signals should correlate with the time domain representations, with the power of the heart 

sound signal being maximal below 100 -150 Hz and decreasing for frequencies after 150 



Hz. The greater the slope of the graph after 150 Hz, the less lung sounds are present in 

the signal. There will always be some lungs sounds present. The PSD of the lung sound 

signal should be similar, with the threshold being between 150 - 200 HZ. The PSD 

should be lower between 0-40 Hz, where only heart sounds are present. 

Both methods were able to separate the heart sounds from the lung sounds. The 

RLSANC method did take considerably longer to execute. The separated heart sound 

signal from the WT-ANC was more conducive accurate heart rate and heartbeat location 

calculations by the heartbeat detection and localization. 

The feasibility of using separated HS output of the WT-ANC filter as input to 

RLS ANC filter was also investigated. Three attempts were made. The first attempt 

used an unfiltered pulmonic holding breathing sound file as a reference for applying the 

RLS-ANC filter to the pulmonic normal breathing file. Since a holding breath signal 

typically contains minimal lung sounds, it was hopeful that this could be used as a 

reference of the heart sound signal. However, the results of the RLS-ANC signal 

separation were not favorable. Heart sound components correlating to heartbeats in the 

input signal were visually noticeable in the separated lung sound signal. The separated 

heart signal contained location and amplitude accurate heart sound components in the 

first 5% of the signal and then the amplitude was drastically reduced. The PSD of the 

resultant heart sound signal showed maximum power well below 100 Hz, which is typical 

of a heart sounds, but the power was drastically reduced from -30 dB/Hz to -70 dB/Hz, 

most likely due missing heart sound components which were included in the separated 

lung signal. The PSD of the lung sound signal mirrored the input signal with maximum 

power of -30 dB/HZ for the frequency range from 0-150 Hz, which is expected of a 
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signal containing both heart and lung sounds. It was decided that this method would not 

be used for heart and lung sound separation. 

The second attempt used the WT-ANC separated heart sound signal from the 

pulmonic holding breathing sound file as a reference for applying the RLS-ANC filter to 

the pulmonic normal breathing file. Again, since a holding breath signal typically 

contains minimal lung sounds, it was hopeful that this could be used as a reference of the 

heart sound signal. However, the results of the RLS-ANC signal separation were not 

favorable. The heart and lung sound signals were not adequately separated. The resulting 

heart sound signal was very sparse and contained minimal heart sound components, and 

the components were drastically reduced in amplitude. Both heart and lung sound 

components were present in the lung sound separated signals. The PSD of the heart 

sound signal showed a very low power due to the fact that many of the heart sound 

components were included in the lung sound signal. The PSD of the resultant heart 

sound signal showed maximum power well below 100 Hz, which is typical of a heart 

sounds, but the power was drastically reduced from -30 dB/Hz to -70 dB/Hz, most likely 

due missing heart sound components which were included in the separated lung signal. 

The PSD of the separated lung sound signal also corresponded to having both sound 

components present. The PSD of the lung sound signal mirrored the input signal with 

maximum power of -30 dB/HZ for the frequency range from 0-150 Hz, which is 

expected of a signal containing both heart and lung sounds. The separated heart sound 

signal did possess high correlation in heart sound locations with the original input signal. 

Since the separated heart sound signal did contained sparse heart sound components, it 
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was not conducive to supporting accurate heart rate and heartbeat location calculations by 

the heartbeat detection and localization algorithm. 

The third attempt used the WT-ANC separated heart sound signal from the 

pulmonic normal breathing sound file as a reference for applying the RLS-ANC filter to 

the pulmonic normal breathing file. The results were better than using the holding breath 

as a reference, but were still not sufficient. The heart and lung sound signals were not 

adequately separated. The separated heart sound signal contained more heart sound 

components, however, both heart and lung sound components were present in the 

separated lung sound signal. The PSD of the original sound signal contained maximum 

power of -30 dB/HZ for the frequency range from 0 - 150 Hz, which is expected of a 

signal containing both heart and lung sounds. The PSD of the separated heart signal did 

not contain lung sound components as the signal showed maximum power well below -

100 Hz, which is typical of a heart sounds, but the power was drastically reduced from -

30 dB/Hz to -70 dB/Hz, most likely due missing heart sound components which were 

included in the separated lung signal. However, if lung sounds were present, the power 

would have been maximum from 0-150 Hz. The PSD of the separated lung sound signal 

also corresponded to having both sound components present. The power was maximum 

at -30 dB/Hz from 0 to 150 Hz, similar to the input signal. 

The WTC-ANC filtering method was selected to separate the heart sound and lung 

sound signals for two reasons. The predominant reason is that the WT filtered HS signals 

provide an efficient and accurate separation of the HS and LS. The algorithm performs 

ten times faster than the RLS filtering method, with out requiring a reference signal to be 

generated or acquired. The filtered heart sound signal provides an accurate 
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representation of the heart sounds to be used as input to the heartbeat detection and 

localization algorithm. 

3.3.2 Description of Wavelet Transform Filtering Technique 

The WT-ANC filter as developed by Hadjileontiadis and Panas [11]. The WTC-ANC is 

a wavelet transform based filter that separates stationary and non-stationary signals. The 

filtering scheme combines the efficiency of multi-resolution analysis with hard 

thresholding and has been proven successful in heart sound noise reduction of lung 

sounds. Published work by Gnitecki, Hossain, Pasterkamp, and Moussavi [12] has shown 

that the WT-ANC filter provides high de-noised signal quality without requiring any 

reference signal, with low computational cost and fast and easy implementation. 

The proposed algorithm is a wavelet domain filtering technique, based on the fact that 

explosive peaks in time domain have large signal over many wavelet scales, while 'noisy' 

background dies out swiftly with increasing scale. When applying the filter to a signal 

containing heart and lungs sounds, the peaks represent heart sounds and the 'noisy' 

background represents the lung sounds. An N sample signal is considered noisy or 

incoherent relative to a basis of waveforms if it does not correlate well with the 

waveforms of the basis [11]. From this idea, the separation of heart sounds from lung 

sounds becomes a matter of extracting the breath sounds. The heart sounds, contained in 

the non-stationary part of the input signal are separated from the lung sounds, which are 

contained in the stationary portion of the signal. The filtering scheme is shown in Fig. 7. 
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Fig. 4. WTC-ANC filter scheme. 

The scheme utilizes Daubechies Quadrature Mirrored filters of different length 

(2dB to 12 dB), and includes an iterative multi-resolution decomposition - multi-

resolution reconstruction (MRD - MRR) process to form different levels of noise 

separation. The input to the algorithm is length 2048 sample windows of the normalized 

heart and lung sound signal. Specifically, at k iteration, the WT off (u), (for k = l,f (u) 

= X(u), u = 1,..., N, where X(u) is the normalized input signal) at m adjacent resolution 

scales (m = 1,..., M, where M = log2N) is first calculated, using previously-defined 
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libraries of orthonormal bases. The resulted WT coefficients at j scale are compared with 

a hard threshold, defined as follows: THRkj = akj Fadj, where akj is the standard 

deviation of WT at k iteration and j scale and Fadj is an adjusting multiplicative factor, 

used to sustain the threshold at high value, at different scales. A factor of 3.0 was used 

[18], though the factor can vary from 2.5,2.6, and 2.7 according to Gnitecki, et al. [15]. 

From this comparison, the WT coefficients are divided into big (>THRkj) and small 

(<THRkj) ones, WTkc (X) and WTkR (A.), respectively. If the signal f (k) is coherent, then 

applying MRR (m scales) to WTkC (X) and WTkR (X) coefficients,/(k) can be 

decomposed into C\ (X) and Rk (A.), respectively. The iterative procedure stops after a 

fixed number of decompositions (L = 16), or after the following stopping criterion (STC) 

is satisfied, i.e.: STC = | E {R2k (X)} - E {R2/t-i (X)}| < e, 1» e > 0. After the last iteration 

(L) the coherent part of the signal, Heart Sounds is composed by superposing the 

coherent parts derived at each iteration k, i.e.: HS (k) = £' k=i Ck (A.), while the remaining 

signal is the (Lung Sounds, i.e. LS (X) = Rl (X). The filter separates heart sounds from 

lung sounds, only at locations of their presence, keeping unchanged the rest of the input 

signal. The implemented algorithm is outlined in TABLE II. 
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TABLE II 

WT-ANC ALGORITHM 

1. Initialization 
X[X], X = 1 ..N, N = 2048 

Fadj: adjusting multiplicative factor 
m: number of WT scales, 1 .. M, M = log2(N) 

3. Loop for each iteration process, k = 1 .. L, L = 8 to 10 
Compute MRD(f[>.]) mscales = WTk[X] 
Save 2 copies of WTk[X], WTkC[X] and WTkR[AJ 
Loop for each wavelet scale, j = 1 .. M 
Compute standard deviation, Ojk 

Compute threshold, THRjk = ojk * Fadj 
Loop for the number of WT coefficients at each wavelet scale, 
i = 1 ... (N/2') 
Compare WTjk [i] and THRjk 

ifWTjk[i] <THRjkthen 
WTj c [i] = 0 

else 
WTjkR [i] = 0 

end loop i 
end loop j 
Compute Ck[X]= MRR(WT,kc )msca|es 

Compute Rk[X] = MRR(WTjkR )msca:es 

Compute criterion STC = |E{R2
k.i[ ^]} - E{ R2k[ ^.]}| 

Compute STC and compare to £ 
if STC >= e then 

else 
k = L( end loop k) 

end loop k 

5. Compute Pure Vesicular Sounds - PVS (Lung sounds) 
PVS[X] = R lM. 

3.3.3 Sensitivity Analysis of the WTC-ANC 

A sensitivity analysis of the WT-ANC algorithm was performed, by changing various 

parameters, which are used in the algorithm. The parameters included the wavelet basis 
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function, the window size, the stopping criterion, the max number of iterations, and the 

Fadj parameter used to set the hard threshold for separation of the coefficients. Only one 

parameter setting was changed at a time, with unchanged parameters being set to 

recommended settings from the referenced papers [11] and [12] and or selected settings. 

Upon changing a parameter setting, a visual inspection was made of the time domain and 

PSD plots of the separated heart and lung signals. In addition, the beat detection 

algorithm was applied to the separated heart signal. Furthermore, the reference 

implementation data files provided by Dr. Hadjileontiadis, corresponding to the adjusting 

multiplicative constant, Fadj, settings of 3.0, 3,1,3.2, 3.3, and 3.4, for separated heart and 

lung sounds were also used to show the sensitivity of this parameter for separating heart 

sound signals for input to the heartbeat detection and localization algorithm. 

