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ABSTRACT 

This thesis presents the investigations conducted in the use of ultrasonic 

technology to measure two-phase flow in both horizontal and vertical pipe flows 

which is important for the petroleum industry. However, there are still key 

challenges to measure parameters of the multiphase flow accurately. Four 

methods of ultrasonic technologies were explored. 

The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of 

air-water flow on horizontal flow for measurement of the parameters of the two-

phase slug flow. The use of the HHT technique is sensitive enough to detect the 

hydrodynamics of the slug flow. The results of the experiments are compared 

with correlations in the literature and are in good agreement.  

Next, experimental data of air-water two-phase flow under slug, elongated 

bubble, stratified-wavy and stratified flow regimes were used to develop an 

objective flow regime classification of two-phase flow using the ultrasonic 

Doppler sensor and artificial neural network (ANN). The classifications using the 

power spectral density (PSD) and discrete wavelet transform (DWT) features 

have accuracies of 87% and 95.6% respectively. This is considerably more 

promising as it uses non-invasive and non-radioactive sensors.  

Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz 

and 7.5MHz were used to measure two-phase flow both in horizontal and 

vertical flow pipes. The liquid level measurement was compared with the 

conductivity probes technique and agreed qualitatively. However, in the vertical 

with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were 

attenuated.  

Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward 

flow were measured using a combination of an ultrasound Doppler sensor and 

gamma densitometer. The results showed that the flow gas and liquid flow rates 

measured are within ±10% for low void fraction tests, water-cut measurements 

are within ±10%, densities within ±5%, and void fractions within ±10%. These 

findings are good results for a relatively fast flowing multiphase flow.   

Keywords: Continuous wave Ultrasound Doppler, pulse-wave ultrasound, 

Hilbert-Huang transform, neural network  
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1 Introduction 

1.1 Background 

Demand for fossil fuel continues to increase and large amounts of oil products 

are expected to be provided by deep water reservoirs for the foreseeable future 

(Vedapuri, 2001). So, towards the end of the twentieth century, oil and gas 

production has been focused on exploration in the deep water and marginal 

fields which span a large surface area. Oil exploration in those areas are 

characterised by the requirement for satellite wells for extraction of the product, 

low production rates and high water content of the product. Oil and gas 

production from subsea wells must flow through jumpers, manifolds, flow lines 

and risers to reach the processing plants. As a result, the development of deep 

water reservoirs and marginal fields is expensive and may not be economically 

viable due to the cost of extending tieback distances of several kilometres 

(Amin et al., 2005).  

As oil prices are fluctuating day by day and known reserves are diminishing, 

there is considerable motivation worldwide to develop cheaper, lighter and more 

flexible methods of oil production to meet the world’s relentless demand for oil 

and gas (Thorn et al., 2013). The developments, evaluations, use and 

assessments of multiphase flow meters (MFMs) have shown that use of this 

technology is a valuable aid in exploiting marginal fields. Consequently, several 

research projects into multiphase metering have been carried out since the 

early 1980s (Falcone et al., 2008). However, accurate prediction of well 

production using traditional multiphase testing and metering is still being 

hampered by many factors such as changes in the well fluids, and lack of 

infrastructure, including space and weight limitations, especially in the deep 

water platforms (Afanasyev et al., 2009).  

To optimise return on investment in the development of these reservoirs is to 

produce manifold pipelines from several wells and transport the products 

through commingled facilities. This forms the basis for including multiphase flow 

metering for both subsea and marginal field production systems’ development 

(Vedapuri, 2001). So, oil and gas from the reservoirs to the processing plant 

requires the continuous development of production technologies. Key 
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technologies being developed for efficient oil and production are multiphase 

pumping, separation, fluid mechanics and multiphase metering (Vedapuri, 

2001).  

Traditionally, test separators are used in conjunction with single phase flow 

meters, such as orifice or venture meters to measure multiphase flow meters. 

However, test separators are not a good choice for operations such as well 

testing because they take a long time to stabilise to provide the needed 

information on flow performance, and are expensive and bulky. As a result, their 

use in deep water is economically prohibitive, where very long flow lines are 

required for each well head and production from each well would require a 

dedicated test separator. In contrast, a multiphase flow meter removes the need 

for a dedicated test separator for well testing application (Falcone et al., 2001).  

For instance, the flow at the oil-gas well head is a multiphase flow which can 

vary greatly depending on its age and location. As a result, it is important to 

measure the fluids produced from these oil wells accurately for efficient oil 

exploitation and production (Thorn et al., 2013). Also, real time measurement of 

flow rate of the mixture, individual flow rate and fractional phase volumes 

without prior separation is a well-established approach in the process control.  

Multiphase flow metering is becoming increasingly common in many areas of oil 

and gas production, such as flow assurance, deep water development, down 

hole/sea separation systems and wet gas fields. The first commercial flow 

metering was introduced in the late 1980s (Falcone et al., 2009).  Since then, 

many commercial multiphase flows have been developed for example: the Agar 

Corporation Inc. MPFM 50; Petroleum Software Ltd. ESMER; Medeng Ltd. MD 

04; Weatherford International Inc. Red Eye MMS; and Neftemer Ltd. (Thorn et 

al., 2013). A multiphase flow meter allows operators to capture representative 

fluids without separation equipment (Afanasyev et al., 2009). 

1.2 Motivation 

Multiphase flow meters (MPFMs) are being developed to meet the demand for a 

compact and cost-effective metering solution for production and monitoring for 

developing smaller and marginal fields (Whitaker, 1996). Determination of these 

phase fractions and phase velocities create problems for multiphase flow 

measurement (MFM) as a result of the increased number of parameters, which 
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are used to characterise a two/three phase flow, relative to those of single 

phase flows (Rajan et al., 1993). This problem is the main contrasting aspect of 

multiphase flow measurement and single phase flow measurement. 

Measurements of this complex flow are by a correlation of the measurement of 

phase fractions at a flow cross section and the measurement of phase flow 

velocities (Rajan et al., 1993).  However, the task of obtaining accurate 

measurements of oil-gas-water overall and individual phase flow rates without 

prior separation still needs improvement (Thorn et al., 2013). 

In order to acquire data on the conditions and flow rates of the individual flow 

rates of the multiphase flow, there is a need for instrumentation of the 

multiphase flow lines. The instrumentation approaches are data acquisition of 

flow regimes identification, line holdup estimation, slug flow characterisation, 

reservoir management, production allocation and fiscal measurement. These 

parameters of the multiphase flow are required to be measured using 

appropriate techniques that can be referenced (Exploration, 1994). Many 

techniques have been applied to measure the phase fraction of multiphase 

flows, such as capacitance, gamma radiation attenuation, neutron attenuation 

etc. (Rajan et al., 1993). The most popular method is commercial three phase 

flow meters are electrical impedance and gamma ray attenuation, followed by 

microwave and infrared absorption (Thorn et al., 2013).  

Although there are many advanced multiphase flow meters commercially 

available, many issues still need to be resolved because of the complexity of 

the multiphase flow. Wuqiang Yang, (2011) mentioned that commercially 

available multiphase flow meters have some problems that need to be 

addressed: (1) Safety concerns for radioactive meters; (2) Flow regime 

dependency which limits the capability of most meters to homogeneous flows to 

achieve an acceptable accuracy of homogenisation of the flow and interferes 

with the flow by causing pressure drops; (3) Need for calibration-calibration of 

MFM is a difficult problem to solve as test separators cannot be as a standard 

for calibrating an MFM because the uncertainty of the test separator is similar to 

MFM (Whitaker, 1996).  
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Ultrasound for flow measurement is well-known and can be employed non-

intrusively and non-invasively onto a pipe flow.  The ultrasonic technology can 

be applied for flow measurement in three ways: transit time flowmeters, Doppler 

ultrasonic flowmeters and cross-correlation flowmeters. Excellent reviews on 

ultrasonic flowmeters are presented in Lynnworth and Liu (2006) and 

Sanderson and Yeung (2002). Key advantages of the ultrasound over other 

sensors are suitability of the clamp-on flowmeter, low cost and low power. 

However, ultrasound methods have yet to be applied in commercial three phase 

flowmeters. There are issues hampering the widespread application of 

ultrasound to multiphase flow measurement that have to be overcome.  

In multiphase flow, the ultrasonic meters’ performance is affected by factors 

such as the number of scatterers per unit volume, the distribution of scatterers 

and their velocity profile across the pipe. Also, the ultrasonic attenuation is 

greatly dependent on the flow regime of multiphase flows and the input signal 

frequency of the transducer (Rajan et al., 1993). However, ultrasonic techniques 

have the potential for both phase velocity and phase fraction measurement, 

although they have not been applied to commercial three-phase flowmeters yet 

(Thorn et al., 2013). Recent developments in other ultrasonic techniques for 

multiphase flow measurement have progressed considerably. Besides, 

ultrasonic tomography, or imaging for two-phase flow, has been studied by 

many authors (Morriss and Hill, 1991; Rahim et al., 2007; Supardan et al., 2007;  

Xu et al., 1997). 

This research was undertaken as part of the PTDF OSS_PhD   project: 

Petroleum Technology Development Fund (http://www.ptdf.gov.ng/) undertaken 

at the Centre for Oil and Gas Research of Cranfield University. The overall 

project aims are to develop a clamp-on multiphase flow measurement using 

ultrasound techniques and auxiliary techniques for the deployment of the oil-gas 

industry. 

The primary aim of this project is to measure multiphase flow using an 

ultrasonic technique in conjunction with advanced digital signal processing 

methods. The objective of this study is to improve the accuracy and extend the 

capability of ultrasonic flow meters. This work started with the following: 
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1.3 Aims and Objectives 

The demand for two-phase flow meters comes from the oil and gas industry for 

monitoring of production at the well head (Oddie and Pearson, 2004). This 

project is about the development of the preceding work carried out by a team in 

the field of multiphase flow measurement. The ultimate aim of conducting this 

research project is to develop a clamp-on multiphase flow metering system 

using ultrasonic sensors, a gamma densitometer and appropriate auxiliary 

techniques for application in the oil and gas industry. Advanced digital signal 

processing techniques were developed to utilise ultrasonic and gamma 

densitometer signals for the measurement of constituent phases of two-phase 

flow. The measurement system consists of experimental two-phase flow rigs in 

both horizontal and vertical orientation. The primary fluids utilised in this study 

are air-water, air-oil and oil-water. The thesis comprises developments of the 

four distinct tasks summarised in the following list.  

1. Development of new gas-liquid slug flow hydrodynamics parameters 

determination using an ultrasonic Doppler sensor of 500kHz to collect the 

frequency shift from the flow and processing of the signals via HHTs. 

2. Development of an ultrasonic Doppler sensor and neural network for 

non-invasive classification flow regimes and prediction of gas-liquid two-

phase flow. 

3. Development of a high frequency ultrasonic pulse-echo system for two-

phase flow parameter measurement. 

4. Investigation of the feasibility of multiphase flow metering using a 

combination of ultrasound Doppler sensor and gamma densitometer to 

estimate the phase flow rates and phase fractions, and also the mean 

velocity measurement using time averaged maximum frequency of 

Doppler ultrasound waveforms.  

1.4 Summary  

Obviously, the oil and gas industry will benefit greatly from implementing 

multiphase flow metering systems. The flow measurement of each phase of a 

multiphase flow is important for the reservoir engineer to be able to calibrate the 

models of production of the wells and maximize the retrievable volume of oil. 
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Furthermore, the identification of water in the fluid allows optimised 

maintenance operations to limit mineral deposits (Jannier et al., 2013). It is 

apparent from the literature surveyed that the measurement of volumetric flow 

rate and composition volume fractions in multiphase flow is very difficult. Even 

though some devices have been developed which measure flow rates in a two-

phase flow, their range and accuracy are limited and none has been 

successfully used for the fiscal metering of multiphase flows (Rajan et al., 1993; 

Thorn et al., 2013). As a result, an improvement in the existing multiphase flow 

models through development of new techniques, such as ultrasonic, would go a 

long way towards the development of more reliable and efficient equipment for 

handling multiphase flows. To conclude, important requirements for ideal 

multiphase flow meters include: accurate enough to fit the purpose of its design, 

able measure full range of each phase in the multiphase flow and finally, it is 

expected to be flow regime independent  (Thorn et al., 2013). The remainder of 

this thesis is arranged as follows. 

1.5 Thesis Structure 

In Chapter 2, the focus is on the literature reviewed. It comprises four 

subsections: an overview of multiphase flow measurement, review of 

multiphase flow measurement techniques’ ultrasonic technology, review of 

ultrasonic techniques for measurement of gas/liquid two-phase flows, and signal 

processing methods. In Chapter 3, the continuous wave ultrasound Doppler 

sensor is used to compare the effectiveness of the traditional signal process 

based on Fourier transform and the modern adaptive of the HHTs to measure 

liquid flow velocity and characterise four two-phase flow regimes in horizontal. 

Chapter 4 describes the aim of investigating the application of an ultrasonic 

Doppler flow meter for two-phase liquid-gas flow measurement using pattern 

recognition techniques with ANNs. The ultrasonic Doppler signal of the two-

phase flow is recorded and processed to generate feature vectors. The feature 

vectors are utilised as inputs to the neural networks. Chapter 5, develops the 

pulse-wave ultrasound system that detects moving interfaces in gas-liquid two-

phase flow by detecting the instantaneous positions of the interface from the 

time of flight of the pulsed ultrasound. Detection of the gas-liquid interface is 

very important for developing models that predict the unsteady behaviour of 
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two-phase flows. Chapter 6 presents use a combination of gamma densitometer 

and ultrasound Doppler sensor to measure the volume fraction and flow rates of 

air-water flow, air-oil flow and oil-water flow in a 50mm diameter vertical pipe 

and analyses all the results obtained in this research study. Chapter 7 gives the 

conclusions of the research and further work that could be done in this area. 
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2 Literature Review 

2.1 Multiphase flows fundamentals 

The petroleum industry is increasingly operated in physically challenging 

environments and is consistently seeking efficient production and reduced 

costs. As a result, there is a growing need to develop low-price, compact and 

safe multiphase flow metering systems for the oil industry worldwide (Meribout 

et al., 2010). Multiphase flow meters (MPFM) are being developed to meet the 

demand for a compact and cost-effective metering solution for production and 

monitoring for the development of smaller and marginal fields (Whitaker, 1996). 

However, the task of obtaining accurate measurements of oil-gas-water overall 

and individual phase flow rates without prior separation still needs improvement 

(Thorn et al., 2013). In the petroleum industry, multiphase flow meters (MFM) 

were originally developed to meet the demand for a compact and cost-effective 

metering solution for production and monitoring for the development of smaller 

and marginal fields (Whitaker, 1996). Metering of this complex flow is by a 

correlation of the measurement of phase fractions at a flow cross section and 

the measurement of phase flow velocities (Rajan et al., 1993).  Determination of 

these phase fractions and phase velocities creates problems for multiphase flow 

measurement (MFM) as a result of the increased number of parameters, which 

are used to characterise a two/three phase flow, about those of single phase 

flows (Rajan et al., 1993). This problem is the main contrasting aspect between 

multiphase flow measurement and single phase flow measurement. 

In the oil and gas sector, use of multiphase flow meters is in well testing, 

production monitoring, and reservoir management, for making marginal fields 

cost-effective, facilitation of production in difficult terrains, and energy efficiency 

of new fields (Thorn et al., 2013).  

2.1.1 Multiphase flow regimes 

Although flow regimes depend on the geometry, orientation and flow properties, 

it is possible to categories the flow regimes (Falcone et al., 2009). Dong et al. 

(2001) stated that there are currently two methods of flow regime identification: 

visualisation or eyeballing, and statistical method or fingerprint. The statistical 

method of flow regime identification in a pipeline can be verified with image 
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reconstruction or visual observation.  These flow pattern regimes may or may 

not be wanted in different multiphase phase flow applications.  

However, to obtain optimal design parameters and operating conditions, it is 

vital to understand multiphase phase flow regimes and the boundaries between 

them.  Falcone et al. (2009) emphasised that a flow regime is not in itself a 

complete specification of the two-phase flows. It is also noted that the factors 

influencing flow regimes could change gradually with phase flow rates and 

transition from one flow regime to another but are not sharply defined.  

In addition to the classification of multiphase flow according to the flow regimes, 

the GVF is also use to classify the flow. The GVF method is important to 

multiphase metering in that meters measuring predominantly liquid with a few 

percentages of gas are clearly not the same as meters designed to measure 

larger gas fractions, such as wet gas (Cornelissen et al., 2005). Various types of 

instrument have been used to measure two phase flows, such as the 

impedance method (Andreussi et al., 1988), and capacitance method (Da Silva 

et al., 2007). Others are the tomographic scanner using γ-ray (Kumara et al., 

1997), hot-film anemometer (Serizawa et al., 1975); (Vince and Lahey, 1982) 

also employed an X-ray system on an air-water system. 

2.1.2 Multiphase Flow Regimes Maps 

Information on multiphase flow regimes is vital for determining volumetric 

fractions of individual phases when using phase fractions measuring 

instruments. Flow regimes and their transitions are not measured directly with 

an instrument but are deduced from other measurements. One important tool 

for discriminating flow regimes is flow regime maps (Babelli, 2002). Also, Thorn 

et al. (1999) mentioned that identification of the flow regime of a two-phase flow 

is vital for not only the determination of the phase fraction but the safety of 

operation and reliability of process systems. Açikgöz et al. (1992) produced the 

first three-phase flow regime map. Three-phase flow for air/water/oil systems 

presents a rich variety of flow regimes. However, many flow regime maps have 

been produced to express the two-phase flow pattern regarding superficial 

liquid and gas velocities. Mandhane et al. (1974) carried out a systematic 
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investigation of two-phase flow patterns and produced a flow map using a 

superficial gas velocity versus the superficial liquid velocity.  

2.1.1 Horizontal flow 

In horizontal flows, the transition from one flow regime to another is a function of 

pipe diameter, interfacial tension and density of the phases as well as the 

superficial gas and liquid superficial velocities. At low gas and liquid superficial 

velocities the flow regime would be a smooth or wavy stratified flow. For high 

gas velocity with low liquid velocity, the flow would be dispersed or misty, but on 

the other hand with low gas velocity and high liquid below, the flow regime 

would be a bubby flow.   

If the pipeline is perfectly horizontal, the six flow patterns shown in Figure 2-1 

would be observed. However, only three typical flow patterns appear at the 

cross section of the pipe: bubbly, stratified and annular. Slug flow can be 

viewed as the combination of stratified flow and bubbly flow. Rajan et al. (1993) 

reported that a downward or upward inclination of the pipeline has an effect on 

the flow patterns – an upward inclination enhances slug flow and a downward 

inclination enhances stratified flow. 

.  

Figure 2-1 Typical flow regimes in horizontal gas/liquid flows (Rajan et al., 

1993) 

Even so, only three typical flow patterns feature at the cross section of the pipe: 

bubbly, stratified and annular. Slug flow can be viewed as a combination of 

stratified flow and bubbly flow. However, in industrial applications the two-phase 

flow regimes present in the horizontal pipe mainly include bubbly flow, stratified 

flow, slug flow and annular flow (Meng et al., 2010). 
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2.1.2 Vertical flow 

In vertical flows, for example at the end of the vertical pipeline from the reservoir 

to the well head, the flow regimes that could be observed in vertical two-phase 

flow are shown in Figure 2-2. For high liquid superficial velocities, bubbly flow is 

the prominent flow regime. However, as superficial gas velocity increases, the 

multiphase flow regime will change from bubbly-slug-churn-annular 

(Cornelissen et al., 2005; Rajan et al., 1993).  

 

Figure 2-2 Typical flow regimes in vertical gas/liquid flows (Rajan et al., 1993) 

2.1.3 Modelling of Multiphase flows 

The multiphase flow is a complex phenomenon and this has made developing 

of multiphase models a very difficult task. The modelling techniques employ 

mathematical models, and correlations for calculating the properties of the two-

phase flow are available in Mandhane et al. (1974), Rajan et al. (1993) and 

Taitel and Dukler (1976). These models are often integrated into the hardware 

of commercial MFMs to predict the occurrence of slip between phases of the 

two-phase flows. There are four different types of multiphase model: (1) 

Empirical – these models relate the data for pressure gradient and void fraction 

to the two phase flow variables. Empirical models are simple and fast to run. 

However, applications of these models are limited and require a large of 

number of experiments. (2) Phenomenological – this refers to the models 

constructed out of observation of flow patterns and closure laws.  (3) Multifluid- 

multiphase flow modelling by multifluid involves solving of partial difference 

equations characterising the multi-dimensional and time-dependent multiphase 

flows. This method varies greatly, depending on the physical quantity of 
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interest, nature of the fluid and the interactions between them. It is important to 

note that numerical modelling still requires empirical models and its success 

relies on the availability quality of experimental data. Moreover, (4) Interface 

tracking employs either a free surface method or a free volume method to 

model the multiphase flow. Application of interface tracking is limited to simple 

flow set ups (Falcone et al., 2009).  

2.1.4 Phase Fraction Measurement 

Multiphase flow measurement could be described as a product of the 

measurement of the flow phase fraction and the measurement of the phase flow 

velocity. Many techniques have been applied to measure the phase fraction of 

multiphase flows, such as capacitance, gamma radiation attenuation, neutron 

attenuation etc. (Rajan et al., 1993). If the single phase flow meter were to be 

combined with a void fraction meter, then the multiphase flow measurement 

would be complete (Manus et al., 2013). Traditionally, void fraction in two-phase 

flows is measured using an optical method with image processing, electrical 

probing, or other methods such as X-ray and electrical capacitance 

tomography. An optical method is not possible for existing pipelines, but 

ultrasound sensors can be used to monitor and control these facilities (Murai et 

al., 2009). Phase fraction measurement in changing flow regime is a very 

difficult task to execute for multiphase flow measurement systems. The most 

popular method is commercial three phase flow meters which are are electrical 

impedance and gamma ray attenuation to determine the phase fractions, 

followed by microwave and infrared absorption (Thorn et al., 2013).  

The basic principles of the operation of the electrical impedance method of 

phase concentration are described in Thorn et al. (2013). Electrical impedance 

methods are simple, robust, a phase fraction sensor with fast response and not 

radioactive. Nevertheless, it has three limitations that can affect the 

performances of the sensor. The first is the sensitivity to changes in fluid 

properties that are either water continuous to oil continuous, or vice versa. The 

effect of this challenge can be annulled by homogenisation of the flow which 

makes the flow passing through the sensors stable and known. An application 

of this strategy has been reported in Yang et al., (2011). The second constraint 
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to the electrical impedance sensor is change in the regime of the flow. The 

sensor is normally not suitable where flow regime is unknown.  This effect can 

be neutralised to reduce the flow regime dependence by the use of helical 

electrode designs (Yang et al., 2011). However, helical sensors are often larger 

than the simpler surface plate ones.  The last difficulty with using the electrical 

impedance sensor is the determination of the phase inversion point. This is the 

point at which an oil-water mixture changes from oil continuous to water 

continuous and its electrical properties change accordingly (Falcone et al., 

2009). An arrangement of many sensors covering the different regions of the 

pipe cross section and through correct flow regime change can enhance the 

determination of the inversion point (Tjugum et al., 2002).  

Energy from radioactive sources such as χ−𝑟𝑎𝑦   and 𝛾 − 𝑟𝑎𝑦  are applied to 

gas fraction measurement in multiphase flows due to the large difference in 

attenuation between liquid and gas. Gamma ray measurement is commonly 

known as gamma ray densitometry. In a typical example, i.e. an air-water flow, 

the liquid phase scatters the radiation and it changes at a rate that is equivalent 

to the amount of water contained in the flow. The energy detected provides data 

which can be used to reconstruct the void distribution(Dyakowski, 1996).  Thorn 

et al. (1997) describe the operation of a γ-ray densitometer for metering the 

gas, water and oil components of multiphase flow. Two independent 

measurements are required to determine the values of the components’ 

fractions in three phase flows. This could be accomplished either by a second 

measurement, using the same technique, or with another one such as the 

capacitive technique. The gamma densitometry can be single or double beam, 

both have applications in multiphase flow measurement. 

A single beam gamma densitometer is often used for measuring the void 

fraction of gas-liquid flows in a pipe. The measurement of the void fraction is by 

correlation between loss of radiation intensity of the test volume and the void 

fraction of the fluid. The occurring flow regime in the pipe can be determined 

from the void fraction and that makes the gamma technique a non-flow regime 

dependent method (Stahl and von Rohr 2004). Thorn et al. (2013) reported that 

the use of a dual energy gamma ray for water fraction measurement requires 
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energy sensitive detectors, which means the beam intensity has to be lower. An 

effective instrument, which is based on essentially similar principles to the multi-

beam gamma densitometer, is the scanning X-ray void fraction meter described 

by Falcone et al. (2009). 

 

Figure 2-3 A single beam gamma densitometer (Blaney and Yeung, 2008) 

 

The gamma-ray for phase component measurement technique is very effective 

in void fraction. In particular, the multi-beam gamma densitometer has a proven 

and successful record in measuring mean density in transient two-phase flows 

but it is susceptible to high attenuation of salinity which might be present in the 

flow. Besides, the multi-beam gamma measurement has problems with 

counting statistics and of phase distribution in time and space (Falcone et al., 

2009; Thorn et al., 2013). 

In addition to the electrical impedance and gamma-ray radiation, there are 

another two methods of measuring phase fractions: application of infrared 

absorption and microwave attenuation principles which have been used in 

commercial multiphase flowmeters (Thorn et al., 2013). Similarly, in the X-ray 

method the intensity of the source attenuate is directly proportional to the 

density of the fluid through which the radiation is passed. Cross-sectional 

process information of individual processes can be an image (tomography) or 

mere process parameters characterising the phase distribution of the process. 

Measurement or imaging of multi-component systems can be made with one 

measurement principle at several wavelengths or by using two or more sensors. 
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In multiphase flow metering systems, process tomography instruments are 

incorporated in the multiphase flow test loops to measure accurately the flow 

regime present in the flow as reference/validation instrumentation (Thorn et al., 

2013). Computerised tomography or imaging of multiphase flow using the signal 

from standard sensors has been reported, such as microwave electrical 

capacitance tomography, (Ismail et al., 2005) and gamma ray, ultrasonic (Xu 

and Xu, 1998). 

In the same way, other techniques, such as capacitive wire mesh and inductive 

sensors, have been applied to measure phase fraction in multiphase flow as 

either an alternative sensor or to complement major sensors, such as gamma 

ray or ECT. Yang (2006) mentioned that the ABB had developed an inductive 

level monitoring for multi-interface level measurement.  This device has been 

tested experimentally and can detect water continuous emulsion easily. Above 

all, it has been found that scales and wax in the fluid have no effect on the 

inductive (magnetic) measurement technique. However, it cannot be used to 

detect levels of oil and gas! Also, Da Silva et al. (2007, 2010) have shown a 

new method of visualising gas-liquid two phase flow based on a capacitive wire 

mesh technique. 

2.1.5   Phase Velocity Measurements 

Conventional single phase flow meters have been applied for measuring fluid 

velocities of multiphase flows in a mixed, stable and partially separated system 

(Rajan et al., 1993). For instance, a Venturi meter has been used to measure 

mixed multiphase flow where the flow is assumed to be ‘single phase flow’ 

(Thorn et al., 2013). Also, both vortex shedding and Coriolis meters have been 

used to measure separated gas-stream and separated oil-water streams 

respectively (Thorn et al., 2013). If the single phase flow meter were to be 

combined with a void fraction meter, then the multiphase flow measurement 

would be complete (Manus et al., 2013). Another approach that eases the 

measurement of multiphase flow with a single phase meter is homogenisation. 

Homogenisation eliminates the effect of slippage between flow phases. 

Homogenised flows can be measured with meters such as orifice, venture, or 

cross-correlation, using ultrasonic or conductance signals (Rajan et al., 1993). A 
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mixer with a twin-cell rotational principle has obtained good homogenisation 

over a velocity range of 2-6 m/s. However, in intrusive meters, the 

homogenisation produces pressure drop and causes difficulty in pipeline 

pigging (Thorn et al., 1997).  

2.1.5.1 Intrusive techniques 

Measurement of flow by detecting a disturbance in the flow is a well-known 

technique. The disturbance could be naturally occurring or introduced into the 

flow. Hot-film anemometers and other heat probe instruments, such as 

thermistors, are known and accepted for single phase flow measurement (Rajan 

et al., 1993). Abel and Resch (1978) have developed a method of applying a 

hot-film anemometer for the identification of large vapour slugs and small 

bubbles in two-phase gas-liquid flow and proposed an extension of the method 

to two-phase containing both large and small bubbles. However, hot-film probe 

data might be very crudely processed.  

Kendall and Smerek (1981) presented a single phase flowmeter based on the 

bending of a slender spring steel beam in a fluid stream. Strain gauges were 

used to detect the pressure exerted by the fluid on the spring. Turbine and 

positive displacement flowmeters operate with the same principle to measure 

volumetric flow. Both these two instruments have been used in measurement 

two-phase flows. Their primary drawbacks are a highly intrusive, large pressure 

drop, and a change in the nature of the flow. A Pitot tube is used to measure 

local velocity in single phase flow (Rajan et al., 1993). An application of the Pitot 

tube for the measurement of wet gas flow has been patented by Benton and 

Seay (1985). The system consists of two pressure sensors interconnected 

through pressure transmitting lines. The first sensor measures the total 

pressure at the upstream of the gas flow while the second measures the static 

pressure at the downstream. 

These are momentum sensing devices and have been used for measuring two-

phase flow by many researchers (Venturi: (Huang et al., 2005) these are in-line 

flow meters which operate on the differential pressure loss and their 

intrusiveness could change the nature of the flow. This property aids in 

homogenising the two-phase flow, thereby making the meter suitable for 
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multiphase flow metering (Rajan et al., 1993). However, these meters have a 

few drawbacks in two-phase flow measurement: they are affected by the flow 

pattern, and assumptions are often made for the ratio of the gas mass flow rate 

to the total mass flow rate of the two-phase flow is known. However, this is 

difficult to obtain (Meng et al., 2010).  

2.1.5.2 Non-intrusive techniques 

An electromagnetic flowmeter, or magmeter, works on Faraday’s induction 

principle which states that a conductor moving in a magnetic field induces an 

electrical voltage the flowing fluid is the moving conductor (Fitzpatrick, 2012).  

The voltage measured between the electrodes is directly proportional to the flow 

rate in the pipe (Baker, 2001). The method has a good accuracy, is obstruction-

free, requires low maintenance and is reliable. However, it is sensitive to 

velocity profile and suitable for multiphase flow measurement provided the 

continuous phase is conducting (Rajan et al., 1993 and Baker, 2001). In 

addition, an electromagnetic meter’s reading for two-phase flow is sensitive to 

magnetic susceptibilities, velocities of both phases, geometrical distribution and 

the wetting characteristics of the electrodes for two-phase flow measurement 

use (Oddie and Pearson, 2004).  

Ultrasonic technology for flow measurement is well-known and can be 

employed non-intrusively and non-invasively onto a pipe flow.  There are three 

ways in which ultrasonic technology can be applied for flow measurement: 

transit time flowmeters, Doppler ultrasonic flowmeters and cross-correlation 

flowmeters. In multiphase flow, the ultrasonic meters’ performance is affected 

by factors such as the number of scatterers per unit volume, the distribution of 

scatterers, and their velocity profile across the pipe. Also, ultrasonic attenuation 

is greatly dependent on the flow regime of multiphase flows and on the input 

signal frequency of the transducer (Rajan et al., 1993). However, ultrasonic 

techniques have the potential both for phase velocity and phase fraction 

measurement, although they have not been applied to commercial three-phase 

flowmeters yet (Thorn et al., 2013). Recent developments in other ultrasonic 

techniques for multiphase flow measurement have progressed considerably. 

Besides, ultrasonic tomography or imaging for two-phase flow has been studied 



 

18 

by many authors (Morriss and Hill, 1991; Rahim et al., 2007; Supardan et al., 

2007; Xu et al., 1997). 

Mass flow meters or Coriolis mass flow meters use Newton’s second law of 

motion and need no probes. Specifically, this is an indirect method where a 

velocity meter in combination with a densitometer is used to measure the mass 

flow of the fluid (Rajan et al., 1993. There are various types of configuration of 

the commercial Coriolis mass flow meter. The first design was by Micromotion 

which is made up of a U-tube vibrating about a fixed axis. The flows going out 

and coming into the tube have equal and opposite forces turning the tube. The 

force is related to the mass flow rate. 

Measurement of flow velocity by cross-correlation is a standard signal 

processing method (Cornelissen et al., 2005). Cross-correlation involves 

correlating any property of the flow method between two identical sensors 

placed at two different positions separated by a known distance. The flow 

passes along the sensors, the fluctuation of the measure by the first sensor will 

be repeated by the second sensor after a period of time t.  This time is the time 

it takes the flow to travel between sensor positions (Falcone et al, 2009; Rajan 

et al., 1993). Most of the common sensors used for cross-correlation are: 

ultrasonic (Xu et al., 1988), capacitance (Yang and Liu, 2000) and impedance 

(Etuke and Bonnecaze, 1998). If the multiphase flow is homogenised, important 

average velocity measurement can be made and in combination with a 

densitometer, an accuracy of ±5% has been reported (Rajan et al., 1993). The 

accuracy of the method is dependent on the validity of the technique used to 

estimate the velocity from the correlation function’s peak point to represent the 

mean velocity of the flow (Thorn et al., 1997). However, there are constraints to 

fully utilising this in three phase flows, such as slip effect on the flow velocity, in 

situ calibration, combination of different sensor architectures, etc.  More 

research is needed before this technique can be applied to measure the phase 

velocity of multiphase flow at any point along the pipeline (Thorn et al., 2013). 

2.1.6   Pattern Recognition Technique 

The characteristics used to describe single phase flow, such as turbulence, 

velocity profile and boundary layer, are not suitable for describing the nature of 
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multiphase flows (Cornelissen et al., 2005).  Multiphase flows are categorised 

into flow regimes. These flows occur both in horizontal and vertical orientations. 

The flow regimes are developed based on flow-line geometry and orientation, 

individual phase flow rates, and component transport properties (density, 

viscosity and surface tension (Rajan et al., 1993; Thorn et al., 2013). 

Identification of the flow regimes in multiphase flow is essential to both the 

efficient operation of the multiphase flow systems and the determination of 

phase fractions (Arvoh et al., 2012).  To group flow regimes according to their 

topological similarities, several mechanisms of flow regimes classifiers or flow 

regimes descriptors have been developed over the years. Typical flow regimes 

in the horizontal pipe flow are: slug, stratified, wavy, elongated bubble and 

annular flow patterns and in the vertical gas-liquid flow are: bubbly, slug, churn 

and annular flows (Falcone et al., 2009).  The process of the objective flow 

regimes’ identification from the sensor signals of the flow requires the use of a 

pattern recognition technique.  

The application of pressure fluctuations of the two-phase flow signals and 

statistical analyses for objective characterisation was pioneered by Drahos̆ and 

C̆ermák (1989). The two-phase flow signals from several pressures transducers 

have been analysed for features extraction using PSD for generating input 

variables for the neural network (Kv and Roy, 2012; Sun and Zhang, 2008; Xie 

et al., 2004). Other sensor signals have been used for flow regime classification 

using the statistical moment of the analysis, such as conductance probe, 

(Hernández et al., 2006), and radioactive images (Sunde et al., 2005). It has 

been found that the pattern recognition of flow regimes using pressure signals is 

fast enough to be used for online flow regime identification (Kv and Roy, 2012; 

Xie et al., 2004). However, these transducers are invasive sensors. Hence there 

is need for a non-invasive method of flow regime classification for two-phase 

flow, such as ultrasound or gamma.  In addition, the review of methods of 

objective flow regime classification showed that the early methods used 

mechanistic models or empirical models.  The flow patterns of the multiphase 

flow were identified using equations governing the physics of the fluid that were 

developed from the mechanistic models derived from the physics of the fluid. 
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The process of identifying flow patterns using these models has disadvantages 

in that each flow regime has to be examined independently (Ozbayoglu and 

Ozbayoglu, 2009). 

