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SUMMARY 

 

In recent years, there has been considerable interest in the synthesis and separation of 

enantiomer of organic compounds especially due to their importance in the biotechnology 

and pharmaceutical industry. There are two pedestal ways of producing pure enantiomer 

form of a compound, conventional chemical synthesis and asymmetric synthesis. 

Conventional synthesis, even though economically attractive, might result in chiral 

molecules. This method is favored for compounds where both enantiomers are of equal 

importance. Asymmetric synthesis, on the other hand, can selectively produce certain 

species. This method is highly preferred when one species of the optical isomer is 

toxic/harmful. However, it takes not only many years to develop asymmetric synthesis for 

any particular drug, but at times the process is expensive. Simulated moving bed (SMB) 

technology and its modification, Varicol process, has become an alternate technology for 

separation of such difficult or nearly impossible to separate mixtures with extremely low 

separation factor, which is difficult to be separated using conventional extraction, and the 

considerably low volatility gap makes it impractical to be purified using common 

distillation. In this technology, separation is achieved by differential migration rates of the 

two components, which is further enhanced by simulating countercurrent movement of 

the solid and the liquid phases. The general case of simulated countercurrent process is 

that successive switching of the feed and the product positions at timed interval simulates 

the movement of solid. By periodically changing the feed and the product locations 

sequentially along a fixed bed leads to high mass transfer driving forces. In traditional 

SMB process, a synchronous switch of all the inlet and outlet and streams are performed 
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while in the Varicol process a non-synchronous switch is employed to render more 

flexibility to the system. High product yield and purity can be achieved by selective 

adsorption in which compounds of a mixture are driven at different speeds through the 

chromatographic bed. However, like all methods, the chromatographic method suffers 

from certain drawbacks: requirement of expensive stationary phases, relatively higher 

volume of mobile phase consumption and high dilution of the separated products.  

In this thesis, two separation problems are considered. The first is the separation of 

chiral drugs, SB-553261, and the second is the separation of chiral intermediates, 1,1’-bi-

2-naphtol. Equilibrium dispersive model coupled with lumped kinetic approximation and 

non-linear equilibrium isotherm constitute the simulation model, which was verified with 

published experimental results for the above two systems. Single as well as multiple 

objective optimization studies were carried for many different meaningful optimization 

formulations. The optimization work was carried out using Non-Dominated Sorting 

Genetic Algorithm with jumping genes (NSGA II-JG). It employs the principles of 

genetics and the Darwinian principle of natural selection (i.e. survival of the fittest). A 

systematic optimization study is carried out involving the use of single objective as well 

as several objectives, which is often conflicting with each other. The use of non-

dominated sorting genetic algorithm with jumping genes resulted in Pareto optimal 

solutions, which can easily be explained by the Triangle theory. Optimal operating 

conditions and optimal Pareto solutions clearly show that the concept of multiobjective 

optimization could be very useful in the design and operation of SMB and Varicol process 

for many important industrial applications. These optimal results help enhancing the 

performance of the existing design and serve as an important design tool for new 

developments. 
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Nomenclature 

 

A  more retained component, column area (cm2) 

B  less retained component 

C  liquid phase concentration (g/l) 

CSP  chiral stationary phase 

D  desorbent flow rate (ml/min) 

DL  apparent axial dispersion coefficient (cm2/min) 

E  extract flow rate (ml/min) 

F  feed flow rate (ml/min) 

H height equivalent to theoretical plate (cm), Langmuir isotherm parameter 

I  objective function index 

J  theoretical number of cells 

k  mass transfer coefficient (min-1) 

K  adsorption constant, equilibrium constant 

Lcol  length of individual column (cm) 

m  flow rate parameter 

N  total number of column, switching index 

P  zone I in SMB unit 

Pr  productivity (g/h, g/day) 

Pur  purity (%) 
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Rec  recovery (%) 

S  zone IV in SMB unit 

SC  solvent consumption (m3 desorbent/kg product) 

SMB  simulated moving bed 
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Greek Symbols 
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ζ  pseudo solid phase velocity 

 

Subscripts and Superscripts 

col  column 

D  desorbent 
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Chapter 1  

Introduction 

 

Synthesis and isolation of enantiomers of organic compounds has been gaining steady 

interest over the past few years owing to their advantages in the fine chemical and 

pharmaceutical industry. A number of synthesis techniques are available for the 

preparation of single enantiomer drugs. Among these methods, resolution by preparative 

chiral chromatography is receiving increasing attention nowadays. Chromatographic 

principle is believed to be one of the powerful tools in which components are separated by 

differential migration through a system of two phases: column packing which acts as 

stationary phase and liquid phase which acts as the mobile phase. Advantages such as 

high separating power, selectivity, versatility, low operating cost and mild operating 

conditions has led to the convenient utilization of chromatography in the field of 

enantioseparation. High product yield and purity can be achieved by selective adsorption 

in which compounds of a mixture are driven at different speeds through the 

chromatographic bed. However, like all methods, the chromatographic method suffers 

from certain drawbacks: large requirement of expensive stationary phases, relatively high 

volume of mobile phase consumption and high dilution of the separated products. 

     Recently the Simulated Moving Bed (SMB) chromatographic technology has been 

introduced for continuous separation of chemicals with extremely low separation factor, 

which is difficult to be separated using conventional extraction, and considerably low 

volatility gap makes it impractical to be purified using distillation. SMB chromatography 

has excellent prospects in the field of pharmaceutical and fine chemicals separation and its 
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development requires better understanding of the process dynamics. The concept of SMB 

is based on true moving bed process, in which a stream of solids flows countercurrent to 

an inert carrier fluid passing a stationary inlet, by periodically changing feed and product 

locations sequentially along a fixed bed leading to high mass transfer driving forces. 

Successive switching of the feed and product positions at timed interval simulates the 

countercurrent movement of solid. True countercurrent motion is thus replaced by a 

periodic motion, while overcoming the problems of solids handling and attrition inherent 

in moving bed operations, as well as avoiding flow channeling that might occur while 

scaling up to large column diameters. 

     Continuous chromatography based on simulated moving bed technology has been 

widely used in the separation and purification of chemicals, which are difficult to be 

separated using other methods. This has found ultimate interest in the area of biochemical, 

pharmaceutical and fine chemicals due to its ability to meet the market needs of high yield 

and high purity coupled with moderate processing conditions. This has become more 

popular in recent years due to the availability of chromatographic phases, while 

eliminating the drawbacks of batch chromatography, namely dilution of species and low 

adsorbent utilization leading to cleaner, smaller, safer and faster processes.  

The design of a SMB unit depends on appropriate choice of operating conditions such 

as liquid and solid flow rates. Further investigation into the system reveals the complex 

interplay between variables, i.e. high feed rate increase the productivity at the expense of 

high eluent/desorbent rate and product purity making this system prone to optimization. 

