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Abstract

MODULATION DOMAIN IMAGE PROCESSING
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The classical Fourier transform is the cornerstone of traditional linear signal and

image processing. The discrete Fourier transform (DFT) and the fast Fourier

transform (FFT) in particular led to profound changes during the later decades of

the last century in how we analyze and process 1D and multi-dimensional signals.

The Fourier transform represents a signal as an infinite superposition of stationary

sinusoids each of which has constant amplitude and constant frequency. However,

many important practical signals such as radar returns and seismic waves are in-

herently nonstationary. Hence, more complex techniques such as the windowed

Fourier transform and the wavelet transform were invented to better capture non-

stationary properties of these signals. In this dissertation, I studied an alternative

nonstationary representation for images, viz., the 2D AM-FM model. In contrast

to the stationary nature of the classical Fourier representation, the AM-FM model

represents an image as a finite sum of smoothly varying amplitudes and smoothly

varying frequencies. The model has been applied successfully in image processing

applications such as image segmentation, texture analysis, and target tracking.

However, these applications are limited to analysis, meaning that the computed
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AM and FM functions are used as features for signal processing tasks such as

classification and recognition. For synthesis applications, few attempts have been

made to synthesize the original image from the AM and FM components. Nev-

ertheless, these attempts were unstable and the synthesized results contained ar-

tifacts. The main reason is that the perfect reconstruction AM-FM image model

was either unavailable or unstable. Here, I constructed the first functional perfect

reconstruction AM-FM image transform that paves the way for AM-FM image

synthesis applications. The transform enables intuitive nonlinear image filter de-

signs in the modulation domain. I showed that these filters provide important

advantages relative to traditional linear translation invariant filters.

This dissertation addresses image processing operations in the nonlinear

nonstationary modulation domain. In the modulation domain, an image is modeled

as a sum of nonstationary amplitude modulation (AM) functions and nonstationary

frequency modulation (FM) functions. I developed a theoretical framework for

high fidelity signal and image modeling in the modulation domain, constructed

an invertible multi-dimensional AM-FM transform (xAMFM), and investigated

practical signal processing applications of the transform. After developing the

xAMFM, I investigated new image processing operations that apply directly to

the transformed AM and FM functions in the modulation domain. In addition, I

introduced two classes of modulation domain image filters. These filters produce

perceptually motivated signal processing results that are difficult or impossible to

obtain with traditional linear processing or spatial domain nonlinear approaches.

Finally, I proposed three extensions of the AM-FM transform and applied them in

image analysis applications.

The main original contributions of this dissertation include the following.
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• I proposed a perfect reconstruction FM algorithm. I used a least-squares

approach to recover the phase signal from its gradient. In order to allow

perfect reconstruction of the phase function, I enforced an initial condition

on the reconstructed phase. The perfect reconstruction FM algorithm plays

a critical role in the overall AM-FM transform.

• I constructed a perfect reconstruction multi-dimensional filterbank by modi-

fying the classical steerable pyramid. This modified filterbank ensures a true

multi-scale multi-orientation signal decomposition. Such a decomposition is

required for a perceptually meaningful AM-FM image representation.

• I rotated the partial Hilbert transform to alleviate rippling artifacts in the

computed AM and FM functions. This adjustment results in artifact free

filtering results in the modulation domain.

• I proposed the modulation domain image filtering framework. I constructed

two classes of modulation domain filters. I showed that the modulation do-

main filters outperform traditional linear shift invariant (LSI) filters qualita-

tively and quantitatively in applications such as selective orientation filtering,

selective frequency filtering, and fundamental geometric image transforma-

tions.

• I provided extensions of the AM-FM transform for image decomposition

problems. I illustrated that the AM-FM approach can successfully decom-

pose an image into coherent components such as texture and structural com-

ponents.

• I investigated the relationship between the two prominent AM-FM compu-

tational models, namely the partial Hilbert transform approach (pHT) and

xvii



the monogenic signal. The established relationship helps unify these two

AM-FM algorithms.

This dissertation lays a theoretical foundation for future nonlinear modu-

lation domain image processing applications. For the first time, one can apply

modulation domain filters to images to obtain predictable results. The design of

modulation domain filters is intuitive and simple, yet these filters produce superior

results compared to those of pixel domain LSI filters. Moreover, this dissertation

opens up other research problems. For instance, classical image applications such

as image segmentation and edge detection can be re-formulated in the modulation

domain setting. Modulation domain based perceptual image and video quality

assessment and image compression are important future application areas for the

fundamental representation results developed in this dissertation.
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Chapter 1

Introduction

The classical Fourier transform is the cornerstone of traditional linear signal and

image processing. The fast Fourier transform (FFT) in particular has changed

the way we perform signal processing in the last decades of the last century. The

Fourier transform represents a signal as a superposition of sinusoids each of which

has constant amplitude and constant frequency. These amplitudes and frequen-

cies capture important signal characteristics that are not trivial to obtain from

time domain analysis. I will refer to such sinusoids as stationary in the sense that

they admit amplitudes and frequencies that do not vary across the domain. How-

ever, with the Fourier representation, nonstationary signal structures can only be

obtained by complicated constructive and destructive interferences between sta-

tionary Fourier components. For many important practical signals such as radar

returns and seismic waves, this stationary representation is counterintuitive. The

signal of interest in these applications are nonstationary. Such signals have been

treated with advanced techniques designed to capture nonstationary structure such

as the windowed Fourier transform and the wavelet transform. In this disserta-

tion, I develop an alternative nonstationary representation for images, viz., the

2D AM-FM model. In contrast to the stationary nature of the classical Fourier

representation, the AM-FM model represents an image as a finite sum of smoothly

varying amplitudes and smoothly varying frequencies.
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This dissertation addresses image processing operations in the nonlinear

nonstationary modulation domain. In the modulation domain, an image is mod-

eled as a sum of nonstationary amplitude modulation (AM) functions and non-

stationary frequency modulation (FM) functions. In particular, I investigated

the theoretical construction and the applications of the AM-FM image transform.

First, I developed the functional perfect reconstruction AM-FM transform. Sec-

ond, I proposed a new image processing framework where filters are designed to

operate directly on AM and FM functions. In addition, I introduced two classes

of modulation domain image filters. These filters produce perceptually motivated

results that are difficult or impossible to obtain with traditional liner and nonlinear

filters. Finally, I investigated three derivative works of the AM-FM transform for

image analysis applications.

In 1990, Bovik, Clark, and Geisler [13] first proposed an AM-FM image

model to analyze textured regions. Since then, the model has been applied suc-

cessfully in many image processing and computer vision applications such as im-

age segmentation [17, 129], image inpainting [1], fingerprint analysis [63], texture

analysis [49, 96], target tracking [90, 86], and biomedical imaging [70]. However,

most of these applications are limited to analysis, meaning that the computed AM

and FM functions are used as features for other signal processing tasks such as

classification and recognition. So far, two major attempts have been made to syn-

thesize the original image from the AM and FM functions. Havlicek, Harding, and

Bovik [48] proposed an algorithm to reconstruct the dominant component of an

image from the dominant AM and FM functions. The authors used a phase differ-

ence integration scheme to reconstruct the phase function from the computed FM

functions. However, the reconstructed results contain artifacts and errors. Sivley
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and Havlicek [109] introduced the first perfect reconstruction AM-FM transform.

While the proposed transform is invertible, it is not suitable for practical AM-FM

image synthesis applications. The transform requires more than 400 AM-FM com-

ponents; and the FM reconstruction algorithm is not stable if the FM functions

are altered. In this dissertation, I created the first functional perfect reconstruc-

tion AM-FM image transform that paves the way for image synthesis applications

and a general theory of signal processing the in modulation domain. The AM-

FM transform consists of a forward transform using a modified steerable pyramid

decomposition and a backward transform using a least-squares phase integration.

The transform enables us to design modulation domain image filters and apply

them to process the nonstationary amplitude and frequency modulations of an

image to realize perceptually motivated signal processing operations.

The main original contributions of this dissertation include the following.

• I propose a least-squares perfect reconstruction FM algorithm that to recover

the phase signal from the computed gradient. In order to allow perfect

reconstruction of the phase, I enforce an initial condition on the reconstructed

phase. This perfect reconstruction FM algorithm plays a critical role in the

overall AM-FM transform.

• I construct a modified perfect reconstruction filterbank based on the classical

steerable pyramid [38, 106]. The modified filterbank ensures a true multi-

scale multi-orientation signal decomposition. Such a decomposition is an

important consideration for obtaining a perceptually meaningful AM-FM

image representation.

• I adjust the rotation of the partial Hilbert transform axis of action so that the
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computed AM and FM functions are artifact free from orientation induced

artifacts. This adjustment results in artifact free modulation domain filtering

results for the first time.

• I propose the first practical framework for designing filters and performing

signal processing directly in the modulation domain. I construct two new

classes of practical modulation domain filters. I show that these modula-

tion domain filters outperform traditional linear shift invariant (LSI) filters

qualitatively and quantitatively in applications such as selective orientation

filtering, selective frequency filtering, image fusion, and fundamental image

geometric transformations.

• I provide extensions of the AM-FM transform applicable to certain important

image decomposition problems. I illustrate that the AM-FM approach can

successfully decompose an image into coherent components such as texture

and structural components.

• I investigate the relationship between the two most current AM-FM computa-

tional models, namely the partial Hilbert transform approach (pHT) [97,50]

and the monogenic signal [34,67]. The results provide important perspectives

on the similarities and differences between the two approaches and suggest

powerfully how they can be unified.

This dissertation lays a theoretical foundation for future nonlinear modu-

lation domain image processing applications. For the first time, one can apply

modulation domain filters to images to obtain predictable results. The design of

modulation domain filters is intuitive and simple, yet these filters produce superior

results compared to those of pixel domain LSI filters.
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Besides modulation domain image processing, this dissertation opens up

other research problems. For instance, classical image applications such as image

segmentation and edge detection can be re-investigated in the modulation domain

context. In addition, as the AM-FM transform admits important characteristics

including perceptual relevance and prefect reconstruction, it can potentially yield

performance gains in image and video quality assessment [12] and coding [68].

1.1 Organization

The dissertation contains eight chapters and two appendices.

In Chapter 2, I introduce the 1D AM-FM signal model as a viable represen-

tation for nonstationary signals. I discuss the limitations of the classical Fourier

representation in cases where the signals of interest are nonstationary. I review

practical applications where important nonstationary features of signals can be

captured by the instantaneous frequency (IF), here interpreted as frequency modu-

lation (FM). I then discuss three major computational techniques for obtaining the

AM and FM for 1D signals, namely the Gabor analytic signal approach (AS) [41],

the Teager-Kaiser energy operator (TKEO) approach [79, 16], and the quasi-local

method (QL) [43].

In Chapter 3, I explore extensions of the 1D AM-FM signal model into

multiple dimensions, with an emphasis on the 2D case. I first reason that the

phase and instantaneous frequency play an important role in many image pro-

cessing applications, such as image restoration, image segmentation, and optical

flow estimation. I then discuss the generalization of the 1D AM-FM approaches

into 2D. Finally, I evaluate their effectiveness with respect to mean squared error

(MSE) via simulations using both synthetic and real images.
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In Chapter 4, I introduce the single component perfect reconstruction AM-

FM image model. I argue that most previous AM-FM image processing techniques

were limited to analysis applications, meaning that the computed AM and FM

functions were used for analysis but not to reconstruct images. I then discuss the

importance of phase unwrapping in the 2D analysis and reconstruction problems.

I review four major approaches to perform 2D phase unwrapping. Then I define

the single component perfect reconstruction AM-FM image model. I provide two

algorithms that compute AM and FM functions from a single component image

and provide prefect reconstruction of the image from the AM and FM functions. I

verify the perfect reconstruction property by calculating the MSE and peak signal

to noise ratio (PSNR) between the reconstructed and original images.

In Chapter 5, I introduce the perfect reconstruction AM-FM image trans-

form (xAMFM) for general images. I modify the well-known steerable pyra-

mid [38, 106] to create a full multi-scale, multi-orientation perfect reconstruction

filterbank. I then discuss the problems associated with the partial Hilbert trans-

form (pHT) where the computed AM and FM functions can show artifacts if the

image component has frequency support orthogonal to the pHT filtering axis. For

the first time, I overcome this problem by rotating the axis of action of the pHT.

Finally, I develop the xAMFM for general images.

In Chapter 6, I introduce the AM-FM image processing framework where

filters are designed to operate directly on the AM and FM functions of an image.

I define two classes of AM-FM image filters, namely the AM-based filters and the

FM-based filters. I show the performance gain of the AM-based filters over tra-

ditional LSI filters in applications such as selective orientation attenuation, image

enhancement, and image fusion. For the FM-based filters, I performed geometric
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image transformation in the AM-FM domain. Qualitative and quantitative mea-

sures indicate that the modulation domain image filters outperform traditional

spatial domain LSI filters in these applications.

In Chapter 7, I demonstrate the effectiveness of the xAMFM in image

analysis. I consider two xAMFM applications in coherent texture decomposition.

In addition, I investigate the connection between the AM-FM image model used

in this dissertation and the emerging monogenic signal [34,67].

Conclusions and recommendations for future work are reserved for Chap-

ter 8. I prove for the perfect reconstruction property of the modified steerable

pyramid in Appendix A. Derivations of the phase unwrapping algorithm used in

this dissertation is given in Appendix B.

1.2 Nomenclature

Mathematical notations used in this dissertation are consistent with those found

in typical vector calculus texts. Lower-case bold face is used for vectors, i.e., x and

n. x refers to continuous variable and n refers to discrete variable. Upper-case

letters such as I and A can either represent images or matrices, depending on the

context. R, Z, and C refer to the set of real, integer, and complex number with

the usual notions of addition and multiplication.

The hat(̂) denotes Fourier transform; e.g., f̂(ω) is the Fourier transform

of f(x). The tilde(˜) denotes a modified version of the original signal; e.g., f̃(x)

denotes a modified version of f(x).

The meanings of some common symbols, acronyms, terms, and abbrevia-

tions used in this dissertation are outlined in Table 1.1 and Table 1.2.

7



Table 1.1: Symbols used in the dissertation
Symbol Meaning
f(x) Input continuous image
a(x) AM function
ϕ(x) Phase modulation function
∇ϕ(x) FM vector field
R(x) Magnitude of the FM
θ(x) Argument of of the FM
h(x) Image filter
H{.} Hilbert transform
ψ(x) Least-squares phase approximation of ϕ(x)

Table 1.2: Definitions of terms and acronyms used in the dissertation
Term Meaning
AM Amplitude Modulation
FM Frequency Modulation
xAMFM AM-FM transform
TKEO Teager-Kaiser energy operator
QL Quasi-local approximation
AS Analytic complex image extension
HT Hilbert transform
pHT Partial Hilbert transform
MSE Mean square error
PSNR Peak signal to noise ratio
PR Perfect reconstruction
LSI Linear shift invariant
DCT Discrete cosine transform
DFT Discrete Fourier transform
Modulation domain Refers to representation, analysis, and processing of

signals and images in terms of AM and FM func-
tions.

Pixel domain Refers to representation, analysis, and processing
of signals and images in terms of pixel values (in-
tensity) expressed in the image plane.
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1.3 Test images

Well-known test images are shown in Fig. 1.1. These test images are used in

simulations.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Well-known test images. (a) Barbara. (b) boat. (c) Lena. (d) finger-
print. (e) Gaussian chirp. (f) mandrill.
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Chapter 2

The 1D AM-FM Signal Model

The classical Fourier transform provides an essential tool for time-frequency analy-

sis of stationary signals. Throughout this dissertation, I establish that a stationary

signal is one that admits a meaningful, intuitive representation as a superposition

of amplitude, linear phase, and constant frequency. However, many important

signals of practical interest are nonstationary in this sense; i.e., the local ampli-

tude envelope and local frequency content are time-varying. For such signals, the

AM-FM model has been widely used to capture their nonstationary characteris-

tics [9, 25]. The AM-FM model represents a real 1D signal as

f(x) = a(x) cos[ϕ(x)], (2.1)

where a(x) : R → R+ is a non-negative smoothly varying amplitude modulation

function (AM) and ϕ(x) : R→ R is a smoothly varying phase modulation function.

The frequency modulation function (FM) is defined as the derivative of ϕ(x),

e.g., ϕ′(x) = d
dx
ϕ(x). The FM is also referred to as the instantaneous frequency

(IF) [25]. The terms IF and FM are used interchangeably in this dissertation.

I discuss the importance of the IF in signal processing applications in Sec-

tion 2.1.1. The computation of 1D AM-FM signal model is described in Section 2.2.

Finally, I evaluate the effectiveness of three major 1D AM-FM computational ap-

proaches in Section 2.3.
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2.1 Instantaneous Frequency

The IF concept originated in the physics and communications communities where

the signals of interest are primarily 1D [41, 75, 25, 124]. The IF of a 1D signal

modeled according to (2.1) is given by

IF(x) = ϕ′(x). (2.2)

2.1.1 The Importance of Instantaneous Frequency

The IF captures nonstationary characteristics of time-varying signals in many prac-

tical applications [9]. In radar applications, the time varying behavior of the IF

indicates the variation of frequency and motion of objects [23]. The object motion

is modeled as a point target giving rise to time-varying frequency content in the

radar returns. In seismic survey data processing, geological structures can be char-

acterized by analyzing the returns of seismic signals [119]. The reflection strength

in seismic traces is determined by the amplitude envelope of the return signals.

Important geological structures can be deduced from the instantaneous phase even

though the return signal has a weak reflection strength. In biomedical applications,

the IF is used to identify blood flow [116] and to diagnose diastolic murmurs [130].

In speech processing, important nonlinear features in human speech production

can be captured by the AM-FM model [78,120]. In oceanography, the IF measures

the kinetic energy dissipation of turbulent water [59]. Middleditch and Wyatt [85]

observed that the temporal and spatial inconsistencies within the radar measure-

ment region can lead to distortions in the spectra of the radar returns. They

developed an IF filtering technique to remove the first-order modulation from the

return signals to improve the quality of oceanographic radar measurements.
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2.1.2 Debates about Instantaneous Frequency

Given a 1D continuous signal f(x), there are infinitely many pairs of a(x) and

ϕ(x) satisfying the model (2.1). Since the IF is defined as ϕ′(x), it is not unique

for a given f(x). Even if the IF is computed, its existence was debated in the

research community, based mostly on the physical interpretations of IF [75, 9].

Since IF and Fourier spectrum capture properties of signals in term of frequency,

it is natural to wonder if there exists any relationships between these two quantities.

Mandel investigated such relationships and showed that the first moment of the

IF equals the first moment of the Fourier frequency [75]. He pointed out that this

relationship does not hold for higher moments. In addition, he showed that there

is no one-to-one relationship between these two descriptors. In other words, there

exist signals where the Fourier frequencies manifest while the IF vanishes and vice

versa. Indeed, this counter-intuitive fact is the root of many debates.

Cohen [25] noted several paradoxes concerning the IF. First, the IF is gen-

erally distinct from the Fourier frequencies. If the signal is a cosine wave oscillating

with a single frequency, the IF is a constant and continuous function. In addition,

the IF of the analytic signal can be negative, which is counter-intuitive because the

analytic signal does not admit negative Fourier frequencies. That is, the IF can

lie outside the frequency support of the signal. Some authors [9, 25] interpreted

that the IF is the average of Fourier frequency at a given time. This interpretation

was originated from first moment relationship between Fourier frequency and IF.

Nevertheless, this interpretation is only true for single component signal and is gen-

erally false or misleading for general multicomponent AM-FM signals [71]. Despite

being a controversial concept, the IF has been used successfully as a descriptor for

nonstationary signals [9, 10].
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2.2 Computation of the 1D AM-FM Signal Model

The AM-FM model (2.1) is ill-posed in the sense that infinitely many pairs of

AM and FM functions satisfy this equation for a given signal f(x). Here I review

several major 1D IF computation methods such as analytic signal differentiation,

zero-crossing identification, time-frequency distribution, polynomial phase mod-

eling, and the Teager-Kaiser energy operator. Readers are referred to in-depth

discussions of the IF by Boashash [9, 10] and Vakman [124].

2.2.1 Analytic Signal

Gabor [41] pioneered a complex signal model to compute the IF. For 1D signal

f(x), the complex signal model includes the signal f(x) as the real part and an

auxiliary signal q(x) as the imaginary part. The signal q(x) is obtained by applying

the Hilbert transform (HT) to f(x).

The HT kernel is characterized by the time domain impulse response

h(x) =
1

πx
, (2.3)

where x ∈ R. The function h(x) is neither a L1(R) nor a L2(R) function because

of the singularity at the origin. Let f(x) : R→ R. The HT of f(x) is a real signal

q(x) given by

q(x) = H{f(x)} = f(x) ∗ 1

πx
, (2.4)

where ∗ denotes convolution. Since h(x) is undefined at x = 0, the convolution

operation in (2.4) must be evaluated as a Cauchy principal value according to

q(x) =
1

π
p.v

∫
R

f(τ)

x− τ
dτ

=
1

π
lim
ε→0

(∫ x−ε

−∞

f(τ)

x− τ
dτ +

∫ ∞
x+ε

f(τ)

x− τ
dτ
)
. (2.5)
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The corresponding Fourier spectrum of the 1D HT kernel h(x) is

ĥ(ω) = −j ω

|ω|
= −j sgn(ω), (2.6)

where sgn(ω) is defined as

sgn(ω) =


1, ω > 0

0, ω = 0

−1, ω < 0.

(2.7)

Since ||ĥ(w)||22 = 1 almost everywhere 1, the HT operator does not affect the

magnitude of the Fourier spectrum of the input signal.

The 1D HT possesses three distinct properties that make it an important

transform in communication and signal processing.

1. It is a linear time invariant (LTI) operator.

2. It is anti-symmetric and bounded for 1 < p <∞ [114][page 49].

3. It is an all-pass filter (except at DC).

All of these properties follow directly from the definition of H{.} in (2.5) and (2.6).

Let f(x) : R→ R. Then the 1D analytic signal z(x) : R→ C is constructed

as

z(x) = f(x) + jH{f(x)} = f(x) + jq(x), (2.8)

1Here, I mean almost everywhere in the precise mathematical sense, i.e., everywhere except
on a set of Lebesgue measure zero.
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or equivalently in Fourier domain as

ẑ(ω) = f̂(ω) + j[−j sgn(ω)f̂(ω)]

= f̂(ω)[1 + sgn(ω)]

=


2f̂(ω) ω > 0

f̂(ω) ω = 0

0 ω < 0.

(2.9)

As the signal f(x) is real, its spectrum is Hermitian, i.e., complex conjugate sym-

metric. Therefore, negative Fourier frequencies are unnecessary for the unambigu-

ous representation of f(x). The complex signal construction (2.9) using the HT

eliminates the spectral information on the negative half of the frequency axis while

it doubles it on the positive half.

Vakman [124] showed that the analytic signal constructed by the HT satis-

fies the following three conditions.

1. Amplitude continuity and differentiability: If a small variation is added to

the signal f(x), the variation of the AM must be small.

2. Homogeneity: If the signal f(x) is scaled by a constant c > 0, the phase

function ϕ(x) and the FM are not changed.

3. Harmonic correspondence: the HT maps pure cosine/sine signals into pure

sine/cosine signals. Therefore, the HT can be used to define a complex signal

to uniquely solve the AM-FM representation of model (2.1).

Once the analytic signal z(x) is constructed, one can analytically calculate

the amplitude modulation (AM) as

a(x) = |z(x)|. (2.10)
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The IF can be computed from different approaches such as complex signal differ-

entiation, zero-crossing identification, phase modeling, and time-frequency peak

detection.

Analytic Signal Differentiation

After constructing the analytic signal (2.8), one can directly compute the FM

function using differentiation as [41]

ϕ′(x) = Im

[
z′(x)

z(x)

]
. (2.11)

The IF in (2.11) is undefined at points where z(x) = 0. At such points, the IF can

be approximated by the neighborhood IF. It should be noted that the concept of

IF is not meaningful on intervals where z(x) or f(x) is identical to zero.

Since the derivative operator in (2.11) is only defined for functions of con-

tinuous variable x, this IF computation algorithm is restricted to the continuous

time signals. In practical applications where only discrete signals are available, a

discrete counterpart of the derivative is required.

Zero-crossing Identification

The nonstationary signal model in (2.1) assumes that f(x) is a locally narrow-

band signal. Therefore, the number of zero-crossings can describe the oscillating

behavior of the underlying signal. Some authors have defined the IF in terms of

zero-crossings identification [10]. Let k be the number of sample intervals between

two zero-crossings. The IF is then estimated according to

ϕ′(x) =
1

2k
. (2.12)

To improve the accuracy of the zero-crossing identification process, a sliding win-

dow technique is often applied. The zero-crossing identification is then restricted
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to within the support of the sliding kernel [10].

Polynomial Phase Modeling

The phase function ϕ(x) can be modeled by a p-order polynomial [10]

ϕ(x) = b0 + b1x+ b2x
2 + ...+ bpx

p. (2.13)

The selection of p depends on the oscillating characteristics of the signal. Regres-

sion techniques such as least-squares are used to compute the coefficients b0, b1,

· · · , bp. Let f(n) be the true discrete signal of length N. Then f(n) is modeled

according to (2.1) as f(n) = a(n) cos[ϕ(n)]. Let f̃(n) be the measured discrete

signal. The coefficients of the polynomial in (2.13) are obtained by minimizing the

sum of squared error E as

E =
N−1∑
n=0

|f̃(n)− f(n)|2. (2.14)

A least square minimization approach was given by Boashash [10]. However, the

solution depends on initial estimate of the polynomial coefficients bk.

Time Frequency Distribution Techniques

In the study of time-frequency analysis, it was realized that important character-

istics of a nonstationary signal are captured by the IF [24, 9, 10, 25]. Specifically,

the IF can be estimated by temporally tracking peaks in the time-frequency dis-

tribution [10]. For example, IF can be estimated from tracking peaks of the time-

frequency distribution computed by the short time Fourier transform (STFT) [11].

However, IF estimation from the STFT method depends on the choice of the

window. Martin and Flandrin used the Wigner-Ville distribution (WVD) as an

alternative to STFT to extract the IF [81]. Recently, Sedjić et al. [103] proposed a
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hybrid approach where they combined the STFT and wavelets for time frequency

analysis. They showed that the hybrid approach performs better than the STFT

and the WVD.