Flow regime identification using ANN pattern recognition can be implemented 

for using both supervised neural networks (SNNs) and unsupervised neural 

networks (UNNs) or self-organising networks. The SNN uses Feed-forward 

networks such as multilayer perceptron and Radial-Basis Function networks for 

pattern recognition in which the back propagation error of the training algorithm 

together with information of predefined classes is used to classify the input 

variables into the specific classes and it does not need. However, the UNN uses 

the Kohonen-Network or self-organising map (SOM) for data feature mapping 

and it does not need information on the classes as it uses a network clustering  

method to group the input variable into several classes that contain similar 

characteristics (Mi et al., 2001a). The Kohonen self-organising neural network 

has been implemented for flow regime classification using measurement data 

points of distinct flow regimes (Cai et al., 1994). 

 

2.2 Principles of Doppler Ultrasound  

This section provides descriptions of ultrasound measurement systems for 

multiphase flow measurement. The ultrasonic waves, sensors, theories on 

generation, and propagation of the ultrasonic signal are discussed in this 

section. The principle of ultrasonic sensors is quite simple: they transmit 

acoustic waves and receive them after interaction of the ultrasonic wave and 

the quantity that is being investigated – the multiphase flow in this case. The 

received ultrasound signal carries the information about the parameters to be 

measured (Hauptmann et al., 2002). Ultrasonic Doppler technology for 

multiphase measurement flow is implemented by either using a continuous 

wave Doppler system or pulsed wave Doppler system. 

   

2.2.1 Ultrasound Wave parameter measurement and process parameters 

In solids there are many types of ultrasonic waves that can be used to measure 

physical properties, whereas in fluids usually longitudinal waves are the main 
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waves to be employed when measuring physical properties. The following are 

the types of waves used in solids media: longitudinal/compressive 

transverse/shear, extensional, torsional, Rayleigh and Rayleigh-like, Lamb and 

Lamb-like etc.; on the other hand longitudinal waves and a few others, e.g. 

head lateral, sezawa-like are used in fluids. Importantly, the focus here is on 

longitudinal/compression as it is the wave related to the measurement of 

physical properties of fluid (Lynnworth, 1989).  Often a longitudinal wave is used 

for an ultrasound measurement system. This is the wave that is produced by 

the push-pull (backwards and forwards) action of sources on the propagating 

medium in the direction along which the wave is travelling. 

The propagation of an ultrasonic wave can be described by the ultrasonic 

pressure P: 

𝑃(𝑥,𝑡) = 𝑃0𝑒𝑗𝜔(𝑡−
𝑥
𝑐

)𝑒−𝛼𝑥 (2-1) 

where 𝜔 = 2πf the frequency, c the speed of sound and α the attenuation of 

sound. The parameters c, and 𝛼 are specific for a particular substance unlike 

the Z and ∆𝑓. However, they are all related to the parameters of the process 

under investigation. Consequently, determination of the speed of sound and 

absorption can be realised using equations (2-2) and (2-3) (Hauptmann et al., 

2002). 

𝛼 =
1

∆𝑥
ln (

𝑃0

𝑃
) =

1

∆𝑥
ln (

𝑉

𝑉0
) 

(2-2) 

𝑐 = 𝜆𝑓 =
∆𝑥

∆𝑡
 

(2-3) 

where 𝑉, 𝑉0 are electrical voltages proportional to the sinusoidal sound 

pressures 𝑃0and 𝑃, ∆𝑥 is the path length and ∆𝑡 is the transit time. 

Consequently the absorption measurement is reduced to an amplitude 

measurement (Hauptmann et al., 2002).  

The viscosity causes both the attenuation losses 𝛼𝑉 ,    and the thermal 

conductivity of liquids 𝛼𝑇. The attenuation coefficient can be expressed as 

(Kočiš and Figura, 1996): 

𝛼 = 𝛼𝑉 +  𝛼𝑇 =
2𝜋2

𝜌3
[
4

3
𝜂 + 𝜆𝑇 (

1

𝑐𝑉
−

1

𝑐𝑝
)] 𝑓2 = 𝑎𝑓2 

(2-4) 
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Where 𝜌  = density [𝑘𝑔. 𝑚−3]; c = velocity of ultrasound [𝑚. 𝑠−1]; 𝜂 = dynamic 

viscosity [Pa.s]; 𝜆𝑇 = thermal conductivity of medium [𝑊. 𝑚−1. 𝐾−1]; 𝑐𝑉, 𝑐𝑝 = 

specific heats at constant volume and constant pressure respectively 

[𝐽. 𝑘𝑔−1. 𝐾−1] 

The attenuation shows a square functional dependence on frequency. This is 

important for applications at very high frequencies.  

Sound speeds: c is the speed of sound wave propagation in the medium. It is 

also known as acoustic velocity and depends on density, compressibility and 

affects by temperature. 

𝑐 = √
𝐸

𝜌
 𝑜𝑟 = 𝑓𝜆 

(2-5) 

where E is the bulk modulus;  ρ is density of the medium f is frequency λ  wave 

length. 

Bulk modulus is a reciprocal of compressibility of the medium. This implies that 

liquids have higher sound speeds than gasses (Hedrick et al., 1995).  

Acoustic impendence: The acoustic impedance of a medium can be 

expressed as:  

𝑍 = 𝜌𝑐.  (2-6) 

where Z is the acoustic impedance, ρ is the density of the media and c the 

sound speed.  

The unit of acoustic impedance is Kgm−2s−1, or Rayl (Asher, 1997a).  

Intensity: Intensity I of an ultrasound beam is the amount of acoustic energy 

flowing through a cross-sectional area per second. 

𝐼 =
𝑝2

2𝜌𝑐
 

(2-7) 

where I is the intensity,   ρ the density and c the sound speed. 

It is often measured in decibels. Intensity variation or level is expressed in 

Intensity (dB) (Hedrick et al., 1995) 

= 10𝑙𝑜𝑔10(𝐼
𝐼𝑜

⁄ ) (2-8) 

Ultrasonic waves: Longitudinal or compression waves used for measurement 

of the physical properties of a fluid. The wave is being produced by the push-
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pull (backwards and forwards) action of sources on the propagating medium in 

the direction along which the wave is travelling (Lynnworth, 1989).  Ultrasonic 

waves can be classified according to the manner in which the ultrasonic 

techniques are generated and excited, such as continuous wave (CW) and 

pulsed wave (PW) types (Xu et al., 1988). 

 

Figure 2-4 Particles in motion in ultrasonic bulk wave showing (a) particles of 

solid medium at rest and particles’ motions for (b) longitudinal wave (c) shear or 

compressive wave (Wright, 2011) 

 

Ultrasonic Transducer: In ultrasonic measurement systems, the generation 

and detection of ultrasound depend on the piezoelectric effect, in which 

mechanical energy is converted into electrical energy and vice versa (Messer, 

2005). The piezoelectric unit is in the transducer, which is the heart of an 

ultrasonic measurement system; it generates the ultrasonic energy and 

converts electrical energy into acoustic energy in the transmission but converts 

acoustic energy into electrical energy during reception. The beam pattern of the 

transducer determines the velocity profile resolution (Kossoff, 2000). The 

sensitivity of the flow velocity measurement to weak echoes, the spatial 

resolution achievable and the ultrasound frequencies used depend on the 

transducer. The application of ultrasound in fluid velocity measurement, and the 



 

24 

generation and detection of ultrasound, depend on the piezoelectric effect, in 

which mechanical energy is converted into electrical energy and vice versa 

(Messer, 2005). Most transducers are made up of piezoelectric crystals which 

have been made with several materials such as the naturally occurring material 

called quartz, piezoelectric (PZT) and polyvinyl den difluoride (PVDF). PZT 

ceramics are superior to quartz when the combined transmission/reception 

performances are considered and the polymer PVDF has intermediate 

performance. However, PZT is widely used. The basic structure of a PZT 

transducer is shown in Figure 2-5 (Evans, 2002). There are various types, sizes 

and shapes of transducers, some are clamp-on and others are for retrofitting.   

 

 

Figure 2-5  Single-element Transducer (Wright, 2011)  

 

Single element transducers are found in Doppler devices; even though this is 

not the best method of generating a low noise ultrasound, it is very suitable and 

provides good spatial resolution (Evans and McDicken 2000). The ultrasonic 

wave emanates propagates in the form for a certain distance known as the 

near-field. The near-field is proportional to the square of the diameter of the 

transducer and inversely proportional to the frequency. Beyond the near-field, 

the beam changes from a cylinder into a cone and diverges into the far-field at a 
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constant angle that is proportional to the diameter of the transducer and 

inversely proportional to the frequency (Kossoff, 2000).  

The Doppler Effect: The Doppler Effect is the change in frequency of an 

acoustic or electromagnetic wave resulting from the physical movement of 

either the emitter or receptor (Messer, 2005).The frequency f of the harmonic 

ultrasonic wave is changed by the Doppler Effect when the wave is reflected by 

a reflector that is moving towards the source of the wave with speed v. Then the 

frequency shift ∆f between the incident and reflected waves is 

 

∆𝑓 ≈ 2𝑓0

𝑣

𝑐
 (2-9) 

for 𝑣 ≪ 𝑐 in which the frequency of the incident wave is 𝑓0. This effect is widely 

used in flow measurement when particles in a liquid are used as moved 

reflectors (Hauptmann et al., 2002). 

 

Figure 2-6 the Doppler Effect (Case et al., 2013). 

2.2.2 Continuous-Wave Doppler Ultrasound (CWDU) System 

The Doppler ultrasound system was first invented for medical application using 

the continuous wave type by Satomura (1957).  The early developments of the 

CWDU for flow velocity measurement was started with the presentation made 

by Satomura (1957) on the principles of operation and composition equipment 

for the clinical examination of blood flow in the body using a CWDU 

measurement of blood flow in the body.  Since then, several applications of the 

equipment have emerged. The ultrasound Doppler principles can be 

implemented using either the PW or CW ultrasound systems (Brody et al., 

1974; Cobbold et al., 1983; Evans and McDicken, 2000).  

The CWDU system comprises the following main components: the master 

oscillator, the transmitter, the demodulator and the filters (Evans and McDicken, 
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2000). The basic principle of the continuous Doppler is shown in Figure 2-7. 

The master oscillator produces the frequency of the transducer and is amplified 

by the transmitting amplifier. The output of the transmitting amplifier is used to 

derive the transmitting crystal (transducer) which sends an acoustic energy 

(longitudinal wave) into the measuring system. The energy is reflected and 

scattered by particles or bubbles within the ultrasound beam and some portion 

of this returns to the receiving crystal (transducer) and re-converts into electrical 

energy which has the form. This returns a radio frequency amplifier signal and 

mixes with the reference signal from the master oscillator. The process of the 

mixing produces both the sum of the transmitted and received frequencies and 

the required difference frequency or Doppler shift frequency. A combination of 

low and high pass filters removes all signals outside the range and leaves only 

the Doppler difference frequency which is then amplified for further processing 

(Evans and McDicken, 2000).  

CWDU can be designed to be operated in a bi-directional or unidirectional 

mode. However, in most flow measurement applications of the Doppler system, 

a single sideband generator is included to produce a unidirectional flow 

measurement – the measurement of the flow moving backwards is neglected 

(Smallwood and Dixon, 1986).  An illustration of the main parts of the CWDU 

system and its use for flow measurement in a pipe flow is shown in Figure 2-7. 

The Doppler ultrasound for flow measurement is set up with the assumption that 

there are scatters in the flow and the Doppler Effect can be applied to 

ultrasound waves (Christopher et al., 1996). The operation of the CWDU starts 

with the sending of a single frequency wave continuously to drive the 

piezoelectric crystals of the probe by the master oscillator and the transmitted 

signal is reflected back continuously. The returned is detected by another 

piezoelectric crystal in the probe. The received ultrasound signal is the sum of 

the transmitted signal and echoes from the scatters, whilst the difference 

between the received and transmitted ultrasound beams is the Doppler 

frequency shift (Smallwood and Dixon, 1986) . 

In the CWDU system, the continuous wave optimises the design and 

construction of the electronics and the transducer but impedes the use of one 
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piezoelectric transducer to be used for both reception and transmission of the 

ultrasound wave. As a result, the two piezoelectric crystals, one for transmission 

and the other for reception, are incorporated into one transducer housing. The 

dual-piezoelectric crystals arrangement creates the detection of the ultrasound 

reflection from a small area called the sample volume (Christopher et al., 1996).   

 

 

Figure 2-7 Basics of CW Doppler ultrasonic flow meter (Sanderson and Yeung, 

2002)  

 

Several developmental studies have been undertaken by researchers to 

improve the CWDU systems since the method was first invented in 1957 

(Samaturra, 1957). In 1974, Brody and James described their theoretical 

analysis using mathematical model analysis of the CWDU flowmeter. The 

model was based on stochastic considerations of the scattering of the 

ultrasound by the scatters in the flow. The analysis demonstrated that the flow 

velocity estimation using CW can be reduced to the spectral estimation. Another 

study of the CWDU using model on the influence of ultrasound beam profile and 

degree of insonation, as applied to mean velocity, was explained by Cobbold et 

al. (1983). The model was based on an axisymmetric flow velocity profile and 
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symmetric response of the ultrasound probe. It was found that the mean 

velocity could be small, provided the ultrasound beam diameter was 

approximately the same size as the pipe diameter (Cobbold et al., 1983).   

The Doppler frequency shift is given by the relationship between the velocity of 

the scatters 𝑣 and the Doppler shift 𝑓𝑑 is given in equation (2-10) (Sanderson 

and Yeung 2002). 

𝑓𝑑 = 𝑓𝑡 − 𝑓𝑟 = (
2𝑓𝑡𝑣 cos 𝜃

𝑐
) 

(2-

10) 

where: 𝑓𝑡, 𝑓𝑟 are transmitted and received ultrasound frequencies, the velocity of 

the target, 𝑐 is the velocity of the sound of the flow in the pipe and 𝜃 is the 

relative angle between the transmitted ultrasonic beam and axial direction of the 

flow. Usually two transducers are required for Doppler flow meters; however, 

these two transducers can be made into separate units or one compact unit.   

As a result the power spectrum of the Doppler signal is computed to estimate 

the average frequency shift which is proportional to the mean velocity of the 

flow (Brody and James, 1974). The mean velocity may be calculated from the 

mean Doppler frequency shift using the standard Doppler equation, i.e. 

𝑣̅(𝑡) = 𝑓𝑑̅(𝑡)𝑐/2𝑓𝑡(𝑡) cos 𝜃   (2-11) 

where  𝑓𝑑̅(𝑡) is the instantaneous mean Doppler shift, 𝑓𝑡 the transmitted 

frequency and 𝜃 the angle between the ultrasound beam and flow direction. 

The volumetric flow is a product of the cross-sectional area of pipe 𝐴 and the 

spatial mean velocity of the flow within the pipe (Evans and McDicken, 2000). 

Therefore, 

𝑄̅ =
1

𝑇
∫ 𝐴(𝑡)𝑣̅(𝑡)𝑑𝑡

𝑇

𝑡=0

 

(2-12) 

Substituting equation   (2-11) into (2-12) 

𝑄̅ = [
𝑐

2𝑓𝑡(𝑡) cos 𝜃
∫

(𝐴(𝑡)𝑓𝑑̅(𝑡))𝑑𝑡

𝑇

𝑇

𝑡=0

] 

(2-13) 

Measurable quantities are 𝑓𝑑
̅̅̅̅ , 𝐴 and 𝜃 .  

The average frequency is calculated from the power spectrum using this 

equation (Morriss and Hill, 1991). 
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𝑓𝑑̅ =
∫ 𝑃(𝑓)𝑓𝑑𝑓

𝑓𝑚𝑎𝑥

0

∫ 𝑃(𝑓)𝑑𝑓
𝑓𝑚𝑎𝑥

0

 
(2-14) 

where 𝑓𝑑  ̅̅̅̅ = average frequency, 𝑓𝑚𝑎𝑥  = maximum Doppler frequency, 𝑃(𝑓) = 

Doppler power spectrum,  𝑓 = frequency.  

Importantly, in Doppler ultrasound flow measurement, a compromise has to be 

made between velocity resolution and temporal resolution in the spectral mode. 

The resolutions are dependent on the Doppler frequency shifts. For instance, 

increasing the temporal resolution will reduce the velocity resolution.  So a low 

frequency is better at velocity resolution but at the cost of temporal resolution 

and vice versa. Moreover, an increase in the operating frequency of the Doppler 

system provides the following advantages: (a) a proportional increase in 

Doppler frequency shift, (b) a broader spectrum of Doppler frequency shifts,  

and (c) an increase in transducer spatial resolution. However, an increase in the 

operating frequency would lead to higher attenuation and lack of availability of 

the higher frequency transducer (Christopher, 1995). 

2.2.3 Pulsed-Wave (PW) Doppler Ultrasound System 

One of the disadvantages of the CWDU system is that it detects the movement 

of all scatters in the sample volume. Therein lies its problem of not being able to 

determine the range of the moving scatters.  The PWDU can overcome this 

limitation, because, in the PWDU systems, each of the Doppler shift frequency 

of the echoes returns to the transducer. Also, the pulsed ultrasound Doppler 

(PUD) can be applied to measure flow velocity and its profile which has made it 

a versatile sensor (Baker, 1970). In the pulse wave Doppler system, the length 

of the pulses is gated. This allows the distance to the moving interfaces as well 

as their velocity with respect to the beam to be measured  (Sleutjes, 2006). 

Consequently, since the invention of the PWDU systems it has become the 

principal ultrasound Doppler system employed (Christopher et al., 1996). A 

simple two-phase flow measurement application of PW Doppler and its 

components is illustrated in Figure 2-8. The pulse Doppler can be implemented 

either as a single or dual transducer for the transmission and receiving of the 
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echoes (Sleutjes, 2006) The example shown in the figure is the dual transducer 

type (Huang et al., 2013). 

The pulse wave operation starts with a signal from the master oscillator which is 

gated under the control of the pulse repetition frequency (PRF) generator. The 

length of time the transmission gate remains open is dependent on the required 

length of sample volume. The returning pulses to the RF amplifier are used to 

derive the transducer. This sensor sends the bust of the ultrasound into the 

measuring system. The echoes of the ultrasound pulse convert into electrical 

energy the same transducer and this signal is mixed with a reference signal 

from the master oscillator before the low pass filter (LPF). The filtered signal 

goes to the hold circuit. The output of the sample and hold circuit is filtered to 

remove both the sampling frequency and unwanted low frequency component. 

Then the filtered signals are amplified and sent for further processing (Evans 

and McDicken, 2000). 

 

Figure 2-8 Schematic diagram of a PW ultrasonic Doppler flow measurement 

system (Huang et al., 2013) 
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In Figure 2-8, the operation of the PW ultrasound Doppler system is used for 

determining liquid flow velocity in an oil and water mixture. The PWDU Doppler 

is often operated at a constant PRF using an identical tone-burst so that the 

echoes from a stationary scatter or the interface will be a series of signals with a 

uniform time of flight, whereas, those echoes from moving scatters will produce 

signals with incremented times of flight. As indicated in the figure, only the 

scatters in the sample volume will be involved in the measurement. 

The PWDU system is used to calculate the distance between two successive 

echoes by determining the times of flight ∆𝑡, of the two consecutive echoes 

(Christopher et al., 1996). The time of flight is directly proportional to the 

distance h between the transducer and the scatter. Also, the time between 

successive transmissions of the pulses is the pulse-repetition-interval (𝑇𝑃𝑅 =

1

𝑓𝑃𝑅
 𝑜𝑟 𝑃𝑅𝐼).  

∆𝑡

𝑇𝑃𝑅
=

2

𝑐
 

ℎ

𝑇𝑃𝑅
 

(2-15) 

 

where 𝑐 is the speed sound in the flow, and the velocity of the flow along the 

axis of the is equal to the ratio of  
ℎ

𝑇𝑃𝑅
  and so equation (2-15) will be written as 

beam is 𝑣𝑓𝑙𝑜𝑤 cos 𝜃 which 

∆𝑡

𝑇𝑃𝑅
=

2

𝑐
 𝑣𝑓𝑙𝑜𝑤 cos 𝜃 

(2-16) 

The total phase, ∅n, between an echo and transmitted pulse is the product of 

the total number of echoes received and the total transmissions frequency, 𝑓0, 

of the master oscillator of an echo in which the period is 360°. Therefore, the 

phase difference between successive echoes of the same scatter is given by 

 

∆∅ = 𝑓0∆𝑡  (2-17) 

Hence, equation (2-16)  can written as:  

 

∆∅

𝑇𝑃𝑅
=

2𝑓0

𝑐
 𝑣𝑓𝑙𝑜𝑤 cos 𝜃 

(2-18) 
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Since frequency can be defined as the rate change of a phase then, 
∆∅

𝑇𝑃𝑅
 is the 

discrete measurement of a continuous frequency, 𝑓𝑑  

where  

𝑓𝑑 =
2𝑓0

𝑐
 𝑣𝑓𝑙𝑜𝑤 cos 𝜃.    

(2-19) 

Similarly to the CWDU system, the velocity of the flow will be  

𝑣𝑓𝑙𝑜𝑤 =
𝑓𝑑𝑐

2𝑓0 cos 𝜃
     

(2-20) 

Therefore equations (2-18) and   (2-11) are the same and are the exact form of 

the volume flow velocity and the frequency shift relationship.  

The fact is that in the PWDU, the time of flight and the phase difference 

between the echoes are the representation of the continuous Doppler signal 

and the Doppler shift, which creates a problem on how to measure them, 

because the Doppler signals received at the transducer are a combination of 

echoes from both moving scatters and stationary scatters as well (Christopher 

et al., 1996). As a result, there are two types of PW architectures: non-coherent 

pulse Doppler and coherent pulse Doppler systems (Baker, 1970). The former 

uses a range gating to select the echo coming from a predetermined depth by 

sending a signal at an appropriate ultrasonic frequency amplifier to retain the 

amplitude components, whereas, the latter uses a replica of the transmitted 

signal to compare it with incoming echoes from the moving scatters since the 

moving scatters are both pulse and amplitude modulated. Most PWDU systems 

are of the coherent type and use the same coherent demodulation and signal 

processing in the same way as the CWDU systems but with the addition of 

sampling and filtering stages (Christopher et al., 1996). The PW Doppler 

schematic structure illustrated in the figure is of the coherent type.  



 

33 

 

Figure 2-9 Short burst of transmitted ultrasound  (Sleutjes, 2006) 

 

Despite the PWDU having some advantages over the CWDU in that it is able to 

detect the range of the scatter, the benefit of measuring the range of scatters 

comes at the price of limitation on the maximum velocity that can be measured 

due to the Nyquist limit. The maximum velocity that can be measured from the 

frequency shift,  𝑓𝑑,𝑚𝑎𝑥, is given by  

𝑇𝑝𝑟𝑓 =
1

𝑓𝑝𝑟𝑓
≥

2.ℎ

𝑐
 and 

𝑓𝑝𝑟𝑓

2
≥ 𝑓𝑑,𝑚𝑎𝑥 

Substituting, 
𝑓𝑝𝑟𝑓

2
≥ 𝑓𝑑,𝑚𝑎𝑥 into equation nnn  

The maximum velocity is  

𝑣𝑚𝑎𝑥 =
𝑓𝑝𝑟𝑓𝑐

4𝑓0 cos 𝜃
     

(2-21) 

Weaknesses of the PUD are: 

1. Maximum measurable velocity is limited by pulse repetition frequency 

and the angle between the transducer and direction of the flow. 

2. Velocity measurement may be underestimated if the angle is higher than 

15 degrees even though the higher angle improves the sensitivity of the 

measurement system. 

2.2.4 Difference between the CW and PW Doppler shift frequency 

The fundamental difference between CW and PW systems is in the frequency 

attenuation of the Doppler signal. In CW systems, the signal returning from the 

target is a modified version of the transmitted signal and is being multiplied by 

the master oscillator; as a result it has become the difference between the 

transmitted frequency and returning frequency. However, in PW the received 

signal is affected by two events: first, it is either an incremented or decremented 
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version of the transmitted signal. Second, the fact that the target has moved 

either close to or far away from the transducer, means the consecutive received 

signal has experienced a time shift with respect to the change. As a result, there 

is a progressive change in the phase relationship between the ultrasound from 

the sample volume and the master oscillator. Certainly this is change that the 

demodulator detects.  

On the other hand, there is a similarity between the CW and PW Doppler which 

shows that the spectrum of both signal systems is treated in the same way, 

because the basic Doppler equation applies to both CW and PW (Evans and 

McDicken, 2000).  

𝑓𝑑 = 𝑓𝑡 − 𝑓𝑟 = (2𝑓𝑡𝑉𝑐𝑜𝑠𝜃)/𝑐 (2-22) 

The CW has an advantage over the PW in that it has limitless measurable 

velocity, even though it is not possible to detect the position of the scatterers 

with this method. On the other hand, the PW allows the determination of the 

position and velocity of the scatterers. However, the downside of the PW is the 

limitation of the measurable velocity by Nyquist’s sampling theorem (Yamanaka 

et al., 2002).  

2.3 Ultrasonic two-phase flow measurement methods 

Ultrasonic flowmeters can be found in various shapes, sizes and methods of 

operation such as: clamp-on and wetted transducers, single and multiple paths, 

paths on and off the diameter, passive and active principles, contrapropagating 

transmission, reflection (Doppler), tag correlation, vortex shedding, liquid level 

sensing of open channel flow or flow in partially full pipes etc. Ultrasonic 

transmitters and transducers are commercially available.   

The main aim of this section is to review the applications of ultrasonic 

techniques for the measurement of gas/liquid two-phase flow. Ultrasonic 

measurement of two-phase flow is an effective method and it is becoming 

increasingly common as researchers want to make use of its advantages, such 

as non-intrusiveness, clamp-on device on pipes and low power. The three 

ultrasonic techniques for flow for obtaining the two-phase flow parameters that 

have been reported are: transmission, ultrasonic reflection technique (pulse-

echo and the Doppler shift) methods, and ultrasonic tomography.  
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2.3.1 Ultrasonic transit time method  

Ultrasonic transmission techniques could be applied to multiphase flow 

measurements as pulse wave transmission types. Ux et al. (1985) developed 

an ultrasonic pulse transmission system to measure the volume fraction in air-

water two-phase flow using a pair of pulsed transducers placed opposite to 

each other. They emphasised that the pulsed ultrasonic sensors have an 

advantage over their continuous counterpart, because the pulsed sensor is not 

affected by the harmful effects of standing waves and also pulsed ultrasonic 

sensors can effectively detect low gas concentration. Bonnet and Tavlarides 

(1987) presented an approach to determine the dispersed phase holdup of 

liquid-liquid dispersion by measuring the velocity of the ultrasound in 

suspensions, and emulsions (Xylene-water) using an ultrasonic pulse 

transmission time. Then, they suggested a time-averaged model that allows the 

estimation of the phase holdup from the total transmission time of the 

ultrasound pulses.   

Moreover, Stolojanu and Prakash (1997) found in a multiphase flow comprising 

a solid phase (32 µm glass particles), a gas phase (compressed air) and a liquid 

phase (tap water) system, that both the transmission time and amplitude ratio 

vary proportionally with the solid concentrations. However, the gas bubbles 

have made the transmission time irregular while the relationship between the 

attenuation and phase volume remained proportional. Also, Mahadeva et al. 

(2008) studied the accuracy of ultrasonic transit time single phase flowmeters to 

determine factors affecting uncertainty. They found the relationship between the 

flow signal and separation distance between the transducers to be independent 

of the flow rates but dependent on pipe wall thickness and transducer 

frequency. Carvalho et al. (2009) explained an application of transit time 

ultrasound for measurement of gas-illiquid two-phase flow by using ultrasonic 

attenuation and experimental data. They found that attenuation can be related 

to the void fraction and between 4-6% of void fractions the bubble distribution 

was uniform.  Eren (1998) presented an evaluation of the parameters affecting 

the accuracy of transit time ultrasonic flowmeters. The findings are that scatters 

or impurities in the flow affect the operation of the transit time flowmeter, and 
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then Eren recommended that the flowmeter should have multiple transmitters 

and receivers to be accurate. Therefore, in two-phase flow measurement, the 

transit time flowmeter operation would be hampered by the presence of the later 

phase or bubbles in the flow.  

2.3.2 Ultrasonic cross-correlation  

Ultrasonic cross-correlation methods can be implemented with either 

continuous wave or pulse wave ultrasound systems. Xu et al. (1988)  applied 

pulse echoed ultrasound waves to implement a cross-correlation flow 

measurement system by amplitude modulation of the pulse echoed ultrasound 

wave passing through a gas bubble/liquid mixture. Schneider et al. (2005) 

demonstrated the principle of an ultrasonic cross-correlation flow meter using a 

continuous wave and developed an analytical model where they related the 

time delay measured by the meter to the mean velocity profile and statistical 

properties of turbulent pipe flow. The model was produced to predict the 

correlation and spectrum functions of the fluctuating velocity in a turbulent flow. 

.  

Figure 2-10 Schematic view of a cross-correlation ultrasonic flow meter applied 

to pipe flow with the volumetric flow rate (Schneider et al., 2005) 

The procedure is based on the cross-correlation function, R, given by  

𝑅 =
1

∆𝑡
∫ (𝑥𝑡−𝜏𝑦𝑡𝑑𝑡)

∆𝑡

0

 
(2-

23) 
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where tau is the time delay, 𝑦𝑡 is the downstream signal at time t, 𝑥𝑡−𝜏 is the 

upstream signal at time 𝑡 − 𝜏 and ∆𝑡 is the time over which the integration is 

carried out (period during which the data are collected) (Asher 1997, Schneider 

et al., 2005). The flow velocity can be found by 𝑉 = 𝐿/𝜏   where 𝐿 is the axial 

distance between the two sensing positions. That is to determine   𝑡𝑚 is the time 

delay or interval required for the tags or footprint to travel along the flow for one 

sensing point to the second sensing position. Cross-correlation is best suited to 

monitoring two-phase flow where the phase component velocity and component 

distribution have an effect on the process performance (Xu et al., 1988). 

2.3.3 Ultrasonic Doppler Shift Method flow measurements  

In order to enhance the application of the ultrasonic technique for flow 

measurement, Brody et al. (1974) described the theoretical analysis of the CW 

Doppler flowmeter and the significance of the mathematical model to PSD of 

the ultrasound waveform. In addition, Cobbold et al. (1983) described, using  a 

theoretical model of the CW flowmeter, the possible errors that could occur in 

the spectrum of the ultrasound wave as well as in the mean velocity 

measurement. By measurement of blood microcirculation using a high 

frequency Doppler system, Christopher et al. (1996) found that increasing the 

ultrasound frequency would lead to significant improvements in the Doppler flow 

measurement, such as an increase in Doppler frequency shift, a wider spectrum 

and better spatial resolution. However, these improvements come at the price of 

higher attenuation and availability of the high frequency transducers.  

There are several applications of the CW Doppler ultrasound for multiphase 

flow measurement. Kouame et al. (2003) presented an application continuous 

wave ultrasound Doppler velocity measurement to two phase flow in pipes and 

proposed the use of high resolution frequency techniques to overcome the 

problem of coloured noise. Dong et al. (2015) developed a method of analysing 

the superficial velocity measurement of oil-water two-phase flow using a CW 

Doppler ultrasound model. The model is a generalised one for the flow velocity 

measurement; however, there is a need for hybrid sensors so that phase 

fraction measurement can be included in the flow velocity measurement (Dong 

et al., 2015).  Fan et al. (2013) presented an application of CW Doppler 
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ultrasound velocity determination of the temporal liquid distribution in gas-liquid 

flow using short time Fourier transform (STFT) and autoregressive spectral 

analysis of the frequency shifts signal. Importantly, the CW Doppler flowmeter, if 

operated in the average velocity or volume flow, is similar to the 

electromagnetic flow meter which requires full illumination (Brody et al., 1974).  

An early application of the PUD for flow measurement was described by Baker 

(1970) as the detection of the frequency shift of the reflected signals, which is 

representative of the mean velocity of the flow over a small area. The area is a 

function of the transducer bandwidth, ultrasonic beam dimensions, and 

transmitted pulse duration. The flow signal of the pulsed ultrasound can be 

manipulated by using a comb-type gate and sequential sampling to produce a 

flow velocity profile. The PUD flow measurement can be directly derived from 

other parameters of the flow, such as volume flow, stroke volume, and flow 

acceleration (Baker, 1970). 

Morriss and Hill (1993) conducted experimental air-water measurements and a 

theoretical investigation of the potentials of using PUD for multiphase flow 

measurement. They described the PUD as an important instrument for 

production logging. However, they found that the PUD instruments were able to 

measure single phase flow with accuracy but for the air-water churn flow, the 

PUD did not represent the flow velocity and they recommended further studies. 

In 2005, an innovative pulsed ultrasound system was applied for the 

measurement of gas-liquid two-phase flow using the ultrasound Doppler method 

by Murakwa. The new technique employed a multi-wave transducer which is 

basically two-in-one transducers (2 MHz and 8 MHz) in single sensor. The 

technology was used to measure flow velocity as well as positions of the 

scatters in the flow. However, there is need for further investigation to develop a 

method to separate the liquid velocity and bubble rise velocities.  

Meanwhile, a commercial Doppler ultrasound velocimetry DOP2000 (Model 

2030, signal processing S.A.) has been modified to measure multiphase flow. 

Both solid-liquid and gas-liquid have been measured in the experiment. The 

measurement application was first on the correction of the determination angle 

and measurement location by considering the effects of refraction and velocity 
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differences of the two phases. There is a need for further studies on the liquid-

solid and gas-liquid with a high gas void fraction.  

Rahammohan et al. (2014) presented two ultrasound Doppler transducers for 

multiphase flow measurement by placing the transducer diametrically on either 

side of the pipe flow.  A complete velocity profile of the flow was obtained by 

adding two velocity profiles. In addition, the scatter velocities in the flow were 

estimated and used for flow regime identification.  

Weaknesses of the PUD are: 

1. Maximum measurable velocity is limited by pulse repetition frequency 

and the angle between the transducer and direction of the flow. 

2. Velocity measurement may be underestimated if the angle is higher than 

15 degrees even though the higher angle improves the sensitivity of the 

measurement system. 

3. The optimum flow regime to be measured by the PW Doppler ultrasound 

is the bubbly flow as it is conductive for the Doppler system. 

2.3.4 Ultrasound pulse echo technique  

The ultrasonic method of measuring the film thickness, void fraction profile or 

liquid level measurement can only be done with the pulse wave ultrasound 

system as the continuous wave cannot be used to measure a range (Baker, 

1970).  Several pulse-echo ultrasonic techniques of two-phase measurement 

have been reported. A determination of the gas-liquid interface is one of the 

fundamental aspects in the measurement of both the liquid flow rate and the 

void fraction of two-phase flows which has been tried by Chang and Morala 

(1990). The pulse-echo technique uses a mismatch in the characteristic 

impedance of the ultrasound at the surrounding of the interface to detect the 

interface, as in equation (2-24) 

𝑎𝑟 = 𝑎𝑖 × [
𝜌2𝑐2 − 𝜌1𝑐1

𝜌2𝑐2 + 𝜌1𝑐1
] (2-24) 

This equation is the basis of the application of an ultrasonic technique to 

determine the location of a gas-liquid interface. Characteristics of the reflected 

wave are being influenced by the shape and size of the interface relative to the 

ultrasound wave length (Murai et al., 2010). Importantly, by error analysis it has 
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been found that the accuracy of a two-phase flow meter depends on the 

accuracy of the interface detection (Gonzalez et al., 2009). 