The input signal ("BreathingNormal.wav" as listed in Appendix A) of a subject 

exhibiting normal breathing was used for the sensitivity analysis WTC-ANC filter 

implementation. The results for default settings of wavelet basis function DaubechieslO, 

adjusting multiplicative factor Fadj = 3.0, window length, N = 2048, max number of 

iterations L = 10, and stopping criterion threshold e = 0.00001 are shown in Fig. 5. All of 

the time domain representations in the sensitivity analysis chapter show a time domain in 

samples and a signal value range in millivolts. All of the PSD plots show a domain in 

frequency and a range in db/Hz. The results for the default configuration meet the 

defined acceptance criteria as previously described in Section 3.3.1 Heart and lung 

sounds separation techniques. 
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(a) Default HS (b) Default LS 

(d) Default HS PSD (e) Default LS PSD 

Fig. 5. Separation results for default WT-ANC parameters. 

In the validation work by Hadjileontiadis and Panas [11] the various lengths of 

Daubechies wavelet basis functions from 2 to 20 were analyzed. The authors noted that 

there were not major differences resulting from the different length basis functions and 

they settled on the Daubechies basis function of length 8 coefficients. Gnitecki, Hossain, 

Pasterkamp, and Moussavi and Moussavi [12] also used this specific wavelet basis 

function. Various length Daubechies [38] wavelet basis functions, as well as functions 

from other families such as Haar, Symlets, Coiflets, BiorSplines, and DMeyer wavelets, 

were tested. The discrete Haar wavelet is a sequence of rescaled "square-shaped" 

functions and is advantageous for the analysis of signals with sudden transitions. 

Symlets, near symmetrical wavelets, were also developed by Daubechies [38] as an 

alternative to the Daubechies wavelet family. Another discrete wavelet family is the 
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Coiflets family, which was also designed by Daubechies [38]. Similar to the Daubechies 

wavelet family, these wavelets have scaling functions with vanishing moments. 

However, the Coiflets wavelets are near symmetric. The Biorsplines family consists of 

biorthogonal spline wavelets. The results are presented in Fig. 6., Fig. 8, and TABLE III. 

Out of the Daubechies family, the wavelet with 10 coefficients performed the best for 

separating heart and lung sounds. The 8-coefficient wavelet was second. As can be seen 

in Fig. 6.a-b., some heart sound components are in the lung sound signal, and some lung 

sound components are present in the heart sound signal. The PSD plots shown in Fig. 

6.c-d. support this assessment. The PSD of the heart sound signal has considerable 

power between 100 -200 Hz, where lung sounds usually occur. The rest of the 

Daubechies wavelets did not perform as well, per the acceptance criteria defined in 

Section 3.3.1 Heart and lung sounds separation techniques, as heart and lung sound 

components were present in both signals. Based on the results shown in Fig. 7. and Fig. 

8., the performance of the other wavelet families is not acceptable . The results for the 

DMeyer wavelet, shown in Fig. 8.e-h., are the best, however, too many lung sound 

components are still present in the separated heart sound signal. The separation 

assessments and calculated for heart rates and first heart beat location are shown in 

TABLE III. It can be seen that incorrect heart rate calculations correlate with poor heart 

and lung sound separation. 
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Fig. 6. Wavelet basis function analysis for Daubechies 8 and Haar. 
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(a) Coif5 HS (b) Coif5 LS (c) Coif5 HS PSD 

(d) Coif5 LS PSD (e) Sym8 HS (f) Sym8 LS 

(g) Sym8 HS PSD (h) Sym8 LS PSD 

Fig. 7. Wavelet basis function analysis for Coief5 and Sym 8. 
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Fig. 8. Wavelet basis function analysis for BiorSplines 6.8 and DMeyer. 
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TABLE III 

WTC-ANC SENSITIVITY ANALYSIS: WAVELET BASIS FUNCTION3 

Setting HS/LS Separation 
Time Domain 

HS/LS Separation Calculated HR 
(bpm) 

First Beat Location 
^^(Sample#)^^ 

DB5 Poor Poor 180.25 480 

DB7 Poor Poor 39.39 2832 

DB9 Poor Poor 32.23 3813 

DB12 Poor Poor 180.13 454 

HAAR Poor Poor 183.75 1425 

DMEY Poor Poor 65.40 442 

BIOR6.8 Poor Poor 179.76 1 
' Fadj = 3.0, N = 2,048, L = 10, e = 0.00001. 

In the validation work by Hadjileontiadis and Panas [11] a window size, N, of 

1,024 and 2,048 were used. These windows sizes as well as sizes of 512 and 4,096 were 

tested. The results are shown in Fig. 9, Fig. 10., and TABLE IV. Per the acceptance 

criteria defined in Section 3.3.1 Heart and lung sounds separation techniques, the window 

sizes of 512 (Fig. 9a-d.), 1,024 (Fig. 9e-h.), and 4,096 (Fig. 10e-f.), all had poor 

performance, since heart sound and lung sound components are present in both separated 

signals as seen in both the time domain and frequency domain representations. 

However, the window size of 2,048 (Fig. 10a-d.), performed well. The poor performance 

of the 1,024 window size was surprising, since it was one of two sized used in work by 

Hadjileontiadis and Panas [11]. 
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(f) N1024 LS (e) N1024 HS 
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(g) N1024 HS PSD (h) N1024 LS PSD 

Fig. 9. WTC-ANC window size analysis for N = 512 andN = 1,024. 
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(g) N4096 HS PSD (h) N4096 LS PSD 

Fig. 10. WTC-ANC window size analysis for N = 2,048 and N = 4,096. 
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The separation assessments and calculated for heart rates and first heart beat location are 

shown in TABLE IV. It can be seen that a window size of 2,048 did also provide a signal 

conducive to correct heart rate calculations. The incorrect calculations for the window 

size of 4,096 are surprising, since the separation was very good. 

TABLE IV 
WT-ANC SENSITIVITY ANALYSIS: WINDOW SIZE (N)a 

Setting HS/LS Separation HS/LS Calculated First Beat Processing 
N Time Domain Separation HR Location Efficiency 

HHH 
PSD 

IliillS l̂jllllil BHH 
512 Poor Poor 156.39 621 20 

4096 Very Good Very Good 42.05 2497 3 

* Basis = DB10, Fwlj= 3.0, L = 10, e = 0.00001. 

Both Gnitecki, Hossain, Pasterkamp, and Moussavi [12] and Hadjileontiadis and 

Panas [11] used a stopping criterion threshold e, of 0.00001. No other values were 

presented, however values of 0.000001,0.0001, and 0.001 were also tested. The results 

are presented in Fig. 11, Fig. 12, and TABLE V. Per the acceptance criteria defined in 

Section 3.3.1 Heart and lung sounds separation techniques, the values of 0.000001 (Fig. 

1 le-h.), 0.0001 (Fig. 12a-d.), and 0.001 (Fig. 12e-f.), all had poor performance, since 

heart sound and lung sound components are present in both separated signals as seen in 

both the time domain and frequency domain representations. However, the stopping 

criterion threshold of 0.00001(Fig. 1 la-d.), also used by Hadjileontiadis and Panas [11], 

performed well. 
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Fig. 11. WTC-ANC stopping threshold analysis for e = 0.00001 and e = 0.000001. 
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Fig. 12. WTC-ANC stopping threshold analysis for e = 0.001 and e =0.01. 

The separation assessments and calculated for heart rates and first heart beat location are 

shown in TABLE I. It can be seen that a stopping criterion threshold of 0.00001 resulted 

in a signal conducive to correct heart rate calculations. Even though the other values had 

acceptable heart rate calculations, their assessed separations are poor. 
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TABLE V 
WT-ANC SENSITIVITY ANALYSIS: STOPPING CRITERION (e)a 

Setting HS/LS Separation 
STC Time Domain 

HS/LS 
Separation 

PSD 

Calculated 
HR 

First Beat 
Location 

0.000001 

Processing 
Efficiency 

0.001 Poor Poor 58.77 246 

1 Basis = DB10, Fldj = 3.0, N = 2,048, L = 100. 

Hadjileontiadis and Panas used values of 5 - 8 for the max number of iterations, 

L, in their validation work presented in [11]. Gnitecki, Hossain, Pasterkamp, and 

Moussavi [12] recommended values of 8 - 10 in their qualitative analysis. These values 

as well as 4,12, 14,16,18,20, and 25 were tested. The results are presented in Fig. 13., 

Fig. 14., and TABLE VI. The separation assessments and calculated for heart rates and 

first heart beat location are shown in TABLE VI. It can be seen that maximum iterations 

of 10 and greater resulted in a signal conducive to correct heart rate calculations. These 

results are also seen in the time domain and frequency domain representations of the 

separated heart and lung sound signals. Per the acceptance criteria defined in Section 

3.3.1 Heart and lung sounds separation techniques, the values L = 4 (Fig. 13a-d.), L = 6 

(Fig. 13e-h.), and L = 8 (Fig. 14a-d.), all had poor performance, since heart sound and 

lung sound components are present in both separated signals as seen in both the time 

domain and frequency domain representations. The separation for L = 8 was acceptable 

as the presence of opposite sounds in each signal was minimal. However, the resulting 
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separated heart signal did not have a correct heart rate calculation. The value L = 10 was 

selected and its results were previously shown in Fig. 5. 
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(g) L6 HS PSD (h) L6 LS PSD 

Fig. 13. WTC-ANC max iterations analysis for L = 4 and L = 6. 



(c) L8 HS PSD (d) L8 LS PSD 

14. WTC-ANC max iterations analysis for L = 8. 
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TABLE VI 
WT-ANC SENSITIVITY ANALYSIS: MAX ITERATION (L)a 

HS/LS 
Separation 

Time Domain 

HS/LS 
Separation 

PSD 

Calculated 
HR 

First Beat 
Location 

(Sample #) 

Processing 
Efficiency 
(seconds) 

58.47 

10 Very Good Very Good 58.78 247 

14 Very Good Very Good 58.79 247 

18 Very Good Very Good 58.81 4252 

25 Very Good Very Good 58.78 282 

Basis = DB10, Fa(y = 3.0, N = 2,048, 8 = 0.00001. 

For the adjusting multiplicative constant, Facij, Hadjileontiadis and Panas [11] 

settled on 3.0. They actually tested values from 2.0 to much greater than 3.0. Gnitecki, 

Hossain, Pasterkamp, and Moussavi [12] recommended a value of 3.0, but stated that 

values of 2.5 - 2.7 could be used, in their qualitative analysis. The values from 2.0 to 4.0 

were tested. The results are presented in Fig. 15-16. and TABLE VII. The separation 

assessments and calculated for heart rates and first heart beat location are shown in 

TABLE VII. It can be seen that Fadj values of 3.0 and 3.0 had acceptable separation and 

were conducive to supporting an accurate heart rate calculation. Fadj of 3.2 did provide an 

acceptable separation, but the heart rate calculation of the separated heart sound signal is 

incorrect calculations. All other values of Fadj had unacceptable performance. These 

results are also seen in the time domain and frequency domain representations of the 



separated heart and lung sound signals. As can be seen in Fig. 15 and Fig. 16., Fadj 

values of 2.0 - 2.9 result in lung sound components being present in the heart sound 

signal. Fadj values greater than 3.3 result in heart sound components being present in the 

lung sound signal. The greater the Fadj value above 3.3 the more heart sound components 

are present, which is correct, since the Fadj is used in the hard thresholding calculation to 

separate wavelet transform coefficients. 