The optimization problem for simulated countercurrent process is to find the optimum 

values of the key process parameters under certain specified constrains. In this work, the 
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efficiency of the SMB technology in carrying out enantio-separation of SB-553261 and 

1,1’-bi-2-naphtol racemate at various operating configuration are examined. 

Modeling and simulation of SMB process towards improvement in process 

performance have received great attention as this effort could yield significant savings for 

industry dealing with biotechnology, pharmaceutical and fine chemistry. There are two 

approaches of modeling SMB chromatographic process. The first is to model the true 

moving bed process to describe the dynamics neglecting cyclic switching. The second 

approach is to connect dynamic model of single chromatographic columns while 

considering the cyclic port switching. In this work, a model for prediction of cyclic steady 

state performance of SMB is developed based on the latter approach, direct simulation of 

port switching (SMB model). Two types of SMB model are considered here, namely, 

mixing cell model and continuous-flow model. The first model is known as equilibrium 

stage model, which is suitable under the usual conditions of high performance preparative 

chromatography. The latter model assumes axial dispersion flow for the liquid phase and 

linear driving force (LDF) approximation for intra-particle mass transfer rate. Both 

models take into account multi-component adsorption equilibrium.  

A recent development in SMB technology is known as the Varicol process. The basic 

configuration of the Varicol process is similar to SMB, only the injection and collection 

lines are shifted at different times non-synchronously. Hence, there will be variations of 

zone length for a multicolumn systems and the system will return to its original position at 

the last periodic sub-interval. The zone lengths are continuously varying and the increase 

of one column is compensated for by the decrease of the adjacent one. Varicol process 
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results in variation of zone length over time thus allowing more flexibility and better 

process performance.    

Purity and recovery of products, appropriate use of solvent consumption and 

adsorbent productivity characterize the SMB and Varicol performance. The design of 

such a unit depends on appropriate choice of operating conditions such as liquid and solid 

flow-rates, switching time, number and length of columns, etc. Further investigation into 

the system reveals the complex interplay between variables, i.e. high feed rate increase the 

productivity at the expense of high eluent rate and product purity making this system 

prone to optimization. When the effects of operating parameters such as switching time, 

internal flow rates, section length and number of columns per each section are studied in 

the sensitivity study, it was found that most of the parameters affect the process 

performance indicators (such as productivity, purity, eluent consumption, etc) in 

conflicting manner, which leads to the concept of Pareto set where infinite number of 

equally good and non-dominating solutions are obtained. 

In this work, the multiobjective optimization was carried out using Non-dominated 

Sorting Genetic Algorithm (NSGA) with jumping genes for the design and operation of 

SMB and Varicol process. It employs the principles of genetics and the Darwinian 

principle of natural selection (i.e. survival of the fittest). It was found that use of jumping 

genes results in getting superior solutions (global optimal and spreading of solutions) in 

significantly less computational time over the conventional NSGA. This finding extends 

to the existing added value of genetic algorithm: the ability to handle several objective 

functions and to locate global optima even when multimodality persists. 
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In this study, verification of the mathematical model of the SMB system was done by 

fitting the model predicted results to the elution profiles of components in a single column 

experiments. The PDEs along with the initial and the boundary conditions, kinetic model 

equation and adsorption equilibrium were solved using the method of lines. In this 

method, the PDE is first discretized in space using the finite difference method to convert 

it into a set of several coupled ODE-IVPs. The numerical method of lines combines a 

numerical method for the initial value problem of ordinary differential equation and the 

numerical method for the boundary value problem. The resulting stiff ODEs of initial 

value kind was solved using DIVPAG, which is based on Gear’s method, in the IMSL 

library. The agreement of simulated and experimental results obtained paved a way to 

further process improvement through simulation and optimization study. The process 

system was subsequently characterized by the sensitivity study. This study provides much 

useful rudimentary information such as the contradictive behavior of operating parameters 

on several performance parameters, feasible upper/lower bounds of decision variables, 

etc. Numerous optimization problems were formulated based on the economic 

consideration of the separation process. Many more formulation can be designed but only 

few examples are discussed in this thesis to illustrate the concept, techniques and 

interpretation of results. Finally, the optimum results were verified by locating them in the 

in the operating plane of binary separation based on the Triangle theory. Optimum points 

are well placed on the vertex of the triangle regime for pure separation. Optimal operating 

conditions and optimal Pareto solutions clearly show that the concept of multiobjective 

optimization could be very useful in the design and operation of SMB and Varicol process 

for many important industrial applications. These optimal results help in enhancing the 
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performance of the existing design and serve as an important design tool for new 

developments. 
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Chapter 2 Literature Review 

 

2.1. Review on Stereochemistry 

In recent years, there has been considerable interest in the synthesis and separation of 

enantiomers of organic compounds especially due to their importance in the biochemistry 

and pharmaceutical industries. Consequently, these growing trends have led to numerous 

terms and expressions in addition to those commonly used or recently recommended for 

the chemical and physical properties of chiral compound. Stereochemistry is basically 

about the shape and change of shape of molecules and basic understanding will be 

covered in this section. 

 

2.1.1. An Overview on Chirality 

The history of chirality began when French physicist, Jean-Baptiste Biot (1774-1862), 

studied the nature of plane-polarized light and found out that certain solutions of organic 

molecules rotated the plane of polarized light. Pasteur (1902) later studied the chemical, 

optical and crystallographic properties of tartrates preceded by some years of his studies 

of fermentations. He re-crystallized a concentrated solution of sodium ammonium tartrate 

and observed two distinct kinds of crystals. It was found that although a solution of the 

original salt was optically inactive, solutions of the individual piles were optically active 

and their specific rotations were equal in amount but opposite in sign.  

Enantiomers are two chemically identical molecular species that differ from each 

other as non-superimposable mirror images. The most simple and vivid model for 

enantiomeric structures is our left and right hands. They demonstrate the sign of chirality 
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because they are each other’s mirror image; no matter how much we twist and turn them, 

we can’t superimpose the right hand image onto the left one. They are named according to 

rotation of the plane of polarized light (-l and –d enantiomer) and the 3-D arrangement of 

groups around the chiral center (-R and –S enantiomer). Enantiomers, in addition to 

diastereomers and cis-trans-isomers, are thus a special case of stereoisomers.  

 

 

Figure 2.1 Non-superimposable mirror image structures 
 
 
The chirality of enantiomeric molecules is caused by the presence of one or more 

chirality elements (chirality axis, chirality plane or chirality center, e.g. asymmetric 

carbon atom) in their structure. The chirality sense and optical activity of the enantiomers 

are determined by their absolute configuration, i.e. the spatial arrangement of the atoms in 

the molecule. In contrast to their conformation, the configuration of enantiomers cannot 

be changed without a change in the connectivity of constituent atoms. Many organic 

molecules exhibit chirality, for example, whenever four different groups are attached to a 

tetrahedral carbon atom. 