 

Figure 2-11 Basic Ultrasonic film thickness measurement setup (Chun et al., 

1984) 

Murai et al. (2010) have developed three categories of signal processing 

techniques used for analysing the echo signals received after pulses are 

reflected off the interfaces in air-water two-phase flows of a 40-mm plastic pipe. 

First, in the pulse echo ultrasonic technique for liquid-gas interface detection, 

which uses the reflection coefficient and in water-air interface, almost 99.9% of 

the incident wave reflected back.  

Second, the interface can be detected at a layer with nearly zero-Doppler 

velocity along the measuring line; this situation occurs when there is 100% 

reflection (Murai et al.. 2010). Consequently, ultrasound reflectors (particles or 

others) in the standing wave produce no Doppler shift in spite of the velocity of 

the flow. This method is called the local Doppler velocity technique and has the 

following advantages: the detection efficiency is not dependent on the distance 

between the transducer and the interface and it is also quite a robust method 

due to the frequency domain used. But its disadvantages are: it can be difficult 

to separate the interface from the velocity distribution, due to the effects of small 

bubbles with curvature interfaces. However, these problems can be dealt with 

by signal processing filters. It is a suitable method for detecting ultrasound 

waves reflected off smooth interface and bubbles. In Figure 2-12, a standing 

wave has been created at the point of meeting of the incident and the reflected 

ultrasound wave. This property was used in interface detection by a local 

Doppler velocity technique (Gonzalez et al., 2009). 
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.  

Figure 2-12 Schematic representation of ultrasound beam reflected at interface 

(Gonzalez et al., 2009). 

 

The third method is based on the fluid kinematics, and the relationship  between 

the interface 𝑆 position on the measuring line, flow velocity 𝑣 normal to the 

measurement line and flow velocity component  𝑢 in the direction of 

measurement line is governed by this equation: 

𝜕𝑆

𝜕𝑡
+ 𝑣

𝜕𝑆

𝜕𝑦
= 𝑢 

(2-25) 

Where 𝑦 represents the spatial coordinate in the direction normal to the 

measurement line. If one single ultrasonic transducer were to be used then the 

interface could not be determined, because one velocity component profile 𝑢 is 

obtained. Alternative the variance of 𝑢 in time can be used instead (Murai et al.,  

2010). 

More importantly, an ultrasonic interface detection technique which uses a 

single transducer has the advantage that the cost of mounting arrangement is 

halved and transducer alignment is eliminated (Matikainen et al., 1986). 

However, a study conducted by Schmitt et al. (2012) found that reflection on the 

air-water boundary layer has some challenges depending on the size, shape 

and motion of the interface. For instance, for a smooth and steady air-water 

interface, the ultrasonic wave reflects symmetrically to the plane perpendicular 

boundary layer. No signal from the interface returns to the transducer for non-

perpendicular at steady state, but a non-perpendicular disturbed air-water 
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boundary layer allows scattering of the ultrasonic waves which can be received 

by the transducer.  These studies of the interface show that the single-sensing 

principle is not enough to capture the interface in all gas-liquid two-phase flows.  

Traditionally, the void fraction in two-phase flows is measured using an optical 

method with image processing or electrical probing, or other methods such as 

X-ray and electrical capacitance tomography. An optical method is not possible 

for existing pipelines, but ultrasound sensors can be used to monitor and control 

these facilities (Murai et al., 2009). Void fraction profiling is the ultrasonic 

measurement distribution of void fraction in a bubbly two phase flow using 

signal processing of the ultrasonic pulse scattering on bubbles. Chakraborty et 

al. (2009) introduced a new ultrasonic method for measuring the void fraction of 

two-phase flow using an ultrasonic sensor and twin signal processing methods 

based on a time series analysis technique: symbolic dynamic filtering and 

analytical signal space partitioning for void fraction measurements and 

identification of flow regimes. An algorithm was built on the method of symbolic 

dynamic filtering to analyse the ultrasonic pulse echoes reflected off the 

bubbles. The experiment was conducted using laboratory instruments and 

results were in agreement with the void fraction measurement derived for 

spatial measurement using conductivity probes. 

Murai et al. (2009) developed two methods for determining the spatial 

distributions or void fraction profile in a two-phase bubbly flow. One of the 

methods of detecting the bubble interface was by applying two signal 

processing techniques: the echo intensity method and Doppler method.  The 

second approach is a mathematical relationship which enables the 

reconstruction of the true void fraction along the path of the ultrasound pulse.  

Both of these two methods of determining the void fraction profile were applied 

to four different settings of bubbly flows. Zhai et al. (2013) studied the response 

of an ultrasonic pulsed sensor on oil-water two-phase in a vertical upward pipe.  

By using finite element calculation they found that ultrasonic levels are very 

sensitive to the concentration of the dispersed oil phase and the oil droplets can 

affect the transmission-type ultrasonic field. 
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2.3.5 Ultrasonic velocity profiling (UVP) 

An accurate measurement of flow rate requires the velocity profile to be taken 

into consideration. Pitot tubes have traditionally been used to measure flow 

rates and fluid velocity profiles in power plants, but their installation requires 

plant shut down and system drain out in order to insert the Pitot tube (Tezuka et 

al., 2008).  UVP is a non-invasive ultrasonic flow velocity measurement 

technique using pulse echoed ultrasound. It has its roots in medical application, 

as an external blood flow meter (Histand et al., 1973; Takeda, 1986). The UVP 

monitor was developed at the Paul Scherrer Institut (PSI) for both engineering 

and academic demands (Yamanaka et al., 2002). The UVP uses a pulsed 

ultrasonic echography which can be done with both an in frequency domain, by 

applying the Doppler principle, or time domain by using time domain cross-

correlation (Sato et al., 2002; Takeda, 1991). 

Takeda (1986) developed the UVP for general fluid to assess the suitability of 

the method with two configurations. A UVP consisting of an ultrasonic 

transducer placed on the external wall of the pipe at an angle (𝜃) transmits 

pulses and their echoes reflected from the particles of the flow are observed. 

The frequency of the reflected wave at any point is the Doppler frequency shift 

(𝑓𝑖𝐷) for the flow. The relationship between the Doppler shift and instantaneous 

fluid velocity is given by: 

𝑉𝑖 =
𝑐𝑓𝑖𝐷

2𝑓0 cos 𝜃
 

2-4 

where 𝑉𝑖 is the velocity value at instant I; c is the speed of the ultrasound in the 

fluid;  𝑓0 is the basic ultrasound frequency; 𝑓𝑖𝐷 is the Doppler frequency shift for 

channel I; 𝜃 is the angle between the transducer and flow direction. It was found 

that UVP can measure instantaneous velocity profiles on a diameter of a pipe 

directly. So, the flow rate is calculated using the integration over space of the 

averaging velocity profiles. 

Wada et al. (2013) have proposed a new method to determine the number of 

transducers in a multi-transducer UVP for accurate flow measurement. The 

multi-transducer UVP is particularly required for UVP at the downstream of a 

double elbow pipe. This method employed Fast Fourier transforms (FFTs) on 

the wave number of the profiles to estimate the number of transducers and it 
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has been verified with computational fluid dynamics (CFD) with a standard 

deviation of less than ±2%. 

 

Figure 2-13 Ultrasonic propagation in the UVP method (Wada et al., 2013) 

 

Importantly, an obvious a problem with the current method of UVP is that the 

maximum detectable velocity is based on the Nyquist sampling theorem 

(Takeda, 1991). There is another constraint for UVP in larger pipe diameter as 

maximum velocity decreases as the measurable depth increases. On the other 

hand, UVP is applicable to opaque fluids and is also a non-invasive technique. 

In addition, Sato et al. (2002) have presented a cross-correlation technique to 

determine the time difference between the echo signals of a two pulse 

emission. This technique improved the signal processing by allowing control 

over the echo repetition and reception, which would give high time resolution 

velocity profile measurements. So, an important extension of the pulse–echo 

technique is the development of the UVP technique as it can measure 

instantaneous velocity profile in time and position. The Nyquist sampling 

theorem which limited the maximum measurable velocity has been resolved 

through a signal processing technique known as ultrasound time-domain cross-

correlation (UTDC).  Therefore, a high time resolution velocity measurement 

could be obtained by the application of UTDC to the UVP method to obtain the 

velocity profile, which could readily be integrated into the flow velocity 

(Yamanaka et al., 2002). It was found that UVP can measure instantaneous 
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velocity profiles on a diameter of a pipe directly. So, the flow rate is calculated 

using the integration over space of the averaging velocity profiles. 

2.3.6 Ultrasound and neural network 

The ultrasonic technique, based on the principle of pulse-echo intensity, is 

widely used in gas/liquid interface detection and often the location of the 

interface is determined by measuring the time of flight of the reflected wave 

(Chang and Morala, 1990). Wada et al. (2006) presented an ultrasonic method 

of two-phase flow pattern recognition based on the measurement of the 

instantaneous echo intensity profile along the ultrasonic beam. They comment 

that the echo intensity of the flow is measured by the integral of the difference in 

energy of single phase flow and two-phase flow over the pipe diameter. The 

flow patterns from single phase flow to annular flow are identified by the 

statistical distribution of the echo intensity. Murai et al. (2010) developed a 

pulse-echo ultrasonic technique to determine instantaneous liquid-gas interface 

detection.   

The pulse-echo technique of flow pattern identification is not completely a flow 

regime classification technique but an identification of the flow pattern itself (Jha 

et al. (2013).  However, the authors recommended that more research work on 

the computational and experimental work will be required before the method 

can be deploying for industrial use. Another issue is that the ultrasound method 

applied is not intrusive but it is an invasive set up. Jha et al. (2013) extended 

the work of Chakraborty et al. (2009) and propose that the concept of the 

ultrasonic pulse echo to be implemented in a clamp-on set up, together with the 

symbolic dynamic filtering for industrial application. Wada et al. (2006) reported 

an application of flow pattern recognition based on the delay time strength of 

the echo signal of pulse echoed ultrasound under two phase flow. The pattern 

recognition was used to obtain instantaneous echo intensity profiles along the 

ultrasonic beam. 

Despite the feasibilities of using the pulse-echo ultrasound for flow regime 

identification, the flow regime’s identification is based on computational models. 

The computational methods for flow regime identification has employed sets of 

non-linear equations but often the equations are simplified. For practical 
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applications, the simplified equations are infrequently used because they 

require prior knowledge of several flow properties, such as pipe diameter and 

pipe thickness, which degrade over time (Meribout et al., 2010). The method of 

the pulse-echo ultrasound is limited in liquid flow velocity information due to the 

restriction on the maximum measurable velocity using pulse wave ultrasound by 

the Nyquist criterion (Evans and McDicken, 2000).  

Ultrasound Doppler flow sensors which use a continuous wave of ultrasound 

signals also have a great potential for achieving non-invasive flow velocity 

measurement. The techniques for using continuous wave ultrasound have 

existed in the medical ultrasound system.  The techniques use frequency shift 

representing the flow velocities to develop methods to predict multiphase flow 

regimes (Übeyli and Güler 2005). In multiphase flow measurement, Kouame et 

al. (2003) presented an application of CWDU velocity measurement to two 

phase flow in pipes. They proposed the use of frequency resolution techniques 

to overcome the hindrance to the velocity profile measurement by the presence 

of coloured noise which introduces a significant obstacle to classical frequency 

estimators. Pulse echo ultrasound techniques for two-phase flow measurement 

have limited liquid velocity information due to the restriction on the maximum 

measurable velocity using pulse wave ultrasound by the Nyquist criterion 

(Evans and McDicken, 2000). Also, the characteristics of the reflected wave are 

being influenced by the shape and size of the interface about the ultrasound 

wave length (Murai et al., 2010).  

Yeh et al. (2001) reported on an advanced ultrasonic flow meter which 

comprises multi-path transducer with pattern recognition to predict the presence 

and chances of flow fields.  Data from CFD and experimental results were used 

to train the flow pattern algorithm of the flow field recogniser. The algorithm was 

fed into the ultrasonic flow meter. In addition, it was claimed that flow patterns of 

various flow can be identified using this technique.  

2.3.7  Hybrid systems (Ultrasound and another sensor combination) 

In multiphase flow, ultrasonic techniques have the potential for both phase 

velocity and phase fraction measurement, although they have not been applied 

to commercial three-phase flowmeters yet (Thorn et al., 2013). However, the 
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ultrasonic meters’ performance is affected by factors such as the number of 

scatters per unit volume, the distribution of scatters and their velocity profile 

across the pipe. Also, the ultrasonic attenuation is greatly dependent on the flow 

regime of multiphase flows and the input signal frequency of the transducer 

(Rajan et al., 1993). Recent developments in other ultrasonic techniques for 

multiphase flow measurement have progressed considerably. 

Usually, the phase fraction and phase velocity measurement are measured by 

at least two devices or two independent measurements of one device. This 

approach is achieved by separately metering the phase flow rate and the phase 

fraction (Tan et al., 2015). Several combinations of two sensors for gas liquid 

flow measurement have been reported in the literature.  Xing et al. (2014) used 

a combination of ultrasonic  gas flow meter and Coriolis flowmeter for metering 

the gas-liquid two phase flow of low liquid loading. Various models to represent 

the gas and liquid flow rate, density of mixture flow are used to obtain the 

coupling models for the two instruments.  A theoretical method of data fusion of 

an electromagnetic (EM) flow meter, electrical resistance tomography (ERT) 

and two-phase flow models has been developed to improve the accuracy of the 

EM meter for the measurement of gas-liquid slug flow in a vertical pipe.  The 

feasibility of a two-phase flowmeter was achieved by using simulation 

measurements of the averaged velocity, liquid flow rates and gas void fraction. 

Obviously, this approach requires invasive sensors and relies on the electrical 

conductance of the fluid (Deng et al., 2011; Xing et al., 2014).  Similarly, Meng 

et al. (2010) presented an experimental combination of a liquid (Venturi) 

flowmeter and ERT sensor for air-water two-phase flow measurement.  Three 

aspects of the flow measurement techniques were acquired with the ERT 

sensor: the flow regime identification, the void fraction using the conductance 

signal and void fraction model, and lastly, establishing a mass quality-void 

fraction correlation from the void fraction results. The gas-liquid mass flow rate 

is measured with the Venturi differential pressure across the tube and the mass 

quality. Experimental results show the method developed has been accurate 

within the data tested but both mass quality and fluid flow rate measurement 

rely on correlations. A chapter of this thesis is on two-phase flow measurements 



 

48 

with ultrasound sensors and gamma densitometer techniques and an overview 

of those methods is given in that chapter.  

2.3.8 Ultrasonic Tomography for Two-Phase Flow  

In most industrial processes involving two phase flow, ultrasonic tomography is 

preferred over other techniques such as electrical resistance/capacitance 

tomography. Ultrasonic tomography is primarily concerned with reconstruction 

of the distribution of gas/liquid over a cross section of a pipe based on the 

arrival or non-arrival of the transmitted pulse at a fixed time. It is often used for 

flow regime identification and the measurement of void fraction cross section on 

multiphase flow. Ultrasonic tomography is non-invasive, non-intrusive and it 

allows measurement of real-time data without interruption. There are three 

principles for implementing ultrasonic tomography: (i) transmission mode, (ii) 

reflection mode and (iii) diffraction mode.  

Xu and Xu (1998) have developed an ultrasound tomography for gas-liquid two-

phase flow based on binary logic operation and a method of time-probation 

along a straight line for flow regime identification. The identification requires a 

real time measurement which involves electronics and a fast image 

reconstruction algorithm.  Rahim et al. (2007) have developed a UT that uses 

an image processing technique for executing real time image reconstruction at 

10 frame/seconds. It is an application of the transmission-mode tomography; 

i.e. a non-invasive UT using 16 transducers placed round the pipe and a 

reconstruction algorithm with fan-shaped beam for scanning geometry.   

Ultrasonic tomography has a few limitations as there is a tendency that the 

acoustic wave propagating in gas/liquid interface could be lost because of 

acoustic wave inability to penetrate the gas/liquid interface in the transmission 

mode. Also maximum speed to capture an image is limited by the depth of the 

beam, i.e. the system sensitivity and resolutions are determined by the number 

of transducers and signal processing used. The spatial imaging error would be 

reduced with increased number of transducers which can measure the void 

fraction and identify the flow regime but it was tested on static experiment to 

gauge performance. Therefore, further investigation is required to extend its 

application to industry standards (Rahim et al., 2007). 
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2.4 Ultrasound Signal processing methods 

The Doppler signals contain the velocity information and they are a stochastic 

process that is not stationary signals. So, the velocity related information is 

extracted from the Doppler signals by determining their frequency contents 

(spectrum). The Doppler signals were digitized for predetermined intervals at a 

fixed rate and stored on disk. This discrete record is transformed from the time 

domain to display time varying frequency (spectrum) of the Doppler signal 

which enables the assessment of velocity waves and detection of spectral 

broadening associated with lesion-induced flow disturbance (Fish et al., 1997). 

Methods of extracting the required frequency from the sampled digitised 

Doppler signals are discussed below (Morriss and Hill, 1991).  

2.4.1 Spectral estimations and signal analysis 

The objective of the processing is to evaluate those waveforms of the reflected 

signal using spectral analyses techniques to determine the shape and speed of 

the flow. It is difficult to separate the ultrasound Doppler signals into the flow 

regimes using the values of the standard waveform indices, because there are 

noticeable overlaps in their sonographs. Whenever there is a need to extract a 

power spectrum for a Doppler signal, it has to be transformed into a frequency 

domain so as to produce a spectrum estimator and FFT is the most popular 

spectrum estimator (Evans and McDicken, 2000). The FFT method has an 

advantage in the manner in which the spectrum is produced for the Doppler 

signal. Especially, the real time Fourier analysis is able to visualise the 

complete Doppler spectrum rather than extract a single numerical parameter 

(Jones, 1993). 

Bergland (1969) has summarised the merits and demerits of using an FFT for 

signal analysis. The advantages are 1- computing a power spectrum as a 

function of time, 2- digital filtering by convolution of two time series, and 3- 

correlation between two signals. On the other hand, some drawbacks of the 

FFT are 1- aliasing: this problem arises when signals of the high frequency 

component of the time domain pass on as low frequencies when the sampling 

rate is low. However, this problem can be remedied by adhering to the Nyquist’s 

criterion. 2- leakage: windowing manifests itself as “leakage” in the spectral 
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domain, i.e., energy in the main lobe of a spectral response “leaks” into the side 

lobes, obscuring and distorting other spectral responses that are present. These 

drawbacks of the FFT have prompted an examination of alternative techniques 

of analysis (Fish et al., 1997). 

Time-frequency representation of a signal using STFT is known as a 

spectrogram. It is created by dividing the signal into small segments and then 

FFT is applied to each of these segments. These segments are further 

multiplied by window frame so that the transformed signal is zero outside the 

window; however, this limits the resolution of the spectrogram. As a result, 

alternative methods of spectral analysis are to be explored.  The Welch’s 

method, which is based on the FFT, was used for the spectral analysis of the 

two-phase flow Doppler signals. The signals are divided into overlapping 

segments; each data segment is windowed to compute the periodgrams and 

then the average of the periodograms is plotted. 

Wavelet Transforms (WTs) Methods 

In the STFT method, the type and width of the analysis window are fixed in the 

entire time-frequency representation; the resolutions are unchangeable. 

However, the time and frequency resolution of the wavelet is not fixed over the 

entire time-frequency representation. Therefore, the time resolution becomes 

better at higher frequencies and the frequency resolution becomes at low 

frequencies. The time-frequency resolution depends on the choice of the 

mother wavelet (Zhang et al., 2003). The Doppler signal from the ultrasound 

analysis is highly non-stationary and STFT is not the appropriate tool to do the 

analysis (Keeton and Schlindwein, 1997).   

WTs represent the signals in terms of both scale and space at once so as to 

view fluctuations in various patterns of two-phase flow. This representation 

shows the measure of the energy contribution of each spectrum (Farge, 1992).  

WTs have been successfully utilised in the study of two-phase flow 

classification (Nguyen et al., 2010). Kulkarni et al. (2001) applied wavelet to 

measure the fraction of gas in a bubbly vertical flow. Wu et al. (2001) used a 

wavelet theory for filtering and analysing the signals of pressure in an oil–gas–
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water multi-phase flow, and Shang et al., (2004) used a wavelet signal 

extraction technique to investigate the instability of two-phase flow.  

The idea of signal decomposition using the DWT is well established. However, 

its usefulness lies in its ability to manipulate the wavelet coefficients to identify 

the characteristics of the signal as distinct from the original time signal (Soltani, 

2002). In this work, decomposition of the ultrasound Doppler signal from the 

two-phase flow was carried out using the DWT.  It is important to choose an 

appropriate wavelet and the number of decomposition levels in the analysis of 

the signal using the WTs (Übeyli and Güler, 2005). The Doppler signals of the 

flow were decomposed continually until all the dominant frequency ranges were 

viewed. The computation of the DWT of the coefficient was done using the 

MATLAB software package (Misiti et al., 1996).  In this thesis, wavelet transform 

is used to analyse the two-phase flow Doppler signal to generate features which 

are then used as inputs into the neural network models.  

Alternative (“Modern”) Spectral Analysis Methods 

The most prominent limitation of FFT is that of frequency resolution, i.e. the 

ability to distinguish the spectral responses of two or more signals. The fact that 

some defects of FFT are quite obvious has meant searching for  and application 

of alternative methods to spectral analysis. Modern methods of spectral 

analyses use a digital filter to model whose input is white noise.  The 

characteristic of the filter (estimated coefficients) is adjusted to obtain a match 

with the autocorrelation of the function of the signal of interest and filter output. 

The signal spectrum will have the same shape as the frequency response of the 

signal. Modern spectral analysis techniques are named according to the filter 

used and the order, such as AR (autoregression), MA (moving average), and 

ARMA (autoregressive moving average) etc. (Fish et al., 1997). 
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Figure 2-14 Concept behind parametric or model-based spectral estimator 

(Fish et al., 1997) 

 

The Doppler signal from the ultrasound analysis is highly non-stationary.  So  an 

appropriate tool is necessary to undertake the analysis (Keeton and 

Schlindwein, 1997). More importantly, in order to increase the resolution of the 

frequency shift, which is proportional to the flow velocity, a longer time duration 

is needed. Besides, the signal duration is inversely proportional to the frequency 

of the resolution, and thus the resolution of the velocity measurement (Morriss 

and Hill, 1991). This means that the stationary time domain methods such as 

FFT or STFT may not be valid. The spectral components resulting from a large 

interval will be stretched as a result, a reduced time resolution. The alternative 

method, model-based technique, autoregressive AR is better than the STFT, 

but its own drawbacks are that the length of the stationary interval determines 

the time and frequency resolution of the time-frequency representation, and 

also lower model orders are selected for reduced time interval (Zhang et al., 

2003).  

The accuracy of Doppler shift estimation is governed by the uncertainty 

principle about the product of time duration and frequency bandwidth, as: 

∆𝑡∆𝑓 ≥ 1/(4𝜋) (2-

26) 

In a time-frequency resolution, the time-frequency is defined as a rectangle 

which has an area as  ∆𝑡∆𝑓 which satisfies Heisenberg’s uncertainty principle-

equation (3-3), i.e. the smaller the value of the ∆𝑡∆𝑓 product, the higher the 

time-frequency resolution (Matani et al., 1996), where:  ∆𝑡  = time duration or 

radius of the time-domain window and  ∆𝑓 = bandwidth of a generic function or 

radius of the frequency domain.  

Previously, in (Fan et al., 2013) a continuous wave ultrasound Doppler 

flowmeter was used to determine the liquid distribution in slug flow. The 

frequency shift of the ultrasound signal was estimated using AR and STFT to 

obtain the velocity distribution in both liquid slug and film velocities.  However, in 

order to increase the resolution of the frequency shift, a longer time duration is 
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needed. This means that the stationary time domain methods such as FFT or 

STFT may not be valid. An alternative is a model-based technique that is better 

than the STFT. But this has its own drawbacks, because the length of the 

stationary interval determines the time and frequency resolution of the time-

frequency representation.  

The HHT is adaptive and can provide better time and frequency resolution to 

the ultrasonic measurement. The HHT has been applied to the processing of 

two-phase flow signals such as in: differential pressures (Ding et al., 2007), 

Doppler signal (Ye et al., 2008). Ding et al. (2007) used the HHT method to 

determine the energy distribution of gas-liquid two-phase flow from pressure 

fluctuation signals.  

In this study, the application of the HHT has allowed decomposition of the 

ultrasonic signals into their intrinsic mode components (IMFs) (Huang et al., 

1998). Therefore, as an alternative way to estimate the slug flow parameters, 

from the ultrasound signal, the IMFs are further analysed for the measurement 

of mean flow velocities and to obtain distinct signal characteristics of the slug 

flow.  The performance of the ultrasonic method of determining the slug 

parameters is assessed against reference conductivity probes slug parameter 

measurements.  

2.4.2 Time domain estimations 

Time domain signal processing is a major technique for estimating the 

displacement of scatterers in flow measurement processes such as time 

domain correlation in flow velocity measurement. To illustrate, ‘at time 𝑡 = 𝑡0 a 

scatterer is located in position X and at time 𝑡 = 𝑡0 + 𝑇  that scatterer has 

moved to a new position Y. Therefore the speed is (𝑌 − 𝑋)/𝑇   where Y is the 

time difference between the change in position by the scatterers (Foster et al., 

1990b). This is a key feature that distinguishes it from the Doppler technique 

which estimates the velocity of the scatterers (Hein and O'Brien, 1993).   

Autocorrelation techniques have also been suggested to estimate the mean 

frequency of the Doppler spectrum (Allam and Greenleaf, 1996). Spectral 

Doppler and autocorrelation are called narrow-band techniques. Similarly, 

Foster et al. (1990a) have developed a method of blood flow velocity profile 
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measurement using time domain cross-correlation of parallel ultrasound 

echoes. Cross-correlation was used to obtain the time difference between the 

transmissions of two parallel pulses. Subsequently, the difference was used in 

calculating the velocity profile of blood flow. This technique was extended by 

Yamanaka et al. (2002) to calculate a novel velocity profile measuring technique 

by using ultrasonic time domain cross-correlation. 

In multiphase flow measurement, time-domain is either used for time delay 

analysis or time series analysis. Roosnek (2000) developed a novel digital 

signal processing method for the determination of pulses’ transit times in 

ultrasonic gas flow measurement using an application of least square method 

recorded on received ultrasonic pulses. In addition, an effective algorithm for 

reduction or elimination of cross-talk between transducers across the pipe is 

presented. Jin et al. (2003)(Jin et al. 2003) have used non-linear time series 

analyses for conductance signals obtained from monitoring conditions, such as 

chaos, fractal and Kolmogorov entropy to characterise flow pattern in a vertical 

upward flow. They concluded that non-linear time series analysis is a valuable 

tool for flow enhancing, flow pattern identification.  

Cross-correlation methods can be implemented with either continuous wave or 

pulse echoed ultrasound based.  Schneider et al. (2005) demonstrated the 

principle of ultrasonic cross-correlation using continuous wave. Also, Xu et al., 

(1988) applied a pulse echoed ultrasound wave to implement a cross-

correlation flow measurement system by amplitude modulation of the pulse 

echoed ultrasound wave passing through a gas bubble /liquid mixture. 

2.4.2.1 Echo intensity measurement for pulse echo ultrasound  

An echo intensity technique is applied to the echo signals to measure the 

distances of the two-phase flow interfaces and then converted into liquid level 

measurement. However, the received echo signals contain the desired interface 

signal, noises and multiple reflections. Therefore, the echo intensity technique 

signal processing must include a mechanism for allowing only the signals from 

the interface by limiting the computed to the pipe and all other repetition echo 

signals are ignored (Masala, 2004). This study investigates the technique of 
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using of a single beam pulse-echo ultrasonic system to measure the liquid layer 

thickness of a gas-liquid two-phase flow in a horizontal pipe. 

2.4.3  Neural Networks 

Liu et al. (2001) suggested that the Neural Network (NN) has become an 

investigative tool in pattern recognition, identification, classification, speech 

recognition and also the application of a multi-layer perceptron and a radial 

basis function model for mass flow error in Coriolis mass flowmeters under two 

phase flow.   Also, Luntta and Halttunen (1999) have applied NNs to investigate 

the velocity profile dependence of ultrasonic transit time flow meters. 

Specifically, feed-forward NNs can provide a non-parametric framework for 

representing non-linear functions, while single layer NNs with linear neurons  

have been used for the computation of errors in piping configurations.  

ANNs’ attactiveness come from their information processing characteristics, 

such as the ablity to  model non-linear relationships between input variables 

and required ouput by function approximation methods, and also in their 

capabilties to identify complicated relationships for non-linear mapping using 

pattern recognition algorithms (Basheer and Hajmeer, 2000; Hernández et al., 

2006). In multiphase flow measurement, pattern recognition is used for flow 

regime identification/classification in which input variables are classified as a 

member of a predifined flow regime. In order to obtain objective flow regimes 

identification, ANNs are often preferred over statistical methods because of their 

fast responses and simplification (Mi et al., 2001a).  

Also, ANNs have good performance on pattern recognition due to their 

efficiency and available learning algorithms (Jain et al., 2000). With regard to 

flow regime classification, the ANN has advantages over other analytical tools 

such as Expert System and Clustering. The former requires prior information on 

the flow regime which could be affecting its objectivity; similarly, the latter may 

not affect performance accurately due to its poor handling of transitional data 

points (Hu et al., 2011). Usually, the process of NN development is by training 

the network to recognise the measurement error in training data and then the 

network tests on another set data. If the trained network is accurate enough 

then it is implemented for online measurement for prediction error correction 
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(Liu et al., 2001). More importantly, NNs would offer a non-linear mapping 

between the ultrasound input signals and the predicted flow regimes. So the 

use of the ANN avoids the need for calibration of the multiphase flowmeter 

(Figueiredo et al., 2016).  

Seleghim (2010) developed a numerical simulation measurement of interfacial 

area and volumetric fraction in two-phase flow using an acoustic signal and 

ANN to investigate the feasibility of the application of the ultrasound system for 

a clamp-on flow measuring system. They found that the trained ANN models 

were able to estimate the values of the volumetric fraction and the interfacial 

area.  Similarly,  Figueiredo et al. (2016) employed an ultrasonic methodology 

based on pulse wave ultrasound transducers which operates on the principle of 

signal attenuation detection. The ultrasound signal attenuation was analysed 

and incorporated with ANN for flow pattern detection and void fraction 

measurement. They suggested that the flow regime’s identification in the 2-in 

pipe was limited to bubbly flow and slug flow only. The technology presented is 

appropriate for the detection of the GVF and flow regime determination in 

multiphase flow. However, there does not appear to be any consideration of the 

flow regimes, except for the bubbly flow and slug flow. According to the authors, 

studies on the two-phase flow regimes classification using a clamp-on 

continuous wave Doppler ultrasound and neural network have not been 

reported in the open literature.  

Therefore, in the ultrasound and neural network application, the waveform 

indices’ values were not used as inputs but rather two feature extraction 

techniques were performed to generate the inputs to the ANN (Übeyli and 

Güler, 2005). Four different methods of spectral analysis of the Doppler signal 

were used to view the various signals of the flow: FTT, STFT, PSD and WT.  

2.4.4 Models for Hybrid sensors for two-phase flow measurement 

A combination of two instruments to measure two-phase flow will necessitate 

the use of models. Fischer (1994) explained the application of a Pitot tube 

single phase flow measurement model into a two-phase flow model.  

Subsequently, a phase slip model of unity ratio was substituted into the model 

to obtain a two-phase flow mixture flow model of the total mass flow. The 
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mixture flow model was used for the gas-liquid flow. However, the Pitot tube is 

an intrusive instrument and it incurs some disruption to the flow. Huang et al. 

(2005) showed that the single phase flow model of the Venturi flow meter and 

homogeneous model of gas-liquid two-phase flow can be used to obtain the 

parameters of the gas-liquid two-phase flow measurement. The combined 

models take the input of the void fraction from an ECT measurement and 

differential pressure measurement from the Venturi flow meter. The 

investigation demonstrated is on a pilot scale and further study of the 

methodology was recommended.  

Similarly, evaluation of the no slip model to achieve a combination of two 

sensors’ measurements to obtain two-phase flow is interesting. A combination 

of a Venturi flow meter and vortex flow meter measurement of gas-liquid two-

phase flow was achieved at low void fraction for the no slip model. The 

methodology assumed that the mixture density was the sum of the fractional 

densities of the constituent phases which was then substituted into the mas flow 

measurement equation of the Venturi flow meter. The approach was able to 

provide measurement with reasonable accuracy but it is limited to the low void 

fraction.  

An experimental application of the combination of the two instruments in which 

the effect of flow regime was taken into the consideration was described by 

(Meng et al., 2010). A Venturi flow meter and ERT sensor for the measurement 

of gas-liquid two-phase flow was achieved and real time identification of the flow 

regimes with the ERT was incorporated into the models of the two-phase flow. 

They found that the Butterworth void-fraction-mass quality and Collins 

Correlation for two-phase flow are the best performing models.  

Interestingly, there are other applications of the hybrid sensor which do not 

include pressure based sensors. A simulation based fusion model of 

measurements from electromagnetic flow meter and ERT was explained by 

Deng et al. (2011). The result of the simulation was verified by theoretical 

analysis of slug flow measurement. This investigation has laid a good 

foundation for further studies to test the methodology experimentally as both of 

the sensors are non-intrusive. Another, non-pressure sensors-based 
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combination of  ultrasonic gas flowmeter and Coriolis flow meter  for two-phase 

flow measurement for experimental measurement of horizontal wet gas flow 

was described by Xing et al. (2014). A coupling model which uses the 

measurements of the ultrasound flow and the Coriolis flow meter as input was 

developed with the use of two sub-models from the Coriolis flow meter for mass 

flow measurement. It has been found that the method achieved has a very high 

accuracy under the conditions tested but it was tested on single pressure data. 

So there is a need for further investigation and further study for validation. 

2.5 Summary 

Gas/liquid two-phase flow is a very complex process and yet it is widely being 

encountered in a variety of processing industries, e.g. petroleum, chemical, 

nuclear reactors, etc. Two phase flow measurement is important for predicting 

liquid holdup, pressure gradient and flow patterns. For instance, changes in the 

flow rates of wells producing into a flow line could change the liquid holdup.  

The effect is overloading of the processing equipment. Other phenomena that 

hamper two-phase flow metering are slippage between phases, change of flow 

regime and gas-liquid interface characteristics – smooth or wavy (Beggs and 

Brill, 1973). 

In multiphase flow, the ultrasonic meters’ performance is affected by factors 

such as the number of scatterers per unit volume, the distribution of scatterers 

and their velocity profile across the pipe. Also, the ultrasonic attenuation is 

greatly dependent on the flow regime of multiphase flows and on the input 

signal frequency of the transducer (Rajan et al., 1993). However, ultrasonic 

techniques have the potential for both phase velocity and phase fraction 

measurement, although they have not been applied to commercial three-phase 

flowmeters yet (Thorn et al., 2013). Recent developments in other ultrasonic 

techniques for multiphase flow measurement have progressed considerably. 