(d) Fadj 2.0 LS PSD (e) Fadj 2.2 HS (f) Fadj 2.2 LS 
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(g) Fadj 2.2 HS PSD (h) Fadj 2.2 LS PSD 

Fig. 15. WTC-ANC analysis for Fadj= 2.0 and Fadj = 2.2. 



63 

(a) Fadj 2.7 HS 
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(b) Fadj 2.7 LS 
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(c) Fadj 2.7 HS PSD 

(d) Fadj 2.7 LS PSD (f) Fadj 3.3 LS (e) Fadj 3.3 HS 

(g) Fadj 3.5 HS (h) Fadj 3.5 

Fig. 16. WTC-ANC analysis for Fadj = 2.7, Fadj = 3.3, and Fadj = 3.5. 
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TABLE VII 
WT-ANC SENSITIVITY ANALYSIS: Fadia 

Setting 

•it 
2.1 

2.3 

HS/LS Separation 
Time Domain 

Poor 

Good 

HS/LS Separation 
PSD 

Poor 

Good 

3.9 Poor Poor 

* Basis = DB10, N = 2048, L = 10, e = 0.00001 

Calculated HR 
(bpm) 

192.16 

58.67 

182.36 

First Beat Location 
(Sample #) 

1286 

4439 

2.5 Good Good 58.49 4454 

2.7 Good Good 183.75 720 

2.9 Good Good 58.73 4260 

3.1 Very Good Very Good 185.56 949 

3.3 Good Good 180.5 503 

3.5 Poor Poor 180.5 503 

3.7 Poor Poor 183.63 948 

892 

Based on the initial sensitivity analysis results, three runs with combined 

parameters were selected to assess whether a combination of parameters might improve 

some borderline acceptable parameters settings. For instance, the max iteration number 

was decreased in combination of Fadj settings to see if less separation iterations would 

preclude incorrect separations. Both attempts did not provide favorable results, as seen in 

TABLE VIII. In addition, an attempt was made to improve separation for a window size 

of 1,024 by using the better performing Facij value of 3.4. This configuration also 

provided poor results. 



65 

Settings 

F»dj= 3.4 
N= 1024 

TABLE VIII 
WT-ANC SENSITIVITY ANALYSIS: COMBINATIONS8 

HS/LS Separation 
Time Domain 

HS/LS Separation 
PSD 

Calculated HR First Beat Location 

Poor Poor 49.94 1950 

" Defaults: Basis = DB10, N = 2,048, L = 10, E = 0.00001. 

Lastly, heartbeat detection and localization algorithm was applied to four separated heart 

sound signals from by Dr. Hadjileontiadis' reference WT-ANC implementation to assess 

the sensitivity of the reference implementation on the Fadj parameter. The results are 

shown in TABLE IX. It can be seen that the reference implementation is very sensitive 

to the Fadj value, which correlates to the analysis of the presented implementation. 

TABLE IX 
WT-ANC SENSITIVITY ANALYSIS: FADJ OF REFERENCE IMPLEMENTATION 

Setting HS/LS Separation 
Time Domain 

HS/LS Separation 
PSD 

Calculated HR First Beat Location 

Verv Good Veiy Good 94.95 2,113 

Verv Good Verv Good 93.77 2,162 

3.3.4 Results for WTC-ANC Heart and Lung Sounds Separation 

From the results of the sensitivity analysis the parameters for the WT-ANC 

implementation were chosen as follows: Daubechies 10 wavelet basis function, Fadj 

setting of 3.4 and a maximum iteration value of 10, and STC of 0.0001. The results of 

applying this WTC-ANC filter configuration are discussed. Various reference signals as 

listed in Appendix A were utilized. The results for applying the WTC-ANC filters to the 
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input signal ("BreathingNormal.wav" as listed in Appendix A) of a subject exhibiting 

normal breathing, are presented. The filter was applied to the input HS/LS signal; the 

separated HS and LS signals were acquired and then recombined for comparison to the 

original signal. Two comparisons of the original combined HS/LS signals; the separated 

HS and LS signals and the recombined HS/LS signals were made. The comparisons 

included 1) visually in the time domain and 2) the power spectral density (PSD). 

The time domain and PSD results of applying the WTC-ANC filter are shown in Fig. 17. 

and Fig. 18. Each plot in Fig. 10. contains a 15.5-second signal with time domain in 

seconds and a signal value range in millivolts. Fig. 17. shows the time domain results of 

the WT-ANC filter separated signals. As can be seen, the down sampled HSLS input 

signal (Fig. 17a.) and recombined HSLS signal (Fig. 17b.) look comparable which shows 

that the original signal can be adequately reconstructed from the separated HS and LS 

signals, and that the filtering did not filter out or lose portions of the input signal. Fig. 

17c. shows the separated HS signal and Fig. 17d. shows the separated LS signal. 

Visually, it can be seen that the heart and lung sounds are separated into their respective 

signals. Most likely, this is due to the inherent nature of the wavelet transform, which is 

very good at separating stationary and non-stationary portions of a signal. The algorithm 

peels the lung sounds into layers, reveals their coherent structure, and serves as a true 

separation tool of the non-stationary part of the signal [17]. 
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Fig. 17. WTC-ANC filter separated signals. 
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The comparison in Fig. 18. shows the calculated PSD of the original, separated and 

recombined signals of the WT-ANC. As can be seen in Fig. 18a. and Fig. 18b. the PSD 

of the recombined HSLS signal is comparable to that of the original HSLS signal. In 

both signals, the majority of the power is present at the lower frequencies, which is in line 

with the nature of both HS and LS. These PSD of the recombined HSLS signal is also 

comparable to that of the RLS Filter results. Fig. 18c. and Fig. 18d. show the PSD of the 

separated HS and LS signals. Both show that the majority of the power is also at the 

lower frequencies. Note that the PSD of the separated LS signal shows the peak, which 

contributes to same peak in the combined HSLS. These results better match the 

characteristics of both HS and LS where the LS has more overall power in the 

frequencies where both sounds are present. 
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Fig. 18. WTC-ANC filter PSD comparison. 



70 

In addition, a comparison of the results of the implementation of the WTC-ANC 

filter with results from a reference implementation was conducted. The reference 

implementation was a custom WT-ANC filter, developed by Dr. Hadjileontiadis, as 

presented in his published papers [11], [15]. An input sound file, 

("BreathingNormal.wav" as listed in Appendix A) recorded from the pulmonic 

auscultation site of a patient exhibiting normal breathing, was provided to Dr. 

Hadjileontiadis. Dr. Hadjileontiadis applied his custom implementation of the WT-ANC 

filter to the sound file and provided the results corresponding to using a Fa<jj parameter 

setting for 3.0. 3.1, 3.2, 3.3, and 3.4. The results of my implementation utilizing the 

Daubechies 10 wavelet basis function, a Fadj setting of 3.4 and a maximum iteration value 

of 10 are comparable to those of Dr. Hadjileontiadis for each of the Fadj parameter 

settings. The time domain and PSD results for the reference implementation for the Fadj 

setting of 3.4 are provided in Fig. 17e. and Fig.l8f., and Fig.l8e. and Fig.l8f., 

respectively. The presented separated heart sound signal as shown in Fig. 17c. and the 

separated heart sound signal from the reference implementation in Fig. 17e. are 

comparable. It can be seen that the amplitude of the presented filtered signal has been 

reduced slightly more than that of the reference implementation. The separated lung 

sounds of both filters as shown in Fig. 17d. and Fig. 17f. are also comparable with neither 

including visually noticeable heart sound components. The PSD of the separated heart 

sounds of both implementations are shown in Fig. 18c. and Fig 18e. are comparable with 

similar trends and max power being present well below 150 Hz. The max PSD of the 

presented filter is slightly lower than that of the reference filter, but still comparable at 
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approximately -38 dB/Hz vs approximately -34 db/Hz. The PSD of the separated lung 

sounds of both implementations are shown in Fig. 18d. and Fig 18f. are comparable with 

similar trends and max power being present well below 150 Hz. 

Lastly, the heartbeat detection and localization algorithm was applied to both the 

presented WT-ANC implementation and the reference implementation. The results are 

shown in TABLE X. A heart rate of 59.57 bpm and location of the first heart beat of 

sample 697 were calculated for the presented WTC-ANC implementation, while a heart 

rate of 60.51 bpm and location of the first heartbeat of sample 586 were calculated for the 

reference implementation. The heart rate and first beat location of the input signal are 

estimated at 60 bpm, and sample 700, respectively. The results are very comparable. 

The minor differences are attributed to the difference in the Wavelet Transform libraries 

provided in MatLab and those included in the custom implementation of the reference 

WT-ANC filter. This assumption is supported by the fact that Dr. Hadjileontiadis 

recognized general limitations of the wavelet libraries included in MatLab, which led him 

to develop his own wavelet libraries and finely tuned WT-ANC implementation. 

TABLE X 
COMPARISON OF HEARTBEAT DETECTION AND LOCALIZATION OF 

IMPLEMENTATION AND REFERENCE SEPARATED HEART SOUND SIGNALS 
BreathingNormally 

Signal 
Heart Rate First Beat Location 

Reference WTC_ANC 
Separated HS 

60.51 586 

" Visual estimation from ECG signal plot. Visual estimation from sound signal plot 
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3.4 Heartbeat Detection and Localization 

To perform the Heart Signal Analysis, specifically detecting and localizing the heartbeats 

in the heart sound signal, tempo and beat estimation techniques were utilized to identify 

heart rate and beat. The well known tempo and beat detection algorithm of Eric Scheirer 

[5], was implemented to fulfill this requirement. Scheirer presented his tempo and beat 

detection algorithm to the community back in 1998. Since then, many researchers have 

continued Scheirer's work and have made possible improvements to his work. However, 

it was decided to utilize Scheirer's original algorithm, due to the absence of some of the 

researchers' assumptions, which were previously discussed. The heartbeat detection and 

localization algorithm, shown in Fig. 19., is implemented in MatLab. 
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Fig. 19. Heartbeat detection and localization algorithm. 
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The algorithm is implemented in two phases. The first phase focuses on 

determining the heart rate. The second phase of the algorithm encompasses detecting the 

first location of the heartbeats. From the identified location of the first heartbeat and the 

calculated heart rate, the locations of successive heartbeats can be calculated. Both 

phases of the algorithm utilize a filter bank with the following frequency bands (in 

Hertz): 0 - 40,40 - 80, 80 - 160, 160 - 320, and 320 - 640. These frequency bands were 

selected as being adequate for detecting the human heartbeat, which has an average of 72 

beats per minute (bpm). The algorithm is applied to a 5.2 second representative sample 

taken from the middle portion of the signal data. The time domain sample signal is 

divided into individual frequency bands as defined for the filter bank. It is noted that the 

first sample (the dc component) is set to zero. 

The first step in the heart rate detection is to apply the filter bank to the 

representative sample of the signal. The frequency domain output of the filter bank is 

shown in Fig. 20. The next step in the process is to apply a half-Hann window function 

to the frequency bands. For each frequency band, the signal is transformed to the time 

domain, full-wave rectified, transformed back to the frequency domain, convolved with a 

200 millisecond half-hann window, and finally transformed back to the time domain. 