2.2.2 Teager-Kaiser Energy Operator

Maragos, Kaiser, and Quatieri [78, 79] used the Teager-Kaiser energy operator

(TKEO) to compute the AM and FM functions of the signal (2.1). The Teager

energy of the signal f(x) in (2.1) is defined by

Ψ[f(x)] = [f ′(x)]2 − f(x)f ′′(x)

= [a(x)]2[ϕ′(x)]2. (2.15)

They applied TKEO to the derivative signal f ′(x) to obtain

Ψ[f ′(x)] = [f ′′(x)]2 − f ′(x)f ′′′(x)

= [a(x)]2[ϕ′(x)]4. (2.16)

From (2.15) and (2.16), the AM and FM functions may be computed according

to [79]

a(x) =
Ψ[f(x)]√
Ψ[f ′(x)]

, (2.17)

ϕ′(x) =

√
Ψ[f ′(x)]

Ψ[f(x)]
. (2.18)

In (2.17), the AM function is undefined at points where when Ψ[f ′(x)] is zero;

similarly, the FM function in (2.18) is undefined where Ψ[f(x)] is zero. Based

on these observations, Vakman [124] provided examples where the TKEO fails to

produce intuitive AM and FM functions. In addition, Ψ[f(x)] can be negative [15].

However, for many signals of practical interest, Ψ[f(x)] is non-negative [78].
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Approximate discrete counterparts for the continuous algorithms in (2.17)

and (2.18) were proposed in [78]. Here I will restrict attention to the first discrete

energy separation algorithm, DESA-1. The closely related DESA-2 algorithm is

substantially similar. The DESA-1 can demodulate AM and FM functions with

maximum IF up to half the sampling frequency. Let f(n) be a real discrete signal

with N samples where n = 0, 1, · · · , N − 1. Let y(n) = x(n) − x(n − 1) be the

first order finite backward asymmetric difference of x(n). Then the AM and FM

functions may be estimated by

a(n) ≈
√√√√√ Ψ[f(n)]

1−
(

1− Ψ[y(n)]+Ψ[y(n+1)]
4Ψ[f(n)]

)2 , (2.19)

ϕ′(n) ≈ arccos

(
1− Ψ[y(n)] + Ψ[y(n+ 1)]

4Ψ[f(n)]

)
. (2.20)

The FM computed by (2.20) is always non-negative. Hence, the sign of the FM

computed by TKEO is ambiguous if the signal contains both negative and positive

IF.

In contrast to the analytic signal approach of Section 2.2.1, the 1D TKEO

approach is a local method. The TKEO approach assumes that the signal f(x)

is locally narrowband. For locally wideband signals, a multiband decomposition

must be performed prior to the demodulation process [16]. The 1D TKEO has

been used successfully to extract features from human speech signals [78,47].

2.2.3 Quasi-Local AM-FM Estimation

As mentioned in Section 2.2.1 and 2.2.2, the analytic signal approach is a global

method and the TKEO is a local method. Girolami and Vakman [43] proposed a

quasi-local method to compute the AM and FM functions. Let f(x) be the real

19



signal in (2.1). Let “〈·〉” denote a Bessel lowpass filter. If the lowpass filter can

be assumed to efficiently eliminate signal components of the form cos[2ϕ(x)], then

the AM may be obtained according to [43]

2〈f 2(x)〉 = 2〈a2(x) cos2[ϕ(x)〉

= 〈a2(x) (1 + 2 cos[2ϕ(x)])〉 (2.21)

≈ a2(x),

in which 〈a2(x) cos[2ϕ(x)]〉 ≈ 0 and 〈a2(x)〉 ≈ a2(x). This assumes that a2(x) and

cos[2ϕ(x)] are spectrally disjoint, which is reasonable for many signals of practical

interest [6]. Equivalently, the AM can be written as

a(x) ≈
√

2〈f(x)f(x)〉. (2.22)

In order to compute the FM, Girolami and Vakman defined an auxiliary

function

R(x, τ) =
2〈f(x+ τ)x(x− τ)〉

〈f(x)f(x+ τ) + f(x)f(x− τ)〉
. (2.23)

They then obtained obtained the FM by

ϕ′(x) ≈ lim
τ→0

(
1

τ
arccos

(
R +
√
R2 + 8

4

))
. (2.24)

In practice, a small value of τ is used in (2.23) to approximate (2.24).

The method requires three local points, f(x), f(x− τ), and f(x+ τ), which

makes it a local method. However, as a lowpass filter is involved in the computation

process, the method is not strictly local. Hence, it is classified as quasi-local. The

authors showed that the AM and FM functions computed by this approach also

satisfy the same three conditions as those computed by the analytic signal approach

in Section 2.2.1. Nevertheless, the quasi-local method depends on the bandwidth
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selection of the lowpass filter, which is signal dependent. The selection of the

constant τ also affects the demodulated AM and FM functions. In addition, the

quasi-local approach can only compute the absolute value of the FM function.

Therefore, the signed FM is ambiguous in the QL method.

2.3 Comparison of 1D AM-FM Techniques

In this section, I quantitatively compare the AM-FM demodulation effectiveness of

the analytic signal (AS) approach given in Section 2.2.1, the Teager-Kaiser energy

operator (TKEO) approach given in Section 2.2.2, and the quasi-local (QL) method

given in Section 2.2.3. The test signal is taken from [79] and is given by

f(n) =

(
1 + 0.5 cos

[ π
50
n
])

cos
[π

5
n+ 4 sin

( π

100
n+

π

4

)]
, (2.25)

where the AM is a 0.01 Hz sinusoid and the FM is given by

ϕ′(n) =
π

5
+

π

25
cos
[ π

100
n+

π

4

]
, (2.26)

which is sinusoidally varying in the range 0.502 ≤ ϕ′(n) ≤ 0.754 radians. Here, it

is understood that ϕ′(n) is obtained by interpolating (2.25) to obtain f(x) where

x ∈ R, differentiating ϕ(x) to obtain ϕ′(x), and finally sampling ϕ′(x) to obtain

ϕ′(n). The original signal, the AM, and the FM are illustrated in Fig. 2.1(a)-(c).

While all three approaches were formulated in continuous settings, I used

discrete implementations to evaluate their effectiveness. For the TKEO approach,

I first used the DESA-1 algorithm [79] to computed the modulation functions. The

AM and FM functions computed using (2.19) and (2.20); and they are shown in

Fig. 2.2. The AM and FM functions obtained by the AS method are depicted in

Fig. 2.3. In the AS approach, the AM is computed as in (2.10) and the FM is

21



(a)

(b)

(c)

Figure 2.1: Test signal f(n) and theoretical values of the AM and FM functions.
(a) Original AM-FM test signal given in (2.25). (b) Theoretical AM function ob-
tained analytically from (2.25). (c) Theoretical FM function obtained analytically
from (2.25), as given in (2.26)
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(a)

(b)

Figure 2.2: Computed AM and FM functions of the TKEO approach. (a) The
computed AM function using (2.19). (b) The computed FM function using (2.20)
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(a)

(b)

Figure 2.3: Computed AM and FM functions of the AS approach. (a) The com-
puted AM function using (2.10). (b) The computed FM function by discritiz-
ing (2.11).
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(a)

(b)

Figure 2.4: Computed AM and FM functions of the QL approach. (a) The com-
puted AM function using (2.22). (b) The computed FM function using (2.24).
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obtained as in (2.11) using a 2-point forward asymmetric difference as the discrete

counterpart of the continuous derivative operator. Notice that direct discretization

of (2.11) can lead to poor performance if the signal f(n) is corrupted. The AM

and FM functions obtained by the quasi-local approach are shown in Fig. 2.4. The

lowpass filter is a 2nd order Butterworth filter with normalized cutoff frequency

0.04. In this experiment, τ in (2.23) is set to 1.

To evaluate the performances of these three methods in the presence of ad-

ditive noise, I corrupted the signal (2.25) with additive white Gaussian noise with

standard deviation σ = 0.1 (40.33 dB) and σ = 0.2 (26.47 dB). I measured the

accuracy of the three algorithms by computing the mean square error (MSE) be-

tween the demodulated signals and their theoretical values as shown in Fig. 2.1(b)

and (c). The MSE comparison of the AM is given in Table 2.1 and the MSE

comparison of the FM given in Table 2.2. From the MSE results, the quasi-local

method [43] yields the best MSE performance. However, the performance of this

method depends on the bandwidth of the lowpass filter. For this experiment, the

lowpass filter was designed with a priori knowledge of the true FM function. In

particular, the cutoff frequency of the lowpass filter was set to 0.04 Hz so that the

lowpass filter captures the AM function, which is oscillated at 0.01 Hz, and rejects

the FM frequency, which is in the range [0.079 0.12] Hz. Therefore, I restricted

the comparison to the TKEO and AS.

While producing a lower MSE for the FM function in the noise-free case,

the TKEO is relatively more sensitive to noise. As the noise power increases,

the accuracy of the demodulated FM by the TKEO degrades faster than that of

the AS. The accuracy of the TKEO can be improved by filtering the input signal

with a multiband filterbank and performing the demodulation algorithm on each

26



Table 2.1: Comparison of MSE in estimated AM obtained by three competing
discrete demodulation algorithms in presence of additive white Gaussian noise. ∞
denotes the noise-free signal.

PSNR TKEO AS Quasi-Local

∞ 5.0399× 10−4 7.9848× 10−5 2.8751× 10−4

40.33 dB 0.2480 0.0103 0.0017
26.47 dB 0.5604 0.0377 0.0056

Table 2.2: Comparison of MSE in estimated FM obtained by three competing
discrete demodulation algorithms in presence of additive white Gaussian noise. ∞
denotes the noise-free signal.

PSNR TKEO AS Quasi-Local

∞ 3.1906× 10−4 0.0022 3.8563× 10−5

40.33 dB 0.4487 0.0213 8.183× 10−5

26.47 dB 1.0093 0.1686 0.0023

subband separately as suggest in [16]. In addition, improvements in the accuracy

of the TKEO can be achieved by median filtering the demodulated outputs [78].

The AS consistently yields better AM demodulation than the TKEO. As

illustrated in Fig. 2.5 and Fig. 2.6, the FM of the AS is more resilient to noise than

that of the TKEO. Nevertheless, the FM of the AS is also prone to noise, because

it is computed using a 2-point forward difference as the discrete counterpart of the

continuous derivative operator. This poor performance against noise is related to

the derivative filter which is generally a highpass filter. Therefore, noise in the

signal is amplified whenever the derivative filter is applied the signal.

While computing the AM and FM functions of the same model, the three

approaches are fundamentally different in term of localization. While the discrete

unfiltered demodulation algorithm associated with the AS method is temporally

localized, the HT requires the entire signal to construct the analytic signal q(x)

in (2.4). Consequently, this approach is decidedly global in this respect. The
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(a)

(b)

Figure 2.5: Detail view of computed AM and FM functions from the noise-free
signal f(n) in (2.25) using all three methods. (a) Computed AM function. (b)
Computed FM functions.
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(a)

(b)

Figure 2.6: Detail view of computed AM and FM functions from the signal f(n)
in (2.25) corrupted by additive white Gaussian noise with standard deviation σ =
0.2 using all three methods. (a) Computed AM function. (b) Computed FM
functions.
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TKEO is regarded as a local method because the AM and FM functions are com-

puted from local samples only, e.g., generally only five consecutive samples are

required by the DESA-1 algorithm. The quasi-local method is a mixture of local

and global techniques as it involves both a lowpass filtering process and a local

operator.

The TKEO and the quasi-local method put a restriction on the time-varying

characteristics of the input signal. The TKEO DESA-1 algorithm is applicable to

signal with IF limited to half the sampling frequency. The maximum IF require-

ment for the quasi-local is stricter than that of the TKEO. The quasi-local method

works well for signal having IF less one fourth of the sampling frequency. In con-

trast to these two approaches, the AS applies for any input signal without a priori

knowledge of its IF range.

2.4 Summary

In this chapter, I introduced the concept of the 1D AM-FM signal model. I dis-

cussed the importance of the instantaneous frequency (IF), or FM, in practical

applications and reviewed three major approaches that compute the AM and FM

functions from a given real signal.

I discussed the mathematical construction of the Gabor analytic signal (AS)

approach, the Teager-Kaiser energy operator (TKEO) approach , and the quasi-

local (QL) approach. I evaluated the effectiveness of the three approaches in terms

of the accuracy of the demodulated AM and FM functions. The adopted quality

metric is the mean square error of the demodulated functions with respect to their

theoretical values. Of the three methods, the AS has an advantage over the TKEO

and the QL, because it does not make any a priori assumption about the IF range
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of the signal and it is more robust to noise compared to the TKEO. The QL can

provide the best performance if the lowpass filter is correctly designed, i.e., a priori

knowledge of true FM signal is required. The noise immunity and general accuracy

of the TKEO approach can be improved if the input signal is first decomposed into

subbands and the TKEO is then applied to the subband signals separately.

While the IF is well-understood and has been a useful descriptor for 1D

nonstationary signals in many practical applications, its generalization to multiple

dimensions is not straightforward. For instance, the Gabor analytic signal can not

be naturally extended to higher dimensions because the HT is strictly defined for

1D signals. As there exist multiple definitions for the nD extension of the HT,

the multidimensional extensions of the Gabor analytic signal are not unique. In

addition, the physical interpretation of the multidimensional IF poses a challenging

problem, e.g., what information does IF carry if the signal is an image? These issues

are the topic of the next chapter.
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Chapter 3

The 2D AM-FM Image Model

While the IF is well-understood and has been proven to be a useful descriptor for

1D nonstationary signals in many practical applications [9], its multidimensional

counterpart remains an open research problem [49, 34]. The main reason is that

the multidimensional extension of the 1D IF is not unique. For instance, the

Gabor analytic signal can not be naturally extended to higher dimensions because

there is no standard accepted definition of the HT in dimensions greater than one.

Consequently, multiple multidimensional extensions of Gabor’s analytic signal have

been proposed. In addition, even if the nD IF is computed, especially for signals

with dimension higher than two, whether it provides any correlation with physical

interpretations is largely unexplored. In this chapter, I focus my attention on the

2D case where the IF captures structural properties of the image texture that are

meaningful in terms of visual perception and interpretation.

Traditionally image filters operate on the pixel intensity, viz., pixel domain.

However, in many applications such as motion detection, edge detection, and im-

age segmentation, the phase function and the IF can provide more accurate and

robust solutions [36]. Oppenheim and Lim [95] argued that for images, the phase

captures more important information to human visual perception than the mag-

nitude frequency. Fleet and Jepson [36] showed that the phase is more resilient to

image deformation than pixel intensity in the sense that phase is approximately
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linear on sufficiently small neighborhood, whereas the intensities are not. More-

over, the phase is invariant to image contrast changes. The authors used the IF to

compute optical flow in images [5]. Bovik, Clark, and Geisler [13] used the phase

in image segmentation. They showed that homogeneous regions can be separated

by detecting discontinuities in the local phase. In addition, they showed that the

IF carries important characteristics of the texture, namely orientation and pattern

granularity.

I discuss the 2D AM-FM model in Section 3.1.1. The computational ap-

proaches are reviewed in Section 3.2 and 3.3. I compare the performance of 2D

AM-FM demodulation algorithms in Section 3.4. Finally, the summary is given

in 3.5.

3.1 The AM-FM Image Model: A Review

3.1.1 The AM-FM Image Model

Let f(x) : R2 → R be a real image. The AM-FM image model represents the

image as

f(x) = a(x) cos[ϕ(x)], (3.1)

where a(x) : R2 → R+ is the amplitude modulation function (AM) and ϕ(x) :

R2 → R is the phase modulation function. The frequency modulation function

(FM) is defined by ∇ϕ(x), which I will sometimes write in terms of its components

as [U(x) V (x)]T . The AM and FM are assumed to be smoothly varying signals.

The AM and FM functions can provide an intuitive interpretation of an

image f(x) [52]. The AM captures local contrast of the image where larger values

of AM imply higher local contrast. The magnitude of the FM, |∇ϕ(x)|, describes

texture spacing or granularity. A large value of |∇ϕ(x)| indicates high frequency
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structures, e.g., closer texture spacing. The argument of the FM, arg∇ϕ(x), char-

acterizes the local orientation of image textures.

3.1.2 Computation of the AM-FM Image Model

As described in Section 3.2 and 3.3, the AM and FM functions in (3.1) can be

computed by different approaches. Peyrin, Zhu, and Goutte [97] defined a 2D

complex signal by performing a 1D Hilbert transform along a specified direction;

such transform is frequently referred to as partial Hilbert transform (pHT) [46,52].

All Hilbert transforms belong to a class known as multiplier transform; Havlicek,

Havlicek, and Bovik proposed an adjusted multiplier in [53] to enforce harmonic

correspondence [124] of the multidimensional pHT and used it to define a multi-

dimensional analytic image [49]. Other 2D AM-FM developments include Hahn’s

single orthant complex signal [45] and the hypercomplex signal of Bülow and Som-

mer [19]. Felsberg and Sommer [34] introduced the multidimensional monogenic

signal where the 1D HT is replaced by a nD Riesz transform. Independently,

Larkin, Bone, and Oldfield [67] used the same signal model to study fingerprints.

Most of the nD AM-FM approaches in the literature can be categorized

into two groups, namely the complex signal extensions and the approaches using

separable implementations. I discuss 2D complex signal extension in Section 3.2

and the separable approaches in Section 3.3. While all of these approaches a valid

for signal with dimension greater than two, I restrict the discussion to 2D signals as

image processing is the primary goal in this dissertation. I compare, contrast, and

evaluate these techniques in terms of mathematical construction and meaningful

physical interpretation.
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3.2 The 2D Complex Image Extension

Let x = [x1 x2]T be the 2D position vector, f(x) : R2 → R be the 2D real signal,

q(x) : R2 → R be the 2D Hilbert transform of f(x), and z(x) : R2 → C be the 2D

complex signal obtained by adding an imaginary part to f(x).

3.2.1 Partial Hilbert Transform

The 2D partial Hilbert transform (pHT) extends the 1D HT by performing the 1D

HT in a certain direction defined by e = [e1 e2]. The spectrum of the 2D pHT is

given by

q̂e(ω) = −jsgn(ωTe)f̂(ω). (3.2)

The 2D complex signal shares the same construction as the 1D case, i.e.,

the real part is the original signal f(x) and the imaginary part is the pHT of the

real part. The Fourier representation of the complex signal ze(x) is given by

ẑe(ω) = f̂(ω)[1 + sgn(ωTe)]

=


2f̂(ω) ωTe > 0

f̂(ω) ωTe = 0

0 ωTe < 0.

(3.3)

Fig. 3.1 shows the spectral support of the 2D complex signal generated by

the pHT acting in direction specified by e. The spectrum is zero in the white

regions and is doubled in the shaded region.

The 2D pHT retains most the properties of the 1D HT, e.g., it is linear

and bounded. It also reduces the redundancy inherent in the conjugate symmetric

spectrum of a real signal. Because of the pHT spectral multiplier sgn(ωTe) defined

in (3.2), the transform fails to satisfy the harmonic correspondence property. Par-

ticularly, the pHT of a pure cosine or sine signal with frequency vector lying in the
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u

v

0

e

Figure 3.1: Spectral support of the 2D spectrum of the complex signal constructed
using the pHT acting in the direction e.

axis perpendicular to e is suppressed because the signum function is zero at these

frequencies. This limitation is addressed by the adjusted pHT in Section 3.2.4.

3.2.2 Total Hilbert Transform

While the pHT in Section 3.2.1 acts in one direction, the 2D total Hilbert transform

(tHT) admits true 2D action. The 2D tHT is given by

qtot(x) = H{f(x)} =
1

π2
p.v.

∫
R2

f(τ )∏2
i=1(xi − τi)

d2τ , (3.4)

or equivalently in the Fourier domain as

q̂tot(ω) = F{f(x) ∗ h(x)} = (−j)2f̂(ω)
2∏
i=1

sgn(ωi), (3.5)

where ω = [w1 w2]. The spectrum of the complex 2D signal ztot(x) constructed by

using the tHT approach is then given by

ẑtot(ω) = f̂(ω) + jq̂tot(ω) = f̂(ω)

[
1− j

2∏
i=1

sgn(ωi)

]
. (3.6)

Similar to previous approaches, the real signal f(x) can be recovered simply by

taking the real part of the ztot(x).
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Figure 3.2: Spectral multiplier of the 2D complex signal: (a) of the pHT with
e = [1 0]T . (b) of the tHT.

I illustrate the distinction between the 2D spectral multipliers of the pHT

and of the tHT in Fig. 3.2. The spectral multiplier for the 2D pHT with e = [1 0]T

is shown in Fig. 3.2(a). The spectrum of ze(x) is zero on the left half plane,

one on the vertical axis, and two on the right half of the frequency plane. The

multiplier of the tHT approach, on the other hand, retains full spectral support.

The spectral multiplier of the tHT is depicted in Fig. 3.2(b). The unity gain

symbols are exaggerated in these two figures as they occur only at locations where

sgn(ω1) = 0 (for the pHT) and sgn(ω1)sgn(ω2) = 0 (for the tHT).

Compared to the pHT, the tTH does not provide an intuitive AM-FM

representation [34]. Nevertheless, it plays an important role in the development

of the single orthant complex signal model in Section 3.2.3 and the hypercomplex

signal model in Section 3.2.5.

3.2.3 Single Orthant Complex Signal

Hahn [45] proposed the single orthant complex signal as a 2D extension of the

1D complex signal, where orthant is equivalent to quadrant in the 2D case. He
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modified the HT spectral multiplier so that the spectrum of the 2D complex signal

is zero in all but one orthant. The spectrum of the single orthant complex signal

is defined as

ẑso(ω) = f̂(ω)
2∏
i=1

(
1 + sgn(ωi)

)
. (3.7)

Expanding (3.7), the Fourier spectrum of ẑso(ω) is

ẑso(ω) = f̂(ω)
(
1 + sgn(ω1)

)(
1 + sgn(ω2)

)
= f̂(ω) + sgn(ω1)f̂(ω) + sgn(ω2)f̂(ω) + sgn(ω1)sgn(ω2)f̂(ω)

=

(
f̂(ω)− q̂tot(ω)

)
+ j

(
q̂e1(ω) + q̂e2(ω)

)
, (3.8)

where q̂e1 and q̂e2 are defined in (3.2) with e1 = [1 0]T and e2 = [0 1]T . From (3.8),

we see that the spectrum of the complex signal in Hahn’s approach contains con-

tributions from both partial and total Hilbert transform terms. The 2D spectral

support of ẑso(ω) is shown in Fig. 3.3, where the spectrum is quadrupled in the

shaded region and is zero in the remaining white regions.

u

v

0

Figure 3.3: The 2D spectrum of single orthant complex signal

As Hahn’s single orthant approach eliminates 2n − 1 orthants of the nD

complex signal spectrum, the model is efficient in terms of digital storage. However,
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the single orthant representation is insufficient to reconstruct the original real signal

f(x). In particular, f(x) can not be obtained by taking the real part of (3.8). To

recover the original real signal f(x), an additional single orthant complex signal

zso1(x) must be defined with the following spectrum

ẑso1(ω) = f̂(ω)

(
1− sgn(ω1)

)(
1 + sgn(ω2)

)
=

(
f̂(ω) + q̂tot(ω)

)
+ j

(
− q̂e1(ω) + q̂e2(ω)

)
. (3.9)

Combining ẑso(ω) and ẑso1(ω), the original signal is then recovered as

f(x) =
1

2
Re{F−1{ẑso(ω) + ẑso1(ω)}}. (3.10)

As for physical interpretation, the single orthant complex signal can not capture

signal which admit orientations outside the support of ẑso(ω). For an image,

oriented textures with spectral support lying in quadrant one and quadrant two

can not be simultaneously represented by the single orthant signal.

3.2.4 Adjusted Hilbert Transform

Although the 2D pHT in Section 3.2.1 preserves most of the important properties

of the 1D HT, it fails to retain the harmonic correspondence property for some

pure sinusoidal signals. Let Z = {ω : ωTe = 0} with e = [1, 0]T be a subset of

the 2D frequency plane. If a signal f(x) has spectral support in Z, the ordinary

pHT suppresses it, because sgn(ωTe) = 0 when ωTe ∈ Z. Havlicek, Havlicek, and

Bovik [50] proposed an adjusted multiplier for the 2D pHT as

F{Hadj{f(x)}} = −jsgnadj(ω
T · e)f̂(ω), (3.11)

where they defined sgnadj(ω
Te) as

sgnadj(ω) =
2∑
`=1

sgn(ω`)
`−1∏
k=1

(1− |sgn(ωk)|). (3.12)
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In this definition, the adjusted multiplier Hadj differs from that in (3.2) only at

frequencies in Z. The adjusted HT spectral multiplier is further simplified as

sgnadj(ω1, ω2) = sgn(ω1) + sgn(ω2)[1− |sgn(ω1)|]

=



1 ω1 > 0

1 ω1 = 0 andω2 > 0

−1 ω1 < 0

−1 ω1 = 0 andω2 < 0

0 ω1 = ω2 = 0.

(3.13)

I illustrate the difference between the ordinary HT 3.2 and the adjusted HT

in Fig. 3.4. Notice that the two multipliers differ only on the vertical axis where

the ordinary multiplier is zero and the adjusted multiplier takes on +j, 0, and −j.

This modification allows the adjusted pHT to retain the harmonic correspondence

property for all pure sinusoidal signals [50].

u

v

0

(a)

u

v

0

(b)

Figure 3.4: Illustration of the frequency multiplier of the ordinary pHT in (3.2)
and frequency multiplier of the adjusted HT in (3.12). (a) Frequency multiplier of
the pHT with e = [1 0]T . (b) Frequency multiplier of the adjusted HT.

Like to complex signal (3.3) generated with the 2D pHT, the signal (3.11)

constructed using the adjusted pHT fails to satisfy the multidimensional Cauchy
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Riemann equations [50]. However, the adjusted pHT retains most of important

properties of the 1D analytic signal:

1. Hadj is LTI, bounded, and has unity gain.

2. The complex signal generated with Hadj has frequency support only in the

right half of the frequency plane.

3. Hadj satisfies Vakman’s three conditions [124], e.g., amplitude continuity,

amplitude homogeneity, and harmonic correspondence.

3.2.5 Hypercomplex Signal

Bülow and Sommer [19] proposed an extension of the 1D analytic signal for higher

dimensions using the hypercomplex Fourier transform. The hypercomplex Fourier

transform is an extension of the traditional Fourier transform in combination with

hypercomplex number theory. The authors combined the hypercomplex Fourier

transform and Hahn’s single orthant approach [45] to construct a hypercomplex

signal. In 2D, the hypercomplex signal is in the form of a quaternionic signal

p(x) = f(x) + ir(x) + ju(x) + kv(x), (3.14)

where f(x), r(x), u(x), and v(x) are real signals, and i, j, and k are the quater-

nionic imaginary units. The basic properties of the quaternionic units are ij = k,

jk = i, ki = j, and i2 = j2 = k2 = −1. These relations do not commute, i.e.,

ji = −ij = −k.

