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ABSTRACT 

The primary purpose of this work was to study the morphological change of river-bed 

sediment surfaces over time using wavelet transform analysis techniques. The wavelet 

transform is a rapidly developing area of applied mathematics in both science and 

engineering. As it allows for interrogation of the spectral made up of local signal 

features, it has superior performance compared to the traditionally used Fourier 

transform which provides only signal averaged spectral information. The main study of 

this thesis includes the analysis of both synthetically generated sediment surfaces and 

laboratory experimental sediment bed-surface data. This was undertaken using 

two-dimensional wavelet transform techniques based on both the discrete and the 

stationary wavelet transforms. 

A comprehensive data-base of surface scans from experimental river-bed sediment 

surfaces topographies were included in the study. A novel wavelet-based 

characterisation measure - the form size distribution ifsd) - was developed to quantify 

the global characteristics of the sediment data. The fsd is based on the distribution of 

wavelet-based scale-dependent energies. It is argued that this measure will potentially 

be more useful than the traditionally used particle size distribution (psd), as it is the 

morphology of the surface rather than the individual particle sizes that affects the near 

bed flow regime and hence bed friction characteristics. 

Amplitude and scale dependent thresholding techniques were then studied. It was found 

that these thresholding techniques could be used to: (1) extract the overall surface 

structure, and (2) enhance dominant grains and formations of dominant grains within 

the surfaces. It is shown that assessment of the surface data-sets post-thresholding may 

allow for the detection of structural changes over time. 
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CHAPTER 1 

INTRODUCTION 

1.1. Wavelet analysis and the characterisation of river bed surfaces 

The wavelet transform (WT) was introduced in the early 1980's as a new signal 

processing technique (Goupillaud et aI, 1984; Grossmann et aI, 1984). Since then it has 

emerged to become a powerful analysing tool for the physical sciences. Over the past 15 

years it has become increasingly widespread in its use and now covers many areas in 

both science and engineering. The WT has been found to be particularly useful for 

analysing signals which can best be described as noisy, discontinuous, transient and so 

on. Its ability to examine the signal simultaneously in both time and frequency in a 

distinctly different way to the traditional Fourier Transform (FT) has led to the 

generation of a number of new wavelet-based methods for signal analysis. Wavelet 

transform analysis has recently been applied as an analysis tool in a range of diverse 

areas including: crack surface characterisation, monitoring of crack propagation, climate 

analysis, financial indices, seismic signal denoising, heart monitoring, characterisation 

of turbulent intermittency, condition monitoring of rotating machinery, detection of air 

pressure changes, denoising of astronomical images, video image compression, 

compression of medical signal records, and so on (Addison, 2002). There is now an 

abundance of literature concerning the wavelet transform and its many applications. 
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The knowledge of sediment transport in open-channel flow is vital to river engineers. 

Most open channels have a constantly changing river bed-surface. Erosion and sediment 

transport are therefore common concerns. When a gravel surface is subj ected to flood 

flow the topography of the bed-surface will change due to the movement and 

re-arrangement of the surface particles. This in turn affects the flow resistance in the 

channel, causing separation and re-circulation that influences the overall flow regime of 

the river. As the turbulence characteristics change which is likely to affect the rate of 

erosion of the bed-surface. It is therefore important to be able to characterise the 

bed-surface topography during and after the sedimentation process. 

Recently, wavelet analysis has been employed in a variety of surface analysis tasks 

including the characterization of orthopedic joint prostheses (Jiang et aI, 1999), 

fractional Brownian motions surfaces and cracked concrete surfaces (Dougan et aI, 

2000), pitting corrosions (Frantziskonis et aI, 2000) and surface roughness of silicon 

(Moktadir and Sato, 2000), general surface roughness analysis (Lee et aI, 1998) and the 

evaluation of engineering surfaces (Xiong et aI, 2001). Motivated by this research 

concerning the application of the wavelet transform as a surface characterisation tool in 

such diverse fields, the author has investigated the utility of the wavelet transform in 

analysing experimental rived-bed sediment surfaces data. 

The proj ect detailed herein concentrates on sediment surfaces characterisation using 

both the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT). 

The study includes both real and synthetic surface data. The rest of this chapter 

introduces the aims and objectives underlying this thesis together with a brief summary 

of the content of subsequent chapters. 

1.2. Scope of investigation 

The work detailed in this thesis has the following aims: 

1. to characterise the topographical structural behaviour of experimental rived-bed 

sediment surfaces over time using wavelet transform-based tools, 

2. to separate bed form features within river bed sediment surfaces using the 

wavelet thresholding technique. 
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The aims were achieved through the following objectives: 

1. to undertake a literature review to appraise current applications of the wavelet 

transform as a method for surface analysis, 

2. to develop computer algorithms for overall characterisation of the sediment 

surface data, 

3. to develop computer algorithms for the enhancement of local surface features in 

the data, 

4. to apply the developed algorithms to analyse both synthetic and experimental 

sediment surfaces data. 

1.3. Outline of thesis 

The remainder ofthis thesis is structured as follows: 

Chapter 2 presents an introduction to the wavelet transform focusing on the 

mathematics of the discrete and stationary wavelet transforms. Wavelet transform tools 

and their applications are then discussed; specifically relating to the use of the wavelet 

transform in surface analysis. In addition, the chapter provides a general overview of 

sediment transport and the creation of coherent structures on sediment bed surfaces. 

Chapter 3 describes the results of initial studies usmg the I-dimensional wavelet 

transform as an analysis tool for the characterisation of profile data: both synthetic and 

real profile data were included in the analysis. In addition, the chapter also includes 

preliminary results from the analysis of medical data using the discrete wavelet 

transform. 

Chapter 4 details work using a two-dimensional wavelet transform for global surface 

characterisation. The main work detailed in this chapter concerns the analysis of 

experimental river-bed sediment surface data. A new technique to characterise sediment 

surface data is introduced and its implementation as a computer algorithm is described. 
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Chapter 5 presents two-dimensional wavelet transform methods for the identification of 

local surface features. This study was carried out on computer generated synthetic test 

data and employed wavelet thresholding techniques to separate larger structures from 

the background surface topography. 

Chapter 6 provides a summary of the conclusions presented throughout the thesis with 

recommendations for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction and background 

According to Kim et al (2000) a wavelet is a small wave of short duration with finite 

energy, which integrates to zero. The wavelet transform (WT) is a mathematical tool to 

cut data, functions or operators into different frequency (or scale) components 

(Daubechies, 1992). Each frequency component may then be studied at its resolution. In 

this aspect the WT works in the same way as the Fourier transform, which extracts 

frequency content of a signal. However, the Fourier transform loses all the information 

about the time location of particular frequencies within the signal, whereas the WT is 

able to retain time location information of specific frequencies within a signal. This is 

achieved by moving the wavelet function to different locations and by stretching and 

squeezing it to different 'widths' along the signal. When analysing a signal with a 

narrow wavelet the high frequency components (usually noise) are sorted out from the 

signal. While a wider wavelet captures the low frequencies components (overall form) 

of the signal. This property allows for location of features in time ( or space), which is 

the main advantage of the wavelet transform over other conventional techniques. In this 

chapter the wavelet transform method is reviewed with focus on the discrete wavelet 

transform (DWT) and the stationary wavelet transform (SWT) which are the methods 

the author has used in the analysis. 
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The chapter begins with section 2.2 where a short history of the wavelet transform is 

presented, followed by section 2.3 which describes alternative data analysis methods. 

The next two sections present the two main classes of wavelet transform: section 2.4 

concerns the continuous wavelet transform (CWT) and section 2.5 the discrete wavelet 

transform (DWT). Thereafter follows a brief introduction of the redundant DWT, the 

stationary wavelet transform (SWT), in section 2.6. The two-dimensional wavelet 

transform is introduced in section 2.7. Section 2.8 discusses the choice of wavelet bases. 

Section 2.9 presents the application of the WT as a thresholding tool and section 2.10 

presents the use of the wavelet transform in surface analysis. In section 2.11 a brief 

introduction to sediment transport and sediment surface sampling and analysis 

techniques are presented. Finally a summary of the findings of this chapter are given in 

section 2.12. 

2.2. The history of wavelets 

The mathematical theory of wavelets can be traced all the way back to Joseph Fourier 

and his theories of frequency analysis at the beginning of the 19th century, (Alsberg et 

aI, 1997). A century later Alfred Haar wrote a paper where he constructed the Haar 

wavelet (Haar, 1910). However, it was not until the 1980's that a general understanding 

of the wavelet concept was provided (Williams and Amaratunga, 1994). Stromberg 

(1982) introduced the first orthogonal wavelet at the beginning of the 1980's. 

Independently from Strombergs' work, Lemarie and Meyer (1986) also constructed a 

new orthogonal wavelet expansion. Studies of the wavelet transform in its continuous 

form were undertaken by Grossmann and Morlet (1984, 1985). The most noticeable 

work in this field was carried out by Mallat (1989b, 1989c) and Meyer (1990) in the late 

1980's. Coming from different directions Mallat (who was working with signal 

processing) and Meyer (a pure mathematician) created multiresolution theory. As a 

result of their work the fast wavelet transform and a mathematical theory of orthogonal 

wavelets were formed (Hubbard, 1996). Their work led to the construction of a set of 

wavelet orthogonal basis functions by Ingrid Daubechies, (Daubechies, 1988), which 

now is regarded as a cornerstone in wavelet theory. 

Due to the good time-frequency localisation property of the wavelet transform (WT), 

fast algorithms and a simple form of analysis, it has proved to be a very useful (and 
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popular) analysing tool, (Ogden, 1997). Today the WT is found in a range of different 

areas in both science and engineering. In the late 1980's perhaps the most common use 

of wavelets were in the area of electrical and computational engineering. Particularly as 

a signal processing tool, where the WT have been used to extract the 'real' signal 

components from noisy data sets, i.e. denoising (Wickerhauser, 1994). 

The application of the WT as a practical analysis tool for engineering data took off at 

the beginning of the 1990s. Background papers introducing the wavelet transform in 

engineering analysis include Williams and Amaratunga (1994), Lau and Weng (1995) 

and Torrence and Compo (1997). Over the past decade there has been an explosion in 

the quantity of research undertaken and the number of papers produced each year. 

2.3. Other methods for data analysis 

A data series is a collection of observations made sequentially in space. Examples occur 

in a variety of fields, ranging from economics to engineering, and methods of analysing 

data series constitute an important area in statistics. A data series is said to be 

continuous when observations are made continuously in space. The term continuous is 

used for series of this type even when the measured variable can only take a discrete set 

of values. A data series is said to be discrete when observations are taken only at 

specific times, usually equally spaced. The term discrete is used for series of this type 

even when the measured variable is a continuous variable. 

A signal can be represented in different ways but the most important ones are the time 

(or space for a spatial signal) and the frequency representations. The frequency content 

of a signal can be revealed by transforming the signal from its time domain to its 

frequency domain. A number of frequency methods to transform data are available. 

One of the most prominent signal representation schemes is the Fourier transform (FT), 

which breaks a function up into its component frequencies. This frequency method 

transforms the data using smooth harmonic modes (sines and cosines), finding the 

instantaneous frequencies of the data. The Fourier transform finds the frequency content 

within a data but loses information about the location of specific frequencies (Mallat, 

1999; Hubbard, 1996). 
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To overcome this, the windowed Fourier transform (WFT) was introduced which 

provides a degree of location of the time-frequency content of the data. The signal is 

studied segment by segment, where a window (which remains fixed in size through the 

transform) determines the size of the segment to be analysed. Once the frequency 

content of the analysed segment is determined the window slides along the data. The 

window allows for better detection of sudden changes in the data. However, due to its 

fixed window width signal components of duration longer than the window length are 

not picked up and those significantly smaller than the window length are lost due to 

averaging across the window. 

Another common frequency analysis method is the quadric time-frequency method. The 

method transforms the data by comparing the data with itself. This avoids any loss of 

time-frequency resolution. The quadric time-frequency decomposition therefore 

possesses excellent time-frequency resolution and turns out to be ideal for the analysis 

of simple, monochromatic signals. However, these methods contain cross terms which 

makes analysis different for more complex signals. Examples of quadric time-frequency 

methods are Wigner- Ville distribution and Cohen's class distribution, (Mallat, 1999). 

The above methods are good for analysing symmetric signals, however, they are 

unsuitable for studying data which contains localised or transient features. The wavelet 

transform, however, transforms a signal into time-frequency representation which 

reveals both the frequency content and the exact location of a specific frequency in the 

data. 

The following section introduces the wavelet transform in more detail. 

2.4. The continuous wavelet transform (CWT) 

2.4.1. Introduction 

This section introduces the basic theory for the continuous wavelet transform (CWT). 
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2.4.2. The wavelet function 

A wavelet is, as the name suggests, a small wave or pulse that can be compressed and 

stretched to different scales over the length of the analysed data. The main advantage of 

wavelets are their varying window size: wide for low frequencies and narrow for high 

frequencies. This leads to an optimal time-frequency correlation in all frequency ranges. 

The basic wavelet function 'I/(t) is known as the mother wavelet. This function should 

satisfy the condition: 

00 

f 'I/(t)dt = 0 (2.1) 
-00 

A family of wavelets are generated by dilating the function using the scaling parameter 

a and translating it using the location parameter b. Thus the wavelet function can be 

rewritten as: 

1 (t-b) 'I/(a,b) (t) = Fa'l/ -a- (2.2) 

A large value of a stretches the function and allows analysis of low-frequency 

components while a small value of a squeezes the function and makes it possible to 

analyse high frequency components. 

For a continuous signal x(t) the continuous wavelet transform is defined as: 

00 

T(a,b) = f'l/(a,b) (t)x(t)dt (2.3) 
-00 

which, using equation 2.2, can be rewritten as: 

00 1 (t b) T(a, b) = f I '1/ --=- x(t )dt 
-00"11 a a 

(2.4) 

The signal x(t) may be any signal, e.g. an electrical, medical or mechanical signal. A 

wavelet must have finite energy, i.e. it must satisfy the following condition: 

00 

E = fl'l/(tt dt < 00 (2.5) 
-00 

lfthe Fourier transform of IjJ(t) is defined as: 
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00 

Ijf(f) = f lfI(t)e -i(2Jif)t dt (2.6) 
-00 

the wavelet function must satisfy the admissibility condition which is expressed as: 

c = ooSIv/(f)1
2 

df < 00 
g f 

-0() 

(2.7) 

Cg is known as the admissibility constant and its value depends on the wavelet chosen 

for the analysis. Wavelets which satisfy the condition in equation 2.7 are bandpass 

filters, hence only frequencies within a finite range are let through the filter. 

2.4.3. The signal energy (CWT) 

The energy of a signal x(t) is defined as the integral of squared signal components: 

00 

E = flx(tt dt = Ilx(t)11 2 
(2.8) 

-00 

where E is the total energy for the signal. Energy can also be defined in terms of the 

wavelet transform ofthe signal: 

E = d IIIT (a,bf :~ db 
g -000 

(2.9) 

2.4.4. The inverse continuous wavelet transform 

The inverse wavelet transform is defined as: 

1 00 00 dadb 
x(t) = - f fT(a,b)lfI(a,b) (t)-2-

Cg -000 a 
(2.10) 

This allows the original signal to be reconstructed from its wavelet transform, which is 

useful in the denoising and compression of data. 

The CWT has proved to be very useful in data analysis in diverse fields in both science 

and engineering e.g. oceanography and meteorology (Meyers et aI, 1993 and Liu, 2000), 
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engineering flow (Boniforti et aI, 1997; Hajj et aI, 1998; Addison, 1999), other 

engineering applications have been in non-destructive testing (Addison et aI, 1997; 

Addison and Watson, 1997) and mechanical vibration (Hale and Adhami, 1998; Pislaru 

et aI, 2003). The CWT is also widely used in the analysis of biosignals e.g. 

electrocardiogram (ECG) signals (Watson et aI, 1999b; Addison et aI, 2000), EEG 

signals (Schiff et aI, 1994) and blood pressure (Bracic and Stefanovska, 1998). 

This concludes a brief introduction to the CWT. The reader requiring more information 

of the CWT is referred to literature by, for example, Daubechies (1992), Bergh et al 

(1999) and Addison (2002). 

2.5. The discrete wavelet transform (DWT) 

2.5.1. Introduction 

The continuous wavelet transform is a redundant transform, consequently computing 

overheads are high. The discrete wavelet transform (DWT) was developed, in part, to 

combat this. The DWT is constructed by choosing discrete values for the scaling 

parameter, a, and the location parameter, b. This provides for a fast computation of the 

transform and its inverse without redundancies. 

2.5.2. Orthogonal wavelet bases 

The values of the scaling and translation parameters, a and b are usually determined 

from a logarithmic discretisation of the a scale. This is linked to the size of the steps 

between the b locations, where a is chosen greater than 1 and b has to be greater than O. 

The wavelet's dilation and translation is controlled by integer indices m and n 

respectively, e.g. a = a; and b = nboa; . Applying this discretisation to the continuous 

wavelet transform of equation 2.4 we get the DWT, written as: 

(2.11) 

The values of Tm,n, known as the wavelet coefficients, are located on a grid with indices 

m,n. The wavelet coefficient provides a measure of how well the wavelet (at scale index 
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m and location index n) fits locally (correlates) with the analysed signal. When the 

wavelet fits well with the signal the wavelet coefficient has a large positive value. 

2.5.3. Dyadic grid scaling 

For special choices of ao and bo, If/a,b will constitute an orthononnal basis. For example 

an orthononnal basis can be constructed using a o = 2 and bo = 1. For these values, 

equation 2.11 becomes: 

00 1 
Tm,n = f 2ml2 If/(rm t - n )x(t)dt 

-00 

(2.12) 

This choice of dilation and translation steps using integer powers of two is known as the 

dyadic grid arrangement. This is the simplest grid and it allows for the construction of 

an orthononnal wavelet basis. Where each wavelet is orthogonal to all others and is also 

nonnalised to have unit energy. In this case, all the infonnation for the signal is stored 

in the wavelet coefficients without redundancy. 

The wavelet coefficients are usually stored in a vector Wi, i = o ... N -1, where 

i = 2M
-

m + n is the index of the wavelet coefficients and Wo is related to the signal 

mean. As an example, figure 2.1(a) shows a fractional Brownian motion (fEm) test 

signal and figure 2.1 (b) the corresponding wavelet transfonn coefficients. It is clearly 

visible that the number of coefficients change with scale. 

2.5.4. The scaling function 

Associated with the orthononnal wavelet is the scaling function ¢(t) (or the father 

wavelet), which is defined as: 

(2.13) 

Preferably the scaling function should have compact support, which means that it is 

zero outside a limited interval. Further we want the scaling function to have the 

following property: 
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00 

fq)(t)tit = 1 (2.14) 
-00 

The scaling function is used to smooth a signal by separating the approximations (8), 

(the low frequency components) from the details (d), (the high frequency components). 

Figure 2.2 shows a selection of wavelet functions with their associated scaling functions 

from the Daubechies family of wavelets. The approximation coefficients (Sm,n) are 

found from a signal x(t) using the scaling function as follows: 

00 

Sm,n = fx(t)q)m,n (t)dt (2.15) 
-00 

The scaling function is set to a range of widths to generate the approximation 

coefficients at each scale. The approximation coefficients at a specific scale rn are 

known collectively as the discrete approximation of the signal at that scale. It is possible 

to produce a continuous approximation ofthe signal at scale rn as follows: 

00 

xm(t) = ISm,nq)m,n(t) (2.16) 
n::::;-oo 

where xm(t) is the smooth version of the signal at scale rn. The approximation is 

generated by placing a sequence of the scaling functions side by side. The 

approximation approaches the original signal as the scale decreases. The signal x(t) may 

be recovered by combining the approximation coefficients with the detail (wavelet) 

coefficients as follows: 

00 rno O'J 

x(t) = I Smo,nq)mo,n (t) + I I Tm,nV/ m,n (t) (2.17) 
n=-co m=-oo n=-oo 

This equation shows that the signal x(t) is represented using the approximation at scale 

index rno and the summation of the details at scales rno to negative infinity. The signal 

detail at scale rn can be rewritten as 

00 

dm (t) = I Tm,nV/ m,n (t) (2.18) 
n=-tJ:) 

Using this expression, equation 2.17 can be rewritten as: 
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mo 

x(t) = xmJt) + I d m (t) (2.19) 
m=-oo 

Hence: 

(2.20) 

This equation shows that if the approximation at scale index m is added to the detail at 

the same scale we get the signal representation at scale m -1, i.e. higher resolution. 

This is known as a multiresolution representation, described in more detail in the 

following section. 

2.5.5. Multiresolution 

The theory of multiresolution was developed by Mallat (1986) and Meyer (1986a, 

1986b) and provided a framework for the construction of wavelets. The theory makes it 

possible to view a signal at different resolutions. The signal is studied at a coarse 

resolution to give the overall picture while the finer resolutions capture the details in the 

signal. For an orthogonal wavelet basis, the resolutions differ by a factor of two and the 

scaling function is used to go from one resolution to the next resolution. 

It can be shown that approximation coefficients (Sm,n) at scale (m) can be used to 

generate both the approximation and the detail coefficients (Tm,n) at the next scale using 

the formula: 

(2.21) 

for the approximation coefficients, where Ck is known as the scaling coefficient, and 

(2.22) 

for the detail coefficients, where bk are the reconfigured coefficients. Equation 2.21 and 

equation 2.22 are known collectively as the multiresolution algorithm. These two 

equations can be used to generate the approximation and the detail coefficients at all 

scales. Equation 2.21 performs a lowpass filtering (letting through the low frequencies 
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in the signal) and equation 2.22 perform a highpass filtering (letting through the high 

frequencies in the signal). 

The input signal is not continuous in practice but rather is sampled discretely. In 

practice the discrete input signal is set as SO,n the approximation at scale m=O. From this 

SOon we can then use equation 2.21 and equation 2.22 to compute Sm,n and Tm,n, the 

approximation and the wavelet coefficients, at higher scales, m = 1,2 . .. M , where Mis 

the scale index ofthe number of data points for the whole signal, N = 2M . 

For a signal of finite length N, and N = 2M , the scales over which the signal can be 

analysed are in the range O<m<M. The detail signal approximation for the signal N 

corresponding to the scale index m would be: 

2M - m_l 

dm(t) = ITm,nV-'m,n(t) (2.23) 
n=O 

An approximation of the original signal at scale index 0 is generated by summing the 

details from scale 0 to M and adding the signal approximation at scale index M. The 

approximation of the signal at specific scale m consists of the approximations and the 

details of the signal at the lower scale, as shown in the equation: 

Xm (t) = xm_1 (t) - d m (t) (2.24) 

The difference between the approximations xm(t) and xm-J(t) is the detail component 

2.5.6. The Haar wavelet 

A wavelet basis is orthogonal if each wavelet in the base is perpendicular to all the other 

wavelets in the base. The orthogonal wavelet transform is relatively easy to compute 

and the signal can be reconstructed perfectly using the scaled and translated wavelets. 

The simplest orthonormal wavelet basis is the Haar wavelet. The scaling coefficients for 

the Haar wavelet are Co = c1 = 1, the scaling equation then becomes: 

¢(t) = ¢(2t) + ¢(2t -1) (2.25) 

18 



where the scaling function is defined as: 

{
I O~t<1 

¢(t) = 0 
otherwise 

The corresponding wavelet function is defined in tenns of its scaling function as: 

If/(t) = ¢(2t) - ¢(2t -1) 

from this the Haar wavelet is defined as: 

O~t<Yz 

Yz~t<1 

otherwise 

(2.26) 

(2.27) 

(2.28) 

Using the wavelet function in equation 2.27 a Haar system of dyadic wavelets can be 

constructed. 

The wavelet function and the scaling function associated with the Haar wavelet are 

shown in figure 2.2(a). The Haar wavelet transfonn only has two scaling coefficients 

co=c]=1 hence for equation 2.21 and equation 2.22 it can be seen that the approximation 

and the detail coefficients can be calculated through the equations: 

S m+! n = ~ [S m 2n + S m 2n+! ] , '\/ 2' , 
(2.29) 

for the approximation coefficients and 

1 [ ] T =- S -S m+!,n 12 m,2n m,2n+! (2.30) 

for the detail coefficients. To obtain the detail component dm{t) of the signal the detail 

coefficients are simply multiplied by the wavelet at scale index m which, for the Haar 

wavelet, has an amplitude 1/ E . 

2M - m _! 

dm(t) = LTm+!,nlf/m,n(t) (2.31) 
n=O 

The signals approximation at the largest scale M is given by: 
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(2.32) 

The approximation of the signal at scale index m=O can be found by adding all the 

details together with the signal approximation at scale index M, i.e. 

M 

xo(t) = X M (t) + Ldm (t) (2.33) 
m=J 

Using multiresolution analysis a signal can be transformed into details (d), the high 

frequencies components, and approximations (8), the low frequencies components. 

Figure 2.3(a) shows a test waveform, the discrete sinusoid given by: 

(2.34) 

A multiresolution decomposition was applied to this signal separating it into detail and 

approximation coefficients. At each scale, more and more information is stripped from 

the signal, finally ending up with a number of details and approximations for each scale. 

Figure 2.3(b) shows the details of the sinusoidal signal using the Haar wavelet. Figure 

2.3( c) shows the associated approximations for the same signal. This shows the 

approximation tending towards the shape of the original signal as the resolution is 

increased towards the top of the figure. 

2.5.7. Wavelet energy and wavelet statistics 

After full decomposition of a signal is performed the energy (squared coefficient) 

contained within the wavelet coefficients at each scale m is given by: 

2M - m _l 

Em = L(Tm,n)2 (2.35) 
n=O 

The total energy for the input signal is defined as: 

N-J 

E = L(8o,n)2 (2.36) 
n=O 

The sum of energies over all the scale indices and the energy in the approximation 

coefficient 8M,o gives the total energy i.e.: 
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M 2M - m _! 

E=I I (Tm,n)2 + (SM,o)2 (2.37) 
m=! n=O 

The standard deviation, or the variance, (0-) of the wavelet coefficients for each scale 

(m) is defined as: 

0- = m (2.38) 

The variance is a useful property which may be related to the scaling laws exhibited by 

certain signals. 

The discrete wavelet transform was introduced as a signal processing application in the 

early 1990's (Rioul and Vetterli, 1992). Since then it has found use in many different 

areas including: characterisation of engineering data (Simonsen et aI, 1998), mechanical 

design (Tsai et aI, 2000), damage detection (Wang and McFadden, 1995; Corbin et aI, 

2000; Lee and Tarng 2000), medical signal analysis (Thurner et aI, 1998; Kalayci and 

Ozdamar, 1995), geophysics (Moreau et aI, 1995; Grubb and Walden, 1997; Fedorenko 

and Husebye, 1999), financial time series (Davidson et aI, 1998; Shin and Han, 2000). 

One application where the DWT has proven to be particular useful is in data 

compression (Chen et aI, 1993; Staszewski, 1998; Nygaard and Grue, 2000) 

2.6. The stationary wavelet transform (SWT) 

2.6.1. Introduction 

As described earlier in this chapter the discrete wavelet transform (DWT) involves the 

translation of the wavelet along the signal in discrete dyadic steps, thus the analysis has 

limited resolution especially at larger scales. It is for this reason that the stationary 

wavelet transform (SWT) was introduced, where the wavelet translates along the signal 

continuously thus increasing the resolution of the analysis. The transform is known in 

the literature under a variety of names including: the translation invariant, redundant, 

maximal overlap and non-decimated wavelet transform. 
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2.6.2. Definition 

The stationary wavelet transfonn (SWT) is a modified version of the basic discrete 

wavelet transfonn (DWT) algorithm. The idea is to 'fill in the gaps' caused by the 

discrete dyadic steps of the DWT. The wavelet scales remain as discrete steps, however, 

the wavelet translates continuously along the signal to be analysed. For practical 

implementation on discrete signals this corresponds to computing the transfonn at each 

time step. This increases the temporal resolution of the analysis. Similar to the DWT, 

two vectors of coefficients, the detail and the approximation, are produced at each scale. 

However, the SWT does not decimate the transfonn, therefore the resulting detail and 

approximation vectors have the same length as the original signal (i.e. N =2M) at every 

scale (Nason and Silvennan, 1995; Coifman and Donoho, 1995; Pesquet et aI, 1996). 

To constitute a SWT representation, the scale a, is sampled along a dyadic sequence 

a = 2m 
• The translation parameter n is sampled at each time step. The SWT is defined 

as: 

(2.41) 

The difference in resolution between the DWT and the SWT is shown in figure 2.4, 

where a typical signal has been decomposed into 8 levels. It can be seen that the DWT 

has a sampling rate which is too low to give a clear picture of signal whereas, due to its 

higher sampling rate, the SWT provide a much better representation ofthe signal. 

In recent years the stationary wavelet transfonn has been applied in a number of 

different areas of data analysis. 

Ngan et al (2000) applied the SWT to denoise medical data. The authors studied 

functional magnetic resonance imaging (:fI'v1RI), which is used to study brain functions. 

One difficulty in event-related :fI'v1RI data is the problem with the low signal-to-noise 

ratio (SNR) inherent in the data. Therefore filtering is generally applied to improve the 

SNR of the averaged data. To analyse the data using the SWT the authors applied a 

filter based on a cross-validation method, which has proven to give good estimations of 

the real signal component in simulated data contaminated with Gussian white noise. The 
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normalised root mean square (NRMS) errors were found to be reduced by 35-38% due 

to the filtering. Subsequently the authors applied the filtering technique to real fMRI 

data and concluded that their filters were effective in improving the SNR of the raw data 

without oversmoothing. 

Jung and Scharanski (2003) proposed a new method for image denoising and edge 

enhancement using the SWT. The authors wanted to retain edge-related coefficients 

while removing noise-related coefficients. They defined a shrinkage factor using a 

Gauissian distribution and found that the variance of the noise-related coefficients was 

smaller than the variance of the edge-related coefficients. The wavelet coefficients were 

assigned a probability of being either an edge or being noise. Compared to other 

denoising techniques they reported that their method produces both good quantitative 

and qualitative results. 

Other studies applying the SWT for the noise reduction of data include those of Morris 

and Peravali (1999), Pan et al (1999), Berkner and Wells (2002) and Solb0 and Eltoft 

(2002). 

The SWT has also been used to characterise nonstationary behaviour of subtidal coastal 

sea level fluctuations by Percival and Mofjeld (1997). Their results indicated that the 

fluctuation in sea level was strongest during the winter (November to March) and 

occurred predominantly at scales of 4-16 days. The SWT provided a good basis for 

characterising these events. The authors concluded that a cycle statistical model of the 

fluctuations could be developed using SWT-based methods. 

Lark and Webster (2001) used the SWT to analyse soil with non-stationary properties. 

The authors applied the transform to the measurement of pH and levels of clay and 

calcium carbonate on a 3km long transect in central England. The Daubechies wavelet 

was used in the analysis. By determining the changes in wavelet variance at each scale, 

places with significant difference in variance were identified. The result indicated that 

the SWT is useful in identifying the location of changes in soil properties very 

effectively. 
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2.7. The two-dimensional wavelet transform 

For the analysis of two-dimensional (2-D) data, for example surfaces and images, 2-D 

wavelets are required. In figure 2.5 examples of 2-D wavelets from the Daubechies, 

Symmlet and Coiflet families of wavelets are shown. 

The simplest way to construct a 2-D wavelet basis is by using three wavelet functions: 

(2.42a) 

(2.42b) 

(2.42c) 

where H, V and D stands for horizontal, vertical and diagonal respectively. The scaling 

function for the 2-D wavelet transform is defined as: 

(2.43) 

Figure 2.6 show the wavelet functions and the scaling function for the 2-D Haar 

wavelet. When analysing 2-D data sets, horizontal edges are picked up by the horizontal 

(Tm H) component detail, the vertical edges by the vertical (Tmv) component detail and 

the diagonal edges by the diagonal (TmD
) component detail. 

The two-dimensional multiresolution decomposition can be defined as: 

(2.44a) 

(2.44b) 

(2.44c) 
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(2.44d) 

For a data set (So) with the original size N· N at scale index 1, the next scale index 2 

will consist of .If . .If coefficients. The next scale index after that will contain ~.1-

coefficients ofthe original data set and so on. Figure 2.7 show a schematic ofa 2-D data 

set So decomposed twice. Of course the decomposition can be perfonned further where 

each subsequent decomposition will contain one-quarter of the number of coefficients 

of the previous scale (Daubechies, 1992). 

2.7.1. The 2-D wavelet transform energy 

The energy of the 2-D data set and its transfonn is defined as: 

(2.45) 
i=O j=O i=O j=O 

where SO,i,j and "W;:7) are the elements of the input data and the wavelet decomposition 

matrices located on row i and columnj. The energy in the original surface is equal to the 

energy in the transfonn. 

The 2-D wavelet transfonn has been applied in a number of diverse areas including: 

simulated grain growth (Frantziskonis and Deymier, 2000a, 2000b ), surfaces of 

orthopaedic joints (Jiang et aI, 1999), mammographic images (Ferreia and Borges, 

2003), magnetic resonance images (Xu et aI, 1994; Wang and Huang, 1996), cosmic 

microwave background maps (Sanz et aI, 1999a, 1999b) and texture classification (Li et 

al,2003). 
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2.8. Choice of wavelet bases 

2.8.1. Introduction 

In general there are two choices to be made to determine which wavelet to apply in a 

particular analysis. The system of representation (e.g. continuous or discrete transform) 

and the properties of the wavelet base (i.e. the mother wavelet) itself, (Hubbard, 1996). 

2.8.2. Continuous or discrete transform? 

As discussed previously, the two main classes of wavelet transforms are the continuous 

wavelet transform (CWT) and the discrete wavelet transform (DWT). Which one to 

choose depends primarily on the nature of the data to be analysed and the requirements 

of the analysis. 

Because of the dyadic grid structure of the DWT no redundant information is generated 

in the transform and the multiresolution ensures perfect reconstruction, consequently 

this has a fast transform and less computer power is needed for the analysis. The CWT 

has superior resolution in both scale and location compared to the DWT, however it 

requires a much more computer intensive process. The increased computational expense 

of the CWT is due to the overlapping of the continuous wavelets, so most information 

encoded by one is also encoded by its neighbours. Murray (2000) compared the ability 

for the CWT and the DWT to construct a turbulent velocity signal from the inverse 

wavelet coefficient (see figure 2.8). The reconstruction of the data for the DWT shows 

that the signal was reconstructed without any loss of information. Whereas 

reconstruction for the CWT resulted in poorer representation of the signal. However, 

this is almost certainly due to the edge effects and frequency ranges used in the CWT. 

These are automatically taken care of by the DWT multiresolution algorithm. For 

further discussion on the subject the reader is referred to Teit and Kritikos (1992), who 

discusses the disadvantage and benefits of reconstructing signals using both the CWT 

and the DWT. 

Due to the highly efficient algorithm used by the DWT to calculate the wavelet 

coefficients this transform is exclusively used in image processing which in general is a 
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computer intensive process. For image (or surface) analysis the DWT simply out

performs the CWT where the redundancy of the CWT makes it practically unusable. 

2.8.3. Analysing wavelet 

There are no simple rules for the selection of the mother (or analysing) wavelet to use 

for a specific analysis task. There is a wide range of wavelet bases available e.g. 

Mexican hat, Morlet, Daubechies, Coiflet, Symmlet and many more. The most 

commonly applied mother wavelets for the CWT are the Mexican hat and Morlet 

wavelets. For the orthogonal DWT the Daubechies, Coiflet and Symmlet families of 

wavelets and the biorthogonal bases Biorthogonal Spline wavelets are commonly used. 

Biorthogonal wavelets have proven to be particular useful in image compression. In fact 

a Biorthogonal wavelet is used by the Federal Bureau of Investigation (FBI) as the 

standard for compression of fingerprint images (Brislawn, 1995). For a more detailed 

description of the different wavelet bases available the reader is referred to the literature 

by Daubechies (1992) and Mallat (1999). 

Research by Katul and Vidakovic (1996) showed that the choice of wavelet basis has, in 

general, only a minor influence on the results. Similarly Simonsen et al (1998) stated 

that the choice of wavelet is not crucial in any way. Moktadir and Sato (2000) 

investigated 4 different mother wavelets for the analysis of silicon surfaces. The authors 

found that the result from the analysis did not depend on the choice of wavelet. Hubbard 

(1996) suggested that 'one should spend more time on the actual analysis rather the 

finding the 'ideal' wavelet for the analysis'. Tsai and Hsiao (2001) also concluded that 

the choice of the wavelet bases had only a small effect when they applied wavelets to 

detect abnormalities in structural textures. However the authors did conclude that in 

general orthogonal wavelets outperform biorthogonal wavelets. In addition, they stated 

that orthogonal wavelets with longer support provided poor detection of abnormalities 

within a surface as these wavelets oversmooth local anomalies. In addition, wavelets 

with compact support are more computer efficient which is an important feature in 

image and surface analysis as these are computer intensive processes. 

From the above it can be seen that choosing an 'ideal' wavelet bases to use for a 

specific analysis is obviously not an easy task. However the following number of points 
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should be considered when choosing the mother wavelet: general properties of the 

wavelet function, the mother wavelets similarity to the test data, the number of 

vanishing moments and selectivity in frequency. 

2.8.3.1. General properties 

The scale decomposition of a signal should be obtained from the dilation and translation 

of only one mother wavelet. These wavelets should be mutually similar, namely scale 

covariant with each other, in particular they should have a constant number of 

oscillations. In addition the mother wavelet should be admissible (equation 2.7), i.e. the 

function's mean should be equal to zero. Finally, the mother wavelet should be 

invertible, that is, there should exist at least one reconstruction formula for recovering 

the signal from the wavelet coefficients and for allowing the computation of energy. 

2.8.3.2. Analysing wavelet similarity to test data 

Some investigations have shown that the results of the wavelet transform can be 

dependent on the similarity of the analysing wavelet to the test data (Grossmann et aI, 

1987; Qiu et aI, 1995). The analysing wavelet should therefore be chosen in accordance 

with the structure of the test data. Interestingly, because of a lack of suitable wavelet 

bases available Qui et al (1995) used prominent features of the time series as the 

analysing function. 

2.8.3.3. Vanishing moment 

The vanishing moment determines 'what the wavelet cannot see'. A wavelet with one 

vanishing moment cannot see linear functions; a wavelet with two vanishing moments 

can not see linear or quadric functions; and so on. The moment k of a general function! 

is given by: 

(2.46) 

-'" 

The moment 'vanishes' when mk becomes equal to zero. The number of vanishing 

moments is weakly linked to the number of times the wavelet oscillates i.e. in general 

the more vanishing moments a wavelet has the more it oscillates. In practise, the 
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requirement is normally to concentrate the information of the data in a relatively small 

amount of wavelet coefficients; useful in, for example, data compression and the 

analysis of signals with discontinuities where the large coefficients would stand out 

against a background of smaller coefficients (Hubbard, 1996). 

2.8.3.4. Selectivity in frequency 

In Fourier analysis, the analysing function is a sinusoid of precise frequency. This gives 

a coefficient that corresponds to that frequency and no other. As the analysing wavelet 

is composed of a range of frequencies, each wavelet coefficient corresponds to this 

whole range of frequencies. The narrower the frequency range, the more selective the 

wavelet is in frequency. Therefore wavelet filters with fewer filter coefficients will be 

able to detect signal discontinuities better than wavelets with more filter coefficients. 

Ideally the wavelet should be localised in both frequency and time; i.e. very selective in 

frequency with compact temporal support. For example, it is generally understood that 

discrete wavelet filters with fewer coefficients are more compact in physical space but 

less in Fourier space. For example the Haar wavelet (with only two filter coefficients) is 

well localised in time but not in Fourier space. This is shown in figure 2.9 where the 

Haar wavelet and Daubechies D4 and D20 wavelets have been plotted with their 

respective Fourier transforms. Comparing the Haar wavelet with the D20 wavelet (i.e. 

20 filter coefficients) it can be seen that the D20 wavelet is better localised in Fourier 

space whereas the Haar wavelet is better localised in time. 

2.8.4. Wavelet mode 

The wavelet transform considers all data to be of infinite length. In practice this is 

generally not the case, most data are in fact of finite extent. Analysis of the complete 

data-set is usually required. Consequently, as the wavelet approaches an edge of the 

signal (or surface) part of the wavelet will fall outwith the signal. This 

misrepresentation of the data at the signal borders has to be dealt with in the analysis. 

Various methods to cope with these edge conditions problems of the discrete wavelet 

transform have been developed. Some of which are listed below. 

(a) Zero padding, assumes the signal is zero outside the edges. The disadvantage 

with this method is that abrupt discontinuities are created at the signal borders. 
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(b) Value padding, sets a constant value (equal to the first and the last value of the 

signal) to the beginning and the end of the signal. 

(c) Decay padding, adds some form of decay towards zero at both ends of the 

signal. 

(d) Reflection, reflects the signal at the edges, making up a mirror image of the 

signal at the edges. 

(e) Smoothing windowing, multiplies the signal with a window function that reduces 

the signal edge values to zero at the edges. 

(f) Polynomial fitting, applies a polynomial extrapolation of the signal at either 

ends. 

(g) Signal following, if focusing on a small part of the available signal the data 

points outside may be used if known. 

(h) Periodization, the end of the signal is followed by the beginning of the signal. 

The first point of the signal is continued by the last point hence, the end is put 

back on the beginning again. 

(i) Wraparound, similar to the periodization method. However, this methods wraps 

the part of the wavelet which falls off the edge at each side of the signal back to 

the other end again. Values are only represented within the length of the actual 

signal. Therefore there is no redundancy within this wavelet mode. 

The author has applied the wavelet wraparound method to the data analysis reported in 

this thesis. This is the simplest and most common treatment for the edge effects where 

the number of decomposition coefficients equals the number of signal components. 

Whichever method is chosen to deal with the edges, has to take into to account that 

features appearing close to the edges of a signal or data will contain information from 

outside the region of the data under investigation. Edge effects increase as the width of 

the wavelet increases (Addison, 2002). 