Neural networks application is based on real time analyses and it could be 

effective in recognising and removing or reducing common ultrasonic flow 

measurement problems: cross talk between transmitting and receiving 

transducers. Waveform analysis is indispensable in ultrasonic flow 
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measurement systems and pattern recognition processes can be used to 

complement it. 

Multiphase flow rates measurement using ANNs is often implemented using a 

multilayer perceptron network by training the network to establish a relationship 

between inputs and output to estimate each phase flow rate. ANNs are popular 

for pattern recognition due to their efficiency and available learning algorithms 

(Jain et al., 2000). 
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3 Application of CW Doppler Ultrasonic technique 

3.1  Introduction 

Two-phase slug flow is the most common flow regime in a horizontal flow pipe. 

It is intermittent, transient and its hydrodynamic parameters are difficult to 

predict. Determinations of the hydrodynamic parameters are required for many 

design calculations in pipes and downstream equipment (Romero et al., 2012). 

Both non-contact and contact types of sensor are being used to measure 

parameters of the two-phase flow. The contact instruments include conductivity 

probes and hot-wire film measurement both of which have the ability to identify 

flow patterns and liquid holdup measurement. But the contacts measure 

requires the sensor to contact the fluid and non-contact techniques employ 

sensors such as ultrasonic, optical and radiation techniques. The optical 

methods, such as PIV and Laser Doppler sensor, have good capabilities to 

determine the flow structure in terms of spatio-temporal resolutions but they 

have the disadvantage of requiring a transparent measurement section and are 

also expensive (Rajan et al., 1993). 

The HHT has been applied to the processing of two-phase flow signals of many 

sensor fluctuation signals, such as differential pressures (Ding et al., 2007), 

electrostatic (Hu et al., 2011), Doppler signal etc., and is considered to be 

potentially viable for non-stationary signal analysis. Besides, the HHT, unlike 

the other Fourier based method, is not affected by the uncertainty principle 

which limits the time and frequency resolution. Thus, it can be applied to 

provide high time and frequency resolution (Ye et al., 2008). 

In this chapter the continuous wave ultrasound Doppler sensor is utilised to 

compare the effectiveness of the traditional signal process based on Fourier 

transform and the modern adaptive of the HHTs to measure liquid flow velocity 

and characterise four two-phase flow regimes in horizontal flow. 

The velocity information of the flow is measured by the Continuous Wave 

Ultrasonic Doppler (CWUD) using the HHT method of signal processing.  The 

Doppler ultrasound signals were obtained from experiment two-phase flow 

measurement system. The flows tested were single phase water flow and two-

phase gas-liquid flow, including flow regimes such as slug, stratified wavy, 
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stratified smooth and bubbly flows. The application of the HHT has allowed 

decomposition of the ultrasonic signals into its intrinsic mode components 

(Huang et al., 1998). These components were further analysed for mean 

frequencies of the flow. Distinct signal characteristics for each of the four flow 

regimes investigated were obtained, which can be used for flow regime 

identification (Ding et al., 2007), and estimation of two-phase flow parameters 

such as slug frequency and bubble lengths. The HHT is reported to be 

considerably more promising than the Fourier based methods of signal analysis. 

It is adaptive and can provide better time and frequency resolution. 

3.2 Experimental Setup and Procedures 

3.2.1 Air-water supplies 

Air supply into the rig is provided by a compressor of a Free Air Delivery system 

to a receiver tank of 2.5m3. The provision of the receiver tank between the rig 

air supply and the air compressor stabilises the air supply system (Al-Lababidi, 

2006).  The flow rates of the air are controlled by hand operated valves and 

they are measured at the inlet of the pipe air supply pipeline using a gas turbine 

flow meter (QFG 25B/B/EP1, Quadrina) before the injection point of the rig 

where the air is mixing with water. Pressure and temperature gauges are 

attached near the air flow meter so as to compute the standard volumetric flow 

rate of the air.  

The water is pumped into the loop from a storage tank of 2𝑚3 capacity using a 

Worthington Simpson centrifugal pump with a maximum flow rate of 40𝑚3/hr 

and discharge pressure of 5bar(g). The flow rate water is controlled by 

regulating hand operated manifold valves (V-3 and V-4). The regulation of the 

manifold valves allow some portion of the water flow to return to the tank and 

sends the desired flow rate into the rig and then it mixes with air at the mixing 

point before the test section.   
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Figure 3-1 Part of air-water test rig showing the instruments used in conducting 

the experiment  

3.2.2 The test section of the horizontal flow pipe test 

The test section is made of Perspex pipe for observation and it was installed 

into the rig using flanges at 21m (420 hydraulic diameters, D) downstream from 

the water supply tank. The 420 D length available pipeline in the experimental 

apparatus before the test section was thus enough for guaranteeing the 

development of the various flow regime profiles of the horizontal two-phase 

flow. Two conductance probes, static pressure transducer, ultrasound Doppler 

sensor, ultrasound pulse echo sensor and temperature sensor (thermocouple 

wire) were installed in the test section.  

3.2.3 Ultrasonic Doppler sensor 

The ultrasound Doppler flowmeter is a non-invasive instrument which is used 

for making the measurement entirely from the outside of the pipe. It is a 

commercial ultrasound Doppler sensor (DFM2 United Automation Ltd UK) with 

an operating frequency of 500kHz. The transducer of the sensor has two 
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piezoelectric crystals: one for generating the sound wave and receiving the 

ultrasound reflected by the scatters in the fluids such as air bubbles or particles 

in the flow. The ultrasonic of the flowmeter is based on continuous ultrasound 

waves which propagate into and are reflected back to the sensor by scatters in 

the flow. 

The operation of the ultrasound Doppler flowmeter is by transmission of high 

frequency ultrasound by the sensor through the coupling gel and pipe into the 

fluid. Some portion of the ultrasound waves is reflected by the scatters in the 

flowing fluid back into the receiving element of the sensor. This sending and 

receiving ultrasound causes a Doppler frequency shift of the ultrasound 

waveform which is directly related to the velocity of the fluid.  

Therefore, the ultrasound Doppler is basically measuring the frequency shift, 

processing the signal and calculating the flow velocity. The flowmeter has a 

digital display which indicates the flow velocity measured by the flowmeter in 

feet per second. Doppler flow meter operation is dependent on the presence of 

scatters in the flow, either as gas bubbles or solid particles. The basic 

components of a Doppler flow meter system are shown in the Figure 3-1and the 

relationship between the velocity of the scatters 𝑣 and the Doppler shift 𝑓𝑑 is 

given in equation (3-1 (Sanderson and Yeung, 2002). 

𝑓𝑑 = 2𝑓𝑡

𝑣

𝑐
cos 𝜃 (3-1) 

  
where 𝑣 = average flow velocity, 𝑐 = velocity of sound in the fluid,𝑓𝑑 = Doppler 

shift frequency,𝜃 = angle between ultrasound beam and flow velocity and 𝑓𝑡  = 

ultrasound transmitted frequency. 

The sensor of the ultrasound Doppler can be easily fitted on an existing pipeline 

without breaking into the pipe and it is independent of the pipe thickness and 

fluid pressure (UAL, Ltd). It is suitable for pipes made of metal, plastic, ceramic 

etc. In this study the sensor was clamped onto the PVC pipe with the aid of a 

Jubilee Clip. The recommended sensor location is at least 10 pipe diameters 

away from valves, bends to prevent incorrect velocity measurement due to 

swirl, cavitation and turbulent eddies.  
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The manual supplied by the manufacturer of the ultrasound Doppler flowmeter 

contains a recommendation for applying a good acoustic coupling between the 

face of the sensor and the pipe surface at the location where the sensor would 

be clamped on. In the study, the ultrasound couplant is a gel containing 

propylene glycol and water. Figure 3-2 shows the ultrasound Doppler flowmeter 

sensor clamped on to a horizontal pipe with a clip at the 6 o’clock position. A 

poor coupling of the sensor could affect the accuracy of the measurement as 

the strength of the received signal will be diminished.  

 

 

 

 

 

 

 

 

Figure 3-2  Schematic diagram of Doppler shift (Banerjee and Lahey, 1981) 

The sensor has a signal processing unit with two output channels: one for flow 

velocity display (readout) and the other for recording the reflected ultrasound 

signals from the flow which are sent to the data acquisition system. The data 

acquisition system includes a signal conditioner (12-bit NI-card NI6040E) and a 

personal computer with LabVIEW software installed on it. The LabVIEW 

application on the PC was programmed to control the sampling frequency and 

record the data onto disk storage for offline processing. 

3.3 Signal Processing and Frequency Shift Analyses  

The objective of the processing is to evaluate those waveforms of the reflected 

signal using a spectral analyses technique to determine the shape and speed of 

the flow.  

3.3.1 Fourier Transform and Wavelet Transform 

Fourier transform uses frequency domain for the analysis of the Doppler signal 

to extract the frequency contents of the time domain Doppler signal (Barber et 

al., 1985). This process detects the spectral component of the signal and 
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assumes that the original signal is slightly periodic since the sum of the 

sinusoidal function is periodic (Poesio, 2008). FFT is a process of separating a 

waveform into a series of single frequency, sine wave components which is 

possible to go back and forth between the original waveform (time domain) and 

the frequency domain (Hedrick et al. 1995). The FFT method consists of 

calculating the next power of 2 (NFFT) from the length of the data sampled. The 

ultrasound Doppler signals obtained from the flow were analysed for flow 

velocity estimation using the FFT function in the MATLAB software package. 

The results of the FFT of the ultrasound signal are grouped and averaged to 

give the spectrum of the whole signal, as shown in Figure 3-3 (Poesio, 2008).  

 

Figure 3-3 Raw ultrasound signal and the FFT of the ultrasonic signal 

3.3.2 Mean Doppler shift frequency 

In order to estimate the flow rate, the Doppler system determines the average 

frequency of the signal and often the means of deriving the Doppler frequency 

shift from the frequency power spectrum is to use the intensity weighted mean 

frequency (equation (3-2) (Christmann et al., 1990; Evans and McDicken, 

2000). 

𝑓𝑎 =
∫ 𝑓(𝑆𝑎(𝑓) − 𝑆𝑡(𝑓))𝑑𝑓

∞

−∞

∫ (𝑆𝑎(𝑓) + 𝑆𝑡(𝑓))𝑑𝑓
∞

−∞

 
(3-2) 
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3.3.3  Resolution property of time-frequency analysis 

The Doppler signal from the ultrasound analysis is highly non-stationary.  So  an 

appropriate tool is necessary to do the analysis (Keeton and Schlindwein, 

1997). More importantly, in order to increase the resolution of the frequency 

shift, which is proportional to the flow velocity, a longer time duration is needed. 

Besides, the signal duration is inversely proportional to the frequency of the 

resolution, thus the resolution of the velocity measurement (Morriss and Hill, 

1991). This means that the stationary time domain methods, such as FFT or the 

STFT, may not be valid. The spectral components resulting from a large interval 

will be stretched as a result, a reduced time resolution. The alternative method, 

i.e. the model-based technique AR, is better than the STFT, but its own 

drawbacks are that the length of the stationary interval determines the time and 

frequency resolution of the time-frequency representation, and also lower model 

orders are selected for reduced time intervals (Zhang et al., 2003).  

The accuracy of Doppler shift estimation is governed by the uncertainty 

principle about the product of time duration and frequency bandwidth as: 

∆𝑡∆𝑓 ≥ 1/(4𝜋) (3-3) 

In a time-frequency resolution, the time-frequency is defined as a rectangle 

which has its area as  ∆𝑡∆𝑓  which satisfies Heisenberg’s uncertainty principle –

equation (3-3), i.e. the smaller the value of ∆𝑡∆𝑓 product, the higher the time-

frequency resolution (Matani et al., 1996).  

where  ∆𝑡  = time duration or radius of the time-domain window and  ∆𝑓 = 

bandwidth of a generic functions or radius of the frequency domain.  

3.4 Methodology 

3.4.1 Hilbert-Huang transform 

The HHT is a recently developed method for analysing non-linear and non-

stationary data. It comprises the empirical mode decomposition (EMD) method 

which allows any complex data set to be broken into small fixed units called 

intrinsic mode functions (IMFs) and the IMFs are then suitable for Hilbert 

spectrum analysis (HSA) to generate instantaneous frequencies (IFs). As a 
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result, the energy distribution of the signal is obtained in the time-frequency 

spectrum (Ding et al., 2007; Huang et al., 1998). 

3.4.1.1  Empirical mode decomposition (the sifting process) 

The EMD method breaks down the whole data set into a collection of the IMF 

and each IMF must satisfy the following two conditions: 

(1) in the whole data set, the number of extrema and the number of zero-

crossings must either equal or differ at most by one, and 

(2) at any point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero. 

The first challenge of the EMD is that it requires a narrow-band for a stationary 

Gaussian is Fourier transforms methods. The second is to modify the global 

requirement to a local one and this is required for not including any unwanted 

fluctuations in the instantaneous frequency.  

The EMD of a data series 𝑥(𝑡) is achieved by the following steps (Ding et al., 

2007; Huang et al., 1998) described below: 

1. Determine all the local maxima and local minima of the signal 𝑥(𝑡) and 

then interpolate all the local maxima to create an upper envelope 𝑥𝑚𝑎𝑥(𝑡) 

and lower envelope 𝑥𝑚𝑖𝑛(𝑡) to cover all the data set by using the cubic. 

Calculate the mean 𝑚1(𝑡) of the upper and lower envelopes as: 

𝑚1(𝑡) =
𝑥𝑚𝑎𝑥(𝑡) + 𝑥𝑚𝑖𝑛(𝑡)

2
 

(3-4) 

2. Subtracting the local mean 𝑚1(𝑡) from the data series 𝑥(𝑡) gives: 

ℎ1(𝑡) = 𝑥(𝑡) − 𝑚1(𝑡). Usually, ℎ1(𝑡) is treated as a candidate for an IMF 

to be tested to see if it qualifies as an IMF. Equation (3-4) will be 

repeated 𝑘 times until an IMF is generated when the mean envelope is 

closest to zero. Then the first component 𝐼1(𝑡), which has the highest 

frequency of the signal, is generated as: 

ℎ1(𝑘 − 1) − 𝑚1𝑘(𝑡) = ℎ1𝑘(𝑡),         𝐼1(𝑡) = ℎ1𝑘(𝑡)         (3-5) 

By generating ℎ1it is anticipated to meet the requirements of an IMF. But this is 

often not the case, as the process of the generation or sifting the ℎ1 may 

contain new extrema. As a result, the above sifting process is usually repeated. 

The sifting process functions in two ways: (1) to banish all riding waves in the 
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background of an IMF. This is necessary for the IF to be meaningful (2) to 

flatten uneven wave profiles. This is also required in case the neighbouring 

waves have very large amplitudes to have symmetry. However, the second 

function of the sifting process could annihilate the physical meaning of the IMF 

in the extreme. Consequently, a process for stopping the sifting is suggested as 

applying the standard deviation (SD), computed from two consecutive sifting 

results (Ding et al., 2007; Huang et al., 1998) 

Input data x(t)Input data x(t)

H(t) =x(t)-m(t)H(t) =x(t)-m(t)

Use cubic spline to construct upper and 
lower envelope with maximum and 

minimum respectively 

Use cubic spline to construct upper and 
lower envelope with maximum and 

minimum respectively 

Calculate the mean 
m(t) of the envelope

Calculate the mean 
m(t) of the envelope

X(t) = x(t)-h(t)X(t) = x(t)-h(t)

Is h(t) an 
IMF ?

Is h(t) an 
IMF ?

YesNo

 

Figure 3-4 HHT process in a flow chart 

1. The next step is to subtract ℎ1 from the remaining part of the data series 

𝑥(𝑡) and the result or the residue is now the new the data series. The 

residue 𝑟1(𝑡) is still rich in information of lower frequencies. 

Consequently, it would undergo the same sifting process. These 

procedures above will be carried out until the generated residue is 

smaller than the defined value, which is usually the lowest frequency, 

and the final result is then: 
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𝑟1(t) − 𝐼2(𝑡) = 𝑟2(𝑡) … 𝑟𝑛(𝑡) − 𝐼𝑛(𝑡) = 𝑟𝑛(𝑡) (3-6) 

𝑟𝑛(𝑡) is the characteristic of the signal which cannot produce any more IMF and 

In is the nth IMF.  Every IMF contains a lower frequency component than the 

preceding one. The above procedure of the EMD can be summed up to 

recreate the signal 𝑥(𝑡) (Ding et al., 2007; Huang et al., 1998). 

𝑥(𝑡) = ∑ 𝐼𝑖(𝑡)

𝑛

𝑖=1

+ 𝑟𝑛(𝑡) 
(3-7) 

3.4.1.2 Hilbert Spectral Analysis 

The sifting process of the signal using the EMD produces the IMFs. The HSA is 

applied to each of these IMFs to calculate the aptitudes, and instantaneous 

frequencies in a frequency distribution according to equation (3-8) which is 

called the Hilbert Spectrum (HS).  The HS allows the local characteristic of the 

signal to be examined.  For an arbitrary time series, X(t), the Hilbert transform, 

Y (t), can be expressed as (Huang et al., 1998): 

𝑌(𝑡) =
1

𝜋
𝑃 ∫

𝑋(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′

∞

−∞

 
(3-8) 

where: 𝑃 denotes the Cauchy principal value. The transform exists for all 

classes of 𝐿𝑝. 

When the HT is applied to each of the IMFs, the data can be expressed as: 

 

𝑋(𝑡) = ∑ 𝑎𝑗(𝑡)𝑒𝑥𝑝(𝑖 ∫ 𝜔𝑗(𝑡)𝑑𝑡)

𝑛

𝑗=1

 
(3-9) 

Equation (3-9) produces the instantaneous frequencies and amplitudes of the 

data. According to Huang et al. (1998) if the data were to be expressed in 

Fourier transform they would be: 

𝑋(𝑡) = ∑ 𝑎𝑗(𝑡)𝑒𝑥𝑝𝑖𝑗𝜔𝑡

∞

𝑗=1

 
(3-10) 

Both 𝑎𝑗 and𝜔𝑗 are constants. A comparison of equations (3-9) and (3-10) shows 

that the EMD can be thought of as a generalised Fourier transform. But the 

distinguishing features of equation (3-10) are that the IMF expansion, the 

amplitude and the frequency representation are not constants. This enables us 
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to represent the signal with a function whose amplitudes and frequency may 

vary with time Consequently, this analysis can deal with non-linear and non-

stationary data (Ngo, 2013). 

3.4.1.3 Instantaneous Frequency 

The Hilbert transform of the equation can be expressed analytically as: 

𝑧𝑖(𝑡) = 𝑐𝑖(𝑡) + 𝑗𝐻[𝑐𝑖(𝑡)] = 𝑎𝑖(𝑡)𝑒𝑗𝜃𝑖(𝑡) (3-11) 

where 𝑎𝑖(𝑡) = √𝑐𝑖
2(𝑡) + 𝐻2[𝑐𝑖(𝑡)] 

(3-12) 

and 𝜃𝑖(𝑡) = arctan (𝐻[𝑐𝑖(𝑡)]/𝑐𝑖(𝑡)) (3-13) 

are the instantaneous amplitude and instantaneous phases respectively. 

Expressing equation (3-13) with respect to time gives the instantaneous 

frequency (Ye et al., 2008)) 

𝑓𝑖(𝑡) =
1

𝜋

𝑑𝜃𝑖(𝑡)

𝑑𝑡
 

(3-14) 

3.4.1.4 Marginal Spectrum 

In the HS, the amplitude and frequency are functions of time (𝑡) and 

frequency (𝜔), the amplitude or the energy (squared of the amplitude) in terms 

of a function of time and frequency 𝐻(𝜔, 𝑡). The marginal spectrum (MS) can be 

expressed as: 

ℎ(𝜔) = ∫ 𝐻(𝜔, 𝑡)𝑑𝑡
𝑇

0

 
(3-15) 

where, [0, 𝑇] is the total time of the data. The MS depicts the collated 

amplitudes of the data and shows a measure of total amplitudes of each IF. It is 

an alternative to the traditional spectrum, such as the one from the Fourier 

transforms (Ngo, 2013). 

Cross-fertilisation of the EMD and the HSA is given the appellation HHT. The 

HHT is designed particularly for analysing non-linear and non-stationary data. It 

is based on differentiation rather convolution (Huang and Wu, 2008).  
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Figure 3-5 Comparison of marginal Hilbert spectrum with Fourier transform of 

the four ultrasonic two-phase flow data signals  

3.4.1.5 Mean frequency estimation using HHT 

The mean instantaneous frequency of the data is estimated from the Hilbert 

transforms of the IMFs and is computed as (Xie and Wang, 2006): 

𝑀𝐼𝐹(𝑗) =
∑ 𝜔𝑗(𝑖)𝑎𝑗

2(𝑖)𝑚
𝑖=1

∑ 𝑎𝑗
2𝑚

𝑖=1 (𝑖)
 

(3-16) 

where 𝑚 is the size of the data point, 𝜔𝑗(𝑖) is the weighted mean frequency  

𝑎𝑗
2(𝑖)  weighted mean of the amplitudes. The mean frequency estimation using 

the HHT provides estimations based on each frequency which is considered to 

be a true representative of the signal as the mean frequencies estimated are 

computed based on the relative magnitude of each frequency band. 
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3.5 Results and discussion  

The results, which are described below in sections 3.5.1 and 3.5.2, demonstrate 

the application of the HHT for ultrasonic signals of gas-liquid two-phase. The 

HHT techniques were applied both for the determination of the mean Doppler 

frequency shift single phase flow and further adaptive analysis of the signals of 

the two-phase flow.   

3.5.1  Single phase flow metering 

For the purpose of calibration, a single phase water flow was metered using the 

ultrasonic sensor and the electromagnetic flowmeter. The measurement of the 

water flow was recorded on the Doppler flowmeter readings, electromagnetic 

flowmeter (reference meter) and raw data signals of the flow for offline 

processing. The single phase flow records were processed for estimating the 

mean frequency using FFT and the HHT. The results of the flow metering are 

presented in Figure 3-6  

 

Figure 3-6 Single phase flow rates estimated using the ultrasonic Doppler 

flowmeter, mean frequency estimation with FFT and HHT compared with EM 

flowmeter measurement 

It can be seen that the location of the test results for each flow data relative 

position on the graph are within the range ±10%  of the reference meter 
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ultrasonic measurement from raw signal processed using the FFT technique 

and HHT refers to ultrasonic processing using the HHT method.  

Figure 3-7, shows a comparison of the Fourier spectrum and Marginal 

Spectrum obtained from the HHT techniques of a single phase flow rate 

metering.  

 

Figure 3-7 Spectrum comparison of Fourier spectrum and Marginal spectrum 

3.5.2 Characterisation of air-water flow 

3.5.2.1 EMD of the Doppler signals 

The EMD is an adaptive, intuitive and data driven algorithm for dealing with 

non-stationary signals to eliminate riding waves and to make wave profiles of 

the signal more symmetric. The algorithm picks out the highest frequency 

component of the data in descending order (Huang et al., 1998). In order to 

adaptively decompose the raw ultrasonic signal of the two-phase into its 

intrinsic mode functions, the results are displayed in 17 IMFs and the original 

signal itself as an IMF1 at the top.  

Figure 3-8, Figure 3-9, Figure 3-10 and Figure 3-101 show the decomposition of 

the ultrasonic signal of the two-phase flow into 17 modes: IMF2–IMF 17 for 

stratified smooth, bubbly flow, slug flow and stratified wavy flow respectively. 

From the figures it can be seen that the IMFs have different local frequencies. 

The process of the decomposition picks out the highest frequency component 
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first, followed by the component  with the second highest frequency and so on 

until the residual R is the residual signal after the decomposition which is not an 

IMF (Ding et al., 2007). In addition, the decomposition shows that the higher 

frequency information with smaller amplitudes and low-frequency information is 

represented by larger amplitudes (Ding et al., 2007). 

 

Figure 3-8 Extracted IMFs from the ultrasonic data of the air-water stratified 

smooth flow using the Empirical Mode Decomposition 
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Figure 3-9 Extracted IMFs from the ultrasonic data of the air-water bubbly flow 

using the Empirical Mode Decomposition  
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Figure 3-10 Extracted IMFs from the ultrasonic data of the air-water slug flow 

using the Empirical Mode Decomposition  
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Figure 3-11 extracted IMFs from the ultrasonic data of the air-water stratified 

wavy flow using the Empirical Mode Decomposition  

 

The results of the empirical decomposition are often processed by the Hilbert 

transform (Meng et al., 2012).  Figure 3-12 and Figure 3-13 show the Hilbert 

Spectra and Marginal Spectra produced for the four flow regimes sample 

analysed with the Hilbert transform respectively.  
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3.5.2.2 Hilbert Spectrum 

 

Figure 3-12 The Hilbert spectrum under different two-phase flow regimes 

 

In the Hilbert spectrum, the horizontal axis is the instantaneous time of the 

signal acquired while the vertical axis shows the instantaneous frequency. The 

velocities of the flow measured are within the frequency range of 200Hz to 

300Hz; the Hilbert Spectra are plotted on the full frequency range of the 

samples.  

3.5.3 Marginal spectrum 

Figure 3-13 shows the marginal spectrum of the four two-phase flow regimes 

ultrasonic which was obtained, as explained above, from the integration of the 

Hilbert spectrum across time. The red line show the marginal spectrum while 

the green lines show the plot of Fourier transforms of the four data sets.  
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Figure 3-13 Comparison between marginal spectra and Fourier spectra 

There are differences between the information displayed by the two spectra. 

The Fourier spectrum provides information on certain frequencies in the entire 

time span of the data with the energy given in squared amplitudes. But in 

contrast, in the marginal spectrum, the existence of energy at a given frequency 

means that there is the probability of a frequency with oscillation existing in that 

local time of the data. In Figure 3-13, the Fourier spectrum showed the form of a 

harmonic in the data without the analysis on the existence of the harmonic in 

the data. However, the marginal spectrum, which is adaptive in nature and non-

harmonic, showed real properties of the signal as a decrease in energy with an 

increase in frequency of the signal (Molla et al., 2006). 

3.5.3.1 Characterisation of two-phase slug flow  

In addition to the decomposition of the ultrasonic signals, clear representations 

of the two-phase flow signal can be obtained by summing up the totals or some 
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method. These intrinsic trends illustrate the gas-liquid profile from the ultrasonic 

signals of the two-phase.  

In slug flow measurement, a detailed profile of the gas-liquid interface is often 

necessary (Mi, 1998). We plotted the partial sum of IMF10 to IMF17 and the 

conductivity probes signal obtained the same two-phase flow, as shown in 

Figure 3-14.   

 

Figure 3-14 the sum of IMFs from mode 10 to R of a slug flow signal compared 

with results of the conductivity probe signal slug flow parameters (Gas 

Superficial velocity 0.70m/s and Liquid superficial velocity 0.50m/s. 

Figure 3-14 shows the ultrasound signal and the response of the IMFs summed 

to represent a slug flow profile. Similarly, the figure shows higher amplitude 

signals at the presence of slug body and lower signals at the film body as in the 

conductivity probes measurement of slug flow profile.  
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3.5.3.2 Elongated bubble length 

The bubble in gas-liquid two-phase flow is defined as the distance from the 

bubble’s nose to its tail (Romero et al., 2012). Wang et al. (2007) employed a 

pair of conductivity probes for the experimental investigation of parameters of 

gas-liquid slug on horizontal flow pipe with diameter (0.05m) and proposed a 

correlation to estimate the bubble length. With the conductivity probes, the 

length of the elongated bubble (𝐿𝐵) is determined as the product of the bubble’s 

velocity estimated and time difference of the signal trace of the bubble. At the 

same time, the sum of the IMFs derived with HHT from the ultrasonic signal 

were compared with the conductivity trace and the ultrasonic method for 

estimates of the bubble lengths formulated, as shown in Figure 3-15.   

 

Figure 3-15 Signal trace of a slug flow from the conductivity probes and 

ultrasound with HHT showing the bubble lengths (Gas superficial velocity 

0.70m/s and Liquid superficial velocity 0.50m/s. 
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Figure 3-16 shows the results of the elongated bubbles’ length calculated in the 

present as a function of liquid superficial velocities. The present experimental 

result is very good and in agreement with the prediction of Wang et al. (2007), 

except when the gas superficial velocity is 1.5m/s. The present results were in 

agreement with the work of Mi et al. (2001b) which reported that the lengths of 

the elongated bubbles increase with increases in gas superficial velocity but 

decrease with increases in the liquid superficial velocity.  

 

 

Figure 3-16 Mean elongated bubble length as a function of liquid superficial 

velocities 

3.5.3.3 Slug frequency 

Slug frequency is defined as the ratio of the number of slug units per sampling 

time. Based on measured values for the carbon dioxide-water system in a 0.0 
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as follows: 
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𝑣 = 0.0226 [
𝑉𝑆𝐿

𝑔 × 𝑑
(

19.5

𝑉𝑚𝑖𝑥
+ 𝑉𝑚𝑖𝑥)]

1.2

 
(3-

17) 

 

 

Figure 3-17 Signal trace of a slug flow from the conductivity probes and 

ultrasound with HHT showing the number of slugs detected 

 

The results of the slug frequencies of the flow condition are shown in Figure 

3-18 as a function of the liquid superficial velocities. The results were compared 

with the correlation of Gregory et al. (1978).  
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Figure 3-18 Comparison of calculated mean bubble frequency with a 

correlation as a function of the liquid superficial velocities at four different gas 

superficial velocities 

Figure 3-18 shows the estimated slug flow frequencies of four sets of data 

points. The slug frequency estimates of ultrasonic signals, conductivity probes 

and the correlation (Wang et al., 2007) were compared. It can be seen that 

when the liquid flow rate is less than 0.6m/s, the traces of the ultrasonic could 

be well used for estimating the slug frequencies, which is in good agreement 

with Wang et al. (2007). However, the estimation of the conductivity probes 

generally agreed with the correlation.  

3.6     Summary 

An investigation of the ultrasonic Doppler sensor for single flow rates and gas-

liquid flow characterised with the HHT method was conducted. First, a single 

phase water flow rate was carried out to determine the performance of the 

produced against the measurement of the reference EM flowmeter.  
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The Doppler shift signal, as a result, contains a spectrum of frequencies which 

varies in shape as the velocity distribution through the pipe changes with time. 

In order to estimate the flow rate from the reflected signal, the Doppler system 

has to first determine the average frequency of the signal. The objective of the 

processing is to evaluate those waveforms of the reflected signal using a 

spectral analyses technique to determine flow, frequency shifts,𝑓𝑑 and contents 

of the Doppler signals of the flow.  

The approach of this investigation is based on an adaptive method of signal 

processing and the ultrasonic is non-invasive. The results of the gas-liquid 

characterisation using the HHT method are found to be in very good agreement 

with the literature at certain points, especially for the low liquid flow rates and 

low gas flow rates. However, at the higher liquid and gas superficial velocities, 

the HHT did not predict the gas-liquid properties.  
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4 Application of Pulse-Wave Ultrasound System 

4.1 Introduction  

This chapter develops a pulse-wave ultrasound system that detects moving 

interfaces in gas-liquid two-phase flow by detecting the instantaneous positions 

of the interface from the time of flight of the pulsed ultrasound. Detection of the 

gas-liquid interface is very important for developing models for predicting the 

unsteady behaviour of two-phase flows. Also, the location of the gas-liquid 

interface can be used to determine the liquid holdup and liquid phase velocity 

distribution (Gonzalez et al., 2009). Importantly, by error analysis it has been 

found that the accuracy of a two-phase flow meter depends on the accuracy of 

the interface detection (Gonzalez et al., 2009). 

Different methods have been developed for the measurement of gas-liquid 

interface in two-phase flow (Al-Lababidi and Sanderson, 2005; Murai et al., 

2010). Electrical probe methods of gas-liquid interfacial area measurement 

employ electrical resistivity of the fluid to measure the local instantaneous 

interface in the two-phase flow. The flow in the pipe sets an electrical circuit that 

is open or closed, depending on whether the gas or the liquid phase is flowing, 

and the voltage drops across the sensor vary between the two reference points. 

For regimes such as bubbly flow, whereby the liquid phase is continuous, the 

circuit is closed but the voltage drop varies, depending on how much liquid 

contacted the probe. The electrical probe has a disadvantage in that a cut in the 

pipe is required – it is an invasive technique (Fossa, 1998; Revankar and Ishii, 

1992; Tan and Ishii, 1990). Another technique that has been developed to 

measure the gas-liquid interfacial area is the radiation technique. This is a non-

invasive approach but it does have disadvantages in that it either requires thin 

pipes or a strong source combined with heavy shielding to operate safely and 

effectively (Chang and Morala, 1990).  

The CW system can detect the movement of any gas bubbles, particles or 

scatters in the pipe, but it is impossible to detect the range of the moving target. 

As a result, the CW systems have no range resolution and cannot be used to 

determine liquid height or the cross-sectional area of the fluid (Baker, 1970).  
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4.2 Experimental procedure 

4.2.1 PicoScope data acquisition system 

An ultrasound pulse echo data acquisition setup is depicted in Figure 4-1. The 

Pulser/Receiver with a bandwidth of 25MHz (Panametrics 500PR) generates a 

signal to drive the ultrasound transducer. The Pulser/Receiver has a knob for 

selecting the PRF up to 10kHz and an adjustable gain for the transmitted signal.  

The reflected ultrasound signal is received by the same ultrasound transducer 

and is then collected by the Pulser/Receiver. The echo received is an RF signal 

and it under goes amplification at the Pulser/Receiver before it passes on to the 

PicoScope.  

The PicoScope works well with the operating system without any modification. 

An external trigger pulse sent to the Pulser/Receiver from the PicoScope at the 

receipt of software triggers a signal from a control signal or at the instant an 

echo signal is received. This communication between the Scope and the 

Pulser/Receiver commences the data acquisition simultaneously. The scope 

captures a pre-set number of the ultrasound wave once it has been triggered 

and this enables the PicoScope to capture many waveforms of the ultrasound at 

one setting of the PRF on the Pulser/Receiver (Safvi, 1996). 
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Figure 4-1 Ultrasonic experimental setup for study of liquid/gas interface in a 

horizontal pipe 

 

The echo signals which are received by the Pulser/Receiver via the transducer 

are captured by the PicoScope. The scope will then transfer the captured 

waveforms to be sent to the PC as fast as the setting of the PRF on the 

Pulser/Receiver. On the PC, the waveforms are further processed for 

measurement analysis, display and storage for offline processing.  If the 

waveform data capturing capacity of the Scope is slower for the task, some 

signals to be received will be missed out.   The limitation of the Scope memory 

was the challenge we faced at the beginning of this work. The previous Scope, 

PicoScope 3402, could sample the data fast but for only seconds and it lacked 

the capability to capture data fast and transfer them to the PC hard drive. As a 

result, a decision was made to purchase the PicoScope 5444B.  