The spectrum of the hypercomplex signal p(x) is computed using the quater-

nionic Fourier transform (QFT) [19] defined by

f̂ q(ω) =

∫
R2

e−i2πω1x1f(x)e−j2πω2x2d2x. (3.15)
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Since the QFT of a real signal f(x) is quaternionic Hermitian [19], it is suffi-

cient to retain only the spectral information from one orthant in the hypercomplex

signal p(x). Therefore, Bülow and Sommer [19] adopted Hahn’s single orthant idea

to construct the hypercomplex signal. The spectrum of the hypercomplex signal

is given by

p̂qso(ω) = f̂ q(ω)
n∏
i=1

(
1 + sgn(ωi)

)
. (3.16)

For a 2D signal, (3.16) may be rearranged to simplify the spectrum of the quater-

nionic signal according to

p̂qso(ω) = f̂ q(ω)[1 + sgn(ω1)][1 + sgn(ω2)]

= f̂ q(ω)[1 + sgn(ω1) + sgn(ω2) + sgn(ω1)sgn(ω2)], (3.17)

whereupon the inverse QFT is applied to arrive at

pso(x) = f(x) + iqe1(x) + jqe2(x) + kqtot(x). (3.18)

Here, qe1(x), qe2(x) are pHT’s (3.2) of f(x) acting in the direction specified by

the unit vectors e1 = [1 0]T and e2 = [0 1]T , and qtot(x) is the tHT (3.4). Unlike

Hahn’s single orthant approach [45], the hypercomplex representation provides

direct access to the original signal f(x) as its real part.

Once the hypercomplex signal pso(x) is constructed, the AM function of

f(x) is then defined as

a(x) = ||pso(x)|| =
√
f 2(x) + q2

e1
(x) + q2

e2
(x) + q2

tot(x). (3.19)

However, the phase of the quaternionic signal is complicated and is not defined for

all orientations [19]. The phase functions can be retrieve from the polar represen-

tation p(x) = |a(x)|eiφejθekψ. Let p̃ = p(x0)/|a(x0)| = p0 + ip1 + jp2 + kp3 be a
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normalized quaternionic number at x0. The phase of the hypercomplex signal has

three components that are point-wise given by

ψ = − arcsin[2(p1p2 − p0p3)]/2 (3.20)

φ =

{
0.5 arctan[2(−p2p3 + p0p1), p2

0 − p2
1 − p2

2 + p2
3], ψ = ±π/4,

0.5 arctan[2(p2p3 + p0p1), p2
0 − p2

1 + p2
2 − p2

3], otherwise,
(3.21)

θ =

{
0 ψ = ±π/4
0.5 arctan[2(p1p3 + p0p2), p2

0 + p2
1 − p2

2 − p2
3], otherwise,

(3.22)

where I have dropped the spatial argument for brevity.

The hypercomplex signal addresses the shortcoming of Hahn’s single or-

thant approach where the real signal f(x) can not be directly reconstructed from

the complex single orthant signal zso(x). In other words, the hypercomplex signal

construction allows perfect reconstruction of f(x) from zso(x) without defining an

auxiliary hypercomplex signal.

While the mathematical foundations of the hypercomplex signal are solid

and interesting, the hypercomplex signal has practical limitations. First, the phase

functions computed from the hypercomplex signals are not defined for signals with

dimension greater than two [19]. Second, even when the phase functions are defined

for 2D signal, the computation of the phase is complicated and the computed phase

functions do not correlate well with human visual perception of the image texture

structure. Finally, it is not clear that the hypercomplex AM function satisfies the

basic requirement that the AM should capture contrast as opposed to the local

texture granularity and orientation.

3.2.6 Monogenic Signal

Felsberg and Sommer [34] introduced the Riesz transform as a natural 2D ex-

tension of the 1D HT. They reasoned that the 1D HT can be derived from 2D

43



harmonic fields and the 2D Riesz transform can be derived from 3D harmonic

fields. Therefore, they claimed that this generalization is both natural and valid.

The Riesz transform maps a signal into a vector of signals. Let hR(x) be

the kernel of the Riesz transform. Its Fourier transform is given by

ĥR(ω) = R{hR(x)}(ω) = −j ω

||ω||
. (3.23)

For the 2D case, using the Fourier transform differentiation identity, one can ex-

press the kernel of the Riesz transform (RT) in the spatial domain as [34,123]

hR(x) =

(
h1(x)
h2(x)

)
=

(
x

2π(x2+y2)3/2
y

2π(x2+y2)3/2

)
, (3.24)

where x = [x y]T and h1(x) and h2(x) are two filters acting in the x and y direction

respectively. The 2D RT R{.} of the real signal f(x) is then obtained by time

domain convolution according to

R{f}(x) =

(
f1(x)
f2(x)

)
=

(
h1(x) ∗ f(x)
h2(x) ∗ f(x)

)
. (3.25)

(a) (b)

Figure 3.5: Riesz transform frequency response: (a) ĥ1(ω). (b) ĥ2(ω).

I plotted the frequency responses of h1(x) and h2(x) in Fig. 3.5. The black

corresponds to −1 and the white indicates +1. Similar to the 1D HT, the Riesz
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kernels are not defined at the origin. However, the frequency responses of the

Riesz transform are smoother compared to that of the partial Hilbert transform in

Chapter 3.2.1. In other words, the HT multiplier contains sharp transitions from

−j to +j in regions where the signum function changes sign, while the frequency

responses of the Riesz filters vary smoothly as shown in Fig. 3.5. This difference

is an important property that allows the Riesz transform to produce better AM

function than the HT-based approaches.

Felsberg and Sommer [34] named the complex signal extension using Riesz

transform the monogenic signal. In 2D, they defined the monogenic image in the

hypercomplex plane as

zmo(x) = f(x) + if1(x) + jf2(x), (3.26)

where i, j are a pair of orthogonal hypercomplex imaginary units with basic oper-

ations defined in Section 3.2.5.

The hypercomplex components of the monogenic signal are given by

f(x) = amo(x) cos[ϕmo(x)],

f1(x) = amo(x) sin[ϕmo(x)] cos[φ(x)],

f2(x) = amo(x) sin[ϕmo(x)] sin[φ(x)]. (3.27)

From this model, the AM and FM functions of f(x) can be calculate analytically.

The AM function is computed as

amo(x) = |zmo(x)| =
√
f 2(x) + f 2

1 (x) + f 2
2 (x). (3.28)

The imaginary signal in the RT approach is then computed by

qmono(x) = f1(x) cos[φ(x)] + jf2(x) sin[φ(x)], (3.29)
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where φ(x) is given by φ(x) = arctan[f2(x)/f1(x)]. The monogenic signal can be

rewritten in the regular complex signal form as

zmono(x) = f(x) + jqmono(x) (3.30)

Similar to the 1D HT, the RT preserves harmonic correspondence [34,123].

In addition, it is an all-pass filter with unity gain. However, the key property of the

RT is that the Riesz operator is isotropic [34, 123]. I illustrate in Section 3.4 that

this property allows the monogenic image approach to produce artifact-free AM

functions. On the other hand, the AM function obtained by the pHT approach

contains rippling artifacts along a line normal to the direction of action of the pHT.

The computation of φ(x) involves the arctan operation. Therefore, φ(x)

is wrapped between −π/2 and π/2. As a result, the imaginary image qmono(x)

contains discontinuous of magnitude π at branch cuts in the arctan function. These

discontinuous points can lead to artifacts in the computed FM function of the

monogenic signal.

3.3 The 2D AM-FM Computation: Direct Approaches

While the complex signal extension approach is prevalent in the literature, there

exist approaches that compute the AM and FM functions directly from the real sig-

nal f(x), i.e., without constructing an explicit complex signal. Here, I discuss two

important approaches, namely the 2D Teager-Kaiser energy operator (TKEO) by

Maragos and Bovik [77] and the 2D extension of the 1D quasi-local approach [87].
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3.3.1 The 2D Teager-Kaiser Energy Operator

Maragos and Bovik [77] proposed a 2D extension of the 1D TKEO described in

Section 2.2.2 to extract the AM and FM functions from images. The AM and FM

functions are computed by the continuous energy separation algorithm (CESA) as

a(x) ≈ Ψ[f(x)]√
Ψ
[
∂f
∂x1

]
+ Ψ

[
∂f
∂x2

] , (3.31)

∂ϕ

∂x1

≈

√√√√Ψ
[
∂f
∂x1

]
Ψ[f(x)]

, (3.32)

∂ϕ

∂x2

≈

√√√√Ψ
[
∂f
∂x2

]
Ψ[f(x)]

, (3.33)

where x = [x1 x2]T and ∇ϕ(x) =
(
∂ϕ
∂x1
, ∂ϕ
∂x2

)
is the FM function. Ψ[f(x)] denotes

the 2D Teager-Kaiser energy of the image f(x) given by

Ψ[f(x)] = ||∇f(x)||2 − f(x)∇2f(x), (3.34)

where ∇f(x) =
(
∂f
∂x1
, ∂f
∂x2

)
.

Similar to the 1D algorithm, the discrete 2D DESA is a local method where

the AM and FM function are computed from neighborhood points. Let yv(m,n) =

f(m+1, n)−f(m−1, n) and yh(m,n) = f(m,n+1)−f(m,n−1) be two auxiliary

discrete signals. The discrete version (DESA) of the CESA is given as

a(m,n) ≈ 2Ψd[f(m,n)√
Ψd[yh(m,n)] + Ψd[yv(m,n)]

,

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣ ≈ arcsin

(√
Ψd[yv(m,n)]

4Ψ[f(m,n)]

)
, (3.35)

∣∣∣∣ ∂ϕ∂x2

∣∣∣∣ ≈ arcsin

(√
Ψd[yh(m,n)]

4Ψ[f(m,n)]

)
.
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The 2D DESA can estimate AM and FM function up to one fourth of the sampling

frequency [77], i.e., 0 ≤ | ∂ϕ
∂x1
|, | ∂ϕ

∂x2
| ≤ π/2. Similar to the 1D DESA, the 2D DESA

can not deduce the sign of the FM function.

3.3.2 The 2D Quasi-local Approach

Murray, Rodŕıguez, and Pattichis [87] extended the 1D quasi-local method orig-

inally proposed by Girolami and Vakman [43] to 2D to compute AM and FM

functions for images. The 2D method is a separable implementation of the 1D

quasi-local method in Section 2.2.3, i.e., the FM in the horizontal direction is ob-

tained by treating the 2D image as a set of 1D signals along rows of the image and

applying the 1D quasi-local algorithm to these 1D signals.

As noted in the 1D case, the quasi-local method can estimate frequencies

up to one fourth of the sampling frequency. This restriction holds for the 2D

case as well. For signals with maximum IF above one fourth of the sampling

frequency, it is possible to resample the input signal before applying the quasi-

local method [43]. Murray, Rodŕıguez, and Pattichis [87] provided an extension to

the 2D quasi-local method to account for frequencies higher than one fourth of the

sampling frequency. They used two filters with disjoint passbands to compute the

FM for entire discrete frequency range [−π π].

The 2D quasi-local method faces the same limitations as in the 1D case

because it depends on the bandwidth of the lowpass filter. In order to get good

demodulation results, the lowpass filter must filter the AM function and completely

reject the FM frequencies . This requirement is difficult to satisfy in practice

because the variation of the FM has to be known a priori. As a result, for an

arbitrary image, the 2D quasi-local method has limited use.
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3.4 Comparison of the Complex Extension Approaches

I evaluated the effectiveness of the four complex extension approaches, e.g., single

orthant complex signal by Hahn [45], adjusted Hilbert transform by Havlicek,

Havlicek, and Bovik [49], hypercomplex signal by Büllow and Sommer [19], and

monogenic signal by Felsberg and Sommer [34]. I did not consider the direct

approaches because of the limitations of the quasi-local method and the difficulty

in determining the relative signs of the FM components with the TKEO. Although

the complex extension approaches can all be generalized to arbitrary dimensions,

I restricted my attention to the 2D case. Since the phase unwrapping process was

not discussed in this chapter, the phase functions are not compared. In particular,

I computed the AM function and FM function of model 3.1 using (2.10) and (2.11).

Fig. 3.6 shows the AM and FM representation of the test image chirp. The

AM and FM functions are given by Fig. 3.6(b) and (c). This image has a Gaussian

AM function, a circularly symmetric quadratic phase, and a circularly symmetric

linear FM function. In 2D, the FM function is computed by taking the gradient of

the phase function. I plotted the FM frequency vector as a needle diagram. The

magnitude of each needle is normalized for display purpose. The orientation of

each needle represents the orientation of the FM vector in the original image.

As discussed in Section 3.2.5, the hypercomplex signal model does not lead

to direct intuitive interpretation of the model (3.1). Therefore, results for the hy-

percomplex signal are shown separately in Fig. (3.7). The computed AM function

is depicted in Fig. 3.7(a) and its corresponding three phase components are illus-

trated in Fig. 3.7(b),(c),(d) respectively. For the remaining three approaches, I

compared the computed AM and FM functions of each approach side by side. The

computed AM functions are shown Fig. 3.8 and the computed FM functions are
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(a) (b)

(c)

Figure 3.6: Chirp image: (a) Original image. (b) AM function. (c) FM function.
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shown in Fig. 3.9. For quantitative evaluation, I provide the mean squared error

(MSE) comparison for the computed AM in Table. 3.1.

(a) (b)

(c) (d)

Figure 3.7: AM and phase of hypercomplex signal: (a) AM function. (b) First
phase component φ(x) in (3.22). (c) Second phase component θ(x) in (3.22). (d)
Third phase component ψ(x) in (3.22).

Observe that for the single orthant approach, both the computed AM func-

tion in Fig. 3.8(b) and the computed FM function in Fig. 3.9(b) fail to fully capture

the original AM and FM functions. Both the estimated AM function and the es-

timated FM function are valid in some parts of the image, e.g. regions where the

AM is large in Fig. 3.8(b).

Among the four complex extension approaches, the adjusted Hilbert trans-

51



Table 3.1: Mean squared error (MSE) comparison of the computed AM with re-
spect to the original AM in Fig. 3.6(b) of four complex extension approaches.

Single Orthant Hypercomplex Adjusted HT Monogenic

MSE 0.4449 0.1398 0.0295 0.0440

form and the monogenic signal yield the best results in term of meaningful interpre-

tations of the AM and FM. While the AM of the adjusted HT in Fig. 3.8(c) yields

smaller error with respect to the original AM function (0.0295 versus 0.0440), the

computed AM function of monogenic signal in Fig. 3.8(d) is visually closer to that

of the original signal. In addition, both approaches also produce satisfactory FM

results. Over most of the image, the FM vectors in Fig. 3.9(b) and Fig. 3.9(c) are

correctly oriented normal to important structures of the chirp image. However,

both fail to provide meaningful FM vectors along the vertical shear line running

down the center of the image.

I repeated the same experiment with the well-known test image Lena shown

in Fig. 3.10(a). I computed the AM function and wrapped phase function using all

four complex extension approaches. Observe that none of the approaches deliver

an intuitively satisfying AM functions and phase. This is because the model (3.1) is

a valid representation only for locally narrowband signals, while the 2D signal like

Lena image in Fig. 3.10(a) is decidedly wideband. In practice, wideband signals

must be decomposed into locally narrowband components, e.g., by a filterbank,

before one can apply any of these complex signal extension approaches.

The 2D pHT extends the notion of 1D HT by performing the 1D HT in

a specified direction. Similar to the 1D case, the spectral redundancy of the par-

tial HT is reduced by 50%. The 2D pHT, however, fails to satisfy the harmonic

correspondence property if the real signal has frequency support in the region Z
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Figure 3.8: AM results for the chirp image computed using three different complex
signal extensions. (a) Original AM. (b) Single orthant AM. (c) Adjusted HT AM.
(d) Monogenic AM.
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(a) (b)

(c) (d)

Figure 3.9: FM results for the chirp image computed using three different complex
signal extensions. (a) Original chirp FM. (b) Single orthant FM. (c) Adjusted HT
FM. (d) Monogenic FM.
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(a)

(b)

(f)

(c)

(g)

(d)

(h)

(e)

(i)

Figure 3.10: AM-FM representations of Lena image: (a) Original image. (b) Single
orthant AM. (c) Adjusted HT AM. (d) Hypercomplex AM. (e) Monogenic AM.
(f) Single orthant phase. (g) Adjusted HT phase. (h) Hypercomplex third phase
component ψ(x). (i) Monogenic phase.
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as described in Section 3.2.4. The 2D tHT extends the 1D HT by applying a

true 2D transform. Nevertheless, this transform fails to produce visually mean-

ingful AM and FM functions [19]. The single orthant complex signal approach

proposed by Hahn [45] eliminates all but one orthant of the signal’s spectrum.

However, the representation is not complete, i.e., the real signal can not be di-

rectly recovered from the single orthant complex signal. For a 2D signal, the single

orthant complex signal model is limited to signals whose frequencies lie in the

first and third quadrant of the frequency plane, which is the regions in Fig. 3.2

where sgn(ω1)sgn(ω2) ≥ 0. Consequently, the model can not be used to represent

arbitrary images as demonstrated in Fig. 3.8(b) and Fig. 3.9(b).

The 2D adjusted HT proposed by Havlicek, Havlicek, and Bovik [50] pre-

serves most of the properties of the 1D analytic signal. More importantly, it

satisfies the harmonic correspondence property for all pure sinusoidal signals. The

harmonic correspondence is made possible by an adjustment in the frequency mul-

tiplier of the transform. The adjustment is illustrated by the spectral multiplier

shown in Fig. 3.2. Furthermore, the adjusted HT is able to produce visually mean-

ingful phase function. The computed AM function from this approach suffers from

discontinuities and rippling artifacts around the operating axis of the pHT filter.

While the AM function obtained with this approach has the lowest MSE with re-

spect to the true AM of the original signal, it is not the most visually satisfying

AM result.

The hypercomplex signal approach extends the 1D analytic signal to higher

dimensions using the hypercomplex Fourier transform. For a 2D signal, the hy-

percomplex signal is constructed using the quaternionic Fourier transform (QFT).

Since the 2D QFT of a real signal is quaternionic Hermitian, the entire spectrum
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can be recovered from a single orthant. The hypercomplex signal construction uses

Hahn’s single orthant approach to reduce the spectral redundancy to one orthant in

the hypercomplex frequency plane. In the image domain, the hypercomplex signal

is a combination of the pHT and the tHT . The computed AM and FM functions

of hypercomplex signal do not correspond with human visual perception. In addi-

tion, the phase is not well-defined for signals with dimensions greater than two. In

the 2D case, even when the phase is mathematically defined, the phase calculation

is not straight forward. Despite the fact that the hypercomplex signal retains only

one orthant of spectral information, the amount of data for storage in this orthant

is two times larger than that of the pHT.

The monogenic signal uses the Riesz transform as an extension of the 1D HT

into higher dimensions. In contrast to the pHT where there is only one imaginary

component in the complex signal, the monogenic signal has two. The monogenic

representation provides meaningful interpretation of the AM function because the

Riesz transform is an isotropic operator. In addition, the Riesz transform also

satisfies the harmonic correspondence property. In addition, the monogenic FM

function generally gives a visually meaningful representation of the image struc-

ture. Similar to the adjusted HT case, the monogenic FM has problems in the

computation of the FM function. In particular, the monogenic signal requires an

auxiliary orientation estimation step in order to compute the correct FM function.

In term of spectral reduction, the monogenic signal does not offer any spectral

cancellation compared to other approaches.

Mathematical construction and important properties of complex extension

approaches are summarized in Table. 3.2 and Table. 3.3.
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3.5 Summary

In this chapter, I discussed the computational aspect of the 2D AM-FM image

model. I argued for the importance of the phase and the instantaneous frequency

in two dimensional image processing applications. I discussed major approaches

to compute the 2D AM-FM image model and compared their performance. The

performance comparison was measured in term of the mean squared error (MSE)

between the computed AM functions and their theoretical values.

Among the approaches I discussed for computing 2D AM-FM image models,

the complex signal extension approaches are more popular in the literature than the

direct approaches. The pHT and the monogenic signal yield satisfactory results as

they compute low MSE demodulated functions and offer meaningful interpretations

of the underlying image. Compared to the monogenic signal, the pHT has a

simpler representation, i.e., two components versus three components. I adopted

the pHT as the AM-FM computation algorithm for the perfect reconstruction AM-

FM transform, which I will discussed in Chapter 4. While these two approaches

use different signal transformations, there is a connection between them as I will

show in Chapter 7.

I concluded this chapter by arguing that the quality of computed AM and

Table 3.2: Construction comparison of different n-D complex signal extensions
Frequency Multiplier Re [z(x)] = f(x) Spectral Reduction

Partial Hilbert −jsgn(ωT · e) Yes 50%
Total Hilbert (−j)n

∏n
i=1 sgn(ωi) Yes 0%

Single Orthant
∏n

i=1

(
1 + sgn(ωi)

)
No 75%

Adjusted Hilbert −jsignadj(ω
T · e) Yes 50%

Hypercomplex Signal
∏n

i=1

(
1 + sgn(ωi)

)
Yes ?75%

Monogenic Signal −j ω||ω|| Yes N/A
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Table 3.3: Comparison of main properties of different approaches including
isotropic, meaningful phase interpretation, and harmonic correspondence

Isotropic Meaningful Phase Harmonic Correspondence

Partial Hilbert No Almost Almost
Total Hilbert No No No
Single Orthant No Inadequate No
Adjusted Hilbert No Almost Yes
Hypercomplex Signal No Inadequate No
Monogenic Signal Yes Almost Yes

FM functions using the complex extension approaches depends on the construction

of the imaginary component. I illustrate the imaginary components of the adjusted

HT approach in Fig. 3.11(a) and of the monogenic approach in Fig. 3.11(b). Ob-

serve that the locations where the imaginary signals exhibit discontinuities coincide

with where the FM of these approaches have artifacts. The question of how to con-

struct a complex-valued image without introducing such discontinuities remains an

open research problem.

(a) (b)

Figure 3.11: Imaginary image of the complex signal models for the chirp image:
(a) of the adjusted HT approach (b) of the monogenic signal approach.
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Chapter 4

The Perfect Reconstruction AM-FM Image

Model

In Chapter 3, I discussed different algorithms for computing the AM and FM

functions of an image. In theory, these modulating functions can be used to define

a complete AM-FM image representation. However, they have primarily been used

as features for higher level image processing applications such as target tracking,

image segmentation, stereo vision, and texture analysis [52]. In these applications,

visually important image features are characterized in terms of AM-FM functions

and used as input to higher level processes such as recognition or classification.

Such applications are not concerned with recovering the original image from the

computed modulating functions. In other words, most AM-FM image processing

applications have been limited to image analysis. The image synthesis process,

where the image is recovered from the modulating functions, has not been widely

investigated. The main reason is that a perfect reconstruction AM-FM transform

suitable for image synthesis did not exist. I first address this problem by developing

the perfect reconstruction AM-FM image transform for a one component image.

I begin by discussing the importance of the 2D phase unwrapping problem

in image synthesis in Section 4.1. I then review major approaches for computing

the unwrapped phase in 2D in Section 4.2, with an emphasis on the 2D least-

squares phase unwrapping technique in Section 4.3. I discuss the splined-based

FM perfect reconstruction technique in Section 4.4.3. In addition, I propose the

60



least-squares FM perfect reconstruction technique in Section 4.4.4. Finally, the

perfect reconstruction AM-FM transform for single component images is the focus

of Section 4.5. A summary of the chapter is given in Section 4.6.

4.1 The Importance of Phase Unwrapping

The AM-FM image synthesis process aims to compute the original signal f(x)

from the AM and FM functions. Since the original image is defined as f(x) =

a(x) cos[ϕ(x)], this process requires reconstructing the phase function ϕ(x) from

the computed FM function ∇ϕ(x). In particular, ϕ(x) is obtained by integrat-

ing the gradient field ∇ϕ(x). However, the true phase function ϕ(x) can not be

obtained from the measured gradient easily in 2D. Missing data samples, noisy

measurements, and quantization errors at the receivers cause the measured gradi-

ent ∇ϕmeasured(x) to be different from the true gradient ∇ϕ(x). Hence, the inte-

grated phase ϕinterg(x) does not equal the true phase function ϕ(x). Consequently,

the reconstructed image finterg(x) = a(x) cos[ϕinterg(x)] differs from the original

image f(x). This problem has prevented the development of AM-FM synthesis

applications.

One possible way to avoid phase integration is to obtain ϕ(x) directly from

the complex image ze(x) as

ϕ(x) = arctan

[
qe(x)

f(x)

]
. (4.1)

Because arctan is a multi-valued function, the phase ϕ(x) in (4.1) is always com-

puted as the principal value, which lies in [−π, π]. This principal value phase

function is referred to as ϕwrap(x). As discussed in Section 3.2.1, the complex

function ze(x) is the complex image constructed using the partial Hilbert trans-
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form (pHT) approach. The real part of the complex image is the original image

f(x) and the imaginary part qe(x) of the complex image is obtained by the pHT.

The AM is computed by taking the magnitude of the complex image

a(x) =
√
f 2(x) + q2

e(x). (4.2)

With the computed AM and the computed phase ϕwrap(x) defined as in (4.2)

and (4.1), the original image f(x) may be perfectly reconstructed. However, the

FM functions calculated from ϕwrap(x) do not correspond to human visual per-

ception of the image. This problem is caused by the multi-valued nature of the

arctangent where arguments differing by integer multiples of π yield the same

value. As a result, the computed FM functions ∇ϕwrap(x) contain discontinuities

at locations where the branch cuts in ϕwrap(x) occur. These discontinuities arise

solely from the branch cuts in the arctangent function and do not correspond

to any visual information in the image. Moreover, because they are unbounded,

they introduce large errors in the computed FM function and violate the smoothly

varying assumption of the phase function in (3.1). Fig. 4.1 illustrates some of

the problems associated with the wrapped phase ϕwrap(x). Fig. 4.1(c) shows the

phase function ϕwrap(x) computed using (4.1) for a narrowband component of the

well-known test image Barbara. The component is given in Fig. 4.1(a). Observe

that ϕwrap(x) in Fig. 4.1(c) contains many 2D discontinuous (e.g., bifurcations)

introduced by the branch cuts in the arctangent function. The FM field computed

from the wrapped phase is shown in Fig. 4.1(e), where many mathematically cor-

rect but visually meaningless needles with large magnitudes appear. In contrast,

the unwrapped phase is shown in Fig. 4.1(d). The FM field computed from the

unwrapped phase is depicted Fig. 4.1(f), where the needle length and orientation
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are consistent visual perception of the image component. This example demon-

strates that the 2D phase unwrapping process is a crucial step in constructing a

perfect reconstruction FM transform.

4.2 The 2D Phase Unwrapping Problem

Phase unwrapping is an important step in many applications that use the phase

information. In synthetic aperture radar (SAR) interferometric imaging, the phase

at a given point indicates the terrain evaluation height [115]. In fiber-optic inter-

ferometry, the phase represents the depth of the imaged object [44]. In magnetic

resonance (MR), the phase contains information about flow or inhomogeneities

in the magnetic field. However, in these applications direct measurement of the

phase is not possible. For example, in compensated imaging, one can only ob-

tain phase differences from the receivers [39, 56]. In other applications, only the

wrapped phase is measurable. However, the wrapped phase does not provide an

intuitive way to present or perform analysis on the observed phenomena. Due to

the image processing emphasis of this dissertation, I limited the discussion of the

phase unwrapping problem to 2D signals.

