4,349 research outputs found

    A Comprehensive Study Of Esterification Of Free Fatty Acid To Biodiesel In a Simulated Moving Bed System

    Get PDF
    Simulated Moving Bed (SMB) systems are used for separations that are difficult using traditional separation techniques. Due to the advantage of adsorption-based chromatographic separation, SMB has shown promising application in petrochemical and sugar industries, and of late, for chiral drug separations. In recent years, the concept of integration of reaction and in-situ separation in a single unit has achieved considerable attention. The simulated moving bed reactor (SMBR) couples both these unit operations bringing down the operation costs while improving the process performance, particularly for products that require mild operating conditions. However, its application has been limited due to complexity of the SMBR process. Hence, to successfully implement a reaction in SMB, a detailed understanding of the design and operating conditions of the SMBR corresponding to that particular reaction process is necessary. Biodiesel has emerged has a viable alternative to petroleum-based diesel as a renewable energy source in recent years. Biodiesel can be produced by esterification of free fatty acids (present in large amounts in waste oil) with alcohol. The reaction is equilibrium-limited, and hence, to achieve high purity, additional purification steps increases the production cost. Therefore, combining reaction and separation in SMBR to produce high purity biodiesel is quite promising in terms of bringing down the production cost. In this work, the reversible esterification reaction of oleic acid with methanol catalyzed by Amberlyst 15 resin to form methyl oleate (biodiesel) in SMBR has been investigated both theoretically and experimentally. First, the adsorption and kinetic constants were determined for the biodiesel synthesis reaction by performing experiments in a single column packed with Amberlyst 15, which acts as both adsorbent and catalyst. Thereafter, a rigorous model was used to describe the dynamic behaviour of multi-column SMBR followed by experimental verification of the mathematical model. Sensitivity analysis is done to determine robustness of the model. Finally, a few simple multi-objective optimization problems were solved that included both existing and design-stage SMBRs using non-dominated sorting genetic algorithm (NSGA). Pareto-optimal solutions were obtained in both cases, and moreover, it was found that the performance of the SMBR could be improved significantly under optimal operating conditions

    Optimal operation of simulated moving bed and varicol processes for bio-separation

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Simulations of Chemical Catalysis

    Get PDF
    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 — Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a -elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 — Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a dissociative, metaphosphate-like structure, stabilized by the Mg(II) ion and several hydrogen bonds. The calculated free-energy barrier is consistent with experimental values. Project 3 — Bacterial Enzyme Anthrax Lethal Factor In this dissertation, we report a hybrid quantum mechanical and molecular mechanical study of the catalysis of anthrax lethal factor, an important first step in designing inhibitors to help treat this powerful bacterial toxin. The calculations suggest that the zinc peptidase uses the same general base-general acid mechanism as in thermolysin and carboxypeptidase A, in which a zinc-bound water is activated by Glu687 to nucleophilically attack the scissile carbonyl carbon in the substrate. The catalysis is aided by an oxyanion hole formed by the zinc ion and the side chain of Tyr728, which provide stabilization for the fractionally charged carbonyl oxygen. Project 4 — Methanol Steam Reforming on PdZn alloy Recent experiments suggested that PdZn alloy on ZnO support is a very active and selective catalyst for methanol steam reforming (MSR). Plane-wave density functional theory calculations were carried out on the initial steps of MSR on both PdZn and ZnO surfaces. Our calculations indicate that the dissociation of both methanol and water is highly activated on \ufb02at surfaces of PdZn such as (111) and (100), while the dissociation barriers can be lowered significantly by surface defects, represented here by the (221), (110), and (321) faces of PdZn. The corresponding processes on the polar Zn-terminated ZnO(0001) surfaces are found to have low or null barriers. Implications of these results for both MSR and low temperature mechanisms are discussed

    Chemical Kinetics

    Get PDF
    Chemical Kinetics relates to the rates of chemical reactions and factors such as concentration and temperature, which affects the rates of chemical reactions. Such studies are important in providing essential evidence as to the mechanisms of chemical processes. The book is designed to help the reader, particularly students and researchers of physical science, understand the chemical kinetics mechanics and chemical reactions. The selection of topics addressed and the examples, tables and graphs used to illustrate them are governed, to a large extent, by the fact that this book is aimed primarily at physical science (mainly chemistry) technologists. Undoubtedly, this book contains "must read" materials for students, engineers, and researchers working in the chemistry and chemical kinetics area. This book provides valuable insight into the mechanisms and chemical reactions. It is written in concise, self-explanatory and informative manner by a world class scientists in the field

    First-principles modeling of Solid Oxide Fuel Cells accounting for electrodes geometry and microstructure