Recording of the reflected echo signals were done at pulses of 20 Volts, peak-

peak amplitude for the trigger signal, and 4 Volts, peak-peak for the echo 
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signals. Sampling frequencies of 42.7MS/s were used for 321 frames and 

continuous recording for 5 seconds for the 1MHz and 7.5MHz transducers 

respectively. The air-water horizontal flow test for two-phase flow measurement 

using the ultrasonic sensors and the axillary instruments together with 

advanced signal processing, was able to provide a study of slug flow 

parameters and liquid height measurement using non-invasive measurement 

techniques. However, the capacity of the rig gas flow rate was not high enough 

and the fluids that could be tested on the rig were only the air-water flow. As a 

result, the next section on the experimental setup is on the study conducted for 

two-phase flow measurement using a three-phase flow facility.    
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4.3 Pulse-Echo Ultrasound Measurement Principle 

The pulse-echo ultrasonic technique uses the ultrasonic waves reflected 

strongly off the gas-liquid interface because of the large difference in acoustic 

impedance between the interfaces. The amplitude of the reflected wave 

depends on the relative acoustic impedance of the two fluids (Murai et al., 

2010). This phenomenon was exploited using two ultrasound pulse echo 

transducers with a centre frequency of 1MHz and 7.5MHz to measure the gas-

liquid interface in a two-phase flow pipe. The sensor signal was applied across 

the flow pipe to measure the instantaneous liquid or interfacial area and liquid 

holdup.  The time of flight is the time that elapsed between the transmission of a 

pulse and its reception by the transducer. As a result, the distance from the 

transducer to the interface (ℎ) can be calculated if the velocity of the sound (𝐶𝑤) 

is estimated or assumed.  

h =
tCw

2
 

(4-1) 

where Cw is the  water sound velocity =1480m/s at 20℃ (Evans and McDicken, 

2000) and t is the  time of flight of the ultrasonic signal. There are three 

methods of ultrasound interface detection: echo intensity, local Doppler, and 

velocity variance techniques. The echo intensity technique was adopted to  

process the echoes for ultrasound detection in the present experiment (Murai et 

al., 2010).  

4.4 Methodology 

4.4.1 Signal processing  

The method and schematic diagram designed is shown in Figure 4-2 which is 

modified from the work of Chang and Morala (1990). The test section is made of 

Perspex so as to visually observe the type of flow regime formed. With this pipe 

flow arrangement, three different flow regimes were observed. The liquid level 

in the tube can be obtained from the geometrical representation of the spool 

piece using equation (4-2) (Masala, 2004). 
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ℎ𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 = 𝑟(1 − cos
𝜃

2
) 

(4-2) 

where ℎ𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 is the height of the liquid level in the test spool piece, r is the 

tube radius and 𝜃  is the angle subtended by the cross-sectional view of the 

liquid level at the centre of the tube, as shown in Figure 4-2. The void fraction in 

the test tube can be expressed as in equation (4-3): 

𝛼 =
𝑉𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑡𝑜𝑡𝑎𝑙

𝑉𝑡𝑜𝑡𝑎𝑙
= 1 −

𝑉𝑙𝑖𝑞𝑢𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
 

(4-3) 

where 𝑉𝑡𝑜𝑡𝑎𝑙 =  𝜋. 𝑟2. 𝐿 , 𝐿 is the tube’s length and the values of the tube 

dimensions are 𝐿 =  670 𝑚𝑚; 𝑟 = 25 𝑚𝑚  𝑉𝑙𝑖𝑞𝑢𝑖𝑑 =  
𝐿

2
𝑟2(𝜃 − sin 𝜃), while  𝜃 is 

calculated from the transcendental equation (4-4).  

𝜃 −  sin 𝜃 = 2𝜋(1 −  𝛼) (4-4) 

where 𝛼 is the void fraction and is simply defined by equation (4-3).  

 

Figure 4-2 Liquid level measurements; geometrical representation in a 

horizontal tube 

 

The pulse-wave ultrasound sensor system is applied for liquid height by 

measurements detecting the instantaneous positions of the interface from the 

time of flight of the pulsed ultrasound non-intrusive measurement. The 1MHz is 
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a wet transducer which was installed on the test section, flush mounted, while 

the 7.5MHz is a clamp-on and was attached to the surface of the test section 

with wire clips. 

4.4.2 Experimental procedure 

The first step in the study was to determine the feasibility of the experimental 

techniques for the two-phase flow. Therefore, the single phase water flow was 

first measured with the ultrasonic Doppler flowmeter; water liquid holdup 

measurement calibration was conducted using the conductivity probes by static 

tests. The ultrasound pulse wave sensors were tested to study the ultrasonic 

echo signals reflected by the gas-liquid interface of the flow. The test was a 

static test for determining the measurement of the accuracy of the liquid/gas 

interface determination technique.  

Thereafter, two phase flow experimental runs were tested.  The two-phase air 

water flow is generated by inducing individually air and water flows into the rig, 

thereby a two-phase flow is created at the test section of the rig. In the test, all 

the instruments on the rig and those at in section in particular are all used for 

recording the data generated for a period of 20 seconds. The two-phase flow 

test points investigated during this study belong to the four horizontal flow 

regimes: slug, elongated bubble, stratified smooth and stratified wavy flows. 

The superficial velocity of the liquid flow was varied between 0.004mls and 

1.5mls and the superficial velocity of the gas ranged from 0.05mls to 2.0mls. 

The superficial velocities were calculated as the ratio between the volumetric 

flow rate of the phase and the cross-sectional area of the pipe. An overview of 

the test conditions of the horizontal two-phase flow tested in this study is given 

in the Appendix, in section A.1.3. All stated superficial gas velocities are at 

standard conditions (1 bar, average of 22°C). 

The ultrasonic Doppler sensor signal of the two-phase was used for studying 

the non-invasive measurement of two-phase flow parameters, such as slug flow 

velocities and slug frequency, while the pulse echo ultrasound was used for 

investing ultrasound liquid height measurement which is required for liquid 

holdup measurement.  The conductivity probes are used for measuring the slug 
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flow parameters and these measurements are used for validating the results of 

the ultrasonic measurement.  

4.4.3 Detection of ∆𝒕  and Liquid Level Calculation 

The echo intensity technique is a signal processing approach for measuring the 

location of a gas-liquid interface by estimating the time duration between 

transmission and reception of an ultrasound signal.  The waveform resulting 

from the pulse-echo system was analysed using a threshold algorithm for the 

echo intensity technique to identify the peaks’ amplitude. The algorithm was 

written in MATLAB which reads the pulse-echo data from the storage disk and 

stores them as variables. The program then pre-processes the data by tapering 

and filtering. The tapering sets signals very low and amplitudes to zero, and the 

filter eliminates the DC components of the signal using a design as an LPF. The 

pre-processed data are then processed further to identify the location of the 

peaks in the signal. The maximum peak for each pulse echo signal is 

determined by finding a peak that has a higher amplitude than the peaks before 

and after it. The difference between the two peaks calculated gives the number 

of samples which is multiplied by sample duration to obtain the time of flight.  

4.4.4 Determination of the Measurement Accuracy 

A calibration experiment was conducted in a pipe section of the test rig which 

was plugged at both ends with flanges to form a short close pipe (length: 67cm 

and internal diameter: 5cm) called a spool piece. The spool piece was gradually 

filled up by intermittently pouring in known volumes of water (static). The liquid 

level was measured using the ultrasonic contact transducer. The piece was 

placed on a horizontal plane so that the pipe diameter was now the depth of the 

pipe or height of the interface. The ultrasonic measurement system was 

calibrated for liquid levels measurement. With each water volume introduced, 

the corresponding ultrasonic signal resulting from the liquid level of the volume 

of water was recorded for offline processing to determine the time of flight.  

The instantaneous liquid level is calculated as ℎ𝑙 using equation (4-5) 

ℎ𝑙 =
𝐶𝑤 × ∆𝑡 

2
 

(4-5) 
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where 𝐶𝑤= speed of sound in water at 20℃ = 1480m/s, ∆𝑡  = time of flight of the  

reflected signal from the liquid/gas interface (b), as shown in Figure 4-3. 

 

Figure 4-3 Typical representation of the wave from a pulse echo signal (A-

Scan) where (a) is the initial pulse (2g), (b) is the wave reflected from the 

pipe/liquid interface (2h), (c) is the wave reflected from the liquid/gas interface, 

multiple reflection from the liquid interface. 

4.4.5 Determination of Measurements Accuracy 

Figure 4-4 illustrates the liquid levels measured based on the liquid volume in 

the test spool (h-geometry) as a function of liquid levels measured by the 

ultrasonic pulse echo technique (h-ultrasonic). A trendline is applied to show the 

accuracy of the measurements. The points are in good agreement with the 

linear line, with a coefficient of determination 𝑅2 = 0.9939. The measurement 

error is due to a combination of the following factors: the transducer resolution, 

the imprecision in the determination of the height of the gap between the pipe 

surface and head of the transducer, and in the determination of the speed of 

sound in water.  
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Figure 4-4 Measurement accuracy results for a 50mm internal diameter 

tube 

 

4.4.6 Measurement of Time Averaged Liquid Height 𝐇̅𝐋 

The objective of two-phase liquid level determination is to investigate the 

potential for two-phase flow regime characterisation and timed averaged liquid 

level, and void fraction using ultrasound systems. 

The average liquid height is a summation of the values of the instantaneous 

liquid height sampled over the total number of sample points (Chang and 

Morala, 1990). 

𝐻̅𝐿 =
1

𝑁
∑ 𝐻𝐿𝑖

𝑁

𝑖=1

 
(4-6) 

𝐻𝐿𝑖  is the number of instantaneous liquid heights sampled for a period  

where N is the total number of liquid height points sampled 

              𝐴𝐿𝑖 is the cross-sectional area of the pipe filled with water and it is 

calculated using: 

y = 0.9601x + 1.0236 
R² = 0.9939 
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𝐴𝐿𝑖 = 𝑟2[
𝜋

2
− sin−1(1 −

𝐻𝐿𝑖

𝑟
)] − (𝑟 − 𝐻𝐿𝑖) (2𝑟𝐻𝐿𝑖 − 𝐻𝐿𝑖

2)1/2 
(4-7) 

These techniques are developed to study the instantaneous liquid levels, time 

averaged void fraction, characterisation of the two-phase flow patterns and 

ultrasonic velocity profile of two-phase flow.  

The experiments were conducted on the horizontal air-water two-phase flow 

test rig which comprises an ultrasound pulse echo transmitting and receiving 

system, PicosScope (a PC based Oscilloscope), and a Perspex test section. 

The specifications are listed in Table_Apx 1. The test rig consists of a water 

circulation system whereby the water is circulated by a centrifugal pump from a 

tank into the flow pipe.  The flow rate is regulated using a hand controlled valve 

and monitored with an EM flow meter with a capacity of 0 - 40m3/hr.  

4.4.7 Ultrasound echo signals from the vertical flow 

 

Figure 4-5 Typical examples of reflected echo signals from air-water flow  
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Figure 4-6 Typical examples of reflected echo signals from oil-air flow  

 

Figure 4-7 Typical examples of reflected echo signals from oil-water flow  
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4.5 Results and Discussion 

Time averaged liquid height 𝐇̅𝐋 

Figure 4-8 and Figure 4-9 show the mean liquid level measurements performed 

for various gas and liquid superficial velocities using both an ultrasound system 

and conductivity probes. In Figure 4-8 in a constant liquid superficial velocity  

(𝑉𝑆𝐿=0.13m/s) and increasing gas superficial velocity  (𝑉𝑆𝐿 ) from 0.004mls and 

2.0mls, the liquid level decreases almost linearly with gas flow velocity as 

expected. Therefore, it can be deduced that the flow is mostly a smooth 

stratified flow. In addition, Figure 4-9 shows a similar plot of timed averaged 

liquid height measured at a constant liquid superficial velocity and increasing 

gas superficial (𝑉𝑆𝐿= 0.20 m/s) from 0.004mls and 2.0mls. The liquid level, 

estimated as a function of liquid superficial velocity, and the level keep 

decreasing but also oscillate with the increasing gas superficial velocity. 

 

Figure 4-8 Time averaged liquid level for a stratified wavy flow as a function of 

gas superficial velocity at liquid superficial velocities of  𝑽𝑺𝑳 = 𝟎. 𝟏𝟑 𝒎/𝒔 
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Figure 4-9 Time averaged liquid level for a stratified wavy flow as a function of 

gas superficial velocity at liquid superficial velocities of 𝑽𝑺𝑳 = 𝟎. 𝟐𝟎 𝒎/𝒔 

Moreover, Figure 4-8 and Figure 4-9  show  a comparison of the mean liquid 

levels measured using both the ultrasound sensor and conductivity agreed with 

each other qualitatively but there is difference in the value which is due to the 

different sampling duration for the two sensors.  The conducticity probes were 

sampled for a period of 20 seconds but, in contrast, the pulse-echo ultrasound 

was for 20 milliseconds.  This due to the restricted of the memory of required to 

process the large will be created.  

4.6 Summary 

In this chapter a pulse echo ultrasonic two-phase flow measurement technique 

has been set up which uses a single transducer to detect the instantaneous 

location of the gas/liquid interface in a horizontal pipe. The static test of this 

technique has shown very good agreement with the geometric measurement of 

the liquid levels in the pipe and correlation with 𝑅2= 0.9938. Besides, this 

method has an advantage compared to the conductivity probe technique; it is 

simpler than other techniques and can be incorporated as a clamp-on on the 

pipe wall (Chang and Morala, 1990).  
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We have shown that liquid level measurements of both the pulse-echo system 

and the conductivity probes technique agreed qualitatively but with some 

differences quantitatively. This disparity was attributed to mean liquid level 

measurements being in the whole sampling time used. The conductivity probes 

were measured for 20 seconds while the present method lasted for 2 seconds. 

Therefore, the results show the validation of the present method. 

 



 

101 

5 Ultrasound and Neural network techniques 

5.1 Introduction  

Multiphase flows occurrences are found in many industrial processes such as 

petroleum production, power generation, thermal engineering and nuclear 

reactors. The characteristics used to describe single phase flow, such as 

turbulence, velocity profile and boundary layer, are not suitable for describing 

the nature of multiphase flows (Cornelissen et al., 2005).  Multiphase flows are 

categorised into flow regimes; these flows occur both in horizontal and vertical 

orientations. Flow regimes are developed based on the flow-line geometry and 

orientation, individual phase flow rates, and component transport properties 

(density, viscosity and surface tension (Rajan et al., 1993; Thorn et al., 2013). 

Identification of the flow regimes in multiphase flow is essential both to the 

efficient operation of the multiphase flow systems and the determination of 

phase fractions (Arvoh et al., 2012). To group flow regimes according to their 

topological similarities, several mechanisms of the flow regimes’ classifiers or 

flow regimes’ descriptors have been developed over the years. Typical flow 

regimes in the horizontal pipe flow are: slug, stratified, wavy, elongated bubble 

and annular flow patterns and in the vertical gas-liquid flow are: the bubbly, 

slug, churn and annular flows (Falcone et al., 2009). The process of the 

objective flow regimes’ identification from the sensor signals of the flow requires 

the use of a pattern recognition technique.  

The application of pressures fluctuations of the two-phase flow signals and 

statistical analyses for objective characterisation was pioneered by Drahos̆ and 

C̆ermák (1989). The two-phase flow signals from several pressures transducers 

have been analysed for features extraction using PSD for generating input 

variables for the neural network (Kv and Roy, 2012; Sun and Zhang, 2008; Xie 

et al., 2004). Other sensor signals have been used for flow regime classification 

using the statistical moment of the analysis, such as conductance probes, 

(Hernández et al., 2006), and radioactive images (Sunde et al., 2005). It has 

been found that the pattern recognition of flow regimes using pressure signals is 

fast enough to be used for online flow regime identification (Kv and Roy, 2012; 

Xie et al., 2004). However, these transducers are invasive sensors. Hence there 
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is a need for a non-invasive method of flow regime classification for two-phase 

flow, such as ultrasound or gamma. In addition, the review of methods of 

objective flow regime classification have shown that the early methods used 

mechanistic models or empirical models. The flow patterns of the multiphase 

flow were identified using equations governing the physics of the fluid 

developed from the mechanistic models derived from the physics of the fluid. 

The process of identifying flow patterns using these models have disadvantages 

as each flow regime has to be examined independently (Ozbayoglu and 

Ozbayoglu, 2009).  

Despite the feasibility of using the pulse-echo ultrasound for flow regime 

identification, the latter is based on computational models. The computational 

methods for flow regime identification employed sets of non-linear equations but 

often the equations are simplified. For practical applications, the simplified 

equations are not often used because they require prior knowledge of several 

flow properties, such as pipe diameter and pipe thickness, which degrade over 

the course of time (Meribout et al., 2010). The method of pulse-echo ultrasound 

is limited in liquid flow velocity information due to the restriction on the 

maximum measurable velocity using pulse wave ultrasound by the Nyquist 

criterion (Evans and McDicken, 2000).  

Ultrasound Doppler flow sensors which use continuous waves of ultrasound 

signals also have a great potential for achieving non-invasive flow velocity 

measurement. The techniques for using continuous wave ultrasound have 

existed in the medical ultrasound system. The techniques use frequency shift 

representing the flow velocities to develop methods to predict multiphase flow 

regimes (Übeyli and Güler, 2005). In multiphase flow measurement, Kouame et 

al. (2003) present an application of CWDU velocity measurement to two phase 

flow in pipes. They proposed the use of frequency resolution techniques to 

overcome the hindrance to the velocity profile measurement by the presence of 

coloured noise which introduces a significant obstacle to the classical frequency 

estimators. Pulse echo ultrasound techniques for two-phase flow measurement 

have limited liquid velocity information due to the restriction on the maximum 

measurable velocity using pulse wave ultrasound by the Nyquist criterion 



 

103 

(Evans and McDicken 2000). Also, characteristics of the reflected wave are 

being influenced by the shape and size of the interface about the ultrasound 

wave length (Murai et al., 2010).  

Artificial Neural Networks are often preferred over statistical methods of pattern 

recognition because of their fast responses and simplification (Mi et al., 2001a). 

Also, ANNs have good performance on pattern recognition due to their 

efficiency and available learning algorithms (Jain et al., 2000). Also, with regard 

to flow regime classification, ANNs have advantages over other analytical tools 

such as Expert System and Clustering. Expert Systems require prior information 

on the flow regime which could affect its objectivity. Similarly, Clustering may 

not affect performance accurately due to its poor handling of transitional data 

points (Hu et al., 2011). Usually, the process of NN development is by training 

the network to recognise the measurement error in training data and then the 

network tests on another set of data. If the trained network is accurate enough 

then it is implemented for online measurement for prediction error correction 

(Liu et al., 2001). More importantly, NNs would offer a non-linear mapping 

between the ultrasound input signals and the predicted flow regimes. So the 

use of the ANN avoids the need for calibration of the multiphase flowmeter 

(Figueiredo et al., 2016).  

Seleghim (2010) developed a numerical simulation measurement of interfacial 

area and volumetric fraction in two-phase flow using acoustic signals and ANNs 

to investigate the feasibility of the application of the ultrasound system for 

clamp-on flow measuring systems. They found that the trained ANN models 

were able to estimate the values of the volumetric fraction and the interfacial 

area.  Similarly, Figueiredo et al. (2016) employed an ultrasonic methodology 

based on pulse wave ultrasound transducers which operates on the principle of 

signal attenuation detection. The ultrasound signal attenuation was analysed 

and incorporated with ANN for flow pattern detection and void fraction 

measurement. They suggest that the flow regimes’ identification in the 2-in pipe 

was limited to bubbly flow and slug flow only. The technology presented is 

appropriate for the detection of the GVF and flow regimes’ determination in 

multiphase flow. However, there does not appear to be any consideration of the 
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flow regimes except for the bubbly flow and slug flow. However, according to 

the author’s knowledge, studies on the two-phase flow regimes classification 

using a clamp-on continuous wave Doppler ultrasound have not been reported 

in the open literature. 

The main aim of this research was to investigate the feasibility of a non-invasive 

method of flow regimes classification using an ultrasonic Doppler sensor and 

NN. A continuous wave ultrasound Doppler sensor employed in this study, has 

recently been implemented for investigating the velocity characteristics of slug 

body and film in a two-phase gas-liquid slug flow. The results showed velocity 

characteristics of the slug flow obtained are in good agreement with other 

experimental methods (Fan et al., 2013).  The present approach is by recording 

and processing ultrasonic Doppler signals on the flow and then features are 

extracted using both PSD and WT methods. These features are the inputs for 

the ANN models which process them for flow regime classification. A multilayer 

perceptron neural network (MLPNN) with three layers, namely inputs, varying 

hidden layers and four output neurons, were developed to map the flow 

regimes. Four numerical outputs selected to represent the flow regimes are as 

follows: the elongated bubble, slug, stratified flow, and stratified wavy flow 

(Kandaswamy et al., 2004; Subasi, 2005; Übeyli and Güler, 2005). Despite the 

ANNs having limitations in that they cannot perform accurately outside the 

range of the training sets, a combination of several neurons of the ANN will be 

able to ‘learn’ and memorise the data’s original variability so as to function as an 

objective flow regime classifier. Therefore, ANNs can still fulfil appropriately the 

requirement for multiphase flow monitoring processes, such as flow regimes 

classification and prediction of the individual phase flow rates in multiphase, 

effectively (Rosa et al., 2010).  

5.2 Experimental Setup and Procedures 

5.2.1 Two-Phase Flow Test Rig 

A horizontal air-water test rig for two-phase flow assessments at the Cranfield 

University’s flow laboratory was used to conduct these experiments. A 

schematic diagram of the test facility is shown in Figure 3-1. The flow loop 
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includes a closed loop PVC pipeline of 50mm internal diameter with total pipe 

length of 21m long. An air compressor provided the air flow and water was 

pumped into the loop from a storage tank of 2m3 capacity using a 40m3/hr. 

water pump. The flow rates of air and water are controlled by regulating hand 

valves and measured using a turbine gas flow meter (QFG 25B/B/EP1, 

Quadrina) while the water flow rate is metered with an electromagnetic (EM) 

flow meter (Altoflux K280/0, Altometer). The measurement section for the two-

phase flow is made up of Perspex pipes that allow visualisation of the flow 

regimes. The clamp-on ultrasound Doppler flow sensor was fixed on the bottom 

of the pipe. 

 

Figure 5-1 part of air-water test rig showing the instruments used in the 

experiment 
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Figure 5-2 The ultrasonic Doppler sensor and its ancillary instruments on the 

flow test rig 

5.2.2  Ultrasonic Doppler senior 

The ultrasonic Doppler flowmeter used in this study is a non-invasive fluid 

flowmeter complete with its sensor, modelled as DFM-2 and manufactured by 

United Automation Ltd, Southport, UK. This flowmeter is suitable for measuring 

the flow of any ultrasonic reflective fluid. It measures the frequency shift, 

processes the signal, computes the flow velocity and gives out digital displays 

of the flow velocity in feet per second. A green LED shows the strength of the 

ultrasonic signal reflected back from the flow.  It is recommended to be placed 

on the flow pipe at least ten diameters from bends, valves, tees, so as to 

prevent measurement errors from swirls, cavitation and turbulent eddies (UAL 

Ltd). The basic components of the Doppler flow meter system are shown in 

Figure 5-2. The device measures the Doppler frequency shift of the ultrasonic 

signals reflected from the scatters or discontinuities, such as bubbles in the 

flowing liquid. The sensor of the flowmeter is placed at the bottom of the pipe in 

the 6 o’clock position for the horizontal flow measurement test to avoid 

attenuation of the signal from gas voids in the upper pipe section. It is important 
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to have a good bonding between the sensor and the external pipe surface, so a 

glycerine gel is used for a good coupling which prevents the trapping of air 

cavities between the pipe surface and sensor. The continuous wave Doppler 

flow meter has two transducers: one for generating the sound wave and one for 

receiving the ultrasound reflected by the scatters in the fluids such as air 

bubbles or particles in the flow.   

5.2.3 Measurement principle 

The Doppler flowmeter system used in this study has a transducer which has 

dual piezoelectric ceramic elements. The transducer is excited by the electronic 

circuit of the flowmeter in continuous mode, the transmitting part of the 

transducer sends out an ultrasonic signal and the receiving part, to detect the 

ultrasonic Doppler sensor, provides the output signal. The output signal 

received is then filtered and amplified by the electronics of the flowmeter. The 

processed output signal is the Doppler frequency shift signal and it was 

captured using a data acquisition card (NI-PCI- 6040E) and LabVIEW program 

controlled sampling frequency of 10kHz for 20 seconds for each data set. The 

process of development of the flow regimes classification described in a 

function blocks which various process involved in the system, as shown in 

Figure 5-3 
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Figure 5-3 functional modules in the flow regime classification system 

 

The relationship between the velocity of the scatters 𝑣 and the Doppler shift 𝑓𝑑 

is given in equation (5-1) (Sanderson and Yeung, 2002). 

𝑓𝑑 = 2𝑓𝑡

𝑣

𝑐
cos 𝜃 (5-1) 

  
where 𝑣 = average flow velocity, 𝑐 = velocity of sound in the fluid, 𝑓𝑑 = Doppler 

shift frequency, 𝜃 = angle between ultrasound beam and flow velocity and 𝑓𝑡  = 

ultrasound transmitted frequency. 

Usually two transducers are required for Doppler flow meters. However, these 

two transducers can be made into separate units or one compact unit, as shown 

in Figure 3-2.  

5.2.4 Ultrasonic flow signal data acquisition and Test Matrix  

Each of the test data sets of the experiment is created by setting the liquid flow 

rate to the desired value using a hand operated valve and the flow rate is then 

measured using the EM flowmeter. First, the signal corresponding to this flow 

rate is recorded for calibration and air flow is injected into the rig from an air 

compressor by regulating a valve by hand. The flow of the air supply is varied in 
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steps, thus generating several, two phase sets in one particular liquid flow rate. 

The gas flow is measured by the turbine gas flowmeter. Temperature and 

pressure of the gas at the turbine meter location are recorded for each flow. The 

superficial gas velocities ranged from 0.05mls to 2.75mls.  

All stated superficial gas velocities are at standard conditions (1 bar, average of 

22°C). The superficial velocity of the liquid flow was varied between 0.004mls 

and 2.0mls. The superficial velocities values were calculated as the ratio 

between the volumetric flow rate of the phase and the cross-sectional area of 

the pipe. These flow regimes are characterised by distinct phase and velocity 

differences in the cross section of the pipe. Each of the two-phase flows of the 

data set’s flow regimes was visually observed, identified and recorded for 

comparison with predicted flow regimes. The total test data sets of the 

experiment, tabulated as a two-phase test matrix, include the following flow 

regimes: elongated bubble flow, slug flow, stratified flow and stratified wavy 

flow. The flow parameters recorded in the experiments are: the initial liquid flow 

rate, liquid superficial velocities, superficial gas velocities, ultrasonic reflected 

signals, temperature at the gas flowmeter, temperature at the test section, 

pressures at both gas and test section. The LabVIEW program was used for 

controlling the data acquisition at a sampling rate of 10kHz for 20s. The 

preliminary tests show that this sampling frequency is sufficient as it is more 

than twice the highest frequency of the Doppler signals.  

A four-category classification was chosen for this purpose and the four regimes 

considered are:  

 Stratified flow: when the liquid phase flow is at the bottom and the gas 

phase is at the top, and the interface of the two flow phases is smooth. 

 Stratified wavy flow: this flow occurs under conditions whereby the gas 

velocity has risen to generate waves on the surface of the liquid. 

 Slug flow: in this flow the liquid slugs are separated by the large gas 

bubbles moving violently downstream of the pipe.  

 Elongated bubbly flow: this type of flow occurs when the flow has long 

gas bubbles and short liquid slugs (Canière et al., 2007; Chang and 

Morala, 1990): 
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Figure 5-4  Flow regimes map of the present study (black shaded legend test 

data/ colour shaded legend training data) 

5.3 Spectral analyses and Feature Extraction 

Spectral analyses techniques are required for the analyses of the signals of 

two-phase flow to obtain the oscillation period.  Two-phase flow signals can be 

analysed either in the frequency domain, to obtain characteristics of the 

different flow regimes, or algorithms such as PSD and wavelet transform, which 

is the time-frequency analysis used. In this work, both PSD and wavelet 

transform techniques have been applied to two-phase flow signal records of the 

two-phase signals acquired using an ultrasonic Doppler sensor (Shang et al., 

2004). Frequency domain methods using the PSD have been used in analysing 

two-phase flow to obtain oscillation periods based on the Fourier transform of 

the signal (Xie et al., 2004). The WTs have the capability of analysing and de-

noising the signals to produce the spectrum in the time-frequency domain.  

5.3.1 Power spectral density 

Frequency domain methods are often used to reveal the distinctiveness in the 

signal of flow regimes in two-phase flow systems. The PSD is a method of 

estimating the characteristics of a time-series signal of stochastic process in the 
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frequency domain that is suitable for detecting the frequency components 

hidden in the process (Matsumoto and Suzuki, 1984). The application of PSD to 

time series signals, such as the two-phase flow pressure fluctuation signal, has 

been studied by several researchers (Santoso et al. 2012; Sun and Zhang 

2008; Xie et al. 2004). The PSD is used to produce the characteristics of the 

two-phase flow signal in the frequency domain which has shown that signals of 

the flow regime are distinctively different.  

FFTs are use in creating the PSD spectrum which assumes that the process 

signal is stationary. The PSD function 𝑃𝑥(𝑓), of a discrete signal 𝑥(𝑛) is the 

Fourier transform of the autocorrelation sequence 𝑅𝑥(𝑘)of the signal, as shown 

in equation 5-2 (Xie et al., 2004).    

𝑃𝑥(𝑓) = ∑ 𝑅𝑥(𝑘)

∝

−∝

𝑒−𝑖2𝜋𝑓/𝑓𝑠 
(5-2) 

The application of the PSD function to a real valued continuous data, the 

autocorrelation sequence can be approximated by a time-average. However, 

application of the function to the measurement signal is recorded for a finite 

time interval, which may present some distortions. As a consequence, a 

modified form of the PSD called the Welch method is often adopted in these 

applications. The Welch method subdivides the signal sample into small length 

N-points overlapping segments and then obtains the periodogram of each of the 

segments. The power spectrum is estimated by the average of the 

periodograms (Xie et al., 2004). 

The Doppler ultrasonic frequency signals were processed in the MATLAB 

software package (MATLAB Version: 8.3.0.532) to analyse their spectral 

contents. Power spectral densities using the Welch method, with segment 

length of 256 point and Hanning window to alleviate distortions, computes the 

spectra (Beale et al., 2013), as applied by (Xie et al. 2004). Examples of the 

power spectra estimates of the samples of the signals are shown in Figures 2-6 

and 2-7. It can be seen that the spectrum of the slug flow signal has the highest 

power on the spectrum. The slug flow ultrasound signal contains higher Doppler 

frequency shifts as well other the translational than the slug film velocity and the 

single phase flow. However, the spectrum of the signal of the single phase flow 
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has produced a higher signal power than both the stratified flow and bubbly flow 

signals but much less than that of the slug flow signal. The rich ultrasonic shift 

frequency could be obtained from the single phase flow because the flow pipe 

was full. Also, in the slug flow, there were intermittent full pipes and in the liquid 

slugs flow, with a higher velocity than the corresponding single phase flow. The 

spectrum of the bubbly flow regime is slightly similar pattern to that of slug flow. 

 

Figure 5-5  Single phase flow and stratified flow of an ultrasonic signal 
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Figure 5-6 Bubbly flow and slug flow of an ultrasonic signal 

 

The principle of extraction of the features from the PSD is based on Parseval’s 

theorem which states that the PSD is the measure of the total energy of the 

signal if the spectrum is integrated over its entire frequency band. The sampling 

frequency and length of the signal play an important role in the statistical 

properties. In the present study, the sampling frequency is chosen to be 10kHz 

so as to exceed the Nyquist criterion for the signal of the experiment. This can 

be seen in Figure 5-6  The PSD spectrum produced from the signal recorded by 

the ultrasonic Doppler sensor effective has a frequency band from 0 - 600Hz. It 

is obvious that each of the PSD features extracted are distinct and therefore, 

the PSD feature is a good choice to be used to identify the flow regimes of the 

gas-liquid flow. As a result, the PSD magnitudes were normalised and their 

amplitudes corresponded to all data recorded in the frequency range. Each 

frequency band of the two signals was divided into five bands. The PSDs of the 

ultrasonic signals are partitioned into 120Hz ranges, as shown in Table 5-1. 
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Table 5-1  Frequency Band 

Ultrasonic signal PSD frequency band 

Band name Frequency range (Hz) Average power  

B1 0 - 120 𝑃̅𝐵1 

B2 120 - 240 𝑃̅𝐵2 

B3 240 - 360 𝑃̅𝐵3 

B4 360 - 480 𝑃̅𝐵4 

B5 480 - 600 𝑃̅𝐵5 

Representative of each flow signal created using a mean value, the frequency 

bands of the PSD spectrum are computed as 𝑃̅𝐵1, 𝑃̅𝐵2, 𝑃̅𝐵3, 𝑃̅𝐵4, and 𝑃̅𝐵5 

(Matsumoto and Suzuki, 1984). Other properties estimated from the spectrum 

are the weighted mean of the frequency over the entire band and the variance 

of the mean frequency (Sun and Zhang, 2008). In total, the five power 

magnitudes, weighted mean frequency, and variance are used as the features 

to represent the signal of the flow. The mean spectral power is equation (5-3) 

and  

𝑓̅ =
∑ 𝑓𝑖𝑃𝑥(𝑓𝑖)𝑖

∑ 𝑃𝑥(𝑓𝑖)𝑖
 

(5-3) 

variance of the spectral power is equation (5-4) 

𝜎𝑓
2 =

∑ (𝑓𝑖 − 𝑓)̅2𝑃𝑥(𝑓𝑖)𝑖

∑ 𝑃𝑥(𝑓𝑖)𝑖
 

(5-4) 

The use of these seven discrete parameters (𝑃̅𝐵1, 𝑃̅𝐵2, 𝑃̅𝐵3, 𝑃̅𝐵4, 𝑃̅𝐵5, 𝑓 ̅& 𝜎𝑓
2 )  to 

represent the signal were first suggested Drahos̆ and C̆ermák (1989) and the 

method has been implemented by many researchers, such as Shaban and 

Tavoularis (2014) and Xie et al. (2004). 

5.3.2 Discrete wavelet transform (DWT) 

The idea of signal decomposition using DWT is not new. However, its 

usefulness lies in its ability to manipulate the wavelet coefficients to identify the 

characteristics of the signal as distinct from the original time signal (Subasi, 

2005). In this work, decomposition of the ultrasound Doppler signal and the 
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conductance signal from the two-phase flow were carried out using DWT. The 

procedure for extracting signal features using DWT to represent requires the 

selection of the wavelet type and level, multiresolution decomposition and 

selection effective coefficients of the discrete wavelets of the decomposition to 

represent the signal (Shang et al., 2004).  

The DWT of a signal for feature extraction works on the principle of 

multiresolution signal decomposition in which a signal is filtered using a half 

band high-pass filter and low-pass filters (Subasi, 2005). There are a number of 

different wavelets and their levels to choose from for the decomposition of the 

signals. It is important to select a suitable wavelet type and level to structure the 

wavelet filter for the decomposition. Wavelet type selection is by either visually 

inspecting the data for continuity or testing the various types of wavelets with 

signals and the most efficient one is then selected. If it is a discontinuous type 

then Harr or sharp or else a smooth wavelet such as Daubechies wavelets is 

recommended. Daubechies wavelets level 2 was used to compute the wavelet 

coefficients of the signal in this study (Kandaswamy et al., 2004).  