2.9. Wavelet tools 

2.9.1. Introduction 

Novel uses of the wavelet transform in the area of signal analysis has primarily centred 

on the denoising and smoothing of data to recover the underlying function from noisy 
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data-sets, (Donoho and Johnstone, 1994,1995; Barclay et aI, 1997; Krim et aI, 1999; 

Abramovich et aI, 2000). Smoothing employs a scale dependent threshold while 

denoising removes small-amplitude coefficients from the data regardless of their 

position. Smoothing and denoising has been applied to all sorts of signals, e.g. medical 

signals, engineering signals, geophysical data and financial data. The method has also 

been shown to be useful in many statistical applications. 

2.9.2. Smoothing 

Smoothing, or scale dependent thresholding, is performed by removmg all the 

coefficients below a predetermined scale, regardless of their amplitude. By removing 

the smaller scales in the wavelet transform, e.g. scales that in general contains the 

unwanted high frequency signal noise, a new smoother signal is generated. In addition, 

often the signal drift also needs to be removed from the data. The removal of drift is 

achieved by removing the components at the largest scales. 

The smoothing ofthe wavelet coefficients is expressed as: 

Tscale = {O 
m,n T 

m,n 

m5,.m* 

m>m* 
(2.46) 

where m * is the index of the threshold scale. Figure 2.10 shows an example where the 

smoothing method have been applied to a medical test signal acquired from a pulse 

oximeter (pulse oximetery is explained in more detail in chapter 3, section 3.5.1). The 

original pulse oximeter signal shown in figure 2.10(a) is decomposed into the 11 scale 

details shown in figure 2.1 O(b). Scales m<5 can be regarded as noise and scales m>8 are 

related to the signal drift. The coefficients at these scales are therefore set to zero, 

reconstructing using only scale 5-8 produced the denoised, smooth pulse oximeter 

signal. This signal is shown in figure 2.1 O( c). 

Scale dependent thresholding has been applied in a number of studies in other areas. For 

example Wang and Moon (1997) used wavelet transform smoothing to eliminate 

measurement noise in wheel surface measurement processes; Jiang et al (1999) 

separated and characterised the surface topography of orthopaedic joint prostheses; Tsai 

and Hsiao (2001) used smoothing to inspect local defects in texture surfaces, and Josso 
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et al (2001) applied scale dependent thresholding to separate engineering surfaces into 

different topographies. 

2.9.3. Denoising 

In all areas of research scientists face the problem of recovering a true signal from noisy 

and inaccurate data. Wavelet transform denoising is increasingly being used to 

undertake this task (Donoho, 1993). Denoising (or amplitude thresholding) can be 

divided into three basic steps (1) transforming the data into the wavelet domain; (2) 

applying a threshold method and (3) transforming the data back to its original domain 

using the inverse transform. This results in a new 'estimate' of the underlying signal. 

2.9.3.1. Denoising by hard or soft thresholding 

Denoising is used to separate noise from a specific signal of interest. Denoising 

removes, or reduces, selected wavelet coefficients regardless of their position. Applying 

a hard or soft threshold is the most common way to denoise data. The threshold (A) 

value is generally related to the mean value of the wavelets coefficients. Soft 

thresholding is defined as: 

(2.47) 

Hard thresholding is defined as: 

(2.48) 

A schematic diagram of the two thresholds is shown in figure 2.11, where the threshold 

value (A) is set to equal unity. The soft threshold follows a scheme to keep or reduce 

wavelet coefficients. Coefficients smaller than A are removed whilst coefficients larger 

than A are reduced by the value of A. The hard threshold applies a 'keep or kill' scheme, 

where wavelet coefficients smaller than A are removed whilst the coefficients larger than 

A are retained intact. 
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2.9.3.2. Threshold value 

In the thresholding process we seek a scheme which differentiates between coefficients 

which belong to the reconstruction (i.e. those which significantly resemble the signal) 

and those coefficients which do not belong to the reconstruction (usually small 

coefficients that can be associated with noise). It is obvious that the choice of threshold 

value (A) will affect the performance of the thresholding process. If A is chosen to be 

too small, unwanted noise will be retained in the reconstruction while if A is set to too 

large a value this will cut off important information from the underlying signal. 

As an example, hard and soft thresholding were applied to a test waveform with added 

random noise. The waveform consists of two sinusoidal signals of unit amplitude shown 

in figure 2.12(a) and (b). These were added together as shown in figure 2.12(c). 

Random Gaussian noise, figure 2.12(d), was added to the signal to give the final test 

signal shown in figure 2.12(e). This was then thresholded using R=O.S,1,2,3,S and 7 

applied respectively, using both the hard and the soft threshold. The results from 

reconstruction applying the hard threholding method are shown in figure 2.13(a)-(f). It 

can be seen that when R=O.S, (a), the thresholding method is unable to remove the noise 

from the signal. However for R=7 the reconstructed signal is oversmoothed. The best 

reconstruction appears to be achieved using A=2. The results from applying the soft 

thresholding are shown in figure 2.14(a)-(f). Most of the noise is already removed at 

R=O.S. At A=7 almost the complete signal have been removed. The soft threshold tends 

to remove more of the signal at lower threshold values than the hard thresholding 

method. 

It is in general impossible to set a threshold that filters out all the noise without 

affecting the signal (Strang and Nguyen, 1996). However, a number of methods have 

been proposed to set the best threshold value (A) for the denoising of a signal. One of 

the most common and easiest ways to determine A is using the universal threshold 

proposed by Donoho (1993). The universal threshold is defined as: 

(2.49) 

where (2 In NY/2 is the expected maximum value of noise in a sequence of length N and 

O"is the standard deviation for the noise in the signal. Donoho (1993) showed that a near 
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optimal perfonnance is achieved for denoising using this threshold, assuming that the 

noise is white. The universal threshold depends on the data characteristics only through 

(Y. It has been shown that for large sample sizes the universal threshold has a high 

probability of removing all the noise in the signal. However, part of the underlying 

function might also be lost. Thus, the universal threshold tends to oversmooth a signal. 

To overcome this problem, it is common to keep the coefficients at the largest scales 

untouched even though they might not pass the threshold value, (Abramovich et aI, 

2000). 

As mentioned above, the standard deviation, (Y, of the noise in a signal is required to 

detennine the threshold. In practise the value of (Y is rarely known and must therefore be 

estimated from the data. We can do this by using a robust estimate of the standard 

deviation a-, e.g. the medium of absolute deviation of the wavelet coefficients (MAD) 

at the smallest scale nonnalised by dividing it with 0.6745 (Abramovich et aI, 2000). 

Equation 2.49 can be rewritten as: 

( )
1/2 

1 = 21nN MAD = (21nN)1/2 a-
u 0.6745 

(2.50) 

Szilagyi et al (1999) used the universal threshold to calculate the time scale of coherent 

structures in atmospheric surface layers. They used the method proposed by Donoho 

and Johnstone (1994, 1995) for noise reduction in signals by applying the universal 

threshold could be used to detect coherent structures within surface layers of fluid 

flows. 

A number of different methods to estimate the threshold value (A) are available: 

RiskShrink (Donoho and Johnstone, 1994), SURE and SureShrink (Donoho and 

Johnstone, 1995), WaveShrink (Donoho et aI, 1995), Minimax, (Donoho and Johnstone, 

1998), cross-validation (Weyrich and Warhola, 1995; Nason, 1996; Jansen et aI, 1997), 

Bayesian approach (Abramovich et aI, 1998) and Lorentz (Katul and Vidakovic, 1996; 

Visser, 2003). However these methods will not be discussed in detail in this thesis. The 

interested reader is instead referred to the literature by, e.g.: Odgen (1997) who 

evaluated a number of different methods to set the threshold values; Mallat (1999) who 

provides the mathematical background to thresholding techniques; Abramovich et al 

(2000) who provides a summary of different thresholding methods, and Addison (2002) 
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who presents an overview of thresholding techniques and cites many detailed papers 

concerning the use of wavelet thresholding (in statistical measurements, engineering 

flows, surface characterisation, data compression, medical and financial data). 

2.9.3.3. Data analysis using amplitude thresholding 

Weiss and Dixon (1997) compared a high pass filtering method (HPF) with the wavelet 

denoising method for the removal of unwanted backscatter from high frequency 

acoustic underwater signals. Several signals were analysed and their results showed that 

both the HPF and the wavelet denoising removed unwanted backscatter from the data. 

However, the HPF proved to removed too much ofthe signal energy (62% ofthe energy 

retained) compare with the wavelet denoising (82% ofthe energy retained). 

Both hard and soft thresholding methods were applied by Tikkanen (1999) to remove 

simulated noise in EeG signals. Four different rules for selecting the threshold values 

were applied, SURE, Heuristic SURE, Fixthres and Minimax methods. The results 

show that the most effective noise-removal soft-thresholding method was the Heuristic 

SURE which gave the lowest mean error for three different noise types. For the hard 

threshold, the Fixthres selection rule, gave the best performance with the lowest mean 

errors for noise types considered. The author concluded that soft thresholding tended to 

give a more acceptable overall denoising result compared to the hard thresholding. 

Zahn et al (2000) apply wavelet thresholding to improve the computation time and 

reduce memory requirements for evaluating the scattered field statistics from synthetic 

rough surfaces. The authors demonstrated that by imposing a wavelet threshold on the 

data matrix only the significant elements of the matrix are preserved. This led to a 

sparser matrix and a requirement for less computing time. 

Magnitude thresholding has not only been used for denoising (removal of noise) but 

also in the identification and separation of larger dominant features (characterised by 

larger coefficients) within a signal. Research by Wang (1995, 1999) has shown that the 

wavelet technique is ideal to detect jumps and sharp changes within signals. Struzik 

(2001) used the continuous wavelet transform to recognize abrupt changes in financial 

data series. Orthonormal wavelets were used by Hajj et al (2000) to identify pressure 
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peaks in time-varying of turbulence data where sharp changes were represented by 

larger wavelet coefficients. Thus, by applying a magnitude threshold the authors sorted 

the large amplitude coefficients, related to pressure peaks from the data. 

Pettit et al (2000) used the wavelet method to detect changes of roof-comer pressure 

transients. The peaks ( abrupt changes) in the signals were detected by retaining portions 

of the signal where the magnitude of the wavelet coefficients exceeded a certain pre-set 

threshold. The transients were sorted into classes dependent upon the number of peaks 

in the smooth version of the original signal. In a further study Pettit et al (2002) used a 

pattern classification scheme to investigate the underlying structure in pressure 

transients. The detected transients were removed from the signal where the underlying 

signal had the appearance of background noise and could be modelled reasonable as a 

Gaussian distribution. 

Addison et al (200Ia) used both the scale dependent threshold and magnitude 

thresholding (hard and soft) methods to separate a vortex shedding signal into strong 

and weak parts. The authors defined a scale dependent threshold at scale index m*=6, 

where the strong signal is reconstructed using scales larger then m=6. Accordingly the 

weak signal is reconstructed using scales smaller then m=6. In addition, both a hard and 

a soft threshold were applied to the signal, where the threshold level was defined using 

the universal threshold. The results showed that scale thresholding leaves remnants in 

the weak signal part while the strong part smoothes much of the signal. Applying the 

hard threshold, much of the high frequency components of large amplitude were 

retained in the strong signal, however the vortex shedding fluctuations were removed 

from the weak signal leaving an even distribution of noise in the weak signal. 

Amplitude thresholding of wavelet coefficients was applied by Teng and Qi (2003), 

who developed a freeway incident detection algorithm. The authors used the universal 

threshold to distinguish sharp changes in traffic behaviour, indicating possible 

accidents. The discrete wavelet coefficient at the finest level was thresholded where the 

largest coefficients exceeding the threshold value could be sorted. These coefficients 

represented an abrupt change in flow pattern. The performance was evaluated by 

comparing the detection rate and the false alarm rates. The authors results indicated that 

the wavelet transform performed better than other algorithms including a low-pass 
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filtering algorithm, multi-layer feed-forward (MLF) neural networks algorithm, the 

'California' algorithm, the probabilistic neural network (PNN) algorithm and a 

fuzzy-wavelet RBFNN algorithm. 

Wavelet thresholding has been applied to many other areas including: non-linear 

smoothing of Gaussian random processes (Moulin, 1994); reduction of ultrasonic grain 

noise (Lazaro et aI, 2002); de-noising of 2-D signals (Hilton and Ogden, 1997); edge 

detection in images (Murtagh and Starck, 2003); improving surface simulation 

techniques (Lalonde and Fournier, 1997); data compression methods (Straszewski et aI, 

1997); mechanical vibration (Tanaka et aI, 1997); detection of horizontal and vertical 

disparity ripples within random element patterns (Tyler and Kontsevich, 2001); edge 

detection in magnetic resonance (Xu et aI, 1994), and edge detection in mammographic 

images (Laine et aI, 1994; Ferreira and Borges, 2003). 

2.10. Application of the wavelet transform to the analysis of rough 
surfaces 

2.10.1. Introduction 

In general the topography of a surface consists of a number of features of different 

length scales located at different positions. For engineering surfaces, the topography 

affects the functional behaviour of the surface through wear, friction, lubrication, 

corrosion, etc. Interest in methods to characterise the topography of surfaces is therefore 

mcreasmg. 

The use of the wavelet transform for texture analysis was pioneered by Mallat (1989a) 

who showed that a particular function of the wavelet orthonormal basis is equal to 

texture primitives with spatial orientation and narrow frequency tuning. Recently, 

wavelet analysis has been employed in a variety of surface analysis tasks including the 

characterization of fractional Brownian motion surfaces, cracked concrete surfaces, 

pitting corrosions, grain growth, orthopedic joint prostheses, general surface roughness 

analysis, the characterization of surface roughness of silicon and the evaluation of 

different engineering surfaces. 
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2.10.2. Engineering surface analysis 

The surface topography of an engineering component is an important factor that affects 

its functional performance. The wavelet transform has been applied over a wide range 

of areas in both science and engineering to characterise and classify global surface 

features and to separate and identify individual features within surfaces. 

Frantziskonis et al (2000) used wavelets to describe geometrical features of pitting 

corrosion damage in aluminium components. Several specimens of aerospace 

aluminium alloy were corroded in a controlled environment and the resulting corrosion 

pits analysed using a wavelet-based fractal analysis. An image of one of the corroded 

surfaces is shown in figure 2.15(a). Figure 2.15(b) displays a typical cross-section from 

the surface in figure 2.15(a). The specimens were interrogated using a wavelet-based 

method to establish the fractal scaling property characterised by the Hurst exponent (H). 

Two perpendicular directions for each specimen were examined. The variance of the 

wavelet coefficients at each scale then plotted against the scale of the decomposition. 

The slope of the curve for a self-affine surface equals 1I2+H from which roughness 

characteristics can be established. Two typical log plots of the variance plotted against 

the scale are shown in figure 2.15( c) and figure 2.15( d) for the respectively horizontal 

and the vertical profiles of a corrosion pit. It can be seen in these plots that a new 

relationship exists between variance and scale. This is a property of fractal scaling. 

Several specimens were analysed. Figure 2.15( e) shows the scaling properties from all 

the specimens for the vertical direction. The result from the analysis established that H 

was in the range 0.63±0.l2 for these corrosion pits. In addition, the ratio w of surface 

area of the corroded pit over the total area of its intersection with the plane at zero was 

established. This ratio, in combination with the H exponent, was sufficient to obtain 3-D 

information concerning the characterisation of the pit geometry from a 2-D image. The 

authors stated that the multiscale information obtained through the wavelet analysis 

could form the basis of a new approach for the characterisation of pitting corrosion. 

In related work, Frantziskonis and Hansen (2000) also used the wavelet transform to 

establish the roughness, characterised by the Hurst exponent (H), for self-affine random 

media. Frantziskonis and Deymier (2000a, 2000b) have demonstrated the analysis of 

simulated grain growth using a 2-D wavelet-based method. They showed that the 

wavelet energy provides useful statistical information about the material properties. 
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They established that the scale of the maximum wavelet energy corresponds with the 

mean grain radius. The wavelet method therefore proved useful as a tool to extract 

structural features in the microstructure of particle grain growth. Further research 

carried out by Frantziskonis and co-workers include the analysis of grain growth at 

different magnifications. This includes the work by Haynie and Frantziskonis (2001) 

who applied the wavelet transform to obtain quantitative information about the 

microstructures of material. In their method the dominant length scales at different 

resolution levels is identified using the peak of the scale-space energy of the wavelet 

transform. The method identifies which scales contain most information and therefore 

should be further investigated. In a later paper by Frantziskonis (2002) the effects on 

multiscale microstructures in porous material at different magnification was studied. 

The work showed how wavelet energy transfers to larger scales where the pores are 

dominant as the magnification increases. He found this to be an effective tool for 

studying the multiscale microstructure of material properties. 

Wang et al (2003a) have also evaluated the performance of wavelet-based methods for 

studying the fractal characteristics of rough surfaces. In their study, synthetic curves 

with known fractal dimensions were generated and processed. The fractal curves 

generated using the Weierstrass-Mandelbrot function and Majumdar-Bhushan function 

are shown in figure 2.16(a)-(b). Fractals curves for three values of dimension (D) were 

analysed: D=1.2, D=1.5 and D=1.8. Eight algorithms for calculating the fractal 

dimensions were studied using a number of methods including a wavelet-based method. 

The other methods were: the box counting technique, the yardstick method, the 

co-validation method, the structure function method, the variation method, the power 

spectrum method and rescaled range analysis. The authors employed the Daubechies 

wavelet for the wavelet-based analysis and the fractal dimensions were obtained from 

the slope of the log plot of the modulus coefficients against the scale of the transform. 

Figure 2.16( c) show the log plots of the modulus of the wavelet coefficients plotted 

against the scale for the iBm profiles in figure 2. 16(a)-(b). The fractal dimension 

determined using the wavelet method produced an error of 1.2±0.7%. The mean errors 

obtained using the other methods were: box counting method 6.4±4.1 %; the yardstick 

method 9.4±9.2%; the co-validation method 4.8±5.6%; the structure function method 

3.6±3.3%; the variation method 4.5±2.9%; the power spectrum method 13.3±11.6% and 

the rescaled range analysis 2.7±3.1%. The results showed that the wavelet transform 
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provided the most accurate method for the determination of fractal dimension of the 

curves. The authors believe that this is a first step towards a new method to 

characterisation of machine surface topography. In a later related paper Wang et al 

(2003b) applied the wavelet transform to establish the fractal dimensions for rolled, 

hand and machined polished copper and stainless steel surfaces. In this work they found 

that the experimental surfaces had approximately the same fractal dimensions, 

established using the wavelet technique. Additionally the authors concluded that the 

wavelet transform is the most effective method to establish the fractal dimensions for 

these types of surfaces. 

Both wavelets and fractals were applied by Dougan et al (2000) to characterise cracked 

concrete surfaces. Figure 2.17(a) illustrates typical concrete crack profiles and figure 

2.17 (b) shows the wavelet power spectrum (solid line) using the CWT for the concrete 

profiles. The Hurst exponent (lI) can be found from the slope of the spectrum. The 

authors established the scaling exponent of the cracked concrete to be in the range: 

H=0.57±0.16 (14 day test) and H=0.53±0.09 (28 day test) using Fourier analysis and 

H=0.64±0.18 (14 day test) and H=0.58±0.09 (28 day test) using the wavelet approach. 

Maktadir and Sato (2000) also used the CWT to characterize anisotropically etched 

silicon surfaces. The roughness exponent was established from the log-log plot of the 

scalogram versus the scale. The authors found the roughness exponent to be close to 0.5 

for silicon. Simonsen et al (1998) applied both the wavelet transform and Fourier 

spectral analysis, to cracked concrete surfaces and economic index data in terms of H. 

The authors found that the wavelet transform outperformed the Fourier method for 

signals containing relatively few samples. 

The wavelet transform has also proved to be useful in surface texture analysis. Jiang et 

al (1999) applied the wavelet transform to separate and characterise the surface 

topography of orthopaedic joint prostheses. Using 2-D biorthogonal wavelets they 

separated the surface into three topographies: roughness, waviness and form. The 

roughness was defined using the wavelet coefficients at the smallest scales; waviness 

was defined using the coefficients at the intermediate scales, and form was defined 

using the coefficients at the largest scales. A multiscale decomposition of a metallic 

femoral head and separation into roughness feature is shown in figure 2.18. A more 

important step for the surface characterisation is to identify and isolate pits, scratches 

and peaks within the surfaces. By applying a hard threshold these feature could be 
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located within the surfaces. This is shown in figure 2.19 where the multi scalar features 

within the metallic femoral head surface are identified and located. Wavelet 

decomposition proved useful for topography separation as well as identifying and 

locating peaks, pits and scratches within orthopaedic joints surfaces. This information 

was used to evaluate bearing ratio, material volume and void volume. When applied to 

the manufacturing process this can be used to predict the wear mechanism ofthe joints. 

The wavelet transform has also been applied by Jiang and Blunt (2001) to identify the 

morphology of the femoral counterface surface of artificial joints. It has been reported 

that defects or deep scratches present in a diamond like carbon coated head can cause an 

increase in the wear rate. Therefore the properties of the counterface of the joints has an 

important impact on the design of joints. The authors applied a hard thresholding 

technique where larger amplitude coefficients were kept and used in the reconstruction. 

The morphological features within the surface could then be identified. This is shown in 

figure 2.20(a) where shallow scratches have been removed (circled areas), revealing 

only the morphological surface figure 2.20(b). The wavelet analysis presented in their 

paper allows for a better understanding of the morphological surface of hip joints. 

Further work carried out by Jiang and co-workers in this area includes the application of 

lifting wavelet representations for separation and extraction of different components of 

both engineering and bioengineering surfaces (Jiang et aI, 2000; Jiang et aI, 2001a; 

Jiang et aI, 2001b). In further research Xiao et al (2001) have evaluated the performance 

of biorthogonal B-spline and cubic spline wavelets to extract the rough surface from 

bioengineering surfaces. Xiong et al (2001) proposed a combined wavelet models and 

fractal theory to characterise engineering surfaces. 

A number of other groups have applied the wavelet transform to engineering surfaces 

texture characterisation to separate the surfaces into three topographies. Josso et al 

(2002) separated texture surfaces into the three different scale components: roughness, 

waviness and form. The surfaces were transformed into a number of details using the 

Daubechies 20 wavelet. Details of the three different components were extracted from 

the original surface through selective summation of the wavelet scales. This is shown in 

figure 2.21(a) where the original surface profile and the three components are presented. 

The authors defined the form topography as scales 0 and 1, the waviness form was 

defined over scales 2 to 4 and the roughness topography over scales 5 and 6. The same 
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kind of decomposition and reconstruction was applied, using the 2-D wavelet transform, 

to a casting surface texture, as shown in figure 2.21 (b). The wavelet proved to be a very 

useful tool for separation of surfaces into different topographies. 

Separation of surface textures using wavelet methods has also been carried out by other 

groups. See for example papers by Chen et al (1995) who demonstrated the use of the 

wavelet transform for multi-scale feature location in electro-formed surfaces; Lee et al 

(1998) who analysed the local morphology characterisation of engineering surface; 

Chen et al (1999) who applied wavelet techniques to separated the roughness from 

surface profile, and Raja et al (2002) who reviewed different filters, including the 

wavelet transform, used to characterise engineering surfaces. 

The wavelet transform has also proved to be useful as texture classification method in a 

range of areas ranging from fabric characterisation to the inspection and control of 

manufactured engineering surfaces. 

In a study carried out by Jasper et al (1996), adaptive wavelet bases were applied to 

capture the texture information and detect and locate defects in woven fabrics. Manian 

and Vasquez (1998) classified invariant textures patterns using three different bases 

functions (Daubechies and Haar bases, biorthogonal Spline and non-orthogonal Gabor 

bases). They presented a method that recognises scaled and rotated textures, where 

inter-scale combination of coefficients gives invariant features within the texture. This 

was applied to classify 14 textures from the Brodatz album, where the textures were 

scaled and rotated. The results for texture patterns correctly classified was 80.4% for the 

Daubechies basis, 74.1% for the Haar basis, 72.2% for the biorthogonal basis and 

60.1 % for the Gabor basis. Comparing the four bases it was found that the Daubechies 

basis provides the best results for this type of classification. Recognition of 

translation-invariant features was later studied by Li et al (2003), using the discrete 

wavelet frame transform. 

Multiresolution was applied by Tsai and Hsiao (2001) to extract and identify defects 

embedded in homogeneous texture surfaces. A simple threshold was applied to 

discriminate between defect regions and homogeneous regions on variety of real texture 

42 



surfaces including machined surfaces, natural wood, textile fabric, sandpaper and 

leather. 

Podisadlo and Stachowiak: (2002) compared different methods of analysis of 

tribological surface topography (e.g. Fourier transform, windowed Fourier transform, 

Cohen's class distribution, wavelet transform, fractal methods and a hybrid fractal 

method). The authors found that a hybrid fractal-wavelet method appeared to be the best 

method to determine the topography both scale-invariant manner and different scales. 

However, the wavelet transform was found to be the most suitable non-fractal method 

for the characterisation of surface topography. In a later paper by Stachowiak: and 

Podisadlo (2004) a further evaluation of the performance of the hybrid fractal-wavelet 

(HFW) method to characterise tribological surfaces from images was carried out. Here 

the authors concluded that these types of surfaces can be successfully characterised and 

classified without any surface parameters using the HFW. 

The wavelet transform has also been successfully applied as a surface denoising tool, to 

extracting the real surface data from a noisy data-set. Wang and Moon (1997) used the 

multiresolution method to study a grinding wheel surface. They found that the noise in 

the data could effectively be eliminated using the wavelet transform. The wheel surface 

could be reconstructed using a selected combination of wavelet scales according to the 

practical need. In addition, the ground surface roughness could be predicted as 

characteristic wavelengths can be associated with their characteristic grain sizes. They 

suggested that the method can be used to model grinding wheel surfaces and hence 

become a potentially useful tool for grinding process control. 

Wavelet analysis was applied by Silva et al (2003) to ultrasonic signals for detection of 

corrosion at the back surface of an aircraft aluminium structure. Their method detects 

the changes in roughness due to corrosion rather than material loss or plate thinning and 

is therefore particularly useful in early corrosion detection. 

Srinivasan and Wood (1997) applied fractals as a tolerance measure in mechanical 

design. The authors used the Daubechies 12 wavelet to calculate the relevant fractal 

parameters for mechanical products. As an example they applied the method to establish 

the roundness errors (main source of vibration) of rolling elements of ball bearings 
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supporting the trust load. The authors concluded that the wavelet transfonn can be used 

as a tool to compute relevant fractal parameters applied in design for manufacturing. 

2.11. Sediment transportation 

2.11.1. Introduction 

The knowledge of sediment transport in open-channel flow is vital to river engineers. 

Most open channels have a constantly changing river bed-surface. Erosion and sediment 

transport is therefore a concern. The structure of a river bed-surface can take a variety of 

fonns such as dunes, ripples, etc, creating obstacles and expansions in the river. These 

affect the flow resistance in the channel, causing separation and re-circulation that 

influences the overall flow of the river. This may increase the turbulence of the flow and 

it is likely to affect the rate of erosion of the bed-surface (and the river banks) thus, 

increasing the sediment transport rate (Graf, 1996). The understanding of transportation 

and deposition of solid particles in river flow represents an important issue within the 

field of hydraulics. Methods to analyse the structure and characteristics of the river-bed 

surface are therefore essential to river engineering work. 

2.11.2. River hydraulics 

The shape of a natural channel depends on a number of variables. The most important 

factor is probably the discharge coefficient, Q (which may vary with time) geology, 

topography and the climate. The change in sediment transport rate along a river is 

noticeable, where material is eroded from one area and deposited somewhere 

downstream. 

2.11.2.1. Fluid dynamics 

River flow over a bed-surface is influenced by the friction ( or resistance) of the surface. 

Traditionally Manning's n, (the coefficient of friction or the roughness coefficient), has 

been applied to measure the bed friction of a surface. Manning based his equation on the 

work carried out by Chezy concerning calculations of flow velocity over an average 

cross-section (McKay, 2002). Manning's equation for surface roughness is: 
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u = ~R~ -JsinB (2.51) 
n 

where u is the velocity, R is the hydraulic radius and e is the channel slope. This 

equation may also be rewritten in terms of flow rate Q: 

1 A'% . 
Q=---JsmB 

n p'7j 
(2.52) 

where A is the cross-sectional area and P is the wetted perimeter. Manning's n 

characterises the surface roughness as a value ranging from 0.009 (for smooth surfaces 

such as glass and plastic) to 0.15 (for very rough surfaces such as those including tree 

cover and flood plains). Manning's formula is today widely accepted because of its 

ability to be used within channels exhibiting a high degree roughness (Chow, 1959). 

The Manning's n value can be estimated; using a tabulated n value or using empirical 

methods. A number of empirical methods have been suggested for the estimation of n. 

The Strickler equation is probably the most often used empirical method to compute n. 

The original Strickler equation is written as: 

n = 0.047dI/6 (2.53) 

where d is the diameter in millimetres of uniform sand pasted on the sides and the 

bottom of a flume used by Strickler in his original experiments (French, 1994). Other 

forms of the Strickler equation have been proposed, with variations on both the 

multiplicative constant and the definition of the dimension d. For example the Strickler 

equation according to Raudkivi (1976) is defined as: 

(2.54) 

where the dimension, d, is measured in millimetres and d65 is the bed roughness such 

that 65% per cent of the roughness elements are smaller than this size. For bed material 

with significant proportions of coarse material Meyer-Peter and Muller (1948) 

suggested the following equation: 

n = 0.038d~6 (2.55) 
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where d90 is the bed size in meters such that 90% of the material by weight is smaller 

than this size. In field experiments with cobble paved cannels Lane and CaIson (1953) 

determined that: 

(2.56) 

where d75 is the diameter of the bed material in inches. 

The roughness of the bed surface is one of the factors that affects turbulent flow in an 

open channel. The effect of turbulence is the rapid and random motion of the fluid in 

form eddies that move downstream with the main river flow. There are three types of 

flow: laminar or viscous flow, where the fluid moves in discrete layers without mixing, 

transitional flow, where some unsteady motions occur within the flow layers and 

turbulent flow, where the flow consists of turbulent mixing eddies between the flow 

layers. All natural river flows are turbulent. 

Flow regime is classified according to the dimensionless Reynolds number (Re), defined 

as: 

R = pul = ul 
e (2.57) 

J.l v 

where p is the fluid density, u is the average velocity, I is the characteristic length, Jl is 

the dynamic viscosity and v is the kinematic viscosity (Rott, 1990). Viscous forces 

dominate the laminar flow where the particles move in a smooth and coherent manner. 

While turbulent flows are dominated by the inertial forces and particles within the flow 

move in a random path, (Chow, 1959 and McKay, 2002). The irregular motion of the 

turbulent flow affects the particles of bed-surface material to a greater degree than the 

laminar flow where the bed particles are set in motion by the flow, transported and 

allowed to settle again on the bed-surface further down the river. 

2.11.2.2. Sediment motion 

There are three different modes of sediment transport that can be identified: 
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1. Beload transportation, (or contact load) where the sediment particles move by 

rolling and sliding in direct contact with the other particles in the surface bed. 

The particles move, remain stationary for some time, then move again. 

2. Saltation transportation, where the particles move in a bouncing or hopping 

motion. This is due to uplifting force by the fluid or by collision with other 

particles. 

3. Suspended sediment, where finer particles (this usually applied to fine silt) are 

swept up by the flow and held in suspension by turbulent fluctuations in the 

fluid. 

The moving fluid transfers energy to the particles which induces particle movement. 

The energy required to move a particle has to overcome the natural resistance to motion 

by the particle, which is known as the 'threshold of movement'. For a perfectly round 

object placed on a smooth horizontal surface, only a very small horizontal force applied 

to the object is required to make it roll. However, the natural sediment particles on a 

bed-surface are unlikely to be perfectly round. Additionally, they will sit on a rough 

surface, which itself is not flat or horizontal. The force applied to a particle will only 

cause motion if it overcomes the natural resistance to motion of the particle, figure 

2.22(a). For a flow over a gravel-bed sediment surface, the contact surface between 

water and sediment will be SUbjected to shear stresses (70) due to the flowing fluid. Ifthe 

shear forces are gradually increased, a point will be reached where the particles start to 

move this is the 'threshold of movement'. The shear force for a gravel-bed surface is 

shown schematically shown in figure 2.22(b), (Chadwick and Morfett, 1986). 

As shear forces increase, the particles starts to move and roll over their neighbours. The 

moving particles collide with each other and other stationary particles causing the 

sediment movement to spread. This starts a further and more complex pattern of forces 

that enhance particle movements. The movement of particles go through a cycle of four 

steps: (1) no particle movement, the shear stress (70) is not large enough to move the 

particles, then, (2) localised movement, with an increase in shear stress particle 

movement is noticed at a number of small locations across the surface. This is followed 

by, (3) general sediment motion, where a small increase of shear stress is generally 

sufficient to cause a widespread sediment motion, before, (4) suspended load, which 
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occurs after a further increase in the shear stress whereby the fine particles are swept up 

into the flow. 

2.11.3. Bed armouring and cluster formation 

The bed armouring process occurs when the bed-sediment progressively re-arranges and 

re-organises itself so that it becomes more stable and resistant to further erosion. Three 

different conditions of armouring may be considered: static armour, mobile armour and 

full motion (Hunziker and Jaeggi, 2002). For shear stresses slightly above the critical 

shear stress the somewhat higher mobility of finer material will produce slightly higher 

sediment transport rates and a coarsening of the bed-surface will occur. This is called 

the static armouring condition. Also, coarser grains will move from less stable positions 

in the surface to a more stable arrangement against each other. If no sediment is 

supplied the bed load transport rate will reduce significantly and a stable armour layer 

may form which will prevent further erosion. For higher shear stresses a stable armour 

cannot form because all the grain sizes are in motion (Church et aI, 1998). Grain sorting 

processes for this condition will lead to a top layer which is slightly coarser than the 

subsurface. This layer is known as mobile armour layer. For even higher shear stresses 

the coarse grain are more easily transported on the bed of finer grains. This is because 

the shear stresses now far exceed the critical shear stress causing all the grains to be 

equally mobile. The bed is now said to be in full motion. (Church et aI, 1998; Hunziker 

and Jaeggi, 2002). 

The traditional measure of the characteristic 'sizes' of a sediment bed surface is the 

particle size distribution (psd). This measures the cumulative percentage by weight of 

particles within different size ranges (Craig, 1987). The most common method to 

determine the psd is using the sieve analysis method. A representative sample of the soil 

is oven-dried. The dried sample is shaken through a set of standard test sieves arranged 

in a descending order of mesh sizes. The weight of the sample retained at each sieve is 

recorded and the cumulative percentage of the sample passing each sieve size 

calculated. From this, the particle size distribution can be plotted on a semi-logarithmic 

scale that is known as the grading curve of the sample (Whitlow, 1995). Full details of 

the sieving analysis method used for determination of the psd is given in BS 1377 

(1990). The soil is then classified according to the distribution of sizes. The 
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classification system used by the British Standard Institute is the MIT (Massachusetts 

Institute of Technology) system. Figure 2.23 show an example of a particle distribution 

sheet for a well graded gravely SAND with the boundaries as defined in the system. The 

particle sizes are plotted on the horizontal axis and the cumulative percentage of 

sediment on the vertical axis (Smith and Smith, 1998). 

However, in research by Gessler (1990) it is stated that the 'psd' is rather independent 

of the friction factor of the surface bed. He stated that it is the arrangement of the bed 

surface material rather then the 'psd' that determines the flow environment and the 

hydraulic resistance of an armoured bed. The re-arrangement of the surface grains may 

constitute interlocking of the sediment particles where larger more stable grains group 

together to form coherent, more stable bed-surface structures, i.e. clusters. These 

clusters will affect the near bed flow environment of the bed-surface. Additionally, the 

clusters will work as a sheltering mechanism to smaller less stable grains in the 

structure. Retention of sediment material will cause a rapid decrease in the sediment 

transport rate. However, larger grains will lose their stability when the finer material is 

washed away from around them. As these larger, more stable, grains are transported 

away the unprotected finer material becomes exposed to the flow and is incorporated 

into the bedload. This results in a bedload fluctuation in the sediment transport rate. 

Sediment bedload transportation and fluctuations due to the bed armouring processes 

have been studied both in the laboratory and in the field. See for example the work by 

the following authors: Tait et al (1992), Lisle and Madej (1992), Willets et al (1998), 

Carling et al (2000a), Carling et al (2000b), Kneller and Buckee (2000), Pender et al 

(2001) and NiNo et al (2003). 

The need to further understand the mechanisms behind sediment cluster formation and 

their influence on the river-bed stability was highlighted by Brayshaw et al (1983). The 

clusters are believed to congregate into certain shapes during the armouring process. 

According to Papanicolaou et al (2003) clusters undergo changes in size and shape 

depending on the sediment rate and the flow condition. The clusters are formed in a 

cycle as follows: (1) two particles collide and form a two particle cluster, (2) further 

particles attach themselves to the cluster forming a comet shape, (3) as the shear stress 

increases on the comet, triangular clusters forms, (4) the final shape is a rhomboid and 

(5) when the flow conditions reach twice the critical shear stress the cluster will break-
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up. The cluster formation cycle is shown in figure 2.24. In a later paper by Papanicolaou 

and co-workers (Strom et aI, 2004) the authors found that cluster formations in the bed 

surface effect the bedload transport rate. During unsteady flow the effect of clusters on 

bedload was classified into three different phases: (1) sink phase (the cluster absorbs 

incoming sediment particles), (2) neutral phase (the cluster does not effect the bedload) 

and (3) source phase (particles are released from the cluster). The formations of clusters 

will also, naturally, be influenced by the supply of sediment material. Church et al 

(1998) studied the development of surface structures in experimental gravel-bed stream 

channels during low bed material transport rates. They observed that the surface 

congregated into a complex grain structure. Larger more stable particles on the surface 

rolled into contact with each other forming a cluster. As more particles attach 

themselves, the cluster grows into a line of particles. Eventually these lines join up and 

formed rectangular structures which the authors refer to as stone cells. These structures 

will reduce the sediment transport rate as they effectively protect smaller material from 

the flow. In the presence of sediment supply, the surface structures will adjust 

themselves in a manner which is dependent upon the proportion to feed material. These 

types of sediment structure patterns in mobile gravel-bed surfaces during flow 

conditions have also been observed by for example Bamdroff-Nielsen (1989) and Tait 

and Willetts (1991). Development of surface structure during material feed has been 

studied by e.g. Dietrich et al (1989). The authors studied surface structures at different 

sediment feed rates in an experimental flume, where the water discharge and the 

bedload grain size distribution were held constant. The results showed that the 

degradation of grain sizes into zones varied with the supply. For the initial high 

sediment supply the surface consisted of bedload sheets of coarse, fine and transitional 

zones travelling downstream in the channel. This caused fluctuations in the bedload at 

the end of the channel. As the sediment supply decreased these sheets became both less 

frequent and less distinct. Instead, zones with course inactive material could be 

observed, which increased to a progressive narrower zone of fine material as the 

sediment supply reduced further. For this condition the bedload travelled in long

wavelength pulses. 

It has been argued that clusters are formed in the presence of well-graded sediment, 

therefore the strongest clusters are formed in rivers with uniform sediment sorting (Reid 

et aI, 1992). However, laboratory experiments by Papanicolaou et al (2003) has shown 

50 



that simulated mono-sized sediment particles can form clusters. The architectural shape 

of the clusters are dependent on the sediment availability and, for twice the incipient 

shear stress flow condition, the clusters disintegrate. Recent research has also suggested 

that sediment availability and specific gravity have a strong influence on the formation 

of clusters where heavier particles will create a stabilising obstacle trapping finer 

particles with less mass (Best et aI, 2001; Ryan, 2001). 

2.11.4. Surface bed layer composition (sampling techniques) 

It is generally assumed that the composition of the surface is the dominant factor in 

determining its behaviour. However, as stated earlier, recent research has suggested 

that, in addition to the surface composition, the stability of a sediment surface is 

dependent of the arrangement and location of the surface grains. Krichener et al (1990) 

show that there is considerable variability in the critical entrainment shear stresses for 

particles of similar size on a graded sediment surface. The sampling techniques for the 

determination of the particle size distribution (psd) using the sieve analysing method 

will unavoidably destroy the bed structures. As a bulk test sample is removed from the 

surface all the information about the structure characteristics of the surface, i.e. location 

and orientation of the particles as well as coherent structures within the surface are 

destroyed. It would therefore be advantageous to use non-destructive methods to 

analyse the structure of the sediment bed surface layer. A number of methods to collect 

information about the composition of the bed-surface layer have been proposed, there 

are: wax sampling (Marion, 1997; Pender et aI, 2001), photography and digital images 

(Adams, 1979; Tait et aI, 1992; Butler et aI, 2001a; Butler et aI, 2001b), 

3-D-Iaser-scanning (Willetts et aI, 1999; McEwan et aI, 2000) and video recordings 

(NiNo et aI, 2003; Papanicolaou et aI, 2003). 

The grain size distribution as well as the location of specific grains can be determined 

from the above mentioned surface sampling techniques. Pender et al (2001) compared 

wax sample of initial bed compositions with the final bed composition. It was shown 

that the final sample showed a greater percentage of coarser fractions compared with the 

initial sample. Hence the wax sample technique was able to identify trends in the bed 

composition during the armouring process. Kellerhals and Bray (1971) applied a 

grid-by-number measurement, which they assumed equivalent to the sieve-by-weight 
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measurements. Tait et al (1992) used a size-to-number basis where a square grid was 

superimposed onto plan-view photographs. The grain under each grid point was 

measured. From this the bulk mass-size distribution was determined. 

A parallel edge detector was used by Butler et al (200Ia) to identify sediment particle 

boundaries in digital images (edge detection is a standard function in most image 

processing packages). Grain-size information was automatically extracted from the 

image by fitting and measuring an ellipse for each feature. From this a particle-size 

distribution of the sediment surface was constructed. 

Willets et al (1999) studied 3-D laser scans of sediment bed-surfaces. Each scan 

produced an array of x-y-z co-ordinates, from which a model of the sediment surface 

topography, or any transect of it, could be constructed. The authors suggest that the 

contour plots of the surface scans can be used to obtain information regarding surface 

decomposition as well as the arrangement of the surface particles. 