2D phase unwrapping aims to find the unwrapped phase function from its

principal (wrapped) values in the range [−π, π]. In other words, given a continuous

function obtained by an inversion of a trigonometric function, e.g., arccos[ϕ(x)], the

goal is to find a smooth function ϕ(x) such that its range is no longer restricted

in [−π, π]. Fig. 4.2 shows the difference between the wrapped phase and the

unwrapped phase. The wrapped phase in Fig. 4.2(a) contains discontinuous points

because its range is restricted to [−π, π]. Fig. 4.2(b) is the unwrapped version of

the phase in Fig. 4.2(a). Notice that the unwrapped phase is smoother compared
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: 2D Phase unwrapping of one narrowband component of the Babara
image. (a) Real image component. (b) Imaginary image component. (c) Wrapped
phase function. (d) Unwrapped phase function. (e) Wrapped FM field. (f) Un-
wrapped FM field.
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the wrapped phase while still mapping through the cosine function.

(a) (b)

Figure 4.2: Wrapped phase vs. unwrapped phase. (a) Wrapped phase. (b) Un-
wrapped phase.

Formally, let ϕ(x) be a continuous phase function. Let W [.] be the wrap

operator such that W [ϕ(x)] ∈ [−π, π]. Given W [ϕ(x)], the task is to compute the

unwrapped phase ϕ(x) such that

ϕ(x) =W [ϕ(x)] + p(x)π, (4.3)

where p(x) ∈ Z. Unfortunately, 2D phase unwrapping is an ill-posed prob-

lem [39,117]. Therefore, phase unwrapping is usually formulated as an optimization

problem. In this chapter, I give a short summary of the major 2D phase unwrap-

ping approaches. I organize the 2D phase unwrapping algorithms into four main

categories: path integration, energy norm minimization, model-based estimation,

and Bayesian-based estimation.

4.2.1 Numerical Path Integration

Goldstein, Zebker, and Werner [44] proposed a path integration phase unwrap-

ping algorithm. They provided an algorithm, branch cut, to detect local errors

65



caused by large phase discontinuities in order to prevent discontinuous points from

contributing to the global phase reconstruction. The unwrapped phase is then

obtained by performing path integration by knowing local horizontal and vertical

derivatives. The numerical integration process must not cross the cut boundaries

detected by the branch cuts algorithm.

4.2.2 Least-squares Energy Minimization

Fried [39] and Hudgin [56] formulated the least-squares phase reconstruction prob-

lem for the wave-front sensor application. They aimed to minimize the sum

of errors between the phase differences and gradient of the unwrapped phase.

Hunt [57] cast the phase reconstruction problem in a linear algebra setting and

proposed a method to improve the convergence rate of the phase solution. Takajo

and Takahashi [117] studied the least-squares phase reconstruction and introduced

conditions where the solution is unique. They then proposed a closed-form non-

iterative algorithm in the frequency domain to solve for the phase function [118].

Ghiglia and Romero [42] extended the least-squares phase reconstruction approach

to facilitate weighted contributions of measured phase differences. They proposed

two iterative algorithms to solve for the unwrapped phase. Strand, Taxt, and

Jain proposed a block-based phase unwrapping algorithm [115]. Bioucas-Dias and

Valadão [8] proposed an energy minimization framework for 2D phase unwrap-

ping based on graph cuts. Spagnolini [112] used the IF estimated directly from

the signal instead of from the wrapped phase. The estimated IF is then used

in 2D phase unwrapping and the phase is solved by the least-squares framework.

Because the unwrapped phase values differ from those of the wrapped by multi-

ples of 2π, Costantini [26] formulated the phase unwrapping problem as an energy
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minimization with integer variables.

4.2.3 Model-based Parameter Estimation

Friedlander and Francos [40] proposed a parametric model for phase unwrapping.

First, they used a 2D polynomial model to fit the observed phase. The estimated

phase was then used to guide the phase unwrapping process where the phase of

each sample was corrected by adding or subtracting a multiple of 2π based on the

difference between the principle value of the phase and the estimated phase. For

general 2D phase unwrapping, the observed wrapped phase signal was segmented

prior to the model fitting process.

4.2.4 Bayesian Phase Unwrapping

Nico, Palubinskas, and Datcu [93] applied the Bayesian framework to the phase

unwrapping problem. Because measurement noise and phase aliasing caused inac-

curacies in the least-squares phase reconstruction solution, they advocated the use

of one and two regularization terms to enforce the phase prior models. However,

it is not easy to find a suitable prior models given an arbitrary phase function.

4.3 Least-squares Phase Unwrapping for the 2D AM-FM
Image Model

Let ϕ(x) be the true unwrapped phase function. Let ∇ρ(x) be the measured phase

gradient. The least-squares phase unwrapping approach finds the unwrapped phase

ϕ(x) by minimizing the mean squared error between the gradient of ϕ(x) and the

measured phase differences ∇ρ(x). In other words, the relationship between the
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measured gradient and the true gradient is given by

∇ϕ(x) = ∇ρ(x) + d(x), (4.4)

where d(x) models the errors in the IF measurement or estimation process.

In practice, the acquired measurements are discrete. Therefore, the fi-

nite difference is often used to approximate the derivative operator. For exam-

ple, [ϕ(m,n) − ϕ(m − 1, n)] and [ϕ(m,n) − ϕ(m,n − 1)] are approximations of

the vertical and horizontal derivatives of ϕ(m,n) at pixel location (m,n) in the

[0 · · ·M−1]× [0 · · ·N−1] rectangular grid. Specifically, let ρm(m,n) and ρn(m,n)

be the measured phase gradient, i.e., ρm(m,n) and ρn(m,n) are discrete approx-

imations of the vertical and the horizontal derivatives of the measured phase

ρ(m,n). Let ∇ϕ(m,n) = [ϕm(m,n), ϕn(m,n)] be the true gradient field of the

unwrapped phase. The unwrapped phase ϕ(m,n) is the solution to the L2 norm

minimization

E [ϕ(m,n)] = ||ϕm(m,n)− ρm(m,n)||2 + ||ϕn(m,n)− ρn(m,n)||2. (4.5)

Hunt [57] formulated (4.5) as a matrix multiplication. He constructed the matrix A

which acts like a phase difference operator. In this formulation, the phase functions

ϕ(m,n), ρm(m,n), and ρn(m,n) are vectorized into 1D vector. Concretely, let ϕ

be a 1D vectorization of ϕ(m,n) and let γ = [ρm ρn]T be a 1D vector consisting

of two stacked 1D vectors ρm and ρn. The energy minimization equation (4.5) is

equivalent to

E(ϕ) = ||Aϕ− γ||2

= (Aϕ− γ)T (Aϕ− γ)

= (Aϕ)TAϕ− (Aϕ)Tγ − γTAϕ+ γTγ

= ϕTATAϕ− 2ϕTATγ + γTγ. (4.6)
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The error in (4.6) is a quadratic function of ϕ. The optimal solution for ϕ is

computed by equating the derivative of E [ϕ(m,n)] to zero according to

∂E
∂ϕ

= 2ATAφ− 2ATγ = 0,

or equivalently, ATAϕ = ATγ. (4.7)

Notice that (4.7) is the well-known least-squares solution of an overdetermined

linear system. One can solve (4.7) for ϕ using matrix inversion provided that the

matrix ATA is not singular. In the phase unwrapping problem, the matrix A

computes the discrete approximation to the gradient. As a result, ATAϕ can be

interpreted as the Laplacian of ϕ and ATρ represents the derivative of the measured

gradient ρ, which is the Laplacian of measured phase ρ. With this representation,

equation (4.7) is the discretization of the classical Poisson equation which can

be solved exactly using the fast discrete cosine transform (DCT) [118]. A detailed

derivation of this is given in Appendix B. Let Φ be the 2D DCT transform of ϕ and

Γ be the 2D DCT transform of γ. We have the in DCT domain relationship [118].

Φ(i, j) =
Γ(i, j)

2 cos
(
π
M
i
)

+ 2 cos
(
π
N
j
)
− 4

, (4.8)

where i and j are indexes of the 2D grid. The least-squares unwrapped phase

ϕLS(m,n) is obtained by taking the inverse 2D discrete cosine transform as

ϕLS(m,n) = IDCT{Φ(i, j)}. (4.9)

Notice that Φ(0, 0) in (4.8) is not defined because the denominator is zero. In

practice, I set Φ(0, 0) = 0 which results in a zero mean unwrapped phase function. I

emphasize that ϕLS(m,n) is not necessarily equal to the true phase ϕ(m,n); rather,

because it is the least-squares approximation of ϕ(m,n). As the unwrapped phase

is obtained by integrating the gradient, the computed solution can differ from the

true phase by a global constant in the best case.
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4.4 Perfect Reconstruction FM Algorithm

4.4.1 Arguments for the Least-squares Phase Unwrapping

I adopted the 2D least-squares phase unwrapping algorithm for the AM-FM per-

fect reconstruction model for several reasons. The unwrapped phase produced by

the least-squares phase unwrapping algorithm is usually smooth and agrees with

the smoothly varying assumption of the AM-FM image model. In addition, as the

measurement noise is inherently modeled in the least-squares formulation, the algo-

rithm is robust to phase discrepancies. As a result, the least-squares approach does

not need to explicitly determine the phase discontinuities like other approaches

such as path integration discussed in Section 4.2.1. Moreover, the least-squares

formulation provides an efficient and stable algorithm to compute the unwrapped

phase. Finally, additional constraints can be enforced on the reconstructed phase

because regularization terms can be conveniently integrated into the least-squares

formulation.

4.4.2 Enforcing Phase Congruence

Let n = [n m] ∈ Z2. As noted in Section 4.3, the least-squares phase ϕLS(n)

computed from (4.9) is not guaranteed to be equal to the true phase ϕ(n), i.e.,

ϕLS(n) 6= ϕ(n). As a result, the original image can not be recovered exactly

because cos[ϕLS(x)] 6= cos[ϕ(x)] in general.

In the best case, the unwrapped phase differs from the true phase by a global

constant c. The constant c can be estimated by minimizing the energy between

the wrapped phase and the unwrapped phase. In other words, c is obtained by

minimizing the following norm

E(c) = || cos(W{ϕ(m,n)})− cos[ϕLS(m,n) + c]||2. (4.10)
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Even in cases where the unwrapped phase differs from a true phase by a function

d(n), we can still use this least-squares approach to improve the accuracy of the

unwrapped phase. For instance, Pritt [100] computed (4.10) with different c over

the range of [0, 2π] and chose the c with the lowest error. The constant c can also

be found using an iterative approach such as the gradient descent method. For

instance, in the phase unwrapping example in Fig. 4.1, I found that c = 0.9105

using the gradient descent algorithm with step size 0.3 and 1000 iteration. The

mean squared error is improved from 0.9773 to 0.9626.

In order to obtain FM perfect reconstruction, Sivley and Havlicek [108] en-

forced congruence on the least-squares unwrapped phase. For perfect reconstruc-

tion, they required that cos[ϕ(n)] = cos[W{ϕ(n)}]. Therefore, they introduced an

auxiliary function b(n) ∈ Z and computed b(n) as

b(n) =

⌊
βϕLS(n)−W{ϕ(n)}

2π

⌋
, (4.11)

where “b c” denotes the floor function and β is a predefined positive real constant.

The constant β was set to 300 according to [108]. The constant β alleviates discon-

tinuous jumps in the final unwrapped phase function. The final unwrapped phase

ϕ(x) is given by

ϕ(n) =W{ϕ(n)}+ 2πb(n). (4.12)

I illustrate the importance of enforcing the phase congruence in Fig. 4.3.

Fig. 4.3(a) shows the wrapped phase of a locally narrowband component. Fig. 4.3(b)

shows the unwrapped phase ϕ(n). The unwrapped phase is smoother and does not

contain discontinuities compared to the wrapped phase in Fig. 4.3(a). The error

between the least-squares phase and the wrapped phase after mapping through

the cosine function is shown in Fig. 4.3(c). The congruency term b(n) is shown in
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Fig. 4.3(d). The error between the least-squares phase and the final unwrapped

phase ϕ(n) are illustrated with 3D plots in Fig. 4.4(a). This error which is shown

in Fig. 4.4(b) is effectively zero after the congruency term is enforced. Similar

example of phase congruency enforcement is shown in Fig. 4.5 and 4.6

(a) (b)

(c) (d)

Figure 4.3: 2D Phase unwrapping of one component of lena, lena 3 2. (a) Wrapped
phase. (b) Unwrapped phase. (c) cos[ϕLS(n)] − cos[ϕ(n)]. (d) Congruence term
b(n) in (4.12).

Quantitative illustrations of the MSE between the unwrapped phase before

and after the phase congruency is enforced are shown in Table. 4.1 and 4.3. We
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(a)

(b)

Figure 4.4: 3D error plot of the 2D Phase unwrapping for barbara 3 2. (a)
cos[ϕLS(n)]− cos[W{ϕ(n)}]. (b) cos[ϕ(n)]− cos[W{ϕ(n)}].
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(a) (b)

(c) (d)

Figure 4.5: 2D Phase unwrapping of one component of barbara, babara 3 4. (a)
Wrapped phase. (b) Unwrapped phase. (c) cos[ϕLS(n)] − cos[ϕ(n)]. (d) Congru-
ence term b(n) in (4.12).
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(a)

(b)

Figure 4.6: 3D error plot of the 2D Phase unwrapping for barbara 3 4. (a)
cos[ϕLS(n)]− cos[W{ϕ(n)}]. (b) cos[ϕ(n)]− cos[W{ϕ(n)}].
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can see that the MSE of 12 narrowband components effectively go zero after the

phase congruency terms are added to the least-squares phase.

Table 4.1: Mean squared error (MSE) comparison between the true phase and the
least-squares phase after and before phase congruency is added to the least-squares
phase for the test image Barbara.

after phase congruency before phase congruency

barbara 2 2 1.393365× 10−23 0.979680
barbara 2 3 1.273848× 10−23 0.998202
barbara 2 4 1.308133× 10−23 1.001034
barbara 2 5 1.416999× 10−23 1.007397
barbara 3 2 3.394855× 10−24 0.977283
barbara 3 3 3.049092× 10−24 0.970878
barbara 3 4 3.016521× 10−24 0.977438
barbara 3 5 3.109758× 10−24 0.991340
barbara 4 2 7.302929× 10−25 0.973036
barbara 4 3 7.074440× 10−25 0.944815
barbara 4 4 7.274310× 10−25 1.065723
barbara 4 5 7.342723× 10−25 1.051791

4.4.3 Spline-based Perfect Reconstruction FM

Once the unwrapped phase ϕ(n) is obtained, the FM is computed as the gradi-

ent of ϕ(n). For a perfect reconstruction representation, the phase ϕ(n) must be

recovered from the computed FM without errors. Sivley and Havlicek [110] pro-

vided the first perfect reconstruction FM transform. They used the spline-based

framework proposed by Unser, Aldroubi, and Eden [121, 122]. They fitted ϕ(n)

with a tensor product cubic spline model to create a continuous surface ϕc(x).

Specifically, they computed the cubic-spline coefficients from the discrete samples

of ϕ(n). The forward cubic spline transfer function is given by [122] by

[B3(z)]−1 =
6

z + 4 + z−1
. (4.13)
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Table 4.2: Mean squared error (MSE) comparison between the true phase and the
least-squares phase after and before phase congruency is added to the least-squares
phase for the test image Lena.

after phase congruency before phase congruency

lena 2 2 8.306846× 10−26 0.993641
lena 2 3 2.033533× 10−25 1.012747
lena 2 4 2.362168× 10−25 0.997782
lena 2 5 2.183022× 10−25 0.992178
lena 3 2 5.673893× 10−26 0.997217
lena 3 3 1.570788× 10−25 0.978311
lena 3 4 1.769817× 10−25 1.005338
lena 3 5 1.166994× 10−25 1.035526
lena 4 2 2.951476× 10−26 1.036047
lena 4 3 6.999355× 10−26 1.101886
lena 4 4 8.165159× 10−26 0.863878
lena 4 5 6.236149× 10−26 0.994436

Table 4.3: The mean squared error (MSE) comparison of the least-squares phase
and the unwrapped phase with respect to the true phase for test image Lena.

The signal ϕ(n) is recovered without errors by the indirect cubic spline transfer

function

B3(z) =
z + 4 + z−1

6
. (4.14)

For a 2D signal like ϕ(n), the cubic spline filters [B3(z)]−1 and B3(z) are applied

successively along rows and columns of the image.

Since the cubic spline interpolants were used in [109], the first order deriva-

tive of these splines is quadratic splines. In order to map the quadratic spline

representation to the image intensity representation, one must apply the indirect

quadratic spline with transfer function C2(z) is given by

C2(z) =
z + 1

2
. (4.15)

The first order derivative operator and the indirect quadratic spline C2(z) can be
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grouped into one filter

D(z) = (1− z−1)
z + 1

2
=
z − z−1

2
. (4.16)

Let gr(n) be cubic spline representation of the phase function ϕ(n) along

the rows. Then gr(n) is obtained as

gr(n) = ϕ(n) ∗ [b3(n)]−1, (4.17)

where [b3(n)]−1 is the time domain representation of [B3(z)]−1. Similarly, let gc(n)

be the cubic spline representation along the column of the phase image ϕ(n),

gc(n) = ϕ(n) ∗ [b3(n)]−1. Let U(n) and V (n) be the horizontal and the vertical

components of the FM vector. They are computed as

U(n) =
gc(m,n+ 1)− gc(m,n− 1)

2
, (4.18)

V (n) =
gr(m+ 1, n)− gr(m− 1, n)

2
. (4.19)

Sivley and Havlicek [110] showed that the original phase function ϕ(n)

can be perfectly reconstructed from the FM functions U(n) and V (n). However,

the reconstruction algorithm required prior knowledge of four points of the original

phase function. Particularly, they assumed that ϕ(0, 0), ϕ(0, 1), ϕ(1, 0), and ϕ(1, 1)

are known. First, the algorithm computes gr(m,n) using (4.19) for the first two

columns

gr(m+ 1, n) = 2V (m,n) + gr(m− 1, n), (4.20)

where gr(i, j) = ϕ(i, j) for i, j ∈ [0, 1]. Let gc(i, j) = gr(i, j), for i ∈ [0,M − 1] and

j ∈ [0, 1]. Then gc(n) is computed using (4.19) along the columns as

gc(m,n+ 1) = 2U(m,n) + gc(m,n− 1), (4.21)
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where gc(i, j) = gr(i, j), for i ∈ [0,M − 1] and j ∈ [0, 1]. The original phase ϕ(n)

is then obtained by performing the indirect cubic spline transform

ϕ(n) = gr(n) ∗ b3(n), (4.22)

where b3(n) is the time domain representation of B3(z).

Notice that one could arrive at the same answer for ϕ(n) if the reconstruc-

tion algorithm was started by integrating along the columns and then integrating

along the rows. However, the algorithm still requires four points on the top left

corner of the original phase function ϕ(n) in that case.

4.4.4 Least-squares FM Perfect Reconstruction

While the spline-based algorithm in Section 4.4.3 provides perfect reconstruction

of the phase from the FM, it is not suitable for FM signal processing applica-

tions. The first step of the reconstruction algorithm only operates on the first two

columns. Therefore, any signal processing changes of V (n) in columns other than

these first two will not be reflected in the reconstructed phase. Similarly, changes

in the first two columns of V (n) will results in changes even though V (n) is un-

modified everywhere else. Second, the algorithm requires the knowledge of four

points on the top left corner of the original phase function. A small change in any

of these four points results in global changes to the reconstructed phase. There-

fore, the algorithm does not give predictable results if the FM is altered by signal

processing. This limitation prohibits the implementation of non-trivial filtering

operations applying directly on the FM functions.

Nguyen, Campell, and Havlicek proposed a new FM perfect reconstruction

algorithm in [88]. The FM reconstruction followed the same formulation as the
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least-squares phase unwrapping in Section 4.3. Let U(n) and V (n) be the hori-

zontal and vertical components of the FM function. They are computed from the

unwrapped phase ϕ(n) using the phase difference technique

U(m,n) = ϕ(m,n)− ϕ(m,n− 1), (4.23)

V (m,n) = ϕ(m,n)− ϕ(m− 1, n), (4.24)

where n = [m n]T . Recall that the discrete phase differences where also used in

the least-squares optimization setup in (4.5).

In the FM reconstruction problem, I aimed to reconstruct the phase function

ϕ(n) from the FM functions U(n) and V (n). Let ϕ̃(n) be the reconstructed phase.

Similar to the least-squares approach in Section 4.3, I set up the least-squares

optimization problem as

E [ϕ̃(m,n)] = ||ϕ̃m(m,n)− V (m,n)||2 + ||ϕ̃n(m,n)− U(m,n)||2, (4.25)

where ϕ̃m(m,n) and ϕ̃n(m,n) are the vertical and horizontal approximation of

the derivatives. In particular, the FM components are computed using the phase

differences, i.e., ϕ̃m(m,n) = ϕ̃(m,n) − ϕ̃(m − 1, n) and ϕ̃n(m,n) = ϕ̃(m,n) −

ϕ̃(m,n− 1).

From (4.23)– (4.24), and (4.25), the solution of (4.25), if found, differs from

the original phase ϕ(n) by a global constant τ :

ϕ̃(n) = ϕ(n) + τ. (4.26)

Therefore, the original phase ϕ(n) can be perfectly reconstructed if τ is known

a priori. I chose τ to be the top left corner pixel of the unwrapped phase, e.g.,

ϕ(0, 0). The MSE of the reconstructed phase ϕ̃(n) with respect to the original
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phase ϕ(n) is given in Table 4.4 for 12 locally narrowband components of the well-

known mandrill image. The algorithm is able to reconstruct the original phase

from the FM functions U(n) and V (n) without errors.

Table 4.4: Mean squared error (MSE) comparison of the least-squares phase and
the unwrapped phase with respect to the true phase for the test image mandrill.

(MN)−1||ϕ̃(n)− ϕ(n)||2

mandril 2 2 1.438606× 10−14

mandril 2 3 2.574802× 10−14

mandril 2 4 5.446122× 10−14

mandril 2 5 7.288013× 10−14

mandril 3 2 3.886939× 10−15

mandril 3 3 7.553478× 10−15

mandril 3 4 1.462437× 10−14

mandril 3 5 1.944426× 10−14

mandril 4 2 9.360980× 10−16

mandril 4 3 1.825935× 10−15

mandril 4 4 3.595069× 10−15

mandril 4 5 4.682343× 10−15

I illustrate FM reconstruction results in Fig. 4.7. The FM functions U(n)

and V (n) are shown in Fig. 4.7(a) and Fig. 4.7(b), respectively. Fig. 4.7(c) depicts

the least-squares reconstructed phase ϕreconLS(n) obtained by solving (4.25). The

final phase is shown in Fig. 4.7(d). The least-squares phase and the final phase

differ by a constant τ . I show this difference as a mesh plot in Fig. 4.8(a). The

error between the reconstructed phase and the original phase is also illustrated in

Fig. 4.8(b).

The least-squares perfect reconstruction algorithm overcomes the limita-

tions of the spline-based approach in Section 4.4.3. The algorithm requires a priori

knowledge of one sample rather than four samples. In addition, the changes in

U(n) and V (n) are reflected in the reconstructed phase which allows us to define
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(a) (b)

(c) (d)

Figure 4.7: 2D phase reconstruction from FM functions. (a) U(n). (b) V (n). (c)
Least-squares phase ϕreconLS(n). (d) Reconstructed phase ϕ̃(n).
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(a)

(b)

Figure 4.8: 2D least-squares phase reconstruction. (a) Offset constant τ ≈ −3.1317
in (4.26). (b) |ϕ(n)− ϕ̃(n)| ∈ [0, 2.5× 10−7].
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filters acting on these FM components.

4.5 The Single Component PR AM-FM Transform

Once the FM perfect reconstruction algorithm was realized, I developed the perfect

reconstruction (PR) model for the single component AM-FM transform. Given a

real discrete input image f(n), I constructed the imaginary image q(n) using the

pHT technique in Section 3.2.1. I then created the complex image as z(n) =

f(n) + jq(n). The AM and FM functions are computed as

a(n) =
√
f 2(n) + q2(n), (4.27)

∇ϕ(n) = Im

[
∇z(n)

z(n)

]
. (4.28)

Since the derivative operator is not defined for discrete signals, ∇z(n) in (4.28)

must be computed using an approximate discrete implementation. Sivley and

Havlicek [108,110] used the spline-based approach to compute discrete derivatives.

The spline-based approach permits an invertible FM transform. Farid and Simon-

celli [33] designed separable kernels to perform differentiation for multidimensional

discrete signals. These filters are of the finite impulse response (FIR) type. The ac-

curacy of the approximation depends on the filter length. The filter coefficients are

computed using a least-squares optimization technique. For practical applications,

these derivative FIR filters have five or seven taps. In the proposed transform, a

five tap FIR filter is used.

While the AM and FM functions have been computed numerically, we still

can not reconstruct the original image f(n) from these modulating functions. Be-

cause of the wrapped phase problem discussed in Section 4.1, one must perform

phase unwrapping in order to obtain a perfect reconstruction AM-FM model. Let
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U(n) and V (n) be the horizontal and vertical components of the FM function, i.e.,

∇ϕ(n) = [U(n) V (n)]T . These FM functions are then used as estimates for the

least-squares phase unwrapping process in Section 4.3. Specifically, U(n) plays the

role of ρn(m,n) and V (n) plays the role of ρm(m,n). The unwrapped phase ϕ(n) is

solved by (4.5). The FM functions are then computed from the unwrapped phase

ϕ(n) according to (4.23) and (4.24). The triplet a(n), U(n), V (n) constitutes a

perfect reconstruction AM-FM image representation for the image f(n).

The original image f(n) is reconstructed from the three components a(n),

U(n), V (n) without errors. I showed in Section 4.4.4 that the phase function

ϕ(n) can be perfectly reconstructed from the FM functions U(n) and V (n). While

both the spline-based approach in Section 4.4.3 and the least-squares approach

in Section 4.4.4 allow perfect reconstruction of the phase signal from the FM, I

adopted the least-squares FM reconstruction approach because the least-squares

reconstructed phase function is more robust to changes in the FM than that ob-

tained from the spline-based approach. Once ϕ(n) is recovered, the original image

is given by

f(n) = a(n) cos[ϕ(n)]. (4.29)

Algorithm 1 The analysis AM-FM transform

Let f(n) be the discrete image.
Step 1: Construct the complex image z(n):

q(n) = H{f(n)}, defined in Section 3.2.1.
z(n) = f(n) + jq(n).

Step 2: Compute the AM using (4.27) and the FM using (4.28)
Step 3: Find the phase function ϕ(n) by solving (4.25)
Step 4: Compute the FM functions using (4.23) and (4.24).

Steps for computing the analysis and synthesis AM-FM transform are given

in Algorithm 1 and Algorithm 2, respectively.
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Algorithm 2 The synthesis AM-FM transform

Require: ϕ(0, 0) known a priori.
Let U(n) and V (n) be the FM functions.
Step 1: Reconstruct the phase function ϕ(n) by solving (4.25).
Step 2: Reconstruct the original image using (4.29).