Conventional chemical synthesis, in contrast to asymmetric synthesis, deals mostly 

with the transformations of achiral compounds. If these reactions result in the formation 

of a chirality element in the molecule, the reaction product appears to be an equivalent 

mixture of a pair of enantiomers, a racemate, which is optically inactive. Racemates are 
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also formed through racemisation of chiral compounds and they crystallize in the form of 

a racemic compound or, less frequently, as a conglomerate.  

Direct enantiomeric resolutions are only feasible in chromatographic systems which 

contain an appropriate chiral selector. This chiral selector can be incorporated into the 

stationary phase (chiral stationary phase) or be permanently bonded to or coated onto the 

surface of the column packing material (chiral bonded and chiral coated stationary 

phases). In all these cases, it is appropriate to refer to the chromatographic column as 

enantioselective (chiral) column. 

In the case of chiral stationary phases, the enantiomer that forms the more stable 

association with the chiral selector will be the more strongly retained species of the 

racemate. On the other hand, a chiral mobile phase reduces the retention time of the solute 

enantiomer which forms a stronger association with the chiral selector. The 

enantioselectivity of the chiral chromatographic system is then expressed as the ratio of 

the retention factors of the two enantiomers. Here, the limit for the enantioselectivity of 

the chiral chromatographic system is set by the enantioselectivity of the selector-solute 

association (in the mobile phase). However, in the majority of chiral mobile phase 

systems, the chiral selector as well as its association with the solute enantiomers is 

distributed between the mobile and stationary phases. The effective enantioselectivity of 

the chromatographic system will therefore be proportional to the ratio of the 

enantioselectivities of the association processes in the stationary and mobile phases. 

(Davankov et al., 1988). 
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2.1.2. Trends in Chiral Chemistry 

Conventional chemical synthesis result in the formation of chirality element in the 

molecule and it ends up with substances which only differ in geometric orientation. The 

increased awareness of the differences in biological activity of the two enantiomers of 

chiral substances has raised the demand for optically pure product, particularly in the 

pharmaceutical industry.  

Unfortunately, it is not unusual to find that one isomeric form of a chiral drug 

compound has a therapeutic effect on the human body, and is therefore, an effective 

medication while its enantiomer is inactive or even harmful. The S-isomer of 

Penicillamine is an effective drug for arthritis while the R-isomer is highly toxic. 

Thalidomide is a chiral drug that, in the early 1960s, was administered to pregnant woman 

as racemic mixture. It was realized that only one enantiomer is beneficial while the other 

one is believed to be responsible for major limb malformations in fetuses and other birth 

defects. Another example of chiral molecules with their distinct bioactivity is tabulated in 

Table 2.1. When one isomer of a chiral compound is 'good' and the other 'bad', there is 

obvious benefit in separating the two enantiomers to enhance its safety and tolerability. 

 
 

Table 2.1 Chiral molecules and bioactivity 
 

Category Enantiomer Compound Bioactivity 
Drug Amphetamine d-isomer is a potent central nervous stimulant 

while the l-isomer has little, if any, effect 
 Epinephrine l-isomer is 10 times more active as vaso-

constrictor than d-isomer 
 Propanolol Racemic compound is used as drug, only the 

(S)-(-)-isomer has the desired β-adrenergic 
blocking activity 

 Propoxyphene α-l-isomer is antitussive while α-d-isomer is 
analgesic  
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Table 2.1 Chiral molecules and bioactivity (Cont’d) 
 

Category Enantiomer Compound Bioactivity 
Vitamin Ascoric Acid (+)-isomer is a good antiscorbic while (-)-

isomer has no such properties 
Insecticide Bermethrine d-isomer is much more toxic than the l-isomer 

Food Asparagine d-enantiomer tastes sweet while l-enantiomer 
tastes bitter 

 Limonene S-limonene smells like lemons while R-
lemonene smells like oranges  

 Carvone S-(+)-carvone smells like caraway while R-(-)-
carvone smell like spearmint  

 
 
It was shown in early 1990’s that significant benefits in terms of chiral stationary 

phase and eluent consumption could be achieved by performing the separation based on 

SMB technology (Rekoske, 2001). Consequently, separation of pharmaceutical compound 

began to be carried out using this technology, particularly after the recent development in 

chiral stationary phases (Pirkle et al., 1980; Shibata et al., 1986; Yashima and Okamoto, 

1995) and non-linear chromatography theory (Guiochon et al., 1994). Further 

optimization work in CSP area (Schulte et al., 1997; Kartozia et al., 2002) as well as in the 

mobile phase (Guest, 1997) continues to improve separation performance. The 

combination of non-enantioselective synthesis of racemic mixtures and SMB 

chromatography might make drug development substantially faster and cheaper. 

 

2.1.2.1. Trends in Pharmaceutical Industry 

Pharmaceutical companies have proved to be very lucrative for fine chemical 

manufacturers as long as they are able to provide single enantiomers of chiral 

intermediates and active ingredient quickly and cost-effectively as a potent competitive 

advantage. They have been honing, acquiring, developing and expanding chiral 
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technologies to respond to the rising demand for chiral compounds, not only from drug 

companies but also from the agrochemical, food and beverage, and diagnostic and 

research industries. 

According to market research firm Freedonia group, demand for chiral raw materials, 

intermediates and active ingredients will grow by 9.4% annually between 2000 and 2005. 

The total market will be US$15.1 billion with approximately 76% going to drug 

manufacturing. Technology Catalysts International has measured the impact of chiral 

compounds in terms of chiral drugs. Their analysis shows that of the US$ 410 billion in 

worldwide sales of formulated pharmaceutical products in 2001, about 36% was due to 

single-enantiomer drugs. The number extends the rising sales and market share of single-

enantiomer drugs which were US$ 133 billion (34%) in 2000 and US$115 billion (32%) 

in 1999 and the trend is expected to continue. 

Among the therapeutic areas observed in the study, Respiratory and Central Nervous 

System (CNS) are those that experience major growth in single-enantiomer drugs. Among 

CNS disorders, the biggest market is depression. The leading product, with sales in 2000 

of almost US$ 2.6 billion, was Prozac (fluoxetine) by Eli Lilly. Other antidepressant, 

however, such as Paxil (paroxetine hydrochloride) from GlaxoSmithKline and Zoloft 

(sertraline) from Pfizer, are single-enantiomers. 

One strategy to improve the bottom line of drug companies is to extend the profitable 

life of products by redeveloping single-enantiomer forms of drugs that had been approved 

as racemates. A recent example is the effort of Forest Laboratories to bring out a more 

potent version of its antidepression drugs, Celexa (citalopram), a racemate. The R isomer 



Literature Review 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

13 

is inactive, and they applied for approval of escitalopram, the S-enantiomer-only drug in 

early 2001 (Rouhi, 2002). 

A number of synthetic strategies are available for the preparation of single enantiomer 

drugs (Crosby, 1992). In addition to diastereoisomeric crystallizations and enantio-

selective synthesis (specific to one enantiomer), resolution by preparative chromatography 

is become increasingly interesting nowadays where numerous advantages have been 

explored (Nicoud et al., 1993). Among these, the possibility to obtain both species at once 

with high purity is beneficial to the compilation of required tests.   