An image-processing technique was developed by McEwan et al (2000) to extract grain 

size information from laser scans of water-worked sediment beds. Using the 'Canny 

algorithm' particle edges were detected and image segmentation used to convert the 

grain edges into closed regions from which the surface grain sizes and location could be 

determined. Hence the size composition of the surface was obtained. This technique was 

tested for three surfaces with different sediment distributions. The results were 

compared with the traditional surface composition measure of volumetric sieving. The 

authors concluded that the two size compositions produce similar values for the surfaces 

composition and the image processing method provide a reliable means of determining 

the surface composition as well as providing information of grain location and 

orientation. In related work, Marion et al (2003) employed a 2-D structure function to 

identify different grain scale features in the sediment bed-surface data. Two classes of 

grain scale bed features developed over time: (1) a slow forming features with strong 

lateral and streamwise coherence associated with stable beds, formed under stationary 

armouring condition and (2) a quick forming features with strong streamwise coherence 

associated with phases of dynamic armouring. 
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2.12. Chapter summary 

The work detailed in this thesis is based upon previous work from a variety of sources, 

the background details of which have been presented in this chapter. The basic concept 

of wavelet transform has been described, including both the CWT and DWT and the 

special case of redundant DWT known as the SWT. In addition the 2-D wavelet 

transform has been introduced, followed by the factors to consider when choosing the 

wavelet transform to use and the analysing wavelet itself. 

In the later sections of this chapter the application of the wavelet transform as a tool for 

signal smoothing and denoising using scale (smoothing) and amplitude (denoising) 

thresholding was presented. A review of the wavelet transform's role in surface analysis 

revealed that the wavelet transform has proven to be a powerful method for surface 

characterisation, both globally and locally. Finally a brief review of channel 

sedimentation processes was presented and current sediment bed-surface sampling and 

analysing techniques were described. 
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Figures 
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Figure 2.1 Decomposition of a fractional Brownian motion (fErn) signal. 
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Figure 2.2 Examples ofDaubechies wavelet and scaling functions. 
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Figure 2.4 The difference between the DWT and the SWT decomposition (from Nason 
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(a) Daubechies (4) wavelet (b) Daubechies (12) wavelet 

(c) Symmlet (6) wavelet (d) Symmlet (12) wavelet 

( e) Coiflet (6) wavelet (f) Coiflet (12) wavelet 

Figure 2.5 Examples of 2-D wavelets, from the Daubechies, Symmlet and Coiflet 
families of wavelets. 
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(a) Horizontal wavelet (b) Vertical wavelet 

(c) Diagonal wavelet (d) Scaling function 

Figure 2.6 The wavelet functions and the scaling function for the 2-D Haar wavelet. 
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Figure 2.7 Schematic diagram of the decomposition of data (So) into two levels using 
the 2-D wavelet transform. 
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Figure 2.8 Wavelet decomposition and reconstruction of shear layer velocity signal 
(from Murray, 2000) 
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Figure 2.12 Test wavefonn with added noise. 
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Figure 2.13 Hard thresholding of the test signal. 
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Figure 2.14 Soft thresholding of the test signal. 
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Figure 2.15 Characterisation of corrosion pit surface applying the wavelet transform 
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Figure 2.16 Wavelet analysis offBm profiles (from Wang et aI, 2003). 
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Figure 2.18 Multiscale decomposition of a metallic femoral head (from Jiang et aI, 
1999). 

Axonomclrrc P"Ojt?CciOfl Slope tme/flily Image 

Figure 2.19 The multiscalar features and their location of the metallic femoral head 
(from Jiang et aI, 1999). 
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Figure 2.20 The raw measured surface and morphological surfaces of a worn 
ceramic head (from Jiang and Blunt, 2001). 
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Figure 2.21 Form, waviness and roughness decomposition of a surface texture (from 
Jasso et aI, 2002). 
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Figure 2.22 Sediment particle movement. 
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The clusters structures go through a fonnation cycle of five steps. 

Figure 2.24 Cluster fonnation steps in mono-sized simulated sediment particles 
(from Papanicolaou et aI, 2003). 
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CHAPTER 3 

ALGORITHM DEVELOPMENT: ANALYSIS OF 

ONE-DIMENSIONAL DATA 

3.1. Introduction 

This chapter describes the analysis of experimental one-dimensional (I-D) data using 

both the discrete wavelet transform (DWT) and the stationary wavelet transform (SWT). 

The analysis was carried out primarily for the author to familiarise herself with the 

wavelet transform technique. It was necessary to know the basics of the I-D wavelet 

transform method before undertaking the analysis of two-dimensional (2-D) data using 

the 2-D wavelet transform which comprises the main research work detailed in 

subsequent chapters of this thesis. 

This chapter is structured as follows: section 3.2 describes the development of new 

algorithms to compensate for edge effects caused by large edge coefficients. Section 3.3 

describes the analysis of synthetically generated test profiles (fractional Brownian 

motions (fErn) profiles); section 3.4 contains the analysis of the experimental data 

obtained from cracked concrete profiles; section 3.5 includes preliminary work carried 

out on medical data, and the final section, 3.6, provides a discussion and a summary of 

the work contained in the chapter. 
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3.2. Algorithm development 

3.2.1. Software algorithm development and validation 

This section contains a brief description of the development of algorithms used in the 

analysis in this and subsequent chapters. The analysis presented in this thesis has been 

undertaken using the computer software package MATLAB R12, version 6.0. This is a 

powerful data analysis tool integrating both computation and visualisation of data. With 

the software a range of toolboxes are available in areas of for example; mathematics, 

financial modelling, control system design, neural network, signal and image 

processing. The author employed the wavelet toolbox in her analysis. All the algorithms 

were developed using command line functions. This allowed for easy extraction of the 

transformed data components (i.e. the wavelet coefficients) for further processing, 

including calculation of standard deviation, energy content and the application of 

wavelet thresholding methods. To validate the code prior to the analysis of the 

experimental data, simple test data were run through the developed algorithms. These 

contained only one, or a few, non-zero coefficient(s) set to unit values that allowed the 

author to compute the expected results. These were then compared with the result 

obtained from analysis. Further, synthetic data, including both iBm data and synthetic 

sediment surface data, with known properties were analysed and again the computed 

results could be compared with those expected. In addition, computer intensive 

processes, such as the SWT analysis, with long execution times were run as batch files. 

This allowed several data files to be analysed in overnight runs. 

3.2.2. Edge effects 

In engineering practice experimental data is not infinite but is both limited in extent and 

discretely sampled in time. When the wavelet transform is applied to data of finite 

length, edge effects will unavoidably occur at the beginning and the end of the 

transformation. As explained in section 2.8.4, there are ways to compensate for these 

edge effects. In this, and subsequent chapters, the wrap-around method has been 

applied, where the section of the wavelet that 'hangs off one end of the time series is 

placed back onto the other end of the data. However, due to misalignment between the 

two edges of the data, erroneous edge coefficients are often created in this region. This 

is shown schematically in figure 3.1 where the Daubechies D6 wavelet has been applied 
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to a signal vector using a DWT. Where the wavelet moves along the signal in discrete 

steps. The wavelet filter coefficients outside the signal at the beginning and end of the 

signal produce edge coefficients. The edge effect is carried through the transform 

process. The first and the last approximation coefficients for scale 2m
+

1 shown in figure 

3.I(b) are the edge coefficients. This is shown schematically where the 'X' symbolises 

the edge coefficient carried through from the previous level of the transform. For the 

next level, 2 m+2 , figure 3.1 (c), the first two and the last two approximation coefficients 

are now edge coefficients, carried through from the previous level. 

In general, the edge coefficients are significantly larger then the rest of the transform 

coefficients (as a significant discontinuity often exists between both ends of the signal), 

hence these erroneous coefficients will dominate the analysis. Large edge coefficients 

are visible in figure 3.2 where a synthetic fBm profile has been analysed using the 

SWT. Figure 3.2(a) shows the original synthetic (jBm) test profile, while figure 3.2(b) 

shows the original wavelet coefficients from the second scale of the transform and 

figure 3.2(c) shows the same coefficients but with the edge coefficients removed, i.e. 

only those wavelet transform coefficients unaffected by the edge are left. 

This chapter presents the results from the analysis of a number of synthetic (jBm) and 

real ( cracked concrete) profiles. The author was primarily interested in the amount of 

energy preserved at each scale of the transform. The erroneous coefficients created at 

the edges, cause incorrect values of scale dependent energies. This markedly affects the 

total energy computed at each scale. The author has, therefore, developed new 

algorithms to compensate for these edge effects. The algorithms for extracting pertinent 

coefficients at each scale of the wavelet transform are described in the following two 

sub-sections. Section 3.2.3 considers the removal for the edge coefficients for the 

discrete wavelet transform and section 3.2.4 for the stationary wavelet transform. 

3.2.3. Algorithm development for edge effects - Discrete wavelet transform 

As described in section 2.5 the translation and scaling of the discrete wavelet transform 

(DWT) takes place on a dyadic grid i.e. the wavelet both moves along the signal and 

dilates in steps which are discrete power of two. The size of the edge effect depends on 

the length of the applied wavelet filter. 
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The filter is first placed at an initial location on the signal. In the work presented herein 

for the Daubechies family of wavelets, the wavelet filter is initially placed on the signal 

at the location given by: 

Filter = N F -1 
2 

(3.1) 

where NF is the length of the wavelet filter. This is shown in figure 3.3, where the first 

three mother wavelets from the Daubechies family of wavelets are shown at the first 

two locations at the beginning of the signal. The location of the first signal value (=So,o) 

is matched with coefficient (N; -1) of each wavelet filter. Using this relationship the 

author has established the number of edge coefficients produced at each side of the 

discrete wavelet transform corresponding to each scale of the transform. The number of 

edge coefficients for the Daubechies family of wavelets at each scale are given in table 

3.1. 

Once the number of edge coefficients for each end was determined, an algorithm to 

remove these coefficients from the transform was developed. Results from the analysis 

of synthetic and real data using the author's modified DWT algorithm are presented in 

sections 3.3.2 and 3.4.2. 

3.2.4. Algorithm development for edge effects - Stationary wavelet transform 

The sampling procedures of the stationary wavelet transform (SWT) vary from the 

DWT as the wavelet translates along the data 'continuously', i.e. for discrete data in 

steps equal to the sampling interval. Consequently, a larger number of edge coefficients 

are created at the beginning and end of the transformed data. The number of erroneous 

coefficients increases for iteration ofthe transform process. 

To develop an algorithm for the removal of edge coefficients for the SWT, the number 

of edge coefficients for each level of the transform had first to be determined. This was 

initially done numerically using a test vector consisting of zeros, with the values at 

either end alternately made equal to unity or zero, depending on which edge coefficients 

were being computed. This is shown schematically for the Daubechies D4 wavelet in 

figure 3.4. Running this test signal through the SWT algorithm, the edge coefficient at 
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each scale were established. These are given in table 3.2. However, subsequent to 

studying the results shown in the table, two equations where derived to determine the 

number of edge coefficients at each end of the transform for the Daubechies family of 

wavelets. The equations are defined as follows for numbers of left and right edge 

coefficients respectively: 

(3.2) 

NRightedge = (2m -1) X (; ) (3.3) 

where NF is the wavelet filter length. As with the DWT, for useful analysis the author 

requires only those coefficients at each scale that are unaffected by the edges. 

Therefore, the above relationships are used in the modified SWT algorithm to remove 

the edge coefficients at the beginning and the end of the transformed data. Results from 

the analysis of synthetic and real data using the modified SWT are presented in sections 

3.3.3 and 3.4.3. 

3.3. Experimental data analysis - Fractals 

3.3.1. Introduction fractional Brownian motion (IBm) 

Fractals were brought to the forefront of data analysis by Mandelbrot in the 1960s 

(Mandelbrot and Van Ness, 1968; Mandelbrot and Wallis, 1969). Fractals have very 

simple scaling laws and Mandelbrot proposed that they could be used to describe many 

real objects and processes (Mandelbrot et aI, 1984). Fractals have since been applied to 

model a large variety of physical phenomena, including for example; DNA sequences, 

the structure of clouds, radar imagery, risk analysis, landscape surfaces, financial data, 

image textures, fluid turbulence, ocean waves and cracked concrete profiles. See for 

example the paper by Addison and Ndumu (1999), which discusses the connection 

between fractional Brownian motion (jBm) and a variety of diffusive processes. The 

authors showed that fractal fBm's could be used to describe many engmeenng 

applications and included both synthetic and experimental data. 
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3.3.1.1. Fractal theory 

Fractional Brownian motion (jBm) is a random fractal function. It is classified according 

to the Hurst exponent (lI) which describes how rough the iBm is. As a time-series 

becomes smoother the Hurst exponent tends towards unity. FBm traces are classified as 

anti-persistent if O<H< 0.5 and persistent if 0.5<H<1.0 . If H is equal to 0.5 it is known 

as neutrally persistent and this special case relates to ordinary Brownian motion 

(Einstein, 1905). 

As the iBm diffuses through time, the standard deviation, o"c, scales with time as 

ac ex: t H 
• Hence, if {aJlit- is plotted against time, a linear relationship is obtained where 

the slope is equal to twice the fractional diffusion coefficient, Kj: a measure of iBm 

spreading. Kfis defined as: 

1 

K = {aJH 
J 2t 

(3.4) 

In engineering practice, neither Kfnor H may be known, in which case they can both be 

determined from the logarithmic plot of o"c against time. The best fit line through the 

data has a slope equal to H and the point where the line crosses the vertical axis is equal 

to H log (2Kf), (Addison, 1997). A common method to determine H for an fBm profile 

is using the Fourier power spectrum, as the spectrum is a function of the frequency 

dependent H: 

(3.5) 

From this relationship we can see that H can be determined from the slope of the 

logarithmic plot of the power against the frequency. The discrete wavelet transform can 

be used to determine H by plotting the variance of the wavelet coefficients at each scale 

against the scale, m. The variance is defined as: 

(3.6) 

Addison (2002, chapter 4) derives the relationship between equation 3.6 and the wavelet 

power spectra as Pw Urn) oc (T~,n) rn . Combining these expression we obtain: 
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(
T2) ex a(2H+l) 

m,n m m (3.7) 

where a is the wavelet scale. In the literature, the variance is often written as O"~ 

therefore: 

(3.8) 

The discrete wavelets used here scale in proportion to 2m
, hence taking the base 2 

logarithm on each side of the expression gives the following equation: 

10g2 (0";) = (2H + 1) + constant (3.9) 

where the constant depends on both the wavelet used and the Hurst exponent. Plotting 

the variance at each scale against the scale, the Hurst exponent can be detennined from 

the best-fit line through the data. Figure 3.5 shows the analysis of an fBm profile with a 

known H of 0.55. The fBm profile plotted in figure 3.5(a) was analysed using the DWT, 

employing the Haar wavelet as the analysing wavelet and transfonning the profile into 

10 detail levels. The variance (O"m)2 for each of the detail levels of the transfonn was 

computed and plotted against the scale index, m. This is shown in figure 3.5(b). The 

expected slope for this fractal curve is (2H + 1) = 2.10 and the slope obtained from the 

plot was 2.13. The difference in the computed slope and the actual slope of the profile 

may be due to the way the best-fit line is fitted through the data. For this profile the 

author fitted the line by eye. At large scales, due to the correspondingly large size of the 

discrete wavelets, only a few transfonn coefficients are produced. Thus, these scales 

(having only a few coefficients) may not be representative of the actual scaling property 

of the analysed data. Therefore, the larger scales were ignored and the best-fit line was 

fitted through the remaining values (scale m=1-6) of the data. 

In a further study, fBm-profiles with known Hurst exponents ranging from H=O.l to 

H=l.O were analysed. One hundred fBms of each value of H were analysed. The 

profiles are shown in figure 3.6. Each of the 100-trace sets, were generated using 1024 

points. The code for generating the fBm profiles is found in appendix A program 

fBmgen.m. The analysis of the data is described below in section 3.3.2 (DWT) and 3.3.3 

(SWT). 
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3.3.2. Analysis of synthetic data using the DWT 

The calibration of the analytical techniques using the discrete wavelet transform was 

conducted using the generated iBm profiles in figure 3.6. The analysis was performed 

using the Daubechies D4 mother wavelet, which has 4 filter coefficients. Table 3.1 

shows that the D4 wavelet produces one edge coefficient at both the beginning and the 

end of the data at each scale of the transform. The coefficients causing the edge effects 

are removed from the transform, leaving the 'true' profile components. Program 

jBm_dwt.m in appendix A contains the algorithm for the DWT analysis of the iBm 

profiles. 

The wavelet transform was modified to account for edge coefficients as described in 

section 3.2.3. The variance of the scale related wavelet coefficients were plotted against 

the scale for each profile, as shown in figure 3.7. The mean curve is then calculated 

from these plots from which the scaling properties can be determined using equation 3.9 

to find the Hurst exponent (H). The slope of the best-fit line was then calculated using 

the 'least squares' method. The equation for the best-fit line provides the slope from 

which H was determined. The results of the analysis are tabulated in table 3.3(a). The 

results are discussed at the end ofthe next section. 

3.3.3. Analysis of synthetic data using the SWT 

As stated in section 2.6 the DWT provides poor resolution to the analysis due to its 

sampling procedure using a dyadic grid. To increase the resolution, the stationary 

wavelet transform (SWT) was applied to the analysis of the data. The SWT keeps the 

scaling of the wavelet in discrete steps but moves along the data continuously, therefore 

the spatial resolution of the data increases. 

To investigate the accuracy of the results using the SWT the iBm profiles in figure 3.6 

were analysed using the SWT. The 100 iBm profiles were interrogated using the same 

mother wavelet used for the DWT: the D4 wavelet. The wavelet transform coefficients 

were modified to remove edge coefficients as described in section 3.2.4. Program 

jBm_swt.m in appendix A contains the algorithm for the SWT analysis of the iBm 

profiles. Using equation 3.6 the variance for the modified wavelet coefficients were 
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determined and are plotted against the scale, m. These plots are shown in figure 3.8. The 

scaling properties, H, were determined from the best-fit line slope of the data. The 

results from the analysis are presented in table 3.3(b). 

The wavelet transform proved useful in determining the scaling properties characterised 

by the Hurst exponent (ll) for fBm-profiles. The results from the analysis of the profiles 

are close to the actual value of H for both the DWT and the SWT methods for profiles 

in the range H=O.3 to 0.8. However, for H values less then 0.2 and H values larger then 

0.9, the accuracy of the results decreases significantly. For H=0.1 the difference 

between actual H and the calculated H, 50% for the DWT and 73% for the SWT. 

Similar for H=l.O are -34% for the DWT and -34% for the SWT. In the research carried 

out here, the wavelet transform methods do not produce accurate results for these 

regions. This has also been concluded by Qu (1999), who, through her work on 

fractional Brownian motions determined that H can only be established with any 

reliable accuracy for Hvalues within the range 0.2-0.9. 

3.4. Experimental data analysis - Cracked concrete profiles 

3.4.1. Introduction and background 

The cracked concrete profiles analysed in this part of the preliminary study were 

generated by Dougan (2002), who applied fractals to describe the geometry of concrete 

fractures. 

The concrete beam specimens were made with "Ordinary Portland Cement CEM I 

42,5N" (OPC) defined in BS EN 197-1 (2000), with both fine aggregate and crushed 

rock aggregate no larger than 20mm in size which comply to the grading envelopes 

defined in BS 882 (1983). The beams were cast in blockboard moulds to give a smooth 

finish to the beam surface, hence, it was possible to generate clearly defined fracture 

profiles. Three different sizes of beams were studied: 

small size - 80mm across x 60mm deep x 165mm long, 

medium size - 80mm across x 120mm deep x 330mm long, and 
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large size - 80rnm across x 240rnm deep x 660rnm long 

The concrete specimens were sUbjected to 3 point bending until failure in flexure where 

a tension crack appears on the bottom face of the beam. The fracture was perpendicular 

to the longitudinal bending force on the specimen. The fracture profiles on each side of 

the specimen were photographed using a digital camera. The digital image was 

transferred to a computer where erroneous image-data could be removed. A specially 

developed algorithm, differentiating between light and dark pixels within the image was 

used. This program enables the separation of the crack profile from its surroundings as a 

number of pixel co-ordinates. Further information concerning the gathering of the 

experimental data can be found in Dougan (2002). 

The profiles analysed in this study included 25 profiles from the small beams, 24 

profiles from the medium beams and 20 profiles from the large beams. 

3.4.2. Analysis of experimental concrete crack profile data - DWT 

The same analysis method calibrated using the jBrn profiles, was applied to the cracked 

concrete profile data. DWT analysis was carried out to determine the scaling properties 

as characterised by the Hurst exponent, H. The cracked concrete profile data was 

transformed into 10 detail levels using a Daubechies D4 wavelet. The transform was 

modified as described in section 3.2.3 in order to remove the large edge coefficients at 

each scale. The algorithm for the analysis of the concrete profiles using the DWT can be 

found in appendix A (program prof_dwt.rn). The variance of the modified wavelet 

coefficients at each scale was plotted against the scale. An example of one of the 

cracked concrete profiles is shown in figure 3.9. The scale dependent variance is plotted 

against the scale for each profile, producing a curve close to a straight line. The Hurst 

exponent is determined from the best-fit line through the plot. The results from the 

analysis using the modified DWT are presented in table 3.4, table 3.5 and table 3.6. 

These compare well with the results obtained using the variable bandwidth (vb) method 

of fractal analysis carried out by Dougan et al (2000). 

The results indicate that using the DWT produces slightly higher values of H compared 

to those produced using the vb method. The mean Hurst exponent value using DWT is 
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H=0.84±0.08 for the small sized beams, H=0.84±0.10 for the medium sized beams and 

H=0.87±0.08 for the large sized beams. This can be compared with the vb method 

where the mean H for the beams were determined to be H=0.80±0.06 (small sized 

beams), H=0.79±0.04 (medium sized beams) and H=0.80±0.03 (large sized beams). 

This produces a mean difference between the two methods of 5, 7 and 9% for the small, 

medium and large sized beams respectively. There is, however, no 'gold standard' 

measurement technique for real data and hence comment cannot be made on the relative 

accuracy of the methods. 

3.4.3. Analysis of experimental concrete crack profile data - SWT 

The analysis described in the previous section was repeated using SWT analysis carried 

out using the Daubechies D4 as the mother wavelet. The edge coefficients created by 

the transform process were removed as described in section 3.2.4. The variance for the 

Omodified coefficients were then plotted against the scale and H was established from 

the slope of the variance-scale plot. The algorithm used in the analysis using the SWT 

can be found in appendix A (program prof_swt.m). The results from the analysis are 

tabulated in table 3.4, table 3.5 and table 3.6. 

It can be seen from the tables that the SWT produces higher values of H compared with 

the variable bandwidth (vb) method. The mean value of Hurst exponent using SWT is 

H=0.83±0.06 for the small beams, H=0.84±0.10 for the medium beams and 

H=0.88±0.07 for the large beams. Comparing these results with the vb method it can be 

seen that the mean difference between the two methods are 4% for the small beams, 7% 

for the medium beams and 9% for the large beams. 

The results from analysis of the concrete profiles using the DWT and the SWT exhibit a 

close resemblance. The mean H's were found to be; 0.84, 0.84 and 0.87 for the small, 

medium and large sized beams respectively using the DWT and 0.83,0.84 and 0.88 for 

the small, medium and large sized beams respectively using the SWT. These are close 

to the expected Hurst exponent values which for a crack concrete profile would be 

around H=0.8, (Issa and Hammad, 1993, 1994; Chiaia et aI, 1998; Addison et aI, 1999; 

Dougan et aI, 2000) 
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3.5. Analysis of medical signals using the discrete wavelet transform 

3.5.1. Introduction 

This section outlines research undertaken by the author to analyse two different types of 

medical signals. In particular it details the smoothing of pulse oximeter signals and the 

analysis of ECG (Electrocardiogram) signals. These were two convenient in-house 

signals with which to test the author's wavelet analysis methods. 

3.5.2. Smoothing and removal of signal drift in a pulse oximeter signal 

The method of scale dependent thresholding described in section 2.9.2 was used to 

smooth and remove drift from pulse oximeter signals (photoplethysmograms). Pulse 

oximetry estimates the arterial oxygen saturation by measuring the light absorbed in 

human tissue beds. When light passes through human tissue (bones, skin, blood vessels, 

fluids, venous and arterial blood including haemoglobin) it is absorbed. As the amount 

of oxygenated blood in tissue changes, the amount of absorbed light changes. Different 

haemoglobin absorbs light of different wavelength. Oxygenated haemoglobin (HbOz) 

absorbs light in the red spectrum and deoxygenated haemoglobin (RHb) absorbs light in 

the near-infrared spectrum. The content of the two different haemoglobins in blood can 

be measured by passing red and infrared light through a blood vesseL In addition, the 

heart rate can be determined from the cyclical changes of light absorption, (Salyer, 

2003). 

Several pulse oximeter signals were recorded by the author, using a sampling rate of 

300 Hz. The acquisition was performed using a finger probe placed on one finger. From 

the set of collected traces, two traces were selected for the analysis. The two signals are 

plotted in figures 3.10(a) and figure 3. 11 (a). The first of the signals is a typical oximeter 

signal and the second was taken as the pulse amplitude was gradually decreased by 

applying pressure to the finger. The first signal consists of 214 (i.e. 16384) data points 

and the second consists of 213 (i.e. 8192) data points. Hence, the first signal could be 

divided into 14 wavelet details and the second signal could be divided into 13 wavelet 

details as shown in figure 3.10(b) and figure 3.11(b). The wavelet transform was 
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performed using Daubechies D8 wavelet (i.e. 8 wavelet filter coefficients), for both 

oximeter signals. Figure 3.l0(b) shows that it is only detail in D5, D6, D7 and D8 that 

contributes significantly towards the true signal and the rest can be regarded as noise 

(detail Dl-D4) or drift (detail D9-Dl4). The heart signal can therefore be reconstructed 

using detail D5, D6, D7 and D8. Figure 3.l0(c) shows the smoothed and detrended 

reconstructed oximeter signal. The same method was applied to the second oximeter 

trace 3.11(a). Similar conclusion as for the previous signal can be drawn for this data, 

figure 3.11(b), i.e. the true oximeter signal, is to be found in the wavelet transform 

details D5 to D8. Figure 3.11(c) shows the reconstructed signal when the details 

containing noise and signal drift are removed. This example provides a simple 

illustration of a wavelet-based method for the removal of both noise and signal-drift 

from a signal. 

3.5.3. Wavelet analysis of electrocardiogram (ECG) signals 

The electrocardiogram (ECG) is a measure of the electrical activity associated with the 

heart. Most patients who present with sudden cardiac death exhibit the arrhythmia 

known as ventricular fibrillation (VF). These rhythms have, up until recently, been 

assumed to be disorganised electrical activity in the heart. However, recent research 

carried out by Addison et al (2001 b) has shown that analysis of these signals using the 

continuous wavelet transform (CWT) can reveal a rich underlying structure. This 

section describes work, carried out by the author, which applied the discrete wavelet 

transform (DWT) to the ECG signals used in the research by Addison et al (200lb) to 

determine whether a DWT -based analysis could provide more information on these 

signals. The analysis of the ECG data was carried out to determine the dominant 

frequency of the ventricular fibrillation signals and whether it is was possible to predict 

the outcome of defibrillation shock using the DWT. 

The pre-shock heart signals analysed here were classified as either ROSC (return of 

spontaneous circulation) signals, (70 data sets) or asystole (no pulse) signals (80 data 

sets). Two typical ECG signals are shown in figure 3.12. The signals are 20 seconds in 

length and the data points were collected at a sampling frequency of lOO Hz. 
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The DWT was perfonned by the author using a Daubechies D8 wavelet. The scale 

dependent energies were detennined for each signal. Because of differences when 

measuring the heartbeat due to the probe location on the patients chest, the signals also 

had to be nonnalised in order to compare them accurately. The coefficient energy plot 

for the ROSe signals is shown in figure 3.13(a) and for the asystole signal in figure 

3. 13 (b). From the plot for the ROSe signal one can see that most of the signals have an 

energy peak at scale m=4. This can be translated into a frequency measure using the 

following equation: 

f=~ 
T 

(3.10) 

where T is the period of the wavelet. The maximum energy is found at scale m=4 i.e. for 

this scale 24=16 which corresponds to a time period T=16xO.01=0.16 seconds using a 

sampling rate equal to 100 Hz. Using equation 3.10 the frequency at scale m=4 equals 

6.25 Hz. 

For the asystole signals two major peaks are visible one at scale m=4 and one at scale 

m=5, these peaks corresponds to 6.25 Hz and 3.13 Hz respectively. Thus, many of these 

signals possess low frequency wavefonns. This is consistent with the outcome as it is 

known that negative shock outcomes are correlated with reduction in fibrillation 

frequency (Addison et aI, 2001b). 

3.6. Discussion and chapter summary 

This chapter has presented results of the application of 1-D discrete wavelet transfonns 

(DWT) and the 1-D stationary wavelet transfonns (SWT) to the analysis of a variety of 

synthetic and experimentally acquired data-sets. The wavelet transfonn has proven to be 

useful in deriving the global Hurst roughness exponent for different engineering data, 

(Flandrin, 1992; Fischer and Akay, 1996; Simonsen et aI, 1998; Dougan et al 2000; 

Frantziskonis et aI, 2000; Zunino et aI, 2004). In study carried out by the author the 

wavelet transfonn was used to detennine scaling properties characterised by the Hurst 

exponent (ll) for fBm-profiles and cracked concrete profiles. 
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Due to misalignment that generally occurs between the two ends of the data, significant 

edge effects are present at the transform edges. As the edge coefficients in general are 

significantly larger then the rest of the transform coefficients, these erroneous 

coefficients will dominate the results. Algorithms were therefore developed by the 

author where the number of erroneous coefficients were determined and removed prior 

to the main analysis. 

The results from the analysis of the iBm profiles using the DWT and the SWT showed 

small differences between the actual H and H determined using the wavelet transform, 

(table 3.3). The analysis provided an accurate determination ofthe scaling properties of 

iBm's. The scaling properties for the cracked concrete profiles were determined using 

the same method as for the iBm profiles and the results obtained were similar to 

previously published work using the variable bandwidth method (Dougan et aI, 2000). 

An analysis of medical data using the DWT was also included in this chapter. A 

smoothing method was applied to noisy pulse oximeter signals to extract the true pulse 

oximeter signal. The analysis showed that both noise and signal drift can be removed 

successfully from the signal using a basic smoothing method. The medical data analysis 

also included an attempt to develop a predictor of defibrillation success in ECG signals. 

However, due to the dyadic nature of the discrete wavelet transform, only a crude 

frequency resolution could achieved and hence the technique is unable to determine 

shock outcome with the accuracy necessary for implementation within a medical device. 

In summary, the work described in this chapter illustrates the usefulness of the wavelet 

transform method and allowed the author to develop her skills in employing the DWT 

and SWT methods. 
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CHAPTER 3 

Tables 
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Wavelet Scale 
1 2 3 4 5 6 7 8 9 10 

Daubechies 2 (Haar) 0 0 0 0 0 0 0 0 0 0 

Daubechies 4 1 1 1 1 1 1 1 1 1 1 

Daubechies 6 1 2 2 2 2 2 2 2 2 2 

Daubechies 8 2 3 3 3 3 3 3 3 3 3 

Daubechies 10 2 3 4 4 4 4 4 4 4 4 

Daubechies 12 3 4 5 5 5 5 5 5 5 5 

Daubechies 14 3 5 6 6 6 6 6 6 6 6 

Daubechies 16 4 6 7 7 7 7 7 7 7 7 

Daubechies 18 4 6 7 8 8 8 8 8 8 8 

Daubechies 20 5 7 8 9 9 9 9 9 9 9 

The number of edge coefficients at each end of the signal for each scale of the 
transform. The Daubechies family of wavelets, applying the DWT. 

Table 3.1 Number of edge coefficients for the DWT. 
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Wavelet Scale 

1 2 3 4 5 6 7 8 9 10 

Daubechies 2 (Haar) 
left 1 1 1 1 1 1 1 1 1 512 

right 1 3 7 15 31 63 127 255 511 512 
Daubechies 4 

left 1 3 7 15 31 63 127 255 512 512 
right 2 6 14 30 62 126 254 510 512 512 

Daubechies 6 
left 2 6 14 30 62 126 254 512 512 512 

right 3 9 21 45 93 189 381 512 .512 ~12 

Daubechies 8 
left 3 9 21 45 93 189 381 5"12 512 512 

ri~ht 4 12 28 60 124 252 508 512 512 512 
Daubechies 10 

left 4 12 28 60 124 252 512 512 512 512 

ri~ht 5 15 35 75 155 315 512 512 512 512 

Daubechies 12 

left 5 15 35 75 155 315 512 512 512 512 

right 6 18 42 90 186 378 512 512 512 512 

Daubechies 14 
left 6 18 42 90 186 378 512 512 512 512 

ri~ht 7 21 49 105 217 441 512 512 512 512 

Daubechies 16 
left 7 21 49 105 217 441 512 512 512 512 

ri~ht 8 24 56 120 248 504 512 512 512 512 

Daubechies 18 
left 8 24 56 120 248 512 512 512 512 512 

right 9 27 63 135 279 512 512 512 512 512 

Daubechies 20 
left 9 27 63 135 279 512 512 512 512 512 

ri~ht 10 30 70 150 310 512 512 512 512 512 

The number of edge coefficients at each side for each scale of the transform. The 
Daubechies family of wavelets, using the stationary wavelet transform (SWT). 

Table 3.2 Number of edge coefficients for the SWT. 
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JPm slope H(DWT) Difference 
0.1 1.300 0.15 50% 
0.2 1.450 0.23 13% 
0.3 1.600 0.30 0% 
0.4 1.786 0.39 -2% 
0.5 1.964 0.48 -4% 
0.6 2.129 0.56 -6% 
0.7 2.371 0.69 -2% 
0.8 2.471 0.74 -8% 
0.9 2.500 0.75 -17% 
1.0 2.329 0.66 -34% 

(a) Detennine H usmg the DWT . 

.IBm slope H (SWT) Difference 
0.1 1.345 0.17 73% 
0.2 1.479 0.24 20% 
0.3 1.636 0.32 6% 
0.4 1.793 0.40 -1% 
0.5 1.957 0.48 -4% 
0.6 2.136 0.57 -5% 
0.7 2.357 0.68 -3% 
0.8 2.514 0.76 -5% 
0.9 2.483 0.74 -18% 
1.0 2.314 0.66 -34% 

(b) Detennme H usmg the SWT. 

Table 3.3 Detennination of the scaling properties characterised by the Hurst exponent 

(If) of synthetic test profiles with known H values. 
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Profile H(vb) H(dwt) H(swt) 

s1r 0.71 0.69 0.67 
s11- 0.74 0.88 0.73 
s11 0.88 0.96 0.93 
s2r 0.76 0.78 0.76 
s2r- 0.80 0.75 0.70 
s21 0.82 0.82 0.81 
s21- 0.94 0.96 0.90 
s3r 0.84 0.84 0.87 
s31 0.82 0.80 0.80 
s4r 0.75 0.76 0.81 
s41 0.91 0.76 0.77 
s5r 0.74 0.82 0.79 
s51 0.80 0.85 0.80 
s6r 0.74 0.77 0.79 
s61 0.86 0.86 0.83 
s71 0.82 0.82 0.84 
sBr 0.69 0.75 0.72 
sBI 0.75 0.73 0.70 
s9r 0.81 0.84 0.80 
s91 0.80 0.74 0.83 
s10r 0.79 0.69 0.79 
s101 0.79 0.71 0.74 

mean O.BO 0.B4 0.B3 
std 0.06 O.OB 0.06 

diff. 5% 4% 

Characterising of the small sized cracked concrete profiles using the discrete wavelet 
transform (DWT) and the stationary wavelet transform (SWT) methods comparing the 
results with the variable bandwidth (vb) method of Dougan et al (2000). Additionally 
the mean H value (mean), the standard deviation of the results (std) and the percentage 
difference (difJ.) between the vb method and the wavelet transform method are 
determined. 

Table 3.4 Determination of the scaling properties of the small sized cracked concrete 
profiles characterised by the Hurst exponent (H). 
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Profile H (vb) H (dwt) H(swt) 

m1r 0.74 0.85 0.86 
m11 0.77 0.76 0.83 
m2r 0.82 0.93 0.94 
m2r- 0.76 0.83 0.82 
m21 0.76 0.91 0.93 
m21- 0.74 0.77 0.75 
m3r 0.82 1.01 0.98 
m31 0.77 1.01 0.94 
m4r 0.83 0.82 0.81 
m41 0.78 0.88 0.86 
m5r 0.75 0.70 0.68 
m5r- 0.76 0.76 0.76 
m51 0.75 0.58 0.57 
m51- 0.77 0.82 0.79 
m6r 0.77 0.93 0.88 
m61 0.84 0.94 0.93 
m7r 0.77 0.75 0.74 
m71 0.81 0.88 0.91 
mBr 0.83 0.74 0.73 
mBI 0.77 0.88 0.90 
m9r 0.88 0.96 0.93 
m91 0.77 0.82 0.89 
m10r 0.81 0.93 0.93 
m101 0.81 0.75 0.79 

mean 0.79 0.B4 0.B4 
std 0.04 0.10 0.10 

diff . 7% 7% 

Characterising of the medium sized cracked concrete profiles using the discrete wavelet 
transform (DWT) and the stationary wavelet transform (SWT) methods comparing the 
results with the variable bandwidth (vb) method of Dougan et al (2000). Additionally 
the mean H value (mean), the standard deviation of the results (std) and the percentage 
difference (difJ.) between the vb method and the wavelet transform method are 
determined. 

Table 3.5 Determination of the scaling properties of the medium sized cracked concrete 
profiles characterised by the Hurst exponent (1I). Comparing the wavelet transform with 
the variable bandwidth (vb) method. 
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Profile H (vb) H (dwt) H(swt) 

L1r 0.83 0.90 0.91 
L11 0.78 0.66 0.76 
L2r 0.85 0.95 0.95 
L21 0.75 1.02 1.00 
L3r 0.79 0.86 0.91 
L31 0.84 0.92 0.88 
L4r 0.78 0.96 0.90 
L41 0.80 0.93 0.93 
L5r 0.83 0.75 0.70 
L51 0.85 0.84 0.83 
L6r 0.81 0.85 0.89 
L61 0.80 0.87 0.91 
L7r 0.73 0.92 0.89 
L71 0.80 0.93 0.92 
L8r 0.80 0.87 0.81 
L81 0.78 0.89 0.88 
L9r 0.77 0.84 0.86 
L91 0.82 0.91 0.95 
L10r 0.83 0.87 0.88 
L101 0.84 0.77 0.78 

mean 0.80 0.87 0.88 

sta 0.03 0.08 0.07 

diff. 9% 9% 

Characterising of the large sized cracked concrete profiles using the discrete wavelet 
transform (DWT) and the stationary wavelet transform (SWT) methods comparing the 
results with the variable bandwidth (vb) method of Dougan et al (2000). Additionally 
the mean H value (mean), the standard deviation of the results (std) and the percentage 
difference (diff.) between the vb method and the wavelet transform method are 
determined. 

Table 3.6 Determination of the scaling properties of the large sized cracked concrete 
profiles characterised by the Hurst exponent (If). Comparing the wavelet transform with 
the variable bandwidth (vb) method. 
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(a) Scale 2m 

Wavelet 
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(b) Scale 2m+1 
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The edge effect coefficients (marked as X) are carried through the multiresolution 
process. (a) at the first iteration from 2m to scale 2m+1 one edge coefficient is created at 
each end of the transform, (b) at the second iteration from 2m+ 1 to the next scale 2m

+
2 

two edge coefficients are created at each end of the transformed signal and, (c) for the 
following iterations from 2m+2 to 2M two edge coefficients are created at each end of the 
transform at each iteration. 

Figure 3.1 Edge effects in the DWT for the Daubechies D6 wavelet. 
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(a) A synthetic fractional Brownian motion profile. 
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(b) Level 2 of the decomposition of the signal in (a) with unmodified 
coefficients. The large 'edge' coefficients are marked by arrows. 
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(c) As plot (b) but with the large 'edge' coefficients at the beginning 
and end removed. 

Figure 3.2 Compensating for edge effects in a test profile. 
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The Daubechies wavelet filters are located r:; -1 where it transets a signal, where NF is 

the length of the wavelet filter. 

Figure 3.3 Transaction of Daubechies wavelet filters (D4, D6 and D8) to a signal using 
the DWT. 

103 



Value set to unity 

\ 
f 

D 
Transform 

11 
D 

Edge coefficients 

~--/ i" / . \ 

\ I ) 
\ / 

'- ,/ ....... _-,.". 
(a) Number of edge coefficients for the right side ofthe transfonn are 
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(b) Number of edge coefficients for the left side of the transfonn are 
detennined when the first value (on the right side) is set to unity. 

Figure 3.4 The number of edge coefficients at each end of the transfonn for the 
Daubechies D4 wavelet are calculated by setting the opposite end values to unity, in 
tern. 
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(a) The original iBm profile. 
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(b) Variance of the coefficients (O"m)2 plotted against scale (m) with the best fitted 
line. 

Figure 3.5 Fractal curve analysis using the discrete wavelet transform. 
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(a) fBm traces, H=O .l. (b) fBm traces, H=0.2. 
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(c) fBm traces, H=0.3. (d) fBm traces, H=OA. 
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(e) fBm traces, H=O.S. (t) fBm traces, H=0.6. 

One hundred generated fBm-profiles for ten different Hurst exponent (H) values. The H 
values range between 0.1 (a) to 0.6 (t). 

Figure 3.6 Synthetic fBm-profile test data. 
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lime(l) time(l) 

(g) fBrn traces, H=0.7 . (h) fBrn traces, H=0.8. 
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time(t) ti me(l) 

(i) fBrn trace H=0.9. (j) fBrn trace H=l.O. 

One hundred generated fBrn-profiles for ten different Hurst exponent (H) values. The H 
values range between 0.7 (g) to 1.0 (j ). 

Figure 3.6 (continued) Synthetic fBrn-profile test data. 
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(a) Variance for fBrn profiles H = 0.1. 
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(b) Variance for fBrn profiles H = 0.2. 
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(c) Variance for fBrn profiles H = 0.3. 
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level level 

(d) Variance for fBrn profiles H = 0.4. 