I applied the perfect reconstruction AM-FM transform to two single com-

ponent images: BentChirp and Chirp. The transform and reconstruction the

BentChirp image are shown in Fig. 4.9, and those of the Chirp image are shown in

Fig. 4.11. In addition, 3D plots of the computed AM and FM functions are depicted

in Fig. 4.10 and Fig. 4.12. I quantified the reconstruction error by computing the

mean squared error (MSE) and peak signal to noise ratio (PNSR)

MSE(f, g) =

∑M−1
m=0

∑N−1
n=0 [f(m,n)− g(m,n)]2

MN
, (4.30)

PSNR(f, g) = 10 log10

(
max[f ]

MSE(f, g)

)
, (4.31)

where g(m,n) is the reconstructed image. The results are given in Table 4.5. The

low MSE (8.523966× 10−18) and high PSNR (170.71 dB) results confirm that the

proposed algorithms provide a perfect reconstruction AM-FM transform.

Table 4.5: Reconstruction error of the one component AM-FM transform.
MSE PSNR (dB)

BentChirp 8.523966× 10−18 170.71
Chirp 1.912063× 10−17 167.18
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Single component perfect reconstruction AM-FM transform of the
BentChirp image.. (a) Original bentChirp image. (b) Reconstructed bentChirp
image. (c) Computed AM function. (d) Computed phase function ϕ(n). (e)
Horizontal component of ϕ(n). (f) Vertical component of ϕ(n).
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(a)

(b)

Figure 4.10: Single component perfect reconstruction AM-FM transform of the
BentChirp image. (a) Computed AM. (b) Computed FM field.
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(a) (b)

(c) (d)

(c) (f)

Figure 4.11: Single component perfect reconstruction AM-FM transform of the
Chirp image. (a) Original chirp image. (b) Reconstructed chirp image. (c) Com-
puted AM function. (d) Computed phase function ϕ(n). (e) Horizontal component
of ϕ(n). (f) Vertical component of ϕ(n).
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(a)

(b)

Figure 4.12: Single component perfect reconstruction AM-FM transform of the
Chirp image. (a) Computed AM. (b) Computed FM field.
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4.6 Summary

I discussed the importance of 2D phase unwrapping in the context of AM-FM

image synthesis applications. I reviewed four major approaches to perform phase

unwrapping from the wrapped phase. I then discussed in detail the least-squares

phase unwrapping approach which I then used to build the perfect reconstruction

AM-FM transform. While both the spline-based approach and least-squares ap-

proach yield a perfect reconstruction FM transform, I argued for the least-squares

approach because it is more robust to changes in the FM function than the spline-

based approach. Finally, I introduced the AM-FM transform for single component

images. I provided two algorithms that can compute the AM-FM representation of

the image and then reconstruct the original image from the AM and FM functions

without errors.

I argued that that the proposed AM-FM transform should be applied to

single component images. Most practical images must be decomposed into multiple

locally narrowband components before the proposed AM-FM transform can be

applied. As a result, an image is represented as a finite sum of multiple single

component AM-FM models. I develop the multi-component perfect reconstruction

AM-FM transform in the next chapter.
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Chapter 5

Multi-component AM-FM Transform

5.1 Motivation for the Multi-component Approach

In Chapter 4, I discussed the single component AM-FM transform where an im-

age is represented by one AM function and one FM function. The AM and FM

functions are assumed to be smoothly varying functions. However, for practical

images such as Barbara in Fig. 5.1(a), the single component AM-FM model is

not an appropriate representation. Mathematically, the single component AM-

FM representation of Barbara is still a perfect reconstruction model. Indeed, the

MSE and PSNR of the reconstructed image are MSE = 5.952755 × 10−13 and

PSNR = 164.44dB. Nevertheless, the computed AM and FM functions do not

correspond with human visual perception of the image. The AM function of the

single component prefect reconstruction AM-FM transform is given in Fig. 5.1(c);

it contains texture information and oscillations. The FM is depicted with a nee-

dle diagram in Fig. 5.2. While the single component FM function captures some

texture features, in many locations the needles in the FM field fail to indicate

the correct texture orientations. In certain regions, the magnitude of the needles

are also unstable due to the presence of phase discontinuities in the image. To

be meaningful, an AM-FM representation must satisfy two constraints: perfect

reconstruction and intuitive interpretation. To achieve these goals, for images like

Barbara, a multi-component AM-FM model is required. Specifically, the image

Barbara should be represented by K locally narrowband AM-FM components,
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where K is a reasonably small integer.

(a) (b)

(c) (d)

Figure 5.1: Single component AM-FM representation of the barbara image. (a)
Original barbara image. (b) Reconstructed barbara image. (c) Computed AM
function. (d) Computed phase function.

Let f(x) be a multi-component image. I model f(x) with K AM-FM com-

ponents according to

f(x) =
K∑
k=1

fk(x) =
K∑
k=1

ak(x) cos[ϕk(x)], (5.1)

where fk(x) = ak(x) cos[ϕk(x)] is the single-component AM-FM model of image
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Figure 5.2: Computed FM function for single-component AM-FM transform of
Barbara image.

component fk(x). In order to realize the representation (5.1), I first decompose the

image f(x) into multiple locally coherent components fk(x). The decomposition

strategy is given in Section 5.2.

5.2 Perfect reconstruction filterbank

5.2.1 Arguments for the multi-scale multi-orientation filterbank

Biological evidence has been the driving force behind many successful visual pro-

cessing algorithms. Hubel and Wiesel [55] provided a spatial mapping of the re-

sponses of cortical neurons. They found that these responses are sensitive light

slits, edges, and bars of different orientations. Campbell and Robson [21] later

suggested that the nervous system is also sensitive to selective ranges of spatial fre-

quencies. They conjectured that there might be multiple spatial frequency channels

involved in biological vision processing. Together with that of Hubel and Wiesel,
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Campbell and Robson’s work inspired the interpretation that our visual system

functions similar to a spectrum analyzer [12], meaning that the visual passband is

composed of multiple frequency and orientation selective channels.

Marcelja [82] provided a mathematical description of the responses of the

simple cortical cells. He described the receptive fields in terms of 1D Gabor func-

tions which are localized in both time and frequency. Daugman [28] extended

Marcelja’s work into 2D and proved that the 2D Gabor filters achieves the low-

bound of the uncertainty principle. Jones and Palmer [61] confirmed the validity

of the 2D Gabor filter model by comparing the Gabor responses with numerical

data acquired from measurements in cat striate cortex.

The visual cortex model where the simple receptive field is modeled by 2D

Gabor filters has been used in many important image processing algorithms. Bovik,

Clark, and Geisler [17] used a 2D Gabor filterbank to perform image segmentation.

Fleet and Jepson [35] computed the instantaneous frequency from the responses of

a 2D Gabor filterbank to estimate optical flow in images. Manjunath and Ma [76]

applied a Gabor filterbank to extract features for content-based image retrieval.

Kovesi [66] computed the phase congruence from responses of Gabor filters. The

phase congruency measure acts as a descriptor for image features such as corners

and edges.

Besides the Gabor filterbank, multiscale transforms are also products of

early human vision research. Marr and Hildreth [80] used the second derivative

of a Gaussian to perform multi-scale edge detection. Burt and Adelson [20] de-

composed an image into subbands using Gaussian filters. They then used different

coding schemes for different subbands to achieve image compression gain. Koen-

derink [65] suggested that resolution can be a parameter describing images. Re-
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cently, wavelet transform has been a popular multiresolution signal analysis tool

for many practical application such as image compression and image analysis [73].

Freeman, Adelson, and Simoncelli introduced the steerable pyramid [38,107] where

the image is decomposed into multiple orientations and frequency subbands similar

to a Gabor filterbank.

To decompose an images into coherent and localized components, I adopt

the multi-scale and multi-orientation approach. Specifically, I decompose the in-

put image into multiple components of different scales and orientations using a

modified version of the original steerable pyramid [89]. Implementation details of

the modified steerable pyramid are given in Section 5.2.4.

5.2.2 Arguments for the Steerable Pyramid

In image analysis, texture orientation provides rich information about the object

of interest. Steerable filters was originally proposed by Freeman and Adelson [38]

to compute filtered images at arbitrary orientations from a small number of basis

elements. Simoncelli, Freeman, and Adelson [107] built the steerable filters into a

multi-scale transform to create the steerable pyramid. A fast implementation for

the steerable pyramid was later introduced by Simoncelli and Freeman [106]. The

steerable pyramid is a multi-resolution signal processing structure which enables

a coarse to fine signal analysis. The input image is decomposed into subbands,

each with frequency support lying in a finite partition of the original spectrum.

The steerable pyramid has been used successfully in many computer vision ap-

plications such as image denoising [60], texture analysis [98], and image quality

assessment [105].

The steerable pyramid provides both perfect reconstruction and orientation
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selectivity. Therefore, it satisfies the requirements of the AM-FM decomposition.

I now argue that among the prominent signal transformation and decomposition

techniques the steerable pyramid is a suitable choice. Both the steerable pyra-

mid and the Gabor filterbank possess important localization properties for image

analysis. Both are multi-scale multi-orientation transforms. An important charac-

teristic that makes them popular in image analysis is that these filters can create

translation-invariant and rotation-invariant filterbanks. In addition, these filters

allow joint time-frequency localization, even though the steerable filter are not op-

timal filter in the sense of achieving the lower bound of the uncertainty principal.

However, the Gabor filters can not provide perfect reconstruction. This limitation

prevents the use of Gabor filters in a perfect reconstruction representation. On

the other hand, the steerable pyramid does provide perfect reconstruction. The

steerable pyramid is also more effective than the traditional wavelet transform in

the context of AM-FM applications. While the traditional wavelet transform al-

lows perfect reconstruction and is complete, i.e., free of redundancy, it does not

allow multi-orientation analysis. In addition, the transform is not translation-

invariant and rotation-invariant, which are both critical when filtering operations

are defined on the subbands. It is important to point out that there are other

transforms that provide multi-scale and multi-orientation analysis such as the con-

tourlet transform [29]. The contourlet was not considered because it is originally

not translation-invariant.

5.2.3 The Original Steerable Pyramid

Steerable filters can extract important features of images such as texture orienta-

tion and edges from the oriented filters [38]. Steerability refers to the ability to
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synthesize filters at arbitrary directions as a linear combinations of a small set of

basis filters. The steerable filter is based on the multidimensional derivative op-

erator [38]. The steerable pyramid decomposes an image according to the scheme

shown in Fig. 5.3. I refer to this decomposition as the original steerable pyramid

to distinguish it from the modified version that I will develop later in the chapter.

The pyramid consists of two phases, namely the analysis phase and the synthesis

Figure 5.3: Decomposition scheme of the original steerable pyramid [106].

phase. The analysis filterbank is on the left of the vertical dotted line in Fig. 5.3,

while the synthesis filterbank is shown on the right of the dotted line.

Let f̂(ω) be the Fourier spectrum of the input image. In the first de-

composition level, the image is decomposed into one highpass component with

frequency spectrum f̂(ω)H0(−ω), M bandpass components with frequency spec-

tra f̂(ω)L0(−ω)B1(−ω), · · · , f̂(ω)L0(−ω)BM(−ω), and one lowpass component

with spectrum f̂(ω)L0(−ω)L1(−ω). For all subsequent levels, the decomposition

starts over with a downsample image after the application of the lowpass filter

L1(−ω). In other words, the output of the previous lowpass decomposition level
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is fed into the next level as the input signal. Hence, the steerable pyramid can

be implemented with a recursion approach [106]. In the steerable pyramid de-

composition, the highpass filter H0(−ω) is applied only at the first decomposition

level.

In order to yield a perfect reconstruction transform, the filters H0(ω),

L0(ω), L1(ω), and Bk(ω) have to meet the following three constraints [106].

1. Aliasing-free subbands:

L1(ω) = 0, for |ω| > π/2 (5.2)

2. Recursion constraint:

|L1(ω)|2 +
M−1∑
k=0

|Bk(ω)|2 = 1 (5.3)

3. Perfect reconstruction:

|H0(ω)|2 + |L0(ω)|2
[
|L1(ω)|2 +

M−1∑
k=0

|Bk(ω)|2
]

= 1 (5.4)

The frequency responses of these filters are given in [98]. The same filter

shape was also suggested earlier by Castleman, Schulze, and Wu [22]. The lowpass

filter L0(ω) has a frequency spectrum in polar coordinates given by

L0(r, θ) =


1 if r ≤ π

2
,

cos
[
π
2

log2

(
2r
π

)]
if π

2
< r < π,

0 if r ≥ π.

(5.5)

The frequency response of the highpass filter H0(ω) is

H0(r, θ) =


0 if r ≤ π

2
,

cos
[
π
2

log2

(
r
π

)]
if π

2
< r < π,

1 if r ≥ π.

(5.6)
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Finally, the oriented filter Gk(ω) has a frequency response given in polar form by

Gk(r, θ) =

{
αk
[
cos
(
θ − kπ

M

)]M−1
if
∣∣θ − kπ

M

∣∣ < π
2
,

0 otherwise,
(5.7)

where 0 ≤ k ≤M − 1 indicates orientation index and the constant α is defined by

α =
2``!√
N(2`)!

. (5.8)

I show in Appendix A that
M−1∑
k=0

|Gk(ω)|2 = 1. (5.9)

I now verify that the choices of L0(ω) and H0(ω) satisfy the three perfect

reconstruction constraints.

1. Aliasing-free subbands:

Let L1(r, θ) = L0(2r, θ). The spectrum of L1(r, θ) is

L1(r, θ) =


1 if r ≤ π

4
,

cos
[
π
2

log2

(
2r
π

)]
if π

4
< r < π

2
,

0 if r ≥ π
2
.

(5.10)

It is clear that L1(r, θ) = 0 if r > π/2.

2. Recursion constraint:

Let H1(r, θ) = H0(2r, θ). Let Bk(r, θ) = H1(r, θ)Gk(r, θ).

M−1∑
k=0

|Bk(ω)|2 =
M−1∑
k=0

|H1(r, θ)Gk(r, θ)|2

= |H1(r, θ)|2
M−1∑
k=0

|Gk(r, θ)|2

= |H1(r, θ)|2. (5.11)
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I aimed to show that |L1(r, θ)|2 + |H1(r, θ)|2 = 1, where L1(r, θ) is given

in (5.10) and H1(r, θ) is given by

H1(r, θ) =


0 if r ≤ π

4
,

cos
[
π
2

log2

(
2r
π

)]
if π

4
< r < π

2
,

1 if r ≥ π
2
.

(5.12)

From these definitions, for r ≤ π
4

and r ≥ π
2
, we have |L1(r, θ)|2+|H1(r, θ)|2 =

1. For π
4
< r < π

2
, let S = |L1(r, θ)|2 + |H1(r, θ)|2. Thus,

S = cos2

[
π

2
log2

(
4r

π

)]
+ cos2

[
π

2
log2

(
2r

π

)]
= cos2

[
π

2
log2

(
2r

π

)
+
π

2
log2(2)

]
+ cos2

[
π

2
log2

(
2r

π

)]
= sin2

[
π

2
log2

(
2r

π

)]
+ cos2

[
π

2
log2

(
2r

π

)]
= 1. (5.13)

Therefore, |L1(r, θ)|2 + |H1(r, θ)|2 = 1.

3. Perfect reconstruction:

The result follows directly from (5.13) that |L0(r, θ)|2 + |H0(r, θ)|2 = 1.

Since the chosen filters satisfy the three perfect reconstruction constraints,

the steerable pyramid is a perfect reconstruction transform. I show the frequency

responses of L0(−ω) and H0(−ω) in Fig. 5.4. The frequency magnitude varies

from zero to one where one is represented with white and zero is represented with

black.

While the original steerable pyramid allows perfect reconstruction, the

highpass filter H0(−ω) in Fig. 5.3 is not orientation selective. As a result, it

is unsuitable for generating locally narrowband AM-FM image components. In
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(b) H0(−ω). (a) L0(−ω).

Figure 5.4: Frequency responses of H0(−ω) and L0(−ω).

Section 5.2.4, I break this highpass component into M orientation selective sub-

channels. In addition, I decompose the residual lowpass channel into M separate

sub-channels of different orientations. With these two modifications, I develop a

multi-component perfect reconstruction AM-FM image transform in Section 5.3.

The modified steerable pyramid is a true multi-scale multi-orientation decomposi-

tion.

5.2.4 The Modified Steerable Pyramid

As mentioned in Section 5.2.3, the original steerable pyramid (OSP) retains one

highpass component. Depending on the input image, the highpass component

may have pixels that exhibit multiple orientations. The single component AM-FM

model is insufficient to represent such component. Therefore, I further decom-

posed this component into M oriented components. The decomposition scheme

for the highpass component is illustrated Fig. 5.5. Compared to the original de-

composition in Fig. 5.3, the highpass component of the modified steerable pyramid

(MSP) has an additional element denoted with dotted lines. The output of the
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Figure 5.5: Highpass decomposition scheme of the MSP.

analysis highpass filter is filtered with M oriented filters Gk resulting M oriented

components.

Let f̂(ω)H0(−ω) be the output of the highpass filter H0(−ω). Each ori-

ented component ŝk(ω) is computed as

ŝk(ω) = f̂(ω)H0(−ω)Gk(−ω), (5.14)

where k ∈ [0,M−1]. I show in Appendix A that the M component decomposition

with filtersGk, 0 ≤ k ≤M−1 is invertible. In other words, the highpass component

f̂(ω)H0(−ω) can be reconstructed from the M oriented components without error,

i.e.,

f̂(ω)H0(−ω) =
M−1∑
k=0

f̂(ω)H0(−ω)Gk(−ω)Gk(ω)

= f̂(ω)H0(−ω)
M−1∑
k=0

Gk(−ω)Gk(ω)

= f̂(ω)H0(−ω)
M−1∑
k=0

|Gk(ω)|2︸ ︷︷ ︸
1

= f̂(ω)H0(−ω). (5.15)

The residual lowpass component, which is obtained with the lowpass filter

L1(−ω) and the downsampling by a factor of two in Fig. 5.3, can also form M
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oriented components. Such additional decomposition is necessary if the residual

lowpass component contains significant image structures that a single component

AM-FM model can not fully capture. To generate M oriented components from

the lowpass residual, I applied the same decomposition scheme as for the highpass

component to the lowpass residual component. I illustrate the orientation de-

composition of the highpass component and of the lowpass component in Fig. 5.6

and 5.7. The frequency response of the original lowpass component is shown in

Fig. 5.6(a), while its decomposition into eight oriented sub-channels are illustrated

in Fig. 5.6(b)-(i). The frequency response of the original highpass channel is shown

in Fig. 5.7(a) which is then decomposed into eight oriented sub-channels. These

oriented sub-channels are depicted in Fig. 5.7(b)-(i).

With these two modifications, I depict the MSP decomposition scheme in

Fig. 5.8. Compared to the OSP in Fig. 5.3, the MSP in Fig. 5.8 has two extra signal

processing boxes indicated by dotted lines. In each of these boxes, I performed an

additional decomposition step to obtain M oriented components. Together, the

MSP has 2M − 2 more filter channels than the OSP.

After decomposing the highpass channel and lowpass channel of the OSP

into 2M orientation selective sub-channels, one can choose to compute the AM-

FM representation either after the analysis step or after the synthesis step. Both

approaches yield perfect reconstruction AM-FM representations of the original

image. Specifically, one can compute the AM-FM representation from responses

of analysis filters Gk(−ω) and Bk(−ω) and then use the synthesis filters Gk(ω)

and Bk(ω) to reconstruct the original image. Alternatively, one can compute the

AM-FM representation from the image components fk(x) individually by setting

all but one input of the synthesis filterbank in Fig. 5.8 to zero. This produces
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Decomposition of the lowpass channel into eight orientation selective
sub-channels. (a) Original lowpass channel. (b) 1st component. (c) 2nd component.
(d) 3rd component. (e) 4th component. (f) 5th component. (g) 6th component. (h)
7th component. (i) 8th component.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Decomposition of the highpass into eight orientation selective sub-
channels. (a) Original highpass channel. (b) 1st component. (c) 2nd component.
(d) 3rd component. (e) 4th component. (f) 5th component. (g) 6th component. (h)
7th component. (i) 8th component.
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Figure 5.8: Decomposition scheme of the MSP.

the individual component component shown in Fig. 5.9, which may be added to

obtain the reconstructed image. Here, I show that both approaches produce the

same reconstructed image. Let f̃0,0 be the reconstructed image obtained from the

MSP in Fig. Fig. 5.8 by setting all but the top input to the synthesis filterbank

on the right half of the figure equal to zero. Let f0,0 be the top output of the MSP

in Fig. 5.9. I show this equality in the frequency domain as

̂̃f0,0(ω) = f̂(ω)H0(−ω)G0(−ω)G0(ω)H0(ω)

= f̂(ω)|H0(ω)|2|G0(ω)|2

= f̂0,0(ω). (5.16)

Similar calculation shows that zeroing out all but the kth input to the synthesis

filterbank in Fig. 5.8 produces exactly the kth output of the MSP in Fig. 5.9.

I prefer to perform the image decomposition according to the latter ap-
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proach, i.e., performing AM-FM modeling on the image components after the

synthesis filters. This approach saves computational resources because the analy-

sis and synthesis filters of the steerable pyramid can be implemented together in

one filtering process as shown in Fig. 5.9. More importantly, if signal processing

Figure 5.9: Alternative interpretation of the decomposition scheme of the MSP.

is to be performed on the AM and FM functions, this implies that they will be

the modulating functions of the fully reconstructed image component, which re-

late well to human visual perception, as opposed to those of the unreconstructed

image components occurring in the center of Fig. 5.8 which is less intuitive and

significantly more difficult to interpret.

Let N be the number of decomposition levels (scales) and let M be the

number of orientations in a level. The MSP decomposes an input image into (N +
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1)M subcomponents. I show the frequency spectrum of the OSP and the MSP in

Fig. 5.10, where the number of scales is N = 5 and the number of orientations M =

8. These numbers are chosen to be comparable with the widely used biologically

motivated 43-channel Gabor filterbank in [49]. The range of intensities in these

two spectral plots varies from zero to one where one is represented with white and

zero is represented with black. In actuality, the frequency responses of adjacent

channels overlap to some degree. For clarity, only magnitude of the channel with

maximum response is shown at each point on the frequency plane in Fig. 5.10.

The difference between between the original filterbanks and the modified

filterbank is obvious in the inner most and outer most rings of the filters in the

figure. The inner most and outer most rings of the original filterbank in Fig. 5.10(a)

are each decomposed into M orientation selective channels in the modified steerable

pyramid of Fig. 5.10(b).

(a) (b)

Figure 5.10: Steerable Pyramid filterbanks. (a) OSP filterbank. (b) MSP filter-
bank.
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5.3 The Multi-component PR AM-FM Transform

Before describing the multi-component AM-FM transform, I review the demodu-

lation process by which the AM and FM functions are computed. I first construct

the imaginary image q(n) from the real input image using the partial Hilbert trans-

form (pHT) described in Section 3.2.1. From these two signals, the complex image

z(n) = f(n) + jq(n) is created, where q(n) = Hθ[f(n)] and Hθ is the pHT acting

in the direction θ. The AM and FM functions may then be computed as [49]

a(n) = |z(n)|, (5.17)

∇ϕ(n) = Im

[
∇z(n)

z(n)

]
. (5.18)

5.3.1 The Rotated Hilbert Transform

Because the pHT requires the direction of action to be specified, the output of the

pHT is directional dependent; different angles θ can result in different imaginary

image q(n). Consequently, the computed AM and FM functions also depend on

θ. The singularity in the pHT kernel can induce strong artifacts in the computed

AM and FM functions along a line perpendicular to θ in the image. These are

most often manifested as amplitude rippling artifacts and potentially as significant

distortions of the FM. One of the important contributions of this dissertation is

that I devised a novel scheme for rotating the pHT axis away from the significant

spectral support of the image on a component by component basis in a multi-

component AM-FM representation. Since the channels of the modified steerable

pyramid used to isolate the image components fk(x) (or fk(n) in the discrete case)

in (5.1) are highly orientation selective, an effective approach is to rotate the di-

rection of action of the pHT, which used to compute the complex extension of each
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image component, as far as possible away from the significant spectral content of

the component. This can be achieved by setting θ in the pHT Hθ orthogonal to

the orientation of the center frequency vector of the steerable pyramid channel

filter. This can be done on a component by component (e.g., channel by chan-

nel) basis to ensure that the arisen artifacts has little or no energy. Therefore,

this new approach drastically reduces impact of the amplitude rippling artifacts

and FM orientation distortions relative to a näıve approach of applying a fixed

pHT (e.g., H0) to all the channels in the steerable pyramid. This rotation results

in substantially improved correspondence between the computed modulations and

human visual perception of the image structure. This improvement is an important

advance that effectively overcomes one of the main obstacles that has precluded

the development of practical perceptually motivated signal processing directly in

terms of the AM and FM functions.

I illustrate the amplitude rippling artifacts, FM distortions, and improve-

ments obtained with the rotated pHT in Fig. 5.11 and 5.12. Fig. 5.11(a) shows

the original Barbara image. The real image component f4,1 from the first oriented

filter in level four is given in Fig. 5.11(b). The computed imaginary images ob-

tained with the rotated pHT Hθ and with the standard pHT H0 are depicted in

Fig. 5.11(c) and (d). The spectral support of the complex images z(n) obtained

for f4,1 using Hθ and H0 is illustrated in Fig. 5.11(e) and (f), respectively. While

the differences between the two imaginary images may appear subtle, the arti-

facts that are induced in the corresponding AM and FM functions are different

in Fig. 5.12(c)-(f). The amplitude rippling artifacts induced by H0 are obvious,

whereas they are entirely suppressed in the AM computed with the Hθ. In addi-

tion, the direction θ of the pHT also affects the computed FM. Observe that the
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FM field computed withH0 in Fig. 5.12(f) shows needles pointing to wrong texture

orientations. Similar examples of Mandrill image appear in Fig. 5.13 and 5.14.

5.3.2 The Multi-component AM-FM transform

Equipped with the PR filterbank discussed in Section 5.2.4 and the single com-

ponent PR AM-FM model described in Sec. 4.5, I defined the lossless multi-

component AM-FM transform (xAMFM). The xAMFM consists of the analysis

(forward) transform and the synthesis (backward) transform.

Fig. 5.15 shows the block diagram of the analysis xAMFM. First, the input

image f(n) is decomposed intoK components using the modified steerable pyramid

described in Section 5.2.4. I then compute the AM function ak(n) and FM function

∇ϕk from each component fk using the perfect reconstruction FM demodulation

algorithm described in Section 4.5. Fig. 5.15 indicates that the whole demodulation

process of K components can be done in in parallel. The overall complexity of the

analysis xAMFM is O(N log(N)), where N is the larger of the horizontal and

vertical image dimensions.