The decomposition of the signals produces approximations and details the 

levels with different frequency bands by using successive low-pass and high-

pass filtering. These detail levels will not lose their information in the time 

domain (Bendjama et al., 2015). However, useful information can be obtained 

from the subbands of the dominant frequencies, so statistical measurements of 

the subbands are representative of these detail levels. The signals of the flow 

were decomposed continually until all the dominant frequency ranges had been 

viewed. The signals do not have any useful frequency below 40Hz and that is 

why the decomposition ended at level 7 which is the level at frequency 

subbands greater than 40Hz.  Therefore, the Doppler signal was decomposed 

into the detailed coefficients of 𝐷1 − 𝐷7 where 1-7 refers to the detailed wavelet 

coefficient levels: first to seventh and the last approximation is 𝐴7. The ranges 

of the frequencies’ subbands are given in the decomposition The Daubechies 

wavelet of the order 2(db2) was used to compute the wavelet coefficients of the 

signal. The computation of the DWT of the coefficient was done using a 

MATLAB software package (Misiti et al., 1997). 
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Table 5-2  Ranges of frequency bands in the different wavelet 

decomposition levels (DWT) 

Ranges of frequency bands in wavelet 

decomposition 

Decomposed signal Number of  

samples 

Frequency range 

(Hz) 

𝐷1 100000 2500 - 5000 

𝐷2 50000 1250 - 2500 

𝐷3 25000 625 - 1250 

𝐷4 12500 312.5 - 625 

𝐷5 6250 156.25 - 312.5 

𝐷6 3125 78.125 - 156.25 

𝐷7 1562.5 39.0625 - 78.125 

𝐷8 781.25 19.53125 - 39.0625 

 

For each of the data sets, detailed wavelet coefficients at the first level, second 

level and up to the seventh level were computed. Importantly, to reduce the size 

of features extracted from coefficients, statistical measurements were applied to 

the values of 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6 and 𝐷7 as implemented in the work of Übeyli 

and Güler (2005). 
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Table 5-3 The extracted features of four exemplary ultrasonic records 

from the four flow regimes 

Data set  Extracted 
features  

Wavelet coefficients’ subbands (ultrasonic signals) 

 
Stratified 

 
 
 
 
Bubble 
 
 
 
 
 
Stratified 
Wavy 
 
 
 
Slug 
 
 
 

 D1 D2 D3 D4 D5 D6 D7 

Maximum 0.0069 0.0146 0.0328 0.0842 0.2348 0.6549 1.782 

Mean 5.7E-06 3.4E-
05 

8.9E-05 2.5E-
04 

6.6E-
04 

0.0019 0.0054 

Minimum -0.0104 -
0.0146 

-0.0259 -0.0684 -0.1908 -0.5353 -1.4834 

Standard 
deviation 

0.0017 0.002 0.003 0.0063 0.0173 0.0485 0.1365 

Maximum 1.8351 2.7112 4.0595 6.4941 7.3507 7.5821 4.5808 

Mean 1.2E-04 -0.001 -1.9E-04 -0.0064 -0.0045 -0.0024 4.8E-04 

Minimum -1.8178 -
2.9443 

-4.2209 -6.2225 -7.8911 -8.6795 -5.8672 

Standard 
deviation 

0.1738 0.3981 0.8375 1.4791 1.4709 1.3086 0.9101 

Maximum 0.0069 0.0146 0.0363 0.0891 0.2443 0.6854 1.9266 

Mean 
2.6E-06 

4.8E-
07 1.5E-06 

1.5E-
06 

-3.8E-
05 -3.6E-05 

-8.8E-
06 

Minimum 
-0.0069 

-
0.0171 -0.0432 -0.1172 -0.3384 -0.9363 -2.4544 

Standard 
deviation 

0.0017 0.002 0.0031 0.0064 0.0178 0.05 0.1403 

Maximum 2.2339 3.3618 4.7681 6.8243 8.841 9.4888 5.9295 

Mean 
0.0011 0.0021 0.0028 -0.016 -0.0193 

2.11E-
04 0.0036 

Minimum 
-2.1424 

-
3.3179 -4.889 -6.8878 -8.6584 -9.5898 -6.7651 

Standard 
deviation 

0.4739 0.9882 1.9812 3.2405 3.4286 2.3328 1.7116 

 

1. Maximum of the wavelet coefficients in each subband. 

2. Mean of the wavelet coefficients in each subband. 

3. Minimum of the wavelet coefficients in each subband. 

4. Standard deviation of the wavelet coefficients in each subband. 

Features 1-3 represent the frequency distribution of the signal and feature 4 the 

amount of changes in frequency distribution. These are the statistical features 

used to represent the two-phase flow and as inputs into the neural network for 

the flow monitoring (Übeyli and Güler, 2005). The wavelet detail coefficients of 

the signals are distinctly different. Figure 5-7 shows the details of wavelet 

coefficients corresponding to the 𝐷1 frequency of the two-phase flow.  
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Figure 5-7 The detail wavelet coefficients corresponding to the D1 frequency 

band of the ultrasonic signals from (a) Stratified flow (b) Bubbly flow (c) 

Stratified wavy flow and (d) Slug flow regimes 

5.4 Multilayer perceptron neural network (MLPNN) model 

The MLPNN is a nonparametric technique for conducting various processing 

techniques for solving function approximation, pattern recognition, classification 

and estimation problems, and its operation is governed by a set of weights and 

biases (Übeyli and Güler, 2005). The general structure of the MLPNN with two 

successive layers is show in Figure 5-8. The structure of the MLPNN model can 

be represented by equation (5-5). The hidden layer is the unit between the input 

layer and output layer. Its adjustments are not accessible from outside of the 

network (Luntta and Halttunen, 1999).   

𝑦𝑗 = 𝑓 (∑ wjixi) (5-5) 

where, f is the activation function which transforms the weighted sums of all the 

input signals on the neurons. The activation function (f) can take many forms 
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such as: threshold functions, or a sigmoidal, hyperbolic tangent or radial basis 

function. The sigmoidal function is the one chosen for this study.  

𝑓(𝜉) =  
1

1 + 𝑒−𝜉
 

(5-6) 

 

Figure 5-8 Multilayer perceptron neural network (Luntta and Halttunen, 1999)  

 

The performance of an MLPNN can be improved by adjusting the weights of the 

network to reduce E, which is the difference between the desired output and the 

actual values of the neurons, as fast as possible.  

𝐸 =  
1

2
∑(𝑦𝑑𝑗 −  𝑦𝑗)2

𝑗

 
(5-7) 

where, 𝑦𝑑𝑗 is the desired value of the output neuron j and is the actual output 

value whose values can be adjusted and then chosen using the set of targeted 

outputs. 

The flow regimes classification with the ANN is implemented using pattern 

recognition algorithms. The pattern recognition comprises three steps: 1) data 

acquisition and pre-processing, 2) data representation or feature extraction, and 

3) decision making or pattern classifying. One important aspect of pattern 

recognition is learning from the training data set (Basheer and Hajmeer, 2000). 

In this study, the training process consists of the determination of the MLPNN 

model parameters which are used to validate their quality and ability to classify 

once the training has been completed (Subasi, 2005). Alternatively, training 

refers to the process of adjusting and selecting the appropriate weights and 

biases (Bishop and James, 1993).  
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5.4.1 Two-phase flow measurement network 

Combined neural network design: The combined network algorithm to 

determine the phase flow superficial velocities comprises five sets of neural 

network models: N1, N2, N3, N4 and N5. Models N1 to N4 are first level 

MLPNN which are formed with input (features)-output relationships. The N5 

model is the second level of the combined network and uses the outputs of the 

first level network as the inputs. Each member of the first level network 

produces two outputs corresponding to the gas-liquid flow velocities and these 

outputs are concatenated to form a vector for the input of the second level of 

the combined network. Hence, the combined neural network for the flow 

velocities training for the four different set of features is extracted.  

 

Figure 5-9 A combined neural network topology used for the estimation of liquid 

and gas superficial flow velocities (Übeyli and Güler, 2005). 

5.4.1.1 Neural network training Using DWT features 

The DWT applies multiresolution signal decomposition to the flow signals to 

extract 28 features from the detailed wavelet coefficient from the 47 data sets 
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for the training. The features from both signals of the ultrasound and 

conductance sensors are used as the inputs to the first level of the combined 

neural network ().  The corresponding values of the superficial gas and liquid 

velocities are fed into the network as the outputs for both the first and second 

levels of the network to train the combined neural network models. Four 

MLPNN models are set as the first level network and each produces two 

outputs which the eight inputs for the second level network. The total network 

models of the combined network are five models, as shown in Figure 5-9. The 

outputs of the second level are the desired, predicted values of the superficial 

gas and liquid velocities obtained from the combined network.  

During the training, the outputs are repeatedly presented to the networks so as 

to adjust the weights and biases and this optimises the default weights and 

biases ().  Average performances are taken for the preformed values to 

establish fitting relationships between the inputs and outputs. Therefore, several 

network types of back-propagation algorithms and different numbers of hidden 

layers are tested and their performances are tabulated for the two sensor 

signals.   

Table 5-4 shows the training performance of the ultrasonic signals and Table 

5-5 show the performance obtained from the conductance signals.  

 

Table 5-4 Performance of a combined neural network trained using different 

algorithms (Ultrasonic with DWT) 

Algorithms MAE MSE SSE Rgas Rliq 

LM 0.151 0.057 5.353 0.549 0.958 

RP 0.208 0.069 6.481 0.429 0.857 

SCG 0.152 0.049 4.628 0.572 0.948 

CGB 0.193 0.061 5.759 0.457 0.897 

OSS 0.194 0.067 6.267 0.280 0.931 

GDX 0.255 0.106 9.939 0.061 0.811 

CGB 0.204 0.068 6.352 0.338 0.916 

GDM 0.210 0.072 6.795 0.339 0.903 

BR 0.057 0.072 5.911 0.588 0.990 
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Table 5-5 Performance of a combined neural network trained using different 

algorithms (Conductance signal processed using the DWT) 

Algorithms MAE MSE SSE Rgas Rliq 

LM 0.209 0.096 9.026 0.486 0.763 

RP 0.162 0.060 5.608 0.417 0.947 

SCG 0.172 0.069 6.530 0.502 0.822 

CGB 0.191 0.083 7.817 0.246 0.853 

OSS 0.226 0.099 9.284 0.322 0.661 

GDX 0.472 0.335 31.481 -0.044 0.526 

CGB 0.243 0.091 8.601 0.258 0.732 

GDM 0.243 0.113 10.582 0.225 0.553 

BR 0.194 0.113 6.011 0.447 0.880 

 

After the extensive training using the DWTs, the MLPNN structure that out-

performed in the training for the ultrasonic signal is 28-12-2, and for the 

conductance signals is 28-28-2. It has been observed that changing the training 

algorithms. Figure 5-10 shows the results of the best performing models for 

predicting flow superficial velocities using the features extracted from the 

signals of the flow using the DWT multi resolution methods (Übeyli and Güler, 

2005). It can be seen that the regression coefficient R is 0.96 for the liquid 

superficial flow velocity while the regression coefficient R of the gas superficial 

flow velocity is 0.76 (Fan and Yan, 2014; Kandaswamy et al., 2004).  
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Figure 5-10 Regression plot of the superficial velocities for the combined 

network training using Ultrasonic with DWT (a) regression of the gas flow (b) 

regression of the liquid flow  

 

Figure 5-11 Regression plot of the superficial velocities for the combined 

network training using conductance with DWT (a) regression of the gas flow (b) 

regression of the liquid flow  
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5.4.1.2 Neural network training Using PSD features 

Similarly, there are a total of seven inputs extracted from the flow signals of 

both conductance and ultrasonic signals using the PSD to predict the gas–liquid 

two-phase flow velocities. These seven features  𝑃̅𝐵1 ,𝑃̅𝐵2, 𝑃̅𝐵3, 𝑃̅𝐵4  𝑃̅𝐵5, 𝑓 ̅and 

 𝜎𝑓
2  are used as inputs for the modelling the combined neural network. Figure 

5-11 and Figure 5-12 show the performance of a combined neural network 

trained using features extracted with the PSD method and different back-

propagation algorithms for modelling networks to predict the gas and liquid 

superficial velocities.  

Table 5-6 Performance of a combined neural network trained using different 

algorithms (ultrasound with PSD 7-12-2) 

 

 

Table 5-7 Performance of a combined neural network trained using different 

algorithms (Conductance with PSD 7-12-2) 

Algorithms MAE MSE SSE Rgas Rliq 

LM 0.227 0.084 7.936 0.722 0.165 

RP 0.252 0.137 12.844 0.388 0.115 

SCG 0.237 0.091 8.558 0.691 0.047 

CGB 0.233 0.088 8.259 0.707 0.143 

OSS 0.264 0.105 9.865 0.547 -0.073 

GDX 0.311 0.172 16.139 0.056 0.113 

CGB 0.304 0.134 12.570 -0.011 -0.054 

GDM 0.296 0.126 11.825 0.245 0.130 

BR 0.284 0.126 11.216 0.092 0.107 

Algorithms MAE MSE SSE Rgas Rliq 

LM 0.187 0.079 7.472 0.452 0.871 

RP 0.180 0.056 5.220 0.588 0.869 

SCG 0.209 0.076 7.157 0.375 0.808 

CGB 0.193 0.061 5.757 0.574 0.818 

OSS 0.196 0.063 5.919 0.547 0.871 

GDX 0.274 0.122 11.440 0.072 0.545 

CGB 0.184 0.058 5.459 0.579 0.846 

GDM 0.211 0.076 7.114 0.490 0.807 

BR 0.174 0.076 4.947 0.602 0.887 
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Figure 5-12 Regression plot of the superficial velocities for the combined 

network training using ultrasound with PSD (a) regression of the gas flow (b) 

regression of the liquid flow  

 

Figure 5-13 Regression plot of the superficial velocities for the combined 

network training using conductance with PSD (a) regression of the gas flow (b) 

regression of the liquid flow  
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5.4.2 Combined neural network models (CMLPNNs) 

A combined neural network is a method of improving the performance of the 

network’s predictive accuracy. In designing neural network models, the training 

data may fail to learn to predict the output accurately, so the network is unable 

to generalise the concept precisely. The learning system of the network utilises 

the transformed data to predict the output with greater accuracy. Stack 

generalisation is a method of combining low level network models into high level 

neural networks to achieve greater predictive accuracy as introduced by 

Wolpert (1992). By transforming the data into a suitable form that can enhance 

the training process, the generalisation minimizes the error rate of the combined 

network by ‘teaching’ a second level network whose inputs are the predictions 

of the first level network but the second is trained with the same target output as 

the first network.  

Multilayer perceptron neural networks were used to form multiple networks and 

then combined to form a stack generalisation. Figure 5-14 shows the structure 

of the combined network. The features extracted from the sensors’ signals were 

used as the inputs to the first level network of the combined neural network. 

After that the outputs of the first level were fed into the second level network as 

the inputs. The outputs of the second levels are the result of the predicted flow 

regimes. Both the first and second level neural networks were trained with 

targeted outputs (Übeyli and Güler, 2005). 
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Figure 5-14 A second-level neural network is used to combine the predictions 

of the first-level neural networks (Übeyli and Güler, 2005) 

 

Multilayer perceptron neural networks were used to form multiple networks and 

then combined to form a stack generalisation approach to the flow regimes 

classification. Figure 5-15 shows the structure of the combined network used to 

predict the targeted flow regimes. Both the first and second level neural 

networks were trained with targeted superficial flow velocities as the outputs.  
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Figure 5-15 A Structure of the flow pattern prediction combined neural network 

topology (Übeyli and Güler, 2005). 

 

5.4.3  Flow Regime Classification network  

Several applications of MLPNN pattern recognition are reported in the literature.  

It is based on training the neural network to recognise the correct classification 

for each member of the training data sets. Training the network will be 

subsequently followed by testing the network to classify the input variables into 

their correct classes. If the learning process has taught the network the patterns 

relevant to the test data, then it is expected that the network would classify 

correctly (Xie et al., 2004).    

Flow regime identification using ANN pattern recognition can be implemented 

by either using a supervised neural network (SNN) or unsupervised neural 

network (UNN) also known as a self-organising network. The SNN uses feed-
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training algorithm together with information of predefined classes is used to 

classify the input variables into the specific classes and it does not need; 

whereas the Kohonen-Network or self-organising map (SOM) used for data 

feature mapping does not need information about the classes. It uses a network 

clustering method to group the input variables into several classes that contain 

similar characteristics (Mi et al., 2001a). The Kohonen Self-Organising Neural 

Network has been implemented for flow regime classification using measuremnt 

data points of distinct flow regimes (Cai et al., 1994). 

To select the input to the network for the pattern classification, it is essential first 

to pre-process, balance and normalise the data. The features extracted from the 

ultrasonic Doppler signal of the flow using both the wavelet method and the 

PSD methods are pre-processed before presenting them as input variables to 

the network. As part of the pre-processing of the input data set, data partitioning 

and balancing are applied to the feature. There several ratios for partitioning the 

data sets into training, testing and validation. At this moment, there is no 

mathematical rule for determining the exact sizes of the training, testing and 

validation data sets. The often used ratios are 60%, 30% and 10% or 65%, 25% 

and 15% for training, testing and validation respectively (Basheer and Hajmeer, 

2000).  

Another aspect of preparing the input data is balancing the data sets, which is 

distributing the training nearly evenly amongst the various classes to annul the 

effect of networks being biased to over-represented classes. Input data 

preparation, first balances and then normalises the process to prevent chaos in 

the network as a result of either the larger numbers overriding smaller ones or 

the premature saturation of hidden nodes. Normalisation usually confines the 

data into a uniform range of 0 to 1. A good rule of the thumb is to scale the input 

variables (𝑧𝑖) and the output range (𝜆2, 𝜆1) in intervals of the output values which 

correspond to the function in equation (5-7)  (Basheer and Hajmeer, 2000). 

𝑥𝑖 = 𝜆1 + (𝜆2 − 𝜆1) (
𝑧𝑖 − 𝑧𝑖

𝑚𝑖𝑛

𝑧𝑖
𝑚𝑎𝑥 − 𝑧𝑖

𝑚𝑖𝑛
) 

(5-8) 

Statistical analysis of the features plays an important role in selecting the input 

variables for successful neural network application. Güler and Übeyli (2006) 
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computed the statistical features (mean, maximum, minimum and standard 

deviation) to represent the time-frequency features extracted from the Doppler 

signals using the wavelet transform.  

The output of the neural network is the indicator of the flow regimes or classes 

of classification which are represented with a continuous or binary discrete 

number. Each of the input variables to the neural network is assigned to the 

class to which it belongs. Usually, these classes are represented with numerical 

values. There are two most common representations of the classes: continuous 

(0.3, 0.5, 0.7, etc.) or discrete (0 and 1 or 0.1 and 0.9).  Xie et al. (2004) have 

implemented the continuous number to represent the output of the neural 

network to indicate flow regimes.  They used continuous numbers (0.3, 0.5, 0.7 

and 0.9) to represent the flow regimes: bubbly flow, plug flow, churn-intermittent 

and slug flow respectively. This technique was supported by their earlier work 

(Xie et al., 2003). The continuous designation number to represent the output of 

neural network flow classification methods has been applied by other 

researchers as well (Sun and Zhang, 2008).  

However, due to the importance of the discrete output for extracting rules from 

trained neural network, Basheer and Hajmeer (2000) have suggested that the 

continuous variable should be replaced by discrete or binary numbers for 

representing the output of a neural network classifier.  There are methods and 

algorithms for discretizing the output variables. The discrete or binary number is 

often modified from (0 and 1) to (0.1 and 0.9) so as to prevent saturation 

(Basheer and Hajmeer (2000).  Also, allocating the targets of 0.1 and 0.9, 

instead of the common practice of 0 and 1, prevents the outputs of the network 

from being a directly interpretable posterior (Kandaswamy et al., 2004).  

The most frequently used training model in classification problems is back 

propagation (BP) which is adopted for this investigation and has been in other 

works (Arubi, 2011; Blaney and Yeung, 2008; Fan and Yan, 2013). The MLPNN 

has properties such as the ability to learn and transform fewer training set 

requirements and has fast processing.  This is the manner in which the weights 

can be adjusted, governed by different training algorithms (Übeyli and Güler, 

2005). The training tool has functions for performance, magnitude of the 
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gradient of performance and the number of validation checks. The magnitude of 

the gradient and the number of validation checks are used to terminate the 

training. The gradient will become very small as the training reaches a minimum 

of the performance. If the magnitude of the gradient is less than 1e-5, the 

training will stop (Beale et al., 2013). 

Cross validation in neural network pattern recognition is required to determine 

the optimum number of hidden units and the model that will perform best on the 

problem at hand (Bishop and James, 1993; Kandaswamy et al., 2004). The best 

network model for the flow regime classification is obtained after testing several 

training algorithms. The performance test of the input data sets is determined by 

computation of the total classification accuracy and number of training epochs. 

Total classification accuracy is the number of correctly classified flow 

regimes/number of total data sets (Übeyli and Güler, 2005).  

5.4.4 Flow regimes classifier neural network training and testing  

Eighty-six data set measurements on the horizontal two-phase flow are used for 

this experiment.  Sixty-two data sets are used for training the networks and 24 

are used for testing the network. Two sets of combined neural network models 

are developed in a MATLAB software package (MATLAB Version: 8.3.0.532 

(R2014a) with neural network toolbox) for classifying the flow regimes of air-

water two-phase flow using features from ultrasonic signals of the flow. The 

inputs to the network are features extracted from the signals of the flow using 

both PSD and DWTs. The outputs of the combined neural network are (discrete 

binary) indicators of the four flow regimes: elongated bubble flow, slug flow, 

stratified flow and stratified wavy flow. 

In this training process, the classification scheme of “1-of-C coding method for 

classification” was adopted to classify the inputs and each member of the data 

sets belongs to one output of the four flow regime categories. The four 

predetermined output values are as designated in the following equations: (5-9), 

(5-10), (5-11) and (5-12). The values are the targets presented to the network 

as outputs (Subasi, 2005). 

[0.9 0.1 0.1 0.1 ] =  Elongated bubble flow (5-9) 
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[0.1 0.9 0.1 0.1 ] =  Slug flow (5-10) 

[0.1 0.1 0.9 0.1 ] =  Stratified flow (5-11) 

[0.1 0.1 0.1 0.9 ] =  Stratified wavy flow (5-12) 

 
Table 5-8 Percentage of flow regimes in the experimental, training and testing 

data sets 

Flow Regime Exp. 

Runs 

% Training 

Runs 

% Testing 

Runs 

% 

Elongated bubble 
flow 

20 23.3 14 22.6 6 25 

Slug flow 30 34.9 24 38.7 6 25 
Stratified flow 20 23.3 14 22.6 6 25 
Stratified wavy flow 16 18.6 10 16.1 6 25 
Total  86 100 62 100 24 100 

 

The following BP algorithm training algorithms used in the network and their 

performance for the flow regime identification are examined. The multilayer 

perceptron has three activation functions for regulating its output: pureline, 

logsig and tansig). In this study, the sigmoidal function was used throughout 

due to its properties, such as ranging the output between 0 and 1, non-linear 

paving the way for complex mappings of the input to the output, and it is also 

continuous and differentiable (Güler and Übeyli, 2006). Important aspects of the 

neural network development are architecture and the training process. Several 

training algorithms and neural network architectures have been tested with 

different numbers of hidden layer neurons of the network evaluated during the 

training process. 

 Levenberg-Marquardt (LM) 

 Scaled Conjugate Gradient (SCG) 

 One Step Secant (OSS) 

 Resilient Back-propagation (RP) 

 Quasi-Newton (BFGS) 

 Bayesian Regulation (BR) 

Before the fusing of the neural network models, single level neural models were 

tried out for designing the flow regime classifier but the results were not good 



 

133 

enough. Subsequently, the single levels were integrated into the combined neural 

network. The neural networks with single layers were found to be superior to the 

two hidden layers in this experiment. The most efficient configuration for the 

network with PSD features was 12 neuron hidden layers while that of the DWT 

features was 28 neurons in the hidden layers.  

Combined neural network design: The combined network algorithm to 

determine flow regimes involves five sets of neural network models: N1, N2, N3, 

N4 and N5. Models N1, N2, N3 and N4 are the first level MLPNN formed with 

input (features)-outputs relationships. The N5 model is the second level network 

of the combined network and it uses the outputs of the first level network as the 

inputs while using the same outputs as the first level network. Each member of 

the first level network produces four outputs corresponding to the flow regimes 

and these outputs are concatenated to form a vector for the input of the second 

level of the combined network. Hence, the combined neural network for the flow 

velocities training for the four different set of features is extracted.  

5.5 Results and discussion  

In this study, horizontal gas-liquid two-phase four flow regimes were classified 

from ultrasonic Doppler signals processed using ANN. The inputs to the neural 

network are features obtained from frequency bands of both PSD and DWTs. 

After the features extracted from the signals, they are normalised. Flow regimes 

classification models based on feed-forward multilayer perceptron neural 

network implemented in the MATLAB software package with neural network 

toolbox. In order improve the performance of the ANN classifier the networks 

were integrated into two-tier network called combined neural network (Übeyli 

and Güler 2005). The total number of 85 data sets divided into training and 

testing sets and 62 data samples used for the training the network and 24 data 

sets were used for the testing the network.  

5.5.1 Feature extractions 

The features from the Doppler ultrasound signals of the flow extracted using two 

methods of features extractions were applied in this study. (1) DWT was for 

generating the frequency bands by decomposing the Doppler signal and then 
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applying each of the statistical measures of mean, maximum, minimum and 

standard deviation to the results of the wavelet transform. (2) Frequency 

domain spectral analysis of the ultrasonic Doppler signal has been implemented 

using PSD based on the Fourier transform technique.  The PSD spectra were 

further averaged to be input or representative of the flow in the neural network, 

as it is necessary to extract statistical moments from the spectra (Xie et al., 

2004). Seven frequency bands or levels were obtained from the detailed 

wavelet coefficients. So, for each of the data set, we obtained 28 features from 

the seven detailed wavelet coefficient levels and the statistical measure applied 

to the wavelet levels. 

5.5.1 Combined Neural Network for Gas-liquid flow velocities 

measurement 

Twenty-six test data sets used for the combined network were assessed and 

their results presented as a percentage error deviation from the full scale 

measurement of both superficial gas and liquid velocities. The superficial 

velocities’ measurements are from the reference EM flowmeter and the turbine 

gas flowmeter divided by the cross-sectional area of the pipe. All the four 

feature types investigated in this study were used in testing the performance of 

the combined neural network. 

Figure 5-16 to Figure 5-17 show the performance of the superficial gas and 

liquid flow velocities’ prediction obtained for all the four different types of 

features used as inputs to the network.  The predicted values are presented as 

how much error deviated as compared to the actual values of the measurement.  
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Figure 5-16 Prediction of gas flow and liquid flow velocities for testing the 

neural network using ultrasonic DWT features 
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Figure 5-17 Prediction of gas flow and liquid flow velocities for testing the 

neural network using ultrasonic PSD features 
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Figure 5-18 Prediction of gas flow and liquid flow velocities for testing the 

neural network using conductance DWT features 
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Figure 5-19 Prediction of gas flow and liquid flow velocities for testing the 

neural network using conductance DWT features 

 

Similarly, the test regression two-phase flow velocity measurement in Figure 
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Figure 5-20 Comparison of prediction rates of the four different features inputs  
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To sum up, the strength of the ultrasonic signals is in the flow velocity but the 

strength of the conductance is dependent on the liquid holdup. Also, the 

features method based on the DWT has been seen to be more effective than 

the PSD method for both ultrasonic and conductance signals.  

In order to appreciate the performance of the network, a linear regression 

coefficient of the neural network prediction of the test data with ultrasonic DWT 

features is computed. Figure 5-21 shows the linear correlation coefficient (R) 

between the network output and target values as measures of network 

performance. The R value for the liquid superficial velocities is 0.91 and for the 

gas superficial velocities is 0.50; the closer the value R to 1 the more accurate 

the prediction results.  

 

Figure 5-21 Linear correlation coefficient of the outputs of the network tested 

with ultrasonic DWT features and the target values 
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Figure 5-23 for the PSD and DWT features respectively. The diagonal cells 

show the number of data sets that were correctly classified, and the off-diagonal 

cells show the misclassified data sets. The blue cell in the bottom right shows 

the total percent of correctly classified cases (in green) and the total percent of 

misclassified cases (in red). The results show that the PSD trained network has 

missed three data sets in the classification, while the DWT trained network has 

misclassified only data point.  

 

Figure 5-22 A confusion plot of the PSD features used in the combined neural 

network for flow regimes classification showing the classification errors that 

occurred  
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Figure 5-23 a confusion plot of the DWT features used in the combined neural 

network for flow regimes classification showing the classification errors that 

occurred  

 

The flow regimes classification performance was evaluated in the form of 

confusion matrices. A misclassification is said to have occurred when the 

classifier fails to align a flow regime into the supposedly right group or class. 

From Figure 5-22 and Figure 5-23, the summary of the classification accuracies 

of each flow regime and each method of classifier based on the features used in 

the development of the systems are presented in Table 5-9. 
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Table 5-9 Classification accuracies for each of the flow regimes and the total 

accuracy of each classifier 

Classifiers Flow regimes classification 
accuracies (%) 

values 

Neural network with PSD 
features 

Elongated bubble flow 100 

 Slug flow 85.7 
 Stratified flow 83.3 
 Stratified wavy flow 83.3 
 Total classification accuracy  87.5 
   

Neural network with DWT 
features 

Elongated bubble flow 100 

 Slug flow 87.5 
 Stratified flow 100 
 Stratified wavy flow 100 
 Total classification accuracy 95.8 

 

5.5.3  Comparison of Visually Observed and Classified Flow Regimes  

 

Figure 5-24 Typical flow regimes of the gas-liquid two-phase in a horizontal 

pipe recorded by a high speed camera 

 

Table 5-10 shows the predicted flow regimes with a classifier using the PSD 

features which are quite good with only three misclassifications out of the 24 

data records. The three misclassified flow regimes are cases no. 7 which is 
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identified from slug flow to elongated bubble flow, and no. 17 which is also 

identified from slug flow to elongated bubble flow; the last misclassified regime 

is number 23 which is from stratified-wavy flow to stratified flow. These 

misclassified flow patterns are denoted as F for false prediction whereas the 

successfully classified flow regimes are denoted as T for true. Also, the 

misclassified flow regimes are very similar to their actual targeted flow regimes. 

It has been found that only the nearby flow regimes were confused in the neural 

network, as in the results of other work (Sun and Zhang, 2008).   

 

Table 5-10 Classification performance of 7-16-4 MLPNN Levenberg-Marquardt 

trained with PSD features 

No. Superficial 

gas velocity 

m/s 

Superficial 

water velocity 

m/s 

Observed flow 

regime  

Classified flow 

regimes with  

MLPNN 

1.  
0.5 0.4 

Elongated bubble 

flow 

T 

2.  
0.7 0.4 

Elongated bubble 

flow 

T 

3.  
0.9 0.4 

Elongated bubble 

flow 

T 

4.  
1.0 0.4 

Elongated bubble 

flow 

T 

5.  
1.3 0.4 

Elongated bubble 

flow 

T 

6.  
1.5 0.4 

Elongated bubble 

flow 

T 

7.  
0.5 0.7 

Elongated bubble 

flow 

F 

8.  0.7 1.0 Slug flow T 

9.  0.9 0.7 Slug flow T 

10.  1.1 0.5 Slug flow T 

11.  1.3 0.7 Slug flow T 
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12.  1.5 1.0 Slug flow T 

13.  0.5 0.1 Stratified flow T 

14.  0.5 0.1 Stratified flow T 

15.  0.5 0.1 Stratified flow T 

16.  0.7 0.1 Stratified flow T 

17.  0.7 0.1 Stratified flow F 

18.  0.7 0.1 Stratified flow T 

19.  0.1 0.9 Stratified wavy flow T 

20.  0.1 0.9 Stratified wavy flow T 

21.  0.1 1.1 Stratified wavy flow T 

22.  0.1 1.1 Stratified wavy flow T 

23.  0.1 1.1 Stratified wavy flow F 

24.  0.1 1.3 Stratified wavy flow T 

 

Similarly, in   
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Table 5-11, the DWT features from the test data set are applied to the trained 

neural network. This classifier was able to match all flow regimes except for one 

in case number no. 18 where it was misclassified from stratified flow to slug 

flow. Importantly, its overall performance is that it can classify the flow pattern 

up to 96%.  As a result, the combined neural network built using the MLPNN 

and DWT features has a higher quality of classification than the one trained with 

PSD features. These results are similar to flow pattern classifications works 

found in previous studies (Hernández et al., 2006; Sun and Zhang, 2008).  
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Table 5-11 Classification performance of the 28-10-4 Levenberg-Marquardt 

selected for DWT features 

No. Superficial 

gas velocity 

m/s 

Superficial 

water 

velocity 

m/s 

Observed flow 

regimes  

Classified flow 

regimes with 

MLPNN 

1.  0.5 0.4 Elongated bubble flow T 

2.  0.7 0.4 Elongated bubble flow T 

3.  0.9 0.4 Elongated bubble flow T 

4.  1.0 0.4 Elongated bubble flow T 

5.  1.3 0.4 Elongated bubble flow T 

6.  1.5 0.4 Elongated bubble flow T 

7.  0.5 0.7 Slug flow T 

8.  0.7 1.0 Slug flow T 

9.  0.9 0.7 Slug flow T 

10.  1.1 0.5 Slug flow T 

11.  1.3 0.7 Slug flow T 

12.  1.5 1.0 Slug flow T 

13.  0.5 0.1 Stratified flow T 

14.  0.5 0.1 Stratified flow T 

15.  0.5 0.1 Stratified flow T 

16.  0.7 0.1 Stratified flow T 

17.  0.7 0.1 Stratified flow T 

18.  0.7 0.1 Stratified flow F 

19.  0.1 0.9 Stratified wavy flow T 

20.  0.1 0.9 Stratified wavy flow T 

21.  0.1 1.1 Stratified wavy flow T 

22.  0.1 1.1 Stratified wavy flow T 

23.  0.1 1.1 Stratified wavy flow T 

24.  0.1 1.3 Stratified wavy flow T 
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5.5.4 Comparison of the Performance of PSD and DWT Features 

Performances of the six MLPNN structures trained using six different training 

algorithms for the flow regimes classification are compared. The comparison  is 

illustrated in Figure 5-25. The training algorithm with a single hidden layer gives 

the best performing network.  

 

Figure 5-25 Performance of various MLPNN structures and the training 

algorithms for both (a) Using features trained with PSD extraction (b) Using 

DWT extracted features. 
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is performed. The ultrasound signals are processed using the methods of PSD 

and DWTs for the extraction of input features to the ANN models. A multilayer 
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perceptron neural network is developed into a combined neural network of two-

levels as the classifier and the two methods of feature extractions produced for 

the network.  Comparisons of the performances of the two classifier models are 

assessed. Four two-phase flow regimes, i.e. slug flow, stratified flow, elongated 

bubble flow and stratified wavy flow have been classified using the method 

developed. 

The results show that ultrasound signal features of the two phase flow obtained 

using the DWT performs better for accurate classification compared to the 

features extracted with PSD methods. The combined neural network models 

developed for the classification using the PSD features and for the DWT 

features have accuracies of 87% and 95.6% respectively. In summary, the 

present study has demonstrated that DWTs feature extraction and the MLPNN 

classifier has met the industrial requirement of flow regime classification (Sun et 

al., 2013).  

In contrast to the invasive instruments used in other works, this approach is 

very important for industrial application, given that the sensor used is non-

invasive, non-radioactive and is ultrasound technology.  Based on the analysis 

of the experimental results, the proposed method is able provide objective 

classification of four flow regimes in the horizontal pipe. Other ultrasonic 

methods reported in the literature employed pulse echo ultrasound plus neural 

network or subjective methods of flow regimes indemnification (Jha et al., 2013; 

Figueiredo et al. 2016). The key strengths of the neural network based methods 

are fast classification and flexible procedure for finding good non-linear 

solutions.  

The continuous wave Doppler sensor is suitable for monitoring flow processes 

that are ultrasonically reflection fluids, such as crude oil, petrocarbons, oil-gas 

and oil-water mixtures. Importantly, the sensor can fit well onto existing 

pipework and it is suitable for both plastic and metallic pipes. However, on 

horizontal pipes, it is important to mount the sensor at the bottom of the pipe to 

avoid gas voids in the upper section of the pipe. Poor coupling of the sensor 

with the pipe, gas voids or bends would tamper with the strength of the signal 

received. The results of the present study have demonstrated that the proposed 
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approach of WTs and MLPNN classifier has met the industrial requirements of 

flow regime classification (Sun et al., 2013).   