The wavelet coefficients of the DWT plotted against the scale for the hundred synthetic 
fBrn profiles (left) and the average variance for the profiles (right). 

Figure 3.7 Variance of the discrete wavelet transform coefficients for the test fBrn 
profiles. 
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(e) Variance for fBrn profiles H = 0.5. 
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(f) Variance for fBrn profiles H = 0.6. 
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(g) Variance for fBrn profiles H = 0.7. 

level level 

(h) Variance for fBrn profiles H = 0.8. 

The wavelet coefficients of the DWT plotted against the scale for the hundred synthetic 
fBrn profiles (left) and the average variance for the profiles (right). 

Figure 3.7 (continued) Variance of the discrete wavelet transform coefficients for the 
test fBrn profiles. 
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level level 

(i) Variance for fBm profiles H = 0.9. 
24.--~-~-~-~-~-~-----; 

level level 

(j) Variance for fBm profiles H = 1.0. 

The wavelet coefficients of the DWT plotted against the scale for the hundred synthetic 
fBm profiles (left) and the average variance for the profiles (right). 

Figure 3.7 (continued) Variance of the discrete wavelet transform coefficients for the 
test fBm profiles. 
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(a) Variance for fBrn pro files H = 0.1. 
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(b) Variance for fBrn profiles H = 0.2. 
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(c) Variance for fBrn profiles H = 0.3. 
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(d) Variance for fBrn profiles H = 0.4. 

The wavelet coefficients of the SWT plotted against the scale for the hundred synthetic 
fBrn profiles (left) and the average variance for the profiles (right). 

Figure 3.8 Variance of the stationary wavelet transform coefficients for the test fBrn 
profiles. 
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The wavelet coefficients of the SWT plotted against the scale for the hundred synthetic 
fBm profiles (left) and the average variance for the profiles (right). 

Figure 3.8 (continued) Variance of the stationary wavelet transform coefficients for the 
test fBm profiles. 
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(i) Variance for fBrn profiles H = 0.9. 
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G) Variance for fBrn profiles H = 1.0. 

The wavelet coefficients of the SWT plotted against the scale for the hundred synthetic 
fBrn profiles (left) and the average variance for the profiles (right). 

Figure 3.8 (continued) Variance of the stationary wavelet transform coefficients for the 
test fBrn profiles. 
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(a) Image of cracked concrete profile. 
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20 

/. 
/. 

/. 
/. 

/. 

15 
/. 

v 
/, 

/. 
/. 

/. 

Best fitted lin~ 
/. 

/. 
/. 

~ 10 (Detennine H /. 

c::!-
O) from the slope) / 0 

'" h 
'2' /-
ell 
2- /.. 
0) h 

.E! 5 0 

I'1Y 

/. 

0 /. I'1X 
/. 

/, 
/, 

/.: 

/. 
/. 

/. 

-5 /. 
1 2 3 4 5 6 7 8 9 

scale 

(c) Variance (o-m2
) plotted against the scale (m) for the crack profile and the 

best fitted line through the data. 

Figure 3.9 Analysis of a cracked concrete profile. 
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(b) Pulse signal separated into wavelet transform details. 
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(C) Reconstructed smoothed and detrended signal using detail D5 to D8. 

Figure 3.10 Smoothing of a pulse oximeter signal. 
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(a) Original pulse oximeter signal, pulse gradually stopped. 

1.4 

o li+ 
1.2 

o 2
j
+ 

o 3i + 

o 4
i
+ 

o 5 i + 

0.8 
o 6

i
+ 

o 7
i
+ 

o 8
i
+ 

0.6 

o 9
i
+ 

o 10i+ 
0.4 

o Ili+ 

o 12 i - 0.2 

o 13
j 

.- TO.2 L-___ .l...:-___ .L-___ .L-___ .L-___ .L-___ ..1...:-__ --:~---..L..J 

(b) Pulse signal separated into wavelet transform details. 
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(C) Reconstructed smoothed and detrended signal using detail D5 to D8. 

Figure 3.11 Smoothing of a pulse oximeter signal where the blood flow has been 
stopped. 
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(a) Example of a pre-shock trace which corresponds to a ROSC (return of 
spontaneous circulation) heart signal. 
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(b) Example of a pre-shock trace which corresponds to an asystole signal. 

Figure 3.12 Examples of two pre-shock ECG heart signals. 
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(b) The energy at each scale for the asystole signals. 

Figure 3.13 Energy in ECG signals during ventricular fibrillation (VF). 
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CHAPTER 4 

GLOBAL SURFACE CHARACTERISATION: ALGORITHM 

DEVELOPMENT AND EXPERIMENTAL RESULTS 

4.1. Introduction 

This chapter describes the results of the analysis dealing with global surface 

characterisation. This concerns the statistics of the complete surface whereby a number 

of river-bed sediment surfaces were studied using 2-D wavelet transform-based methods 

CDWT and SWT) developed by the author. 

As described in section 2.10, the wavelet transform has proven to be a useful tool for 

the characterisation of a variety of surfaces. In the study described in this chapter the 

wavelet transform has been applied to characterise experimental sediment surfaces from 

3-D laser scans of the river bed-surface topography. It is shown that, through wavelet 

transform decomposition the separation between different sized features making up the 

surface can be established. This is then used to provide a wavelet-based characterisation 

measure of the river-bed surface structures. This characterisation was employed to 

characterise the river-bed topography in order to detect changes of the bed-surface 

structure over time. 

This chapter is structured as follows: section 4.2 introduces the sediment surface 

data-sets used in the main study including a description of the algorithms developed by 
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the author for the removal of out-of range values within these data-sets; section 4.3 

presents the results from the analysis of the data, which also includes program 

development and explanations of the algorithms used in the study of the surface 

properties; section 4.4 contains a discussion of results; finally, section 4.5. summarises 

the main results of the work described in the chapter. 

4.2. River bed sediment surface data 

4.2.1. Introduction 

The bed-surface roughness of rivers and channels has traditionally been characterised 

by the particle size distribution (psd). However, this method is limited in that it only 

provides information on the distribution of the different particle sizes within the surface 

material. Information regarding the arrangement of the particles or the morphological 

structure of the surface is not accounted for in the psd. Research by Gessler (1990) has 

shown that the psd is independent of the actual friction factor of the bed surface. A 

number of alternative techniques have been developed to establish the surface bed layer 

composition. These were introduced in section 2.11, e.g. wax sampling, photographs 

and digital image processing, 3-D-laser-scanning analysis and video recordings. 

Although, these methods do not disturb the bed-surface topography they are primarily 

employed to determine the distribution of particle sizes of the surface material, rather 

than provide a morphological measure of the actual surface structure. 

The experimental river-bed sediment data-sets analysed in this study were provided by 

Dr Ian McEwan at the Department of Engineering at Aberdeen University. The data was 

acquired during an earlier study which sought to better understand the physical 

processes of grain transportation by water; specifically the near-bed sedimentation 

process (Willets et aI, 1998; Pender et aI, 2001). This earlier study involved assessment 

of laboratory sediment degradation experiments carried out at HR Wallingford Ltd in a 

tilted flume. The financial support for the experiments was provided by the Engineering 

and Physical Sciences Research Council (EPSRC) and the European Union through a 

Human Capital Mobility grant to HR Wallinford Ltd. With the help of the EU funding, 

a Graded Sediment Transport Group was formed with researchers from the University 

of Aberdeen, Glasgow, Padua and Sheffield and the State Institute of Hydrology, St 
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Petersburg, Russia and the experimental data was freely shared between the participants 

(EPSRC Grant References: GRlL22058, GRlL22065 and GRlJ67567). Further 

information concerning the work undertaken by the group can be found in Willets et al 

(1998), McEwan et al (1999b), Pender et al (2001), Nikora et al (2001a), and McEwan 

(2002). 

The bed surface heights over a preselected region of the flume bed were measured using 

a laser profilometer. The data acquired using the laser scanning equipment was used by 

the Graded Sediment Transport Group to develop a tool for grain identification through 

image edge detection (Willetts et aI, 1998; McEwan et aI, 2000, as described earlier in 

chapter 2 section 2.11). It is these 3-D topographical data-sets that were reanalysed by 

the author using wavelet transform methods to provide an alternative characterisation of 

the sediment bed-surface structure. 

4.2.2. Experimental procedure 

The sediment transport experiments were conducted in the 2.46m wide flume 

containing a main channel flanked by flood plains. The working length of the flume was 

16.7m and the slope equal to 1:400 (0.25%). The main channel had a top width of l.lm, 

bed width of 0.8m and with side slopes inclined at 45°. The banks and the flood plains 

were made from mortar and the bed of the inner channel comprised a surface of mobile 

sediment material. The sediment degradation experiments were conducted in the inner 

channel of the flume and the bankfull water depth was 0.15m for the experiments. The 

depth of the bed changed slightly during the experiment due to non-uniformities caused 

by the sediment activities. Figure 4.1 (a) and 4.1 (b) contains photographs of the flume 

and the transverse carriage holding the laser scanning equipment for measuring the bed 

surface topography and figure 4.2 contains schematic diagrams of the flume and its 

cross-section. 

Graded dry sediment was placed in the central section of the flume. The experiments 

began with a fully mixed bed of one of three sediment composition types: B, C or 

B-remix. Full details of these composition types are given in table 4.1. The initial bed 

slope of the sediment was set to 0.25%, i.e. equal to the slope of the flume. After 

placement, the sediment was slowly and carefully subjected to water flow. The sediment 
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was first exposed to gentle water flow for a few hours to remove air bubbles and finer 

grains. The sediment was then subj ected to a flood flow regime during the main phase 

of the experiment. Over time the sediment degraded as finer material washed away. 

Thus during the sedimentation process the bed surface layer rearranged itself. Data-sets 

from 17 of the sediment surface degradation experiments were used in the work 

described in this thesis. Table 4.2 shows a record of the laboratory experimental 

program for these experiments (EPSRC Grant Reference: GRlL22058). The table 

provides information for each experiment concerning: start and completion dates, 

sediment composition type, time of initial degradation, feed rates and duration of 

material feeding, total duration of experiment and the number of laser profilometer 

surface scans obtained. In all experiments, except number 7, sediment material was fed 

into the flume during the course of the experiment. The material was fed in at the top of 

the channel. The feed conveyor belt feeding the sediment material into the flume is 

shown in the schematic diagram in figure 4.2, (EPSRC Grant References: GRlL22058). 

The bed surface was monitored during each experimental run and measurements of 

sediment transport rate and grain size composition were taken using three transversely 

placed traps across the flume. Longitudinal profiles of the bed surface were recorded at 

intervals of approximately 1 hour. In addition, plan black and white photographic 

documentation of the bed surface was carried out. At the end of each working day, after 

approximately 6-9 hours, a number of pictures were taken at cross sections along the 

channel. The bed surface topography was surveyed during the subsequent 6-12 hours 

when the flow was reduced. This was done by scanning a square region of the sediment 

surface bed near the trap of the channel using a laser profilometer. The laser 

profilometer, shown in figure 4.3, was moved within a fine grid structure collecting 

height measurements of the surface at each grid point. Each scan produced an array of 

x-y-z co-ordinates. Each data set consisted of a 512x512 array of surface heights with 

spacing of 0.5mm, hence the physical size of the scanned surface was 256mmx256mm. 

From this array a 3-D representation of the sediment surface topography can be 

constructed. For three of the experiments (numbers 19,20 and 21) the laser profilometer 

spacing was set to 0.25mm to obtain better resolution of the digital data and identify 

smaller grains. Although a 512x512 array of co-ordinates was still used, hence the 
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physical size of these surfaces were 128mmx128mm (Willetts et aI, 1998; McEwan et 

aI, 2000; Pender et aI, 2001). 

4.2.3. Out of range values 

Due to the nature of the data acquisition techniques, 'out-of-range' values (or drop-out 

points) were included in data-sets where the laser profilometer had failed to take a 

reading. These points take the form of outliers from the valid surface height values (set 

to a numeric value of -999) within the data-sets. Most data-sets contained at least a few 

drop-out points and it was necessary to take account of these prior to the analysis of the 

surfaces. Table 4.3 lists the experimental sediment data-sets and the number of drop-out 

points contained in each. The filename identifying each data-set in the table provides 

information concerning the experiment number and the time when the surface was 

scanned. For example, data-set number '1050h56m' corresponds to experiment number 

10 where the surface scan which was performed 50 hours and 56 minutes after the start 

of this experiment. 

Methods to compute new values for the erroneous drop-out points were developed by 

the author. Two different interpolation techniques were developed and tested. These are 

described in the following two sections. 

4.2.4. Interpolation of rows and columns 

Using an 'averaged interpolation method' an algorithm was developed by the author to 

locate the drop-out points within the surface data array and estimate new values which 

lie in-between known, or 'valid', values. Linear interpolation was chosen to estimate 

these new values at the locations of the drop-out points. The method developed by the 

author fits a linear function between each pair of valid values containing a drop-out 

point or collection of points between them. The true values at the location of the 

drop-out point(s) is then determined from the interpolated function. The method is 

shown schematically in figure 4.4. 

This interpolation technique was applied to each row and each column of the surface 

independently. Thus, the drop-out points were removed and replaced with new 

124 



estimated values. This produced two 'new' matrices of the data, one where the data had 

been interpolated over the rows and one where data had been interpolated over the 

columns. The mean value of the data at each grid point was then computed from these 

two matrices. The algorithm for this averaged interpolation method, program interpi.m 

can be found in appendix A. This was a relatively fast process with a computer 

execution time of approximately 90 seconds for each surface 512x512 array. As an 

example figure 4.5 illustrates the method applied to one of the sediment data-set from 

experiment 22. Figure 4.5(a) shows the original surface with drop-out points (123 out of 

262144 points for this particular surface). Figure 4.5(b) shows the surface after the 

drop-out points have been removed using the method. 

However, for cases where several drop-out points were located together at one of the 

edges, this technique was unable to produce estimated data values as there are no 

second valid value to use to define the interpolation function. To solve this problem an 

edge extrapolation method was applied to the drop-out points located at the edges, 

whereby the values at the drop-out point locations were computed from a linear 

extrapolation based on the gradient of the last two valid points. 

This averaged linear interpolation method proved to be a fast method for the removal 

and interpolation of new surface values. However, for data-sets with excessive amounts 

of drop-out points located together (in both rows and columns), the method did not 

produce acceptable interpolation, as show in figure 4.6. This surface had a large number 

of drop-out points, as shown in figure 4.6(a). Using the average linear interpolation 

method the new surface still contained a large number of erroneous values as the 

method produces a row of increasing or decreasing values as it extrapolates the data to 

the edges, as shown in figure 4.6(b). Therefore a more refined interpolation technique to 

compensate for drop-out points was developed and tested. This is described in the 

following section. 

4.2.5. Interpolation using triangulation 

An improved method for estimating the missing surface values was developed based on 

Delaunay triangulation. As the name suggests this method requires the triangulation of 

the existing data points which involves connecting each data point to its nearest 
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neighbour points, fonning a mesh of triangles. The nearest enclosing triangle was found 

for each of the co-ordinates of drop-out points on the original 512x512 grid. Using the 

specified triangles, new values replacing the removed drop-out points could be 

estimated, the simplest method to do this was using triangular-based linear interpolation 

of the known data values at the vertices of the triangles. Thus, the missing values are 

estimated using a method based on the geometry of the barycentric coordinates of the 

triangulated data. This is described as follows. 

Interpolation of the values at a point (P) within a triangle at specified co-ordinates (xj,yD 

was perfonned by detennining its barycentric co-ordinates. These are a triple of 

numbers (tl, t2, t3) corresponding to the masses placed at the vertices of the triangle 

where tl + t2 + t3 = 1, 0 ~ tl, t2, t3 ~ 1 and P is strictly located within the triangle. Thus, 

the new value at point P is detennined as a weighted mean of the three known values 

associated with the triangle vertices. Figure 4.7 shows a schematic illustration of the 

interpolation of known values given at the vertices of the triangle vertices to detennine 

the value at point P shown in the figure. The known values are located at the vertices 

(AI, A2, A3) of the triangle shown in the figure. In figure 4.7(a), point P is located within 

the triangle. Its value is detennined as P = tlxAI + t2xA2 + t3xA3, where tJ, t2 and t3 are 

the distances between the known vertices and P. If any of the t's are equal to zero then 

P is located on one of the lines joining the vertices of the triangle. This is shown in 

figure 4.7(b) where point P is located on the line segment joining Al andA2, therefore t3 

will equal zero and P can be detennined as P = tlxAI+t2xA2. Figure 4.8 shows an 

example of the method used to estimate the values of the drop-out points for one of the 

sediment surface data-sets. The heights at the 224 drop-out points on the original 

surface grid were interpolated using the technique. The algorithm for estimating the 

surface height at the drop-out points is contained in program interp2.m and can be found 

in appendix A. 

This interpolation algorithm based on triangulation of the data was computationally 

more intensive compared with the previously described technique of linear interpolation 

of rows and columns described in section 4.2.4. The computing execution time 

increased to approximately 240 minutes per data-set. However, it produced a more 

realistic estimate of the true values at the locations of the edges of the data, which can 
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be seen by comparing figures 4.6 and 4.9. However, for one of the data-sets this method 

could not produce interpolated data values at the bottom right comer of the surface-bed. 

Following the interpolation a small amount of drop-out points had not been accounted 

for, see figures 4.10(a) and (b). In the surface matrix these values appeared as NaNs 

(Not-a-Number), which have an undefined numerical value. Performing the wavelet 

transform on this matrix will not produce a result and therefore these points had to be 

removed from the matrix. This was done by manually locating the NaN values and 

replacing them with the last valid value in that row, (see program modcorn.m in 

appendix A). This region only contains a small amount of NaN surface data values and 

therefore the method produces a relatively realistic estimation of the surface values. 

Although this method was not effective in removing larger amount of drop-out points as 

discussed above in section 4.2.4. The reconstructed bottom right comer is shown in 

figures 4. 1 O(c) and (d). 

The interpolation method for estimating the values at the drop-out points, based on 

Delaunay triangulation was applied to all the experimental data-sets. These modified 

sets were used in all subsequent analysis. As an example the complete set of modified 

experimental data from laboratory experiment number 25 is shown in figure 4.11. 

4.3. Sediment surface characterisation: particle and form size 
distributions 

4.3.1. Surface topographies 

There are a number of different methods for the global characterisation of surfaces 

including the determination of scaling properties, energy distribution and surface 

topographical information. It has been shown by a number of groups that by selectively 

combining wavelet details together surfaces can be separated into different 

topographies; usually known in terms of roughness, waviness and form (Chen et aI, 

1995; Jiang et aI, 1999; Lee et aI, 1998; Josso et aI, 2002; Raja et aI, 2002). This work 

has been reviewed in chapter 2, section 2.10. 

In an initial study, the author followed the work of Jiang et al (1999) and used the 

wavelet transform in this way to separate the river-bed sediment surface into three 
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distinct topographies or fonn distributions. These were named small forms, medium 

forms and large forms respectively. The 2-D DWT was computed using the Daubechies 

D12 wavelet. As an example figure 4.12(a) show the original surface of data-set 

'2276h50d'. This was decomposed into 9 wavelet details. These are shown in figures 

4.12(b )-0). By selective combination of the details the three topographies were 

generated. The 'small fonn' surface for the river-bed was defined as details 1-5. This is 

shown in figure 4.13(a). These details were chosen to represent the 'small fonn' since 

the maximum grain size of the sediment was 20mm (see table 4.1), which falls between 

details 5 and 6. Therefore scales smaller then scale 6 must primarily be related to the 

particle sizes. The 'medium fonn' was constructed using details 6-8 as shown in figure 

4.13(b). These details correspond to scales larger than the maximum measured grain 

size, these therefore must relate specifically to bed-fonn and be made from multiple 

grain aggregation. The 'largest fonn' surface of the bed-surface contains only the 

largest detail 9 and shows the overall fonn (largest scale) of the surface shown in figure 

4. 13(c). Even though this appears at first to be flat when plotted to the same vertical 

scale as figure 4.13(a) and figure 4.13(b), the topographic nature of this largest fonn 

surface can be seen in the exaggerated vertical scale plot of figure 4. 13 (d). 

The method of separation of fonns in this way proves to be an effective qualitative 

visual tool to separate the different fonn sizes within the surface. However it does not 

provide quantitative infonnation about the actual surface structure. The following 

sections detail work carried out to provide such a measure. 

4.3.2. Energy distribution: mm test surfaces 

To detennine a quantitative measure of the surface topography it was decided to 

investigate the energy distribution of wavelet coefficients across scales. It was 

hypothesised that by comparing the energy distribution over time, infonnation regarding 

the change of the surface structure could be extracted. 

To develop the methodology the wavelet transfonn energtes of synthetic fractal 

surfaces, fractional Brownian motions (jBm), were computed. These fractals have well 

known scaling behaviour across scales (Addison, 1997). It has been shown in previous 

work that both wavelet and Fourier spectral methods are superior to traditional fractal 
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methods, including the box counting and variable bandwidth methods, for analysing 

engineering surfaces which possess fractal properties (Dougan et aI, 2000). This is 

particularly evident when analysing a single data realisation rather then an ensemble 

average. 

Several fBm surfaces were generated with known characteristic scaling coefficients 

ranging from H=0.5 to H=0.9 (typical values for engineering surfaces). These are shown 

in figure 4.14. The surfaces were created using an existing in-house FORTRAN code 

for generating fBm surfaces, (Ndumu, 2000). The surfaces were decomposed into scale 

details using the 2-D Haar wavelet. A linear increase in coefficient energies with scale 

is expected for an fBm signal, (Addison, 2002). For the DWT this relationship is 

defined as: 

log2 Em = 2Hm + constant (4.1) 

where Em is the wavelet scale dependent energy. For the fBm surfaces in figure 4.14, Em 

was determined and plotted against scale in figure 4.15. It can be clearly seen that the 

scale dependent energy of the wavelet coefficients scales expected for these fractal 

surfaces (i.e. as given by equation 4.1). Thus the surfaces show fractal behaviour. Figure 

4.16 contains a plot of the scale dependent energy against scales for one of the sediment 

surfaces compared with a synthesised fBm surface with Hurst exponent H=0.6. The 

relatively linear increase in coefficient energies with scale for the fBm surface contrasts 

with the reduction in coefficient energy for the sediment surface at large scales 

indicating that the sediment surface is not (mono) fractal in its behaviour across scales. 

At the largest scales (scale 8 and 9) the curve appear to loose its linearity. As discussed 

earlier in section 3.6, chapter 3, concerning the analysis of surface profile data, this is 

because of the larger step width of the wavelet which produces fewer coefficients at 

these scales. This part of the curve may therefore not be representative of the scaling 

properties of the fBm surface. The analysis of the fBm surfaces provides a useful 

validation of the author's algorithm for determining surface scale-dependent energy. 

4.3.3. 2-D edge effect 

Prior to the main analysis, edge effects caused at the boundaries of the data arrays had 

to be considered. Effects similar to the 1-D wavelet transform edge effects (chapter 3, 
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sections 3 .2.1) will occur at the boundaries for the 2-D wavelet transform. These persist 

throughout the multiresolution analysis. The number of edge coefficients causing the 

edge effects for the 2-D wavelet transform can be derived from the number of the edge 

coefficients in the 1-D wavelet transform (see table 3.1 for the DWT and table 3.2 for 

the SWT in chapter 3). For the 2-D analysis there are edge coefficients present at all 

four boundaries of the transformed data. 

The edge effect for an fBm surface of size 128x128 can be clearly seen in the example 

given in figure 4.17(a). This example is the results of performing a 2-D DWT using a 

Daubechies D4 wavelet decomposition of the fBm surface. The first three levels of the 

wavelet coefficients are shown in figures 4. 17(b)-(d). The edge effects are clearly 

visible at the boundaries of the surface. As described in chapter 3, if the edge 

coefficients are not taken account of in the transform process they will lead to erroneous 

results in the analysis. Algorithms to remove edge effect coefficients therefore had to be 

developed by the author. This was done for both the DWT and the SWT. 

In the analysis described within this section the author was only interested in valid 

detail coefficients at each level: defined as those coefficients not corrupted by edge 

effects. The edge coefficients were therefore removed from the detail coefficients at 

each level, leaving only the valid coefficients. For the DWT the number of edge 

coefficients at each level was determined automatically for the selected wavelet used 

within the algorithm. The coefficients representing edge effects at the boundaries of 

each detail component (Tm,n) could then be established. The modified detail component 

can be defined as: 

Tm,«edtoP(m)+1):(2m -edbottom(m»,(edle!t(m)+1):(2 m -edright(m» 
(4.2) 

where edtop, edbottom, edleft and edright represent the limits of the edge effects at the 

boundaries of the transform and m is the scale index. Figure 4.18 shows a schematic of 

the original detail component (Tm,n) and the detail component after the modification of 

the edges according to equation 4.2. At each level the three wavelet details component 

(vertical, horizontal and diagonal) were extracted and the edge coefficients were 

removed prior to combining them. Therefore after modifying the details only the valid 
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wavelet coefficients remam. The energy content of the modified wavelet detail IS 

defined as: 

2m -edbottom(m) 2m -edright(m) 

Em = L L(W;~;»)2 (4.3) 
i=edtop(m)+! j=edleftt(m)+! 

where ~}m) is the combined wavelet detail components (vertical, horizontal and 

diagonal) at scale index m. However, as can be seen from equation 4.3 the edges are 

discarded from the energy computation, hence there is an apparent energy reduction as 

the scale m increases due to the encroaching edges. To account for this, the energy (Em) 

is rescaled using the ratio ofthe number of original coefficients to modified coefficients. 

This assures that the energy in the computation is representative of the whole detail 

surface. The original number of coefficients in the detail component (Nl ) at scale index 

m is given by: 

(4.4) 

and the number of coefficients in the modifying the detail component (N2) is given by: 

N~m) = (2M
-

m -edtop(m)-edbottom(m))x(2M
-

m -edleft(m)-edright(m)) (4.5) 

hence equation 4.3 is modified to become: 

E = 2m-ed~Om(m)2m-e~h(t~(~»)2 X (N!(m) J 
m L... L... l,J N(m) 

i=edtop(m)+! j=edleftt(m)+! 2 

(4.6) 

which gives the representative scale dependent energy. Using this equation, the scale 

dependent energy content ofthe DWT details were determined for each data-set. 

As for the DWT an algorithm was developed by the author to modify the details 

component in the SWT analysis. All four edges had to be modified in order to remove 

the edge effects from the valid data coefficients. For the SWT the number of edge 

coefficients at the boundaries are derived using equations 3.2 (top and left edges) and 

3.3 (bottom and right edges). Once the size of the edge effect had been established the 

detail component could be modified and the edge coefficient removed. The SWT does 

not involve the down-sampling of the details through the transform, i.e. the size of the 

detail at each scale is equal to the size of the original input data. Thus, for the SWT 

equation 4.2 can be rewritten as: 
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T 
m,«edtop(m)+I):(2 M -edbottom(m»,(edleji(m)+I):(2M -edright(m» (4.7) 

In addition, the SWT had to be modified for redundancy in the transform to ensure 

accurate energy content for each detail component. This was done prior to modifying 

the detail component for edge effect by dividing each detail component by 4 (lev/2) , 

hence Tm,(nl,n2) 4(lev/2) • The number of coefficients in the original detail component at 

each scale index (m) is for the SWT defined as: 

(4.8) 

and the number of coefficients for the modified detail component is defined as: 

N~m) = (2M - edtop(m) - edbottom(m)) x (2M - edleft(m) - edright(m)) (4.9) 

For the SWT, equation 4.6 is therefore rewritten as: 

2M -edbottom(m) 2M -edright(m) (N(m») 

E =" "(w,(~»)2 X _1-
m L..J L..J l,J N(m) 

i=edtop(m)+1 j=edlejit(m) +1 2 

(4.10) 

Using this equation the scale dependent energy content of the SWT details was 

determined. 

4.3.4. Discrete wavelet transform analysis of the river bed surfaces 

As discussed in section 2.8, an ideal wavelet base would be well localised in both 

location (space or time depending on the type of signal) and frequency. The Haar 

wavelet is well localised in space but not in frequency. To improve the frequency 

localisation it is advantageous to use a wavelet with longer support. However, due to 

the oscillation of the wavelet with longer support the analysis may oversmooth the 

analysed data, thus it will be less effective to detect discontinuities. Further, wavelets 

with compact support are more computer efficient and because surface analysis are 

computer intensive processes wavelets with shorter support are advantageous (Tsai and 

Hsiao, 2001). The author therefore used the Daubechies D4 wavelet (i.e. four filter 

coefficients) as the main analysing wavelet. This wavelet is better localised in frequency 

compared to the Haar wavelet but still effective in detecting local discontinuities in the 

data compared to wavelets with longer support. 
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The 2-D DWT using D4 wavelet was employed to analyse the sediment surface 

data-sets introduced in section 4.2. The experimental sediment surface data-sets to be 

analysed contained an array of 512x512 points, thus each data-set could be transformed 

into 9 levels of wavelet detail coefficients. An example of a discrete transform of a 

typical experimental sediment surface (data-set '2310hOOm') is shown in figure 4.19. 

The original sediment surface is shown in figure 4.19(a) and the 9 level decompositions 

are shown in figures 4.19(b ) (detail coefficients at the smallest level), to 4.19(i) (detail 

coefficients at the largest level). Each of these detail levels can be related to a specific 

physical size, as the measurement increments for the laser profilometer were set to 

O.5mm (or O.25mm for some cases). The scales of the DWT are set to powers of two, 

therefore the physical dimension associated with scale m is equal to O.5x2m. 

The energy from each of the detail levels can therefore be associated with the 

contribution of surface forms at each scale to the overall topography. The sum of all 

scale dependent wavelet-based energies is equal to the energy of the original surface. 

Therefore, the wavelet-based energy at each scale provides information on the relative 

contribution to the overall surface topography attributed to each form size. The energy 

at each of the modified details was determined according to equation 4.6. The 

cumulative energy for each of the detail levels was plotted against the scale. This 

produced a distribution of scale forms related to the form of the sediment surface. The 

algorithm developed for the DWT analysis is contained in program fsddwt.m listed in 

appendix A. The results from the analysis of each of the sediment surface data-sets 

using the 2-D DWT are presented in figures 4.20(a)-(q). In each plot, the energy 

distributions are plotted for the sediment surfaces at each data collection time during the 

experiment. In addition, the corresponding particle size distribution (psd) is plotted on 

each graph for comparison. 

4.3.5. Stationary wavelet transform analysis of river bed surfaces 

As stated earlier, the DWT provides poor resolution in the analysis because of its 

translational invariance. The stationary wavelet transform (SWT) was therefore applied 

to increase the resolution of the analysis. Again the Daubechies D4 wavelet was 

employed. The SWT decomposition of the experimental sediment surface shown in 

figure 4.21(a) is shown in figures 4.21 (b)-G). This is the same surface used for 
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illustration of the DWT decomposition as that described in the previous section. The 

enhanced resolution of the SWT details is obvious when comparing figure 4.21 with 

4.19. The edges were modified as described in section 4.3.3 where only the valid 

wavelet coefficients were extracted from the transform. The energy of the SWT 

coefficients for each of the detail level was determined according to equation 4.10 and 

plotted against scale. The algorithm developed for the SWT analysis of the sediment 

surface is contained in the program fsdswt.m found in appendix A. The results of the 

energy determination from the analysis of the sediment surfaces data using the 2-D 

SWT are presented in figures 4.22(a)-(q). Again the particle size distribution (psd) is 

plotted on each graph for clarity. 

4.3.6. Form size distribution: a new surface characteristic 

As described in the preceding two sections the sediment surfaces were each 

decomposed into a range of scale details using both the DWT and the SWT. Each detail 

of the wavelet transformed surfaces can be associated with a real physical surface 

'form' within a range of scales. The results from the analysis shows the cumulative sum 

of the energy of the wavelet coefficients at each scale expressed as a percentage of the 

total sum of all wavelet coefficient energy at all scales. These curves are therefore 

representative of the distribution of surface form scales. This 'form size distribution' 

ifsd) is suggested as a more appropriate measure of surface morphology than the 

commonly used psd. 

The traditional measure of the characteristic 'sizes' of a sediment bed surface is the 

particle size distribution (psd), as described in chapter 2, section 2.11.3. This measures 

the cumulative percentage by weight of particles within different size ranges; where the 

distribution of weights is determined using a series of standard sieves of successively 

smaller mesh sizes (Craig, 1987). 

From the plots contained in figures 4.20 and 4.22 it can be seen that the wavelet-based 

fsd does not follow the distribution of the individual particle sizes of the bed material. 

The scales corresponding to the largest form size cannot correspond to individual 

sediment grain sizes because none of the grains were larger than approximately 20 mm 

(between scales m=5 and 6 - the maximum of the psd). At scales larger than these, the 

134 



wavelet decomposition picks up specific surface formations, or 'forms', rather than 

individual particles. In fact, it can also be concluded that some of the forms at physical 

scales less than 20mm may also be related to the overall structure. This is because 

coherent masses of small particles can be picked up as larger forms at larger scales. This 

is shown schematically in figure 4.23. 

Hence it is proposed that the fsd of a surface is potentially a more useful measure for 

characterising river bed surfaces than the psd, as it is the aggregate topographical nature 

of the surface which affects the flow characteristics and not the constituent bed surface 

grain size distribution. This point is shown schematically in figures 4.24(a) and 4.24(b), 

which shows the flow over two surfaces with similar particle size distribution but 

different form size distributions. The surface in figure 4.24(a) contains a higher degree 

of large scale forms than that of figure 4.24(b), which is much flatter. The two surfaces 

will affect the flow differently depending on their surface topology. The rougher surface 

(figure 4.24(a)) will cause a greater disturbance to the flow increasing its bed friction 

characteristics and altering flow depths and velocity distributions within the channel. 

4.3.7. Analysis of computer generated synthetic sediment surfaces 

As an extension to the study of energy distribution of sediment surfaces, the above 

described analysis was also used to investigate the nature of computer generated 

synthetic sediment surfaces. (These are described in more detail in section 5.2, where 

methods for the optimal thresholding of surface features located on these background 

surfaces is described in detail.) The surfaces are composed of grain sizes 2mm and 3mm 

respectively. The original surface data, supplied to the author by Dr John Heald at the 

University of Aberdeen, were in the form of a 1 024x 1024 point array. However, due to 

the computer intensive process of the SWT the data had to be down-sampled by two to 

perform a complete SWT decomposition, thus the surfaces analysed were 512x512 

point arrays. For these surfaces 10 points in the array is equal to a 1mm physical scale, 

i.e. the surfaces had physical dimensions of 51.2mmx51.2mm. Again the Daubechies 

D4 wavelet was used and the wavelet transform details were modified for edge effects 

at the boundaries as described previously. The energy content for each of the scale 

details was established for the DWT using equation 4.6 and for the SWT using equation 

4.10. The results are presented in figure 4.25 for the DWT and figure 4.26 for the SWT. 
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In figures 4.25(a) and 4.26(a) the cumulative scale energy have been plotted against the 

scale producing a distribution of surface energy, i.e. the fsds. These graphs show a clear 

difference in the size distributions between the surfaces containing grains of size 2mm 

and surface with grains of size 3mm. Since the 2mm surfaces are made up from smaller 

particle sizes a relatively higher amount of scale energy is expected for these curves at 

lower scales. It can be observed from the figures that the curves for the 2mm surfaces 

do exhibit a higher percentage of cumulative energy at each scale compared to the 

curves generated from the 3mm surfaces. This is observed for both the DWT and the 

SWT analysis. 

Note that the real physical width of wavelet is in fact not equal to 2m. A representative 

period of the wavelet at each scale can be determined from its Fourier spectrum, i.e. 

p=l/j, where p is the period and f is a representative frequency of the wavelet often 

taken to be the maximum frequency of the power spectrum of the wavelet. Figure 2.9 

shows the D4 wavelet at scale 4 and its Fourier transform, where the maximum 

frequency occurs at 0.045Hz. This is actually the frequency of the wavelet at scale 4, to 

get a representative period of the wavelet p therefore has to be divided by the size of the 

wavelet at this scale, (i.e. 24
). As stated earlier, each point in the synthetic surface is 

equal to O.lmm in physical scale, thus the 'period' of the wavelet at each scale can 

therefore be determined as 0.1 xp*x2m
, where p is the period of the mother wavelet (p* is 

1.39 for the D4). 

The two different grain sizes are marked by dotted lines in figures 4.25(a) and 4.26(a). 

For the DWT analysis it can be seen that the fsd curves reach the size of the surface 

grains at approximately 60% for both the 2mm and 3mm surfaces. Similarly for the 

SWT analysis the fsd curves reach the grain sizes at approximately 70% for both the 

2mm and 3mm surfaces, respectively. Thus, information picked up after this point must 

solely be related to the form of the surface rather than the constituent particles. In 

figures 4.25(b) and 4.26(b) the normalised energy at each scale has been plotted against 

scale. A possible best fit line was fitted to the data by eye for the 2mm and 3mm 

surfaces. It can be seen from the graphs that the maximum energy occurs at 

approximately 2mm and 3mm, which is the respective grain size for the two different 

surfaces. 
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Comparing the results of the DWT and the SWT analysis (figures 4.25 and figure 4.26), 

we observe that the fsd curves produced using the SWT, essentially lie on top of each 

other for the two particle sizes. However, the fsd curves produced using the DWT are 

more spread out, particularly at larger scales. This is also shown in figure 4.27 where 

results of the DWT and the SWT for synthetic surfaces made up from a mixture of 

grains of sizes 2mm and 3mm analysis have been plotted on the same graph. The fsd 

curves are more spread out for the DWT when compared to the SWT curves. This 

shows that the DWT has poorer reproducibility compared to the SWT. This is because 

the DWT downsamples the data at each level, hence at the larger scales only a few 

wavelet coefficients are produced. As the SWT does not involve downsampling it is 

more consistent over all scales and especially at larger scales. 

4.3.8. Comparison of DWT and SWT analysis 

The DWT is a fast transform with an execution time of less then 10 seconds when 

computing the scale related energy distribution within a surface. This is due to the 

dyadic grid structure of the transform. For the SWT however, the execution time 

increases to approximately Ihour and 30 minutes per data-set, due to the higher 

resolution of the analysing transform. The noticeable difference in resolution can be 

seen when comparing the plots of the wavelet details in figures 4.19 (DWT) and 4.21 

(SWT). In addition it has been shown that the DWT has poorer reproducibility when 

compared to the SWT especially at larger scales. In the analysis of the computer 

generated sediment surfaces, the fsd curves produced using the DWT (figure 4.25) are 

more spread out than those produced using the SWT (figure 4.26). 

4.4. Discussion 

The work presented in this chapter describes the use of the wavelet transform as an 

analysis tool for studying the characteristics of river-bed sediment surfaces. The work 

showed that the 2-D wavelet transform can be used to effectively separate a surface into 

different details or size ranges. The cumulative sum of the energy of the coefficients at 

each scale expressed as a percentage of the total sum of all wavelet coefficient energy 

was plotted against the scale, i.e. at different sizes. These curves are representative of 
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the distribution of surface fonns. Thus, instead of detennining the particle size 

distribution (psd) of the sediment surfaces, the wavelet-based method outlined here 

provides a quantitative measure of the distribution of fonns on the sediment surface 

across physical scales i.e. a form size distribution ifsd). 

Both the discrete wavelet transfonn and the stationary wavelet transfonn have been 

used to create fsd curves for the river-bed data. Similar results were found for the two 

different transfonns, which would be expected as the SWT is, in effect, a redundant 

DWT. However, as mentioned earlier higher resolution is provided using the SWT, 

which results in an improved reproducibility of the fsd curves when compared to the 

DWT. This could be seen when observing the results of computer generated surface 

analysis presented in section 4.3.7. Therefore, the following discussion of the results of 

the wavelet transfonn analysis of the laboratory experimental sediment surface data is 

limited to the SWT analysis. First, each bed will be considered separately in turn. In 

addition, the fsd curves produced for experiment 7 to 12 have also been compared with 

the measured mobility of the surface bed, i.e. feeding rates at the upstream and observed 

sediment transport rates at the downstream end of the flume as reported in Marion et al 

(2003). 

Experiment 7 

The results from the analysis of data-sets in experiment 7 is shown in figure 4.22(a). No 

sediment material was fed into the flume during this experiment. Therefore, undisturbed 

degradation of the sediment surface over time can be evaluated. Observing the 

distribution of the fsd curves it can be seen that most curves are in close proximity to 

each other. However, the fsd of the initial data-set, '0700hOOm', is located at the top of 

the distribution curves, visibly separated from the fsd curves obtained from subsequent 

scans. Also notice that data-set '0718h02m' located at the bottom of the fsd curves is 

quite separate from the others. This indicates that at this point in time the surface in the 

scan region contains a higher amount of larger fonns compared to the other data-sets. 

Further, the two data-sets '0740h02m' and '0772h25m' have similarfsds indicating that 

the surface topographic has remained stable during the period between these two 

consecutive surface scans. Because no sediment material was fed into the flume for this 

experiment the bedload transport rate decreased significantly after about 5 hours of the 

experimental run. This is because as the surface developed towards a static armour and 
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bedload transport rates reduced. Hence, after initial degradation only small amount of 

surface material was removed. The highest bedload transport rate was found at the time 

for data-set '0702h34m' with approximately 7g1s, however the fsd curve for this 

data-set is located in the middle of the other curves, hence compared with the other fsd 

curves, with lower bedload transport rates, no significant difference can be seen. 

For the remaining 16 experiments, sediment material was fed continuously into the 

flume at the top of the channel. Information concerning the feed rates and duration of 

material feeds can be found in table 4.2. 