The synthesis transform is shown in Fig. 5.16. I reconstruct the original

real image component fk(n) from the AM and FM functions according to the

synthesis algorithm described in Section 4.5. In particular, the phase function

ϕ(n) is reconstructed by integrating the FM functions. Finally, I obtain the original

image as the linear sum of K component according to

f(n) =
K∑
k=0

fk(n) =
K∑
k=0

ak(n) cos[ϕ(n)]. (5.19)

Since each component fk(n) is perfectly reconstructed as described in Sec-

tion 4.5, the reconstructed image from K components is identical to the original
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Barbara: imaginary image computed with rotated pHT and with H0.
(a) Original Barbara image. (b) Component f4,1. (c) q4,1 with rotated pHT. (d)
q4,1 with H0. (e) Rotated pPHT. (f) pHT with θ = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Barbara: computed AM-FM with rotated pHT and pHT with H0.
(a) Original Barbara image. (b) Component f4,1. (c) AM with rotated pHT. (d)
AM with H0. (e) FM field of rotated pHT. (f) FM field with H0
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Mandrill: imaginary image computed with rotated pHT and with H0.
(a) Original Mandrill image. (b) Component f4,1. (c) q4,1 with rotated pHT. (d)
q4,1 with H0. (e) Rotated pPHT. (f) pHT with θ = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Mandrill: computed AM-FM with rotated pHT and H0. (a) Original
Mandrill image. (b) Component f4,1. (c) AM with rotated pHT. (d) AM with H0.
(e) FM field of rotated PHT. (f) FM field with H0.
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Figure 5.16: The synthesis xAMFM.
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image. I measure error between the reconstruction error in terms of the mean

squared error (MSE) and peak signal to noise ratio (PSNR). Definitions for these

two measures are given in (4.30) and (4.31). The test images include standard

grayscale test images and some color images from the Kodak image library [37].

The reconstruction errors statistics are shown in Table 5.1.

Table 5.1: Reconstruction error of the multi-component AM-FM transform.
Dimension PSNR (dB) MSE

Lena 512x512 80.903801 4.874747× 10−04

Barbara 512x512 74.902187 1.957273× 10−03

Boat 512x512 78.522112 9.138380× 10−04

EinSlack 375x500 78.706215 8.085571× 10−04

Fingerprint 512x512 74.680474 2.213262× 10−03

Flintstones 512x512 73.169935 3.133912× 10−03

House 256x256 84.772617 1.903418× 10−04

kodim01 512x768 74.077160 2.543105× 10−03

kodim05 512x768 73.993926 2.592315× 10−03

kodim08 512x768 70.226141 6.172573× 10−03

kodim17 768x512 78.422051 9.351371× 10−04

kodim22 512x768 77.991403 1.032619× 10−03

kodim23 512x768 79.323793 7.598032× 10−04
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5.4 Summary

In this chapter, I argued that the single component AM-FM model is not sufficient

to represent most images of practical interest. A multi-component approach is

required to fully capture important image features in a way that is natural, in-

tuitive, and corresponds well to human visual perception. In addition, I claimed

that a multi-scale multi-orientation filterbank such as the steerable pyramid is a

suitable technique for decomposing an image into meaningful, locally narrowband

components for the AM-FM representation.

To integrate the original steerable pyramid into the AM-FM transform,

I modified the original design to create a true multi-scale and multi-orientation

image decomposition. The modified filterbank is similar in many respects to the

perceptually motivated Gabor filterbank, particularly with regards to its joint time-

frequency localization properties.

I overcame one of the most important problem associated with the partial

Hilbert transform (pHT). The computed AM and FM functions generally contain

artifacts if the image component has frequency content perpendicular to the pHT

filtering axis. I effectively solved this problem by rotating the filtering axis of the

pHT on a component by component basis. Finally, I defined the multi-component

AM-FM transform (xAMFM) and showed quantitatively that the xAMFM pro-

vides perfect reconstruction.

With the perfect reconstruction xAMFM, the door is open to begin devel-

opment of practical processing operations in the modulation domain.
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Chapter 6

AM-FM Image Processing

6.1 Motivation for Transform-Domain Filtering

Discrete image filters are usually designed to operate on the pixel grey levels inten-

sities, which I refer to as pixel domain processing. There is a rich and established

theory of linear shift-invariant (LSI) filters which may equivalently be implemented

in the frequency domain by multiplication of the Fourier transforms. In the pixel

domain, LSI filtering is implemented by the sliding window technique. The filter

output at a pixel location (m,n) is obtained by computing the dot product of the

filter kernel and the pixel values lying under the kernel support centering at (m,n).

The filter kernel is translated to every pixel in the image in order to compute the

full output image.

For any given signal processing task, an important question is whether filters

operating in another domain yield better performance than a direct pixel domain

implementation. The answer depends on the applications. There are applications

where transform domain approaches offer significant advantages compared to the

pixel domain. For example, higher compression rates can be obtained when the

compression takes place in the transform domain such as those associated with the

discrete cosine transform (DCT) [126] or wavelets [3]. In JPEG image compres-

sion, the image is first transformed to the DCT domain on a block by block basis

where each block is encoded in terms of its quantized and entropy coded DCT
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coefficients. In the DCT domain, high value coefficients are more important than

low value ones. Therefore, compression gain is achieved by allocating fewer bits for

small coefficients in the encoding process. In addition, the selection of a suitable

transform affects the final result. For instance, image coding in the wavelet domain

generally yields a higher compression rate than that of the DCT domain [111].

Wavelet image denoising is another application that achieves state of the

art performance. First, the noisy image is transformed from the pixel domain to

the wavelet domain, and then the wavelet coefficients are thresholded as low coef-

ficients tend to correlate with noise [30]. Advanced statistical techniques such as

wavelet coefficient modeling [99] and transform-domain collaborative filtering [27]

can improve the denoising performance.

The main advantage of transform domain approaches over pixel domain

approaches is that transform domain techniques can capture important signal fea-

tures that are not salient in the pixel domain. Bovik, Clark, and Geisler [13]

used the AM-FM model to capture nonstationary image features such as texture

orientations and texture granularity. They represented an image with a multicom-

ponent AM-FM image models (5.1) [14, 49]. Given the image f(x), a computed

AM-FM model consists of estimates of the K AM functions ak(x) which provide a

dense local characterization of the local texture contrast and the K FM functions

∇ϕk(x) which provide a dense characterization of the local texture orientation and

pattern spacing.

Such models have been used with great success in a variety of image analy-

sis applications, including texture segmentation, 3-D shape from texture, texture-

based stereopsis, fingerprint classification, content-based retrieval, and regenera-

tion of occluded and damaged textures [52], as well as for infrared target track-
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ing [51] and in the analysis of (2-D) spectrograms of human speech signals [32].

Prior to the work described in this dissertation, however, they have been con-

siderably less successful in applications requiring image synthesis in addition to

analysis (to the best of my knowledge, reconstruction from a computed AM-FM

model has been attempted previously only in [48,49, 72, 52,108,109]). The reason

is that some means must be devised for decomposing the image into a sum of com-

ponents (5.1) that are locally coherent [14, 49] and for isolating these components

from one another on a jointly localized basis in space and spatial frequency prior

to demodulation. Because of their excellent joint localization properties, banks of

Gabor or Gabor-like bandpass filters have been used almost universally for this

purpose. Unfortunately, the properties that make these filters attractive, viz., lo-

calization and smoothness of the impulse and frequency responses simultaneously,

also imply that they cannot provide perfect reconstruction [52].

While the continuous Gabor filter is optimal in the sense of attaining the

low bound on joint localization of the time-frequency uncertainty principle, it is

not invertible because it fails to admit compact frequency support. Hence, it is

not suitable for image synthesis applications. The steerable filters, despite being

suboptimal relative to the Gabor filters with respect to joint localization, offers per-

fect reconstruction while still providing excellent joint time-frequency localization.

These properties are crucial in AM-FM image synthesis applications. Therefore, I

incorporated the steerable filters in the xAMFM as described in Chapter 5.

I illustrate the AM-FM image processing framework in Fig. 6.1. The input

signal f is first decomposed into K component fk, 1 ≤ k ≤ K. Demodulation

algorithm is performed on each component fk to compute the AM function ak and

FM function ∇ϕk. Upon completion of the demodulation step, the image f has
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Figure 6.1: AMFM-based Image Filtering.

been transformed into the modulation domain, i.e., it has been represented with K

AM-FM components. I now define the AM-FM image processing block in Fig. 6.1

where the AM and FM functions are filtered with modulation domain filters, the

design of which is the main subject of this chapter. Subsequent to AM-FM filtering,

the processed image component f̃k is reconstructed from the filtered modulating

functions ãk and ∇ϕ̃k. The overall output image is computed as a linear sum of the

K reconstructed components f̃k. For clarity, let rk(n) = |∇ϕk(n)| be the frequency

magnitude of the FM vector and let ψk(n) = arg∇ϕ(n) be the orientation of the

FM vector.

I divide the discussion of AM-FM image filters into two major categories,

namely the AM-based filters and the AM-FM filters. The AM-based filters interact

primarily with the AM functions, while the AM-FM filters operate on both the

AM and FM functions. I compare the effectiveness of the AM-based and AM-FM

filters with traditional LSI filters in several illustrative image filtering tasks.
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Figure 6.2: AM-based Image Filtering.

6.2 AM-based Filters

I define the AM-based filters to be operations where the AM functions are filtered.

A block diagram of AM-based filtering for the component fk(n) is illustrated in in

Fig. 6.2. In the AM-based scheme, the FM functions are not modified. The FM

is used as an auxiliary measurement to provide texture orientations and frequency

content that may be used to determine what processing is applied to the AM

functions and at what pixels. For each component fk(n), I apply the same filter G

to the AM function ak(n). The output of this filtering process is denoted ãk(n).

The phase ϕk(n) is obtained by integrating the FM ∇ϕk(n). Notice that the

frequency and phase are not affected by the filtering process because the FM

functions were not modified. The processed component fk is then reconstructed

according to

f̃k(n) = ã(n) cos[ϕk(n)]. (6.1)

6.2.1 Orientation Selective AM Filtering

Orientation Selective Attenuation of Structure in Synthetic Image

A synthetic radial chirp image is shown in Fig. 6.3(a). By construction, the AM

is constant and the phase is quadratic along radials emanating from the center of

the image. The signal processing goal is to attenuate nonstationary structure that

is oriented at odd multiples of π/4. As a baseline for comparison, I implement an

LSI notch filter with frequency response given in Fig. 6.3(b). The nonlinear AM

124



notch filter is given by

ãk(x) =

{
16
π
δk(x)ak(x), δk(x) < π/16,

ak(x), otherwise,
(6.2)

∇ϕ̃k(x) = ∇ϕk(x), (6.3)

where δk(x) = |(|ψk(x)| − π/4)| is an amplitude scaling factor equal to the radian

angular distance between ψk(x) and ±π/4.

The output of the LSI filter is shown in Fig. 6.3(c) and exhibits undesir-

able artifacts as expected: the LSI filter attenuates Fourier components on a spa-

tially global scale, which achieves the desired result but also degrades the subtle

constructive and destructive interference between Fourier components that cre-

ates the image structure at orientations other than odd multiples of π/4. This is

demonstrated by Fig. 6.3(e), which gives the residual between the original image

in Fig. 6.3(a) and the LSI processed image in Fig. 6.3(c). On the other hand,

the AM-based filter is able to produce the desirable output which is shown in

Fig. 6.3(d). The residual image in Fig. 6.3(e) indicates that texture components at

odd multiples of π/4 are attenuated. Moreover, because the AM filter is capable

of attenuating oriented structure on a spatially local basis, it delivers a result that

is free of the undesirable artifacts seen in the LSI filter output. In contrast, the

LSI filter tends to spread the filtering effects to a broader range of orientations and

frequencies as seen in the residual image in Fig. 6.3(e).

Orientation Selective Attenuation of Structure in a Natural Image.

The natural wood grain texture image Tree given in Fig. 6.4(a) bears strong sim-

ilarity to the synthetic chirp in Fig. 6.3(a). Here, I repeat the texture attenuation

experiment on this image, but with a more aggressive notch of half-width π/8 in
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: AM-based selective orientation attenuation. (a) Original chirp image.
(b) Notch filter response. (c) LSI result. (d) AM-based result. (e) LSI residual.
(f) AM-based residual.
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order to attenuate a wider band of orientations. The result is given in Fig. 6.4(b)

where it may again be seen that the perceptually-based signal processing goal has

been achieved. The effect of this AM-based filtering is clearly visible in the left

upper and lower quadrants of the image. Interesting subtle effects are also present.

For example, careful examination of the center of the original image in Fig. 6.4(a),

just to the right of the knot of the wood grain, reveals a small “hook” that is

oriented along the main diagonal. Consistent with the processing goal, this hook

is smoothly but totally obliterated in the result image of Fig. 6.4(b).

Spatially Selective Removal of Oriented Structure from a Natural Image.

The signal processing goal is to remove the bands from Lena’s hat. The original

image is given in Fig. 6.4(a). Let X denote the interior of the black rectangle shown

superimposed on Fig. 6.4(b). AM-based filtering is applied to the components

fk(n), but only for n ∈ X . With δk(n) = |ψk(n) − π/4|, the AM-based filtering

operation is given by

ãk(n) =

{
0, δk(n) < π/8 and n ∈ X ,
ak(n), otherwise

(6.4)

and ∇ϕ̃k(n) = ∇ϕk(n). As shown in Fig. 6.4(c), the perceptually-based signal

processing goal is achieved with a smooth, natural appearance. There are a few

unwanted artifacts that result from the fact that we were quite imprecise in the

specification the spatial region X desired for processing. For example, the central

portions of the upper and lower edges of the hat brim were attenuated, as were

certain orientations in the upper portion of the feather, and a slight shadow was

induced on Lena’s forehead. Interestingly, the shadow appearing on the upper

portion of the hat is virtually unaffected. All of the unwanted artifacts could be
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avoided by specifying the region X more precisely, but doing so would require

increased effort in designing the filter.

(d) (e) (f)

Figure 6.4: AM-based texture removal. (a) Original Lena. (b) Operating window.
(c) AM-based texture removal.

6.2.2 Frequency Selective Filtering

In addition to orientation selective processing, AM-based filters can also be used

to perform spatially local amplification and attenuation based on magnitude fre-

quency. To isolate a certain frequency range, I design the AM-based bandpass

filter according to

ãk(x) =

{
ak(x), 0.2 < rk(x) < 0.35,
0, otherwise

(6.5)

∇ϕ̃k(x) = ∇ϕk(x), (6.6)

where rk(x) is given in units of cycles per pixel.

I apply the AM-based bandpass filter to the synthetic chirp image. The

filtering result is given in Fig. 6.5. The image processing task is to isolate a circular

ring from the original chirp image in Fig. 6.5(a). The frequency response of an

appropriate LSI bandpass filter is given in Fig. 6.5(b). The cutoff frequencies were

set to 0.2 and 0.35. The AM-based result is shown in Fig. 6.5(d). The AM-based
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filter is able to isolate a ring of the original chirp image. I construct an equivalent

LSI filter in the Fourier domain and depict its filtering result in Fig. 6.5(c). The

LSI filter again spreads the filtering effects to a broader range of frequencies as

seen in Fig. 6.5(c). The residuals of the LSI filter and the AM-based filters are

shown in Fig. 6.5(e) and (f).

6.2.3 Selective Contrast Enhancement

Simplistic AM-based image enhancement is illustrated in Fig. 6.6. The original

image is given in Fig. 6.6(a), while the image in Fig. 6.6(b) was obtained by

applying a low-pass linear blur and adding Gaussian white noise. As a baseline

comparison, the result of a näıve high-pass LTI filter approximating the pseudo-

inverse is shown in Fig. 6.6(c). The design concept for the AM-based enhancement

filter combines elements similar to both wavelet shrinkage and unsharp masking.

The noise power is distributed widely throughout the steerable pyramid channels

resulting in a relatively small contribution to the individual AM functions ak(n),

whereas the coherent image structure tends to be jointly localized resulting in

strong contributions to the AM functions, particularly in the vicinity of edges. I

apply a simple threshold to the amplitude modulations computed from Fig. 6.6(a)

to attenuate the noise, reconstruct, and then apply the same high-pass filter that

is used in Fig. 6.6(c) to generate a high-pass mask. This mask is added back to

the degraded image in Fig. 6.6(b) to obtain the enhanced/restored result shown in

Fig. 6.6(d). We can see that the AM-based filter is able to attenuate the noise and

enhance edges in the image. The pixel domain filter enhances the blurry image,

but it also amplifies the noise.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: AM-based bandpass filter. (a) Original chirp image. (b) AM-based
bandpass filter. (c) LSI result. (d) AM-based result. (e) LSI residual. (f) AM-
based residual.
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(a) (b)

(c) (d)

Figure 6.6: AM-based image enhancement by unsharp masking. (a) Original Lena.
(b) Linear blur plus additive noise. (c) LSI highpass result. (d) AM-based enhance-
ment result.
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6.2.4 AM-based Image Fusion

Elementary examples of AM-based image fusion based on local contrast are given

Fig. 6.7. The main idea is that sharp intensity edges imply high contrast and

are associated with local AM values ak(x) that are relatively large, whereas defo-

cused surfaces are associated with lower contrast and AM values that are relatively

smaller than those in sharply focused or edge-rich regions. Thus, for a problem like

the well-known pair of clock images shown in Fig. 6.7(a) and (b), a fused image

showing both clocks in focus can be obtained as follows. I first compute a multi-

component AM-FM model for each of the two input images shown in Fig. 6.7(a)

and (b). For each pixel f̃k(x) of AM-FM image component k in the fused image,

we take ãk(x) and ∇ϕ̃k(x) directly from the input image for which the product

ak(x)[rk(x)]2 is larger on a pixel-by-pixel basis. The fused image result is given

in Fig. 6.7(c). An identical AM-based algorithm was used to obtain the result

shown in Fig. 6.7(f) by fusing the CT image of Fig. 6.7(d) and the MR image of

Fig. 6.7(e) (CT and MR images courtesy of imagefusion.org [58]).

Quantitative evaluations of the AM-based image fusion technique using

three objective assessment metrics are shown in Tab. 6.1, Tab. 6.2, and Tab. 6.3.

Here, I compare the performances of the AM-based image fusion against the well-

known multi-scale image fusion techniques such as the Laplacian pyramid (LP)

fusion and the wavelet fusion [69]. Best results are emphasized with bold-face num-

bers. Simulation results indicate that the AM-based image fusion technique gen-

erally does not perform as well as the Laplacian fusion technique and the wavelet

fusion technique. The AM-based fusion only performs better than the other two

techniques in a three cases. However, the current AM-based fusion scheme is pixel-

wise and it does not exploit orientation information, which is an important feature
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: AM-based image fusion. (a) Clock A. (b) Clock B. (c) Fusion of (a)
and (b). (d) CT image. (e) MR image. (f) Fusion of (d) and (e).
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of the AM-FM image representation. My future work will be in the direction of

incorporating orientation information into fusion algorithms.

Table 6.1: Objective performance of image fusion techniques measured by the
mutual information metric [101].

Wavelet LP AM-based

clock 0.577370 0.630707 0.610730
tiffany 0.669841 0.64423 0.671626
lena 0.747307 0.72831 0.704051
medical 0.413435 0.365575 0.305687
navigation 0.242832 0.25451 0.239581

Table 6.2: Objective performance of image fusion techniques using the objective
pixel-level image fusion metric [128].

Wavelet LP AM-based

clock 0.731238 0.754339 0.742081
tiffany 0.735087 0.739462 0.738636
lena 0.741060 0.739007 0.728825
medical 0.692751 0.789651 0.716454
navigation 0.613523 0.697676 0.640881

Table 6.3: Objective performance of image fusion techniques measured by the
SSIM metric [127].

Wavelet LP AM-based

clock 0.490198 0.509316 0.502113
tiffany 0.531843 0.535119 0.534410
lena 0.548370 0.549710 0.544959
medical 0.301499 0.279124 0.261661
navigation 0.198293 0.295320 0.417149

6.3 AM-FM Image Filtering

The AM-FM filters perform signal processing by operating on the computed AM

a(n) and FM functions ∇ϕ(n). A schematic diagram for the FM-based filtering
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is illustrated in Fig. 6.8. In this filtering scheme, the FM function ∇ϕk(n) is

modified by the filter G, producing ∇ϕ̃k(n). The modified phase image, ϕ̃k(n),

is reconstructed from the filtered FM using the least square integration approach

discussed in Chapter 4. The AM may also be changed in general. The output

image is then obtained as

f̃k(n) = ãk(n) cos[ϕ̃k(n)]. (6.7)

DEMOD RECON

Figure 6.8: FM-based Image Filtering.

Let φk(n) be the reconstructed least-squares phase function. In Sec. 4.4.4,

the least-squares phase φk(n) can be different from the true ϕ(n). The reason is

that φk(n) is obtained from a least-squares optimization approach. In other words,

φk(n) is generally inconsistent with the principle phase values arccos[fk(n)/ak(n)]

obtained from the original image components at some pixels. Sivley and Havlicek [109]

defined the function ρk(n) according to

ϕk(n) = φk(n) + ρk(n), (6.8)

where the phase congruence term ρk(n) is chosen to enforce agreement between

the principle values of φk(n) and the principle values of ϕk(n).

The phase model (6.8) is generally satisfactory for performing image synthe-

sis on the discrete lattice Z2 – even after AM-based image filtering or elementary

FM-based processing have been applied. However, the phase congruence term
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ρk(n) generally fails to be smooth and, consequently, the presence of ρk(n) in (6.8)

tends to introduce undesirable artifacts in the reconstructed image when sophisti-

cated FM filtering or geometric transformations requiring interpolation to a new

spatial sampling lattice are applied. These artifacts arise because the integrated

phase ϕk(n) contains jumps that are introduced to the phase by the phase con-

gruence term ρk(n). These discontinuities subsequently generate artifacts in the

filtered output [88].

I ameliorate the phase congruence problem by removing ρk(n) out of each

term in (6.8) to define new generalized AM functions A1k(n) and A2k(n) through

fk(n) = ak(n) cos[ϕk(n)] = ak(n) cos[φk(n) + ρk(n)]

= ak(n) cos[φk(n)]︸ ︷︷ ︸
A1k(n)

cos[ψk(n)]− ak(n) sin[ρk(n)]︸ ︷︷ ︸
A2k(n)

sin[φk(n)]

≡ A1k(n) cos[φk(n)] + A2k(n) sin[φk(n)]. (6.9)

In order to define modulation domain signal processing operations capable of de-

livering filtered images that are free from undesirable phase reconstruction arti-

facts, AM-only processing should be applied to the (non-generalized) amplitude

modulation functions ak(n). However, for joint AM-FM filtering, the generalized

AM functions A1,k(n) and A2,k(n) should be processed. FM processing should be

applied only to the generalized FM functions ∇φk(n) and not to ∇ϕk(n). Sub-

sequent to such processing, the generalized AM and FM functions can be inter-

polated to synthesize image samples on a modified sampling lattice as required to

implement geometric image transformations. I collaborated with Adrian Campell,

Johnathan Williams, and Murad Özaydin in developing this AM-FM filtering tech-

nique [88, 92]. This AM-FM filtering is a a new and largely unexplored area. For
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the remainder of this chapter I will restrict my attention to only on class of AM-FM

filters which I have investigated, the AM-FM geometric image transformations.

6.3.1 Translation

The discrete image f(n) is modeled as f(n) =
∑N

k=1 ak(n) cos[ϕk(n)]. The filtered

image translated by the displacement vector u = (u0, v0) is given by

f(n− u) =
N∑
k=1

ak(n− u) cos[ϕk(n− u)], (6.10)

where u ∈ R2. Therefore, the modulation domain translation operation can be

achieved by translating ak(n) and ϕk(n) by u, which generally yields samples that

fail to lie on the discrete sampling lattice of the original image f(n). Consequently,

I apply bicubic interpolation to the resulting generalized AM and FM functions to

synthesize new image samples on the translated sampling lattice.

An illustration of the image shifting is shown in Fig. 6.9. The original

image Barbara is shown in Fig. 6.9(a). The image processing goal is to shift the

original image by u = (14.01, 27.01) where (0, 0) is the top left of the image.

Fig. 6.9(b) is result of the shift operation in the pixel domain. The AM-FM result

is given in Fig. 6.9(c). It is very difficult to spot any differences between the two

approaches visually. Similar experiments are given for the fingerprint image in

Fig. 6.9(d) with u = (34.70, 50.30). The outputs of the pixel domain approach

and the AM-FM approach are shown in Fig. 6.9(e) and (f). The boat example has

u = (24.50, 37.70).

6.3.2 Scaling

Here, scaling refers to magnification or “zoom”. The modulation domain scaling

operation is designed to admit positive real scaling factors. For example, if the
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(a) (b) (c)

(d) (e) (f)

(g) (e) (f)

Figure 6.9: AM-FM image shift. (a) Original Barbara image. (b) Spatial shift. (c)
AM-FM shift. (d) Original fingerprint image. (e) Spatial shift. (f) AM-FM shift.
(g) Original boat image. (h) Spatial shift. (i) AM-FM shift.
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image is enlarged by a factor of two, the magnitudes of the FM frequency vectors in

the enlarged image must be decreased by two. Consequently, to produce consistent

modulation domain image scaling operations, I design an AM-FM filtering scheme

to accommodate changes of the FM function φk(n). The modulation domain scal-

ing operation is depicted in Fig. 6.10. The AM signals Aik(n) are first up/down

sample by a predefined positive real factor L and then are interpolated by either

bilinear or bicubic interpolants. The FM signal ∇φk(n) is also up/down sampled

by the predefined factor L. This modified gradient signal is then compensated

by 1/L in order to preserve the texture structure spacing and orientations. The

modified gradient is then integrated to find the modified phase function φ̃k(n). As

the processed gradient field ∇φ̃k(n) may not be conservative, the modified phase is

computed by performing the least square phase unwrapping method proposed by

Ghiglia and Romero [42]. The scaled output signal is then given as a summation

of the filtered components f̃k(n).

Interp

Interp

x

up/down L

up/down L x

Interpup/down L

x

+

Interp

Interp

x

Interp

x

+

Figure 6.10: FM-based Image Scaling.

An illustration of AM-FM image magnification by a factor of two is shown

in Fig. 6.11. The original image Barbara, Lena, and boat are shown in the first

column in Fig. 6.11(a),(d),(g). The second column shows the spatial domain image
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magnification using the standard bicubic interpolation technique. The last column

depicts the AM-FM image magnification results.

While it is difficult to see the difference between the spatial domain tech-

nique and the proposed technique visually, a quantitative evaluation of these two

approaches is given in Table. 6.4. The bicubic interpolation is a classical image

magnification method [62]. I restrict the comparison to the upsampling operation

because of the lack of ground truth data for the rotation and translation opera-

tions. I measure the performance of the two techniques in terms of the peak signal

to noise ratio measure (PSNR) (4.31) and the perceptually motivated structural

similarity index (SSIM) index [127]. For the upsampling operation, the proposed

algorithm outperforms the classical bicubic interpolation in the PSNR and in the

SSIM.