The output of the hann window is shown in Fig. 21. After the Hann window function is 

applied, the next step in the algorithm is a differentiation and rectification. A half-wave 

rectification, based on positive differences of adjacent samples, is applied to the signal in 

the time domain. The intermediate results of this step are shown in Fig. 22., which has a 

time domain in samples and an amplitude range in millivolts. Again, the different colors 

represent the six frequency bands. 
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Fig. 21. Tempo and beat detection Hann window convolved signal. 
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Fig. 22. Tempo and beat detection differentiated and rectified signal. 

The final step in the heart rate detection phase of the algorithm is to iteratively apply a 3-

pulse comb filter to the signal via a frequency domain convolution. The filter scans 

through a frequency range to determine the tempo, measured in beats per min, of the 

signal. The parameters, for each iteration, are shown in TABLE XI. The calculated 

tempo from each scan is used for the frequency limits for the next application of the filter 

to narrow down the actual BPM. 
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TABLE XI 
BEAT DETECTION COMB FILTER PARAMETERS 

Iteration #Bands Step Min Freq Max Freq Output Num 
Pulses 

F -2 F 1  + 2  

F3 + 0.1 F3 + 0.1 

The first iteration scans the frequency range from 30 to 240 Hz. These values were 

selected to include the typical heart rate of a human being, adult or child. The output of 

the scan is the frequency with the maximum energy, the squared value of the convolution 

output. The selected frequency is then used as the basis of the minimum and maximum 

frequency limits for the next iteration, as shown in TABLE XI. The step sizes are 

predetermined. Four iterations are performed with the resolution of the final iteration set 

to 0.01 Hz. The output of the comb filter is the heart rate measured in BPM, and 

completes the first phase of the algorithm. 

As shown in Fig. 19., the second phase of the heartbeat detection and localization 

algorithm encompasses detecting the first location of the heartbeats. From the identified 

location of the first heartbeat and the calculated heart rate, the locations of successive 

heartbeats can be calculated. The process to determine the heartbeat locations is very 

similar to the process used to calculate the heart rate. A one second representative signal 

is taken from the beginning of the separated heart sound signal. The filter bank is 

created, the half-hann window function is applied, a differentiation rectification process 

is applied, and finally, a three-pulse comb filter is applied to the signal via a frequency 

domain convolution. The frequency band with the maximum energy is selected, 

converted back to the time domain, and the sample with the maximum value is identified 
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as the first location of the heartbeat. 

3.5 Substitution of Pathology 

Once the heart and lung sound signals are separated, pathology including an abnormal 

heart sound or lung sound characteristic is added to the signal. Selected pathologies 

included a heart murmur, a crackle, and an asthma wheeze. The procedure for pathology 

substitution is shown in TABLE XII. 

TABLE XII 
PATHOLOGY SUBSTITUTION PROCEDURE 

Step Description 

2 Apply heartbeat detection and localization to the reference pathology heart sounds 
signal. 

4 Apply heartbeat detection and localization to the adjusted signal to verify the heart rate 
and to identify the first location of the heartbeat. 

6 Shift and zero pad adjusted pathology signal by n samples. 

The majority of the focus was on adding heart pathology as this included utilizing 

the beat and tempo detection algorithm as described in Section 3.4 Heartbeat detection 

and localization. When adding a heart abnormality sound signal, the heartbeat detection 

and localization algorithm is applied to both the separated heart sound signal (input) and 

the reference signal containing the pathology. The heart rates are compared, and if the 

difference in rates is greater or equal to two bpm, then the heart pathology signal is 

adjusted to match the heart rate of the separated heart sound signal (input). The sampling 
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rate is used to determine the number of samples to add to decrease the rate or remove to 

increase the rate. 

After the pathology signal is modified to match the heart rate of the input heart 

sound signal, the heartbeat detection and localization algorithm is applied to the adjusted 

signal to verify the heart rate and to identify the first location of the heartbeat. The first 

location is compared to that of the input heart sound signal, and the adjusted pathology 

signal is shifted and zero padded n number of samples, where n equals the difference in 

sample number of the beginning of the first beat of each signal. No other adjustments 

are required as the signals should be comparable. Since the first beats have been lined up 

and the heart rates are closely matched, the successive heartbeats are also in sync. This 

does assume that the heart rates are constant throughout the signal. This assumption is 

acceptable since the objective is not to exactly match the input heart sound signal, but to 

combine a pathology signal with similar characteristics to the original separated lung 

sound to be presented back to the listener, i.e. medical student. When substituting lung 

pathology, the heartbeat detection and localization algorithm is not needed, as neither the 

heart sound signal nor the pathology lung sound signal are modified before being 

combined as described in Section 3.6 Heart sounds/lung sounds signal re-combination. 
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3.6 Heart Sounds/Lung Sounds Signal Re-combination 

After the modification of the heart sound signal, the signal is recombined with the lung 

only sound signal. Basic, standard digital signaling processing techniques were used. 

Basically the heart sound signal and the lung sound signal are converted to the frequency 

domain, added together and then transformed back to the time domain using FFTs and 

IFFTs. 

3.7 Output of Modified Heart/Lung Sounds Signal 

Output files include the separated heart and lung sound signals, the modified heart or 

lung sound signal, and either the combined modified heart sound signal with the original 

lung sound signal or the original heart sound signal with the substituted lung sound 

signal. All output files are provided in the WAV format. 
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CHAPTER 4 

VALIDATION RESULTS 

This chapter discusses the validation results performed during the study. As previously 

stated, the objective of this research was to develop an innovative, accurate and efficient 

model of abnormal heart sounds and lung sounds that will support the real-time 

application of augmenting medical equipment with pathological sounds to be used with 

standardized patients to improve the training of medical students. Accuracy, realism and 

efficiency were the focus of the model development. Input and reference sound data files 

were acquired from medical staff. Documentation for the sound files was provided. The 

documentation included detailed descriptions of how the signals were recorded, including 

electronic settings of the electronic stethoscope. A qualitative assessment of the modified 

heart/lung sounds signals and a quantitative analysis using simulated signals as input into 

the heartbeat detection and localization, pathology substitution, and heart sounds/lung 

sounds signal re-combination portions of the model were performed. The qualitative 

portion of the validation included an auditory assessment of the signals by subject matter 

experts, experienced in training medical students. The quantitative portion of the 

validation involved creating a set of simulated heart and lungs signals to use to validate 

the model. The signal separation and signal modification portions of the model were 

applied separately to the simulated data set to validate the separate parts of the model. 

Then both parts of the model were applied in sequence with the output from the signal 

separation portion being used as input to the signal modification portion, to validate the 

complete model. 
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4.1 Qualitative Results 

A qualitative assessment was performed. The assessement, similar to the qualitative 

analysis conducted by Gnitecki, Hossain, Pasterkamp, and Moussavi [12], involved the 

analysis of the modified heart/lung sounds signals, both visually and through auditory 

analysis of subject matter experts (SMEs) in the field of pathological sounds. Qualitative 

experts, who conducted analysis on various references and modified signals, conducted 

the assessment. Old Dominion University experts in signal processing and heart/lung 

sound signals conducted a visual inspection of the signal set. Medical staff, experienced 

in training medical students, from the Eastern Virginia Medical School (EVMS) 

conducted an auditory assessment of the signals. The assessment signal set contained, 

original heart sounds and lung sound signals, pathology heart and lung sound signals, 

combined (without heart sound adjustment) original and pathological signals, and 

combined (adjusted heart sound) original and pathological signals. 

The data set of model output combination files was organized into various 

directories with titles corresponding to the combinations of heart sounds and lung sounds. 

The files are organized by combinations of "Pathology" and "Normal" signals, or just 

"Normal" signals, and with or without adjusting the HS signal to the Normal Breathing 

HS as a reference. The directory organization is shown in TABLE XIII. 
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TABLE XIII DATA SET DESCRIPTION 
Data Set Name 

DS2 HS NORMAL adjustment 
combined with 
LS PATHOLOGY 

Hearts Sounds 

Middle Normal 
Tricuspid Normal 
(Adjusted) 

DS4 HS NORMAL no adjustment 
combined with 
LS PATHOLOGY 

Lung Sounds 

Asthma, Crackles, Normal 
Tracheal 

Aortic, Middle, Mitral, 
Normal, Pulmonic, Tricuspid 

Asthma 

DS6 HS PATHOLOGY no 
adjustment combined with 
LS NORMAL 

Ejection Murmur Aortic, Middle, Mitral, 
Normal, Pulmonic, 
Tricuspid 

"The HS_NORMAL_adjustment_combined_with_LS_NORMAL" set contains 

various combinations of adjusted, separated heart sound signals from the normal 

breathing with middle stethoscope gain and tricuspid area normal breathing data files 

with separated lung sounds from the normal breathing aortic, mitral, pulmonic, and 

tricuspid chest areas, as well as normal breathing lung sound files with middle 

stethoscope gain. 

The "HS_NORMAL_adjustment_combined_with_LS_PATHOLOGY" set contains 

various combinations of adjusted, separated heart sound signals from the normal 

breathing with middle stethoscope gain and tricuspid area normal breathing data files 

with lung pathology sound files containing asthma, crackle, or tracheal sounds. 

The "HS_NORMAL_no_adjustment_combined_with_LS_NORMAL" set contains 

various combinations of separated, without adjustment, heart sound signals from the 

normal breathing with middle stethoscope gain and tricuspid area normal breathing data 
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files with separated lung sounds from the normal breathing aortic, mitral, pulmonic, and 

tricuspid chest areas, as well as normal breathing lung sound files with middle 

stethoscope gain. 

The "HS_NORMAL_no_adjustment_combined_woth_LS_PATHOLOGY" set 

contains various combinations of separated, without adjustment, heart sound signals from 

the normal breathing with middle stethoscope gain and tricuspid area normal breathing 

data files with separated lung sounds from the normal breathing aortic, mitral, pulmonic, 

and tricuspid chest areas, as well as normal breathing lung sound files with middle 

stethoscope gain. 

The "HS_PATHOLOGY_adjustment_combined_with_LS_NORMAL" set contains 

various combinations of an adjusted heart pathology, heart murmur, sound signal with 

separated lung sounds from the normal breathing aortic, mitral, pulmonic, and tricuspid 

chest areas, as well as normal breathing lung sound files with middle stethoscope gain. 

Lastly, the "HS_PATHOLOGY_no_adjustment_combined_with_LS_NORMAL" set 

contains various combinations of a heart pathology, heart murmur, sound signal with 

separated lung sounds from the normal breathing aortic, mitral, pulmonic, and tricuspid 

chest areas, as well as normal breathing lung sound files with middle stethoscope gain. 

Details about both the original and pathology heart sounds and lung sounds signals are 

presented in Appendix A: Description of Input and Reference Heart/Lung Signals. 

Details about the specific combined signals contained in the assessment signal set, as well 

as the experts' analysis are provided in Table XIV. 