Experiment 8 

Figure 4.22(b) shows the results from the analysis of data-sets in experiment 8. In this 

experiment sediment material was fed into the flume for 67 hours at a feed rate of 

2.Sgls. Because of problems with the laser profilometer, an initial surface scan (at time 

zero) could not be obtained. The first scan of the surface was therefore taken 28 hours 

and 10 minutes from the start of the experiment. The fsd curves from this experiment 

are located relatively close to each other with the exceptions of data-sets '0828h10m' 

and '0836hOOc'. These are separated from the subsequent fsd's indicating that they 

exhibit a relatively higher amount of larger forms. Further, studying the results after the 

feeding of material had stopped, data-set '0883hOOm' exhibits a higher amount of 

smaller surface forms comparing with the following data-set, '0887hOOm', indicating 

that degradation of the surface-bed occur between these two scans. Comparing the 

results with the variations in bedload transport rate, high sediment transport rate was 

observed at the time for data-sets '0842hOOm' and '0883hOOm', with an approximate 

transport rate of 4.0gls. These two curves were located towards the top ofthe fsd curves. 

The same comparison at the lowest sediment transport rate, l.Sgls, is found at the time 

of data-set '0828h1 Om', this is located at the bottom ofthe fsd curves. 

Experiment 9 

The results from the analysis of the data-sets in experiment 9 are presented in figure 

4.22(c). Material was fed into flume for 49hours and 13 minutes with a feed rate ofSgls. 

Comparing with the results of previous two experiments the fsd curves in this 

experiment are more spread out over the scales. The initial data-set, '0900hOOm', shows 

the highest percentage of smaller surface forms. As material is fed into the flume 
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through the experiment no distinctive change towards a coarser surface form can be 

observed. In addition, there appears to be little change in the form distribution for the 

last 13hours (i.e. after the cessation of sediment feeding) as data-sets '0956hI6m' to 

'0969h32m' have similar fsds. For this experiment the highest bedload transport rate, 

about 8.0g/s, is observed for data-set '0949h13m' for which the fsd curve is located at 

the bottom of the distribution curves while the lowest transport rate, O.5g/s, is found for 

data-set '0906hOOm' located at the top ofthefsd curves. 

Experiment 10 

Figure 4.22( d) shows the results from the analysis of surfaces in experiment 10. In this 

experiment sediment was fed into the flume at a feed rate of 5g/s for 42hours and 

55minutes. Due to problems with the laser profilometer a surface scan at time zero 

could not be obtained. These fsd curves appear more spread out than those for the 

previous experiment. Comparing two surface scans following the end of material 

feeding, it can be seen that data-set' 1050h34m' exhibits a higher percentage of smaller 

forms (for size Imm to 10mm) compared to the final surface scan '1059h34m'. 

Studying the bedload mobility data-set '1027hI8m' has the highest bedload transport 

rate, with approximately 7.0g/s, while the lowest bedload transport rate, about l.Og/s, is 

observed 17hours after material feeding has stopped, data-set '1 059h34m'. Observing 

the location of the fsd for these data-sets '1027hI8m' is located at the bottom and 

'1059h34' is located in the middle ofthe distribution curves. 

Experiment 11 

The results from the analysis of surfaces in experiment 11 are shown in figure 4.22( e). 

Material was fed into the flume for 32hours at a feed rate of 5g/s for this experiment. 

The fsd curves in this experiment are again relatively well spread out over scales. 

Further, the initial data-set, '11 OOhOOm', exhibits the highest amount of smaller forms. 

The highest amount of smaller surface forms is found in data-set '1148h99m' as the 

material feeding ends. The available data-sets for this experiment were only in the 

regions of low bedload transport rates, i.e. at the start and the end of the experiment. 

The highest amount bedload transport is found at the time of data-set '110Ih51m' with 

a transport rate of 2.5g/s located in the middle of the fsd curves. The lowest level of 

sediment transport is found for the last data-set '1160h33m' with a transport rate of 

O.5g/s located towards the bottom ofthefsd curves. 
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Experiment 12 

In experiment 12 the material feed rate was Sg/s and the duration of the feeding was 

32hours and 34minutes. The results from the analysis of the surfaces in this experiment 

are presented in figure 4.22(f). Observing these distribution curves it can be seen that 

the curves are located over a relatively narrow band, with the exception of data-sets 

'1207hI2m' and '1207h13m' which are located separate from the other data-sets. The 

initial fsd curve (data-set '120hOOmc') is located close to the top of the distribution 

curves. Because of the material fed into the flume during the experiment no clear 

pattern of degradation could be seen in the followingfsds. However, after the material 

feeding had stopped the surface appears to degrade as data-set '1240hOOc' has a higher 

percentage of smaller forms compared to the final data-set '1273hdry'. For this 

experiment the highest bedload was found at the time of data-set '1223hSlm' with an 

approximate transport rate of Sg/s. The correspondingfsd curve is located in the middle 

of the fsd curves. The lowest bedload transport rate, O.Sg/s, was found for data-sets 

'1207h12m' and '1207h13', which are the surface scans during material feeding. A 

transport rate of O.Sg/s was also found for the final surface scan, data-set' 1273hdry', 40 

hours after material feeding has stopped. The corresponding fsd curves are all located 

towards the bottom of the fsd curves plot. 

Experiment 18 

Figure 4.22(g) shows the results from the analysis of sediment surfaces in experiment 

18. Sediment material was fed for 29hours at a feed rate of Sg/s into the flume during 

this experiment. These fsd curves are located relatively close to one another. However a 

separation of the fsd curves can be seen at larger scales. This is marked with dotted lines 

in the figure where one group of fsd curves exhibit a higher amount of larger forms 

(marked with an arrow) compared to the other group offsd curves. Interrogation of the 

results indicates that this is not related to the end of material feeding. The difference is 

therefore probably related to the movement of material over the surface through time. 

Further, the fsd for the initial data-set, '1800hOOd', is positioned at the bottom of the 

distribution curves, hence the following data-sets appear to have a higher amount of 

smaller forms. This is probably due to material being fed during the experiment and 

therefore no obvious degradation of the surface is clearly visible. However, the final 

data-set, '18phase3', have a high amount of larger forms at larger sizes, i.e. it has 

coarser surface structure. 
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Experiment 19a 

During experiment 19a material was fed for 27hours at a feed rate of 5g!s. Figure 

4.22(h) shows the results from the analysis of data-sets from this experiment. These fsd 

curves are positioned close to one another. However, the initial data-set, '1900hOOm', is 

positioned at the top of the distribution curves. No distinct pattern of the relatively 

position ofthe fsds can be observed in the plot. 

Experiment 19 

The fsd curves produced for experiment 19 are shown in figure 4.22(i). In this 

experiment, sediment material was fed for 29hours at a feed rate of 5g/s. The laser 

profilometer was set to have a spacing of 0.25mm for this experiment. These curves are, 

similar to the previous experiment, positioned close to one another. However, the initial 

fsd, for data-set' 1900hOOm', is positioned at the top of the distribution curves, a clear 

difference can be observed particularly at the smaller sizes (0.5mm to approximately 

7mm). However, no clear pattern could be seen for the subsequent data-sets. 

Experiment 20 

The results from the analysis of data-sets in experiment 20 are shown in figure 4.22(j). 

In this experiment sediment was fed into the fume for 32hours at a feed rate of 5g!s. 

Again these data-sets were scanned with a laser spacing of 0.25mm. These fsd curves 

for this experiment are positioned close together. Still, observing the results a difference 

can be seen at smaller scales (i.e. size 0.5mm to 4mm) between data-set '2000hOOm' 

and the following data-sets. The final surface scan was taken at 32hours, thus the 

surface was not allowed to degrade in the absence of added material 

Experiment 21 

Figure 4.22(k) show the results of the analysis of surfaces in experiment 21. This 

surface was also scanned with a laser spacing setting of 0.25mm for data-sets 

'2114h40s' to '2137h50s and a laser spacing setting ofO.5mm for data-sets '2142h10m' 

to '2154h30m'. Sediment was fed into the flume for 52hours and 45minutes at a feed 

rate of 5g!s. These fsd distributions are positioned close together with the exception of 

data-sets '2137h50s' and '2148hOOm'. The data-set '2137h50s' has the highest amount 

of smaller surface forms. This may suggest that a larger amount of smaller sediment 
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material have settled in surface at the time of this surface scan. Further, the fsd curve of 

data-set '2148hOOm' has a much higher amount of larger forms when compared with 

the other data-sets in this experiment. 

Experiment 22 

The results from the analysis of data-sets in experiment 22 are presented in figure 

4.22(1). In this experiment sediment material was fed for 30hours and 55minutes at a 

feed rate of 5g/s. It can be seen that three data-sets ('2215hOOm', '2268hOOm' and 

'2276h50m') are separated from the other curves. It is noticeable that these surface 

scans are not sequential and therefore highlight the variability of the topography of the 

mobile surface bed in the scan region. At the smallest sizes Imm and 2mm the initial 

data-set '2200hOOd' has the highest percentage of surface forms when compared to the 

other data-sets. 

Experiment 23 

Sediment was fed into the flume for 31hours and 50minutes at a feed rate of 5g/s in this 

experiment. Figure 4.22(m) shows the results from the analysis of the surfaces in this 

experiment. These fsd curves are more spread out over the scale sizes, compared to the 

results of some of the previous experiments. The initial distribution curve for data-set 

'2320hOOm' appears to contain a higher amount oflarger form sizes as the fsd is located 

at the bottom of the distribution curves. Further, after the feeding of material has ended 

it can be seen that the data-set '2334h20m' has a higher amount of smaller form sizes 

comparing with the final data-set '2367hOOm'. 

Experiment 24 

The results from the analysis of surfaces in experiment 24 are shown in figure 4.22(n). 

For this experiment material was fed into the flume for 45hours at a feed rate of 5g/s. 

The fsd curves for this experiment are relatively spread out. The initial data-set, 

'2400hOOm', is located in the middle of the distribution curves. No clear degradation 

pattern can be seen in the location of the fsd curves. 

Experiment 25 

During experiment 25 material was fed into the flume for 42hours and 30minutes at a 

feed rate of 5g/s. Studying the results, shown in figure 4.22(0), it can be seen that the 
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curves are relatively spread out, similar to those of the previous experiment. Studying 

the results further, it can be seen that the initial data-set '2500hOOm' is positioned at the 

top of the distribution curves. For the following curves no clear pattern can be seen. The 

finalftd '2564h30m' is actually located in the middle of the distribution curves. Further, 

data-sets '2523h30'm and '2547h30m' appear to have a similar distribution of form 

SIzes. 

Experiment 26 

In this experiment material was fed into the flume for 21hours and 15minutes at a feed 

rate of 5g1s. The results from the analysis of the data-sets from this experiment are 

shown in figure 4.22(P). The distribution curves are located close together, showing 

similar ftd curves. As with the previous experiment, no clear degradation pattern can be 

seen. However, the last surface scan, data-set '2648h15m', is located towards the 

bottom of the distribution curves especially at larger scales. This indicates that the 

surface has a relatively coarser surface structure. 

Experiment 27 

Figure 4.22(q) shows the results from the analysis of surfaces in experiment 27. This 

experiment was fed with material for 16 hours at a feed rate of 5g1s. Only two data-sets 

could be obtained from this experiment. By observing the ftd curves it can be seen that 

the final data-set, '2708h30m', appears to have a greater amount of smaller surface 

forms compared with the initial data-set, '2700hOOm'. This higher amount of smaller 

forms in the later data-set may be because material is being fed into the flume. 

General observations 

Studying the results as a whole it can be seen that some of the ftds show a higher 

quantity of proportional energy at larger scale forms. It is suggested this indicates the 

presence of large topographical differences in the surface while a smaller amount of 

large scale energy represent a rather flat surface topography. The results show that, in 

general, the initial ftd has a smaller amount of relative large scale energy compared to 

subsequent surfaces. As this is before the surface is subj ected to water flow the surface 

is expected to have a rather flat topography, which is exhibited in the ftd curves. 

However, from the above results it is clear that it is difficult to distinguish an obvious 

degradation pattern within each experiment. The results will be affected by the feeding 
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of sediment material into the flume which will increase the quantity of sediment 

material in the surface over time. Also the formation and breaking-up of coherent 

structures of particles during the armouring of the surface (as describe in section 2.11.3) 

produces local variations in the surface topography over time. Larger coherent 

structures will be regarded as larger forms in the wavelet transform analysis. 

Consequently the fsds will have a higher amount of larger surface forms during periods 

when a local surface feature is present. As these structures break up or move away the 

fsd will change significantly. Because the scanned area is relatively small, this process 

causes large variability in the fsds over time. This explains why a general trend was not 

observed in the fsd curves for the experiments. The large variability of the fsds is 

evident when studying thefsds for data-sets '1207hI2m' and '1207h13m' in experiment 

12. Although these two surface scans are only separated by one minute in time a clear 

difference can be seen between the produced fsd curves. Further, in experiment 18, it 

was noticed that the three surfaces ('1800hOOd', '1820hOOm' and '18phase3') exhibited 

a relatively higher amount oflarge surface forms. As these surfaces were not sequential, 

this indicates the variability of the topography of the mobile surface bed in the scan 

region. This was also seen in experiment 22 where the fsd curves for surfaces 

'2215hOOm', '2268hOOm' and '2276h50m', again not sequential in time, are located 

separately from the remaining fsds. In addition, for experiment 7 to 12 the fsd curves 

were also compared with material feeding and bedload transport rates for each 

individual experiment. The location of the fsd curves was compared with the amount of 

bedload transport rate at specific times. Studying the fsd during low bedload transport 

rates, three of the experiments (number 8,11 and 12) had fsd curves located at the 

bottom of the distribution curves. Similarly comparing the fsd curves at high bedload 

transport rates two experiments (number 8 and 10) hadfsd curves located towards the 

top of the distribution curves. As a higher amount of sediment material is expected to 

move through the scanned area at high transport rates a larger amount of smaller forms 

would be expected, i.e. the fsd would be located towards the top of the distribution 

curves. However, for one of the experiments (number 9) thefsd curve was located at the 

top of the curves for the low bedload transport rate while the fsd for the high transport 

rate was located at the bottom. Therefore, for the observed data-sets in this study, no 

general conclusion could be drawn between mobility data of the sediment surfaces and 

the location of specific fsd curves. However, this could be an interesting topic for future 
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research where more comprehensive data sets could be probed to determine whether a 

link exists between the changes in thefsd and the mobility of the surface material. 

4.5. Chapter summary 

This chapter has presented the results from the 2-D wavelet transform analysis of 

experimental river-bed sediment surfaces. The chapter dealt with global surface 

characterisation, which concerns the global characterisation of the complete surface. 

Due to the nature of the data-acquisition techniques, the original river-bed experimental 

sediment surface data contained a number of drop-out points. An algorithm therefore 

had to be developed by the author to estimate new values replacing drop-out points, 

which otherwise would have produced erroneous results of the analysis. Evaluating two 

different interpolation methods it was found that interpolation using Delaunay 

triangulation produced a more realistic estimation of the true values at the locations of 

the drop-out points, especially at the edges of the data. Therefore this method was 

applied to all the experimental data-sets to estimate values replacing the drop-out points 

and these modified data-sets were used in all subsequent analysis. 
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CHAPTER 4 

Tables 
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Sediment mixtures 
Mass retained at each sieve size in percent 

Sieve size B C B-remix 
(rum) % % % 

20 0.9 0 0 
14 5.5 0 3.3 
10 7.2 6.0 4.7 
6.3 10.2 40.1 11.6 
5 14.2 13.9 18.5 

3.35 29.4 5.7 27.6 
2 12.6 4.7 11.3 

1.18 4.7 10.6 3.5 
0.6 3.8 9.1 3.6 

0.425 3.2 2.3 2.9 
<0.425 8.4 7.9 13.1 

Table 4.1 Initial distribution of particle sizes in the three sediment mixtures. 
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Graded Sediment Experimental Program in the Tilted Flume 

Initial Feed Total duration Number of 
Experiment Start date Sediment degradation Completion data sets 

Number* ·(min) min/rate(g/s) (min) Date (512x512) 

7/0B 2.10.95 B 4810 NA 4810 12.10.95 9 

8/1B 23.10.95 B NA 4020/2.5 5220 8.11.95 8 

9/1B 13.11.95 B NA 2953/5.0 4172 21.11.95 12 

10/0B 4.12.95 B NA 2575/5.0 3775 14.12.95 5 

11/1B 15.1.96 !3 NA 1920/5.0 3633 26.1.96 6 

12/0B 9.2.96 B NA 1954/5.0 4380 22.2.96 13 

18/1B 25.2.98 C NA 1740/5.0 3480 7.3.98 9 

-.j::. 19a/iB 19.3.98 C NA 1620/5.0 2321 31.3.98 6 
\0 

19/1B 8.4.98 C NA 1740/5.0 4530 28.4.98 7 

20/1&OB 6.5.98 C NA 1920/5.0 4800 23.5.98 5 

21/1&OB 4.6.98 B-remix NA 3165/5.0 3720 26.5.98 8 

22/1&OB 13.7.98 B-remix NA 1855/5.0 4610 2.7.98 9 

23/0B 2.9.98 B-remix NA 1910/5.0 4620 28.8.98 7 

24/0B 30.9.98 B-remix NA 2700/5.0 5040 27.10.98 14 

25/0B 30.10.98 B-remix NA 2550/5.0 4170 20.11.98 10 

26/0B 27.11.98 B-remix NA 1275/5.0 2895 2.12.98 6 
27/1B 8.12.98 B-remix NA 960/5.0 960 10.12.98 2 

--- _ .. 

*/B=inbank, OB=overbank 

Table 4.2 Experimental program for river sediment surface bed experiments (EPSRC Grant Reference: GRlL22058). 



No. drop-out percent 0969h32m 220 " 0.08% 
filename e.oints length droe.-out mean 0.19% 

Ex07 
0700hOOc 32 0.5mm 0.01% 
0702h34m 65 " 0.02% No. drop-out percent 

0710h37m 256 " 0.10% filename e.oints length droe.-out 

0718h02m 127 0.05% Ex10 

0725h38m 123 " 0.05% 1027h18m 45 0.5mm 0.02% 

0733h11c 1035h03m 2 " 0.00% 47 " 0.02% 

0740h02m 1042h55m 262 " 0.10% 71 " 0.03% 
0772h25m 235 " 0.09% 1050h56m 16 0.01% 

0780h10m 1059h34m 68 " 0.03% 5 " 0.00% 

mean 0.03% 
mean 0.04% 

No. drop-out percent 
No. drop-out percent 

filename e.oints length droe.-out 
filename e.oints length drop-out 

ExOS Ex11 

0828h10m 135 0.5mm 0.05% 
1100hOOm 171 0.5mm 0.07% 

1101h51m 26 " 0.01% 
0836hOOc 73 0.03% 

110hdryc 89 " 0.03% 
0842hOOm 40 0.02% 

0850h45m 18 0.01% 
1148hOOm 76 0.03% 

0859hOOm 118 0.05% 
1156h05m 79 0.03% 

1160h33m 236 " 0.09% 
0867hOOc 28 " 0.01% 

0883hOOm 52 0.02% 
mean 0.04% 

0887hOOm 310 0.12% 

mean 0.04% 
No. drop-out percent 

filename e.oints length drop-out 

Ex12 

No. drop-out percent 1207h12m 20 0.5mm 0.01% 

filename e.oints length droe.-out 1207h13m 284 0.11% 

Ex09 120hOOmc 96 0.04% 

0900hOOm 22 0.5mm 0.01% 120hdryc 101 0.04% 

0906hOOm 22 0.01% 1215h04m 39 0.01% 

090hdryc 25 0.01% 1223h51m 57 0.02% 

0913h56m 111 0.04% 1232h34c 409 0.16% 

0920h51m 29 0.01% 1240hOOc 1536 " 0.59% 

0928h21m 27 0.01% 1248h13m 51 " 0.02% 

0934h36c 1499 0.57% 1256h02m 29 0.01% 

0941h18m 278 0.11% 1264h38m 7 0.00% 

0949h13m 62 0.02% 1273hOOm 21 " 0.01% 

0956h16m 64 0.02% 1273hdry 108 0.04% 

0965h27m 90 0.03% mean 0.21% 

Table 4.3 Experimental data-sets. 
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No. drop-out percent 
filename e.oints leng..th droe.-out 2021hOOm 3850 1.47% 

Ex18 2032hOOm 176 0.07% 

1800hOOd 1059 0.5mm 0.40% mean 5.38% 

1812h44m 2295 II 0.88% 

1820hOOm 34711 13.24% No. drop-out percent 
1826h51m 10682 4.07% filename e.oints lenfl.th droe.-out 

1832h15m 8378 II 3.20% Ex21 
1858hOOm 6662 II 2.54% 2114h40s 60 0.25mm 0.02% 

1858hdr1 2786 1.06% 2121hOOm 9 II 0.00% 

18endwet 6662 2.54% 2137h50s 47 0.02% 

18phase3 4274 II 1.63% 2142h10m 947 0.5mm 0.36% 

mean 3.92% 2144h30a 13729 5.24% 

2144h30m 68 II 0.03% 

No. drop-out percent 2148hOOm 151 0.06% 
filename e.oints lenfl.th droe.-out 2154h30m 77 0.03% 

Ex19A mean 0.72% 

19aOOhOO 1315 0.5mm 0.50% 

19a07h45 1697 II 0.65% No. drop-out percent 

19a13h34 5201 1.98% filename e.oints lenfl.th droe.-out 

19a20hOO 55514 21.18% Ex22 
19a26h40 15367 5.86% 2200hOOd 0 0.5mm 0.00% 

19a34hOO 29665 11.32% 2207hOOm 1 0.00% 

mean 8.11% 2215hOOm 7 0.00% 

2225hOOa 0 II 0.00% 

No. drop-out percent 2228hOOm 17 II 0.01% 

filename e.oints length droe.-out 2237h30m 123 0.05% 

Ex19 2268hOOm 1 II 0.00% 

1900hOOm 162 0.25mm 0.06% 2276h50d 2779 1.06% 

1905h30m 154072 58.77% 2276h50m 9 0.00% 

1913h30m 100798 38.45% mean 0.12% 

1919h20m 480 0.18% 

1922h20m 676 II 0.26% No. drop-out percent 

1945hOOm 348 0.13% filename e.oints lenfl.th droe.-out 

1970h30m 202 II 0.08% Ex23 

mean 24.37% 2300hOOm 1 0.5mm 0.00% 

2310hOOm 13 0.00% 

No. drop-out percent 2320hOOm 289 0.11% 

filename e.oints lenfl.th droe.-out 2327hOOb 38 0.01% 

Ex20 2334h20m 173 0.07% 

2000hOOm 33958 0.25mm 12.95% 2342hOOm 75 0.03% 

2012h37m 4634 1.77% 2367hOOm 50 II 0.02% 

2017h34s 1924 0.73% mean 0.03% 

Table 4.3 (continued) Experimental data-sets. 
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No. drop-out percent 2542h30m 10 0.00% 
Filename e.oints leng..th droe.-out 2547h30m 529 " 0.20% 

Ex24 2550h30m 24 0.01% 
2400hOOm 32 0.5mm 0.01% 2556h30m 53 0.02% 
2409hOOm 19 0.01% 2564h30m 215 0.08% 
2416h30m 1550 0.59% mean 0.21% 
2421hOOm 1773 0.68% 
2425h10m 29 " 0.01% No. drop-out percent 
2431h10m 660 0.25% filename e.oints leng..th droe.-out 
2435h30m 0 0.00% Ex26 
2438h30m 0 0.00% 2604hOOm 37 0.5mm 0.01% 
2445hOOm 1179 0.45% 2613hOOm 251 0.10% 
2451h30m 0 0.00% 2622hOOm 16345 6.24% 
2463hOOm 15880 6.06% 2631hOOm 81 0.03% 
2472h30m 0 0.00% 2644h55m 0 0.00% 
2482hOOm 2403 0.92% 

2648h15m 58 0.02% 
2484hOOd 2 0.00% 

0.92% mean 
mean 0.69% 

No. drop-out percent 
percent No. drop-out filename e.oints leng..th droe.-out 

Filename e.oints length droe.-out 
Ex27 

Ex25 
2700hOOm 10 0.5mm 0.00% 

2500hOOm 4617 0.5mm 1.76% 
2708h30m 10 " 0.00% 

2510h30m 74 0.03% 
0.00% mean 

2516h30m 0 0.00% 

2523h30m 0.00% 

2539hOOm 1 0.00% 

Table 4.3 (continued) Experimental data-sets. 
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CHAPTER 4 

Figures 
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Feed 
conveyer 
belt 

Transverse 
system 

(a) The flume and (b) a close up showing the transverse system and laser sensor used to 
measure the bed surface texture. 

Figure 4.1 Experimental flume. 
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tailgate 

Tail sump 

Figure 4.2 Schematic evaluation and typical cross section of the flume (from Willetts et 
aI, 1998). 

155 



Laser 
displacement 

Figure 4.3 Close view of the laser displacement sensor (marked with arrow) used to 
scan the topography of the sediment surfaces. 
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(a) 

(b) 

Drop-out regions 

II \ 
, 

\ 

(a) Original data and (b) new data using averaged interpolation method. 

Figure 4.4 Linear interpolation replacing the drop-out values in the data. 
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(a) One of the sediment surfaces where the drop-out points are clearly visible and (b) 
the same surface as (a) where the drop-out points have been removed using linear 
interpolation. 

Figure 4.5 Removal of drop-out points using linear interpolation. 
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(a) One of the original sediment data sets and (b) show how the drop-out points at the 
edges produce erroneous very high or very low surface values. 

Figure 4.6 Line and row interpolation of drop-out points. 
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Figure 4.7 Estimating new values replacing the drop-out points using barycentric 
co-ordinates. 

160 



M1905h30m. dat 

0 

-200,····· 

-400 _ ...... 

E 
E 
~-600,······ 

-800,······ 
.. ' . ~ 

,.:.', 

250 
200 

150 

50 50 
(mm) 

(a) 

M2142H10M.mat 
250 

200 

150 

E .s 
100 

50 

50 
(mm) 50 

(mm) 

(b) 

50 

' .. : ..... 

Surface 
region 

":. 

... : ........ ~ 
.... ;... : .... 

.... ( ....... :. 
. ' . 

. ;.,.: 
.: ..... :. :: ..... : 

:: ..... :: .. 
: .. : 

region 
(mm) 

100 150 
(mm) 

250 

200 250 

(a) The original sediment data set and (b) show the same surface once the drop-out 
points have been removed. 

Figure 4.8 Interpolation using triangulation of the sediment surface to estimate new 
values for the drop-out points. 
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(a) The original sediment data set and (b) show the same surface once the drop-out 
points have been removed. 

Figure 4.9 Interpolation usmg triangulation to estimate new values replacing the 
drop-out points. 
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(a) Modified sediment data. 

50 100 150 200 
(mm) 

(c) Modified right hand bottom 
comer. 

250 

250 
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(mm) 

(b) Close up view of right hand 
bottom comer. 

210 215 220 225 230 235 240 245 250 255 
(mm) 

(d) Close up view of modified 
right hand bottom comer. 

(a), (b) Is the sediment surface data modified for drop-out points, (b) however, left in 
the bottom right comer a patch of NaN values and ( C) and (d) using linear interpolation 
and extrapolation to modify for the 'missing' values ofthe right comer. 

Figure 4.10 Compensating for the missing right comer in the modified sediment data. 
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(e) Surface at time = 39hOOmin. (f) Surface at time = 42h30min. 

Figure 4.11 Examples of experimental sediment surface data-sets from experiment 
number 25. 
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(g) Surface at time = 47h30min. (h) Surface at time = 50h30min. 
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(i) Surface at time = 56h30min. (j) Surface at time = 64h30min. 

Figure 4.11 (continued) Examples of experimental sediment surface data-sets from 
experiment number 25. 
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(a) Original surface. 
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(h) Detail 7. (i) Detail 8. G) Detail 9. 

(a) Show the original river-bed sediment surface and (b)-G) show the wavelet scale 
details, where (b) is the smallest scale and G) is the largest scale. 

Figure 4.12 Decomposition of sediment surface into wavelet details. 
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(d) Large forms (exaggerated vertical 
scale). 

Figure 4.13 River-bed sediment surface separated into different topographies. 
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Surface 26 Surface 25 

(a) H=O.5 (b) H=O.6 

Surface 23 Surface 27 

(c) H=O.7 (d)H=O.8 

Surface 28 

(e) H=O.9 

Scaling property of mm surfaces characterised by Hurst exponent (H) are ranging from 
H=O.5 to H=O.9. 

Figure 4.14 Fractional Brownian motion (jBm) test surfaces. 
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Logarithmic plot of wavelet coefficient energy against scale for the fBrn surfaces shown in figure 4.14. 

Figure 4.15 Energy distribution of fBrn surfaces. 
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Logarithmic plot of wavelet coefficient energy against scale for a sediment surface and a synthesised fBm (Hurst exponent H=O.6). 

Figure 4.16 Energy distribution of a fBm surface compared to a sediment bed-surface. 



Original Surface 

(a) OriginaljBm surface. 
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(d) 3 rd level of detail coefficients. 

The edge effect of the transform are located by the arrows. The larger edge effects 
are due to greater discontinuities between opposite edges of the surface. 

Figure 4.17 Performing a 3 level decomposition using the 2-D DWT on a synthetic 
fBm surface the edge effect are clearly visible through the transform. 
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~ ·1 
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(b) T m,((edtop(m)+1):(2 m _ edbottom(m)),((edleft(m)+1):(2 m _ edright(m)) 

(a) The original component detail defined as Tm,n those coefficient corrupted by edge 
effects are shown shaded (b) the modified component detail where the edge effect 
coefficients have been removed. 

Figure 4.18 Schematic diagram of modifying of the 2-D wavelet component details 
for edge effect coefficients. 
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(e) Detail scale 4. (f) Detail scale 5. 

(a) Detail 1 is the smallest scale detail and (f) detail 8 is the largest scale detail. 

Figure 4.19 The DWT decomposition details of sediment surface data-set '2310hOOm' 
in experiment 23. 
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(i) Detail scale 8. 

(a) Detail I is the smallest scale detail and (i) detail 8 is the largest scale detail. 

Figure 4.19 (continued) The DWT decomposition details of sediment surface data-set 
'2310hOOm' in experiment 23. 
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Figure 4.20 (continued) Form size distribution lfsd) established using the DWT method. 



.---------------------------~1201_r--------------------------------------------------------------_. 

g 

+ *' / / / 
-- psd (mixB) 
-- 1027h18m 

60 ! I / ;/7 I 1035h04m 
~ 

-x- 1042h55m 

0 

7 7 '1:J 
J!1 

~1050h56m 

--1059h34m 

40 r / / / r 
7 7 :7 ..... 

--J 
00 

0 

0.1 10 100 

size (mm) 

(d) Experiment 10. 

Figure 4.20 (continued) Fonn size distribution lfsd) established using the DWT method. 
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Figure 4.20 (continued) Form size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Form size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Form size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Form size distribution lfsd) established using the DWT method. 
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Figure 4.20 (continued) Fonn size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Fonn size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Fonn size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Fonn size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Fonn size distribution ifsd) established using the DWT method. 
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Figure 4.20 (continued) Form size distribution lfsd) established using the DWT method. 
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Figure 4.20 (continued) Form size distribution ifsd) established using the DWT method. 
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(a) Detail 1 is the smallest scale detail and (f) detail 9 is the largest scale detail. 

Figure 4.21 The SWT decomposition details of sediment surface data-set '2310hOOm' 
in experiment 23. 
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Figure 4.21 (continued) The SWT decomposition details of sediment surface data-set 
'2310hOOm' in experiment 23. 
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Figure 4.22 Fonn size distribution ifsd) established using the SWT method. 
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Figure 4.22 (continued) Form size distribution ifsd) established using the SWT method. 
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Figure 4.22 (continued) Form size distribution ifsd) established using the SWT method. 
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Figure 4.22 (continued) Form size distribution (ftc!) established using the SWT method. 
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Figure 4.22 (continued) Form size distribution ifsd) established using the SWT method. 
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Figure 4.22 (continued) Fonn size distribution lfsd) established using the SWT method. 
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. -+- psd (B-remix) 

--2400hOOm 

2409hOOm 

1~ 2416h30m 

"""*- 2421 hOOm. 

-- 2425h10m I-+- 2431 h1 Om 
--2435h30m 

- - 2438h30m 

2445hOOm 
2451 h30m 

2463hOOm 

~2472h30 

2482hOOm 

-- 2484hOOd 



tv o 
00 

r--------------~1·20~, -------------------------------, 

~ o 

"0 
.l!! 

0.1 

(0) Experiment 25. 

10 100 

size (mm) 

Figure 4.22 (continued), Form size distribution ifsd) established using the SWT method. 

- - --- - - - - - - - -

__ psd (B-remix) 

--- 2500hOOm 
2510h30m 

-*- 2516h30m 

--*- 2523h30m 

--2539hOOm 
-I- 2542h30m 
--2547h30m 

--2550h30m 

2556h30m 

2564h30m 



tv 
o 
\0 

,-------------------------+212G.---------------------------------------------------------~ 

~ . 
'1:1 
.l(! 

0.1 

(P) Experiment 26. 

10 

size (mm) 

Figure 4.22 (continued), Form size distribution ifsd) established using the SWT method. 
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CHAPTER 5 

LOCAL FEATURE RECOGNITION: ALGORITHM 

DEVELOPMENT AND EXPERIMENTAL RESULTS 

5.1. Introduction 

It is known that distinct grain formations may appear during the armouring process of 

river-beds (Barndroff-Nielsen, 1989; Tait and Willetts, 1991; Church et aI, 1998). 

Thresholds can be applied to the wavelet coefficients prior to using them in the 

reconstruction to detect and extract larger coefficients corresponding to significant 

features within data (Pettit et aI, 2000; Teng and Qi, 2003; Murtagh and Starck, 2003; 

Ferreira and Borges, 2003). It was therefore proposed to use a wavelet-based 

thresholding method to identify predominant formations of grains (or features) in 

sediment surfaces which could prove useful in locating and following the 

spatio-temporal behaviour of such features. The aim of this study was to evaluate 

wavelet thresholding methods to extract coherent structures within the surfaces. These 

coherent structures were categorised as (1) dominant grains and (2) large scale surface 

formations. 

In the study, computer generated sediment surfaces with superimposed coherent 

structures were analysed using a wavelet thresholding method. The aim was to identify 

an 'idea1' threshold value which provide an optimal extraction of coherent structures 

within the surfaces. Amplitude thresholding was employed for the task, where 
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small-amplitude wavelet coefficients are removed regardless of their position. In 

addition, both hard and soft thresholding methods were considered. The thresholding 

technique applied for feature extraction in the synthetic surfaces was intended to be 

used in the analysis of river-bed sediment surface data. Features elucidated by the 

thresholding process in this way could be used to indicate where sediment has gathered 

on the surface in distinct formations. 

This chapter is divided into the following sub-sections: section 5.2 introduces the 

computer generated synthetic sediment surfaces used in the main study; section 5.3 

presents the results from the wavelet thresholding of these surface; section 5.4 describes 

the development of edge effects in the reconstruction due to the thresholding process 

using two simple synthetic test surfaces, and section 5.5 provides a discussion of the 

results in section 5.3 and 5.4. Section 5.6 presents the results from applying the 

thresholding method to experimental river-bed sediment surface data. Finally a 

summary of the results is given in section 5.7. 

5.2. Computer generated synthetic sediment surfaces 

Prediction of turbulent flow and granular material behaviour has proven to be a difficult 

problem (McEwan et aI, 1999a). There are still many uncertainties concerning the basic 

mechanics that determine the transport of sediment in open channels. Current research 

seeks to understand the processes controlling these variables. Models and simulations of 

sedimentation processes using computers have proven to be helpful tools and are 

gaining an increasing interest from the scientific community. Investigations of sediment 

processes using computer models have been developed by a number of research groups 

including Kondolf(1994), Rivenres (1997), McEwan et al (1999a) and Bitzer and Salas 

(2002). 

A number of computer generated surfaces containing a variety of added bed-form 

features were supplied to the author by Dr John Heald at the University of Aberdeen. 

These were simulated sediment grain surfaces generated using a discrete particle model, 

called the Aberdeen Discrete Particle Model (AbdnDPM). This model uses spheres to 

represent the individual grains within a sediment mixture. Synthetic surfaces are formed 

from the aggregation of particles dropped onto a horizontal reference plane. Each 
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particle is dropped from a random position above the plane, from where it then falls 

under gravity and undergoes a series of collisions before coming to rest in a stable 

position. Once the grain has stopped moving it is fixed in place and the next grain is 

dropped. This process is repeated a number of times until the synthetic bed is created. 

An in-depth description of the AbdnDPM is to be found in Heald (2001). Modelling of 

particle entrainment using this computer simulation has been applied by McEwan et al 

(1999), Nikora et al (2001b) and McEwan et al (2004), who used it to reproduce the 

mechanisms of sediment grain movement over simulated bed surfaces. 

The synthetic background bed-surfaces constructed usmg the AbdaDPM were 

composed of three different grain sizes, these were: 

Background surface: Underlying bed of2mm grains. 

Underlying bed of 3mm grains. 

Underlying bed of uniform mixture of2-3mm grains. 

Four different surface structures were generated for each of the grain size mixtures. 

Thus, a total of 12 different background test surfaces with superimposed structures were 

constructed. Figures S.l (a)-(c) shows examples of three background surfaces 

containing the three different grain mixtures. 

Synthetic clusters of particles were then superimposed on top of the background 

surfaces. These specially arranged grain clusters were placed onto an already settled bed 

surface. They were moved into and held in position in a regular pattern. The clusters (or 

features) were of the shape of a line, a circle, a diamond and a square. Three different 

cluster sizes (small, standard and expanded) were used in the study, these were: 

Line: 

Circle: 

Standard: 2mm grains in a line oflength Smm. 

Small: l.Smm grains in a line oflength Smm. 

Expanded: 2mm grains in a line oflength 12mm. 

Standard: 

Small: 

2mm grains in a circle of radius Smm. 

1.Smm grains in a circle of radius Smm. 

Expanded: 2mm grains in a circle of radius 7mm 
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Diamond: Standard: 2mm grains in a diamond of 6 by 6mm. 

Small: 1.5mm grains in a diamond of 6 by 6mm. 

Expanded: 2mm grains in a diamond of 12 by 12mm. 

Square: Standard: 2mm grains in a square of width Smm. 

Small: 1.5mm grains in a square of width Smm. 

Expanded: 2mm grains in a square of width 12mm. 

Four examples of synthetic test surfaces with the added feature shapes are shown in 

figure 5.2. Figure 5.3 illustrates the different feature clusters generated for the circular 

shape features. 

5.3. Analysis of the computer generated test surfaces with added 
features 

This section describes the results from the analysis of the synthetically constructed 

sediment surfaces applying amplitude thresholding methods. The purpose was to 

investigate whether an ideal threshold value could be found which when applied to the 

test surfaces resulted in an optimal extraction of the superimposed features. 

5.3.1. Thresholding 

As shown in the previous chapter, although computationally more intensive, the SWT 

provides higher resolution, especially at larger scales, and ensures translation invariance 

in the decomposition. Therefore the analysis presented in this chapter is restricted to the 

SWT. This study aims to extract coherent structures i.e. changes in the surface 

topographies. The Haar wavelet is well localised in space and therefore well suited to 

detect discontinuities (i.e. sharp changes) in data. Thus, the Haar wavelet was therefore 

applied as the analysing wavelet in subsequent analysis of this chapter. 

Initial analysis was undertaken using one of the synthetic surfaces together with the 

addition of the standard diamond feature as shown in figure 5.5. This surface had a 

underlying surface mixture of grain-size 2mm and 3mm and a standard size diamond 
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feature shape. In order to extract the diamond shape from the surface both hard and soft 

thresholding were applied using the Haar wavelet. A range of threshold values were 

employed ranging from O.lo-to lOa; where o-is the standard deviation of the wavelet 

coefficients at each scale. Thus, this is an amplitude threshold where a scale related 

threshold value is applied to each individual scale of the transform. This threshold 

method will, from here on, be referred to as amplitude thresholding by the author. 

Performing the 2-D inverse wavelet transform and adding selected details together 

allowed features and patterns in the surface to be detected. Figure 5.5 shows the 

reconstruction for each individual detail from scale 1 to 4 for the coefficients 

thresholded at 1.50-, where 0- is the standard deviation of the coefficients at each scale. 

Figure 5.6 shows the combined reconstructions for details 1 to 4 for both soft and hard 

thresholding at various threshold values. The reconstructions for thresholds set to 1 x 0-, 

2xo- and 3xo- are plotted in figures 5.6(a) to (c) respectively for soft thresholding and 

figures 5.6(d) to (f) respectively for hard thresholding. Performing the 2-D inverse 

wavelet transform and adding selected details together in this way allows features and 

patterns in the surface to be made more visible. Thus enhancement allows for manual 

detection. However, a means was sought to provide a quantitative method to determine 

the optimum thresholding to enhance the feature relative to its background. 

5.3.2. Energy 

To evaluate the performance of the thresholding process quantitatively, the amount of 

energy left in the feature region and the background surface region were determined 

separately. To extract the respective energy contents two masks were constructed. One 

mask where the feature region was set to 1 and background region was set to 0, (figure 

5.7(a)) and a second mask where the feature region was set to 0 and background region 

was set to 1, (figure 5.7(b)). The masks were used to separate the feature from the 

underlying surface to compare their respective energy contents. Thus, the amount of 

energy remaining in each part after thresholding and reconstruction could be 

determined. The algorithm to determine the energy content of the reconstructed surface 

can be found in appendix A (programfile_energy.m). 
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Tables 5.1 and 5.2 show the proportion of energies left in the regions where the added 

feature lies and the background surface region after thresholding for each of the 

thresholds employed. For example from table 5.1 it can be seen that for the soft 

threshold of 1 x 0; 18.7% of the original energy remains in the feature region whereas 

only 5.3% of the original background surface energy remains. As the threshold value 

increases, the energies in both the feature and background regions reduce, but the 

background energy reduces much more rapidly. Comparing tables 5.1 and 5.2 it can be 

seen that the hard threshold follows a similar pattern of the relative decrease of energies 

in the background and foreground, although it retains more energy at each stage than the 

soft thresholding. However, with either threshold method there is a trade off between 

the enhancement of the feature (compared with the background) and the accuracy of 

reconstruction due to reduction in coefficient values obtained at the higher thresholds. 

To evaluate the relative energy differences between different shapes of features the 

above analysis was extended to several synthetic sediment surfaces consisting of 

background surface of grain size 2mm with different superimposed features (line, circle, 

diamond and square). A range of threshold values in terms of standard deviation were 

applied to the surfaces and the energy remaining after thresholding determined. Only 

wavelet details 1 to 4 were used for the thresholding and reconstruction procedures. 