Table 6.4: Comparison of the upsampling operation.
PSNR (dB) SSIM

Bicubic AM-FM Bicubic AM-FM

Boat 33.488 33.697 0.765 0.799
Barbara 32.091 32.179 0.716 0.728
Lena 35.018 35.214 0.852 0.862
Fingerprint 30.362 30.488 0.864 0.869

6.3.3 Image Rotation

A classical image rotation involves a rotation of the image grid and an interpolation

scheme. In the modulation domain, a rotation on the image grid will also rotate

the orientation of the FM function ∇φk(n). In order to preserve the visually
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: AM-FM image 2x zoom. (a) Original barbara image. (b) Spatial
zoom. (c) AM-FM zoom. (d) Original Lena image. (e) Spatial zoom. (f) AM-FM
zoom. (g) Original boat image. (h) Spatial zoom. (i) AM-FM zoom.
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Figure 6.12: FM-based Image Rotation.

important texture structure and orientation, I implement the orientation change

of the gradient field by multiplying with a rotation matrix Oα.

The modulation domain image rotation operation is depicted in Fig. 6.12.

The rotation operator Rα is first applied to the AM signals Aik(n). The rotated

AM signals are then interpolated to find values lying on the pixel lattice. The

rotation operator Rα is also applied to the gradient field ∇φk(n) and then multi-

plied with the rotation matrix Oα. Therefore, the rotation operation for the FM

signal ∇φk(n) is defined as RαOα∇φk(n). Similar to Section 6.3.2, the modified

FM function ∇φ̃k is then integrated to find the modified phase φ̃k by solving for

the least square solution of the phase unwrapping problem. Finally, the rotated

output image is computed as a linear sum of the rotated components f̃k(n).

In addition, for the rotation of the FM field, I showed that the counter

rotation operator Oα commutes with the lattice rotation operator Rα:

Theorem: RαOα∇φk(n) = OαRα∇φk(n).
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Proof.

RαOα∇φ(n) =

[
RαOαU(n)
RαOαV (n)

]
= Rα

[
cos(α)U(n) + sin(α)V (n)
− sin(α)U(n) + cos(α)V (n)

]

=

 Rα

(
cos(α)U(n) + sin(α)V (n)

)
Rα

(
− sin(α)U(n) + cos(α)V (n)

) 
=

[
cos(α)RαU(n) + sin(α)RαV (n)
− sin(α)RαV (n) + sin(α)RαV (n)

]
=

[
cos(α) sin(α)
− sin(α) cos(α)

] [
RαU(n)
RαV (n)

]
= OαRα∇φ(n)

I illustrate the AM-FM image rotation in Fig. 6.13. Test images are Barbara

in Fig. 6.13(a), boat in Fig. 6.13(d), and Lena in Fig. 6.13(g). The original Lena is

rotated clockwise 27◦. The pixel domain rotation of Lena is shown in Fig. 6.13(b)

and the AM-FM rotation result is depicted in Fig. 6.13(c). Visually, the two results

look the same. Similar to the scaling, quantitative evaluation is not given because

the ground truth values are not available. Rotation results of the boat image and

the Lena image are shown in Fig. 6.13(e),(f) and Fig. 6.13(h),(i), respectively.

6.4 Summary

For the first time, I introduced a systematic, high fidelity practical framework

for AM-FM image processing. The AM-FM filters offer intuitive designs with

fewer parameters and specifications compared to the traditional LSI filters. I

provided two classes of AM-FM image filters, the AM-based and AM-FM filters.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.13: AM-FM image rotation. (a) Original Barbara. (b) Spatial domain
rotation 27◦. (c) AM-FM rotation 27◦. (d) Original boat. (e) Spatial domain
rotation 45◦. (f) AM-FM rotation 45◦. (d) Original Lena. (e) Spatial domain
rotation 65◦. (f) AM-FM rotation 65◦.
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I designed AM-based filters for selective orientation filtering, selective frequency

filtering, image enhancement, and image fusion. In addition, I designed the AM-

FM geometric image transformation including translation, rotation, and scaling.

The experimental results indicate that the AM-based can achieve filtering results

that are difficult or impossible to achieve with LSI filters, while the AM-FM image

transformations deliver result with fidelity comparable to the pixel domain. For

the image magnification operation, the AM-FM filter outperforms the LSI filter.

The proposed AM-FM filters are important as they establish the foundation

for future research in high fidelity FM image processing research. The design of

filters in the AM-FM framework is intuitive and requires fewer parameters than

traditional filter design methods. In addition, the framework produces results that

correspond well with human visual perception.
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Chapter 7

Extended Results of the xAMFM

In this chapter, I described three extensions of the xAMFM for image analysis

applications. These extensions are discussed in a separate chapter because they

do not fit in the modulation domain image filtering framework. They are analy-

sis applications and do not require the AM-FM synthesis transform. Therefore, I

discussed each work separately. In particular, I first motivate the problem, then

discuss the use of the xAMFM for that problem, and finally evaluate the effec-

tiveness of the proposed approach with experiments. Readers will see equations in

previous chapters.

7.1 Coherent Texture Decomposition

Decomposing a complicated signal into perceptually meaningful components is

an important problem that has received increasing attention recently [74, 125, 4,

113]. Well-known examples include the cocktail party speech separation problem

and image restoration from multiple sub-image sources. Here, I am interested in

the image decomposition problem where a texture image is broken into multiple

visually meaningful components, e.g., simple and locally coherent constituents.

Unfortunately, such decomposition is an ill-posed inverse problem [4,113]. Starck,

et al. [113] illustrated that a K component image of N pixels will require N ×K

unknowns to be solved. Therefore, prior knowledge of the signal components should
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be incorporated, e.g., signal statistics, image models, and sparsity.

Early approaches used multiresolution techniques to describe the image as

a sum of localized parts. Daugman [28] proposed a human visual system (HVS)

inspired Gabor filterbank to decompose an image into smooth and localized compo-

nents. The computed components are band-pass and orientation selective. Alter-

natively, Simoncelli and Freeman [38] introduced the steerable pyramid for image

analysis. The steerable pyramid decomposes an image into multiple scales and mul-

tiple orientations. In the past two decades, wavelets have been used extensively in

denoising and compression applications. Wavelets offer good time-frequency local-

ization and a compact representation [73]. While these techniques are essential in

many image processing applications, they lack specific models for coherent texture

components. Consequently, the decomposed components obtained by these anal-

ysis techniques frequently fail to correspond well with human visual perception of

the image.

Recently, Meyer [84] pioneered a nonlinear partial differential equation

(PDE) approach to image decomposition. In this formulation, an image is broken

into a sum of two parts: a cartoon part and a texture part. The cartoon describes

a homogeneous region with sharp boundaries, and is modeled by a bounded vari-

ational function. The texture part is modeled by certain energy norms. Both

of these components are computed simultaneously by a total variation minimiza-

tion framework [125, 4]. Similar to Meyer’s cartoon and texture decomposition

idea, Starck, et al. [113] formulated an image decomposition using a combination

of basis pursuit denoising and total-variation regularization. They used two op-

timized and sparse dictionaries, one for the cartoon and one for the texture, to

extract image components. Even though the two component image decomposition
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model delivers meaningful results, this approach does not generate locally coherent

components.

In contrast to the two component image model approach, cartoon and tex-

ture, This dissertation has developed techniques to decompose images into sums

of multiple locally narrow-band components. Each component is represented with

smoothly varying amplitude modulation (AM) and frequency modulation (FM)

functions, thereby explicitly computing AM-FM image models in the modulation

domain. A Kalman filtering framework was developed in [48] to track texture

multi-components spatially across the channels of a Gabor filterbank and extract

them. While this approach did not prove sufficiently robust to enable reliable

analysis of general images, it should be noted that extended Kalman filtering

was applied successfully in [72] to track multicomponent amplitude and frequency

modulations temporally in human speech. The spatially adaptive Kalman filters

of [48] were replaced by a static global decomposition into components based on

the filterbank structure in [49], which led to a robust and readily computable mul-

ticomponent image model. However, such decomposition precluded the possibility

of perfect reconstruction and produced components that were less strongly con-

nected to human visual perception. Evangelopoulos and Maragos [31] also used

the modulation domain model for image decomposition, but their approach was

limited to the two component decomposition model, cartoon and texture.

In this section, I propose a novel iterative algorithm for decomposing a

texture image into homogeneous textural patches that are locally coherent and

visually meaningful. I introduce a new quantitative modulation domain coherency

measure. The components are iteratively extracted by a greedy algorithm that is

similar to matching pursuit [74]. The experimental results show that the extracted
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components are locally coherent and agree well with human perception.

7.1.1 Modulation Domain Texture Decomposition

Let f(x) be an image defined on R2. The modulation domain image model for

f(x) is given by

f(x) =
K∑
k=1

fk(x) =
K∑
k=1

a(x) cos[ϕ(x)]. (7.1)

Let m,n ∈ N and let I(m,n) contain the samples of the continuous image f(x)

in (7.1). Let Ik(m,n) contain the samples of component tk(x) in (7.1). Then

Ik(m,n) admits a modulation domain representation Γk = [Ak(m,n) Rk(m,n) θk(m,n)]

which may be computed using the spline-based demodulation framework given

in [109] or in Chapter. 4. Rk(m,n) and arg∇ϕk(m,n) are the polar representa-

tion of the FM function, and they are computed as Rk(m,n) = |∇ϕk(m,n)| and

θk(m,n) = arg∇ϕk(m,n). The overall K component image I(m,n) is described in

the modulation domain by the multicomponent representation Γ = [Γ1 Γ2 . . . Γk]
T

obtained by concatenating the representations of the individual components. The

vector Γ is then used as a dictionary for matching orientations as the dominant

texture components are extracted.

Let Ak, Rk, and θk be the be the AM, FM magnitude, and FM orienta-

tion functions computed for component Ik(m,n). I computed AM-weighted FM

functions

Θ(m,n) =
K∑
k=1

Ak(m,n)θk(m,n), (7.2)

where Θ(m,n) is the dominant orientation. I illustrate the dominant orientation

estimation process in Fig. 7.1. The dominant FM field of the woven brass image

is shown in Fig. 7.1(b). From this dominant FM field, a dominant orientation
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is estimated as in Fig. 7.1(c). The second dominant orientation is depicted in

Fig. 7.1(d).

(a) (b)

(c) (d)

Figure 7.1: Dominant orientation estimation of the woven brass image. (a) Wo-
ven brass image. (b) Dominant FM field. (c) 1st dominant orientation. (d) 2nd

dominant orientation.

The dominant orientation (7.2) is matched against the overcomplete dictio-

nary Γ to assign a weight to the AM and FM functions in each Γk on a pixel-by-pixel
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basis. The dominant texture component is then defined by the linear combination

Cd(m,n) =
K∑
k=1

αk(m,n)Ak(m,n) cos[ϕk(m,n)], (7.3)

where the coherency measure αk(m,n) is defined by

αk(m,n) =


1, δk(m,n) ≤ π

12
,

1− { 3
π
[δk(m,n)− π

12
]}2, π

12
< δk(m,n) ≤ π

6
,

0, otherwise
(7.4)

and δk(m,n) = |θk(m,n)−Θ(m,n)|. Intuitively, the coherency measure αk works

in local spatial neighborhoods to group together and blend components Ik(m,n)

having FM orientations that are close to the dominant orientation (7.2) at each

pixel. The blended sum (7.3) then constitutes a coherent, textural component

that is extracted from the image and the process is repeated iteratively until all

coherent dominant orientations have been extracted from the image. The thresh-

old bandwidth π/6 in (7.4) was chosen for agreement with the eight orientations

present per level in the adapted steerable pyramid.

Algorithm 3 AM-FM Texture Decomposition Algorithm

L← original image I(m,n)
domOrien ← ∅
while 1 = 1 do

1. Compute feature vector Γ for image L
using demodulation algorithm in Chapter. 4

2. Estimate the dominant orientation Θ(m,n) using (7.2).
if (Θ ∈ domOrien) break;

3. Extract texture component Cd using (7.3) and (7.4).
4. L← L− Cd
5. domOrien ← [domOrien Θ]

end while

The pseudo code for AM-FM texture decomposition is given in Algorithm 7.1.1.

The proposed algorithm can be interpreted as a frequency-based feature extrac-

tion technique. It is, however, different from other traditional techniques such as
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Fourier and orientation-selective Gabor filtering. Our algorithm is capable of find-

ing the dominant texture orientation of a component and extract it by matching

its orientation against an overcomplete feature dictionary. Other frequency-based

techniques rely on an energy-based analysis step to estimate texture orientations,

and subsequently require one to design filters with appropriate bandwidths and

orientations for the feature extraction process. Both of these estimation steps are

sensitive to errors if the image structures and orientations are not known a priori.

7.1.2 Results and Discussion

I evaluated the algorithm described in Algorithm 7.1.1 against a variety of Brodatz

textures. For each extracted component, we computed the modulation domain fea-

ture dictionary Γ. The dominant texture orientation Θ was estimated as in (7.2).

The extracted component Cd(m,n) was then found by matching the dominant

orientation Θ(m,n) against the dictionary Γ as described in (7.3) and (7.4). The

results are illustrated in Fig. 7.2 and Fig. 7.3. Each column depicts the decompo-

sition result of a test image. In each column, the first row contains original images.

The second and third row show the first and second dominant components and the

last row shows the residual after extraction of the first two dominant components.

Images in the second, third, and fourth rows of each column are contrast stretched

together and directly comparable in terms of gray scales.

The original burlap image is shown in Fig. 7.2(a). It can be interpreted

as a two component image with horizontal and vertical stripes. The algorithm

produces two dominant components shown in Fig. 7.2(b)-(c). These components

are locally coherent and coincide with human perception. The lack of organized

texture in the residual image in Fig. 7.2(d) demonstrates that the horizontal and
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 7.2: Examples. (a) Original burlap image. (b) First component of burlap.
(c) Second component of burlap. (d) Residual of burlap. (e) Original reptile skin
image. (f) First component of reptile skin. (g) Second component of reptile skin.
(h) Residual of reptile skin. (i) Original straw image. (j) First component of straw.
(k) Second component of straw. (l) Residual of straw.
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 7.3: Examples. (a) Original wood/paper image. (b) First component of
wood/paper. (c) Second component of wood/paper. (d) Residual of wood/paper.
(e) Original tree image. (f) First component of tree. (g) Second component of
tree. (h) Residual of tree. (i) Original cloth image. (j) First component of cloth.
(k) Second component of cloth. (l) Residual of cloth.
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vertical stripes of the original image are successfully extracted.

A more complex decomposition example of reptile skin texture is shown

in Fig. 7.2(e). The two dominant texture components are shown in Fig. 7.2(f)-

(g). The algorithm is capable of decomposing the original image into three locally

coherent image components. It is interesting to observe that these components are

not easily identified from the original image. Similar perceptually motivated results

can be seen for the straw image in Fig. 7.2(i). Straws having vertical orientations

are successfully grouped into the first coherent component in Fig. 7.2(j). The

second extracted component in Fig. 7.2(k) depicts remaining textures that are

orthogonal to the first.

Fig. 7.3(a) shows a composite image which contains a wood grain texture

on the left and a uniform grainy texture on the right. The decomposed texture

components are shown in Fig. 7.3(b)-(c). The first component in Fig. 7.3(b) is

able to capture the wood grain texture part of the original image, while the second

component in Fig. 7.3(c) extracts the remaining texture. This example suggests

that better decomposition results can be achieved if the original image is segmented

into homogeneous regions prior to applying this algorithm.

The proposed algorithm, however, is not effective for circularly symmetric

texture images like the tree image in Fig. 7.3(e). Although the extracted compo-

nents in Fig. 7.3(f) and Fig. 7.3(g) are locally coherent, they do not agree with

human perception which interprets the image with one circular component. Such

limitation can be explained by the range restriction imposed on the angular band-

width threshold of the coherency measure in (7.4). The angular bandwidth was

set to π/6, which is not wide enough to handle circular textural patterns.
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7.1.3 Summary

In this section, I proposed an iterative texture analysis algorithm capable of ex-

tracting locally coherent and meaningful components from textural images. I intro-

duced a new quantitative coherency measure in the modulation domain for image

components. The effectiveness of the proposed algorithm is demonstrated with a

variety of well-known Brodatz textures. The decomposed image components are

visually motivated and their interpretations coincide with human perception.

The proposed algorithm, however, is limited to texture images with com-

ponents having limited orientation bandwidth. The future work will be focused on

fine-tuning the coherency measure in (7.4) to accommodate circularly symmetric

textural patterns and apply the algorithm to nature images.

7.2 Cartoon + Texture Decomposition

In Section 7.1, the goal is to decompose an image into coherent components. The

coherent components must be locally smooth varying. Here, I consider the problem

of decomposing an image into a structural component and textural component.

The structural portion, which is referred to as cartoon, carries broad information

about an image and is usually piece-wise smooth curves. The texture component,

subsequently referred to as texture, describes oscillating patterns of image textures

and noise [18,113]. For example, in a striped T-shirt, the cartoon consists of lines

in the borders of the shirt and the texture are the stripes within the shirt.

A successful texture-cartoon decomposition can lead to improvements for

subsequent image processing operations such as compression, edge detection, and

image inpainting. For instance, higher overall compression gain can be obtained
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by decomposing the image into different types of signals and designing optimized

encoders to compress these type of signals separately [83]. The cartoon-texture

decomposition can eliminate extraneous edges that can partially due to noise or

unimportant objects [18, 113]. Such decomposition can retain important edges in

image denoising [102, 2] or improve inpainting results with better texture replica-

tion [7].

The texture-cartoon decomposition is, however, an ill-posed problem. As

texture and cartoon are loosely defined, image features can be considered as texture

in one scale, but they can be cartoon at another scale. For example, when we look

at a tree at a far distance, leaves can be classified as textures. However, one can

consider these leaves as cartoon at a closer viewing distance. In addition, human

judgement can also play an important role in deciding whether an object is part

of texture or not.

Most works in the texture-cartoon decomposition are in the partial differen-

tial equation (PDE) setting. The texture and cartoon are modeled to lie in different

functional spaces. The solution is found by solving a convex regularized optimiza-

tion problem [102, 84, 125, 4]. The quality of texture and cartoon decomposition

depends on signal models used to describe them and the regularization parameter.

Despite approaches to find suitable values for the regularization parameter [4,104],

the cartoon edges often bleed into the texture components.

Meyer, Averbuch, and Coifman [83] proposed an image compression scheme

where an image is decomposed into multi-layered components such as texture and

cartoon. The authors used a suitable basis for each each layer of signal in or-

der to increase compression gain. Stark, Elad, and Donoho drew ideas from [83]

and [125] to create a hybrid approach that used total variation regularization and
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basis matching. They designed two dictionaries, each of which contains basis func-

tions that are tuned for either cartoon or texture. The texture and cartoon were

subsequently extracted by projecting the image onto these basis functions.

Apart from the PDE and basis representation approaches, Buades et al. [18]

proposed a nonlinear texture-cartoon decomposition. They observed that the total

variation of texture and cartoon features behave differently before and after a

lowpass filtering. A weight assignment scheme were then used to classify texture

and cartoon features. While the algorithm produced good texture and cartoon

separation, the results depended on the bandwidth parameter of the lowpass filter.

In this section, inspired by the work of Buades et al. [18], I proposed an

automatic nonlinear texture-cartoon decomposition algorithm. In particular, I

measured the ratio of gradient magnitude across modulation domain components

and used this ratio to determine the component where the change between cartoon

and texture of a pixel is most likely to occur. Once the component is determined,

we used a hard threshold strategy to classify texture and cartoon pixels to obtain a

weight matrix. The texture component is then obtained by multiplying the original

image with the weight matrix. The cartoon is the difference between the original

image and the texture component.

7.2.1 Background

Let f : R2 → R be a continuous image. Let u : R2 → R be the cartoon component.

Let v : R2 → R be the texture component. The cartoon-texture decomposition

aims to extract u and v as

f = u+ v. (7.5)
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Total variation regularization approaches

Most of the texture-cartoon decomposition approaches are formulated in the partial

differential equation setting, we will give a short description of the underlying

models. Readers can refer to [102,125,4] for deeper analysis.

Rudin, Osher, and Fatemi [102] solved (7.5) in the context of a denoising

problem. They assumed that the cartoon u belongs to a class of bounded variation

(BV) functions and the texture v is a finite energy function. Both u and v are

solved simultaneously in the convex minimization setup

arg min
u∈BV,v∈L2

(∫
|Du|+ λ||v||2L2

)
, (7.6)

where λ is a positive tuning parameter and the integral of Du measures the total

variation of signal u. The computed texture v, however, contains cartoon edges.

Aliney [2] proposed an L1 model for the texture component v in (7.6) to capture

the salt and pepper noise property of corrupted signals. Meyer [84] provided an

alternative model for the texture component in (7.6). Instead of being L1 or L2,

v belongs to functions in a Banach space featured by a G-norm model which

allows features to have high oscillation but can still retain low energy norm. Many

successful texture-cartoon decomposition algorithms have been derived from the

Meyer formulation, e.g., [125,4].

The Linearized Meyer Model

Buades et al. [18] observed that a linearized version of the original Meyer model

is indeed the classical highpass-lowpass filtering problem. Let Kσ be a lowpass

filter; the texture-cartoon decomposition problem can be viewed as a problem of
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designing a suitable lowpass filter Kσ to capture u and v as

u = Kσ ∗ f

v = f −Kσ ∗ f, (7.7)

where σ is the scale parameter that determines the filter bandwidth and ∗ denotes

the convolution operator.

Intuitively, the bandwidth parameter σ controls the amount of high fre-

quency features that will be retained. Therefore, this model can not separate the

texture and cartoon features when their frequencies are overlapped.

Nonlinear texture-cartoon classification

Buades et al. [18] observed that the local total variation (TV) of texture features

and cartoon features behave differently when filtered by a lowpass filter Kσ. The

ratio of local TV before and after the lowpass filter Kσ is applied tends to be lower

in the texture region than that in the cartoon region. Based on this observation,

the authors used a nonlinear mapping similar to soft-thresholding to classify pixels

into the two categories.

Even though the decomposition algorithm does not compute solutions that

converge to those of the TV regularization approaches [18], it produces good quality

texture-cartoon separation with a non-iterative implementation. The solutions of

this method, however, depend on the selection of the bandwidth σ of the lowpass

filter Kσ. Without a properly tuned σ, the solutions can change drastically.
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7.2.2 Texture-Cartoon Decomposition

I represented the image f as a sum of K non-stationary amplitude modulation

(AM) functions and frequency modulation (FM) functions

f =
K∑
k=1

fk =
K∑
k=1

ak cos(ϕk), (7.8)

where ak : R2 → R+ is the AM function and ϕk : R2 → R is the phase modulation

function [49]. Both ak and ϕk are assumed to be locally smooth. The FM functions

are given by the gradient of ϕk, i.e., ∇ϕk = [ϕkx ϕky]
T , where the second subscript

denotes partial differentiation. The discrete AM and FM functions are computed

using the demodulation algorithm in [108, 91]. I arranged the K AM-FM compo-

nents in ascending order based on the magnitude of the FM vector in (7.8), i.e.,

f1 carries low-frequency components and fK contains high-frequency components.

The key ingredient the cartoon-texture separation in [18] as well as in this

paper lies in the computation of image gradient. For 1D AM-FM signal represen-

tation, the derivative of component fk is obtained as

f ′k = a′k cos(ϕk)− ϕ′kak sin(ϕk). (7.9)

I performed an approximation to (7.9) to make it more robust to noise. Since the

AM function ak is locally smooth, we estimated the 1D derivative of fk in (7.9) as

f ′k ≈ −ϕ′kak sin(ϕk). (7.10)

Extended the 1D derivative in (7.10) to 2D, we computed a metric T` to quantify

the gradient magnitude of the first ` AM-FM components according to

T` ≈

√√√√(∑̀
k=1

ϕkxak sin(ϕk)

)2

+

(∑̀
k=1

ϕkyak sin(ϕk)

)2

(7.11)
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In (7.11), T1 is the approximated gradient magnitude of the lowest frequency com-

ponent while TK is the approximated gradient magnitude of the image f .

Similar to Buades et al. [18], I defined the gradient magnitude ratio at every

pixel as

D` =
TK − T`
TK

, (7.12)

where 1 ≤ ` ≤ K. At a pixel (m,n) in the image grid, D`(m,n) measures the

relative difference between the gradient magnitude of the whole image and the

gradient magnitude of the first ` components. D` is maximum when ` = 1 and

decreases monotonically towards 0 as ` increases.

I defined fβ to be the AM-FM component where the change between texture

and cartoon is likely to happen at each pixel. I first created a mask M such that

M(m,n) = α if Dα > 0.25 and M(m,n) = 0 otherwise. The index β is then

estimated according to

β = median(M). (7.13)

Finally, I applied a hard threshold strategy to create a weight matrix w

where a weight of one means texture and a weight of zero means cartoon

w =

{
1, if Tβ ≥ 0.25,

0, if Tβ < 0.25.
(7.14)

The cartoon and texture are then computed as

u = w · f,

v = f − u. (7.15)

7.2.3 Simulation Results

I tested the proposed algorithm on the Kodak image dataset and standard test

images. The results are shown in Fig. 7.4. For each test image, the texture-
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cartoon decomposition results are demonstrated by row. The original image is in

the left column, the cartoon component u is in the middle column, and the texture

component u is on the right. Fig. 7.4(b) and Fig. 7.4(c) show the cartoon and the

texture component of the image kodim08.In these figures, overall structure of the

image is retained in the cartoon, while the fine textures in the roofs and windows

are extracted into the texture. Fig. 7.4(h) and Fig. 7.4(i) depict the cartoon

and the texture component of the fingerprint image. The algorithm is able to

extract most of repeating curves in the original image and put into the texture

component. The cartoon contains mostly low-frequency residual. Fig. 7.4(k) and

Fig. 7.4(l) illustrates the cartoon and the texture component of the Babara image.

Oscillating patterns in her pant, shirt, and in the table are successfully extracted to

the texture. The edges in her hands and table are still kept in the overall structure

of the image.