A questionnaire was provided for the SME to complete for each of the eight signals 

assessed. The questionnaire is provided in Appendix B: Questionnaire for qualitative 
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assessment of modified heart sound and lung sound signals. Overall the assessment is 

favorable. Out of eight signals only one signal, signal A2, is deemed as sounding 

unrealistic, containing artifacts and having in incorrect timing of pathology. The signal is 

assessed to have too much bass. The assessments of realism, presence of artifacts and 

timing of signals A4, A5, and A6 are inconclusive, due to the presence of a low pitched 

hum. But the SME felt that the separation or "splitting" of the heart sound signal and 

lung sound signal is correct. Signals Al, A3, and A7 are deemed to sound realistic, lack 

artifacts, and have correct timing. The assessment is similar for signal A8, however an 

artifact of a background hum is present in signal A8. The SME did feel that the 

combination of this signal is correct. For the signals with favorable assessments, there 

seem to be a common characteristic of a difference in amplitude of the heart sounds and 

lung sounds, with the lung sounds being too loud or the heart sounds needed to be louder. 

TABLE XIV QUALITATIVE ASSESSMENT RESULTS 
ID File Name Description Assessment Comment 

A2 Tricuspid_Normal_breathing_WT_HS_adj_ Tricuspid Normal HS/Aortic Normal unrealistic sound Toomuchbass 

Aortic Normal breathing WT LS.wav 
Artifacts present 

A4 STG_HeartS_EjectionMurmur_DS_adj_Br STG Hearts Ejection Murmur HS / Unsure on sound 

eathingNormally_WT_LS.wav Breathing Normally LS 
Correct Timing 

A6 STGHeartSEjectionMurmurDSadjMi STG Hearts Ejection Murmur HS / 
tral_Normal_breathing_WT_LS.wav Mitral Normal LS 

Unsure on sound 
realism and artifact 
presence 
Correct Timing 

Low pitched hum 
obscures heart 
sound 
Sound splitting 
accurate 

Low pitched hum 
obscures heart 
sound. 
Sound splitting 
accurate 

A8 Tricuspid_Normal_breathing_WT_HS_adj_ Tricuspid Normal HS / STG LungS 
STG_LungS_CHF_Crackles.wav CHF Crackles LS 

Realistic Sound, 
Artifacts present 
Con£Ct_Timin^_ 

Background hum 
otherwise good 
combo 
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4.2 Quantitative Results 

A quantitative analysis was also performed. The assessment focused on verifying and 

validating the signal separation, beat detection, combination of different signals, and the 

final presentation of a realistic signal to a user. The analysis was performed in three 

phases. Phase I : Quantitative assessment of separation of heart sound and lung sound 

signals procedure was performed to validate that the WT-ANC filter correctly separates 

heart and lungs sounds. Phase II: Quantitative assessment of signal modification 

procedure was performed to validate the signal modification including proving the 

feasibility of utilizing Scheirer's beat detection algorithm [5] for heartbeat detection and 

localization and plausibility of modifying a signal with abnormal pathology to produce a 

realistic heart and lung sound signal. This portion of the model was validated separately 

from the heart sound and lung sound signal separation, in order to preclude any artifacts 

of the signal separation from affecting the performance of the algorithms to detect heart 

rate and heart beat localization, which are the main focus areas of the dissertation. Phase 

III consisted of validating the complete model by applying all portions of the model to a 

simulated pair of heart and lung signals. 

To best assess the accuracy of the beat detection and localization, signal 

substitution, and signal re-combination portions of the model, it was determined that 

simulated signals would best provide a reference signal for input into these sections of the 

model. Two algorithms of basic heart signals and lung signals were chosen and are 

described in the following sections, Section 4.2.1 Heart signals and Section 4.2.2 Lung 

sound signal [39]. 
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4.2.1 Heart Signals 

The heart signal generation included simulating the shapes of the electrocardiogram for 

two different signals that are similar but vary in heart rate. Two signals, typical of a 

mother and fetus, were simulated. The first signal was simulated by creating an 

electrocardiogram (ECG) signal that a mother's heart might produce assuming a 4 KHz 

sampling rate. The heart rate for this signal is approximately 89 beats per minute, and the 

peak voltage of the signal is 3.5 millivolts. The heart of a fetus beats noticeably faster 

than that of its mother, with rates ranging from 120 to 160 beats per minute. The 

amplitude of the fetal electrocardiogram is also much weaker than that of the maternal 

electrocardiogram. The simulated fetus electrocardiogram signal was created 

corresponding to a heart rate of 139 beats per minute and a peak voltage of 3.5 millivolts. 

These signals were originally used for an application of applying adaptive filters to fetal 

electrocardiography for adaptive noise cancellation, in which a maternal heartbeat signal 

is adaptively removed from a fetal heartbeat sensor signal [39]. It is known that an ECG 

is an electrical signal and not a sound signal, however, the rational for its use is due to 1) 

the fact that an ECG signal corresponds to the heart beat frequency and heart sound 

signal in time and 2) the desire to have a "clean" signal for validating the separation, 

heart rate detection, heartbeat localization and signal modification algorithms. 

Furthermore, due to the original application of the simulated ECG signals, the signals are 

very relevant for validating this portion of the model, because in this validation, they 

represent separated heart sound signals from the WT-ANC filter, and are of sampling 

rate of4000 Hz similar to the down sampled rate of 4410 Hz of the WT-ANC filter. 

A time domain signal representation and PSD of the 89 bpm heart signal, SimHSO 
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are shown in Fig. 23. and Fig. 24., respectively. The simulated heart signal plot in Fig. 

23. includes a time domain in samples and a signal value range in millivolts. The PSD 

plot in Fig. 24. shows that most of the power is located below 100 Hz and is minimal 

after 200 Hz, which is typical of a heart signal. 
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Fig. 23. Simulated heart signal, SimHSO, at 89 bpm. 
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Fig. 24. PSD of simulated heart signal, SimHSO (89 bpm). 

A time domain signal representation and PSD of the 139 bpm heart signal, SimHSl are 

shown in Fig.25. and Fig.26., respectively. The simulated heart signal plot in Fig. 25. 

includes a time domain in samples and a signal value range in millivolts. The PSD plot 

on Fig. 26. shows that most of the power is located below 100 Hz and is minimal after 

200 Hz, which is typical of a heart signal. 
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Fig. 25. Simulated heart signal, SimHSl, at 139 bpm. 
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Fig. 26. PSD of simulated heart signal, SimHSl (139 bpm). 
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4.2.2 Lung Sound Signal 

The simulated lung sound was created by utilizing the Gaussian random number function 

in MatLab with a domain in samples of 30,000 and a range between ±0.5 to form a noise 

signal to represent breath sounds in millivolts. While the random noise signal is not a 

true representation of a lung sound signal, it is adequate to represent a lung signal which, 

when combined with a heart signal is perceived as noise, when the heart signal is of 

interest. While both heart and lung signals are of interest for the validation, and in this 

study in general, for signal separation and combination, the heart signal is the signal of 

interest for validating the heartbeat detection and localization. SimLS, sampled at 4 KHz, 

is 7.5 seconds in duration. The time domain signal representation of the simulated lung 

signal SimLS, is shown in Fig. 27. It can be seen that the signal has characteristics 

typical of random noise. The PSD of the lung signal is shown in Fig. 28. The plot 

contains a frequency domain of 0 - 2,000 Hz and a signal value of power calculated in 

dB/Hz. The PSD indicates that the power of the signal drops off considerably at the 

frequency range from 600 - to 2,000 Hz. While this is not typical of a lung sound signal, 

it was deemed an acceptable signal to be used to validate the heart/lung signal separation 

and heart rate detection and localization on the resulting separated heart signal. A 0.25-

second time domain sample of the simulated lung signal is shown in Fig. 29., which 

shows a better view of the randomness of the noise in the signal. 
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Fig. 27. Simulated lung signal, SimLS, based on random noise. 
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Fig. 28. PSD of the simulated lung signal, SimLS, based on Gaussian random noise. 
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Fig. 29. Simulated lung signal (1/4 Sec). 

4.2.3 Methodology 

The methodology to perform the quantitative analysis is listed in Table XV Procedure for 

Phase I: Quantitative Assessment of Separation of Heart Sound and Lung Sound Signals, 

TABLE XVII Procedure for Phase II: Quantitative assessment of signal modification, and 

TABLE XIX Procedure for Phase III: Quantitative assessment of the complete model. 

TABLE XV 
PROCEDURE FOR QUANTITATIVE ASSESSMENT OF PHASE I: SEPARATION 

OF HEART SOUND AND LUNG SOUND SIGNALS 

Description 

2 Combine SimHSl and SimLS (CombineHSIL) 

4 Compare separated HS and LS to SimHSl and SimLS (Step 1) 
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The first step of Phase I included creating a simulated heart ECG signal, SimHSl and a 

lung signal, SimLS, based on the random noise with amplitude typical of a breath sound 

signal. The signals, SimHSl and SimLS, are shown in Fig. 19 and Fig. 21, respectively. 

The second step of Phase I included combining the simulated heart signal with the 

simulated lung signal. As previously mentioned, both the heart signal and lung signal 

were sampled at 4 KHz. The SimHSl heart signal and the SimLS lung signal were 

combined through an addition of the signals in the frequency domain. A 7.5-second time 

domain signal representation and PSD of the combined signal, CombHSlLS, are shown 

in Fig. 30. and Fig. 31. The plot in Fig. 30., has a time domain in samples and a signal 

value range in millivolts. When comparing the plot to the heart signal plot in Fig. 23. the 

addition of the simulated lung signal is clearly evident. The plot in Fig. 31, has a 

frequency domain from 0 to 2000 Hz samples and a power range calculated in db/Hz. 

The power is maximum well under 100 Hz, where both the heart signal and lung signal 

contributes to the power. The spectra tapers off and is "flat" after 200 Hz, where mostly 

the lung signal contributes to the power. 



Output: Combined Heart/Lung Sound Signal 

Fig. 30. Combined signal: CombHSlLS (heart signal SimHSl and lung signal, SimLS). 
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Fig. 31. PSD of the combined signal: CombHS 1LS. 