Further studies are needed in the application of this clamp-on objective flow 

regime classification system to investigate oil-water two-phase flows, especially 

for the deployment of this technology to address the requirements of clamp-on 

ultrasound flow monitoring meter for oil well testing.  Also, more studies are 

recommended on the feasibility of information on the ultrasound Doppler sensor 

and void fraction measurements, such as the gamma densitometer, which 

would make the system a complete multiphase flow meter. 
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6 Data fusion of gamma and ultrasound Doppler sensor  

6.1 Introduction  

Multiphase flow measurement could be described as a product of the 

measurement of the flow phase fraction and the measurement of the phase flow 

velocity. Many techniques have been applied to measure the phase fraction of 

multiphase flows, such as capacitance, gamma radiation attenuation, neutron 

attenuation etc. (Rajan et al., 1993). Similarly, conventional single phase flow 

meters have been applied for measuring fluid velocities of multiphase flows in a 

mixed, stable and partially separated system (Rajan et al., 1993). For instance, 

the Venturi meter has been used to measure mixed multiphase flow where the 

flow is assumed to be ‘single phase flow’ (Thorn et al., 2013).  Also, both vortex 

shedding and Coriolis meters have been used to measure separated gas-

stream and separated oil-water streams respectively (Thorn et al., 2013). If the 

single phase flow meter were to be combined with a void fraction meter, then 

the multiphase flow measurement would be complete (Manus et al., 2013).  

Energy from radioactive sources, such as χ−𝑟𝑎𝑦   and 𝛾 − 𝑟𝑎𝑦  are applied to 

measure 1. Gamma ray measurement is commonly known as gamma ray 

densitometry. In a typical example in an air-water flow, the liquid phase scatters 

the radiation and it changes at a rate that is equivalent to the amount of water 

contained in the flow. The energy detected provides data which can be used to 

reconstruct the void distribution (Dyakowski, 1996). Thorn et al. (1997) describe 

the operation of a γ-ray densitometer for metering the gas water and oil 

components of multiphase flow. Two independent measurements are required 

to determine the values of the components’ fractions in three phase flows. This 

could be accomplished either by a second measurement with the same 

technique or with another one such as the capacitive technique. The gamma 

densitometry can be single beam or double as both have application in 

multiphase flow measurement. 

A single beam gamma densitometer is often used for measuring the void 

fraction of gas-liquid flows in a pipe. The measurement of the void fraction is by 

correlation between loss of radiation intensity of the test volume and the void 
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fraction of the fluid. The occurring flow regime in the pipe can be determined 

from the void fraction and that makes the gamma technique a non-flow regime 

dependent method (Stahl and von Rohr, 2004). Thorn et al. (2013) reported that 

the use of dual energy gamma rays for water fraction measurement requires 

energy sensitive detectors which mean the beam intensity has to be lower. An 

effective instrument which is based on essentially similar principles as the multi-

beam gamma densitometer is the scanning X-ray void fraction meter described 

by Falcone et al. (2009).  

In multiphase flow, ultrasonic techniques have the potential for both phase 

velocity and phase fraction measurement, although they have not been applied 

to commercial three-phase flowmeters yet (Thorn et al., 2013). However, the 

ultrasonic meters’ performance is affected by factors such as the number of 

scatters per unit volume, the distribution of scatters and their velocity profile 

across the pipe. Also, the ultrasonic attenuation is greatly dependent on the flow 

regime of multiphase flows and input signal frequency of the transducer (Rajan 

et al., 1993). Recent developments in other ultrasonic techniques for multiphase 

flow measurement have progressed considerably. 

Usually, the phase fraction and phase velocity measurement are measured with 

at least two devices or two independent measurements of one device. This 

approach is achieved by separately metering the phase flow rate and the phase 

fraction (Tan et al., 2015). Several combinations of two sensors for gas liquid 

flow measurement have been reported in the literature.  Xing et al. (2014) use a 

combination of ultrasonic e gas flow meter and Coriolis flowmeter for metering 

gas-liquid two phase flow of low liquid loading. Various models to represent the 

gas and liquid flow rate, density of mixture flow are used to obtain the coupling 

models for the two instruments. A theoretical method of data fusion of an 

electromagnetic (EM) flow meter, electrical resistance tomography (ERT) and 

two-phase flow models has been developed to improve the accuracy of the EM 

meter for the measurement of gas-liquid slug flow in a vertical pipe.  The 

feasibility of a two-phase flowmeter was achieved by using a simulation 

measurement of the averaged velocity, liquid flow rates and gas void fraction. 

Obviously, this approach requires an invasive sensor and relies on the electrical 
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conductance of the fluid (Deng, 2011; Xing et al., 2014). Similarly, Meng et al. 

(2010) present an experimental combination of a liquid (Venturi) flowmeter and 

ERT sensor for air-water two-phase flow measurement.  Three aspects of the 

flow measurement techniques were acquired with the ERT sensor: the flow 

regime identification, the void fraction using the conductance signal and void 

fraction model, and lastly, establishing a mass quality-void fraction correlation 

from void fraction results. The gas-liquid mass flow rate is measured with the 

Venturi differential pressure across the tube and the mass quality. Experimental 

results show the method developed has been accurate within the data tested 

but both mass quality and fluid flow rate measurement relies on correlations.  

In this study, the aim is to use a combination of gamma densitometer and 

ultrasound Doppler sensor to measure the volume fraction and flow rates of air-

water flow, air-oil flow and oil-water flow in a 50mm diameter vertical pipe. The 

gamma densitometer is set up to measure the area average void fraction at the 

test section and the ultrasonic Doppler is used to determine the time-average 

fluid velocity. Both of the sensors are non-invasive and the combination of these 

two sensors is a good step to estimate quantitatively the volume fraction of oil, 

water and air mixtures as well as the flow rates of the individual gas, water and 

oil flow rates. 

6.2 Measurement principle 

The pictures of the gamma densitometer and ultrasound instruments and the 

three two-phase flows measured are shown in Figure 6-7. The gamma source 

used in this study is Caesium-137 and its ancillary equipment is manufactured 

by Neftemer® for a multiphase clamp-on flowmeter.  The Caesium has gamma 

energy of 662 keV and the linear absorption coefficient is 8.6 m-1
.  The 

absorption of a narrowed or collimated beam of the gamma of initial intensity I0 

(Photon/m2-sec) is given equation (6-1).  The method of measurement of the two-

phase flow with gamma is calibrated by first determining the gamma count rates 

for single phase water flow and air only in the pipe for every test series (for 

instance IL and IG, respectively, for the liquid and gas phases in a gas-liquid 

two-phase flow). Single phase flow calibaration is to ensure that densities of the 
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respective flows are recorded both for calibration and the determination of the 

volume fractions according to the equations (Falcone et al. 2009; Fischer 1994).  

𝐼 = 𝐼0𝑒𝑥𝑝(−𝜇𝑧) (6-1) 

where −𝜇 is the linear absorption coefficient; 𝑧 the distance travelled through 

the absorbing medium, the intensity I of the gamma beam received at the 

detector. Sensor responses of the gamma densitometer to the three two-phase 

flows are shown in Figure 6-1 and Figure 6-2 

6.2.1 Gamma densitometer measurement principle   

 

Figure 6-1 Air-water mixture response and air-oil response to gamma pulses 
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Figure 6-2 oil-water two-phase flow response to oil only, water and oil-water 

emulsion flows 

 

The void fraction of the flow is calculated using equation (6-2) 
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(6-2) 

 Similarly, the liquid fraction can be obtained using equation (6-3)  
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(6-3) 

where IL and IG are the intensities recorded with the channel full of liquid and 

gas, respectively and 𝛼𝐺, 𝛼𝐿, 𝜌𝐺𝐿, 𝜌𝐺, and  𝜌𝐿 are: gas volume fraction, liquid 

volume fraction, gas-liquid density, gas density and liquid density respectively. 

Gas-liquid ratio or void fraction  

The phase fraction can be determined using equation (6-4)  

𝛼𝐺 = (𝜌𝐺𝐿 − 𝜌𝐿)/(𝜌𝐺 − 𝜌𝐿) (6-4) 

In gas-liquid flow, the equation gives the void fraction (namely the fraction of the 

gas phase in the channel). For the assessment of the air-liquid two-phase, we 

employ two models based on no slip between the gas phase and liquid phase 

and also the homogeneous models. The slip model was required to estimate 
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the gas mass quality from the void fraction measurement while the 

homogeneous model is to estimate the gas-liquid mixture density.  The slip 

model based on the void fraction is given in equation (6-5) and is based on 

Lockhart and Martinelli (1949).  

αg =
1

1 + (
1 − x

x ) (
ρg

ρl
)

 
(6-5) 

The homogeneous model is given as: 

𝜌𝑔𝑙 = (
x

ρg
+

1 − x

ρl
)

−1

 
(6-6) 

 

The homogeneous model considers the two-phase flow as though it is a single 

phase flow. The mass quality of the gas flow 𝑥 is calculated from the 

measurement of the void fraction and equation (6-6). The slip ratio, S is given 

as 

S = 0.28 (
1 − x

x
)

−0.36

(
ρg

ρl
)

−0.64

(
μl

μg
)

0.07

 
(6-7) 

 

 

and   

the density of the mixture  ρgl = αgρg + (1 − αg)ρl (Oddie and Pearson, 2004) 

where αg is the volumetric void fraction of the gas-liquid mixture, and ρg and ρl  

denote the densities of the gas phase and liquid phase, respectively (Xing et al., 

2014). 

ρgl = αgρg + (1 − αg)ρl (6-8) 

Therefore, the models described can be used to estimate the flow rates of the 

gas flow and liquid flow using equations:  

S = Wg/Wl (6-9) 

The liquid mass flow rate is given as Wl 

Wl = ρglQlultra(1 − αg) (6-10) 

Hence, the gas mass flow rate Wg 
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Wg = S ∗ Wl (6-11) 

Equations (6-9), (6-10) and (6-11) were employed to calculate the gas and 

liquid flow rates. It can be seen that the term, ρglQl.ultra, is the two-phase 

measured with the ultrasound Doppler sensor.  

The phase fraction can be determined using equation (6-12)  

𝛼𝐺 = (𝜌𝐺𝐿 − 𝜌𝐿)/(𝜌𝐺 − 𝜌𝐿) (6-12) 

6.2.2 Ultrasonic Doppler flow measurement method 

The continuous wave Doppler ultrasound sensor used in this experiment was 

viewed through an X-ray image which is shown in Figure 6-7. A sinusoidal 

beam of ultrasound is emitted by the piezoelectric transducer placed on the 

outside wall of the pipe flow. The fluid flowing through pipe has scatterers 

(bubbles or particles) which reflected the incident ultrasound beam.  The 

receiving piezoelectric transducer collects the backscattered ultrasound beam 

and then it is converted into an electrical signal. The received ultrasound is from 

a point scatters that has been shifted in frequency from the incident ultrasound 

by an amount of frequency shift, ∆𝑓 (Brody et al., 1974). The CW Doppler 

flowmeter can be applied for average flow measurement in two ways:  

1. Doppler flowmeter for measuring the full-pipe (true) average flow which is 

independent of the velocity profile. It is based on the following 

assumptions: 

a. There is homogeneous distribution of the scatterers in the fluid 

b. A uniform beam is focused across the flow pipe 

2. Average flow velocity of a small portion of the pipe can also be computed 

with a Doppler flowmeter by estimating the average flow velocities of 

homogeneous particles in the small region of the pipe which is assumed 

be occupied and illuminated by an ultrasound beam (Brody et al., 1974).  

The frequency shift can be computed from the classical Doppler shift formula as 

∆𝑓 = 2
𝑣

𝑐
𝑓𝑡 cos 𝜃 (6-13) 

 where:  
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𝑣 particle flow velocity 

𝑐 speed of sound 

𝑓𝑡 transmitted carrier frequency 

𝜃 transducer orientation angle 

The scattering of the ultrasound by the particles in the flow is a random 

phenomenon and as such the process of the scattering is described using 

statistical analysis. As a result, the ultrasound flowmeter is described as a 

stochastic process and it is being simplified using the statistical measurement 

for calculating the flowmeter estimates (Brody et al., 1974).  

 

 

Figure 6-3 X-ray image of ultrasonic transducer 

 

The measurement signal from the ultrasound sensor was acquired using a 

digital signal acquisition card (NI PCI) and the sampling and acquisition was 

controlled using the LabVIEW program at a sampling frequency of 10kHz. The 

average velocity of the flow is directly proportional to the mean frequency 

derived from the spectrum of the shift frequency.  

The velocity of sound of the gas-liquid mixture is used in the present test. It can 

be illustrated from the linear interpolation of the velocity of sound in air and 

water and the phase of the mixture (Huang et al., 2013). 
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𝑐𝐺𝐿 = 𝑐𝐺(1 − 𝛼𝐿) + (𝑐𝐿𝛼𝐿) (6-14) 

Then, the averaged velocity of the gas-liquid mixture is given as: 

𝑣 =
𝑐𝐺𝐿𝑓𝑑

2 𝑓𝑡cos 𝜃
 

(6-15) 

The Doppler flowmeter equation for single phase flow is used to measure the 

velocity of the two-phase flow with the ultrasound Doppler flowmeter. For the 

two-phase flow, the single phase flow Doppler flowmeter equation is modified 

as described by Huang et al. (2013). 

𝑣 =
𝑐𝐺𝐿𝑓𝑑

2 𝑓𝑡cos 𝜃
 

(6-16) 

where 𝑐𝐺𝐿 = 𝑐𝑤(1 − 𝛼) + 𝑐𝑔𝛼. 

The ultrasound signal of the flow for both single and two-phase varies according 

to the flow conditions at the test centre. As a result, every data point has a 

unique fluctuation of the ultrasound signal. However, it is usually not easy to 

see any difference between varies ultrasound signals of the data. In order to 

visualise the differences of the ultrasound signal, a typical value from each of 

the three two-phase flows were analysed using PSD. Figure 6-4 toFigure 6-6 

show the type of PSD plots of the air-water flow, air-oil flow and oil-water flow 

respectively.  



 

160 

 

Figure 6-4 Typical ultrasonic flow sensor signals and their corresponding PSD 

distributions under single phase water flow and air-water flow: (a) Single phase 

ultrasound signals, (b) PSD distributions, (c) Air-water two-phase flow, and (d) 

PSD distribution. 

 

Figure 6-5 Typical ultrasonic flow sensor signals and their corresponding PSD 

distributions under single phase water flow and air-oil flow: (a) Single phase 

ultrasound signals, (b) PSD distributions, (c) Air-oil two-phase flow, and (d) PSD 

distribution. 
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Figure 6-6 Typical ultrasonic flow sensor signals and their corresponding PSD 

distributions under single phase water flow and oil-water flow: (a) 10% water-cut 

oil-water phase ultrasound signals, (b) PSD distributions, (c) 90% water-cut oil-

water two-phase flow, and (d) PSD distribution. 

 

The differences in the PSD plots of the two-phase flows are evidence that the 

ultrasound signal can be analysed for flow regime identification in all the three 

two-phase flows.  

6.3 Experimental set up and procedures 

Three sets of two-phase flows: air-water, air-oil and oil-water were carried out in 

the three phase (air-water-oil) flow test facility. The test measurement 

instruments are shown in Figure 6-7. The gamma densitometer was used for 

measuring the phase fraction and density of the phase flow, while the 

ultrasound sensor was used for measuring flow velocity. The two instruments’ 

measurement values are combined for measurement of the flow rates of 

individual phases in each of the two-phase flows investigated.  

0 5 10 15 20
-2

0

2

4
Ultrasound raw signal of 90% oil and 10%  flow 1.39 l/s

(a)                       Time (s)

A
m

p
li
tu

d
e
 (

v
)

0 1000 2000 3000 4000 5000
0

1

2

3

4
x 10

-3

(b)                              Hz

P
o
w

e
r 

(W
)

PSD of  90% oil and 10%  flow 1.39 l/s

0 5 10 15 20
-2

0

2

4
Ultrasound raw signal of 10% oil and 90%  flow 1.39 l/s

(c)                       Time (s)

A
m

p
li
tu

d
e
 (

v
)

0 1000 2000 3000 4000 5000
0

1

2

3

4
x 10

-3

(d)                              Hz

P
o
w

e
r 

(W
)

PSD of  10% oil and 90%  flow 1.39 l/s



 

162 

 

Figure 6-7 Concept meter in the flow test section showing the combined 

instrument and three types of the two-phase flows tested 

 

Figure 6-8 Setup of the PC with the ultrasound sensors and its data acquisition 

 

6.3.1  Test Matrices 

The flow rates of water and air, air and oil, and oil-water were varied so that a 

wide range of void fraction and water-cut is generated for investigation of the 

vertical two-phase flows measurement. Figure 6-9 shows the test matrix of the 

air-water flow and air-oil flow which were plotted on the gas-liquid two-phase 
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vertical flow map of Taitel et al. (1980). It can be seen that there are five flow 

patterns in the vertically upward gas-liquid two-phase flow. The test data points 

investigated in this study contain flow patterns, mainly slug flow, churn flow, and 

annular flow, for both air-water flow and air-oil flow. In vertical flows, for 

example, at the end of the vertical pipeline from the reservoir to the well head, 

the flow regimes that could be observed in gas-liquid two-phase vertical flow are 

shown in the Figure 2-2. For high liquid superficial velocities, bubbly flow is the 

prominent flow regime. But as superficial gas velocity increases, the multiphase 

flow regime will change from bubbly-slug-churn-annular (Cornelissen et al., 

2005; Rajan et al., 1993).  

6.3.2 Experimental procedure 

Three different types of two-phase flows, i.e. air-water, air-oil and water-oil, 

were tested in the experiment on the 52mm riser of the three phase facility. The 

test rig operates on a blowdown principle in which high-pressure air is 

introduced into the system at the starting up of the rig operation and maintained 

at 1 bar (g) throughout the operating session. This pressure is required to 

facilitate the smooth operation by enabling the centrifugal pumps to maintain 

constant flow rates. The desired flow rates of air, water and oil are all set using 

the Delta V control systems and measured with their respective flowmeters 

before the flows are introduced into the rig. There are three independent 

individual inlets for each of the air, water and oil, which are distributed into by 

using the valve manifold section of the rig. The valve manifold allows for the 

selection of the pipeline and what fluid is to be supplied for conducting the 

experiment (Brini Ahmed, 2014).  

6.3.2.1 Test matrices of Vertical Flow Experiments 

Experiments for the air-water two-phase flow tests were conducted by setting 

the flow rate of the water at a certain amount (1, 2, 3, 5 7, 10m3/h) and then 

varying the flow rates of the air for seven different values (5, 10, 20, 50, 100, 

150, 200Sm3/h) for each of the water flow rates. Therefore, air-water flow tests 

were conducted for 42 different two-phase flow test points.  



 

164 

The superficial gas velocities of the gas flows were calculated based on the 

condition at the test section, i.e. by considering the effect of pressure and 

temperature on the gas flow at the test location. Both the water flow and gas 

flow were introduced into the flow line at the valve manifold of the and the two 

flows travelled 40m horizontally before rising up to the test section at the riser 

top. The superficial gas (air) velocity at the test section (riser top) is calculated 

according to equation (6-17). 

𝑈𝑠𝑔 =  
𝑄𝑔

𝐴𝑝
=  

𝑃𝑠𝑡𝑑 . 𝑇𝑡

𝑃𝑡 . 𝑇𝑠𝑡𝑑
 .

𝑄𝑠𝑡𝑑

𝐴𝑝
 

(6-17) 

where: 

𝐴𝑝 =  Cross-sectional area of the pipe 

𝑃𝑠𝑡𝑑 =  Average pressure at standard conditions 

𝑃𝑡 =  Average pressure at the test section 

𝑄𝑔 =  Gas volume flow rate at the test section 

𝑄𝑠𝑡𝑑=   Volume flow rate at standard conditions 

𝑇𝑠𝑡𝑑=  Temperature at standard conditions 

𝑇𝑡=  Temperature at the test section 

 

Table 6-1 Air-water flow test matrix 

  QW (m3/h)       

   1 2 3 5 7 10 

  Kg/s 0.28 0.56 0.83 1.39 1.94 2.78 

Air-water 

flow 

 QG (m3/h) 0       

  5       

  10       

  20       

  50       

  100       

  150       

  200       
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Similarly, the air-oil two-phase flow was tested in the same manner as the air-

water flow. The main difference between the air-water and air-oil is on which of 

the liquid pumps was selected and which valve manifold was open for the liquid 

to flow into the rig.  

 

Table 6-2 Air-oil flow test matrix 

  QW (m3/h)       

   1 2 3 5 7 10 

  Kg/s 0.28 0.56 0.83 1.39 1.94 2.78 

Air-water 

flow 

 QG (m3/h) 0       

  5       

  10       

  20       

  50       

  100       

  150       

  200       

 

Finally, the experiment is on testing the flow rates of oil-water two-phase flow. 

Table 6-2 shows the test matrix of the oil-water flow tests. Both the oil and water 

were stored and supplied to the rig from the same capacity tanks of 12.5m3. 

The liquid flows were passed through each centrifugal pump and then metered 

for mixing with each at the valve manifold which is 40m upstream of the riser 

base. The superficial velocity of the water flow was calculated using equation 

(6-18). 

𝑈𝑠𝑤 =  
𝑄𝑤

1000. 𝐴𝑝
 

(6-18) 

 

 

 

where: 

𝑄𝑤 =  Water flow rates (l/s) 
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𝐴𝑝=  Cross-sectional area of pipe (m2) 

Similarly, the oil superficial velocity can be calculated using equation (6-19).  

 

𝑈𝑠𝑜 =  
𝑄𝑜

𝜌𝑜 . 𝐴𝑝
 

(6-19) 

 

where: 

𝑄𝑤 =  Water flow rates (l/s) 

𝐴𝑝  =  Cross-sectional area of pipe (m2) 

𝜌𝑜  = Density of oil (kg/m3) 

 

Table 6-3 Oil-water test matrix 

  QW 

(m3/h) 

         

   0 10 20 30 45 60 75 90 100 

  Kg/s 0.28 0.56 0.83 1.39 1.94 2.78    

Oil-water 

flow 

 QO 

(m3/h) 

0          

  5          

  10          

  20          

  50          

  100          

  150          

6.3.3  Data acquisition system  

Four independent computers with data acquisition and control software were 

used to measure and collect the test data in this experiment. 1) A PC with 

process management software (Delta V). Delta V coordinates the fully 

automated operation of the rig and some of its function is for setting test points 

by controlling the flow rates of the liquid and gas and real-time monitoring of the 

operation of the test rig. 2) A PC with data acquisition and a control LabVIEW 

program was acquiring and storage of the readouts from the reference 
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instrumentations, such as the Coriolis flowmeter, pressure transducers. 3) The 

entire gamma densitometer set up is the Neftemer flowmeter which was 

controlled by a separate PC together with signal processing unit. 4) The fourth 

PC with data acquisition software is for acquiring signals of the flow using the 

two ultrasonic sensors: Ultrasonic Doppler flowmeter and Ultrasound pulse 

echo measurements (Blaney, 2008; Fischer, 1994; Oddie et al., 2003).  

 

Figure 6-9 Flow regime map showing the matrix of gas-liquid data collected 

 

Similarly, the oil-water upward vertical flow map produced by Flores et al. 

(1999) was used to classify the test matrix. In Figure 6-10, it can be seen that 

there are six different types of flow regimes existing on the vertical oil-water 

flow.  
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Figure 6-10 Examples of the vertical upward oil-water flow regimes (Flores et 

al., 1999) 

 

Figure 6-11 Flow regime map showing the matrix of oil-water data collected 

 

6.4 Results and discussion 

Data from three different types of two-phase flow: air-water, air-oil and oil-water 

flows were extracted from the gamma densitometer measurement and 

ultrasound Doppler sensor for measurement of the flows’ velocity. The liquid 

flow rates tested ranged from 1 m3/h  to 10 m3/h  (0.28 to 2.8kg/s) for both 

water and oil. Air flow rates ranged from 5 Sm3/h  to 200 Sm3/h  (GVF 20% to 

91%). Void fraction and liquid fraction are measured with the gamma 
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densitometer and the liquid velocity was estimated using FFT to obtain the 

averaged shift frequency. The Doppler ultrasound sensor used for measuring 

the liquid flow of the air-water flow is from the ultrasonic Doppler flowmeter 

whose liquid flow velocity ranged from 0 to 20ft/s (0 to 6m/s). The average flow 

velocity of the fluid is proportional to the averaged shift frequency. Different 

symbols were used to represent the void fractions and liquid fractions to identify 

the dependencies of the liquid flow rate on other phase fractions. Averaged 

values of the measured parameters were plotted against the measurement 

obtained from the reference sensors (Whitehouse et al., 1991).  

The performance of the combined measurement of the gamma densitometer 

and ultrasonic Doppler flow sensors was compared to the actual time-averaged 

values calculated from the measurements of the gas, water and oil injected. The 

tests results are presented as air-water flow, air-oil flow and oil-water flow 

respectively.  

6.4.1 Air-water two-phase flow measurement 

The gas void fraction in the air-water flow was measured using the gamma 

densitometer from the changes to the gamma pulses count by the variation of 

the gas and liquid at the test section.  Figure shows the result of the measured 

void fraction against the calculated one. It can be seen that all the data test 

points’ results are within ±10% of the calculated ones which illustrates the 

applicability of the gamma densitometer for void fraction measurement. This 

result agrees with other experimental measurements of void fraction using a 

gamma densitometer (Zhao et al., 2013).  
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Figure 6-12 Comparison of air-water flow void fraction measured and 

calculated using the input conditions 

 

The measurement of the void fraction provided an opportunity to measure gas 

and liquid phase flow rates from total flow velocity measured with the ultrasonic 

Doppler.  

𝑄𝑤 = (1 − 𝛼𝑔)𝑄𝑢𝑠 (6-20) 

 

𝑄𝑔 = 𝛼𝑔 ∗ 𝑄𝑡𝑜𝑡𝑎𝑙 (6-21) 

where the flow (Q) is in 𝑚3/𝑠 and the void fraction,  𝛼𝑔 is the void fraction. It is 

assumed that the 𝑄𝑢𝑠 is the total flow of the gas and liquid, then 

𝑄𝑢𝑠 = 𝑄𝑡𝑜𝑡𝑎𝑙 =  𝑣𝑚𝐴𝑝𝑖𝑝𝑒 (6-22) 

That is because if the void fraction at the flowmeter location is known, then the 

liquid and gas flow rates can be computed using the total volumetric flow using 

equations (6-20) and (6-21) (Whitehouse et al. 1991). 

Figure 6-13 shows the results of the total flow measured by the ultrasound 

Doppler compared with the reference inlet liquid flow. It can be seen that flow 

velocity measured by the ultrasound is higher than the reference flow velocity. 
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Measured velocity is overestimated which illustrates that the gas flow has an 

effect on the flow measured by the ultrasound flow sensor.  

 

Figure 6-13 Ultrasound measured flow vs. reference liquid flow velocity of air-

water flow 

in order to obtain the velocity of the liquid water phase only the velocity from the 

total flow measured by the ultrasound sensor was multiplied with the fraction of 

the liquid in the flow. Liquid water phase flow velocities were plotted versus the 

reference input liquid velocities in Figure 6-14. It can be seen that the measured 

velocities did not correlate with the reference flow velocity at the higher void 

fraction and higher flow rates (higher Reynolds number). However, outside the 

higher Reynolds number, the measured liquid velocity is within the range of 

±10%. This range of accuracy is good for industrial application. 
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Figure 6-14 Comparing the ultrasound measured liquid phase velocity with the 

reference input flow velocity 

The combination of ultrasound sensor and gamma densitometer signals of the 

flow were then investigated for measurement of the gas flow rates in the air-

water as the void fraction of the gas has been measured successfully with the 

densitometer.  The gas flow rate of the two-phase was calculated using a slip 

model. 

The coupling models of the slip ratio model based on the models of Lockhart 

and Martinelli (1949) were used for calculating the gas flow rates. The void 

fraction measurement of the two-phase flow was used for calculating the gas 

quality, x, (Xing et al., 2014). The gas-quality function, x, was calculated for 

each of the void fractions with equation 6-22:  

αg =
1

1 + (
1 − x

x ) (
ρg

ρl
) S

 
(6-23) 

 

 

where S is the slip ratio and is ratio of the gas flow velocity to the liquid velocity. 

Therefore, the product of the slip, S and the measured liquid flow phase flow 
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rates were used for calculating the gas flow rates of the two-phase. The 

combination of the two models, in effect, has made the combination of the 

gamma densitometer and ultrasound Doppler measurement as two-phase 

flowmeter.  

 

Figure 6-15 Gas flow rate measurement compared with reference 

measurement based on the input conditions 

0 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
Measuremnet gas phase flow rate in air-water mixture

Actual gas flow rate (Sm3/h)

M
e
a
s
u
re

d
 g

a
s
 f

lo
w

 r
a
te

 (
S

m
3
/h

)

 

 
0.28 l/s

0.56 l/s	

0.83 l/s

1.39 l/s

1.94 l/s

2.8 l/s

Liquid flow

rates values

GVF < = 30%



 

174 

 

Figure 6-16 Comparison of the ultrasound measured gas phase velocity with 

the reference input flow velocity 

Data tests for the air-water have the GVF starting from 20% up to 91%. It is 

certain that the gas flow has profound effect on the transmission and reception 

of the ultrasound signals. As a result, the gas flow rate determined from a 

combination of the sensors measurement and the models did not give accurate 

results. Figure 6-15 and Figure 6-16 show the results of the gas flow rates 

measured and the comparison of the measured gas flow with the reference gas 

flow respectively. It can be seen from both figures that the method developed 

using the combined ultrasound Doppler and gamma densitometer is only able to 

estimate flow at low Reynolds numbers (low gas and low liquid flow). It can be 

seen that the error between the measured and the reference ranged from less 

than 5% up to as high as 450%! It was also found that the gas flow limits the 

propagation of the ultrasound into the liquid flow. Thereby, the gas flow is 

preventing the measurement of the liquid flow in the event of high gas flow 

(Huang et al., 2013).  
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6.4.2 Air-oil two-phase flow measurement 

In this section, data obtained from the gamma densitometer and the ultrasound 

Doppler flow sensor on air-oil two-phase and the results obtained are 

presented.  The data presented in Figure 6-17 show the averaged void fraction 

of the air-oil flow measured with the gamma densitometer and compared with 

the void fraction calculated based on the input conditions of the flow.  The air-oil 

flow void fraction measured is slightly less accurate than those of the air-water 

flow measured above. In the air-oil flow, only a few of the data points are within 

the range of ±10%. 

 

Figure 6-17 Comparison of air-oil flow void fraction measured and calculated 

using the input conditions 

Similarly to the air-water flow above, the air-oil flow was also measured with the 

ultrasound Doppler flow sensor and the gamma densitometer to estimate the 

liquid flow rate and the liquid and gas individual phase fractions. The total flow 

velocity of the air-oil flow was estimated with the ultrasound Doppler sensor and 

the result was compared with the input liquid (oil) flow velocity. Figure 6-18 

shows the comparison of the estimated liquid flow measured by the ultrasound 

sensor and the reference oil input velocity. It can be seen that the measured 
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reference. Also, it is clearly illustrated that there is a connection between the 

underestimation of the liquid flow velocity and the increase in the gas void 

fraction.  

 

Figure 6-18 Comparison between experimental and reference liquid input 

velocity 

 

Also, the fraction of the oil flow in the air-oil flow was estimated using the 

gamma densitometer and the total liquid flow velocity measured with ultrasound 

was multiplied with the oil fraction to obtain the velocity of the liquid phase only.  

The result of the comparison between the liquid oil flow velocity measured and 

the reference liquid flow is illustrated in Figure 6-19. It can be seen that the 

combined measurement of the gamma densitometer and ultrasound Doppler 

works best at low Reynolds numbers of the flow, i.e. low flow rate with high GVF 

and low GVF with high flow rate.  
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Figure 6-19  Comparison of the liquid phase velocity measured with combined 

instruments and the reference liquid (oil) of the input.  

 

Similarly, the air flow rate of the air-oil two-phase is also determined from the 

combined measurement of the gamma densitometer and ultrasound Doppler 

sensor. In order to obtain the gas flow rate, two different models were used. Slip 

models were used to calculate the gas mass fraction or quality. A homogeneous 

model of gas-liquid two-phase flow was used for the estimation of the gas-liquid 

mixture density by substituing the values of the gas fraction in the model. The 

results of the gas flow rates measurement are plotted in Figure 6-20. The 

results of the comparison of the measured and reference gas flow rates show 

that the method developed can measure gas flow with small with when the GVF 

is less than 20%. At the low Reynolds, similarly to the air-water flow, the gas 

flow can be determined within the range of ±10%. 
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Figure 6-20 Gas flow rate measurement compared with reference 

measurement based on the input conditions in air-oil two-phase flow 
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Figure 6-21 Comparison of the ultrasound measured gas phase velocity with 

the reference input flow velocity 

 

The error between the measured gas flow rates in the air-oil flow and the 

reference gas flow rates is plotted in Figure 6-21. In the same way as the air-

water flow, the gas flow rates error ranged from 5% to up 200%. This large error 

is attributed to the fact that high gas flow rates attenuate the penetrative 

strength of the ultrasound signal.  
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in the oil-water flow, we estimated both the water-cut and density of each oil-

water data point. The water-cuts measured were compared with those 

calculated based on the input conditions of the flow, as shown in Figure 6-22. It 

can be seen that most of the measured water-cut agrees with the calculated 

water-cut with ±10% uncertainty.  
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Figure 6-22 Comparison between experimental and calculated water-cut of the 

oil-water flow 

 

The overall density of the oil-water flow estimation is plotted in Figure 6-23 

where it is seen that the density measurement is in good agreement with the 

reference. Densities of all the data points are with the range of ±5%. The oil-

continuous part of the plot shows a much higher accuracy than the water 

dominated region of the graph.  This deviation is caused by changes in the 

phase and flow composition which affected the accuracy of the mean gamma 

pulses estimated, as the flow changes from oil flow only at the beginning to 

water only at the tail end of the plot, and oil and water have different rates of 

absorption rate for the gamma radiation.  
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Figure 6-23 Oil-water two-phase flow density estimation compared with the 

reference density measurement 

 

The next analysis of the oil and water measurement is the flow rate estimation 

of the individual oil phase and water phase flows in the oil-water flow. The total 

flow velocity of the two-phase oil-water was estimated using the ultrasound 

Doppler sensor. As the speed of sound in oil and water is different, we used a 

mixture of sound speed for the two-phase. The mixture sound velocity was 

calculated for each data point based on the fraction of each phase in the data.  

A similar strategy of estimation of sound speed in a two-phase flow has been 

applied in the work of Huang et al. (2013).  

𝑐𝑚𝑖𝑥 = 𝑐𝑜𝑖𝑙(1 − 𝛼𝑤) + 𝑐𝑤 (6-24) 

 

After the mixture sound speeds are estimated, and then averaged, a flow 

velocity measurement using the Doppler flow technique was applied to obtain 

the velocity of the emulsion flow.  
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seen from both of the individual phase flow estimates obtained, that using the 

combined instruments measurement is underestimating the reference mass 

flow rates of each phase flow.  