7.2.4 Summary

I proposed an automatic nonlinear texture-cartoon decomposition based on the fre-

quency behavior of texture and cartoon across different scales. I measured the ratio

of gradient magnitude across modulation domain components and use this ratio to

classify the texture and cartoon pixels. The simulation results demonstrated that

the proposed algorithm is able to extract texture and cartoon components from

images efficiently. While this work followed a similar path as Buades et al. [18],

the results do not depend on the lowpass filter bandwidth which is critical to the

separation process. Currently, I set the threshold parameter in the hard thresh-

old process empirically to 0.25. I am investigating machine learning techniques to

overcome this limitation.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Texture Cartoon Decomposition Examples. (a) Original kodim08 from
Kodak. (b) Original kodim05 from Kodak. (c) Cartoon component of (a). (d)
Cartoon component of (b). (e) Texture component of (a). (f) Texture component
of (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Texture Cartoon Decomposition Examples. (a) Original fingerprint.
(b) Original Barbara. (c) Cartoon component of (a). (d) Cartoon component of
(b). (e) Texture component of (a). (f) Texture component of (b).
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7.3 Relationship with the Monogenic Signal

Fourier analysis is an important tool for analyzing and representing a stationary

signal as a sum of pure sinusoids having constant amplitudes and constant fre-

quencies. However, in practice many important signals are nonstationary in the

sense that the amplitude envelope and frequency content are time varying (or space

varying). Obvious examples include seismic survey data, radar returns, a variety

of communication signals, and many biomedical signals [9]. The AM-FM model

f(x) = a(x) cos[ϕ(x)] (7.16)

has been widely used to represent such signals, where, for the 2D case we are

concerned with in this paper, a(x) : R2 → R+ is a slowly varying non-negative

amplitude modulation (AM) function and ϕ(x) : R2 → R is the phase modulation

function. The frequency modulation (FM) function ∇ϕ(x) carries a rich local

description of the surface pattern orientation and granularity.

The AM-FM model (7.16) is ill-posed in the sense that infinitely many

pairs of a(x) and ϕ(x) exist which satisfy the equality (7.16). In his seminal 1D

paper [41], Gabor used the Hilbert transform (HT) to disambiguate the AM-FM

modeling problem by constructing a complex signal extension called the analytic

signal. In arbitrary dimensions, any given complex extension associates unique

AM and FM functions with a real signal which may be obtained directly by taking

the magnitude of the complex signal and by differentiating the argument of the

complex signal. More recently, Huang et al. developed the data adaptive Hilbert-

Huang transform (HHT) technique to iteratively compute multicomponent AM-

FM models. At each iteration, the HHT uses the empirical mode decomposition

method to extract signal components and subsequently compute AM and FM
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functions by applying the HT.

While Gabor’s analytic signal is well-defined in 1D, extension to higher di-

mensions is nontrivial. The main reason is that there is no straightforward means

of extending the Hilbert transform into multiple dimensions. Peyrin, Zhu, and

Goutte [97] defined a 2D complex signal by performing a 1D Hilbert transform

along a specified direction; such transforms are frequently referred to as partial

Hilbert transform (pHT). Havlicek, Havlicek, and Bovik proposed an adjusted mul-

tiplier [53] to enforce harmonic correspondence [124] of the multidimensional pHT

and used it to define a multidimensional analytic image [49]. Other related devel-

opments include Hahn’s single orthant complex signal [45] and the hypercomplex

signal of Bülow and Sommer [19], both of which are important but of limited

interest for our purposes here because they do not provide a complete representa-

tion of all possible signal orientations. Felsberg and Sommer [34] introduced the

multidimensional monogenic signal where the 1D HT is replaced by an nD Riesz

transform. Independently, Larkin et al. [67] used the same signal model to study

fingerprints.

While other approaches exist for computing AM-FM models without an

explicit complex extension such as the Teager-Kaiser energy operator [77] and the

quasi-local approximation [43, 87], the explicit complex extension approaches in-

cluding the pHT model and the monogenic signal have remained highly popular.

These two models have been successfully applied in many practical applications

such as motion estimation [5], target tracking [90], fingerprint modeling [67], and

texture analysis [96] just to name a few. Both compute an explicit complex exten-

sion for the real signal by adding an imaginary part that is equal to the pHT for

the partial Hilbert approach and equal to the Riesz transform for the monogenic
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signal. The main advantage of the monogenic signal lies in the isotropic kernel of

the Riesz transform, which tends to avoid undesirable rippling in the AM function;

such amplitude ripples are characteristic of the AM functions typically obtained

via the pHT. As will be described in more detail below, the main advantage of the

pHT approach is that it enables the FM functions to be obtained directly without

the need for an auxiliary orientation estimation procedure as is required with the

monogenic signal approach.

In this section, I focus on the pHT and monogenic signal approaches. I pro-

pose a new alternative algorithm for computing the monogenic signal FM functions

that avoids the need for an auxiliary orientation estimation procedure. In addi-

tion, I demonstrate that in situations where a multi-scale multi-orientation signal

decomposition is required, the pHT approach can deliver equivalent modulation

functions to those obtained with the monogenic signal while maintaining a simpler

representation. I argue that the pHT method and monogenic signal are both viable

approaches. For signals that admit orientations (e.g., spectral support) orthogonal

to the direction of action of the pHT, the pHT approach will always suffer from

undesirable amplitude rippling that is not present in the monogenic signal. How-

ever, pHT based models are always more efficient than the monogenic signal in the

sense of requiring only one imaginary component as opposed to two. For signals

that do not admit significant spectral support orthogonal to the pHT direction of

action, both approaches typically deliver equivalent but slightly different AM-FM

interpretations of the signal.
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7.3.1 A new algorithm for computing the monogenic FM

As discussed in the complex signal extension approaches in Section 3.2.1, the pHT

computes the imaginary part of the complex signal as ae(x) sin[ϕe(x)] using (3.2),

whereas the monogenic approach, without the local orientation φ(x), actually com-

putes the imaginary part as amo(x)| sin[ϕmo(x)]|. Therefore, computation of the

monogenic FM function involves estimation of the local orientation φ(x) to deduce

the correct sign of the imaginary component. For instance, Larkin, Bone, and Old-

field [67] and Unser, Sage, and Ville [123] adopted the classical tensor structure

orientation estimation [64].

I observe that the local orientation φ(x) in (3.27) is not required for the

computation of the FM functions. Taking the derivative of the model (3.1) in both

horizontal and vertical directions, we obtain a relationship between the derivatives

of the real signal f(x) and the FM function ∇ϕmo(x) = [ϕx(x) ϕy(x)]T according

to

fx(x) = ax(x) cos[ϕmo(x)]− ϕx(x)amo(x) sin[ϕmo(x)],

fy(x) = ay(x) cos(ϕmo(x))− ϕy(x)amo(x) sin[ϕmo(x)],

where ∇amo(x) = [ax(x) ay(x)]T and ∇f(x) = [fx(x) fy(x)]T . I then rearranged

these derivatives to compute the magnitude of the monogenic FM functions

|ϕx(x)| =
|ax(x) cos[ϕmo(x)]− fx(x)|
|amo(x) sin[ϕmo(x)]|

,

|ϕy(x)| =
|ay(x) cos[ϕmo(x)]− fy(x)|
|amo(x) sin[ϕmo(x)]|

, (7.17)

where the denominator is obtained from (3.27) as

|amo(x) sin[ϕmo(x)]| =
√
f 2

1 (x) + f 2
2 (x). (7.18)
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I calculated the orientation of the FM vector as

θ(x) = arctan

(
ay(x) cos[ϕmo(x)]− fy(x)

ax(x) cos[ϕmo(x)]− fx(x)

)
, (7.19)

where −π/2 ≤ θ(x) ≤ π/2. Notice that the range restriction of θ(x) is the result

of the phase ambiguity of the model (7.16) where both −ϕmo(x) and +ϕmo(x)

are valid representations because cos[ϕmo(x)] is an even function. From (7.17)

and (7.19), the FM functions are obtained according to

ϕx(x) =
√
|ϕx(x)|2 + |ϕx(x)|2 cos[θ(x)], (7.20)

ϕy(x) =
√
|ϕy(x)|2 + |ϕy(x)|2 sin[θ(x)]. (7.21)

I compare the computed FM function of the proposed method and the

computed FM of the original monogenic signal. The simulation results are given

in Fig. 7.6. The chirp image is shown in Fig. 7.6(a). The magnitude of the

FM computed from the original monogenic signal model and from the proposed

method are depicted in Fig. 7.6(c) and (d), respectively. The absolute difference

between the two magnitude FM functions is given in Fig. 7.6(b). The artifact

of the computed FM magnitude is clearly visible and dominates the image in

Fig. 7.6(c). These high magnitude values occur at locations where the computed

phase is wrapped - the phase contains jumps that are integer multiples of π. These

discontinuities do not exist in FM magnitude computed by the proposed method.

I also showed the FM field plots of the original monogenic signal in Fig. 7.6(e) and

of the proposed method in Fig. 7.6(f).

7.3.2 Relationship between Monogenic and partial Hilbert approaches

In practical applications, a multipartite signal may admit multiple orientations at

a given pixel. Therefore, it is desirable to decompose the signal into individual
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Regular FM v.s. modified FM computed using the monogenic signal.
(a) Original chirp image. (b) |(c) − (d)|. (c) Monogenic |ϕk(n)|. (d) Modified
Monogenic |ϕk(n)|. (e) Regular monogenic FM field. (f) Modified monogenic FM
field.
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components of different orientations so that the assumptions inherent in (7.16) are

valid. For instance, the monogenic model has been used with multi-scale multi-

orientation representations such as wavelets [94,123] and the steerable pyramid [54]

to analyze local signal features. Given an input signal specified by a single orien-

tation, both the pHT and the monogenic approach produce the same frequency

magnitude for the imaginary components qe(x) and qmo(x).

Assume that s(x) is the output from one channel in a multi-scale multi-

orientation realization of the steerable pyramid filterbank [38] modified as described

in [89]. In particular, let θ0 be the orientation of filter center frequency; the

spectrum of s(x) can be written in polar form as

ŝ(r, θ) = ξ̂(r, θ)[cos(θ − θ0)]2`, (7.22)

where ξ̂(r, θ) is the Fourier spectrum of the original image f(x) at a given scale

and ` denotes the number of orientations per scale.

For a real signal s(x), the Riesz transform of s(x) produces two components

s1(x) and s2(x). Similar to [67, 123], we represent these two components by a

complex signal p(x) = s1(x) + js2(x). Note that the complex signal p(x) plays

the role of the imaginary image in the context of the complex signal extension

approach. It may be shown that the Riesz transform has unity gain:

||p̂(ω)||2 = ||ŝ(ω)||2
[
ω2
x

||ω||2
+

ω2
y

||ω||2

]
= ||ŝ(ω)||2. (7.23)

To demonstrate that the pHT also has unity gain for the specific type of

signal in (7.22), let g(x) = Hθ0{s(x)}, let e = [cos(θ0) sin(θ0)]T be the unit vector
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with angle θ0, and let κ = [cos(θ) sin(θ)]T be the polar representation of the

rectangular frequency ω = [ωx ωy]
T . The pHT of g(x) can be written as

ĝ(r, θ) = −jsgn(κTe)ŝ(r, θ)

= −jsgn[cos(θ − θ0)]ŝ(r, θ). (7.24)

The frequency magnitude of g(x) is then given by

||ĝ(r, θ)||2 =

{
||ŝ(r, θ)||2, if cos(θ − θ0) 6= 0,

0, if cos(θ − θ0) = 0.
(7.25)

According to (7.22), ŝ(r, θ) vanishes when cos(θ − θ0) = 0. Hence, ||ĝ(ω)||2 =

||ŝ(ω)||2 = ||p̂(ω)||2.

While the frequency magnitude of the imaginary signals in the two ap-

proaches are the same, the computed AM functions are not necessarily equal.

Fig. 7.7 shows the AM computed by the two approaches. The original

barbara image is given in Fig. 7.7(a). A spectral depiction of the modified steerable

pyramid is given in Fig. 7.7(b). Fig. 7.7(c) shows one component of the multipartite

image obtained as a steerable pyramid filterbank channel response. The absolute

difference of the computed AM from the two approaches is given in Fig. 7.7(d),

where brighter pixels denote a greater difference.

Figs. 7.7(e) and (f) depict the computed AM functions of the monogenic

signal and the pHT approach respectively. In this example, the mean difference

between the two AM functions is 0.022037 with reference to the range of AM

functions [0, 12.3618]. While the pHT approach does not compute the exact

AM and FM functions as those obtained by the monogenic signal, it provides an

equivalent AM-FM representation.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Computed AM using the monogenic signal and pHT. (a) Original
barbara image. (b) Steerable pyramid filterbank. (c) One component of (a). (d)
|(e) - (f)|. (e) Monogenic AM. (f) pHT AM.
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7.3.3 Discussion and Conclusion

As noted in Section 3.2.1, the pHT kernel is not isotropic and does not have unity

gain. However, for the particular signal model in (7.22), the pHT kernel no longer

causes undesirable amplitude rippling because the spectrum ŝ(r, θ) vanishes at the

same places where the pHT kernel is zero. In other words, the pHT kernel can

be interpreted as being effectively isotropic for signals of type (7.22). In addition,

the pHT offers a simpler representation as the associated complex signal contains

two components whereas the monogenic signal requires three. Because the pHT

computes the imaginary image as a(x) sin[ϕ(x)] instead of |a(x) sin[ϕ(x)]| of the

monogenic signal, we can use a simpler computation method in Section 3.2.1 to

compute the FM function ∇ϕ(x) without having to estimate the local orientation

φ(x) as is required in the pure monogenic signal model.

In this section, I proposed a new algorithm to compute the FM functions

for the monogenic signal. I showed that the proposed algorithm is simpler than the

monogenic signal model as it does not require the local orientation estimation step.

In addition, I showed that in situations where a multi-scale multi-orientation signal

decomposition is required to analyze a signal, both the pHT and the monogenic

signal deliver similar AM and FM functions. However, the pHT provides simpler

computations. Therefore, I advocated for use of the pHT in multi-scale multi-

orientation AM-FM applications.
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Chapter 8

Conclusions and Future Work

In this dissertation, I developed a new the multi-component perfect reconstruc-

tion AM-FM image transform called the xAMFM. I argued that the xAMFM is

an attractive representation for image processing applications. First, I reasoned

that the xAMFM is a perceptually motivated image transform. The xAMFM is

equipped with a multi-orientation joint time-frequency localized filterbank which

was designed to mimic the operation of the human visual system. Second, the

xAMFM is able to capture nonstationary features in signals by computing the

instantaneous amplitude modulation function (AM) and instantaneous frequency

modulation function (FM). For images, the AM and FM offer intuitive interpreta-

tion of the local contrast and local texture structures. Finally, the xAMFM opens

up a new research area where image processing filters are designed and operate

in the AM-FM domain, rather than in the classical pixel domain or the Fourier

domain. I showed that the the xAMFM can produce high fidelity image filtering

results that are difficult or impossible to obtain with traditional LSI filtering in

the pixel domain or in the Fourier domain for texture and orientation filtering

applications.

In Chapter 2, I introduced the 1D AM-FM signal model as a viable represen-

tation for nonstationary signals. I discussed the limitations of the classical Fourier

representation in cases where the signals of interest are nonstationary. I reviewed
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many practical applications where importance nonstationary features of signals

can be captured by the instantaneous frequency (IF, or FM). I then discussed

three major computational techniques for obtaining the AM and FM functions for

1D signals, namely the Gabor analytic signal approach (AS), the Teager-Kaiser

energy operator approach (TKEO), and the quasi-local method (QL). I evaluated

the performance of these three methods in terms of the mean squared error be-

tween the computed AM and computed FM with respect to their corresponding

true signals. Among the IF computation approaches, the AS remains a popular

method because its implementation is straight forward and the method is more

robust to noise compared to the TKEO.

In Chapter 3, I explored extensions of the 1D AM-FM signal model into

multiple multidimensions, with emphasis on the 2D case. I first reasoned that the

phase and IF play an important role in many image processing applications, such as

image restoration, image segmentation, and optical flow estimation. We discussed

the generalization of the 1D AM-FM approaches into 2D. Finally, I evaluated their

effectiveness with respected to the mean squared error via simulations using both

synthetic and real images. The partial Hilbert transform (pHT) and the monogenic

signal produce satisfactory results with low MSE. In addition, the AM and FM

computed from these two methods offer perceptually meaningful interpretations of

the underlying image structures. The relationship between these two approaches

is discussed Chapter 7.

In Chapter 4, I introduced the single component perfect reconstruction AM-

FM image model. First, I argued that most previous AM-FM image processing

techniques were limited to analysis applications. I then discussed the importance

of phase unwrapping in the 2D analysis and reconstruction problems. The least-
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squares approach is chosen as the phase reconstruction technique for the xAMFM

because it is more resilient to noise than other discussed techniques. With perfect

reconstruction FM transform, I defined the single component perfect reconstruction

AM-FM image transform. I provided two algorithms for obtaining AM and FM

functions from a single component image and reconstructing the original image

from the AM and FM functions without errors. I verify the perfect reconstruction

property by calculating the MSE between the reconstructed and original images.

In Chapter 5, I introduced the xAMFM for general images. I showed that

the signal component AM-FM model in Chapter 4 is not sufficient to represent most

images. As a result, I used a filterbank to decompose the image into K components.

For this purpose, I modified the well-known steerable pyramid to create a full multi-

scale, multi-orientation perfect reconstruction filterbank. In addition, I discussed

the problems associated with the pHT wherein the computed AM and FM functions

can show artifacts if the image component has frequency support perpendicular to

the pHT filtering axis. I overcame this problem by rotating the axis of action of

the pHT. Finally, I developed the xAMFM for general images. I verified that the

xAMFM allows perfect reconstruction theoretically and experimentally.

In Chapter 6, I introduced the AM-FM image processing framework where

filters may be designed to operate directly on the AM and FM functions of an

image. I defined two classes of AM-FM image filters, namely the AM-based and

the FM-based filters. I showed the performance gain of the AM-based filters over

the traditional LSI filters in applications such as selective orientation attenuation,

frequency selective filtering, image enhancement, and image fusion. For the FM-

based filters, I performed geometric image transformation in the AM-FM domain. I

compared the results of the AM-FM filters and the LSI filters using the peak signal
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to noise ratio (PSNR) and the structure similarity index (SSIM). In both measures,

the AM-FM filters outperform the LSI filters in the image scaling application.

In Chapter 7, I demonstrated the use of the xAMFM transform in image

analysis applications. In addition, I showed the relationship between the pHT and

the monogenic signal.

The main original contributions of this dissertation include the following.

• I proposed a perfect reconstruction FM algorithm. I used a least-squares

approach to recover the phase signal from its gradient. In order to allow

perfect reconstruction of the phase function, I enforced an initial condition

on the reconstructed phase. The perfect reconstruction FM algorithm plays

a critical role in the overall AM-FM transform.

• I constructed a perfect reconstruction multidimensional filterbank by modi-

fying the well-known steerable pyramid. This modified filterbank ensures a

true multi-scale multi-orientation signal decomposition. Such a decomposi-

tion is required for a perceptually meaningful AM-FM image representation.

• I overcame the problems associated with the partial Hilbert transform by

rotating the direction of action of the pHT. This rotation results in artifact

free filtering results in the AM-FM domain.

• I proposed the first practical framework for designing filters and performing

signal processing directly in the modulation domain. I constructed two new

classes of practical modulation domain filters. I showed that these modu-

lation domain filters comparable traditional linear shift invariant (LSI) fil-

ters qualitatively and quantitatively in applications such as selective orienta-
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tion filtering, selective frequency filtering, and fundamental image geometric

transformations. In applications such as orientation and texture filtering and

image magnification, the AM-FM outperforms the LSI filters.

• I provided extensions of the xAMFM for image decomposition problems. I

illustrated that the AM-FM approach can successfully decompose an image

into coherent components such as texture and structure components.

• I investigated the relationship between the two prominent AM-FM computa-

tion models, namely the partial Hilbert transform approach (pHT) and the

monogenic signal. The established relationship helps unify these two AM-FM

algorithms.

This dissertation lays a theoretical foundation for future nonlinear modu-

lation domain image processing applications. For the first time, one can apply

modulation domain filters to images and obtain high fidelity, predictable, and sys-

tematic results. The design of modulation domain filters is intuitive and simple,

yet these filters produce superior results compared to those of pixel domain LSI

filters.

Besides modulation domain image processing, this dissertation reopens sev-

eral fundamental research problems in image processing. For instance, classical

image analysis applications such as segmentation and edge detection can be re-

investigated in the modulation domain setting. In addition, as the modulation

domain image transform possesses properties such as good correspondence with

human visual perception and perfect reconstruction, it can potentially yield per-

formance gains in image and video quality assessment and coding.
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While the proposed modulation domain image filtering framework offers

several advantages over the traditional pixel domain image processing, it is inter-

esting to investigate its current limitations.

• The current transform is data independent. The transform assumes that the

number of scales and the number of orientations per scale are predefined. In

other words, the filterbank can produce more components than the original

image actually has.

• The current phase reconstruction algorithm is global, meaning that changes of

the gradient in a small neighborhood can lead to changes of the reconstructed

phase in the entire image.

• The FM-based filters lack a mathematical stability analysis. Since the xAMFM

transform creates nonlinear components, constraints must be enforced on the

these components in order to produce stable and meaningful filtered outputs.

This dissertation opens up many future research directions. An obvious

path is to overcome the limitations of the current work. For example, one can

design data dependent algorithms to adaptively compute the AM-FM components

instead of using a fixed filterbank. Another challenging topic is to study the

performance of the xAMFM for corrupted signals.
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Appendix A

Orientation Decomposition

Let M be the number of orientation, M ∈ Z. We define S̃ as a sum of K compo-

nents. We write S̃ as

S̃ =
M−1∑
k=0

cos2`(φ− πk

K
) (A.1)

We expand S̃ according to

S̃ =
1

22`

M−1∑
k=0

[
ei(φ−

πk
M

) + e−i(φ−
πk
M

)
]2l

=
1

22l

M−1∑
k=0

2l∑
m=0

(
2`

m

)
ei(φ−

πk
M

)m × e−i(φ−
πk
M

)(2`−m)

=
1

22l

M−1∑
k=0

2l∑
m=0

(
2`

m

)
ei2φ(m−`) × ei(`−m) 2πk

M

=
1

22`

2∑̀
m=0

(
2`

m

)
ei2φ(m−`) ×

K−1∑
k=0

ei(`−m) 2πk
M , (A.2)

where 0 ≤ m ≤ 2` and m ∈ Z.

For ` = m, S can be reduced to

S̃ =
M

22`
·
(

2`

`

)
=
M

22`

[
(2`)!

`!(`!)

]
.

For l 6= m, let the sum of the second term in (A.2) be B. We can see that

B is a geometric series

B =
M−1∑
k=0

ei(l−m) 2πk
M =

1− ei(`−m)2π

1− e
i(`−m)2π

M

. (A.3)
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As m ∈ [0, 2`], then l −m ∈ [−`, `]. Therefore,

−`
M
≤ `−m

M
≤ `

M
.

Hence, the denominator of (A.3) is non-zero if M > `. In addition, the numerator

of (A.3) is always zero, because `, n ∈ Z. Therefore, B = 0 if M > `, ∀`,m ∈ Z.

Therefore, we arrive at the following result for S̃

S̃ =
M−1∑
k=0

cos2`(φ− πk

K
) =

{
M
22`

[
(2`)!
`!(`!)

]
if m = l and M > l,

0 otherwise.
(A.4)

As discussed in Chapter 5, the oriented filter Gk(ω) has the frequency

spectrum in polar form as

Gk(r, θ) =

{
αk
[
cos
(
θ − kπ

M

)]M−1
if
∣∣θ − kπ

M

∣∣ < π
2
,

0 otherwise,
(A.5)

where 0 ≤ k ≤M − 1 indicate orientation index and the constant α is defined as

α =
2``!√
M(2`)!

. (A.6)

Let ` ∈ Z, ` = M − 1. We define the sum of K components Gk(r, θ) as S

S =
M−1∑
k=0

|Gk(ω)|2

= α

M−1∑
k=0

cos2`(φ− πk

K
). (A.7)

From (A.4), (A.6), and (A.7), we get

S = α2M

22`

[
(2`)!

`!(`!)

]
=

[
2``!√
M(2`)!

]2
M

22`

[
(2`)!

`!(`!)

]
= 1. (A.8)
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Appendix B

2D Least-squares Phase Unwrapping

Let ϕ(m,n) be a discrete unwrapped phase. Let ρ(m,n) be the measured phase

difference. m, n are indices in the rectangular grid [0, M − 1] × [0, N − 1]. The

2D least-squares phase unwrapping aims to solve

ϕmm(m,n)︷ ︸︸ ︷(
ϕ(m+ 1, n)− 2ϕ(m,n) + ϕ(m− 1, n)

)
+

ϕnn(m,n)︷ ︸︸ ︷(
ϕ(m,n+ 1)− 2ϕ(m,n) + ϕ(m,n− 1)

)
=(

ρm(m,n)− ρm(m− 1, n)
)

+
(
ρn(m,n)− ρn(m,n− 1)

)
, (B.1)

where ϕmm(m,n) and ϕnn(m,n) are the discrete approximation of the second

derivatives in the vertical direction and the horizontal direction, respectively. The

sum of ϕmm(m,n) and ϕnn(m,n) is the discrete Laplacian of the image ϕ(m,n).

The equation (B.1) means that the second derivative of the unwrapped phase and

that of the wrapped phase must be equal.

Let Φ be the 2D DCT transform of ϕ(m,n). ϕ(x) can be represented from

the DCT coefficients as

ϕ(m,n) =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2m+ 1)

]
cos

[
π

2N
j(2n+ 1)

]
, (B.2)
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where

w(i, j) =


0.25 if i = j = 0,

0.5 if i = 0 and j 6= 0,

0.5 if j = 0 and i 6= 0,

1.0 otherwise.

Let Γ be the 2D DCT transform of γ(m,n). γ(m,n) is represented by DCT

coefficients as in (B.2).

Substituting the definition in (B.2) to each element of the left hand side

(LHS) in (B.1) and expanding the first cosine term, we have

ϕ(m+ 1, n) =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2(m+ 1) + 1)

]
cos
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π

2N
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]

=
M−1∑
i=0

N−1∑
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π

2M
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π

M
i
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π
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(
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π

2M
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]
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[
π

M
i
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[
π

2N
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−

sin
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π

2M
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sin
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π

M
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π

2N
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(B.3)

ϕ(m− 1, n) =
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i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos
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π

2M
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]
cos
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π
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(B.4)
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Repeating the same expansion for every element on the left hand side

of (B.1) and simplifying the overall sum, we arrive at the frequency representation

of the LHS in DCT domain

LHS =
M−1∑
i=0

N−1∑
j=0

w(i, j)Φ(i, j) cos

[
π

2M
i(2m+ 1)

]
×

cos

[
π

2N
j(2n+ 1)

](
2 cos

[
π

M
i

]
+ 2 cos

[
π

N
j

]
− 4

)
(B.5)

Repeating the same expansion for every element on the right hand side

(RHS) of (B.1) and simplifying the overall sum, we arrive at the frequency repre-

sentation of the RHS in DCT domain

RHS =
M−1∑
i=0

N−1∑
j=0

w(i, j)Γ(i, j) cos

[
π

2M
i(2m+ 1)

]
cos

[
π

2N
j(2n+ 1)

]
(B.6)

From (B.5) and (B.6), we have the DCT relationship according to

Φ(i, j) =
Γ(i, j)

2 cos
(
π
M
i
)

+ 2 cos
(
π
N
j
)
− 4

. (B.7)
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