The third and fourth steps included applying the WT-ANC filter to the combined heart 

and lung signal, CombHSlLS, and comparing the resulting separated signals to the 

original simulated heart ECG signal, SimHSl, and lung signal, SimLS. The results and 

comparisons are show in Fig. 32. and Fig. 33. Fig. 32a. and Fig.32b. show the original 

and separated heart signals. The plots have time domain in samples and a signal value 

range in millivolts. When comparing the 28,000 samples or 7 seconds of the separated 

heart and lung signals, the heartbeats are clearly seen with only minimal noise (lung 

signal components) in the heart signal, which shows that the WT-ANC did a very good 

job of separating the signals, from the heart signal perspective. The number of heartbeats 

differs between the original (Fig. 32a.) and separated (Fig. 32b.) heart signals, due to the 

fact that the two signals are not representing exact corresponding locations within each 

signal. The WT ANC algorithm used a sample set from the middle of the combined 

heart/lung signal, while the original signal plot is from a location at the beginning of the 

signal. The PSD in Fig. 32c. and Fig. 32d. have a frequency domain from 0 to 2,000 Hz 

and power range calculated in dB/Hz. Both PSDs show maximum power below 200 Hz, 

typical of a heart signal. The PSD of the separated signal matches the trend of the spectra 

of the original signal. However, the maximum power, well below 100 Hz, of the 

separated signal is comparable to the original heart signal. However the power levels for 

frequencies above 100 Hz are higher than the power levels for the same frequencies of 

the original heart signal, which is most likely due to the minimal presence of lung signal 

components, which are typical present at frequencies up to 1,500 Hz. The original and 

separated lung signal plots, shown in Fig. 33a. and Fig. 33b., contain time domain in 

samples and a signal value range in millivolts. It can be seen that the separated lung 
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signal in Fig. 33b. closely resembles the original signal in Fig. 33a., and is lacking the 

presence of heart signal components. The PSD plots in Fig. 33c. and Fig. 33d. have a 

frequency domain from 0 to 2,000 Hz and a power range calculated in dB/Hz. The PSD 

of the separated lung signal closes matches that of the original signal, but is consistently 

at slightly lower level than the original lung signal, most likely due to the absence of 

some lung signal components, which are included in the heart signal. 
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Fig. 32. Comparison of separated heart signal SepHSl from CombHSlLS. 
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Fig. 33. Comparison of separated lung signal SepLSl from CombHSlLS. 

After the signals were separated, the heartbeat detection and localization algorithm was 

applied to the separated heart signal. The results are shown Table XVI. The heart rate 

was detected at 138.97 bpm, which accurately corresponds to the known heart rate of 139 
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bpm of the original simulated signal, SimHSl. The location of the first beat was 

identified at sample 1,022. From visual inspection of the CombHSlLS signal in Fig. 30., 

the identified location of the first heart beat looks to be accurate, as it lies within the 

range of samples that make up the peak voltage in this particular heart beat. 

TABLE XVI 
SIMULATED HEART SIGNALS 

Signal Heart Rate (bpm) First Beat 

Original HSl 139 - 1,000 

Next, Phase II: Signal modification was validated. This also included validating 

the heartbeat detection and localization algorithm. The procedure is summarized in Table 

XVII. 

TABLE XVII 
PROCEDURE FOR QUANTITATIVE ASSESSMENT OF PHASE II: SIGNAL 

MODIFICATION 
^^^Stet^^ 

2 

4 

Description 

Verify Heart Signals 

Combine SimHSO with SimLS to use as reference 

6 Compare HSLS combinations (from Step 4 and Step 5) 

The first step included simulating the two heart ECG signals and one lung signal exactly 
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like in Phase I Step One, described in Section 5.2.2 Heart sound signals and Section 5.2.3 

Lung sound signal. The first simulated ECG signal, SimHSO, sampled at 4 KHz, is 7.5-

seconds in duration, and is characterized by a heart rate of 89 bpm. A time domain signal 

representation and the PSD of the heart signal are previously shown in Fig. 23. and Fig. 

24., respectively. The second simulated heart signal, SimHSl, sampled at 4000 Hz, is 

also 7.5-seconds in duration, and is characterized by a heart rate of 139 bpm. A time 

domain signal representation and the PSD of the heart signal, SimHSl are previously 

shown in Fig. 25. and Fig. 26., respectively. SimLS, sampled at 4 KHz, is 7.5 seconds in 

duration, and is characterized by random noise function with amplitude typical of a 

breath sound. The PSD and time domain signal representations of the simulated lung 

signal SimLS, are previously shown in Fig. 27., Fig. 28., and Fig. 29. The second step 

included a verification of the signals. The beat detection and localization, as presented in 

Section 3.4 Heartbeat detection and localization, was applied to each heart signal to 

verify the heart rate and location of the first heartbeat. The results are shown in TABLE 

XVIII. The calculated heart rate and first beat location for both SimHSO and SimHSl by 

the heart beat detection and localization algorithm match the intended rates of the 

functions used to generate the signals. A visual inspection was performed on SimLS, 

which shows that the signal was created correctly per the function used to generate the 

signal. The third step of the procedure adjusted the SimHSl signal to closely match the 

reference signal SimHSO in heart rate and location of the first heartbeat. 
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TABLE XVIII 
RESULTS FOR HEARTBEAT DETECTION AND LOCALIZATION OF 

SIMIULATED HEART SIGNALS 
Heart Rate 

(bpm) 
First Beat Location 

(Sample #) 

SimHSl 

Fig. 34. shows the time domain representation of the adjusted simulated heart sound 

signal, SimHSl, based on SimHSO as the reference. Fig. 35. shows the computed power 

spectral density of adjusted signal, SimHSl. Fig. 36. includes a comparison of the 

simulated heart sound signals: SimHSO (reference) vs. SimHSl (adjusted) vs. SimHSl 

(original). From a visual inspection, it can be seen that the heart rate SimHSl has been 

adjusted to match that of SimHSO. The detected heart rate was calculated at 91.43 bpm, 

which is shown in Table XII. From a visual inspection, it can be seen that the location of 

the adjusted SimHSl, SimHSl adj, is not an exact match to the location of the first 

heartbeat of the reference signal SimHSO. It is thought that this difference is acceptable 

due to the fact that the signals are different in their structure, but more importantly, the 

adjusted HS1 signal, SimHSl adj as a whole does align closely with the reference signal 

SimHSO. It is thought that the signals would be more of a continuous nature and the 

initial location is not as important as matching the heart rate, which will be pertinent 

throughout the entire signal presentation to the medical student. 
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Fig. 34. Adjusted simulated heart signal, SimHSladj, 
based on SimHSO as reference. 
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Fig. 36. Simulated heart sound signals: SimHSO (reference) vs. 
SimHSladj (adjusted) vs. SimHSl (original). 

A comparison of the time domain representations of original and adjusted simulated 

heart sound signal SimHSl is shown in Fig. 37. It can be seen that the signal has been 

shifted and that the rate of heartbeats has decreased. The figures show only a small 

window of the signal was used for the validation. In practice the signal would be much 

longer and the adjustment would be performed in a more continuous fashion for the entire 

length of the signal. A comparison of the time domain representations of the simulated 

heart sound signals, SimHSO (reference) and SimHSladj (adjusted) is shown in Fig. 38. 

This comparison shows that the adjusted signal is not a perfect match in locations of the 

heartbeats. But, as previously mentioned, the heart rates are a very close match, which is 

deemed a major requirement for modifying a signal, such a pathology signal, to match a 

reference signal for a continuous real-time application. 
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Fig. 37. Simulated heart signal comparison: 
SimHSl (source) vs. SimHSladj (adjusted). 
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Fig. 38. Simulated heart signal comparison: 
SimHSO (reference) vs. SimHSl adj (adjusted). 
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Step Four of the validation included combining the reference signals SimHSO and SimLS 

to use as a reference for comparing the combination of the adjusted SimHSl heart signal, 

SimHSladj, with the lung signal, SimLS. For each pair, the signals were combined 

through an addition of the signals in the frequency domain. The time domain 

representation and PSD of the reference signal, SimHSOSimLS, are previously shown in 

Fig. 30. and Fig. 31respectively. Step Five of this phase of the quantitative validation 

combined the adjusted simulated heart signal, SimHSl adj, with the simulated reference 

lung signal, SimLS, through a frequency domain addition. The time domain 

representation and PSD of the resulting combined signal are shown in Fig. 39. and Fig. 

40., respectively. The 7.5 second plot in Fig. 39., has a time domain in samples and a 

signal value range in millivolts. The plot shows the lung signal combined with the heart 

signal. The PSD plot in Fig. 40., has a frequency domain from 0 to 2,000 Hz samples 

and a power range calculated in db/Hz. The power spectra also match the power spectra 

of the reference signal combination, SimHSOSimLS, as shown in Fig. 29. The power is 

maximum for the frequency range below 200 Hz, where the heart signal values are 

combined with the lung signal. The spectra tapers down and is consistently "flat" after 

200 Hz, where mostly the lung signal contributes to the spectra. 



Output: Combined Heart/Lung Sound Signal 

Fig. 39. Combined signal: adjusted simulated heart signal SimHSladj 
and simulated lung signal SimLS. 
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Fig. 40. PSD of combined signal: adjusted simulated heart signal simHSl and 
simulated lung signal SimLS. 
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The final step in this validation phase included a comparison of the reference HSLS 

combination, SimHSOSimLS with the adjusted heart signal and reference lung signal, 

SimHSladjSimLS. The comparison is shown in Fig. 41., which has a time domain in 

seconds and a signal value rang in millivolts. Visually, it can be seen that the amplitude 

and shape of the signals are comparable, and that the beat locations of the adjusted signal 

combination do not perfectly align with the beat locations of the reference combination. 

However, the adjusted signal combination does closely resemble the reference 

combination in heart rate. The reference signal HSO possessed a heart rate of 89 bpm. 

The beat detection algorithm detected a heart rate of 89.12 bpm. The original HSl signal 

possessed a rate of 139 bpm and the beat detection algorithm detected a heart rate of 

138.97 bpm. The HSl signal was adjusted and the beat detection algorithm detected an 

adjusted heart rate of 90.74 bpm. 
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Fig. 41. Comparison of combined signals: (reference) simulated heart signal SimHSO 
and simulated lung signal SimLS vs. adjusted simulated heart signal SimHSladj and 

simulated lung signal SimLS. 

The final phase, Phase III, of the quantitative validation involved completing an 

assessment of the complete model. A summary of the procedure is presented in Table 

XIX. 

Comparison: AdjHsl SimLS SimHsOSimLS 

j i i i i i 

TABLE XIX 
PROCEDURE FOR QUANTITATIVE ASSESSMENT OF PHASE III: COMPLETE 

MODEL 
Description 

Combine SimHSO and SimLS (CombHSOLS) 

Adjust (bpm and first beat location) SimHSl to SepHSO (SimHSladj) 

Compare HSLS combinations (from Step 3, Step 7 and Step 8) 



The first step of the quantitative validation of the model involved creating the two 

simulated heart signals and lung signal as described in Phase I: Quantitative assessment 

of signal separation, of this section. The second step combined the simulated heart 

signal, SimHSO, with the simulated reference lung signal, SimLS, through a frequency 

domain addition. The time domain representation and PSD of the resulting combined 

signal are shown in Fig. 42. and Fig. 43., respectively. The plot in Fig. 42., has a 7.5-

second time domain in samples and a signal value range in millivolts. The plot clearly 

shows the successful addition of the lung signal throughout the heart signal, as compared 

to the original lung signal, SimLS (Fig. 29.), and heart signal, SimHSl (Fig. 25.). The 

plot in Fig. 43., has a frequency domain from 0 to 2,000 Hz samples and a power range 

calculated in db/Hz. The power is maximum in the frequency range under 200 Hz, where 

the heart signal values are combined with the lung signal. The spectra tapers off and is 

consistently "flat" after 200 Hz, where mostly the lung signal contributes to the spectra. 