Another effort involves the use of chirality as a tool for drug life cycle management. 

There are two ways of doing it: the first, known as racemic switch, will be managing the 

life cycle of a drug by patenting the individual enantiomers of a racemate and switch 

drugs to prolong patent life. Sepracor is among the companies that is developing racemic 

switch of several drugs made by other company. The next table lists some compounds that 

Sepracor is working on (Stinson, 2000, 2001). 

 
Table 2.2 Sepracor racemic switch project 

 
Compound Parent Drug Manufacturer Development Stage 

Levalbuterol HCl 
(XOPENEX®) 

VENTOLIN®  
PROVENTIL® 

GlaxoSmithKline 
Schering 

Launched and NDA filed for 
pediatric indication (for 
asthmatic bronchospasm) 

Espopiclone 
(ESTORRA®) 

IMOVANE® 
AMOBANE® 

Aventis Pharma Phase III Clinical Trials 
(treatment of insomnia) 

(S)-oxybutynin DITROPAN® ALZA Phase III Clinical Trials (for 
urinary constinence) 

(S)-doxazosin CARDURA® Pfizer Phase I Clinical Trials (for 
urinary tract/prostate gland) 

 
    
The second effort will be mixing an old drug, soon to be off patent, with a new drug, 

not so soon to be off patent, that treats the same condition but under different mechanism. 
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One example is the collaboration between Merck and Schering over their two products:  

ZOCOR® and ezetimibe respectively. ZOCOR® is a statin and works by inhibiting the 

production of cholesterol in the liver while ezetimibe selectively inhibits the absorption of 

cholesterol in the intestines without interfering with the absorption of nutrients. Another 

combination is Merck’s CLARITIN®, once daily leukotriene receptor antagonist for 

asthma, and Schering’s SINGULAR®, non-sedating antihistamine (Stinson, 2000).  

Another development from the drug discovery area, Synthon Chiragenics offers 

complex chiral compounds that have never before been readily available. Grouped by 

complexity into diamond, platinum, gold and silver collections, the compounds will 

enable drug discovery based on structure that were previously hard to target. Compounds 

in the diamond collection are the most complex, often with two or three chiral centers and 

they can be used in drug screening with minimum transformation. They include highly 

functionalized oxazolidinones, β-amino acids, morpholines, piperazines and pyrrolidinols. 

The platinum collection is composed of functionally rich and structurally complex 

amino alcohols, β- and γ-amino acids, and oxazolidinones. They are suitable as cores or 

scaffolds for developing lead candidates. The gold and the silver collections include novel 

compounds with one chiral center. They can be used to generate core molecules for drug 

discovery or as chiral ligands. 

Pharmaceutical industry potential problems are low productivity, hefty R&D spending 

and the flowering of genomics and combinatorial chemistry. Total number of new drugs 

approved by the Food & Drug Administration has been declining since 1996 and total 

drug development time has almost doubled from 8.1 years in the 1960s to 14.2 years in 

the 1990s. This might be due to the increasing complexity of the diseases that 
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pharmaceutical companies are now targeting. The time it takes for FDA to approve a new 

drug, after decreasing from about 30 months in the early 1990s to 11.7 months in 1998, 

has been rising again. The average was 16.4 months in 2001 and the drain on resources is 

exacerbated by patent expirations (Rouhi, 2002). 

Clinical development represents around 40% of R&D spending and is considered the 

“make or break” point for a new drug. Despite latest technological advances in 

pharmaceutical R&D, nearly 80% of all clinical studies for new product fail to finish on 

time and 20% of those delayed for six months or longer (Kirkpatrick, 2002). There is a 

growing trend for pharmaceutical and biotech companies to outsource their clinical work 

to Contract Research Organization (CRO). Outsourcing enables companies to reduce 

overall cost, cover gaps in capacity and improve their skill base. It also allows them to 

focus their in house-efforts on other parts of R&D process. For small companies with 

limited internal resources, this allocation allows them to get the most out of their R&D 

investment.  

   

2.1.2.2. Trends in Fine Chemical Industry 

Recent survey notes that the trends in chiral technology are moving toward 

biocatalysis. That because it enables transformation in fewer steps, with fewer by-

products and lower solvent use, than traditional chemical synthesis. Other advantages of 

biocatalysis are the absence of potential threat of contamination resulting from metals in 

catalysts and negative environmental impact. 

Degussa Fine Chemicals is one example of fine chemical companies that heavily 

invested in biocatalysis with its hydantoinase technology to produce L-amino acids. This 
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technology starts from D,L-hydantoins that can be produced by easy, inexpensive and 

standard chemistry. Hydantoinases convert hydantoins to carbamoylamino acids, with 

amino acids as products when acted upon by carbamoylases. Hydantoins racemize 

steadily and offer an attractive route to L- or D-amino acids as one enantiomer is 

consumed, the remaining one racemizes and 100% of one enantiomer is theoretically 

produced.  The route to D-amino acids is well established and widely used while a 

complementary path to L-amino acids had not been available. 

In collaboration with California Institute of Technology, Degussa has developed a 

fairly selective L-hydantoinase by directed evolution of a wild-type hydantoinase that 

prefers D-hydantoins. Degussa uses the enzyme in conjunction with a racemase, which 

catalyzes hydantoin racemization and an extremely selective L-carbamoylase, all housed 

in modified Escherichia coli cells. The whole-cell biocatalyst digests a wide variety of 

raw material to make a range of products. Amino acids that has been produced at 

industrial scale include L-methionine, L-norleucine, L-2-aminobutyric acid and L-3-(3′-

pyridyl)alanine.  

Daicel Chemical Industries applied biocatalyst technology in the area of chiral 

alcohol. A recently discovered R-specific secondary alcohol dehydrogenase from Pichia 

finlandica now complements the S-specific enzyme from Candida parapsilosis, 

discovered in 1995. With these two enzymes, Daicel is now able to supply both 

enantiomers of a chiral secondary alcohol from the same ketone substrate. 

CSIR Bio/Chemtec has developed a process to produce l-menthol from the readily 

available m-cresol. Alkylation of m-cresol generates thymol and hydrogenation of thymol 

yields four pairs of diastereomers: +-menthol, +-isomenthol, +-neomenthol and +-
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neoisomenthol. Acylation of this mixture using a stereoselective lipase yields l-menthyl 

acetate in 96% minimum enantiomeric excess(ee). l-Menthyl acetate is separated from the 

unreacted isomers by distillation and hydrolysis yields l-menthol. 

 DSM Fine Chemicals produced an enantiopure secondary alcohol by dynamic kinetic 

resolution using a stereoselective lipase in multiton-per-year capacity. A ruthenium 

catalyst with proprietary ligands racemize both enantiomers. At the same spot, a 

stereoselective lipase converts only one enantiomer to an ester in high yield and greater 

than 99% ee. The ester is inert to the metal complex and does not racemize. Hydrolysis to 

the enantiopure alcohol is nearly quantitative. 