 

Figure 6-24 Overall oil-water flow measurement against the flow velocities 

 

Figure 6-25 Oil phase flow velocity estimation and reference oil phase flow 
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Figure 6-26 Water phase flow velocity estimation and reference oil phase flow 

 

The main reason for this error in the estimate is assumed to be as a result of 

the changing flow regimes, as there are six different flow regimes in oil-water 

vertical flow. The measurement could be due to the fact that the flow regime 

was not considered, because test data points were computed based on 

classification of their water volume fraction.  As a result, the method developed 

from the combination of the gamma densitometer and ultrasound Doppler 

sensor underestimated the flow rates.  

The changes in the water volume fraction of the oil-water flow mixture causes 

changes in the sound speed in the mixture. Consequently, the velocity of fluid 
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rates remain the same. Figure 6-27 shows the changes in the mixture velocities 
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Figure 6-27 Variation of the oil-water mixture velocities due to changes in the 

water-cut of the oil-water two-phase 

 

In Figure 6-27, it can be seen that the mixture velocities rose sharply in between 

zero water-cut and 15% (WC 15%) and then steadily increased in line with the 

increase in water volume fraction. This spontaneous increase in the flow 

velocities is due to the relatively about 20% difference in densities between 

water and oil. However, no definite summary can be made other than the sound 

in water is higher than in oil and it was the result of the increases in the 

velocities of the higher water-cut flows. 
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liquid fraction determined with the gamma densitometer and liquid flow velocity 

estimated from the ultrasonic signal of the two-phase flow. It has been found 

that liquid phase velocity can be determined with good accuracy, especially for 

the flow data points within the low Reynolds ranges. The gas flow rates 

estimation was based on the combination of the sensor’s measurement and the 

two slip and homogeneous models. The slip model was required to estimate the 

gas mass quality from the void fraction measurement while the homogeneous 

model estimates the gas-liquid mixture density. 

This work presents an investigation of two-phase gas-liquid and liquid-liquid 

emulsion flow using a combination of two non-invasive sensors to determine 

individual phase’s volume fractions and flow rates. The methodology developed 

here can be further improved by incorporating the effect of flow regimes into the 

measurement approaches adopted.  
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7 Conclusions and recommendations 

7.1  Conclusions 

This thesis has presented investigations into the capabilities of the two types of 

ultrasound Doppler sensors: continuous wave Doppler sensor and pulse-echo 

ultrasounds to conduct measurements of two-phase multiphase flow in both 

horizontal and vertical pipe orientations. The results have demonstrated that 

ultrasound waveforms reflected from the flow in the pipe can be manipulated to 

detect slug flow parameters.  The ultrasound signals can be processed to 

generate features such as inputs to neural network models for pattern 

recognition techniques of two-phase flow measurement, and coupling of the 

ultrasound measurement with gamma densitometer for the measurement of 

two-phase flow rates. Both the ultrasound continuous wave sensor and pulse-

echo transducer were installed non-invasively. The non-invasive setup was 

proposed to develop a technique and method for the clamp-on multiphase 

flowmeter. However, there are challenges encountered in the analysis of the 

waveforms which include attenuation of the ultrasound waveforms by the gas 

flow, which thus limits the reliability of the measurement systems developed into 

two-phase with reasonable amounts of gas fraction, such as in the slug flow.  

The findings of the investigation include estimations of the hydrodynamic 

parameters of air-water flow. Slug flow can be achieved using the non-invasive 

ultrasound and processing of the ultrasound waveforms of the slow using HHT 

techniques. Then, neural network models were developed for classification of 

the flow regimes of the two-phase flow with reasonable accuracy and to predict 

gas flow rates and liquid flow rates. Moreover, the ultrasound sensor 

measurements were coupled with the gamma densitometer measurements to 

obtain the flow rates of the oil continuous flow and water continuous flow of the 

oil-water two-phase flow, and measurement of gas flow rates and liquid flow 

rates in air-water and air-oil two-phase flow. Finally, a high frequency pulse-

wave ultrasound Doppler sensor was utilised in the pulse-echo mode to 

determine film thickness in both vertical and horizontal flow pipes. These 

capacities of the technology developed have extended the application of the 
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ultrasound sensor use in the industry from the original function as a flow velocity 

measurement sensor to two-phase flow measurement. 

7.1.1 Application of continuous wave ultrasound Doppler  

The determination of the hydrodynamic parameters of the two-phase slug flow, 

such as slug frequency, slug lengths and elongated bubble velocity, is important 

for many design calculations in pipe and petroleum industry downstream 

equipment. The parameters are often measured with invasive or light 

dependent instruments which are not good enough for field operations.  In this 

study, experimental measurements of air-water flow on a horizontal flow pipe 

were conducted with a clamp-on (non-invasive) ultrasound Doppler sensor to 

determine slug flow hydrodynamic parameters. The HHT is applied to the 

ultrasound signals to investigate a non-invasive measurement of the 

parameters of the two-phase slug flow. The clamp-on ultrasonic sensor 

measurement is validated by a synchronised measurement of the slug flow 

parameters using a pair of flush mounted conductivity probes. The application 

of acontinuous wave ultrasound Doppler sensor’s ability to measure the 

parameters of the multiphase flow was enhanced with the use of the HHT signal 

processing method. In addition, the HHT technique is shown to be more 

accurate than FFT for extracting the Doppler shift frequency from the ultrasound 

waveforms for the estimation of average flow velocity.  

7.1.2   Application of pulse echo ultrasound  

In addition, the pulse-echo methods have the capability of measuring two-phase 

flow parameters in both temporal and spatial resolution. Therefore, they have 

the potential for pattern recognition of two-phase flow for the quantitative 

characterisation of flow regimes by plotting the instantaneous level as a function 

of time series. 

7.1.3 Ultrasound and neural network techniques 

The feasibility of the pattern recognition technique using the continuous wave 

Doppler ultrasound and neural network was investigated on the 2-inch 

horizontal air-water flow test rig. The ultrasound sensor is a single unit clamp-on 

device and the ultrasound signals were acquired and processed using both 
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PSD and DWT to generate the representative feature of the data set. These 

features are used as the input to the neural network models and trained to 

predict new data set features which are not seen by the network. The method 

was implemented for both flow regime classification and the prediction of the 

flow rates of the gas and liquid flow.  Flow regimes studied, including slug, 

elongated bubbly, stratified and stratified wavy were first visually identified and 

then the neural network was developed from the ultrasound signal to objectively 

classify them.  

The results show that the methodology is suitable for a non-invasive flow 

regime classification using ultrasound signals. The features extracted using 

DWTs is much better than those extracted using the PSD. The efficacy of the 

flow regimes classification method was assessed numerically.  A few and 

infrequent misclassifications were observed in the process but those 

inaccuracies were misread as the flow regimes of nearest flow patterns.  This 

makes the methodology proposed and developed for the flow regime 

classification reliable and of significance for field deployment. However, further 

studies are recommended to investigate the methodology for vertical flows and 

improvements in the accuracy of the prediction of flow rates.  

7.1.4 Data Fusion of Gamma and ultrasound sensor 

A new approach to the experimental study of air-water, air-oil and oil-water two-

phase flows in a vertical pipe has been conducted to investigate a non-invasive 

multiphase flow metering using a combination of measurements from 

ultrasound Doppler sensor and gamma densitometer. Gas phase and liquid 

phase flow rates were computed with the measurements from the instruments 

and the use of a slip model and a homogeneous model. The methodology 

proposed here was aimed at the development of a clamp-on multiphase flow 

metering system. The flow phase fractions were computed from the gamma 

pulses counted across the flow of the fluids. The flow velocity was measured 

with the ultrasound sensor, using the FFT method of extracting the shift 

frequencies of the reflected ultrasound signals. The measurement of the mean 

velocity was calculated by estimating the mean frequency of the frequency 
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shifts using the time averaged maximum frequency Doppler of the ultrasound 

waveforms.  

Generally, the results obtained for the gas flow rates and liquid flow rates were 

good, particularly for the flow conditions with low gas void fraction (GVF <40%). 

The flow conditions with higher GVF have caused considerable errors in the 

measurement of the flow velocities and this was attributed to the attenuation of 

the ultrasound signals by the gas flow. On the other hand, the measurement 

flow velocity and the flow volumetric rates are much better for oil and water flow. 

The flow rates determined for all the data sets in the region of the water-

continuous flow regimes of oil-in-water churn (O/W Churn), dispersed oil-in-

water (D O/W) and very finely dispersed oil-in-water flow, are all measured 

within the uncertainty of ±10%.  

The key challenges encountered in this experiment were the inaccuracies in the 

gas-liquid flow rates measurements at higher GVF and oil-water flow rate 

inaccuracies at very low water-cut. Therefore, further study and improvement on 

the models and signal processing of the ultrasound signals are recommended.  

7.2 Recommendations for further study 

The four applications of ultrasound technology for multiphase flow 

measurement explored in this thesis have shown better development of the 

technology and demonstrated its potential for industrial application in both 

vertical and horizontal pipe flow orientations. However, there is room for 

improvement in all the four applications proposed in this study. 

7.2.1  Application of continous wave ultrasound Doppler  

In this chapter, an ultrasonic continuous wave Doppler sensor was applied to 

gas-liquid two-phase flow to measure flow rates and monitor the parameters of 

the two-phase flow regimes. The results are compared with models developed 

from experimental methods in the literature. Further investigation will be carried 

out to determine the inhibitor of these test points. 
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7.2.2  Application of pulse echo ultrasound  

Two pulse echo transducers methods have been used on either of the 

horizontal and vertical pipe flows. The first, a wet transducer of 1 MHz centre 

frequency was used for measuring liquid thickness by pulse echo methods to 

develop ultrasonic method of liquid level measurement in the horizontal air-

water flow. This method was found to be suitable for finding liquid height in the 

pipe and it can be extended to flow regime classification as well. The second 

transducer was a 7.5 MHz centre frequency clamp-on sensor which uses 

operation principle similar to the previous 1 MHz transducer for the pulse echo 

ultrasound technique.  The second sensor was used for determining the liquid 

thickness of both oil and water in the vertical flow. However, it is found to be 

unsuitable in the current setting as the high frequency ultrasound signal being 

generated by the transducer were strongly attenuated by the gas flow. 

7.2.3  Ultrasound and neural network techniques 

In order to develop the technology further or to apply the methodology on 

different types of fluid, further feature extraction training is required. Since the 

response of the ultrasound is affected by the gas flow by attenuation of the 

ultrasound waveforms, as a result the strength of the ultrasound is higher in the 

flows with low gas content. Therefore, it recommended that a combination of the 

ultrasound sensor and another sensor would provide the features in both 

phases of two-phase for ultrasound signal. Then it is expected that the 

prediction of the gas flow rates would be accurate and the prediction of liquid 

flow rates could also be enhanced. Another interesting aspect that could be 

taken into account is the online measurement of the multiphase flow in real 

time. In this study, both the process of the flow regimes classification and 

prediction of the gas flow rates and liquid flow rates were conducted offline 

using MATLAB. The neural network models developed could be integrated in 

the LabVIEW programs to implement online multiphase flow monitoring. The 

benefits of the online measurements cannot be overemphasised.  
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7.2.4  Data fusion of Gamma and ultrasound sensor  

The data acquisition of the experiments is conducted using four independent 

computers to collect the test data in this experiment – PCs with process 

management software (Delta V). Delta V coordinates the fully automated 

operation of the rig and some of its function is for setting test points by 

controlling the flow rates of the liquid and gas, and real-time monitoring of the 

operation of the test rig.  One of the PCs is for the ultrasound Doppler sensor, 

gamma densitometer and one for reference instrumentation on the test rig. 

Therefore, one of the improvements that could be undertaken for the future 

work of this study is to develop a mechanism in which all the different sensors 

can be operated using a single PC and to synchronise the data acquisition.  

Another challenge encountered in the study is the issue of measurement of flow 

with high GVF. As low void fraction data were measured accurately, it is 

desirable to improve on that. Flow rates of the data set with high GVF were 

estimated inaccurately and the author believes that by instruction of flow pattern 

information into the current measurement method, there will also be 

improvement in the estimation of the gas flow rates as well as the liquid flow 

rates at higher GVF. 

Most techniques need further development, despite some success having been 

achieved in MFM applications. The most significant  improvements that could 

be undertaken for the future work of this study is to develop a mechanism in 

which all the different sensors can be operated using a single PC and to 

synchronise the data acquisition.  
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Figure 7-1 Instruments setup for the proposed future work of combining all the 

three sensors in a single PC for synchronised data acquisition and analyses 
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Appendix A  

A.1 Instrumentation and data acquisition  

Details of the instrumentation and metering system of the air-water rig are 

shown in Table_Apx 1.  The water flow meter is in the supply flow line adjacent 

to the meeting point of air and water. The gas flow meter connected to the one-

inch pipe air flow supply and the meter has a flow range of 6 – 60m3/hr.  

Pressure and temperature of the air is measured at the air flow meter so as to 

determine the actual flow rates of air flow into the rig. The method of the data 

acquisition is described in section A.1.3.  

Table_Apx 1 Equipment used in the horizontal two-phase experimental setup 

 Equipment  Range 

Air flow rate Turbine gas flow meter 

Quadrina (QFG 25B/EP1) 

Range: 6~60m3/hr 

Water flow 

rate 

Electromagnetic flow meter 

Altometer (Altoflux K280/0) 

Accuracy: 1%   

Range: 0-4.524 

m3/hr 

Temperature 

sensors  

Tgh: Temperature  at the gas inlet (Type 

T thermocouple wire)  

Tm: Temperature at the test section 

(Type T thermocouple wire) 

Calibrated range: 

0~50°C 

Pressures 

sensors 

Pgh: Pressure transducer at the gas 

inlet (Druck  PMP1400) 

Pm: Pressure transducer at the test 

section (Druck  PMP1400) 

Accuracy: 0.15% 

typical, 0.25% 

maximum 

Range: 0~6bar(g) 

Water 

Holdup  

Conductance probes 

Conductivity probes ring A and B 

0-5 v 

Water flow 

velocity 

Ultrasonic transducer (United 

Automation Ltd DFM-2) 

Frequency: 500kHz 

1% repeatability 

Range 0-20 ft/s 

Data National Instruments DAQ card (NI PCI- Resolutions: 12bits 
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acquisition  MIO-16E-4) Maximum sampling 

rate (single-channel 

scanning): 500kS/s 

Table_Apx 2 Continued from previous Table_Apx 1 

A.1.1 Electromagnetic flow meter (EM flowmeter) 

The electromagnet of the electromagnetic flowmeter was powered by a 220v 

AC voltage supply from the mains. Figure 3-1 shows the electromagnetic 

flowmeter used in this research. It was manufactured by Krohne Altimeter (Alto 

flux K280/0). It has two pairs of electrodes made of non-corrosion-resistive and 

non-magnetic material which are installed as flush mounted along the inner wall 

of the flowmeter. It was fitted in the pipeline with the use of flanges from either 

end of the flowmeter.  

The present electromagnetic flowmeter was installed at a distance of 45 

diameters from the water tank and at 360 diameters to the test section which 

was located at 18m downstream of the EM flowmeter. The water flow rate is 

Quantity Equipment Specifications 

Pulsed wave 

ultrasonic sensors  

1  MHz  Panametrics 

NDT A303S 

Frequency: 1MHz 

Nominal element size: 13mm  

 7.5 MHz Frequency: 7.5 MHz 

Nominal element size: 8 mm 

Pulser/Receiver Panametrics-NDT  

500 PR (Waltham, 

MA) 

PRF: 500~5000 Pulsers/second 

Pulse: negative impulse  

Bandwidth : 25 MHz 

(Low:-125Vpeak, rise time 7𝑛𝑆 

 High: -250Vpeak, rise time 

10 𝑛𝑆)  

PC oscilloscopes PicoScope 5444B Up to 1 GS/s real-time sampling 

Up to 512 MS buffer memory 

Analogue bandwidth: 50MHz 

Up to 512 MS buffer memory 

Resolution: 8 to 16 bits 
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measured before the air and water mixed at the upstream of the test section. 

The EM flow meter has a range of 0-4.524 m3/ hr. The output signal range of 

the EM flowmeter was scaled up to the discharge flow range of the water pump 

for the data acquisition.  Current output range of the EM flow meter is 4-20 mA, 

discharge flow rate 0-12.54 l/s and a 250 𝞨 resistor was connected at the 

output leads of the EM flowmeter. The current range was converted into voltage 

range (1-5v) by using the resistor.  So the slope of the EM flowmeter is the ratio 

of the flow rate span and output voltage span. 

𝑠𝑙𝑜𝑝𝑒 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑢𝑡𝑜𝑝𝑢𝑡 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑢𝑝𝑡𝑢𝑡
=

12.54

4
  

 𝑙

𝑠
/𝑣 

Slope = 3.135 l/s/v. 

The total flow rate of the EM flow meter, Q, in the data acquisition is given by: 

𝑄 = 3.135(𝑉 − 1) ∗
3600

1000
 𝑚3/ℎ𝑟 

where V is the output voltage of the EM flowmeter. 

 

A.1.2 Conductivity probes 

The conductivity probes used for the measurement of the liquid holdup in the 

two-phase flow are based on the impedance method. This principle has been 

applied for continuous monitoring of the liquid holdup in both experimental and 

industrial settings. Details of the techniques have been described by Andreussi 

et al. (1988) and Fossa et al. (2003). In the present study, the conductance 

probes are a pair of non-intrusive probes, ring electrodes fitted into the flow pipe 

in a flush mounted setup. The liquid holdup of the water can be measured with 

the probe in the resistance term of the impedance (Andreussi et al., 1988). 

The conductance probes were set to give a voltage high reading of (5V) for full 

pipe area and a low level voltage (0V) for the empty pipe section between the 

electrodes. The relationship between the voltage output and volume of water in 

the pipe is non-linear and requires a static calibration (Andreussi et al., 1988). 

Figure A-1 shows the setup of the two ring-type conductance probes, spaced at 

a distance of 186.5mm, used for liquid holdup measurement. These probes’ 

electrodes operated with a sinusoidal voltage of ±400mV at frequencies of 7 

and 13kHz respectively.  
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Figure A-1 Setup of conductivity probes and ultrasound Doppler flowmeter’s 

sensor 

The probes were first calibrated for the holdup measurement by serially 

introducing known volumes of water into a horizontally placed section of the 

pipework, which contains the conductance probes. Every volume of water 

introduced into the short test section and the corresponding voltage reading 

resulting from the electrical impedance of the volume of water was recorded.  

The normalised liquid holdup was calculated using equations (3-1) and 

normalised voltage was calculated using equation (3-2) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐻𝑜𝑙𝑑𝑢𝑝 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑝𝑜𝑢𝑟𝑒𝑑 𝑖𝑛𝑡𝑜  𝑡ℎ𝑒 𝑝𝑖𝑝𝑒

 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑢𝑙𝑙 𝑝𝑖𝑝𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
 

(3-1) 

  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

=
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟  𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑓𝑢𝑙𝑙 𝑝𝑖𝑝𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
 

(3-2) 
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Figure A-2 Shows the calibration curve for the normalised hold-up and 

normalised voltages with 1 being a full pipe and 0 equals an empty pipe.  

 

Figure A-2 shows the calibration curve for the normalised hold-up and 

normalised voltages with 1 being a full pipe and 0 equals empty pipe. The 

calibration curve was obtained by means of the methods described in detail  

(Andreussi et al., 1988; Fan and Yan, 2014; Fossa, 1998). 
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A.1.3   Test matrix of the horizontal test experiments 

Table_Apx 3 shows the test matrix which covers the volumetric air flow rate 

from 3.5m3/h to 12m3/h and volumetric water flow rate from 0.4m3/h to 8.5m3/h. 

Over 77 tests were performed  which covered four flow regimes in the horizontal 

pipeline. All stated superficial gas velocities are at standard conditions (1 bar, 

average of 22°C). The experimental test matrix values are generated by fixing a 

value of the superficial water velocity and varying instep the gas superficial 

velocities by using the gas flow control valve of the rig. 

Table_Apx 3 Air-water horizontal flow test matrix 

Air-

water 

flow 

QW 

(m
3
/h) 

0.

35 
0.49 6.36 0.78 0.92 1.06 2.83 3.53 4.95 7.07 8.48 

 
VLG 

(m/s) 

0.

05 
0.07 0.9 0.11 0.13 0.15 0.4 0.5 0.7 1 1.2 

QG 

(m
3
/h) 

VSG 

(m/s) 
           

3.53 0.5            

4.95 0.7            

6.36 0.9            

7.78 1.1            

9.19 1.3            

10.60 1.5            

12.02 1.7            

            

A.1.4 Data acquisition systems 

The data acquisition of the air-water flow measurement using the ultrasonic 

Doppler flowmeter was conducted using the instrumentation on the rig and the 

LabVIEW data acquisition card system installed on the PC running Windows 7. 

Each of these instruments is connected to the PC via the data acquisition–Card. 

However, the pulse echo ultrasound sensor signals of the flow were acquired 

using the PicoScope (PC-based oscilloscope). The PicoScope was used for 

receiving the ultrasound signal of the two-phase flow from the Pulser/receiver 
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which is used in sending and receiving signal from the ultrasonic pulse echo 

transducer. The measurement data for both sensors were collated for the 

appropriate test points.  

 

A.1.5 LabVIEW DAQ system  

Data collection on the air-water horizontal rig comprises all the instruments on 

the rig except that of the pulse echo ultrasound which was collected using a 

LabVIEW program written exclusively for the data acquisition. The data 

acquisition system comprises the sensors, signal condition units for each 

sensor,  Rack-Mounted Terminal/Connector Block (NI BNC 2090), analogue to 

digital converter (ADC), LabVIEW program and a PC. The signal conditioning 

unit receives analogue voltage from the instruments and then smooths and 

stabilises into DC voltages equivalent to the measured variable. Different 

sensors have different signal conditioning units. The ADC is based on the data 

acquisition card (NI PCI-MIO-16E-4) and LabVIEW program (version 10). The 

rack-mounted terminal connector interfaces the BNC connectors of each signal 

conditioning units’ physical channel with the ADC unit. Table_Apx 4 shows the 

physical channels on the rack terminal used for each instrument.  

The data acquisition output then processes the corresponding digital signal of 

each of the instruments according to the prior calibration, in the correct 

engineering units, of the quantity measured. The LabVIEW program, running on 

the PC running Windows 7, samples the data from the instruments at 10kHz for 

20 seconds, which displays the engineering unit values, and stores the raw data 

for further processing. The raw data voltage signals are converted into 

engineering units of the corresponding instruments in the LabVIEW program 

using equation (8-3) 

 

𝑀𝑉𝐸𝑈 = 𝐾(𝑉 − 𝑉0) (8-3) 

where: 

𝑀𝑉𝐸𝑈 =  The measured quantity in engineering units 

𝐾 =  The gain of the instrument (obtained from the calibration 

chart)  
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𝑉 =  The signal output of the instrument 

𝑉0 =  The signal output of the instrument at zero input 

 

Table_Apx 4 Data acquisition channels for the LabVIEW program 

Instrument  Description  Signal range 

(v) 

Physical 

channel 

Cond 1 Conductance probe 1 0-10 Dev1/ai0 

Cond 2 Conductance probe 2 0-10 Dev1/ai1 

EM EM flowmeter output signal 0-5 Dev1/ai6 

Pgh PMP 1400 2.5 bar(a) 0-5 Dev1/ai7 

Pm PMP 1400 2.5 bar(g) 0-5 Dev1/ai8 

Tgh Type T thermocouple 0-5 Dev1/ai9 

Tm Type T thermocouple 0-5 Dev1/ai10 

Ultrasound Ultrasound Doppler signal -5-5 Dev1/ai2 

Um Ultrasound flowmeter output 

signal 

-5-5 Dev1/ai4 

Vgas Turbine gas flowmeter output 

signal  

0-5 Dev1/ai5 

Appendix B Air-water-oil 3-phase flow experiments 
A second set of experiments were conducted in the three phase test rig; the rig 

has two loops of different pipe diameters of 52mm and 102mm pipelines. The 

52mm diameter was the pipeline used for conducting this study. Figure B-1 

shows a schematic diagram of the three phase rig. The rig is a high capacity 

automated control test facility and has four main sections: the fluid supply and 

measurement, test area, the three separation and the valves’ manifolds. The 

pipeline of the rig is made up of NB schedule 10 stainless steel. It has a total 

length of 50.5m which consists of a 40m horizontal line connected to a 10.5m 

high riser.  
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Figure B-1 Three-phase flow rig diagram
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B.1.1 Experimental fluids 

The fluids supplied into the rig are gas (air) and liquids (oil and water). The air 

supply into the rig is from two identical compressors (Atlas Copco Elektronikon 

GA75 compressors C01 and C02) which are connected in parallel. The 

compressors have a combined maximum capacity of air flow rate of 1410m3/h 

at 7 bar (g). The air flow from the compressors is fed into a receiver tank of 

2.4m3 capacity which serves as a buffer between the rig and compressors. The 

buffer tank is required to prevent fluctuation of the air supply flow.  The air from 

the receiver tank is measured by two Mass ProBar flowmeters and then passes 

through a bank of air filters before being supplied to the rig. The bank of air 

filters is for air treatment which removes impurities and dirt, and also regulates 

the air temperature. Air flow to the rig is measured using automated control 

valves located at the upstream of the Mass ProBar flowmeters. The automated 

control valves are managed using process systems management software 

(Delta V Emerson process management). Metering of the air flow into the rig is 

done with two Rosemount Mass flowmeters, one for lower flow rates (0-

120Sm3/h) and the other for higher flow rates (120-4250Sm3/h) and regulation 

of the air flow rates into the rig is carried using the DeltaV (Blaney, n.d.; Brini 

Ahmed, 2014).  

 

Figure B-2 Air supply filtering and metering system of the three phase rig 

 

B.1.2 Liquid flow supply 

Water is supplied into the rig from a reservoir tank with 12.5m3 capacity (T100)  

and the oil is supplied from a reservoir tank with 12.5m3 capacity (T200).  



 

218 

Similarly, water and oil are both pumped into the flow loop by using two identical 

multistage Grundfos CR90-5 pumps (P01 and P02 respectively). Each of the 

pumps has a capacity of 100m3/h at 10 bar (g). Oil is dielectric oil (Rustlick 

EDM-250). The oil is non-hazardous with a density of 815kg/m3 and a viscosity 

of about 7.2mPa at 210C. 

In addition, the measurement of the liquid flow rates of both oil and water is 

metered in two categories.  The water flow rate is metered with a Rosemount 

8742 Magnetic flowmeter in the lower flow rate range (0-1kg/s) and in the higher 

flow rate, a Foxboro CFT50 Coriolis meter with a range of (up to) 10kg/s. 

Similarly, the oil flow rate is also metered in two ranges: the lower flow rate is 

with a Micro Motion Mass flow meter (0-1kg/s) and the higher oil flow rate is by 

using a Foxboro CFT50 Coriolis meter with a range of (up to 10kg/s). 

                    

 

Figure B-3 Oil flow pump and water flow pump photos 
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B.2 Three-phase rig instrumentation and data acquisition  

The rig has instrumentations provided for the measurement of fluid pressure, 

differential pressure, fluid temperature, water flow and gas flow, and a single 

beam gamma densitometer was used for each of the flows. 

B.2.1 Vertical flow test section  

 

B.2.2 Pressure transducers 

Four flush mounted pressure transducers are installed along the riser pipeline 

section of the rig.  A pressure transducer is installed at the test section to 

facilitate estimation of the real time gas flow rate of the test section. The 

pressure transducers are all  Druck PMP 1400 0-2.5 bar (g), with an accuracy of 
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+/-5%. Each of these transducers is individually pre-calibrated and the output of 

the pressure transducers’ calibration shows a linear relation between the 

pressure and voltage output of the transducer. In addition to the pressure 

transducer at the test, the other three transducers are installed and spaced 

along the riser pipeline at positions of 5.4m, 3.6m and 1.8m from the riser base.  

The measurements from the pressure transducers are included in the LabVIEW 

data acquisition system. 

  

B.2.3 Coriolis flow meter 

A Coriolis mass flowmeter (Endress and Hauser Promass 83F) is installed at 

the top of the riser 8.03m from the riser base. The Coriolis meter is used for 

measuring the fluid density. The output of the Coriolis is also included in the 

data acquisition of the reference instrumentation LabVIEW program. The 

measurement principle of the Coriolis mass flow meter is that the vibrating 

tubes, which are in line with the flow direction, vibrate in response to the flow. 

The vibration of the tube is managed by an electronic system. The density of 

the flow is calculated from the frequency of the vibration of the tubes while the 

flow rate is calculated from the phase difference in the vibration of the opposite 

tubes of the Coriolis meter. The Coriolis meter can be as accurate in it 

smeasurement as 0.2% (Manus, 2001). 

  

B.2.4 Gamma densitometer 

This is a commercial available single beam gamma densitometer (Neftemer 

Flowmeter Ltd) for multiphase flow measurement. It was installed at 8.0m above 

the riser base of the 2-inch line of the three phase facility. The measurement of 

the flow is across the test section of the riser.  The gamma densitometer uses a 

Caesium isotope (137 Cs) with radioactivity of a half-life of 30.1 years which is 

the most frequently used gamma source for conventional gamma-ray 

densitometers (Kumara et al., 2010). The half-life span is long enough for the 

practical application of the meter. The instrument has an in-built, 

microprocessor based, self-calibration that stabilises the pulse count in the 

event of losses. Therefore, it does not need continuous recalibration (Fischer, 
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1994). The absorption of a narrowed or collimated beam of the gamma, of initial 

intensity I0 (Photon/m2-sec), is given in equation (1-4).   

The method of measurement of the two-phase flow with gamma starts with the 

calibration of the densitometer by first determining the gamma count rates for 

single phase water flow and air only in the pipe for every test series (for 

instance IL and IG, respectively, for the liquid and gas phases in a gas-liquid 

two-phase flow). This is to ensure that the densities of the respective flows are 

recorded for calibration and for the determination of the volume fractions 

according to equation (1-4) (Falcone et al., 2009; Fischer, 1994). 

𝐼 = 𝐼0𝑒𝑥𝑝(−𝜇𝑧) (1-4) 

where −𝜇 is the linear absorption coefficient; 𝑧 the distance travelled through 

the absorbing medium, the intensity 𝐼 of the gamma beam received at the 

detector.  

The gamma densitometer comprises a gamma source and its lead-filled 

stainless steel casing, which prevents the gamma radiation from escaping to the 

surroundings, a collimator that narrows and focuses the beam of the gamma 

source, and the gamma detection unit. The source and detector are arranged 

diametrically opposite to each other and this allows the densitometer to be used 

in measuring the average flow parameters to be measured across the whole 

pipe diameter (Kumara et al., 2010). The detector unit consists of scintillation 

crystals, photomultiplier tube and electronic circuit for amplification of the signal 

from the photomultiplier. 
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Figure B-4 Schematic diagram of a single-beam gamma densitometer (Park 

and Chung, 2007) 

 

The gamma densitometer system comprises an encased Caesium-137 source, 

a scintillator and data processing unit. The Caesium source is in a cylindrical 

lead-filled shielding cask with an open and close source window shutter handle. 

A lead collimator or beam narrower is used to direct the gamma source beam 

and the scintillator. Figure B-5 shows the gamma densitometer setup installed 

on a vertical pipeline. The data processing unit performs the pulse counting 

from the scintillator and it consists of a pre-amplifier, amplifier, a PLC controller 

and Neftemer flowmeter software. The gamma densitometer was designed as a 

clamp-on flowmeter and it is controlled by the Neftemer flowmeter software at a 

sampling frequency of 250Hz.  

The single beam gamma densitometer systems have two advantages over 

multi-beam systems (Chan, 1990): 1) the source strength is lower and this helps 

in reducing the shielding requirement and thus, a single beam gamma 

densitometer is portable and flexible. 2) With the single beam systems, data 

interpretation is simpler and straightforward. This allows for application of the 

densitometer for objective flow regime identification.  
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Figure B-5 Pictorial diagram of the gamma densitometer setup 

 

B.2.5 PC with Delta V 

A process management software has been developed by Emerson Process 

Systems (Delta V) for the automated monitoring of gas and liquid inlet flow 

conditions, including flow rates, static pressures, temperature, density, 

reservoirs and tanks’ liquid levels. Delta V enables us to set the input water, and 

gas and oil flow rates, and operates the appropriate pumps and valves. The 

sensor signals from these process parameters are transmitted into the Delta V 

via Profibus and Fieldbus signal transmission systems. Process parameters 

transmission and recording with the Delta V is at a frequency of 1Hz and 

process operations history are also recorded for future reference. The 

controllers of the Delta V can be used to set the flow rates of both gas and liquid 

by inputting the desired flow rates in the Graphical User Interface of the 

metering area of the Delta V. A detailed description of the three phase rig and 

Delta V were previously presented by Yeung and Lao (2013). 
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B.2.6 PC with LabVIEW for reference instrumentation 

A PC running Windows XP professional was used for controlling the 

instrumentation used for the reference measurement of flow, pressure, density 

and temperature. Signals from the instruments are acquired using the LabVIEW 

program written to perform controlled data acquisition systems. The 

instruments: Coriolis mass flowmeters, temperature transducers and pressure 

transducers, are distributed along the test line of the rig. The output voltages 

from the instruments are acquired using National Instruments E-series card 

PCI-MIO-16E-4 data acquisition (DAQ) board.  The DAQ board was connected 

to the instruments via National Instruments BNC-2090 connector and then 

controlled with the LabVIEW program.  The LabVIEW program comprises three 

features for DAQ, viewing and saving on the disk storage device. The stored 

information was originally read from the channel of the DAQ kit as output 

voltages and then converted into their respective engineering values based on 

the calibration result of each instrument. The data were stored as a text file. The 

recording and saving of the data in this experiment was done with 100Hz scan 

rate, 100Hz sampling rate and five minutes test duration. 

   

B.2.7  PC with Neftemer Flowmeter Software 

Gamma densitometer pulse count rates of the flows were collected using the 

Neftemer DAQ and time series pulse count rates visualisation with the software 

‘Chastotomer’ installed in a PC. The Chastotomer communicates with the 

controller in the data processing unit (DPU) of the gamma system. The key part 

of the gamma densitometer DPU is the programmable logic controller (PLC) 

ICP 1-7188D which processes the gamma count rates at the rate of 250Hz, 

communicates with the gamma detector via an RS-485 and transmits to the PC 

also through an RS-232 serial port.  The Chastotomer was used for facilitating 

the pulses count rate display and saving in the form of two counts of Hard count 

and Soft count in “dat” filing systems.  Figure B-6 illustrates the flow information 

between the gamma source and the controller of the DPU.  The saved gamma 

pulses count rates taken from the flow processes are exported into the MATLAB 

environment for offline processing.  
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Figure B-6 Schematic diagram of the Neftemer flowmeter 

B.2.8 PC with Ultrasonic sensors 

Using a 0.5-MHz CW Doppler system (DMF-2 UAL), the Doppler signals from 

the two-phase signal of the vertical test rig were recorded for approximately 20s 

(enough time for the flow regime profile to pass through the test section). The 

recordings sampled the frequency at 10kHz digitized using a 12-bit ADC 

(National instruments E-series card PCI-MIO-16E-4 data acquisition board) and 

were stored on a hard disk of a PC running Windows 7. The range of the 

Doppler flowmeter was to 0-6m/s (0-20ft/s). Also a pulse echo ultrasound 

transducer was used to characterise the two-phase flow in the pipe. The 

ultrasound sensors were attached axially and five centimetres apart to the 

outside of the pipe in the test section. The ultrasonic Doppler flowmeter signal 

was acquired with a LabVIEW program, while the ultrasound pulse echo signal 

was acquired using PC-based oscilloscope, namely a PicoScope.   
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