110 

Output: Combined Heart/Lung Sound Signal 
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Fig. 42. Combined simulated heart signal SimHSO and simulated lung signal SimLS 
(CombHSOLS). 
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Fig. 43. PSD of Combined simulated heart signal SimHSO and simulated lung signal 
SimLS (CombHSOLS). 
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The third step in the procedure applied the WT-ANC filter to the combined heart/lung 

signal, CombSimHSOSimLS, to separate the heart signal and lung signal, as specified in 

Phase I: Quantitative assessment of separation of heart sound and lung sound signals, of 

this section. The time domain representation and PSD of the resulting separated heart 

signal (SepHSO) and lung signal (SepLSO) are shown in Figs. 44. - 47., respectively. The 

separated heart signal plot in Fig. 44. includes a 4.5-second time domain in samples and a 

signal value range in millivolts. The separated heart signal plot indicates 10.5 heartbeats 

in the 7 second time period, which matches a heart rate of 89 bpm. The amplitude 

matches that of the original heart signal with a range of ± 3.5 milliovolts. The PSD plot 

on Fig. 45. shows that most of the power is located below 100 Hz and is minimal after 

200 Hz, which is typical of a heart signal. The plot in Fig. 46., has a 7-second time 

domain in samples and a signal value range in millivolts. The shape of the signal 

resembles the original lung signal as shown in Fig. 27. The peaks above 0.5 millivolts 

and below -0.5 millivolts are contributed by heart sound components that are included in 

the signal. The plot in Fig. 47. has a frequency domain from 0 to 2,000 Hz samples and a 

power range calculated in db/Hz. The power is maximum for frequencies less than 200 

Hz. The spectra tapers off and is consistently "flat" after 200 Hz, where mostly the lung 

signal contributes to the spectra. 
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Fig. 45. PSD of Separated heart signal, SepHSO. 
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Fig. 46. Separated lung signal, SepLSO. 
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Fig. 47. PSD of separated lung signal, SepLSO. 
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The fourth step of the procedure adjusted the separated HSl based on the separated heart 

signal, SepHSO as a reference, as presented in Phase II: Quantitative assessment of signal 

modification, of this section. The time domain representation and PSD of the adjusted 

HSl heart signal (SimHSladj) are shown in Fig. 48. and Fig. 49., respectively. 
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Fig. 48. Adjusted heart signal, SimHSladj, based on separated HSO, SepHSO. 
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Fig. 49. PSD of adjusted heart signal, SimHSI adj. 

Fig. 50. includes a comparison of the simulated heart sound signals: SepHSO (reference) 

vs. SimHSI (adjusted) vs. SimHSI (original). From a visual inspection, it can be seen 

that the heart rate SimHSI has been adjusted to match that of SepHSO. The detected 

heart rate was calculated at 91.43 bpm, which is shown in Table XII. From a visual 

inspection, it can be seen that the location of the adjusted SimHSI, SimHSladj, is not an 

exact match to the location of the first heartbeat of the reference signal SepHSO. It is 

thought that this difference is acceptable due to the fact that the signals are different in 

their structure, but more importantly, the adjusted HS1 signal, SimHSladj as a whole 

does align closely with the reference signal SimHSO, but should be adequate for 

presenting a realistic modified signal to the medical student. 
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Fig. 50. Simulated heart sound signals: SepHSO (reference) vs. 
SimHSladj (adjusted) vs. SimHSl (original). 

The fifth step of the procedure combined the adjusted heart signal, SimHSladj, with the 

reference separated lung signal, SepLSO. The time domain representation and PSD of the 

resulting combined signal are shown in Fig. 51. and Fig. 52., respectively. The plot in 

Fig. 51., has a 7-second time domain in samples and a signal value range in millivolts. 

The plot shows the lung signal combined with the heart signal. The signal resembles the 

adjusted heart signal AdjSimHsl and separated lung signal SepLSO, as shown in Fig. 48 

and Fig. 46, respectively. The plot in Fig. 51., has a frequency domain from 0 to 2,000 

Hz samples and a power range calculated in db/Hz. The power is maximum under 200 

Hz, where the heart signal values are combined with the lung signals. The spectra tapers 

off and is consistently "flat" after 200 Hz, where mostly the lung signal contributes to the 

spectra. Fig. 53. presents a comparison of the simulated combined heart/lung signals: 
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CombSimHSOSimLS (reference) and CombSimHSlSimLS (reference) vs. 

CombSepHSladjSepLS (result). The plot in Fig. 53., has a 4 second time domain and a 

signal value range in millivolts. From a visual inspection, it can be seen that the beat 

locations of the adjusted signal combination do not perfectly align with the beat locations 

of the reference combination. However, the adjusted signal combination does closely 

resemble the reference combination in heart rate. 

Output: Combined Heart/Lung Sound Signal 
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Fig. 51. Combined signal: adjusted separated heart signal SepHSladj 
and separated lung signal SepLSl (CombSepHSladjSepLSl). 
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Fig. 52. PSD of combined signal, CombSepHSladjSepLSl. 
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Fig. 53. Comparison of combined signals: (reference 
CombHSOLS) simulated heart signal SimHSO and simulated lung 
sound signal SimLS vs. (CombSimHSladjSepLSO) adjusted heart 

signal SimHSladj and separated lung signal SepLSO. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter discusses the conclusions and recommendations of the dissertation. The 

discussion of the conclusions will present a review and summary of the dissertation 

research, identification of the main methods used, and a discussion of their implications 

in the study. 

5.1 Problem Statement and Methodology 

1) To improve the presentation of an augmented SP with various abnormalities in a 

real-time and realistic setting to the practicing doctor, there is an identified need 

to automate a system to combine simulated heart and lung pathology with real SP 

breath and heart sounds. The research referenced in this dissertation focused on 

developing plausible signal modification methods and algorithms, which may be 

utilized with, or within, a modified electronic stethoscope. Research was 

conducted on applying methods from tempo and beat analysis of acoustic musical 

signals to heart signal analysis to detect the heart rate and heartbeat locations in an 

efficient manner applicable to a real-time heart and lung sound signal 

modification. The two main objectives of the research were to determine an 

optimum technique of separating heart sounds from lung sounds, to 
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support real-time pathology signal analysis and modification from two of the 

techniques reviewed by Gnitecki and Moussavi [4], including the RLS-ANC and 

the WTC-ANC algorithm developed by Hadjileontiadis and Panas [11], and 

2) To investigate and prove the plausibility of applying the acoustic music signal 

tempo and beat detection algorithms of Scheirer [5] to heart rate detection and 

heartbeat localization. 

These techniques are needed to ensure adequate capability to modify real heart sounds 

and lung sounds in real-time to mimic abnormal pathology, which is the planned 

application of this developed technology. 

The first stage of the model, after processing the input signal, is the heart and lung 

sound separation. In this case, the heart sound signal is the signal of interest, not the lung 

sound, as presented in most of the reviewed papers on heart and lung sound analysis. 

The first type of ANC that was implemented was the RLS-ANC developed by Gnitecki, 

Pasterkamp, and Moussavi [6]. The RJLS filter was used for the separation of the heart 

sound signal from the lung sound signal. The second type of adaptive noise cancellation 

filter that was implemented was the WT-ANC filter as developed by Hadjileontiadis and 

Panas [11]. The WTC-ANC is a wavelet transform based filter that separates stationary 

and non-stationary signals. The filtering scheme combines the efficiency of multi-

resolution analysis with hard thresholding and has been proven successful in heart sound 

noise reduction of lung sounds, without requiring any reference signal. With both types 

of filters, the heart sound signal was separated and, preserved and available for use in the 

heart sound signal analysis and modification stages of the model. 



As mentioned, a main objective of the research was to investigate applying the 

acoustic music signal tempo and beat detection algorithms of Scheirer [5] to heart signal 

analysis. The application of the algorithm was used to characterize separated heart sound 

signals (input) and reference pathology signals in order to modify the reference signal to 

better match the input signal in terms of heartbeat rate and location of the heartbeats. In 

addition, the algorithm was also used to verify the heartbeat rate of the adjusted signal. 

Scheirer's algorithm [5] was implemented in MatLab, with only minor changes. 

5.2 Summary of Results 

The WTC-ANC filtering method was selected to separate the heart sound and lung sound 

signals for two reasons. The predominant reason is that the WT filtered HS signals were 

better suited as input to the heartbeat detection and localization algorithm. This is most 

likely due to the fact that more of the HS signal is preserved by the WT technique. The 

RLS technique seems better suited for reducing HS (noise) from the LS signal without 

the need to preserve the HS signal. Secondly, the WTC-ANC, which does not need a 

reference signal, is more efficient than that of the RLS-ANC method which generates the 

reference signal based on the input signal. 

A sensitivity analysis was performed on the WTC-ANC algorithm. The analysis 

shows that the WTC ANC algorithm has high sensitivity to the various parameters used 

to configure the filter. Since the results for some of the parameters is different than the 

parameters as presented by Hadjileontiadis and Panas [11] and Gnitecki, Hossain, 

Pasterkamp, and Moussavi [12], it is shown that the configuration dependent on 

characteristic of the input signals. Therefore, specific analysis must be given to 

configuration parameters based on the characteristics of the input signals. 
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A separate quantitative analysis was performed on the WT-ANC technique to 

ensure that it provided acceptable separation of the heart sound signal and lung sound 

signal. The analysis used combinations of simulated signals as input into the signal 

separation algorithm and then compared the separated signals to the original input 

signals. The results were favorable in that, the separated heart signal and lung signal and 

their associated PSD resembled the time domain representation and power spectra of 

original signals. In addition, the separated heart signal possessed a heart rate comparable 

to the known heart rate of the original simulated signal. The identified location of the 

first beat also corresponded to a beat in the original signal. 

Since the main focus of the research was on exploring the feasibility of utilizing 

Scheirer's beat detection algorithm [5] for heartbeat detection and localization, efficient 

signal substitution, and signal re-combination. The quantitative analysis was performed 

to address these focus areas of the model. The analysis also used simulated signals as 

input into the heartbeat detection and localization algorithm, and continuing through the 

pathology substitution and heart sounds/lung sounds signal re-combination portions of 

the model. A comparison of a combination of the input of a simulated heart sound and 

lung sound signal was made to the resulting modified and combined heart and lung sound 

signal. From a visual inspection, it could be seen that the location of the adjusted signal 

was not an exact match to the location of the first heartbeat of the reference signal, but 

that the locations were fairly close. The calculated heart rate of both reference and 

modified signals showed a very good correlation in rate. Visually, it could be seen that 

the amplitude and shape of the original and combined signals are comparable. In 



123 

addition, the beat locations of the adjusted signal combination did not perfectly align with 

the beat locations of the reference combination. Since the idea is to present a modified 

version of a patient's signal back to listener, the location of the heart beats is not as 

important as the signal possessing an accurate heart rate, and adequately including 

abnormal pathology in way to sound realistic to a listener. 

Another portion of the quantitative assessment included applying the complete 

model to the simulated input signals, with the output of the signal separation being used 

for the input to the signal modification. The beat locations of the adjusted signal 

combination did not perfectly align with the beat locations of the reference combination. 