As biocatalysis gains ground in chiral chemicals production, research in asymmetric 

chemical synthesis continues unabated. One active area is immobilization of asymmetric 

homogeneous catalysts. Asymmetric homogeneous catalysts are difficult to use in large 

scale runs. They are not reusable and tend to contaminate the desired products. 

Immobilization could solve this problem and open up fine chemicals production to 

continuous processing.   

Synetix Chiral Technologies is among the companies that develop and commercialize 

catalysts-immobilizing technologies. Its technology is based on rigid porous solid formed 

by controlled hydrolysis of tetraethylorthosilicate in the presence of triethoxysilane or a 

triethoxyaluminium salt which provides linking group. Further chemistry on the resulting 

powder anchors the catalyst metal or ligands through electrostatic or covalent interactions 

with the linking groups. The anchored catalyst can be added directly to a reaction mixture 

or packed in a fixed bed through which substrate and reagents pass. Strong binding of the 

catalyst to the support prevents metal leaching into product. 
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Johnson Matthey is another company that is commercializing catalyst immobilization. 

Preformed asymmetric homogeneous catalysts, the metal and its coordinated ligands, are 

anchored onto various supports (such as alumina, silica or clay) by using heteropolyacids 

such as phospotungstic acid as anchoring agents. Asymmetric hydrogenation catalysts 

immobilized this way are at least as active and selective as the homogeneous versions, 

some are reusable for up to 15 times. Catalyst leaching is not observed. 

This technology complements Johnson Matthey’s FibreCat technology, based on 

anchoring catalysts to a polymer fiber backbone. Four series of fiber-anchored catalyst are 

already commercially available: palladium catalysts for carbon-carbon cross-coupling, 

rhodium catalysts for hydrogenation, osmium catalysts for cis-hydroxylations and 

ruthenium catalysts for selective oxidations. Even though the development of FiberCat is 

intended to bind expensive ligands and metals and to recover them after the chemistry is 

complete, yet it increases environmental stability. Pyrophoric ligands such as tert-butyl 

phosphines become stable when anchored and osmium tetroxide, originally volatile and 

highly toxic, can be handled like a nontoxic material. 

No work has been done with asymmetric reactions although Johnson Matthey has 

shown that FibreCat osmium catalysts convert octane to dihydroxyoctane, chiral modifiers 

have not yet been used. Meanwhile research in chiral ligands continues to be very 

productive. (R)-DTBM SegPhos, developed by Takao Saito and coworkers at Takasago 

International Corp., is a new addition to the company’s portfolio of SegPhos ligands 

{(4,4´-bi-1,3-benzodioxole)-5,5´-diyl-bis-(diarylphospine)s}. Under dynamic kinetic 

resolution conditions, ruthenium-(R)-DTBM SegPhos reduces the carbonyl group of 
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racemic α-benzamido-β-ketoesters to form only one of four possible isomers in greater 

than 98% diastereomeric excess and greater than 99% enantiomeric excess. 

Also from Takasago are nine new chiral diphospine ligands from rhodium-catalyzed 

asymmetric hydrogenation of olefins based on three structure types: SegPhos, 

BeePhos{1,2-bis(2-alkyl-2,3-dihydro-1H-phosphindol-1-yl)benzenes} and UCAP{1-(2,5-

dialkylphospholano)-2-(diarylphosphino)-benzenes or 1-(dialkylphosphino)-2-(2,5-

dialkylphospholano)benzenes}. These catalysts are being applied to olefins that are 

enantioselectively difficult to reduce. Reactions are carried out at 30 ºC rather than at 

cryogenic temperatures with moderate pressure, sometimes as low as 13.6 lb per sq in. 

In other works on asymmetric hydrogenations, Zumu Zhang, an associate professor at 

Pennsylvania State University and the chief technology officer of Chiral Quest, State 

College, Pa., has prepared ortho-subsituted BINAPO ligands {1,1’-bi-2-

naphthylbis(diphenylphosphinite)s}. The ligands become more effective than the 

unsubstituted versions because the ortho-substitution restricts the orientation of aryl 

groups joined to phosphorus atoms. The new ligands have been used in ruthenium-

catalyzed asymmetric hydrogenation of β-aryl-substituted β-(acylamino)acrylates to β-

aryl-substituted β-(acylamino)esters at up to 99% ee. 

For rhodium-catalyzed hydrogenations of α-(acylamino)acrylic acid derivatives and α-

arylenamides, Zhang offers TangPhos, a 1,2-bisphospholane named after graduate student 

Wenjun Tang. The ligand, which has chiral phosphorus atoms, was designed with 

conformational rigidity in mind as well. Enantioselectivities of up to 99% and turnovers 

of up to 10000 have been achieved with the ligand. 
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In Germany, Bayer AG’s fine chemicals business group has developed a new 

synthesis for its proprietary Cl-MeO-BIPHEP ligands {5,5´-dichloro-6,6′-

dimethoxybiphenyl-2,2´-diyl}-bis(diphenylphosphine)s}. These ligands deliver greater 

than 98.7% enantioselectivity in asymmetric hydrogenations of carbonyl groups and 

carbon-carbon double bonds. The method enables a wide spectrum of alkyl groups to be 

introduced allowing fine tuning of the catalyst beyond what was possible before. 

In other developments, Sumitomo Chemical is now making chiral cyclopropane 

carboxylic acids based on addition of a diazoacetate to a terminal alkene catalyzed by 

dimeric rhodium triphenylacetate. Yields of up to 90% are achieved with highly 

functionalized substrates. The reaction produces a racemate, but it is practical because of 

Sumitomo’s library of phenethylamine resolving agents. Enantiopurities of at least 98% 

are achieved. 

At SNPE, the inversion of configuration that occurs in bimolecular nucleophilic 

substitutions is being used to prepare chiral 2-chloropropionates. When methyl(S)-(-)-2-

(chlorocarbonyloxy)propionate—made by phosgenation of methyl(S)-(-)-lactate— 

decomposes in the presence of hexabutylguanidinium chloride hydrochloride, methyl(R)-

(+)-2-chloropropionate is formed in up to 90% yield and up to 98% ee. Continuous attack 

by chloride ion on other side of the substitution site can occur, resulting in a racemate, but 

continuous removal of the inversion product prevents that from happening. 

These few examples hardly convey the breadth of recent advances in chiral 

technologies despite the industry’s sluggish prospect. Many fine chemicals companies are 

ready for the challenges of chiral manufacture, however poor outlook for their customers 

at the moment (Rouhi, 2002). 
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2.2. Chromatographic Separation 

Chromatographic separation utilizes the difference in sorption equilibria of 

components in a feed under contact with a suitable stationary phase. This stationary phase 

is usually a porous or granular solid which in some cases may be coated with a liquid 

substrate. The stationary and mobile phase being used depends on the type of application 

and the properties of the mixture to be separated.  