This range of details was chosen because the maximum grain size in the surface (2mm) 

corresponds approximately to wavelet detail 4 in the transform. It is assumed that most 

information concerning the dominant grains within the surface is therefore contained 

within this range of details. The results from this analysis are presented in tables 5.3-5.6 

for the soft threshold method and tables 5.7-5.10 for the hard threshold method. 

Comparing the remaining energies throughout the thresholding process, a proportional 

decrease in energy in both the feature and the background parts can be observed. A 

distinct difference is shown in the respective proportions of the remaining energy for the 

feature and the background parts throughout the thresholding process. For the first 

threshold value (0.5 x o), using the soft thresholding method, the mean remaining energy 

(over all data-sets) in the features is 66.6%±1.6% whilst only 37%±0.6% for the 

background energy remains. For the same threshold value applying a hard threshold the 

mean energy decreases to 94.7%±2.4% for the features and 78.0%±6.7% for the 

backgrounds. The same comparison at 5x(J showed that the mean energy had reduced in 
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the feature part to 3.3%±1% and in the background part to 0.7o/O±O.1% for the soft 

threshold. At the same threshold value using the hard threshold the remaining energy in 

the feature part were 26.7%±4.9% and in the background to 6.5%±0.8% of the initial 

energy. 

From this investigation it can be seen that the energy in the background surface reduces 

much faster then the energy in the feature part. This is because the feature part consists 

of proportionally larger coefficients compared to the background surface coefficients. 

The coefficients in the feature part will therefore remain longer in the reconstruction. 

Also noticeable from the tabulated results is the increase in the hard thresholded 

energies as compared to the soft thresholding energies. This is to be expected as the 

retained coefficients in the soft thresholding method are reduced by the value of the 

threshold, hence reduced in energy, whereas the retained coefficients in the hard 

thresholding method are left unaltered. 

However, based on these results no conclusion on what would be an 'ideal' threshold 

value to apply could be established. Therefore a further investigation was carried out 

which applied an entropy measure in an attempt to evaluate the optimal threshold with 

which to measure the ability of the reconstruction to highlight pertinent features. This is 

described in the following sections. 

5.3.3. Entropy 

In many applications we want to extract the 'relevant' information from a signal using 

as few coefficients as possible. A common way to measure this property is by using the 

Shannon entropy measure. Entropy has been applied in a number of different scientific 

areas as a method to measure information, for example: turbulence analysis (Toh, 

1995), classifying system complexity (Pincus, 1990), signal restoration (Starck et aI, 

1998), as a project control tool (Bushuyev and Sochnev, 1999) and medical data 

analysis (Pincus and Goldberger, 1994; Richman and Moorman, 2000). 

The Shannon entropy measure for a 1-D data set is defined as: 
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N 

s(P)= - LP; log(P;) (5.1) 
;=1 

where N is the total number of discrete coefficients making up the signal and Pi is the 

probability of occurrence of the measured variable. In this study the energy of the 

coefficients is the target variable, i.e.: 

2 
X; 

P; =-N--

LX;2 
;=1 

(5.2) 

For a 2-D data set, with grid values defined at locations iJ, the entropy is defined as: 

N N 

S(p) = -"" p . . log(p .. ) L....L.... l,j l,j 
(5.3) 

;=1 j=1 

In this study the Pij values are the squared and normalised wavelet coefficients and 

hence 

where Pij is defined as: 

N N ""p .. =l L....L.... l,j 

;=1 j=1 

(5.4) 

(5.5) 

where Xij are the wavelet transform coefficient values. In addition, for the Shannon 

entropy measure the definition is made: P;,j = 0 ~ P;,j logp;,j = O. It is easily seen 

from the above that the maximum entropy value occurs when the data has an even 

distribution of information, i.e. when all the wavelet coefficients have the same value. 

Consequently the lowest value of entropy occurs when all the information is 

concentrated in a single discrete coefficient. 

In the following section the information retained in the synthetic surfaces after each 

threshold level was quantified using the Shannon entropy measure. 
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5.3.4. Entropy of the surfaces 

The entropy of the thresholded and reconstructed surfaces was determined according to 

equation 5.5 for all features studied. The algorithm for computing the entropy is 

contained in appendix A: program file_entrl.m. The results from this analysis are 

presented in figure 5.8 (hard threshold) and figure 5.9 (soft threshold). From the figures 

one can see that the initial entropy (at a threshold equal to zero) is at its maximum for 

all the surfaces, i.e. the surfaces values are widely distributed. The entropy then 

decreases as increasing levels of the thresholds are applied. This is expected as more 

and more coefficients are set to zero on the surface through the thresholding process. It 

is interesting, however, that a distinct change in slope of the entropy curves can be 

identified: from an initial slope to a less steep slope. This occurs for both the soft and 

the hard threshold curves. A transition point between the two slopes can be identified. 

These are indicated by the arrows in the plots and are located between 2.5 xa and 3.0xa 

for the hard threshold and between 2.0xa and 2.5xa for the soft threshold. The question 

is, what does this change in slope mean in physical terms? 

After analysis of the surfaces it was found that the slope change indicates a point where 

almost all of the information located within the background surface had been removed 

by the thresholding process. This can be seen by observing the reconstructed surfaces in 

figure 5.10 (hard threshold) and figure 5 .11 (soft threshold) with thresholds ranging 

from Oxa to 20.0xa. In the reconstructed surfaces the background surface is being 

removed through the thresholding process. Only the feature part remains in the 

reconstructed surface from threshold value 3.0xa for the hard threshold and from 2.5 xa 

for the soft threshold. It is therefore clear through this visual inspection that all 

information is located only within the feature region at subsequently higher threshold 

levels. It was therefore decided to conduct a further study to calculate the entropy for 

the feature area and the background surface area independently. 

5.3.5. Separation of entropy 

In this study the entropy measure was applied to establish the distribution of 

information on the surface during the thresholding process. Therefore, following each 

threshold and reconstruction of the surface, the contribution to total entropy for the 
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regIOns containing the original feature and the original background surface were 

detennined separately. The total entropy was also detennined. 

To measure the relative contribution to the entropy, the entropy measure was split into 

background and feature parts as shown schematically in figure 5.12, where NJ is the 

number of coefficients making up the feature and N2 is the number of coefficients 

fonning the background. This can be written as: 

Nt N2 

S(p) = - LP; log(PJ- LP; log(pJ (5.6) 
;=1 ;=1 

where 

(5.7) 

The study was conducted usmg surfaces with superimposed line features (small, 

standard and expanded) alone. These features were superimposed on top of three 

different background surface structures: of 2mm grains, 3mm grains and a mixture 

between 2mm and 3mm grains. The entropies for the feature area and the background 

area were computed separately. The algorithm to compute the separate entropies is 

contained in appendix A programfile_entr2.m. The area corresponding to the feature 

and the background were partitioned as shown in figure 5.13. To be able to compare the 

analysis the same size of feature area was used for all three features; small, standard and 

expanded. The entropy was examined for threshold values in tenns of standard 

deviation in the range of Oxa to 20xa. As the soft thresholding method provided the 

most distinct difference in slope this method was applied to the analysis. The results 

from the analysis are presented in figures 5.14 to 5.16. 

When evaluating the results presented in figures 5.14-5.16, it was shown that the total 

entropy, as well as the background surface entropy contribution, decreases as the 

threshold values increase. In contrast, an initial increase in entropy for the feature area is 

observed, i.e. the infonnation content of this area actually increases. Since infonnation 

is removed from the feature through the thresholding process an increase in entropy is 
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not expected. This initial increase is observed for all three background surface 

structures, hence it is independent of the background surface structure. The increase in 

the feature entropy was therefore thought to be related to the edge effects appearing in 

the reconstruction of the surface due to thresholds technique. 

Further, it can be seen that after initial increase of the feature entropy, the rate of 

increase decreases slightly after threshold values of approximately 4xa, after which 

point the curves become erratic. It is suggested that this erratic behaviour is due to the 

reduction of information in the entire reconstructed surface. It can be seen from 

equation 5.7 that the separated coefficient energies are divided by the total amount of 

components in the whole surface. Studying the reconstructed surfaces in figures 5.10 

and 5.11 it can be seen that most of the surface components have, in fact, been removed 

at a threshold value of approximately 10xa. Thus, as components are removed from the 

surface the entropy curve values are dominated by a decreasingly smaller denominator 

whose value is dictated by the few (arbitrary) remaining coefficients. Hence, the erratic 

nature of the curve at large threshold values. 

A further in-depth study of the entropy increase in the feature area through the 

thresholding process was therefore carried out as described below. 

5.4. Analysis of feature edge effects 

To evaluate the possible influence of the edge effects in the entropy contribution of the 

background and the feature region simple test surfaces were constructed and analysed 

using the two-dimensional stationary wavelet transform. The results from the analysis 

of two test surfaces are presented in this section. 

5.4.1. Test surface data 

The synthetic test surfaces were constructed by combining a background surface with a 

square block feature superimposed at its centre. The analysis was undertaken using the 

two different test surfaces shown in figure 5.17(a) and (b). Both surfaces contain 64x64 

(=26
) data points. In the surface shown in figure 5.17(a) the background surface values 

were set to 0 and in the surface shown in figure 5.17(b) the background surface values 
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were generated using a unifonn probability distribution in the interval (0,0.1). For both 

surfaces the superimposed feature was 7x7 grid-points in dimension and had a height of 

0.4. The mean was taken off the background surface in figure 5.17(c), prior to the 

feature being added. 

5.4.2. The analysis 

The test surfaces were analysed usmg the Haar-based two-dimensional stationary 

wavelet transfonn (2-D SWT). The author investigated the amount of infonnation 

retained within the surface after thresholding and reconstruction. For this purpose the 

entropy measure described in section 5.3.5 was applied. The 64x64 surface array was 

transfonned into 6 levels of details containing the wavelet transfonn coefficients, where 

scale 1 contains the smallest-amplitude coefficients and scale 6 contains the 

largest-amplitude coefficients. As before, an amplitude threshold was applied and each 

level was thresholded using a separate threshold value which was a function of the 

standard deviation (CT) of that level. Following each threshold and each reconstruction of 

the surface the entropy for the regions containing the original feature and the original 

background surface were detennined (equation 5.6). In addition, the total entropy was 

also detennined. 

Threshold values were set at multiples of the standard deviation (0) of the coefficients at 

each level of the transfonn. These multiples were set in the range of ° to 14.0, 

increasing in steps of 0.5. The author applied both hard and soft thresholding methods 

in the analysis. The inverse 2-D SWT transfonned the thresholded data back into a new 

thresholded reconstructed fonn. In addition, when reconstructing, the last 

approximation at level 6 was also thresholded, reconstructed and added to the new 

surface. This was done to preserve the mean of the background surface equal to zero. It 

was realised during the early experimentation that if the approximation was not added 

the height difference between zero and the reconstructed background surface would be 

regarded as additional infonnation when applying the entropy measure algorithm. This 

is shown in figure 5.18 where a surface, with the background set to equal zero, has been 

decomposed and reconstructed (no threshold was applied). Figure 5.18(a) shows the 

reconstructed surface where the last approximation was not added and figure 5 .18(b) the 

reconstructed surface where the last approximation has been added to the 
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reconstruction. The difference (size of the mean -0.0048) between zero and the 

reconstructed background surface in figure 5.18(a) is clearly illustrated in the close up 

view in figure 5.19. The entropy measure assumes this height difference is a uniform 

distribution of information, hence a high entropy value is obtained even though in 

reality nothing has been added to this part of the surface. This is shown in the results of 

the entropy measure in figure 5.20 where hard thresholds have been applied to the 

surface in figure 5.18(a). The computed entropy has a value approaching 2 for the 

background at threshold factor Oxa although it should be equal to zero. Hence, to 

establish reliable results of the entropy measure the last approximation has to be 

included in the reconstruction. 

5.4.3. Analysis of test surface I 

This section presents the results from the analysis of the test surface with a flat 

background (i.e. background surface values set to zero) shown in figure 5.17(a). The 

analysis was carried out initially applying the hard thresholding method at increasing 

threshold values as described above. The entropy of the surface was calculated at each 

threshold level and the results are presented in table 5.11. In addition, the entropy is 

plotted against the threshold standard deviation factors in figure 5.21. 

The entropy for the background surface is zero at the first threshold value (Oxa). 

Because the original surface had the background uniformly set equal to zero there is no 

information in the background surface, consequently the measured entropy is zero. 

However, there is a high entropy value in the feature, which equals the total entropy for 

the reconstructed surface. Hence, the whole contribution to the total entropy is located 

within the feature region. 

For threshold value 0.5 x a the entropy curve has a value of 0.75 for the background 

surface area. Since there was no information here originally, it was concluded that this 

increase in the entropy within the background area of the surface must be related to an 

edge effect from the feature occurring due to the thresholding process. This is confirmed 

when observing the surface and profile plots of the reconstructed surface shown in 

figure 5.22, for thresholds ranging from Oxa (original surface) to 12.5 xa, where the 

increase in edge effects can be clearly seen from the plots of threshold values between 
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O.5 xa to 12.0xa. This edge effect is due to the removal of wavelet coefficients through 

the thresholding process and occurs in both the region of the background surface and 

the region of the feature. When coefficients are removed or reduced, local information 

regarding the surface structure is 'missing' from the transform. The multiresolution 

property of perfect reconstruction can therefore no longer be achieved, hence edge 

effects will appear in the reconstruction. The increase in entropy in the background is 

simply due to edge effects occurring in this region of the reconstruction. However, at a 

threshold level of O.5 xa there is still more information kept within the feature with a 

higher entropy value compared to the background entropy. 

However, when the threshold value increases to 1.0xa, the entropy values change 

accordingly and the entropy for the background surface is higher compared to the 

feature part. This can also be seen in figure 5 .22( c) where edge effect spreads further 

into the background surface region. The higher entropy for the background surface 

implies that this part contains a relatively larger spread of components compared with 

the feature part. The subsequent entropy values from thresholding factors show a slow 

decrease within the background surface. The entropy values for the feature, at the same 

threshold factor range, remains close to a straight line until 12.5 xa. At which point all 

the information within the surface has been removed through the thresholding process. 

The results of the analysis using soft thresholding are presented in figure 5.23 and table 

5.12. The same test surface data-set (figure 5.17(a)) was used and similar results to 

those obtained from the hard thresholding method were found. The entropy curve is 

smoother given that the soft threshold smoothes the data through the reduction of the 

remaining coefficient by the size of the threshold. It is interesting to note that at 

threshold value O.5 x a the entropy for the background is already higher than the entropy 

for the feature. This may be due to the reduction of coefficient heights carried out in the 

soft thresholding technique. The information in the background surface increases 

rapidly and then reduces gradually as the threshold values increase. While the entropy 

for the feature decreases slowly from a threshold value equal to O.5 xa. At a threshold of 

12.5 x a all information has been removed from the surface. This examination of the 

relative distribution of entropy for the test feature with a plane background surface has 

therefore allowed the observation of the edge effects which contaminate the 
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thresholding process. In the next section the analysis is repeated for the same feature 

superimposed on a random background surface. 

5.4.4. Analysis of test surface II 

The same analysis as that described in the previous section was carried out using a 

second surface consisting of the same foreground block sitting on a background surface 

generated from a uniform random distribution (figure 5.17(b)). Prior to applying the 

middle block feature the mean was removed from the data. The background surface 

therefore varied in the interval (-0.05,0.05) with a mean equal to o. The middle feature 

was again set to equal 0.4 in height. As before, the surface was analysed using the 

Haar-based 2-D SWT method and both hard and soft amplitude thresholding was used. 

For the hard threshold, the entropy calculations now exhibit a different pattern 

compared to the previous surface (which had a uniform background set to zero). The 

entropy curves for the feature, background surface and the total entropy for the 

reconstructed surface are shown in figure 5.24 and the results are also tabulated in table 

5.13. For the first threshold value, OX(T, the background surface contains a higher 

entropy value and a lower entropy value for the feature part. Since the background has 

evenly distributed randomness throughout the surface, i.e. all the coefficient have unit 

values, higher entropy would be expected in this part. The feature part shows a lower 

entropy value as the contribution from the feature is contained within fewer coefficients. 

When a threshold value 0.5x(T is applied to the surface, the entropy for the background 

decreases and the entropy for the feature increases. The reduction of entropy in the 

background indicates that information is removed through the thresholding process. 

This is also visible in figure 5.25 where the reconstructed surfaces for the first 4 

thresholded values (between OX(T - 1.5x (T) are shown. The figure reveals how the 

background surface is removed through the thresholding process as the threshold value 

increases. It can be seen from figure 5.24 that the total entropy changes from a less steep 

(negative) slope to a steeper slope at 0.5X(T and again to a less step slope at a threshold 

value of 1.5X(T. Changes of slope at these specific threshold values can also be seen in 

the entropy of the background and the feature regions. The background entropy follows 

the behaviour of the total entropy curve and decreases with increasing threshold values, 
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while the entropy curve of the feature region increases rapidly until a threshold value of 

1.5 x a. In fact it can be seen that, at the threshold value of 1.5 x a, the complete 

background surface has been removed and the entropy contribution from the 

background region is mainly due to the edge effects. 

The soft thresholding method produces similar results as the hard thresholding method. 

The results of the entropy measure of the soft thresholding are presented in figure 5.26 

and table 5.14. The first change in slope of the entropies occurs at O.5 x a, this is 

particularly evident in the total and the background entropies. The total entropy and the 

entropy for the background region then decreases as the entropy in the feature region 

increases until 1.5xa. At this point the background surface has been removed by the 

thresholding process, hence after reconstruction only the remaining feature and the edge 

effect occurring in the background region are left. This is shown in figure 5.27 where 

the reconstruction at threshold value 1.5xa, (d), only consists of the feature part and 

edge effects. 

5.5. Discussion of results 

The occurrence of edge effects is evident in the results of the analysis of the test surface 

containing the plane background region shown in figure 5.17(a). In the plot of the 

entropy curves in figures 5.21 (hard threshold) and 5.23 (soft threshold) it can be 

observed that the entropy contains components in the background surface area as the 

threshold value increases. Since there was no information in the background surface to 

begin with, this increase in the entropy contribution must be associated with the edge 

effects appearing through the thresholding process. This enhancement of the edge 

effects due to thresholding is visible in the surface and profile plots of figure 5.22. The 

occurrence of edge effects results in an increase of the measured entropy in the 

background surface region and consequently an increase in the total entropy. 

The appearance of edge effect is also found when visually inspecting the results from 

the analysis of the test surface with a random background surface form, as shown in 

figure 5.17(b). For this surface the edge effects are clearly seen in the reconstruction of 

the surface for both the hard threshold shown in figure 5.25 and the soft threshold 

shown in figure 5.27. In fact almost the whole background surface region has been 

removed at a threshold of 1.5xa and therefore the entropy of the background area (see 
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figures 5.24 and 5.26) must primarily be related to the edge effects occurring in this 

region. Comparing the entropies, a decrease in the total and the background region 

entropies with increasing threshold values can be observed. While the entropy in the 

feature region increases. It is also noticed that there are distinct changes in the slope of 

the curves through the thresholding process. The slope changes from an initial slope to a 

steeper slope and then back to a less steep slope. Visually inspecting the surface plots in 

figures 5.25 and 5.27, it can be seen the second change of the slope is at a point where 

most of the background surface has been removed by the thresholding process, hence 

only the feature region and corresponding edge effects remain in the reconstruction. 

As information is removed from the test surface the entropy in the background region 

will decrease. However, an increase of entropy for the feature region can be observed. It 

is believed that this is related to the overall decrease of information in the whole 

surface. As shown in equation 5.7 the separated entropies are relative to the information 

of the complete surface. The feature region consists of larger wavelet coefficients 

compared with the background surface coefficients. Thus, the background coefficients 

will be removed by the thresholding before the coefficients in the feature. Therefore as 

the overall information is reduced, the entropy in the feature region relative to the 

information in the complete surface will increase. In addition, the increase reaches a 

maximum at the same threshold value as the total entropy curve changes slope to a less 

steep slope. It was previously noted above, through visual inspection, that this was at a 

point where the complete background surface has been removed. Hence remaining 

information is located in the feature region and the occurring edge effects. It can 

therefore be concluded that the increase in feature entropy for the synthetic sediment 

surfaces (figures 5.14(c) to 5.16(c)) are due to the overall reduction of surface 

components through the thresholding process and the occurring edge effects in this 

regIOn. 

The change of the slope of the total entropy was previously found in the analysis of the 

simulated sediment surfaces, figures 5.8 to 5.9, where the distinct change of the slope 

occurred at a threshold value between 2.5 xa and 3.0xa for the hard threshold and 

between 2.0xa and 2.5 xa for the soft threshold. Inspecting the results of the analysis of 

the sediment surfaces with added line features, the change in the slope of the 

background surface entropies (figures 5 .14(b) to 5 .16(b )) as well as the total entropy 
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(figures 5.14(a) to 5. 16(a)) can be seen. Based on the results from the simple test surface 

analysis in section 5.4, it can therefore be concluded that the change in the slope of 

entropies in fact occur at a threshold value where the synthetic background surface 

region has been removed completely by the thresholding process. 

Further, in the results from the simple test surfaces (figures 5.24 and 5.26) an initial 

change in the slope of the entropy curve can be observed at a threshold value of O.5 x a. 

This change in slope at a threshold value ofO.5 xa can also be seen in the entropy curves 

in figures 5.8 and 5.9 (synthetic sediment surfaces). This is particularly evident when 

using a hard threshold. This can also be seen when observing the results in figures 5.14 

to 5.16, which correspond to the sediment surfaces with added line features. It can 

therefore be concluded that the major components of the information contributing to the 

background surface are removed between threshold values of OX(} to 1.5xa: This is 

shown when applying threshold values in steps ofO.1x(}to the test surfaces in 5.17(b). 

The results of the entropy measure are shown in figure 5.28(a) for the hard threshold 

and figure 5.28(b) for the soft threshold. For the hard threshold the total entropy 

changes to a steeper slope at threshold value of O. 7x () and again to a less steep slope at 

1.5xa: Similar results are found for the soft threshold, however the change in slope is 

less obvious. 

It was concluded earlier, that the second transition point for slope change at the entropy 

curve is at a threshold value where the complete background surface has been removed. 

It is therefore suggested that the first transition point between the slopes on the entropy 

curve represents the threshold value to apply to retain the larger background coefficients 

and remove smaller background coefficients. It is assumed that, after this transition 

point, the steeper slope of the entropy curve indicates that a larger quantity of 

information is removed from the background surface at each incremental increase in 

threshold value. Thus, this is the threshold value to apply to filter out less significant 

background forms and hence extract dominant grains in the background surface. 

The following points can be concluded from this section: 
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The entropy curve of the thresholded and reconstructed surfaces changes slope at 

different threshold values. This is due to the removal of information from the surface 

through the thresholding process combined with the occurrence of edge effects in the 

reconstruction. 

Separation of the entropy measure into the feature and background regions indicated an 

increase of entropy in the feature region with increasing threshold values. It was 

concluded that the increase in feature entropy was related to the overall reduction of 

information in the thresholded surface combined with the occurrence of edge effects in 

this region. 

Further, by visually inspecting the entropy curve slope two transition points could be 

identified. It was concluded that the first transition point was largely related to the 

removal of a significant amount of information in the background surface region. It was 

therefore hypothesised that this point identifies the threshold value to apply to filter out 

less significant information and therefore enhance larger features (i.e. dominant grains) 

in the surface. It was shown that the second transition point occurs where the complete 

background surface has been removed by the thresholding process. Hence, the entropy 

in the background after the second transient point is solely due to the edge effects in this 

regIOn. 

Comparing the soft and hard thresholding methods it can be seen that the hard 

thresholding method provides a more marked change in the slope of each entropy curve 

at the two transition points. This would be expected as the soft threshold method 

smoothes the data. It is therefore recommended to use hard thresholding method, where 

the retained coefficients remain untouched in the reconstruction, thus causing a further 

enhancement of larger coherent structures. 

5.6. Analysis of experimental river-bed sediment surfaces -
thresholding 

As highlighted earlier in chapter 2, section 2.11.3, distinct grain formations may appear 

during the armouring process of river beds (Bamdroff-Nielsen, 1989; Tait and Willetts 

1991; Church et aI, 1998). This section describes work undertaken by the author to 
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apply the wavelet thresholding technique to the experimental river-bed sediment 

surfaces to extract dominant grains and reveal large formations of grains within the 

surfaces for manual detection. The analysis described in this section follows on from the 

work on the synthetic surface analysis described in sections 5.3 and 5.4. 

5.6.1. Data analysis 

In the previous section (5.5) it was concluded that the total entropy for the thresholded 

and reconstructed synthetic surfaces changed slope as increasing threshold values were 

applied. A distinct difference in the slope was found at a threshold value between 2.5x() 

and 3.0x(). However, when this threshold value is applied to the experimental river-bed 

sediment surfaces too much of the surface structure is removed and no coherent 

structures can be seen. This can be observed in figure 5.29, where the reconstructed 

surfaces (data-set '2644h55m') using threshold values of 2.5x() and 3.0x() are shown. 

This confirms the results from the synthetic data analysis where the complete 

background surface was removed (figures 5.10 and 5.11) at thresholds beyond these 

values. 

Therefore the analysis of the experimental sediment surfaces will concentrate on the 

initial change in slope of the entropy curve. It was hypothesised in the previous section 

that this change in the slope was related to the reduction of smaller coefficients in the 

background surface. It is therefore suggested that the best threshold value to apply for 

enhancement of dominant grains within the surfaces can be found by identifying an 

initial transition point in the slope of the entropy curve. 

Amplitude wavelet thresholding was applied to threshold and reconstruct one of the 

experimental rived-bed sediment surfaces (data-set '2644h55m'), shown in figure 

5.30(a). The levels to threshold and reconstruct were chosen as the wavelet details 

which could be primarily associated with the grain size of the original sediment 

mixture. Thus details 1 to 5 were included in the thresholding and reconstruction, where 

detail 5 (i.e. size 16mm) is approximately the size of the maximum particle size. The 

entropy for the thresholded and reconstructed surface was plotted against the standard 

deviation multiple values shown in figure 5.30(b). By visually inspecting the entropy a 

change in the slope of the curve can be identified (from an initial slope to a steeper 
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slope). The curve was inspected manually and the range of values contributing to each 

slope were selected. The best-fit lines over the selected values representative of each 

slope were determined using the 'least squares' method. The slope transition point was 

chosen as the cross section of the two best fit lines. For this particular surface a 

threshold value of approximately O.75xO" is found, marked with an arrow in figure 

5.30(b). Thus, this threshold value was applied to remove smaller coefficients from the 

surface and enhance larger structures. The thresholded and reconstructed surface is 

shown in figures 5.30(c) and 5.30(d). When observing the reconstructed surface it can 

be seen that the thresholding process has enhanced possible coherent structures. In 

figure 5.31(a) these coherent structures have been marked with dotted lines. These are 

generated from the local agglomeration of particles on the surface. The original surface 

is shown in figure 5.31 (b) for comparison. 

This method is applied to two further experimental data-sets: '2631hOOm' and 

'2648hI5m', the surface scans directly before and after the data-set shown in figure 

5.31. The results from the analysis of these two sediment surfaces are shown in figures 

5.32 (data-set '2631hOOm') and 5.33 (data-set '2648hI5m'). Comparing the 

reconstructed surfaces, data-set '2644h55m' appears to have more visible coherent 

structures then the earlier surface scan, '2631hOOm'. Further, surface '2648hI5m' show 

more visible coherent structures compared with data-set '2644h55m'. This may indicate 

that the surface grains have been rearranged to become more stable over time, hence the 

more visible structures in the later surface scan. 

To extract the general form of the surface a scale dependent threshold (described in 

section 2.9.2) was also applied to the data-sets. This method was previously used to 

separate a sediment surface into different topographies (section 4.3.1). Using this 

method, smaller scale details associated with the grain size could be excluded from the 

reconstruction and the overall general form of the sediment surface extracted. Initially 

the reconstruction was performed using detail 6 alone (32mm) as shown in figure 

5.34(a), (c) and (e). This detail was chosen as it was the immediate detail larger than the 

maximum grain size. Some possible ridges (marked with arrows) could be seen, 

however, the general structure is not obvious using this detail alone. Therefore details 6 

to 8 were reconstructed, which was previously thought to hold the medium forms of the 

surface. Figure 5.34(b), (d) and (f) show this reconstruction. Here the change of the 
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general surface structure over time can be observed. In figure 5.34(d) a larger amount of 

sediment has gathered on the surface, marked with an arrow. This structure is not 

visible in the following data-set, figure 5.34(f). This method in combination with the 

amplitude thresholding could be used to manually detect changes in the sediment 

surface structure over time. 

The surface was also reconstructed combining the amplitude thresholded and the scale 

thresholded surfaces shown in figure 5.35(a) and (b). However, observing the 

reconstructed surface shown in figure 5.35(c) it can be seen that dominant grains 

become less obvious when combining the two thresholding methods. It is therefore 

suggested that the most distinct formations and general structure can be detected 

visually by using the two thresholding methods separately. 

The above described analysis was also applied to three of the data-sets in experiment 7, 

i.e. where no sediment material was added in the flume through the experiment. The 

selected surfaces were; the initial surface (data-set '0700hOOc'), the surface scan 

40hours into the experiment (data-set '0740hOOm') and the final surface scan after 

80hours running (data-set '0780hOOm'). Figure 5.36 show the result of the amplitude 

thresholding of the surface data. Observing the results, more features can be seen in the 

two later surface scans in figure 5.36(b) and (c) comparing with the earlier surface scan 

in figure 5.36(a). The thresholding method has isolated larger grains and potential 

coherent structures of dominant grains in the surfaces. Comparing (b) and (c) it can be 

seen that some larger grains have stayed relatively stable (marked with arrows in the 

plot) while smaller material has been restructured in the surface. Figure 5.37 show the 

results from wavelet scale thresholding using details 6 to 8 for the reconstruction. Again 

the later surface scans, i.e. figure 5.37(b) and (c), appear to have larger structural 

variations within the surface in comparison to the initial surface, figure 5.37(a), which 

has a relatively flat surface structure. This would be expected as the surface has not yet 

been exposed to water. These results show that the surface changes from a flat to a 

rougher topography through the course of the experimental run. It appears that there are 

smaller topographical differences between the surfaces in figure 5.37(b) and (c). This 

would suggest that, for these experiments, the major degradation of the sediment 

surface bed appear in the early stages of the sedimentation process. However, what 

appears to be movement of sediment material has been marked with arrows in the 
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figure. Observing the reconstructions in figure 5.36(b) and (c), it appears that smaller 

sediment material has been moved towards the left at the top of the figures, i.e. in the 

direction ofthe flow. 

5.7. Discussion and chapter summary 

This chapter has dealt with identification of local surface features. Research has shown 

that by thresholding the wavelet transform coefficients large predominant coefficients 

can be extracted from the transform (Tikkanen, 1999; Pettit et aI, 2000, 2002; Addison 

et aI, 2001a; Teng and Qi, 2003). An attempt has been made to identify an ideal 

threshold value which to apply to extract dominant grains within a surface. To extract 

these larger features an amplitude threshold was applied using both hard and soft 

wavelet thresholding techniques. The threshold values were established as multiples of 

the standard deviation for each level of the wavelet transform. 

The main analysis was conducted using computer generated synthetic sediment surfaces 

with superimposed features. To evaluate the thresholding performance the thresholded 

energy content within the feature and the background parts of the reconstructed 

synthetic sediment surfaces were determined separately. Observing the energy content 

(table 5.3 to table 5.10) it was found that there is a much faster reduction in energy 

content for the background surface region compared to the reduction in energy for the 

feature region. In addition, there is a slower reduction in the hard thresholded energies 

compared to the soft thresholded energies with increasing threshold values. However, 

an 'ideal' threshold value could not be established through the comparison of the energy 

contents. 

Therefore the Shannon entropy measure was applied to calculate the amount of 

information kept in the reconstructed surface after each threshold. The entropy was 

plotted against threshold value (figure 5.8 and 5.9) it was noticed that a marked change 

of slope occurred in the entropy curves and a transition point between the two slopes 

could be identified. This was located between 2x(J and 2.5x(J for the soft threshold and 

between 2.5x(J and 3.0x(J for the hard threshold. It became apparent that the transition 

point could identify the threshold value at which the background surface had been 

removed completely by the thresholding process. 
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To compare the entropy in different areas of the surface, the entropy was divided into a 

background and a feature region. Comparing the separated entropy components it was 

found that the entropy in the background decreases during the thresholding process. 

However, the entropy for the feature increases initially. Since information is removed 

through the thresholding process an increase in the feature is not expected. It was 

hypothesised that the increase in feature entropy was related to edge effect occurring in 

the reconstruction through the thresholding process. 

An in-depth investigation of the occurrence of edge effects due to the thresholding 

process confirmed this. The analysis of two simple test surfaces revealed the presence of 

edge effects in the reconstruction. This study also determined that as the information in 

the whole surface decreases the relative amount of information in the feature region 

increases compared to the background region. This and the occurrence of edge effects in 

the feature region produces an increase in entropy. 

Further, the analysis showed that the total entropy changed slope at a point where the 

background surface has been removed by the thresholding process. Hence, the threshold 

value at the transient point would be the threshold value which to apply to extract the 

feature and remove the background. However, in this study it was sought to find a 

threshold value which did not remove the surface completely but only the smaller 

coefficients while retaining the more significant dominant grains. 

Studying the entropies of the test surface it became apparent that an initial change in the 

slope of entropy curves occurred between threshold values Oxa and 1.0xa. This initial 

change in slope can also be observed in the results from the synthetic sediment surface 

data analysis. It was assumed that this was related to reduction of smaller coefficients in 

the background surface. As increasingly larger threshold values are applied larger 

amount of information is removed at each threshold step and therefore the steeper slope. 

It was thought, because of the clear difference in the slope of the entropy curve, that this 

would be the 'ideal' threshold value to apply to remove the smaller coefficients and 

retain larger coefficients to enhance features in the surface. Hence, by identifying the 

transient point between the two slopes a threshold value, in terms of a multiple value of 

the standard deviation, could be found. Further, it was determined that the total entropy 
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for the thresholded and reconstructed surfaces could be used to find the 'ideal' threshold 

value. 

Applying this analysis to the experimental river-bed sediment surfaces, it was found that 

dominant grains and potential larger coherent structures could be identified in the 

surfaces by applying wavelet thresholding techniques. By evaluating the thresholded 

and reconstructed surfaces over time it could be seen that the later surface scans (figure 

5.33) contained more 'structures' compared to the earlier surface scans (figures 5.30 and 

5.32). This may indicate that the surface topography is restructured to become more 

stable to the shear stresses of the flow. Further it was shown that the overall surface 

structure could be extracted by applying a scale dependent wavelet threshold. By 

evaluating the surface using these two thresholding methods this allowed for structural 

changes over time to be detected. 

Sediment material was fed into the flume throughout the experiment. This had to be 

considered as it made it more difficult to identify coherent structures and detect 

movement of these structures within the surface over time. Particularly if the structural 

changes were due to sediment feeding or rearrangement of the sediment material. 

Therefore, the analysis was also applied to three of the data-sets in the unfed experiment 

(number 7). The results of the amplitude thresholding indicated that the two later 

surface scans had more visible structures in comparison with the initial surface scan. 

Further, by applying a scale dependent threshold the two later surfaces appeared to have 

a more similar topographical structure compared to the initial surface. This would 

suggest that for these experiments the major degradation of the surface occurs in the 

early stages of the sedimentation process. 

In summary, this chapter has presented an investigation into the use of (1) amplitude 

thresholding for extracting dominant grains and (2) scale dependent thresholding to 

extract the general form of the surface. Both synthetic and real sediment surface data 

was included in the study. The results have demonstrated the potential of the wavelet 

thresholding technique as a method for sediment surface analysis. 
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Tables 
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Threshold Value in Terms 
of Coefficient Standard 

Deviation 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
5.0 
5.2 
6.0 

10.0 

Proportion of 
reconstructed energy 
for synthetic feature 

1.000 
0.862 
0.739 
0.631 
0.537 
0.455 
0.187 
0.070 
0.025 
0.009 
0.003 
0.001 
0.000 
0.000 
0.000 
0.000 

Proportion of 
reconstructed energy for 

background surface 
1.000 
0.766 
0.580 
0.436 
0.325 
0.241 
0.053 
0.012 
0.003 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Table 5.1 Proportion of energies within the synthetic feature and background regions 
remaining after thresholding at various threshold values for Soft Thresholding. 

Threshold Value in Terms 
of Coefficient Standard 

Deviation 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
5.0 
5.2 
6.0 
10.0 

Proportion of 
reconstructed energy 
for synthetic feature 

1.000 
0.999 
0.994 
0.983 
0.964 
0.947 
0.773 
0.556 
0.311 
0.174 
0.083 
0.036 
0.008 
0.008 
0.000 
0.000 

Proportion of 
reconstructed energy for 

background surface 
1.000 
0.998 
0.987 
0.958 
0.915 
0.857 
0.450 
0.182 
0.070 
0.025 
0.007 
0.001 
0.000 
0.000 
0.000 
0.000 

Table 5.2 Proportion of energies within the synthetic feature and background regions 
remaining after thresholding at various threshold values for Hard Thresholding. 
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Superimposed line features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 
0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.358 0.699 0.360 0.675 0.361 0.678 
1.0 0.166 0.496 0.168 0.471 0.171 0.480 
1.5 0.090 0.355 0.091 0.330 0.095 0.344 
2.0 0.054 0.261 0.055 0.234 0.059 0.251 
2.5 0.034 0.194 0.036 0.167 0.039 0.185 
3.0 0.023 0.146 0.024 0.119 0.027 0.137 
3.5 0.015 0.110 0.016 0.086 0.018 0.102 
4.0 0.011 0.083 0.012 0.063 0.013 0.076 
4.5 0.007 0.062 0.008 0.047 0.009 0.057 
5.0 0.005 0.047 0.006 0.036 0.007 0.043 
5.5 0.004 0.037 0.004 0.028 0.005 0.033 
6.0 0.003 0.028 0.003 0.022 0.004 0.026 
7.0 0.001 0.018 0.002 0.014 0.002 0.016 
8.0 0.001 0.012 0.001 0.009 0.001 0.011 
9.0 0.000 0.008 0.001 0.006 0.001 0.007 
10.0 0.000 0.005 0.000 0.004 0.000 0.005 
12.0 0.000 0.003 0.000 0.002 0.000 0.002 
15.0 0.000 0.001 0.000 0.001 0.000 0.001 
17.0 0.000 0.000 0.000 0.000 0.000 0.000 
20.0 0.000 0.000 0.000 0.000 0.000 0.000 

*in terms of coefficient standard deviation 

Underlying surface composed of 2mm grain and with superimposed line features. 

Table 5.3 Results from analysis of synthetic surfaces with line features applying soft 
threshold. 
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Superimposed circle features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 
0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.366 0.654 0.369 0.646 0.375 0.653 
1.0 0.180 0.434 0.181 0.433 0.194 0.443 
1.5 0.104 0.289 0.103 0.291 0.117 0.304 
2.0 0.065 0.195 0.065 0.197 0.076 0.213 
2.5 0.043 0.133 0.042 0.134 0.050 0.150 
3.0 0.025 0.061 0.028 0.092 0.034 0.106 
3.5 0.019 0.063 0.019 0.063 0.023 0.075 
4.0 0.013 0.043 0.013 0.044 0.016 0.053 
4.5 0.009 0.030 0.009 0.031 0.011 0.038 
5.0 0.006 0.022 0.006 0.022 0.008 0.028 
5.5 0.005 0.016 0.005 0.016 0.005 0.021 
6.0 0.003 0.012 0.003 0.012 0.004 0.016 
7.0 0.002 0.007 0.002 0.007 0.002 0.009 
8.0 0.001 0.004 0.001 0.004 0.001 0.006 
9.0 0.001 0.002 0.001 0.002 0.001 0.004 
10.0 0.000 0.001 0.000 0.001 0.000 0.002 
12.0 0.000 0.000 0.000 0.000 0.000 0.001 
15.0 0.000 0.000 0.000 0.000 0.000 0.000 
17.0 0.000 0.000 0.000 0.000 0.000 0.000 
20.0 0.000 0.000 0.000 0.000 0.000 0.000 

*in terms of coefficient standard deviation 

Underlying surface composed of2mm grain and with superimposed circle features. 

Table 5.4 Results from analysis of synthetic surfaces with circle features applying soft 
threshold. 
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Superimposed diamond features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 
0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.362 0.681 0.363 0.675 0.374 0.659 
1.0 0.175 0.472 0.173 0.481 0.190 0.447 
1.5 0.099 0.328 0.097 0.350 0.114 0.304 
2.0 0.062 0.230 0.060 0.258 0.074 0.209 
2.5 0.040 0.162 0.039 0.192 0.050 0.144 
3.0 0.027 0.115 0.026 0.143 0.034 0.100 
3.5 0.018 0.082 0.018 0.106 0.024 0.070 
4.0 0.013 0.059 0.012 0.078 0.016 0.049 
4.5 0.013 0.059 0.009 0.058 0.012 0.034 
5.0 0.006 0.030 0.006 0.043 0.008 0.025 
5.5 0.004 0.022 0.004 0.033 0.006 0.018 
6.0 0.003 0.016 0.009 0.058 0.004 0.013 
7.0 0.002 0.009 0.002 0.015 0.003 0.008 
8.0 0.001 0.006 0.001 0.006 0.002 0.005 
9.0 0.001 0.003 0.001 0.006 0.001 0.003 
10.0 0.000 0.002 0.000 0.004 0.001 0.002 
12.0 0.000 0.001 0.000 0.001 0.000 0.001 
15.0 0.000 0.000 0.000 0.000 0.000 0.000 
17.0 0.000 0.000 0.000 0.000 0.000 0.000 
20.0 0.000 0.000 0.000 0.000 0.000 0.000 

*in terms of coefficient standard deviation 

Underlying surface composed of2mm grain and with superimposed diamond features. 