    Get PDF
    In this work a 2-D isothermal axial-symmetric model of an electrolyte supported Solid Oxide Fuel Cell (SOFC) has been developed.The model is built on COMSOL Multiphysics, a finite element simulation commercial software. The model tries to describe the complex phenomena that occur within a SOFC through a first principles-based approach. That allows the description of the electrochemical and physical phenomena starting from the macroscale, continuing with the mesoscale and down to the microscale

    Design of an Intensified Reactor for the Synthetic Natural Gas Production through Methanation in the Carbon Capture and Utilization Context

    Get PDF
    112 páginasThe idea of a sustainable future has led to the exclusion of fossil fuels from development policies and the inclusion of low-carbon alternatives instead. The strategy must be holistic, as proposed by the carbon capture and utilization technologies alongside renewable energies. An example is converting CO2 into value-added products, such as CH4 or Synthetic Natural Gas (SNG), using surplus power of renewable alternatives, in a low-carbon footprint process. The chemical route for the synthesis of SNG from CO2 and H2 is a catalytic reaction known as CO2 methanation or Sabatier reaction. The methanation is an example of CO2 capture and utilization technologies' industrial application within the so-called Power-to-Methane (PtM) context. In this scenario, fixed bed reactors have been the reaction technology employed by default. However, their deficiency in handling the heat released from the highly exothermic Sabatier reaction or responding to the process' intermittency appropriately has been demonstrated. These drawbacks have aroused scientific interest in developing reactors better adapted to the PtM context demands. One approach is by intensifying the methanation process to increase the mass- and energy-transfer and improve its transient response. In this project, the phenomenological hot spots formation in fixed bed reactors used for the methanation industrial process was investigated through a parametric sensitivity analysis, simulating the reactor start-up. On the other hand, it was proposed a CFD simulation-aided conceptual design of a wall-coated reactor for the SNG production using an intensification strategy. The design was based on a reactor formed by single-pass and heat-exchanger stacked-plates. The reacting channel dimensions were defined, including the catalytic layer thickness, fulfilling a minimum quality threshold given by the CO2 conversion (≥ 95%). The proposed design was also intended to maximize the volume of processed gas while meeting the quality requirement, resulting in a throughput per reaction channel of ~12 ml/min. Likewise, the plates manifold geometry and dimensions that best promoted a flow rate uniform distribution were established as a function of the number of reacting channels. Finally, a preliminary dynamic analysis of the operation start-up and shutdown was performed, establishing that the designed reactor does not present a hysteresis behaviour, an ideal condition for intermittent environments.La idea de un futuro sostenible ha conllevado a suprimir el uso de combustibles de origen fósil de los planes de desarrollo y por el contrario incluir alternativas con baja huella de carbono. La estrategia debe ser holística, como lo proponen las tecnologías de captura y utilización de CO2 junto con las energías renovables. Un ejemplo es la conversión del CO2 en productos con valor agregado, como el CH4 o Gas Natural Sintético (GNS), utilizando la energía sobrante de las alternativas renovables, en un proceso con baja huella de carbono. La ruta química para síntesis de GNS a partir de CO2 e H2 es una reacción catalítica que se conoce como metanación de CO2 o reacción de Sabatier. La metanación es un ejemplo de aplicación industrial de las tecnologías de captura y utilización de CO2 en lo que también se conoce como el contexto Power-to-Methane (PtM). En ese ámbito, los reactores de lecho fijo han sido la tecnología de reacción utilizada por defecto. Sin embargo, se ha demostrado su incapacidad para manejar el calor liberado producto de la reacción de Sabatier (altamente exotérmica), o de responder apropiadamente a la intermitencia del proceso. Estas dificultades han despertado el interés científico por desarrollar reactores que se adapten mejor a las exigencias del contexto PtM. Una propuesta yace en intensificar el proceso de metanación, incrementando la transferencia de masa y energía además de mejorar su respuesta transitoria. En este proyecto se estudió, por un lado, la formación fenomenológica de puntos calientes en reactores de lecho fijo utilizados industrialmente para el proceso de metanación a través de un análisis de sensibilidad paramétrico, simulando el arranque del reactor. Por el otro lado, se propuso un diseño conceptual asistido por simulación CFD de un reactor de pared recubierta para la producción de GNS a través de una estrategia de intensificación. El diseño partió de un reactor formado por platos apilados de intercambio de calor de un solo paso. Se definieron las dimensiones del canal de reacción, incluyendo el grosor de la capa catalítica, que cumplían con el umbral mínimo de calidad dado por la conversión de CO2 (≥ 95%). El diseño propuesto también tuvo por objeto maximizar el volumen de gas procesado, cumpliendo a la vez con el requisito de calidad, lo que resultó en un rendimiento por canal de reacción de ~12 ml/min. Así mismo se estableció la geometría y dimensiones del colector del plato que mejor favorecían una distribución uniforme de la velocidad del flujo en función del número de canales de reacción. Por último, se realizó un análisis dinámico preliminar del arranque y apagado de la operación, estableciendo que el reactor diseñado no presenta un comportamiento de histéresis, ideal para un entorno con alta intermitencia.Maestría en Diseño y Gestión de ProcesosMagíster en Diseño y Gestión de Proceso