In chromatography, the selection of stationary phase and mobile phase is very 

important. The choice of mean particle size of the stationary phase depends on the 

distribution coefficients of the components to be separated, the viscosity of the solution 

and the optimization between maximum throughput and the desired final product purity. 

In order to achieve a good separation, the particle size range must be very narrow, i.e. 

over 95% of the resin must be within 20% of the mean particle size (Ganetsos and Barker, 

1992). 

In addition to its powerful separation potential, the chromatographic operation is not 

energy intensive, versatile and does not involve any phase change making it the most 

suitable technique for bioseparation. 

 

2.2.1. Elution Chromatography 

The chromatographic principle was first conceived and tested by operating in a batch-

wise mode: introducing a pulse of feed into a column packed with adsorbent solid with a 

continuous flow of carrier fluid. The components are stratified in the column by selective 

adsorption and desorption on the solid, forcing them to breakthrough at the end of the 

column at different times. The least adsorbed components, often referred as raffinate, will 
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emerge earlier than its counterparts (most strongly adsorbed), mostly known as extract. 

The process is, however, only suitable for batch production for small amount of feedstock.  

The selection of packing material is important, not only on a physicochemical basis 

(mostly the selectivity) but also on mechanical basis. The use of large particles and/or 

large particle size distribution is not recommended as they combine high pressure and low 

efficiency. The presence of very fine dust is particular harmful to the process due to the 

resulting high column back pressure effect.  

This technique was targeted toward the separation of chemicals that were not readily 

or economically produced by any other method, such as flavors and fragrances, 

petrochemicals (i.e. pentene isomers) and pharmaceuticals. Abcor (in Massachusetts) has 

successfully employed this technique for commercial separation of petrochemicals namely 

aromatic isomers m-xylene and p-xylene (Ryan and O’Donnel, 1968) and Asahi Chemical 

Industries (Japan) for separation of p-xylene and ethylbenzene by means of zeolite-

desorbent system (Seko et al. 1982).  

In the field of flavors, several leading groups are known to use chromatography such 

as Finnish Sugar for the desugarization of beet molasses (Hongisto, 1977; Heikkilä, 

1983), Amino GmbH (Hongisto, 1977) and Suddeutsche Zucker AG in Germany (Munir, 

1976) for purification of beet or cane molasses. Another leading group in the application 

of batch chromatography is Elf Aquitaine, in association with the Société de Recherches 

Techniques et Industielles (SRTI) of France (Bonmati et al., 1980). In 1979, a production 

scale Elf-SRTI batch system to purify perfume ingredients and flavor chemicals from 

terpene feedstocks was commissioned at the SCM Corporation Glidden Division Plant in 

Jacksonville, Florida. 
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The advantage of batchwise/elution chromatography is that it is directly scalable from 

an analytical separation. Yet, there are several disadvantages such as generation of 

considerable amounts of organic eluent wastes, significant product dilution and long 

elution times for recovery of pure products from the column (Schulte and Strube, 2001). 

Another drawback of this technique is relatively low throughput, when compared to SMB 

chromatography, making the latter preferable from economical point of view since the 

enantioselective resins are a significant portion of the cost of chromatography systems 

(Francotte, 2001). 

In batch process, either the eluted components must be fully resolved (i.e. very long 

column) or the overlapping fraction must be removed. It involves alternate supply of 

sample mixture and desorbent solvent to the bed of adsorbent particles. Repetitive feed 

injection and continuous recycling of the overlapping parts are employed in production 

scale, resulting in up to 40% of the injected sample being recycled.  

Scaling up might introduce problems like non-uniform liquid distribution causing flow 

irregularities such as tailing (Colin et al., 1990). This problem can be resolved by applying 

a variety column baffle systems to enhance radial mixing and maintain a narrowband 

profile laying the horizontal plane. This baffle system, however, creates another problem 

especially when it comes to backwashing, regenerating or repacking the column. It is also 

difficult to accommodate any swelling or shrinking of the resin. 

Recent application has nullified the use of baffle in which uniform flow is achieved by 

running the system at optimal flow rates, temperature and solute concentration thereby 

allowing viscosity control and density gradients. The use of short and wide column is 

preferred in biochemical application. The selection of the stationary phase is of major 



Literature Review 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

24 

concern than column design because it must exhibit strong specific affinity to the 

components to be separated. 

 

2.2.2. Continuous Crosscurrent Chromatography 

In crosscurrent chromatography, the chromatographic bed moves perpendicularly to 

the direction of fluid motion within the bed. The retention time differences of the feed 

components are transformed into physical displacements so that each component may be 

withdrawn continuously at fixed and characteristic distances away from the feed point. 

The two-dimensional flow pattern is in contrast with the conventional batch system and 

the process is a steady state operation occurring in the axial and circumferential 

directions. 

The concept of cross flow chromatography was attempted previously in at least three 

different operational modes. Initial effort on this system was introduced by Martin (1949) 

in which an annular chromatograph rotates with respect to a feed stream and product 

withdrawal points. The annular space between two concentric cylinders is packed with 

adsorbent solid for continuous separations. The annulus rotates around its center while the 

feed is injected continuously through an immersed pipe. Carrier fluid is fed axially 

through the annular bed and uniformly to all parts while the bed is slowly rotated. In this 

way, the molecules that travel with the mobile phase move vertically down the bed and 

circumferentially, and those with the stationary phase move circumferentially relative to 

the feed pipe. Therefore each component emerges at different location depending on its 

retention time and rotation rate of the annulus. 
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Dinelli et al. (1962) rotated a series of vertical columns on a circular pitch as a 

carousel at speeds between 1 and 50 revolutions per hour to separate volatile mixtures by 

gas-solid chromatography. The carrier gas traveled down the column with feed being 

injected successively into columns as they passed a fixed feed port. Very high product 

purity (99.9%) was achieved in the separation of cyclohexane-benzene mixtures using 

tricresyl phosphate as the solid phase at 200 cm3/h throughput. 

Giddings (1962) showed that the use of this annular approach can avoid some inherent 

disadvantages of batch type large scale systems. Improved capacity is achieved by 

increasing cross sectional area while keeping annulus width narrow enough to avoid 

losses in resolution due to packing non-uniformities, experienced in batch column with 

diameters greater than 25 mm. Properly spaced multiple feed points could increase 

capacity by having the last component of a feed mixture exit from the column just prior to 

the first component of a second feed stream. 

Fox et al. (1969) extended the application of this annular system to the separation of 

biological mixtures. They purified cow heart myoglobin and separated skim milk proteins 

from lactose and salt using molecular sieve gels. The arising operating problem, due to 

low throughput, in the gravity-fed device is difficulty in obtaining uniform flow 

throughout the entire annulus.  

The separation of nickel and cobalt from synthetic process liquor was investigated 

using 1 M ammonium carbonate eluent by Scott et al. (1976). They pressurized rotating 

annular chromatograph using an air line to provide constant over pressure. The annulus 

was 13 mm wide and 500 mm long with an outside diameter of 284 mm fabricated from 

Plexiglas. 
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Begovich and Sisson (1983) investigated the ion exchange separation of zirconium 

and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium (<0.01% 

hafnium by weight) and hafnium (<1% zirconium) have been previously prepared using 

cation exchange resin in the pressurized continuous annular chromatograph. The device is 

adaptive to large scale operation and able to separate many components. 