Table 5.5 Results from analysis of synthetic surfaces with diamond features applying 
soft threshold. 
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Superimposed square features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 
0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.364 0.655 0.367 0.652 0.373 0.659 
1.0 0.178 0.433 0.180 0.445 0.191 0.453 
1.5 0.102 0.288 0.103 0.304 0.115 0.315 
2.0 0.064 0.196 0.065 0.208 0.074 0.222 
2.5 0.042 0.135 0.043 0.144 0.049 0.158 
3.0 0.028 0.093 0.029 0.100 0.032 0.113 
3.5 0.019 0.064 0.020 0.070 0.022 0.081 
4.0 0.013 0.045 0.014 0.050 0.015 0.058 
4.5 0.009 0.031 0.009 0.035 0.010 0.042 
5.0 0.006 0.022 0.007 0.049 0.007 0.031 
5.5 0.004 0.016 0.005 0.019 0.005 0.023 
6.0 0.002 0.007 0.003 0.014 0.004 0.017 
7.0 0.001 0.004 0.002 0.008 0.002 0.010 
8.0 0.001 0.004 0.001 0.005 0.001 0.006 
9.0 0.001 0.002 0.001 0.003 0.001 0.004 
10.0 0.000 0.001 0.000 0.001 0.000 0.002 
12.0 0.000 0.000 0.000 0.000 0.000 0.001 
15.0 0.000 0.000 0.000 0.000 0.000 0.000 
17.0 0.000 0.000 0.000 0.000 0.000 0.000 
20.0 0.000 0.000 0.000 0.000 0.000 0.000 

*in terms of coefficient standard deviation 

Underlying surface composed of 2mm grain and with superimposed square features. 

Table 5.6 Results from analysis of synthetic surfaces with square features applying soft 
threshold. 
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Superimposed line features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 
0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.800 0.966 0.801 0.949 0.800 0.944 
1.0 0.565 0.913 0.567 0.903 0.565 0.888 
1.5 0.379 0.825 0.382 0.818 0.381 0.803 
2.0 0.261 0.724 0.264 0.736 0.268 0.711 
2.5 0.188 0.636 0.191 0.655 0.198 0.631 
3.0 0.142 0.565 0.144 0.564 0.152 0.558 
3.5 0.110 0.504 0.111 0.485 0.121 0.501 
4.0 0.086 0.454 0.087 0.408 0.096 0.439 
4.5 0.068 0.399 0.070 0.336 0.078 0.377 
5.0 0.054 0.340 0.055 0.278 0.063 0.326 
5.5 0.042 0.291 0.043 0.225 0.049 0.273 
6.0 0.033 0.239 0.034 0.181 0.039 0.222 
7.0 0.020 0.162 0.022 0.118 0.024 0.142 
8.0 0.012 0.109 0.014 0.089 0.016 0.101 
9.0 0.008 0.080 0.010 0.064 0.011 0.075 
10.0 0.005 0.063 0.007 0.054 0.007 0.063 
12.0 0.004 0.050 0.005 0.042 0.005 0.048 
15.0 0.001 0.018 0.001 0.015 0.001 0.015 
17.0 0.000 0.012 0.001 0.009 0.001 0.010 
20.0 0.000 0.006 0.000 0.004 0.000 0.003 

*in terms of coefficient standard deviation 

Underlying surface composed of 2mm grain and with superimposed line features. 

Table 5.7 Results from analysis of synthetic surfaces with line features applying hard 
threshold. 
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Superimposed circle features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.798 0.955 0.568 0.879 0.798 0.978 
1.0 0.564 0.887 0.568 0.879 0.567 0.877 
1.5 0.390 0.784 0.392 0.785 0.405 0.774 
2.0 0.285 0.671 0.283 0.688 0.309 0.673 
2.5 0.217 0.564 0.214 0.587 0.246 0.584 
3.0 0.171 0.479 0.168 0.496 0.198 0.511 
3.5 0.136 0.405 0.133 0.414 0.159 0.440 
4.0 0.107 0.337 0.104 0.341 0.126 0.369 
4.5 0.084 0.272 0.082 0.275 0.098 0.305 
5.0 0.065 0.213 0.064 0.217 0.076 0.244 
5.5 0.050 0.160 0.049 0.167 0.058 0.194 
6.0 0.039 0.123 0.037 0.130 0.044 0.150 
7.0 0.024 0.077 0.024 0.080 0.028 0.097 
8.0 0.016 0.051 0.013 0.033 0.014 0.030 
9.0 0.010 0.038 0.009 0.024 0.010 0.022 
10.0 0.008 0.029 0.007 0.031 0.009 0.037 
12.0 0.005 0.020 0.005 0.022 0.006 0.028 
15.0 0.001 0.003 0.001 0.002 0.001 0.006 
17.0 0.000 0.001 0.000 0.000 0.001 0.004 
20.0 0.000 0.000 0.000 0.000 0.000 0.001 

*in terms of coefficient standard deviation 

Underlying surface composed of 2mm grain and with superimposed circle features. 

Table 5.8 Results from analysis of synthetic surfaces with circle features applying hard 
threshold. 

250 



Superimposed diamond features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.798 0.961 0.800 0.943 0.800 0.948 
1.0 0.563 0.905 0.565 0.889 0.568 0.886 
1.5 0.385 0.820 0.384 0.808 0.399 0.790 
2.0 0.276 0.723 0.272 0.730 0.298 0.683 
2.5 0.208 0.623 0.201 0.657 0.234 0.589 
3.0 0.162 0.534 0.155 0.597 0.190 0.504 
3.5 0.128 0.463 0.122 0.534 0.155 0.431 
4.0 0.101 0.399 0.096 0.476 0.124 0.362 
4.5 0.080 0.336 0.075 0.409 0.099 0.294 
5.0 0.062 0.281 0.058 0.348 0.079 0.234 
5.5 0.049 0.226 0.045 0.288 0.060 0.180 
6.0 0.038 0.173 0.035 0.233 0.047 0.140 
7.0 0.024 0.108 0.022 0.149 0.030 0.085 
8.0 0.015 0.070 0.015 0.106 0.020 0.058 
9.0 0.010 0.052 0.010 0.079 0.013 0.041 
10.0 0.007 0.038 0.007 0.063 0.010 0.031 
12.0 0.005 0.028 0.005 0.045 0.002 0.006 
15.0 0.001 0.004 0.001 0.011 0.002 0.006 
17.0 0.000 0.002 0.001 0.004 0.001 0.002 
20.0 0.000 0.000 0.000 0.002 0.000 0.001 

*in terms of coefficient standard deviation 

Underlying surface composed of 2mm grain and with superimposed diamond features. 

Table 5.9 Results from analysis of synthetic surfaces with diamond features applying 
hard threshold. 
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Superimposed square features 

Threshold Proportion of reconstructed energy 
Value* small standard expanded 

background feature background feature background feature 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 
0.5 0.798 0.957 0.800 0.943 0.797 0.944 
1.0 0.563 0.893 0.566 0.891 0.565 0.878 
1.5 0.389 0.776 0.391 0.815 0.401 0.783 
2.0 0.284 0.659 0.282 0.723 0.305 0.686 
2.5 0.216 0.562 0.215 0.619 0.240 0.598 
3.0 0.169 0.477 0.169 0.522 0.194 0.522 
3.5 0.134 0.410 0.135 0.432 0.155 0.451 
4.0 0.106 0.344 0.107 0.358 0.124 0.386 
4.5 0.083 0.275 0.062 0.228 0.096 0.323 
5.0 0.064 0.216 0.066 0.239 0.074 0.261 
5.5 0.049 0.170 0.052 0.189 0.056 0.210 
6.0 0.038 0.130 0.040 0.146 0.042 0.167 
7.0 0.023 0.075 0.025 0.091 0.027 0.107 
8.0 0.014 0.053 0.016 0.060 0.017 0.070 
9.0 0.009 0.039 0.010 0.044 0.012 0.052 
10.0 0.007 0.029 0.007 0.032 0.009 0.039 
12.0 0.005 0.019 0.005 0.023 0.006 0.030 
15.0 0.001 0.004 0.001 0.005 0.001 0.008 
17.0 0.000 0.002 0.000 0.002 0.000 0.003 
20.0 0.000 0.000 0.000 0.000 0.000 0.001 

*in terms of coefficient standard deviation 

Underlying surface composed of2mm grain and with superimposed square features. 

Table 5.10 Results from analysis of synthetic surfaces with square features applying 
hard threshold. 
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Threshold std Entropy Entropy Entropy 
{*std) {total) Check {total) {feature) {background) 

0.0 0.479 1.0 1.69 1.69 0.00 
0.5 0.48 1.0 2.16 1.41 0.75 
1.0 0.48 1.0 2.61 0.96 1.65 
1.5 0.48 1.0 2.33 0.99 1.34 
2.0 0.48 1.0 2.29 0.99 1.31 

2.5 0.48 1.0 2.23 0.97 1.26 
3.0 0.48 1.0 2.18 0.96 1.22 

3.5 0.48 1.0 2.09 0.95 1.14 

4.0 0.48 1.0 2.02 0.94 1.08 

4.5 0.48 1.0 1.97 0.95 1.03 

5.0 0.48 1.0 1.94 0.93 1.01 

5.5 0.48 1.0 1.84 0.89 0.95 

6.0 0.48 1.0 1.77 0.86 0.90 

6.5 0.48 1.0 1.70 0.84 0.86 

7.0 0.48 1.0 1.70 0.84 0.86 

7.5 0.48 1.0 1.70 0.84 0.86 

8.0 0.48 1.0 1.60 0.80 0.80 

8.5 0.48 1.0 1.60 0.80 0.80 

9.0 0.48 1.0 1.60 0.80 0.80 

9.5 0.48 1.0 1.60 0.80 0.80 

10.0 0.48 1.0 1.60 0.80 0.80 

10.5 0.48 1.0 1.60 0.80 0.80 

11.0 0.48 1.0 1.38 0.69 0.69 

11.5 0.48 1.0 1.38 0.69 0.69 

12.0 0.48 1.0 1.38 0.69 0.69 

12.5 0.48 NaN NaN NaN NaN 

13.0 0.48 NaN NaN NaN NaN 

Table 5.11 Applying a hard threshold to the surface where the background equals 0 in 
height. 
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Threshold std Entropy Entropy Entropy 
{*std} {total} Check {total} {feature} {background} 

0.0 0.48 1.0 1.69 1.69 0.00 
0.5 0.48 1.0 2.55 1.08 1.47 
1.0 0.48 1.0 2.49 0.98 1.51 

1.5 0.48 1.0 2.28 0.99 1.29 

2.0 0.48 1.0 2.23 0.98 1.25 

2.5 0.48 1.0 2.15 0.96 1.19 

3.0 0.48 1.0 2.07 0.96 1.11 

3.5 0.48 1.0 1.98 0.94 1.04 

4.0 0.48 1.0 1.94 0.93 1.01 
4.5 0.48 1.0 1.90 0.91 0.99 

5.0 0.48 1.0 1.83 0.89 0.95 

5.5 0.48 1.0 1.75 0.85 0.90 

6.0 0.48 1.0 1.72 0.84 0.88 

6.5 0.48 1.0 1.68 0.83 0.85 

7.0 0.48 1.0 1.66 0.82 0.84 

7.5 0.48 1.0 1.62 0.81 0.81 

8.0 0.48 1.0 1.60 0.80 0.80 

8.5 0.48 1.0 1.59 0.80 0.80 

9.0 0.48 1.0 1.59 0.79 0.79 

9.5 0.48 1.0 1.57 0.79 0.79 

10.0 0.48 1.0 1.54 0.77 0.77 

10.5 0.48 1.0 1.43 0.71 0.71 

11.0 0.48 1.0 1.38 0.69 0.69 

11.5 0.48 1.0 1.38 0.69 0.69 

12.0 0.48 1.0 1.38 0.69 0.69 

12.5 0.48 NaN NaN NaN NaN 
13.0 0.48 NaN NaN NaN NaN 

Table 5.12 Applying a soft threshold to the surface where the background equals 0 in 
height. 
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Threshold std Entropy Entropy Entropy 
{*std} {total} Check {total} (feature} (background} 
0.0 0.48 1.0 3.42 0.40 3.02 
0.5 0.48 1.0 3.37 0.45 2.91 
1.0 0.48 1.0 2.87 0.73 2.14 
1.5 0.48 1.0 2.42 0.93 1.49 
2.0 0.48 1.0 2.30 0.97 1.33 
2.5 0.48 1.0 2.25 0.94 1.31 
3.0 0.48 1.0 2.19 0.92 1.27 
3.5 0.48 1.0 2.06 0.93 1.14 
4.0 0.48 1.0 1.97 0.94 1.03 
4.5 0.48 1.0 1.92 0.91 1.01 
5.0 0.48 1.0 1.86 0.86 1.00 
5.5 0.48 1.0 1.75 0.92 0.83 
6.0 0.48 1.0 1.72 0.85 0.87 
6.5 0.48 1.0 1.63 0.74 0.89 
7.0 0.48 1.0 1.45 0.58 0.87 
7.5 0.48 1.0 1.20 0.60 0.60 
8.0 0.48 1.0 1.20 0.60 0.60 
8.5 0.48 1.0 1.15 0.57 0.57 
9.0 0.48 1.0 0.30 0.15 0.15 
9.5 0.48 NaN NaN NaN NaN 

Table 5.13 Applying a hard threshold to the surface where the background is generated 
from uniform distribution. 
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Threshold std Entropy Entropy Entropy 
{*std} {total} Check {total} {feature} {background} 
0.0 0.48 1.0 3.42 0.40 3.02 
0.5 0.48 1.0 3.18 0.65 2.54 
1.0 0.48 1.0 2.61 0.91 1.70 
1.5 0.48 1.0 2.30 0.97 1.33 
2.0 0.48 1.0 2.24 0.96 1.28 
2.5 0.48 1.0 2.17 0.94 1.23 
3.0 0.48 1.0 2.09 0.92 1.17 
3.5 0.48 1.0 1.99 0.91 1.08 
4.0 0.48 1.0 1.92 0.89 1.03 
4.5 0.48 1.0 1.85 0.86 0.99 
5.0 0.48 1.0 1.78 0.84 0.95 
5.5 0.48 1.0 1.71 0.80 0.90 
6.0 0.48 1.0 1.64 0.75 0.88 
6.5 0.48 1.0 1.47 0.64 0.83 
7.0 0.48 1.0 1.32 0.60 0.72 
7.5 0.48 1.0 1.20 0.58 0.62 
8.0 0.48 1.0 1.19 0.56 0.63 
8.5 0.48 1.0 1.11 0.45 0.66 
9.0 0.48 NaN NaN NaN NaN 
9.5 0.48 NaN NaN NaN NaN 

Table 5.14 Applying a soft threshold to the surface where the background is generated 
from uniform distribution. 
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Figure 5.1 Examples of synthetic background surfaces. 
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(a) Line, standard size. (b) Circle, standard size. 

60 

a a a a 

(d) Diamond, standard size. ( e) Square, standard size. 

Figure 5.2 Examples of the four different features shapes. 
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Circular feature shape. 

Figure 5.3 Example of different features sizes. 
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Figure 5.4 (a) Original surface and (b) surface with synthetic diamond feature added. 
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Figure 5.5 Reconstruction of details hard thresholded at 1.5 (j at scales 1 to 4. 

261 



10 15 20 25 10 15 20 25 
(mm) (mm) 

(a) Soft threshold = 1 <J. (d) Hard threshold = 1 <J. 

10 15 20 25 10 15 20 25 
(mm) (mm) 

(b) Soft threshold = 2<J. (e) Hard threshold = 2<J. 

Reconstructed (Soft) 

10 15 20 25 10 15 20 25 

(mm) (mm) 

(c) Soft threshold = 3 <J. (f) Hard threshold = 3 <J. 

Figure 5.6 Synthetic diamond feature extraction through wavelet thresholding. 
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(a) The mask for the feature region and (b) the mask for the background region. 

Figure 5.7 Masks used to establish the amount of energy in surface and the diamond 
regions respectively. 
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Figure 5.10 Reconstruction of a hard thresholded surface. 
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Figure 5.10 (continued) Reconstruction ofa hard thresholded surface. 
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Figure 5.10 (continued) Reconstruction of a hard thresholded surface. 
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Figure 5.1 0 (continued) Reconstruction of a hard thresholded surface. 
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Figure 5.11 Reconstruction ofa soft thresholded surface. 
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Figure 5.11 (continued) Reconstruction of a soft thresholded surface. 
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Figure 5.11 (continued) Reconstruction of a soft thresholded surface. 
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Figure 5.11 (continued) Reconstruction of a soft thresholded surface. 
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Figure 5.12 Dividing the coefficients of a profile into two parts; feature part N] and 
background part N2 (N=N]+N2). 
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Figure 5.13 Separation of surface into two areas, background area (left) and feature 
area (right). (Note that the feature area is shown enlarged.) 

275 



7,0 ,------------------------------~ 

6,0 -j-------- ---------------------------.j 

5,0 ~_---------------------------~ 

" " ...... 4,01-----"":-------------------------~ 

~ --......... -~ -~-~ 

::: ;~~~~~~~~~~~--~~~~~" •• ~-~---. -.----..:-~;;-;:£-~-~-~.-~.~."'~~~-::§-~-----~~. ~'-l 
=-i 

',01------------------------------~ 

0,0 +-~-~~--__t_------_r_------_r_------....... ---.J 
0,0 5,0 10,0 

Threshold (*std) 

15,0 20,0 

(a) Total entropy. 

7,0 ,-------------------------------~ 

6,01-------------------------------~ 

5,0 

~ 4,0 

~ 
3,0 1-----..s~""'_~ 

2,0 4-----------...:. 

',O +---------------~::::,,_~~:::...~---.:..:::::':=±='='--~ 

0,0 L~--~__+_----__<-------.:::==::;;;;:::::::;~ 
0,0 5,0 

(b) Background entropy. 

2,0 

1,B 

1,6 

1,4 

1,2 

1;: 
~ 1.0 
w 

O,B 

0,6 

0,4 

0,2 

0,0 I 
0,0 5,0 

10,0 

Thr •• hold (-.td) 

10,0 

Threshold (*std) 

15,0 20,0 

15,0 20,0 

- small(1) 

- stand(1) 

expand(1) 

- small(2) 

- stand(2) 

- expand(2) 

- small(3) 

- S1and(3) 

- expand(3) 

smatl(4) 

Sland(4) 

expand(4) 

- small(1) 

--- stand(l) 
ey,pand(l) 

-_ smalt(2) 

- stand(2) 

- eJq:lond(2) 

-+- smal!(3) 

- sland(3) 
- expand(3) 

small(4) 

stand(4) 

expend(4) 

- small(l) 

---- stand( l ) 
expand(1) 

-- small(2) 

- stand(2) 

- expand(2) 
--. small(3) 

- stand(3) 

- expand(3) 

small(4) 

S1and(4) 

expand(4) 

(c) Feature entropy (note exaggerated vertical scale used for clarity). 

Figure 5.14 Entropy measure through the thresholding process, underlying surface of 
grain size 2mm. 
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Figure 5.15 Entropy measure through the thresholding process, underlying surface of 
grain size 3mm. 
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Figure 5.16 Entropy measure through the thresholding process, underlying surface of 
mixture of grain sizes 2mm and 3mm. 
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Figure 5.17 Examples of two synthetically generated test surfaces. 
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Figure 5.18 Present the difference between (a) not adding the approximation and (b) 
adding the approximation in the reconstruction. 
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Figure 5.19 The difference between zero and the reconstructed background surface will 
be picked up as information by the entropy measure. 
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Figure 5.22 Hard thresholded and reconstructed surface for different threshold values. 
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Figure 5.22 (continued) Hard thresholded and reconstructed surface for different 
threshold values. 
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Figure 5.22 (continued) Hard thresholded and reconstructed surface for different 
threshold values. 
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Figure 5.23 Soft threshold, entropy for the reconstructed surface with the background 
surface set to zero. 
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Figure 5.25 Example of hard thresholding and reconstruction of test surface. 
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Figure 5.27 Example of soft thresholding and reconstruction oftest surface. 
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Figure 5.28 Measuring the entropy in the thresholded and reconstructed test surface. 
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Figure 5.30 Thresholding of experimental rived-bed sediment surface. 
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Figure 5.31 Enhancement of possible coherent structure. 
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Figure 5.33 Thresholding of experimental rived-bed sediment surface, data-set 
'2648h15m'. 
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Figure 5.34 Applying scale dependent thresholding to the sediment data. 
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Figure 5.35 Reconstruction combining amplitude and scale threshold. 
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CHAPTER 6 

SUMMARY OF CONCLUSIONS, DISCUSSION AND 

RECOMMENDATIONS 

6.1. Introduction 

This chapter summarises the work presented in this thesis. It is structured as follows: 

section 6.2 discusses the achievement of the aims detailed in chapter 1. Section 6.3 

contains a summary of the main results from the analysis presented in previous 

chapters. Section 6.4 presents the main conclusions from the work carried out and, 

finally, section 6.5 provides recommendations for possible future investigations. 

6.2. Achievement of the aims 

The research was carried out to study the morphological changes occurring in river-bed 

sediment surfaces over time using wavelet transform-based analysis techniques. The 

aims, as stated in chapter 1, were: 

1. to characterise the topographical structural behaviour of experimental rived-bed 

sediment surfaces over time using wavelet transform-based tools, 

2. to separate bed form features within the experimental nver bed sediment 

surfaces using the wavelet thresholding technique. 
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To accomplish these aims the following objectives were established: 

1. to undertake a literature review to appraise current applications of the wavelet 

transform as a method for surface analysis, 

2. to develop computer algorithms for overall characterisation of the sediment 

surface data, 

3. to develop computer algorithms for the enhancement of local surface features in 

the data, 

4. to apply the developed algorithms to analyse both synthetic and experimental 

sediment surfaces data. 

The work carried out attempted to meet all of these aims and objectives. However, a 

number of problems occurred which caused time delays to the project. The most 

significant difficulty was the relatively poor quality of the experimental rived-bed 

sediment surface data-sets used in the study. The data-sets contained a number of 

drop-out points which had to be dealt with prior to continuing the analysis and a 

significant amount of time was spent by the author in developing an algorithm to deal 

with these drop-out values prior to the main analysis work. Hence, less time was 

available to investigate the characteristics of the surfaces. 

6.3. Summary of completed work 

This section contains a summary of the main results from this work. 

6.3.1. Characterisation of profile traces 

An initial investigation was undertaken using the I-D wavelet transform to appraise its 

use as a profile characterisation tool. 

A calibration study to test the method was carried out usmg synthetic fractional 

Brownian motion (fErn) profile data with known scaling properties, characterised using 

the Hurst exponent (ll) scaling parameter. It was shown how the wavelet transform can 

be used effectively to characterise synthetic fBm profile data. The results showed small 
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differences between the known values of H and that determined using the wavelet 

transform-based method. Previous research by others has shown that for certain 

techniques H may only be determined with reliable accuracy for 0.2 g{ ~.9. This was 

also found by the author for the results obtained using the wavelet transform method. 

These results are tabulated in table 3.3. For the cracked concrete profile data the mean 

value of H was found to be 0.84, 0.84 and 0.87 for the small, medium and large sized 

beams respectively using the DWT. Using the SWT the corresponding results were 

0.83,0.84 and 0.88 for the small, medium and large sized beams respectively. This is in 

agreement with previous studies by other authors who have shown that cracked concrete 

profiles have a scaling exponent close to H=0.8. 

A brief study of medical signals (pulse oximeter waveforms) using the DWT indicated 

that the I-D DWT can effectively remove both noise and signal drift from noisy pulse 

oximeter signals using a basic smoothing method. The DWT was also applied to 

determine the frequency content of two different types of ECG signals. The result 

showed a peak of 6.25 Hz for the ROSC signals and two peaks of 6.25 Hz and 3.13 Hz 

for the asystole signals. However, the technique was not able to determine shock 

outcome with the accuracy necessary for implementation within a medical device. 

This preliminary work allowed the author to develop her skills by employing both I-D 

discrete and 1-D stationary wavelet transform methods, prior to her main work 

concerning the analysis of surface data using 2-D wavelet transform techniques. 

6.3.2. Global surface characterisation 

This study involved the development of a wavelet transform-based method to 

characterise the global topological characteristics of experimental river-bed sediment 

surfaces. 

Prior to the analysis, drop-out values were removed from the surface data-sets. A 

number of methods were tried, of these Delaunay triangulation produced the best 

estimation of the true values at the locations of the drop-out points, especially at the 

edges of the data. The original experimental river-bed sediment surface data was 

therefore modified using this method prior to the main analysis. 
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Initial investigations showed that significant edge effects appear around the boundaries 

of the wavelet transform details. Algorithms were developed to remove these erroneous 

edge coefficients from the detail coefficients, whereby only the contribution to each 

scale detail from the surface components untainted by the edge remained in the analysis. 

By plotting the cumulative scale dependent energy of the transform against scale, a 

distribution of the surface forms was generated: the form size distribution lfsd). It was 

argued that this measure is more useful than the traditional particle size distribution 

(psd), as it is the topographical form of the surface rather than the individual particle 

sizes that affect the near bed flow regime and hence bed friction characteristics. The 

analysis produced a number offsd curves for each experiment. Studying thefsd curves 

it was shown that some data-sets exhibit a higher quantity of proportional energy at 

larger scale forms. It is suggested that this indicates larger topographical differences in 

the surface while a smaller amount of large scale energy represents a rather flat surface 

topography. 

It was difficult to distinguish an obvious degradation pattern within each experiment. As 

sediment material is fed into the flume through the experiments (in all except one) a 

global equilibrium in the amount of sediment in the channel is soon reached. Further, 

the scanned area is relatively small, hence if particle structures form and/or break up in 

this region this leads to largely variable fsds over time (i.e. no local equilibrium in the 

sediment volume within the scanned area is achieved). Potential degradation can be 

seen in the results of the analysis for some of the experiments, which suggests that this 

method would be useful for detecting the coarsening of the sediment surface structure. 

However, verification of this would probably require a much larger scan size. 

The research also showed that the DWT results in poorer reproducibility compared to 

the SWT. This is because the DWT downsamples the data at each level, hence at the 

larger scales only a few wavelet coefficients are produced. As the SWT does not 

involve downsampling it is more consistent over all scales and especially at larger 

scales. It was therefore recommended that computation of the form size distribution is 

performed using the SWT. 
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6.3.3. Local feature recognition 

This study investigated the use of wavelet thresholding techniques to identify local 

features on the sediment surfaces. An amplitude threshold was applied to extract 

dominant grains and a scale dependent threshold was applied to extract large-scale 

formations of grains within the surfaces. 

The amplitude thresholding technique was tested using synthetic data. Evaluating the 

thresholding performance based on the energy content it was found that there is a much 

faster reduction in energy content for the background surface region compared to the 

feature region. In addition, there is an increase in the hard thresholded energies 

compared to the soft thresholded energies. However, no 'ideal' threshold value could be 

established and hence the Shannon entropy measure was applied. 

The results showed that the entropy in the background decreases over the thresholding 

process, i.e. these surface components are reduced. However, the entropy for the feature 

increases indicating that the feature in fact gains components. It was concluded that the 

increase in feature entropy was due to the presence of edge effects in the reconstruction 

and the decrease of information within the whole surface. Further, the total entropy 

curve changes slopes through the thresholding process. Two distinct transition points 

between the slopes of the curve could be identified. The second of these transition 

points is located at the threshold value which was applied to extract the feature and 

completely remove the background. However, it was suggested that the initial transition 

point was related primarily to the reduction of smaller coefficients in the background 

surface and hence this would be an 'ideal' threshold value to apply to retain larger 

coefficients in the reconstruction and therefore enhance dominant features within the 

surface. 

The results from the laboratory experimental sediment surface data analysis 

demonstrated that the proposed method could be used to enhance dominant grains 

within the surface for visual detection. The result showed that the later surface scans 

had more visible structures compared to the earlier surface scans. This is particularly 

evident in the unfed experiment shown in figure 5.36. Further, by applying a scale 

dependent wavelet threshold, the overall surface structure was obtained. The result 
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showed larger structural variations in the later surface scans compared to the initial 

surface scan, shown in figure 5.37. This would suggest that, for these experiments, the 

major degradation of the surface appears in the early stages of the sedimentation 

process. Evaluating the surface using these two thresholding methods allowed for 

structural changes over time to be detected. 

6.4. Conclusions from this thesis 

The following conclusions can be drawn from the work conducted in this thesis: 

The discrete wavelet transform (DWT) has poorer reproducibility compared to the 

stationary wavelet transform (SWT). The DWT downsamples the data at each level, 

hence at the larger scales only a few wavelet coefficients are produced. In the study, 

conducted using synthetic sediment background surfaces, it was shown that the SWT is 

more consistent over all scales and especially at larger scales. 

An amplitude wavelet threshold can be applied to highlight dominant grains within the 

surfaces. The study applied an amplitude threshold to extract dominant grains within the 

surfaces. The threshold value was determined in terms of total entropy measure. A 

transition point between the slopes of the entropy curve was identified as the 'optimal' 

threshold value to use to filter out less significant information and therefore enhance 

larger features (i.e. dominant grains) within the surface. 

A scale threshold can be used for extract the general form of the surface. As the general 

overall form size of the surface is found within the large-scale details a scale threshold 

can be used to filter out these details. 

The cumulative distribution of scale related wavelet detail energy provides a measure of 

the form sizes within the surfaces: the form size distribution ((sd). As each wavelet scale 

detail can be related to a specific real physical size, this allows the prevalence of surface 

forms to be revealed. 

The (sd measure could potentially be more useful than the traditional particle size 

distribution (psd). It is argued that this is because the topographical form of the surface 
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rather than the individual particle sizes is likely to affect the near bed flow regime and 

hence bed friction characteristics. 

The overall topography is related to the amount of large scale energy. Studying the 

results it is apparent that some of the fsds exhibit a higher quantity of proportional 

energy at larger scale forms. It is suggested that this shows larger topographical 

differences in the surface while a smaller amount of large-scale energy (often found in 

the initialfsd) is representative of a rather flat surface topography. 

Because of the relatively small physical size of the scanned surfaces used in the 

analysis, highly variable fsd curves were produced over time. Local topographical 

changes in the scanned sediment surface area over time cause distinct changes in the 

fsds. 

Erroneous edge effects coefficients may be taken account of in the analysis. The study 

showed that, due to misalignment between the edges of the data erroneous (usually 

large), edge effect coefficients are produced at the boundaries of the wavelet details. 

Algorithms were therefore developed which identified and removed the number of 

erroneous edge coefficients at each end of the transformed data where only the 'valid' 

coefficients were retained for further analysis. 

6.5. Recommendations for future research 

This final section provides brief outline suggestions for future work stemming from this 

thesis. These are given below. 

• This study has shown the potential of the wavelet transform as a sediment surface 

characterisation tool. However, to assess the use of the wavelet transform 

completely it is necessary to analyse further sediment surface data sets. The study 

described herein was limited because the scanned area of the sediment surface bed 

was relatively small and therefore largely variable fsds were produced over time. A 

more complete evaluation could be undertaken with further measurements of 

sediment surface beds using different sizes of arrays and space settings of the laser 
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profilometer. Further, from the results in experiment 7 (i.e. where no sediment 

material was fed into the flume) it appears that the major degradation occurred 

between the first and second data-sets. Therefore measuring the sediment surface at 

shorter time intervals at the beginning of the experiment may produce a clearer 

picture of the initial surface degradation of the sediment surface through wavelet 

analysis. These are pertinent issues to be investigated in future studies. The work 

carried out in this thesis should serve as a basis for such investigation. 

• A preliminary study was carried out companng the proposed wavelet based 

characterisation method, fsd, with the phases of mobility in the surface bed. 

However, from this study no obvious link between the changes in the fsd and the 

mobility data could be concluded. This could therefore be an interesting area for 

future research. 

• This project aimed to investigate the use of the wavelet transform as a river-bed 

sediment surface characteristics tool, however the methods presented could be of 

potential use in other areas of civil engineering. One area that might benefit is the 

determination of the roughness inside pipes which are in use and may have changed 

over time. This is currently determined through visual inspection of the surface. 

• Due to time limitations in the project, the work completed for the research was not 

able to fully scrutinise wavelet thresholding of the experimental sediment surface 

data. The current investigation highlighted the possibility of applying wavelet 

amplitude thresholding to extract dominant grains within sediment surfaces. An 

attempt was made to identify an 'ideal' threshold value for extracting these features 

based on the measurements of the total entropy. It was only possible to analyse 

limited number of experimental data-sets in this study. Future studies could therefore 

include complete sets of experimental sediment surface data-sets to fully evaluate the 

wavelet thresholding technique as a tool to detect movement of sediment material 

over time. 
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Appendix A 

Program: jBmgen.m 

Generating fractional Brownian motion (fBm) traces 

M=lO; 
N=2/\M; 
NT=100; 
MEM=6*N; 
Kf=10; 

H=0.7; 
gam= 1/ gamma(H+O.S); 
r _1 =randn(NT,MEM+N); 
r _1 =r_l *((2*Kf)/\O.S)*(1 /\H); 

afbm=zeros(NT,N); 
fork=I:NT; 

for i=I:N 
fbml=O; 
fbm2=O; 
for j=i-MEM:-l 

% max level 
% number of points in jBm signal 
% number of traces 
% memory required to give jBm good statistics 
% diffusion type coefficient, (spreading of the trace) 

% scaling property 
% gamma function used in definition of jBm 
% generating vector of normally distributed random numbers 

fbml = (fbm1+( (i-j)"'(H-O.S) - (-j)"'(H-O.S)) *r_l(k,j+MEM)); 
end 
for j=O:i-l 

fbm2= (fbm2+( (i-j)"'(H-O.S) ) *r_l(k,j+MEM)); 
end 
afbm(k,i)=fbml +fbm2; 

end 
end 
afbm=afbm. *gam; 
size( afbm') 
save('c:\fbm\fbm\fbm07.dat','afbm','-ASCII'); 
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Appendix A 

Program: jBm _dwt.m 

Determine scaling properties oftBm traces using the D WT 

% wavelet information 
wname='db2'; % wavelet used 
dwtmode('per'); % wavelet mode 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters((wname)); % wave filters 
[Fl,F2]=wfilters((wname),'d'); % d=decompositionfilter, Fl=low pass and F2=high pass 

NF=length(Fl); 
NE=floor((NFI2)I2); 
NT=100; 
M=10; 

fork=l:NT; 
y=x(k,:); 
si=size(y); 
len=length(x); 

% number of jBm profiles 
% maximal level of decomposition 

% D WT - decomposition 
[A,L] = wavedec(y',M,Fl,F2); % A = the wavelet decomposition vector, 

% L= bookkeeping vector 

ifNF>2; 
form=l:M; 

coeflength=21\(M -m); 
leftedge(m)= NE; 
rightedge(m)= NE; 

% modifiying the wavelet coefficients 

% number of edge coefficients, left edge 
% number of edge coefficients, right edge 

a{m}=detcoef(A,L,m); 
a{m}=a{m}(NE+ 1 :coeflength-NE,:); 
alen=length(a{m} ); 

% excluding the edge coefficients 

if alen>O; % calculating the variance of the traces 

V(k,m)=(sum( sum( a {m} .1\2)/( alen))); 

end 
end 

end 
end 

avevar=sum(V)/NT; % calculating the mean variance 
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Appendix A 

Program: jBm _ swt.m 

Determine scaling properties oftBm traces using the SWT 

% wavelet information 
dwtmode('per') % wavelet mode 
wname='db2' % wavelet used 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters«wname)) % wavejilters 
[FI,F2]=wfilters((wname),'d'); % d=decompositionjilter, Fl=low pass and F2=high pass 
NF=length(FI) 

% number of traces NT=lOO; 
M=lO; % maximal level of decomposition 

fork=l:NT; 
y=x(k,:); 

storlek=size(y) 
len=length(y) 

% SWT - decomposition 
[swa,swd] = swt(y,M,(wname)); 

% modifiying the wavelet coefficients 
for lev = I :M; 

lev; 
leftedge=[(21\Iev-l )*(NFI2-1 )]; 
rightedge= [((21\Iev-l)*(NF/2))]; 
x=zeros(1,2I\M); 

x=[ swd(lev,(leftedge+ 1 :len-rightedge ))]; 
xlen=length(x); 

% number of edge coefficients, left edge 
% number of edge coefficients, right edge 

% excluding the edge coefficients 

ifxlen>O; % calculating the variance of the traces 

var(k,lev)=(sum(sum(x.1\2))/(xlen)); 
end 

end 
end 

avevar=sum( var)!NT % calculating the mean varaince 
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Appendix A 

Program: proLdwt.m 

Determine scaling properties of con crete crack profiles using the DWT 

load c:\crack data\rn4r.dat -ASCII % load the jile 
profname = 'm4r'; 

% wavelet information 
wname='db2' % wavelet used 
dwtmode('per') % wavelet mode 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters«wname» % wavejilters 
[Fl,F2]=wfilters«wname),'d'); % d=decompositionjilters, Fl=low pass and F2=high pass 
Energy=sum( sum(y. /\2» 
M = 11; % maximal level of decomposition 

% D WT - decomposition 
[A,L] = wavedec(y,M,Fl,F2); % A = the wavelet decomposition vector 

% L= bookkeeping vector 

NF=length(Fl); 
NE=floor«NF/2)/2); 

ifNF>2 
form=I:M 

coeflength=2 /\(M -m); 
leftedge(m)= NE; 
rightedge(m)= NE; 

% modifiying the wavelet coefficients 

% number of edge coefficients, left edge 
% number of edge coefficients, right edge 

a {m}=detcoef(A,L,m); 
a{m}=a{m}(NE+ 1 :coeflength-NE,l); 
alen=length(a{m} ); 

% excluding the edge coefficients 

ifalen>O; % calculating the variance for the projile 

V(m)=(sum(sum(a {m} ./\2)/( alen»); 
end 
end 

end 
% plotting the variance against the scale 

figure; plot(1og(V)/log(2), 'b-o'); 
title(['Variance " (profname),', DWT, Daub4 (4 filtcoef), mod coef, per']); 
xlabel('level'); ylabel('log(var)/log(2)'); 

varri=log(V)/log(2); 
save variance varri -ascii; 
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Appendix A 

Program: proLswt.m 

Determine scaling properties of concrete crack profiles using the SWT 

load c:\crack data\m4r.dat -ASCII 
profuame = 'm4r'; 
y=m4r(1 :2I\M,2); 

% wavelet information 
dwtmode('per') % wavelet mode 
wname='db2' % wavelet used 

% load the file 

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters((wname)) % wave filters 
[Fl,F2]=wfilters((wname),'d'); % d=decompositionfilters, Fl=low pass and F2=high pass 
NF=length(Fl); % length of the waveletfilter 
len=length(y); 
M = 11; % maximal level of decomposition 

% SWT - decomposition 
[swa,swd] = swt(y,M,(wname)); 

% modifiying the wavelet coefficients 
for lev = 1 :M; 

lev; 
leftedge=[(21\1ev-l )*(NF/2-1 )]; 
rightedge= [((21\1ev-l)*(NF12))]; 
x=zeros(1,2I\M); 
x=[ swd(lev,(leftedge+ 1 :len-rightedge))]; 
xlen=length(x) 
ifxlen>O; 

% number of edge coef, lefth edge 
% number of edge coef, rigth edge 

% excluding the edge coefficients 

% calculating the variance of the profile 
var(lev)=(sum((sum(x.1\2))/xlen)) % divide by 21\lev for SWT energies! 

end 
end 

% plotting the variance against the scale 

figure; plot(log(var')/log(2),'b-o'); 
title(['Variance " (profuame),', SWT, Daub4 (4 filtcoef), mod coef, per']); 
xlabel('level'); ylabel(,log( variance )/log(2)'); 
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Appendix A 

Program: interp1.m 

Removing drop-out points. linear interpolation (row and columns) 

A = [file]; Z=A(:,3); 
len=length(Z)/512 

drop=fmd(matrix <-900); 
ledrop=length( drop) 
[i,j]=fmd(matrix <-900); 

m=[ ]; 
x=(l:len); 

forNN=1:512; 

y=matrix(NN,: ); 

yy=[ ]; 
xx=[ ]; 

for i=l:len; 
ify(i) < -900; 

else 

yy=[yy,y(i)]; 
xx=[xx,x(i)]; 

end 
end 
length(x); 
length(xx); 
iflength(x) -= length(xx); 

%finding the number drop-out points in the data set, i.e. 
% ... values <-900 

% the length of the row 

% picking out the NN row and all the columns in that row. 
% change to (:,NN) to pick out columns instead to produces ... 
% ... matrix2 

% picking out the values to interpolate, less then -900 

% putting the values into new vectors 

y = interp1 (xx,yy,x,'linear', 'extrap'); % determine the new values of the vector using 

end 
matrix1(NN,:) = y; 

end 

drop=fmd(matrix <-100); 
ledrop=length( drop) 

matrix=(matrix1 +matrix2)/2 

% saving the values into matrix 

% checking the matrix for drop-out values. 