    Kinetics and mechanism of model reactions in thermoresponsive nanoreactors

    Get PDF
    Zwei Modellreaktionen wurden mit thermoresponsiven Nanoreaktoren untersucht. Die Reduktion von 4-Nitrophenol und von Kaliumhexacyanidoferrat(III) mit Natriumborhydrid. Die Nanoreaktoren bestehen aus einem Polystyrol Kern, umgeben von einer Hydrogel Schale aus Poly-(N-Isopropylacrylamid). Die Reaktionen werden auf der Oberfläche von Metall Nanopartikeln in der Hydrogel Schale katalysiert. In einer auf Gold- und Silberkatalysatoren fokussierten Literaturstudie zeigte sich, dass der geschwindigkeitsbestimmende Reaktionsschritt zwischen beiden Metallen variieren könnte. Kinetische Studien mit Silber haben gezeigt, dass ein erfolgreich auf Gold angewandtes Modell modifiziert werden muss um auf Silber anwendbar zu sein und haben gezeigt, dass sich die Kinetik der Reaktion auf beiden Metallen unterscheidet. Die weitere Analyse ergab die typische, nicht der Arrhenius Abhängigkeit folgende, Abhängigkeit der Reaktionsrate von der Temperatur und hat gezeigt, dass die Partitionierung der Reaktanden im Hydrogel für das kinetische Modell relevant ist. Die Reduktion von Kaliumhexacyanidoferrat(III) auf Gold hat gezeigt, dass elektrostatische Effekte hier eine maßgebliche Rolle spielen. Ein kinetisches Modell wurde erarbeitet, dass die relevanten Einflussfaktoren durch Hydrogel, Geometrie der Nanoreaktoren, diffusions- und elektrostatische Effekte miteinbezieht. Die gewonnenen Daten konnten mittels eines auf der Auswertung des stationären Zustands basierenden Modells erfolgreich gefittet werden. Hierbei wurde das komplexe Zusammenspiel von elektrostatischen Effekten, deren Abschirmung und Einfluss auf die Diffusion sowie die Reaktionsrate gezeigt. Mit wenigen physikalisch aussagekräftigen Fitparametern konnten alle beobachteten Effekte erfolgreich erklärt werden. Der Vergleich der Reduktion von 4-Nitrophenol und von Hexacyanidoferrat(III) zeigt hierbei die entscheidenden Faktoren sowohl für reaktions- als auch für diffusionskontrollierte Reaktionen in thermoresponsiven Hydrogelen.Two model reactions were investigated with thermoresponsive core-shell nanoreactors, the reduction of 4-nitrophenol and of potassium hexacyanoferrate(III), both reduced with sodium borohydride. The nanoreactors comprise of a polystyrene core surrounded by a hydrogel shell of poly-N-isopropylacrylamide (PNIPAM) crosslinked with N,N’-methylenebisacrylamide. Metal nanoparticles are immobilized inside the hydrogel shell on the surface of which the model reactions are catalyzed. In the reduction of 4-nitrophenol, special emphasis is laid on the reduction on gold and silver catalysts. A literature review of mechanistic as well as kinetic studies reveals that the rate determining step may differ between the two catalyst metals. Kinetic investigations with a silver catalyst reveal that the kinetic model derived previously for gold catalysts needs to be modified for the kinetic analysis in this study, confirming a difference in the kinetics for both catalyst metals. The temperature dependent analysis reveals the typical non-Arrhenius dependency of the reaction rate and shows that the partition ratio of the reactants is relevant for the kinetics. The reduction of potassium hexacyanoferrate(III) on gold reveals that electrostatic effects play a major role in this reaction. A new kinetic model is derived, accounting the relevant influence factors of the hydrogel, the nanoreactor geometry, diffusional and electrostatic effects. With a stationary state approach the experimental data are fitted successfully, revealing the complex interplay of electrostatic effects, the screening thereof and the influence on diffusion and reaction rate. With only a few physically meaningful fit parameters all observed effects can be explained successfully. The comparison of the reduction of 4-nitrophenol and potassium hexacyanoferrate(III) highlights the decisive factors in both, reaction and diffusion controlled reactions inside thermoresponsive hydrogels

    Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMHydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 'Energy Storage and Conversion based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group 'Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage'. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storag
    corecore