Howard et al. (1988) investigated the separations of aqueous fructose, glucose and 

sucrose solutions in a 600 mm laboratory scale continuous rotating chromatograph using 

calcium-exchanged Dowex 50W-X8 resin. Complete resolution of fructose-glucose 

mixtures was achieved. 

Another design of crosscurrent chromatography was reported as in the work of 

Sussman and Huang (1967). The device, known as radial flow continuous chromatograph, 

uses two rotating disk placed closely together and coated with a thin layer of solvent. 

Carrier fluid and feed are introduced at the center of the disks and cross flow separation 

occurs due to disk rotation and radial flow of the carrier fluid. The application of this 

system is limited by its low output, due to capacity of a single disk system. Larger 

systems employing multiple disks are possible to improve productivity, but the device 

suffers from mechanical rotation. 

Tuthill (1970) operated a cross flow chromatographic device by continuous injection 

of multicomponent feed into the corner of a rectangular slab packed with adsorbent and 

changing the direction of carrier flow at right angles. As a result, the products move to 

different positions at the end of the slab. The inability to use very fine chemical, due to 

excessive pressure drop, has limited the separation efficiency of this device. 
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The continuous crosscurrent chromatographic device has been shown to operate 

effectively as a preparative chromatograph. Continuous feed injection and product 

withdrawal makes it more superior than the conventional batch system. Cross-flow 

systems have no restriction to the number of components to be separated. Its modification, 

carried out by holding the bed stationary and rotating nozzles and product collectors, has 

several advantages in terms of operating cost (lower power requirements compared to 

rotating the whole annular packed bed) and better scale-up potential. The system can be 

used to continuously separate multicomponent solution and/or concentrate single 

component solution.  

 

2.2.3. Continuous Countercurrent Chromatography 

The idea of developing large scale continuous chromatographic process, applying 

countercurrent contact between fluids and selecting appropriate chromatographic packing 

has emerged in the past half decade. The main rationale behind countercurrent contact 

between mobile and stationary phase is enhanced driving force for separation. The feed 

stream is introduced into the center containing the least strongly adsorbed species, which 

travels with the mobile phase and is withdrawn from the top of the column, and the more 

strongly adsorbed species, which travels with the solid phase and is stripped at the bottom 

part of the column. 

In countercurrent process, the solute concentration profiles need only to be partially 

resolved within the chromatographic column to allow collection of pure products at the 

respective outlets. In this way, the entire separating power of this system can be exploited 

effectively, permitting severe overloading by batch cocurrent standards and enabling 
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higher throughputs per unit volume of resin. Most of the counter-flow systems are 

restricted to two components separation at a time or multi component separation of feed 

into two parts, followed by further separation to recover each single component. 

Two categories have been identified in this area depending on whether the bed has 

been physically moved or the stationary-phase movement is simulated by mechanical 

means: the true moving bed systems and the simulated moving bed systems. The true 

moving bed systems appeared first in which the packing flowed under gravity while the 

mobile phase traveled counter current in a vertical column. The simulated moving bed is 

subsequently developed to overcome mechanical difficulties (non uniform flow) and 

operating cost problem (moving the entire packing) due to movement of solids.  

 

2.2.3.1. True Moving Bed Chromatography  

True Moving Bed is a continuous chromatographic process whose principle has been 

adopted in Simulated Moving Bed process in which liquid and solid phase flow in 

opposite direction. For production processes, the productivity of the classical (batch) 

chromatography is too small and the consumption of solvents is too high. Therefore, true 

moving bed chromatography was invented as an approximation to a continuous counter-

current operation. The concrete example of a True Moving Bed system is given in 

Hypersorption process by Union Oil Company in California, USA (Berg, 1946, 1951; 

Kehde et al., 1948). The technique was first applied for gas separation with activated 

carbon as solid phase flowing continuously downward through a rising gas stream 

containing methane, hydrogen, ethylene and other gases lighter than ethane.  
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In the area of bioseparation, Barker et al. (1992) use a 12-column preparative semi-

continuous counter current chromatographic bioreactor separator in biosynthesis of 

dextran from sucrose in the presence of enzyme dextransucrase and the continuous 

production of maltose from modified starch. They are able to overcome viscosity 

problems and displacement of Ca2+ from the resin but product contamination were 

encountered after 50 hours of operation due to formation of levan and glucose. For 

maltose production, high purity maltose can be produced while keeping enzyme usage as 

low as 50% of the theoretical requirement for a conventional batch bioreactor. 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.2 Schematic diagram of TMB chromatographic process 
 
 
The main principle of this system is adjusting the relative velocity between the 

descending stationary phase and the ascending mobile phases to ensure that the more 
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Schematic representation of TMB process is depicted in Figure 2.2 for binary separation 

of species A and B, with A selectively adsorbed in the solid phase. Feed is continuously 

injected into the middle of the system with two product withdrawal ports: the extract port, 

rich in the strongly adsorbed species A and the raffinate port, rich in the weakly adsorbed 

species B. Continuous recovery of relatively pure products is achieved with appropriate 

regulation of internal liquid and solid flow rates thus eliminating the drawback of species 

dilution and low adsorbent utilization encountered in batch chromatography. 

There exist four intrinsic zones in the bulk of the system and the governing role that 

allows chromatographic separation of any of two species is detailed as follows: 

1. Zone I (Desorption of A), is between point of eluent injection and extract 

withdrawal. The solid entering zone I contains the more retained component A and 

as the fresh desorbent D stream flows in the opposite direction with the solid 

phase, component A are displaced by desorbent and a portion of liquid leaving this 

zone is withdrawn as extract and the remainder flows to zone II as reflux. In other 

words, zone I allows solid regeneration. 

2. Zone II (Desorption of B), is between point of feed injection and extract 

withdrawal. At the fresh feed point, the upward flowing solid adsorbent contains 

the quantity of component A that was adsorbed in zone I. However, the pores will 

also contain a large amount of B, because the adsorbent has just been in contact 

with fresh feed. The liquid entering the top of zone II contains no B, only 

component A and D. In this way, component B is gradually displaced from the 

pores of A and as the adsorbent moves up through zone II. At the top of zone II the 

pores will contain only A and D. 
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3. Zone III (Adsorption of A), is between the point of feed injection and raffinate 

withdrawal. As fresh feed flows down through zone III, countercurrent to the solid 

adsorbent flowing upward, component A is selectively adsorbed from the feed into 

the pores of the adsorbent. At the same time, the desorbent is desorbed from the 

pores of the adsorbent to the liquid stream in order to provide room for component 

A in the pores.  