However, the adjusted signal combination did closely resemble the reference 

combination in heart rate. However, visually, the signal did resemble the original 

combined signal with a proper adjustment to heart rate. Overall, the results of applying 

the complete model to a set of simulated signals was successful. The results do 

correspond to the preliminary results of the qualitative assessment, which utilized real 

heart sound and lung sound signals. 

In addition, both a qualitative assessment of the final modified output of the model 

was conducted. The assessment included both visual and auditory analysis. The 

assessment signal set contained various signals including the original heart sounds and 

lung sounds signals, pathological heart and lung sound signals, combined (without heart 

sound adjustment) original and pathological signals, and combined (adjusted heart sound) 

original and pathological signals. Preliminary SME analysis identified model output 

signals that exhibited both visual and auditory realism. The results from an additional 

assessment were presented. Out of eight signals four were deemed correct. One signal 
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was deemed incorrect and three signals received an inclusive assessment due to a 

possible artifact. For the signals with favorable assessments, there seem to be a common 

characteristic of a difference in amplitude of the heart sounds and lung sounds, with the 

lung sounds being too loud or the heart sounds needed to be louder. 

5.3 Discussion of Results 

A discussion of the results is presented. The quantitative analysis did show that the heart 

rate was accurately detected. Though the analysis highlights that the heartbeat locations 

of the modified and reference signals did not perfectly align, it is thought that this 

difference is acceptable due to the fact that the signals are different in their structure, but 

more importantly, the modified signal as a whole does align closely with the reference 

signal. It is thought that the signals would be more of a continuous nature and the initial 

location is not as important as matching the heart rate, which will be pertinent throughout 

the entire signal presentation to the medical student. 

Much weight is given to the qualitative assessment, as the ultimate goal of the model 

is to provide accurate and efficient signal modification for presentation to medical student 

via a modified stethoscope. The ultimate test is auditory realism by a medical student to 

detect an abnormality in heart or lung sounds. For the output modified signal of the 

model to pass this test, then the various stages of the model including heart and lung 

sound signal separation, input signal characterization, signal modification and signal re-

combining must each provide accurate results. 
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This dissertation has made the following contributions: 

1. Applied the de facto standard tempo and beat detection algorithm developed by 

Eric Scheirer [5] to heart signal analysis in order to detect heart rate and location 

of heartbeats in a heart sound signal. 

2. Utilized the algorithm to characterize separated heart sound signals (input) and 

reference pathology signals in order to modify the reference signal to better match 

the input signal in terms of heartbeat rate and location of the heartbeats. 

3. Utilized the algorithm to verify the heartbeat rate of the adjusted signal. 

4. Implemented Scheirer's algorithm [5] in MatLab, with only minor changes, such as 

adjusting the ranges of the six frequency bands. 

5. Investigated techniques for modifying and substituting real heart and lung 

pathology signals in real-time. 

5.4 Recommendations 

The research, which focused on developing and validating the presented signal analysis 

and modification model for real-time virtual pathology, has proven very successful. 

However, for further research to be conducted in the future, various improvements related 

to each portion of the model have been identified to improve the accuracy, robustness, 

and possibly efficiency of the model. For the WTC-ANC filtering, for production, it is 

strongly suggested that the MatLab WT-ANC implementation is replaced with a custom 

implementation. This will improve performance as related to accuracy and efficiency. 

With regards to heartbeat detection and localization, there is a recognized need for a 

detailed assessment of fine-tuning the heartbeat detection and localization algorithms. 
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This is needed to fully understand the cause of the error in the location calculation and 

investigate a solution to improve the accuracy. For pathology substitution, there is a 

recognized need to investigate developing more sophisticated methods for adjusting 

signals based on signal characteristics identified with the heartbeat detection and 

localization algorithm. This should include investigating if there is a need for and if so, 

developing methods for adjusting lung sound signals to substitute abnormal lung sound 

signals for presentation to a student. To improve the signal recombination portion of the 

model, there is a need to investigate more advanced, robust and accurate methods for 

combining signals. These methods would better support processing signals having 

different characteristics, including different sampling rates. The methods would also 

better support signals with a broad range of characteristics, including signals being 

acquired under varying conditions, such as the gain settings on a modified stethoscope, 

and other data formats besides WAV files. 

5.5 Possible Applications 

The methods and algorithms, addressed in this research, are specific to the real-time 

modeling of human body sounds. A model was developed to use a heart/lung sound 

signal as input, locate and separate the heart sound signal from the lung sound signal, 

modify the heart sound signal or lung sound signal by adding an abnormality such as a 

crackle or wheeze, respectively, and then providing output of a reconstructed modified 

signal. The intent is for the model to be used in an application involving the 

augmentation of medical equipment with pathological sounds to be used with virtual 

patients for training medical students. 



A description of a possible application is shown in Fig. 47. It is anticipated that 

additional research outside of this dissertation study would be required to finalize the 

architecture and confirm its viability. The system would be capable of providing fine 

crackle and additional abnormalities, without requiring an SP to manually control when 

sounds are heard. The system would incorporate the real-time modification of SP 

heart/lung sounds with signals that include various heart abnormalities. 

The proposed notional system, shown in Fig. 54., includes the signal analysis and 

modification being performed in a remote computer. The SP heart and lung sound 

signals would be acquired with a modified stethoscope. The signals would then be 

transmitted to a remote laptop, using the transmission methods previously used by 

McKenzie, et al. [3] or via something comparable to BlueTooth™. Investigation would 

be needed to determine the most efficient method. Efficiency is important to minimize 

the delays that would occur for bi-directional transmission of the signal and the signal 

modification, which would occur after the head of the modified stethoscope is moved 

over an appropriate area. The signal modification would include applying the WT-ANC 

filtering technique to the signal, applying the heartbeat detection and localization to the 

separated heart sound signal, adding an abnormal heart sound signal or lung sound signal 

and then recombining and transmitting back to the stethoscope for presentation to the 

student in an efficient and real-time manner. While the system depicts an application 

where the model is executed on a computer with a wireless connection to a modified 

stethoscope, the presented model could certainly be enhanced for efficiency and 

integrated with the modified stethoscope to reduce latency for presentation of the 

modified signal to the user. 
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Fig. 54. Proposed system with remote signal modification. 

While the system depicts an application where the model is executed on a computer with 

a wireless connection to a modified stethoscope, the presented model could certainly be 

enhanced for efficiency and integrated it the modified stethoscope to reduce latency for 

presentation of the modified signal to the user. 
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APPENDICES 

APPENDIX A: DESCRIPTION OF INPUT AND REFERENCE HEART/LUNG 
SIGNALS 

The files containing ECG and sound signals were provided by personnel from the 

Medical Imaging Diagnosis and Analysis Laboratory of Old Dominion University 

Dominion. The signals, which are listed below, were collected from the pulmonary 

region. The Welch Allyn Meditron™ electronic stethoscope was used to gather the data. 

All the signals where collections using condactive gel which reduced the noise and leads 

to a better signal acquisition. The stethoscope built in filter was set to L: low frequency, 

M: medium frequency or H, high frequency to gather the cariological sounds only. The 

signals where collected for 15.5-seconds. 

I. Breathing Condition Data 

• Sampling rate: 44.1 KHz 

• Collection date: September 28,2010. 

• File format: BreathingCondition 

o BreathingNormal.WAV 

o DeepBreathing.WAV 

o HoldingBreath.WAV 

II. Aortic Data 

• Collection device: Welch Allyn Meditron™ electronic stethoscope system 

• Data: channel 1: ECG, channel 2: Heart sounds 

• Sampling rate: 44.1 KHz 

• Collection date: October 12, 2010. 

• Stethoscope filter: Low, middle and high frequency 
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• Auscultation Area: Aortic region 

• File format: Stethoscope Gain Breathing Condition # 

o LowDeepO 1 .WAV 

o Low_Deep_02.WAV 

o Low_Holding_01.WAV 

o Low_Holding_02.WAV 

o Low_Normal_01.WAV 

o Low_Normal_02.WAV 

o Middle_Deep_01.WAV 

o Middle_Deep_01.WAV 

o Middle_Holding.WAV 

o Middle_Normal.WAV 

o High_Deep.WAV 

o High_Holding_01.WAV 

o High_Holding_02.WAV 

o High_Normal_01.WAV 

II. Standard Patient Auscultation Area: Aortic, Pulmonic, Tricuspid, and Mitral 

• Collection device: Welch Allyn Meditron™ electronic stethoscope system 

• Data: channel 1: ECG, channel 2: Heart sounds 

• Sampling rate: 44.1 KHz 

• Collection date: October 21,2011. 

• Stethoscope filter: low frequency to collect heart sounds only 

• File format: Auscultation Area_Breathing Condition 

o Aortic_normal_breathing.WAV 

o Aortic_holding_breath.WAV 

o Aortic_breathing_heavily.WAV 

o Pulmonic_normal_breathing.WAV 

o Pulmonic_holding_breath.WAV 

o Pulmonic_breathing_heavily.WAV 

o Tricuspid_normal_breathing.WAV 
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o Tricuspid_holding_breath.WAV 

o Tricuspid_breathing_heavily.WAV 

o Mitral_normal_breathing.WAV 

o Mitral_holding_breath.WAV 

o Mitral_breathing_heavily.WAV 

III. Auscultation Area: Pulmonic Region 

• Collection device: Welch Allyn Meditron™ electronic stethoscope system 

• Data: channel 1: ECG, channel 2: Heart sounds 

• Sampling rate: 44.1 KHz 

• Collection date: November 07,2011. 

• Stethoscope Amplification: Low, Medium (Mid), High 

• File format: Auscultation Area Stethoscope Filter Setting Breathing Condition 

o Pulmonic low holding breath.WAV 

o Pulmonic_low_Breathing heavily.WAV 

o Pulmonic low Normal Breathing.WAV 

o Pulmonic mid holding breath.WAV 

o PulmonicmidBreathing heavily.WAV 

o Pulmonic_mid_Normal Breathing.WAV 

o Pulmonic high holding breath.WAV 

o PulmonichighBreathing heavily.WAV 

o PulmonichighNormal Breathing.WAV 

IV. Pathology 

• Sampling rate: 8 KHz 

• Collection date: November 24,2003. 

• File format: Heart/Lung Characteristic 

o STG_HeartS_EjectionMurmur.WAV I1 

o STG_LungS_Asthma.WAV 

o STG_LungS_CHF_Crackles.WAV 

o STG_LungS_Norm_Tracheal.WAV 
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APPENDIX B: QUESTIONNAIRE FOR QUALITATIVE ASSESSMENT 

OF MODIFIED HEART SOUND AND LUNG SOUND SIGNALS 

List of questions appearing in the questionnaire : 

1) The sound is realistic. 
Strongly Disagree Disagree Not Sure 

2) There are no artifacts in signal. 
Strongly Disagree Disagree Not Sure 

3) The timing of the pathology is correct. 
Strongly Disagree Disagree Not Sure 

4) Additional Comments. 

Agree Strongly Agree 

Agree Strongly Agree 

Agree Strongly Agree 
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