% new matrix without drop-out points. 
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Appendix A 

Program: interp2.m 

Removing drop-out points, interpolation using triangulation 

for j=1:5; 
file _ name=filelist(j); 
filename = ['c:\matlabR12\work\Surface\1900\',dirdetails(j).name]; 
load_file=load(filename,'-ASCII'); 
AA =[load _file]; 
size(AA); 
len=length(AA) 

drop=fmd(A<-900); 
dropfi=length( drop) 
si=length(load _file) 

ifsi=262144; 

[rows cols]=size (A); 
x=[ ]; 
y=[ ]; 
z=[ ]; 

for i=1:rows; 

if(A(i,3»-900); 
x=[x,A(i,1)]; 
y=[y,A(i,2)]; 
z=[ z,A( i,3)]; 
end 

end 

ti = 0:0.5:255.5; 
tj = 128:-0.5:-127.5; 
[XI, YI]=meshgrid( ti, ti); 
ZI = griddata(x,y,z,XI,YI); 

ZI; 
drop=fmd(ZI <-500); 
droppoints=length( drop) 
time=cputime-t 

% finding the number of drop-out points in the matrix 

% using only suiface data with size 512x512, i.e. 262144 data 
% ... points 

% removal of drop-out points, the code keeps only values 
% ... greater then -900 

% making up a new grid [XI, Ylj 
% the new values are interpolated on the grid [XL Ylj 

% checking if all the drop-out points have been removed 
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Appendix A 

Program: modcorn.m 

Compensate (or 'missing' bottom right corner 

load c:\Surface\Sediment\Griddata\FILE.mat -ASCII; 
profname = 'FILE.m'; 
matrix=[FILE.m]; 

x2=matrix(l: 100,(512-100):512)); 

drop=fmd(matrix--NaN); 
drop _ out=length( drop); 
[i,j]=fmd( -isnan( matrix)); 

%finding the NaN in the matrix 

before=matrix( 1,:); 
x=1:512; 
for i=1:512; 

xx=[ ]; yy=[]; 

y=matrix( i,:); 
j=fmd( -isnan(y)); 
y(j); 

yy=[yy,y(j)]; 
xx=[xx,x(j)]; 

% finding the number of NaN in the matrix 
% returns 1 if not equal to NaN 

% going through each row of the matrix 
% locating NaN (if any) at each row 

iflength(x) -= length(xx); 
yi=interp1 (xx,yy,x,'nearest','extrap'); % determine the new values of the vector 

% ... using extrapolate. 
xxstart=xx( 1 ); 
xxend=xx( end); 
y( 1 :xxstart -1 )=y( xxstart); 
y(xxend+ 1 :(length(y)))=y(xxend); 

end 
matrix(i,:) = y; 

end 
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Program: fsddwt.m 

(sd - edge effects 2-D D WT 

MM=13; 
lenn = 2I\MM; 

i=l:lenn; 

xx(i)=O; xx(lenn)=l; 
yy(i)=O; yy(l)=l; 

[AI,Ll] = wavedec(xx,MM,Fl,F2); 
[Ar,Lr] = wavedec(yy,MM,Fl,F2); 

edright=[ ]; edleft=[ ]; 

al=[ ]; 
ar=[ ]; 
for mm=I:MM; 

Appendix A 

% determine size edge coefficients 
% make this level much greater than the size of the 
% analysed data so the edge coefficents will be right. 

% length of edge coefficients 
% putting last coefficient to a number (left) 
% puttingfirst coefficient to a number (right) 

al{mm}=detcoef(AI,Ll,mm); % top and left edge 
edtop(mm)=length(fmd(al {mm}((1 :(21\(MM-mm))/2))-=0)); 
edleft(mm)=length(find(al{mm}((I:(21\(MM-mm))/2))-=0)); 

ar{mm}=detcoef(Ar,Lr,mm); % bottom and right edge 
edbottom(mm)=length(find(ar{mm} (((21\(MM-mm))/2)+I:end)-=0)); 
edright( mm)=length( fmd( ar {mm} (( (21\(MM-mm) )/2)+ 1 :end)-=O)); 

end 

% the discrete wavelet transform 
[C,S] = wavedec2(x,M,wname); 
exdata=5l2-len % compensate for extra data at beginning 

for lev= 1 :M; 
NocoeC org(lev)=(21\(M-lev)),,2; 

N ocoef(lev )=(21\(M -lev )-edtop(lev )-edbottom(lev)) ... 
*(21\(M -lev )-edleft(lev )-edright(lev)); 

le(lev )=(21\(M -lev )-edleft(lev )-edright(lev)); 

% number of original coefficients at ... 
% ... each scale 
% number of 'true' coefficients left at 
% ... each scale after modifing the edges 

add {lev}( 1 :lev, 1 :lev)=O; % extracting wavelet coefficients from the transform 
h{lev} = detcoef2('h',C,S,(lev)); v{lev} = detcoef2('v',C,S,(lev)); 
d{lev} = detcoef2('d',C,S,(lev)); a{lev} = detcoef2('a',C,S,(lev)); 

addl {lev }=h {lev }+v {lev }+d {lev}; 
langd(lev)=length(addl {lev}); 

iflangd > Ie; 
% removing edge coefficients from the transformed matrix 

add {lev }=addl {lev }((( edtop(lev))+ 1 :((21\(M-Iev))-edbottom(lev))), ... 
(( (( exdata-l )/21\(lev) )+edleft(lev)+ 1 ):(21\(M-Iev) )-edright(lev))); 

eng(lev)=(sum(sum( add {lev} .1\2))); % energy of the details coefficients 

if eng(lev»O; % mod. for area difference 
eng2(lev )=( eng(lev) *(N ocoeC org(lev)/N ocoef(lev)); 

end 
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end 
end 

totaleng=sum( sum( eng2)); 

for lev=l:M; 
if eng(lev»O; 

Appendix A 

% the form size distribution lfsd) based on the D WT 

FSD 1 (lev )=( ( eng2(lev )/totaleng) * 1 00); % determine the % of energy at each 
% ... scale 

FSD2(lev)=sum(FSD1(1:lev)); 
end 
end 

FSD2 

% adding the FSD 1 together 
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Program: fsdswt.m 

fsd - edge effects 2-D SWT 

M=9; mm=2"M; 
matrix=A( 1:mm, 1 :mm); 

Appendix A 

x=matrix; % surface data 

wname='db2'; % analysing wavelet information 
[A,H,V,D] = swt2(x,M,wname); 
[F1,F2]=wfilters«wname),'d'); % waveletjilter 
N=length(F1) 

for lev= 1 :M; % determine the size of the edge coefficients 

edtop=«2"lev)-1)*(N/2-1); % number of edge coefficients at the top and left edges 
edleft=«2"lev)-1 )*(NI2-1); 
edbottom=«2"lev)-1)*(NI2); % number of edge coefficients at the bottom and left edges 
edright=( (2"lev )-1 )*(N/2); 

NocoeC org(lev)=(2"M)"2; % number of original coefficients at each level 

N ocoef(lev )=(2" M -edtop-edbottom) ... 
*(2"M-edleft-edright); 

% no. of 'true' coefficients left at each 
% ... level after mod. the edges 

le=length(H( 1 ,: ,lev)) 
le2=(le-edleft -edright) 

% length of the matrix 

ifle2 > 0; 

% minus size of edge effects if le2<O all edge 
% effects i. e. no coe. left in matrix 

HH( :,:,lev )=H( :,:,lev )/4"(lev/2); 
VV( :,:,lev)= V( :,:,lev )/4"(lev/2); 
DD( :,:,lev)=D( :,:,lev)/4"(levl2); 

add = HH«( edtop + 1):«2"M)-edbottom)),« edleft+ 1):«2"M)-edright)),lev) ... 
+VV«( edtop + 1):«2"M)- edbottom)),« edleft+ 1):«2"M)-edright)),lev) ... 
+DD«( edtop+ 1 ):«2"M)- edbottom)),« edleft+ 1 ):«2"M)-edright)),lev); 

% detremine the energy 
energy(lev )=( sum( sum( add. "2)) )*(N ocoeC org(lev)/N coef(lev)) 
engtot=( energy(lev )+engtot) 

end 
end 

end 
% the form size distribution ifsd) based on the SWT 

for lev=1:(M-2); 
ifle>O; 

dist(lev )=( energy(lev)/ engtot)* 1 00; 
dist2(lev )=sum( dist( 1 : lev)); 

end 
end 

dist2 
energy 
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Appendix A 

Program: file _ energy.m 

Determine the energy content in the feature and the background part 

% setting the masks for the analysis 
xmaskinside=zeros( m,n); 
xmaskoutside=zeros( m,n); 
xmaskinside( find( xdiffnorm>4))= 1 ; 
xmaskoutside( find( xdiffnorm<4))= 1 ; 

% feature mask 
% background surface mask 

% original energy in the suiface 
energy _ org=surn( surn( x. 1\2)) 
energydiamond _ org=surn( surn« x. *xmaskinside ) .1\2)); 
energysurC org=surn( surn« x. *xmaskoutside) .1\2)); 
ration _ D _ S = (energydiamond _ org/energysurC org); 

% total energy 
% energy in feature part 
% energy in feature part 

% statonary wavelet transform 
ETOTAL=sum(surn(x.1\2)) 
wname='dbl' 
dwtmode('per'); 
M=4; 
[A,H,V,D] = swt2(x,M,wname); si=size(A) 

for lev= 1 :M; % standard deviation for the details 

std=sqrt« sum(sum(H(:,:,lev).1\2+V(:,:,lev).1\2+D(:,:,lev).1\2)))/(rows*columns)); 

% thresholding the transform coefficients 
thres=std*(multrs); % threshold value for each scale 

H(:,:,lev) = wthresh(H(:,:,lev),(thr),thres); 
V(:,:,lev) = wthresh(V(:,:,lev),(thr),thres); 
D(:,:,lev) = wthresh(D(:,:,lev),(thr),thres); 

end 

% reconstruction 
XADD(l:m,l:n)=O; 

for lev= 1 :M; 
HH=H( :,:,lev)/41\(lev/2); 
VV=V(:,:,lev)/41\(lev/2); 
DD=D(:,:,lev)/4I\(lev/2); 

X=iswt2(HH,wname)+iswt2(VV,wname)+iswt2(DD,wname); 
size(X); 
XADD=XADD+X; 
end 

% energy in the thresholded surface 
energytotal=sum(sum(XADD.1\2)); % total energy 
energydiamond=sum(surn«XADD.*xmaskinside).1\2)); % energy in feature part 
energysurf=surn(surn«XADD.*xmaskoutside).1\2)); % energy in feature part 
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Appendix A 

Program: file_entrl.m 

Measure of entropy 

% XADD is the thresholded and reconstructed surface 
XMODADD=abs(XADD)2; % absolute values oftheXADD suiface 
XMODSUM=sum(sum(XMODADD)); 
XPROB=XMODADD.lXMODSUM; 

ENTROPYINC=zeros(rn,n); 
for ii=l:m; 

for jj=l:n; 
if(XPROB(ii,jj) -= 0); 

ENTROPYINC(ii,jj)=XPROB(ii,jj)*log1 O(XPROB(ii,jj)); 
end 
end 
end 
end 

Program: file_entr2.m 

Measure of entropy - feature and background area 

% XADD is the thresholded and reconstructed suiface 
XMODADD=abs(XADD)2; % absolute values of the XADD surface 
XMODSUM=sum(sum(XMODADD)); 
XPROB=XMODADD.lXMODSUM; 

ENTROPYINC=zeros(rn,n); 
entropyA=zeros(rn,n); 
entropyB=zeros( rn,n); 

% feature area 
% background area 

for ii=l:m; 
for jj=l:n; 

end 
end 

if(XPROB(iijj) -= 0); 
ENTROPYINC(ii,jj)=XPROB(ii,jj)*loglO(XPROB(ii,jj)); 

end 

if jj>=35 1 &jj<=670 & ii>=485 & ii<=548; 
entropyA(ii,jj)=XPROB(ii,jj)*loglO(XPROB(ii,jj)); 

else 
entropyB(ii,jj)=XPROB(ii,jj)*loglO(XPROB(ii,jj)); 

end 
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June 2-5, 2002, Columbia University, New York, NY EM 

2002 

RIVER BED SURFACE ROUGHNESS ANALYSIS USING 2-D WAVELET 

TRANSFORM-BASED METHODS 

ABSTRACT 

Annie Nyanderl 
Paul S Addison2 

Ian McEwan3 

Gareth Pender4 

This paper describes the analysis of river bed sediment surface data using the two-dimensional discrete 
wavelet transform. When sedimentation occurs in a channel the topography of the bed surface will change 
which in turn will affect the flow characteristics. It is therefore important to be able to characterise the 
bedsurface topography. In this study the sediment surface data was analysed using the wavelet transform - a 
relatively new mathematical tool for data analysis. Interest in this analysis method has increased during 
recent years, and today it can be found in a number of areas in both science and engineering. The sediment 
data set was decomposed into a range of scales using the Daubechies 12 wavelet for the analysis. By 
determining the energy in the scale ranges a novel distribution, the form size distribution, of the bed forms 
was computed. 

Keywords: River Bed, Sediment Surface, Wavelet Analysis, Surface Fonns. 

INTRODUCTION 

The wavelet transfonn is a relatively new signal analysis technique and it has, during recent 
years, gained in importance as an analysis method. It was not until the beginning of the 1990 s that 
the technique started being used by scientists and engineers for data analysis. However, today the 
application of the wavelet transfonn can be found in a number of areas. It has been shown to have 
advantages over other signal analysis methods and has found many practical uses in science and 
engineering (Addison, 2002) including surface analysis (Dougan et ai, 2000; Frantziskonis et ai, 
2000; Jiang et ai, 1999; Lee et ai, 1997; Moktadir and Sato, 2000; and Xiong et ai, 2001). 

In our study, the two-dimensional discrete wavelet transfonn (2-D DWT) was used to analyse 
sediment surface data sets collected during a study of the annouring of river beds (McEwan et ai, 
2002; Pender et ai, 2001). 
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SEDIMENT TRANSPORT 

When sedimentation occurs in an erodable channel the topography of the bedsurface will 
change unavoidably. This change of the surface topography may significantly affect the flow in the 
channel as the new surface geometry affects the local disturbance of the flow. The main influence 
on the flow is the surface roughness (Julien, 1995). For the analysis of a flow in a channel it is 
therefore important to be able to characterise the bedsurface topography. 

RIVER BED SURFACE SEDIMENT DATA 

Graded sediment was placed in a trapezoidal concrete channel and subjected to a water flow 
which caused size selective sediment transport. An area of256mm square was monitored over time 
with a 3-D laser displacement meter having a spacing of 0.5 mm between measurements. Each 
scan produced a 512 by 512 array of3-D co-ordinates of the surface from which a model of the 
surface could be constructed (McEwan et aI, 2002; Pender et aI, 2001). One of the surface height 
data sets is used in the analysis described in this paper. 

THE WAVELET TRANSFORM 

A wavelet is a small wave or pulse which can be compressed and stretched to different scales. 
The basic wavelet function is defined as ljI(t). A family of wavelets are generated by dilating the 
function using the scaling parameter a and translating it using the location parameter b, i.e. 

I (t -b) 
\jf (a.b) (t) = .ra \jf ---;;- (1) 

The continuous wavelet transform (CWT) 

For a continuous signal x(t) the continuous wavelet transform is given by 

(2) 

The discrete wavelet transform (DWT) 

The DWT is constructed by choosing discrete values for a and b, where the wavelet dilation 
and translation is controlled by integer indices m and n respectively e.g. a = ao mand b = nboao m. The 
DWT is useful for computing scale-dependent statistical measures from I-D and 2-D data sets 
(Addison et aI, 2001). The discretisation of the wavelet is given by 

\jI m,n(t) = ~ \jI[t-nb:a,; J (3) 
va'; ao 

The DWT of the x(t) will then have the form 

(4) 

2 



where the values of Tm,n, known as the wavelet coefficients, are given on a grid with index m,n. 

The scaling/unction 

Associated with the orthononnal wavelets is the scaling function ~(t) (or the father wavelet) 
defined as 

(5) 

The scaling function is used to smooth a signal by separating the approximations (S), low 
frequency components, from the details (D), high frequency components. The equation for 
approximation coefficients (Sm,n) given as 

00 

S m,n = J x(t)<j> m,n (t)dl (6) 

This separation into details and approximations using the wavelet and the scaling function is 
known as the multiresolution analysis. Multiresolution makes it possible to decompose a signal 
into component parts at different resolutions. The signal is studied at a coarse resolution to give the 
overall picture while the fmer resolutions capture the details in the signal. 

Wavelet energy 
After full decomposition of a signal is perfonned the energy contained within the wavelet 

coefficients at each scale is defined as 

2 I\-1-m_l 

Em = L(Tm,n)2 (7) 
n=O 

THE 2-D DISCRETE WAVELET TRANSFORM 
For the analysis of 2-D signals fl/1'/2) i.e. plane, surfaces, one need to use two-dimensional 

wavelets, where t, and t2 are the two spatial co-ordinates. The simplest way to construct 2-D 
wavelet bases is by using three wavelets functions defmed as 

\f:'H (tl'lJ =~(t1]v(t2) 

\f:'v (t1 ,12) =\jf (11)<j> (t2) 

\f:' D (11' 12) =\jf (t1 ]v (t2) 

(8) 

where H, V and D stand for horizontal, vertical and diagonal. The scaling functions for the 2-D 
wavelet transfonn is given by 

Energy in the 2-D wavelet transform 

The energy of the 2-D data set is given by 

3 

(9) 



2M _12M -1 2M _12M -1 

E= ""eX. f =" "eW(m»)2 L..J L...J a,I,} L...J L... l,j 
(10) 

;=0 j=O ;=0 j=O 

where XO,;,j and w;j) are the elements on the matrices located on row i and columnj. The energy 

in the original surface is equal to the energy in the transform, (Daubechies, 1992), 

ANALYSIS 

An example of a river bed sediment surface data set is shown in FIG, 1. Where the surface was 
scanned after 76 hours and 50 minutes from the start of the experimental run. 

FIG. 1. Original surface 

Performing the 2-D DWT using the Daubechies 12 wavelet illustrated in FIG. 2., the original 
surface can be subdivided into a number of details (scale ranges). 

FIG. 2. Daubechies 12 wavelet 

The details for the sediment bed surface are shown in FIG. 3., where Detail 1 represents the 
smallest scale and Detail 9 represents the largest scale. Each detail in the transform can be linked to 
a specific physical size. The data were collected every 0.5 mm and the scale has the power of two 
giving the relationship 0.5 x 2m , where m is the scale which ranges between m = lK 9 . 
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Detail! Detail 2 Detail 3 

Detail 4 DetailS Detail 6 

Detail 7 Detail 8 Detail 9 

FIG. 3. Wavelet details 

RESULT 
The energy in each detail can be linked to the occurrence of physical forms within each scale 

range. The total of each scale dependent wavelet-based energy is equal to the energy of the original 
surface. Hence the wavelet based energy at each scale provides information on how much of the 
surface can be attributed to each particular form 'size'. From this energy distribution it is possible 
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to generated aform size distribution (rather than a particle size distribution). This is shown in FIG. 
4., where the contribution of each feature range at each scale is determined with the wavelet 
transform. 
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From the plot of FIG. 4 it can be seen that scales corresponding to the largest form sizes do not 
correspond to individual sediment grain sizes, since no grains were used which were larger than 
approximately 20 mm in size - i.e. between scale 5 and 6. At scales larger than these the wavelet 
decomposition is picking up the distribution of surface formations, or "forms", rather than specific 
particles sizes. 

In fact, scales less than scale 6 are also related to the overall structure, as many small particles 
can be picked up as one large form at a larger scale. This is shown schematically in FIG. 5. Hence, 
instead of actually determining the particle size distribution of the sediment surface, our method 
determines the form size distribution of the sediment surface. We believe that the form size 
distribution of a surface will be more useful for characterising river bed surfaces than the particle 
size distribution, as it is the overall form distribution of the surface which affects the flow 
characteristics. 

Future work will analyse complete sediment data sets over time to determine the changes in the 
surface topographies that occur during the bed armouring process. It is also intended to investigate 
the generation of the form size distribution using the coefficient modulus values rather than the 
energies. Finally, it is proposed to use non-decimated or stationary wavelet transforms (Morris and 
Peravali, 1999, Ngan et aI, 1999 and Lee et aI, 2000) in future work. These employ a 
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pseudo-continuous translation parameter (b) which, although they destroy the orthogonality 
condition of the DWT and are computationally more expensive to use, are translation invariant and 
provide better resolution in the transform space. 
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ABSTRACT 

When sedimentation occurs in a river channel, the topography of the bed surface 
changes, which in turn affects the flow characteristics. It is therefore important to be 
able to characterize the bedsurface topography during and after the sedimentation 
process. This paper describes results from a preliminary study conducted to analyze 
river bed sediment surface data using the two-dimensional discrete wavelet transform. 
We show how the global bed surface topography may be characterized in terms of a 
novel parameter, the form size distribution, and also that pertinent local bedform 
features may be highlighted using wavelet thresholding-based techniques. In addition, 
we test the stationary wavelet transform as an enhanced method of thresholding for 
feature extraction and we show the difference in behavior between the bed surface 
geometry and the geometry of a synthetic fractal surface. 

Key Words: river bed, sediment surface, wavelet analysis, surface roughness. 

The Arabian Journal for Science and Engineering. Volume 28. Number I C. June 2003 



Annie Nyander, Paul S. Addison, Ian McEwan, Gareth Pender 

ANALYSIS OF RIVER BED SURFACE ROUGHNESSES USING 2D 
WAVELET TRANSFORM-BASED METHODS 

1. INTRODUCTION 

An investigation was conducted concerning the application of the discrete wavelet transform to the characterization of 
two-dimensional river bed sediment surface data. Of particular interest to the study was the characterization of the 
rearrangement of the bed surface during flood flow regimes and the associated sedimentation process. When 
sedimentation occurs in an erodable channel the topography of the bedsurface will inevitably change. This change of the 
surface topography will significantly affect the flow in the channel as the new bedsurface geometry affects the local 
disturbance of the flow. The main influence on the flow is the surface roughness [1]. For the analysis of a flow in a 
channel it is therefore important to be able to characterize the bedsurface topography. In order to understand and predict 
the physical processes which regulate the transport of sediment, one needs to quantify the nature of the surface layers. 
A variety of methods have been proposed in the literature to determine the surface size composition. Kellerhals and 
Bray [2] concluded from their study of a number of current methods that the 'grid by number' technique produced results 
that were directly equivalent to grain size distribution originated from a volumetric sieve analysis. In this method, a 
sample is obtained by collecting particles (found under the nodes of a regular grid) and the number of particles in the 
various size classes is used to form the size distribution. McEwan et al. [3] used an adaptation of this method to obtain 
the grain sizes from the analysis of plan view images, including laser altimeter data, photogrammetric data, digital 
photographs, and scanned photographs. 

The wavelet transform (WT) has been found to be particularly useful for analyzing signals which can best be described 
as aperiodic, noisy, intermittent, transient, and so on. Its ability to examine the signal simultaneously in both time and 
frequency in a distinctly different way from the traditional Short Time Fourier Transform (STFT) has spawned a number 
of sophisticated wavelet-based methods for signal manipulation and interrogation. Wavelet transform analysis has now 
been applied in the investigation of a multitude of diverse physical phenomena, from climate analysis to the analysis of 
financial indices, from heart monitoring to the condition monitoring of rotating machinery, from seismic signal denoising 
to the denoising of astronomical images, from crack surface characterization to the characterization of turbulent 
intermittency, from video image compression to the compression of medical signal records, and so on [4]. 

Recently, wavelet analysis has been employed in a variety of surface analysis tasks including the characterization of 
fractional Brownian motions surfaces and cracked concrete surfaces [5], pitting corrosions [6], and orthopedic joint 
prostheses [7]; general surface roughness analysis [8]; the characterization of surface roughness of silicon [9]; and the 
evaluation of engineering surfaces [10]. In the study we present herein, the two-dimensional discrete wavelet transform 
(2D DWT) was used to characterize sediment surface data sets collected during a study of the armoring of river beds 
[3, 11]. 

2. BACKGROUND: ANALYSIS METHODOLOGY AND DATA 

2.1. The Wavelet Transform 

There is now an abundance of literature concerning the wavelet transform and its many applications. In this section, 
the wavelet transform will be outlined briefly. A wavelet is a small wave or pulse which can be compressed and 
stretched to different scales. The basic wavelet function, also known as the mother wavelet, is defined as 'VCt). From this 
function a family of wavelets are generated by dilating the function using the scaling parameter a and translating it using 
the location parameter b, i.e.: 

1 (t -b) 'V(a,b)Ct) = Fa'V -a- . (1) 

The discrete wavelet transform (DWT) is constructed by choosing discrete values for a and b, where the wavelet 
dilation and translation is controlled by the integer indices m and n respectively, e.g. a= aomand b = nboaom. The DWT is 
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useful for computing scale-dependent statistical measures from ID and 2D data sets [12]. The discretization of the 
wavelet is given by 

( ) = _1_ [t - nboa'J: J 
'Vmn t Faf'V . • m m 

ao ao 
(2) 

The DWT of a signal or function x(t) then becomes: 

(3) 

where the values of Tm.no known as the wavelet coefficients, are given on a grid with index m,n. Associated with the 
orthonormal wavelet function is the scaling function ~(t) (or the father wavelet) defined as: 

(4) 

The scaling function is used to smooth a signal by separating the approximations (S), low frequency components, from 
the details (D), high frequency components. The equation for approximation coefficients (Sm.n) is given as: 

(5) 

This separation into details and approximations using the wavelet and the scaling function is known as multiresolution 
analysis. Multiresolution makes it possible to decompose a signal into component parts at different resolutions. 
The signal is studied at both fine and coarse resolutions with the coarse analysis giving the structure of the surface and 
the fine analysis presenting the small details. After full decomposition of a signal is performed, the energy contained 
within the wavelet coefficients at each scale is given by: 

2M - m -1 

Em = L(Tm.n)2. (6) 

n=O 

2.1.1. The Two-Dimensional (2DJ Discrete Wavelet Transform 

For the analysis of 2D data sets, j{t j ,!2), i.e. planes and surfaces, one needs to use two-dimensional (2D) wavelets, 
where t} and t2 are the two spatial co-ordinates. The simplest way to construct 2D wavelet bases is by using three 

wavelets functions defined as, 

(7) 

where H, V, and D represent the horizontal, vertical, and diagonal components. The scaling functions for the 2D wavelet 

transform is given by: 

(8) 
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The energy of the 2D data set is given by: 

2M _12M -1 2M _12M -1 

E =" "(X . . )2 =" "(W(m))2, ~ ~ O,I,) ~ ~ I,} 
(9) 

i=O j=O i=O j=O 

where XO,i,j and wtJ) are the elements of the original surface (with the mean removed) and the wavelet coefficients at 
scale m respectively. As we can see the energy of the original surface is equal to the energy in the transform, [13]. 

2.2. River Bed Surface Sediment Data 

Bed armoring takes place during flood flow conditions and comprises the rearrangement of the bed sediment grain 
sizes. Water currents progressively armor the surface layer by breaking weak inter-particle bonds and promoting stronger 
re-bonding arrangements. Armoring increases with time and renders the deposit more erosion resistant [14]. 

The sediment data sets interrogated in this study have previously been used to investigate the bed armoring process in 
rivers during flood flow [15]. The data comes from experiments that were carried out experimental facilities at HR 
Wallingford Ltd. in the UK. The financial support for these experiments was provided by the Engineering and Physical 
Science Research Council (EPSRC Grant Numbers GRlL22058 and GRlL22065) to the Universities of Aberdeen and 
Glasgow and also by the European Union through a Human Capital Mobility grant to HR Wallingford Ltd. The sediment 
transportation experiments were conducted in a trapezoidal concrete channel (flume) with a width of 2.46m, length of 
18m, and a slope equal to 1:400 (0.25%). Graded sediment was placed in the flume and it was then subjected to a water 
flow which caused size selective sediment transport. The bed surface was monitored during the flood flow (photographs, 
longitudinal water surface profiles and water temperature were taken) and at the end of each working day (after 
6-9 hours running) an area (256 mm sq.) was scanned with a 3D laser displacement meter. Each measurement in the 
scan had a spacing of 0.5 mm, which produced a 512 by 512 array of 3D co-ordinates of the surface. From this scan a 
model of the surface can be constructed. For more information regarding the data sets the reader is referred to references 
[3,11, 15]. 

3. ANALYSIS 

An example of a river bed sediment surface data set is shown in Figure 1, where the surface was scanned after 
76 hours and 50 minutes from the start of the experimental run within a tilted hydraulic channel. 

Figure 1. Original surface. 
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Performing the 2D DWT using, for example, the Daubechies 12 wavelet (iIIustrated in Figure 2), the original surface 
can be subdivided into a number of details (scale ranges). Examples of four consecutive details from the wavelet 
transform for the sediment bed surface are shown in Figure 3. Each detail in the transform can be linked to a specific 
physical size. The data were coIIected every 0.5 mm and the scale has the power of two giving the relationship 0.5x2m, 

where m is the scale which ranges between m = 1...9. 

Figure 2. Daubechies D12 wavelet. 

Detail 3 Detail 4 

Detail 5 Detail 6 

Figure 3. Example of wavelet details from the D WT of the surface in Figure 1 using a D 12 wavelet. 

The Arabian Journal for Science and Engineering. Volume 28. Number 1 C. June 2003 



Annie Nyander, Paul S. Addison, Ian McEwan, Gareth Pender 

3.1. Form Size Distribution: a New Surface Characteristic 

The traditional measure of the characteristic 'sizes' of a sediment bed surface is the particle size distribution (psd). 
This measures the cumulative percentage by weight of particles within different size ranges; where the distribution of 
weights is determined using a series of sieves of successively smaller mesh sizes [16]. The particle size distribution for 
the sediment surface given in Figure 1 is shown in Figure 4(a). We can see from the plot that this sediment has a 
maximum grain size of around 20 mm. 

Each detail of the wavelet transformed surface can be associated with physical surface forms within a range of scales. 
Figure 4(a) shows the cumulative sum of the modulus of the coefficients at each scale expressed as a percentage of the 
total sum of all wavelet coefficient moduli at all scales. This curve is therefore representative of the distribution of 
surface form scales and hence we call it the form size distribution (lsd). Figure 4(b) shows the results of four different 
experimental surfaces. The ftd's of these surfaces are shown to be very similar and all differ markedly from the psd 
which was the same for each experimental surface. From the plots in Figure 4 it can be seen that scales corresponding to 
the largest form sizes (i.e. >100 mm) cannot correspond to individual sediment grain sizes because none of the grains 
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were larger than approximately 20 mm (i.e. between scales m=5 and 6 - the maximum ofthe psd). At scales larger than 
these, the wavelet decomposition picks up specific surface formations, or "forms", rather than individual particles. 
In fact, we can also conclude that/orms at scales less than scale 5 are also related to the overall structure. This is because 
coherent masses of small particles can be picked up as larger forms at larger scales. This is shown schematically in 
Figure 5. We believe that the form size distribution of a surface will be a more useful measure for characterizing river 
bed surfaces than the particle size distribution, as it is the aggregate topographical nature of the surface which affects the 
flow characteristics and not the constituent bed surface grain size distribution. This point is shown schematically in 
Figures 6(a) and 6(b), which shows the flow over two surfaces with similar particle size distribution but different/orm 
sizes distributions. Figure 6(a) shows a surface with a higher degree oflarge scale forms than that of Figure 6(b), which 
is much flatter. The two surfaces will affect the flow differently depending on their surface topology. The rougher 
surface (Figure 6(a)) will cause a greater disturbance to the flow increasing its bed friction characteristics and altering 
flow depths and velocity distributions within the channel. 

Figure 5. Groups of smaller particles can form a larger feature or form (i.e. at a larger scale). 

---------------------- -------------------------L---_> 

(a) Flow over a rough surface. 

----------------------- ------------------------------

(b) Flow over a flat surface. 

Figure 6. River flow over two different sediment swface topographies. 
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Finally, we tested the fractal nature of the sediment surface of Figure 1. Previous work by our group has shown that 
both wavelet and Fourier spectral methods are superior to traditional fractal methods (e.g. the box counting and variable 
bandwidth methods) for analyzing engineering surfaces [5], in particular when a single data realization and not an 
ensemble average is analyzed. Figure 7 shows the energy plotted against scale for the sediment surface wavelet 
coefficients compared to a synthesized fractional Brownian motion (iBm) surface with Hurst exponent H=0.6. For the 
iBm we would expect to see a linear increase in coefficient energies with scale. (For more information on iBm's see 
Addison [17], ch. 4.) The relatively linear increase in coefficient energies with scale for the iBm surface contrasts with 
the drop off in coefficient energy for the sediment surface indicating that the sediment surface is not (mono )fractal in its 
behavior across scales. Similar results were obtained for other experimental surfaces. 

100000000 -r--------------------------------~ 

10000000 +------------------~~------------__1 

~ " 1000000 +-------~~-----------------------_i 

" w 

100000+------.. ~-----------------~ __ -----_i 

10000+-----------r----------~-----------

10 100 1000 

size (mm) 

-Sediment data 
-fBm 25 H=0.6 

Figure 7. Logarithmic plot of wavelet coefficient energy against scale for the sediment surface of Figure 1 and 
a synthesised jBm (Hurst exponent H = 0.6). 

3.2. Bed Surface Detection Using Wavelet Thresholding 

It is known that distinct grain formations may appear during the armoring process of river beds [18]. In order to detect 
and extract these predominant formations or features in the surface, we applied thresholds to the wavelet coefficients 
prior to using them in the reconstruction of the surface details. We employed amplitude thresholding where small
amplitude wavelet coefficients are removed regardless of their position. Interesting work has been done by others in the 
area of wavelet thresholding For example, Abramovich et al. [19] have conducted research into methods for the 
determination of suitable criteria for choosing the correct wavelet threshold; Barclay et al. [20] have compared 
threshold-based smoothing and denoising methods for test data signals; and Tikkanen [22] has removed simulated noise 
in ECG signals using both hard and soft thresholding. See also the texts by Odgen [21], ch. 8, and Addison [4], ch. 3, 

which present a variety of wavelet thresholding methods. 
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The two most common ways of thresholding data is by applying either a soft or a hard threshold, where the threshold 
(A.) is related to the mean value of the wavelets coefficients. The two different thresholds are expressed as: 

17j1 > A. 

17j1 ~ A.. 

(10) 

(11) 

The main problem associated with denoising is in the determination of the criteria with which to choose the threshold 
(A.). Too large a value of A. will cut out information of the true signal while too small a value of A. will retain unwanted 
noise in the reconstructed signal. 

Using the thresholding method detailed above, the original experimental bed surface in Figure 8(a) is reconstructed, 
with the detail coefficients obtained by applying three thresholds individually. In addition, only the thresholded details 

(a) Original surface. (b) Surface thresholded with cr. 

100 .00 100 .00 

(c) Thresholded with 2cr. (d) Thresholded with 3cr . 

Figure 8. Findingfeatures through thresholding the wavelet coefficients. 
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D 1 to D6 are used for the reconstruction. In Figure 8(b) the threshold is set to a, where a is the standard deviation of the 
wavelet coefficients at each scale, i.e. all coefficients larger than a are kept and coefficients less than a are set to zero. 
There is a considerable resemblance to the original surface. Figure 8(c) shows the thresholded surface using 20'. Here 
much of the smaller features are taken away and coherent structures can be clearly seen in the surface. The last figure, 
Figure 8(d), is the surface thresholded with 30'. Only the largest features in the original data are retained in the 
reconstruction. From these three reconstructions, the one thresholded with 20' appears to provide the most interesting 
information. Here dominant larger features are clearly visible within the surface. One possible coherent feature (possibly 
a partial diamond feature) is enclosed by the dashed line shown in the plot. Features found by thresholding in this way 
prove useful in indicating where sediment has gathered on the surface in distinct formations. Applying an optimal 
threshold to the data sets over time will make it possible to compare the grain over time to detect bed form movements. 
Again, it should be noted that we have used a single surface here to illustrate the method; however, we find similar 
features for other experimental data sets (not shown herein). 

3.3. Thresholding Using the Stationary Wavelet Transform 

Although computationally more intensive, the stationary wavelet transform (SWT) will provide better resolution, 
especially at larger scales, and ensure translation invariance in the decomposition. We do not go into detail of the SWT 
herein but rather refer the reader to the papers by Morris and Peravali, Ngan et al., and Lee et al. [23-25]. In this section 
we briefly describe some recent work which uses the SWT to analyze synthetic test surfaces to which synthetic diamond
shaped clusters of particles were added. 
One of the original test surfaces together 
with the addition of the diamond feature 
is shown in Figure 9. In order to extract 
the diamond shape from the surface both 
hard and soft thresholding was used and 
here we employed the Daubechies D2 
(Haar) wavelet. A range of threshold 
values were used from 0.10' to IOcr, 
where a is the standard deviation of the 
wavelet coefficients at each scale. 
Performing the 2D inverse wavelet 
transform and adding selected details 
together allowed features and patterns in 
the surface to be detected. Figure 10 
shows the reconstruction for each indi
vidual detail from 1 to 4 for the coeffi
cients thresholded at 1.50'. Figure 11 
shows the combined reconstructions for 
levels 1 to 4 for both soft and hard 
thresholding at various threshold values. 
The reconstructions using scales 1 to 3 
and for thresholds set to la, 20', and 30' 
are plotted in Figures II(a) to (c) 

respectively for soft thresholding and 
Figures II(d) to f respectively for hard 
thresholding. Performing the 2D inverse 
wavelet transform and adding selected 
details together III this way allows 
features and patterns in the surface to be 
detected. Tables 1 and 2 show the 

June 2003 

Table 1. Proportion of Energies within the Synthetic Feature and 

Background Regions Remaining after Thresholding at Various 

Threshold Values for Soft Thresholding. 

Threshold Value in 

Terms of Coefficient 

Standard Deviation 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

5.0 

5.2 

6.0 

10.0 

Proportion of 

Reconstructed Energy 

for Synthetic Feature 

1.000 

0.862 

0.739 

0.631 

0.537 

0.455 

0.187 

0.070 

0.025 

0.009 

0.003 

0.001 

0.000 

0.000 

0.000 

0.000 

Proportion of 

Reconstructed Energy 

for Background Surface 

1.000 

0.766 

0.580 

0.436 

0.325 

0.241 

0.053 

0.012 

0.003 

0.001 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 
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proportion of energies left in the regions 
where the added feature lies and the 
background surface region after 
thresholding for each of the thresholds 
employed. For example for a soft 
threshold of 10", 18.7% of the original 
energy remains in the feature region 
whereas only 5.3% of the background 
surface energy remains. As the threshold 
value increases the energies in both the 
feature and background regions reduce, 
but the background reduces much more 
rapidly. However, there is a trade off 
between the enhanced feature signal as 
compared with the background and the 
accuracy of reconstruction due to 
reduction in coefficients used at the 
higher thresholds. The question of what 
is a good measure of the reconstruc
tion's ability to highlight pertinent 
features is still open (and is perhaps both 
user and problem dependent). Also 
noticeable from the tables is the increase 
In the hard thresholded energies as 
compared to the soft thresholded 
energies as we would expect as the 
remaInIng coefficients in the soft 
thresholded method are reduced by the 
value of the threshold, hence reduce in 
energy. 

Table 2. Proportion of Energies within the Synthetic Feature and 

Background Region Remaining after Thresholding at Various 

Threshold values for Hard Thresholding. 

Threshold Value in 

Terms of Coefficient 

Standard Deviation 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

5.0 

5.2 

6.0 

10.0 

Proportion of Proportion of 

Reconstructed Energy Reconstructed Energy 

for Synthetic Feature for Background Surface 

1.000 1.000 

0.999 0.998 

0.994 0.987 

0.983 0.958 

0.964 0.915 

0.947 0.857 

0.773 0.450 

0.556 0.182 

0.311 0.070 

0.174 0.025 

0.083 0.007 

0.036 0.001 

0.008 0.000 

0.008 0.000 

0.000 0.000 

0.000 0.000 

Figure 9. Original Surface (left) and Surface with Synthetic Diamond Feature added (right). 
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Detail iswt 1 Detail iswt 2 

120 120 

100 100 

80 80 

60 60 

40 40 

20 20 

50 100 150 200 250 50 100 150 200 250 

Detail iswt 3 Detail iswt 4 

120 120 

100 100 

80 80 

60 60 

40 40 

20 20 

50 100 150 200 250 50 100 150 200 250 

Figure 10. Reconstruction of details hard thresholded at 1.5a at scales 1 to 4. 

4. RESULTS AND DISCUSSION 

The work described in this paper demonstrates how the wavelet transform may prove to be a very useful analyzing 
tool for studying the characteristics of river bed sediment surfaces. The research shows how the 2D Discrete Wavelet 
Transform (DWT) can be used to separate the forms of the surface into different details or size ranges. The cumulative 
transform modulus plotted against the associated length scale or 'size' gives aform size distribution (!sd). The authors 
believe that this measure will be more useful than the traditional particle size distribution, as it is the topographical form 
of the surface rather than the individual particle sizes that affects the near bed flow regime and hence bed friction 
characteristics. The research also illustrates how the wavelet transform may prove to be a useful tool for the 
identification of coherent structures appearing on the bed surface. This can be achieved by thresholding the wavelet 
transform coefficients for each of the details respectively. Features elucidated by the thresholding process in this way 
may indicate where sediment has gathered on the surface in distinct formations. It is known that bed forms move during 
the sedimentation process and this method of feature identification could prove useful in locating and following the 
spatio-temporal behavior of such features. 

Future work will concentrate on the analysis of a series of sediment data sets recorded over a period of time during 
flood flows to study the dynamics of the surface topographies that occur during the bed armoring process. In addition, 
the non-decimated or stationary wavelet transform (SWT) will be further employed in the analysis of the experimental 
surfaces. 
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R.o,,,,,,,,", 

(a) Soft Threshold = lcr (d) Hard Threshold = lcr 

(b) Soft Threshold = 2cr (e) Hard Threshold = 2cr 

(c) Soft Threshold = 3cr (I) Hard Threshold = 3cr 

Figure 11. Synthetic diamondfeature extraction through wavelet thresholding. 
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Abstract: 
When sedimentation occurs in a river channel, the topography of the bed surface changes which in turn 
affects the flow characteristics. This study applies the wavelet transform; a relatively new mathematical 
tool for data analysis. Interest in this analysis method has increased during recent years, and today it 
can be found in a number of areas in both science and engineering. 

In this investigation a wavelet thresholding-based technique have been applied to highlight pertinent 
bedform features in simulated sediment surfaces with superimposed bed-features. One of the sediment 
surfaces is shown in figure 1. Using the wavelet transform the surface was transformed into scale 
details (or scale related wavelet coefficients). A threshold was then applied to the wavelet coefficients 
where coefficient larger then the threshold value were kept and coefficient smaller then the threshold 
value were removed, as illustrated in figure 2. Here the threshold values are set to equal multiples of 
the standard deviation (a) of the wavelet coefficients at each scale. Figure 3 show the thresholded and 
reconstructed surfaces for three different threshold values, lxa, 2x a and 3x a. Thus, this show that 
using a wavelet thresholding technique the background surface can be removed and the feature part of 
the surface extracted. 

Keywords: River Bed, Sediment Surface, Wavelet Analysis, Surface Forms, Thresholding. 
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