4. Zone IV (Desorption of D), is where the feed components in zone III are 

segregated from extract in zone I. At the top of zone I, the adsorbent pores are 

completely filled with D. The liquid entering the top of zone IV consists of B and 

D. It is possible to prevent the flow of component B into zone I and avoid 

contamination of the extract by properly regulating the flow rate of zone IV. 

 

This TMB approach, despite persistent work on moving system of this type, suffers 

from mechanical problem such as inconsistent flow caused by solids circulation, low mass 

transfer coefficient at uneven column packing, solid attrition due to shear forces and low 

mobile phase velocities to prevent bed fluidization. Low temperature distillation replaces 

this technique due to economical consideration after all. 

In further development, the solid bed is kept stationary in practical applications and 

the continuous movement of solid phase is simulated by a periodic shift of inlet and outlet 

ports in the direction of mobile phase flow yielding Simulated Moving Bed 

Chromatography as described in the following sub chapter. 
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2.2.3.2. Simulated Moving Bed Chromatography 

The SMB concept was introduced to solve practical difficulties arising from 

mechanical problem: solid movement in a transient TMB unit. It is a technical realization 

of a countercurrent adsorption process in which the counter-currency between mobile and 

stationary phases is accomplished without physical movement of the solid. The essential 

element in SMB operation is rotary valves (Broughton and Gerhold, 1968) or a number of 

conventional two-way valves (Marteau et al., 1994), which allows periodic shifting the 

position of feed, desorbent, extract and raffinate lines along the bed, and a pumparound 

pump to circulate liquid through the adsorbent chamber. The specific location of inlet 

(feed and desorbent) and outlet ports (extract and raffinate) divide the entire system into 

four zones, each assuming a certain role. In general, most of the benefits of a 

countercurrent operation can be achieved by subdividing the adsorbent into a number of 

static beds and regularly moving all inlet and outlet ports simultaneously one column 

forward in the direction of liquid flow at fixed time interval. 

An SMB-plant consists of a number of chromatographic columns (usually 8 - 24) the 

input streams to which are switched periodically in order to approximate the 

countercurrency in true moving bed chromatography. In the limit of an infinite number of 

columns and short switching periods, the operating mode comprises a real countercurrent 

process. The operation of an SMB process is complicated and requires a careful choice of 

many parameters, in particular of the various flow rates and of the switching times. The 

process has nonlinear dynamic characteristics and it may drift away slowly such that after 

some hours, a breakthrough of a substance in the wrong stream will occur. As the SMB 

process is using little energy and can separate difficult mixtures, e.g. substances which 
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only differ in the geometric orientation (left and right hand molecules), it is becoming 

popular as a separation technique for low volume high price chemicals. 

In the latest development, chemical industry has developed numerous processes based 

on the use of adsorption and some of the most recent ones are based on the use of 

chromatographic principles. This is the case of separation process based on the simulated 

moving bed principle. Initially developed for the extraction of a few specific compound 

from complex mixtures, such as paraxylene from reforming streams or fructose from corn 

syrup, these processes are beginning to compete with the simple processes evolved from 

direct scaling up of the lab procedures. Currently, overloaded elution for production rates 

below 500 ton/year and simulated moving bed for production rates above 10.000 ton/year 

are dominating the field, apparently leaving a serious gap in between. 

The schematic diagram of SMB operation loop can be visualized in Figure 2.3 below: 

 
 
 

 

 

 

 

 

 

 

 
 

 
Figure 2.3 Adsorption-desorption diagram of SMB process 
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The general case of simulated counter-current process is that the movement of solid is 

simulated by successive switching of the feed and product positions at timed interval. The 

hypothetical velocity of solid phase is the ratio of length of column of each section and 

the switching time. The process shows a cyclic behavior, in the absence of disturbances, 

in which the profile at the end of the interval is equal to that at the beginning of the 

interval shifted one column in forward direction. In general, the simulated system does not 

reach a steady state in the time interval between successive switching due to the 

disturbances introduced each time a switching is made. The stationary regime of this 

process is a cyclic steady state, attained after several switching, in which an identical 

transient during each period between two valve switches takes place in each section. The 

system exists at a new transient behavior regardless of the state of the system had been in 

just before the switching. 

The installation allows a continuous production by chromatographic separation by 

simulating the displacement of the counter-current bed of the eluent phase. The simulation 

is done by sequenced displacement of the injection points, from one column to another, 

upstream to the eluent phase. During this lapse of time, the chromatographic profile 

migrates in the same direction as the fluid inside the separator. A pseudo steady state 

mode allows continuous collection of raffinate and extract at specified yield and purities. 

The desorbent liquid is selected so as to possess a boiling point significantly different 

from those of the feed components. The desorbent must also be capable of displacing the 

feed components from the pores of the adsorbent and conversely, the feed components 

must be able to displace the desorbent from the pores of the adsorbent. Therefore the 

desorbent must be chosen in such a way to be able to compete with the feed components 
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for any available active pore space in the adsorbent, solely on the basis of concentration 

gradients.  

The actual liquid flow rate within each of the four zones is different, due to injection 

and withdrawal of the net streams. Both the concentration profiles as well as the zones 

position moves toward the adsorption chamber. The overall liquid circulation rate is 

controlled by the pumparound pump, which should operate at four different flow rates, 

depending on which zone is passing through the pump. 

Even though SMB lends itself to production scale better than elution chromatography 

due to its continuous operating modes, it requires more development time and is sensitive 

to dead volume effects which must be accurately quantified and modeled (Schulte and 

Strube, 2001). Despite these disadvantages, several contract manufacturers and 

pharmaceutical companies such as Novasep, UPT and Merck have invested heavily in 

SMB technology, treating it as cost effective production scale enantioseparation technique 

(Juza et al., 2000; Francotte, 2001; Schulte and Strube, 2001). 

 

2.3. Application of SMB Technology 

Preparative chromatography is gaining more interest from wide range of industry both 

for product development as well as commercial production. It can be classified into two 

categories: batch or continuous modes. Even though the batch or elution chromatography 

mode has found the largest number of applications up to now (Colin et al., 2001), SMB 

chromatography as a continuous process is more attractive due to its advantages in terms 

of productivity and eluent consumption (Nicoud et al., 1993; Schulte et al., 1996) or in 

terms of chiral stationary phase (Rekoske, 2001). 



Literature Review 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

36 

Most applications of SMB process are developed with liquid mobile phases but 

extensions to gas phase (Mazzotti et al., 1996a; Tonkovich and Carr, 1996; Biressi et al., 

2000a) and supercritical liquids (Depta, et al., 1999; Denet et al., 2001) were reported. 

The main advantage of gas phase operation is higher effective selectivity of the adsorbent 

since the non-selective hold-up in the macropores is very much smaller (Morbidelli et al., 

1986) but higher energy cost and axial dispersion might shift the application to liquid 

phase operation. Both cases, however, are of great importance to industry and academic 

research since the separated mixture is solvent free, thus avoiding further post-processing 

operations. 

The SMB process is applied over a wide range of product including petrochemical, 

food/flavor/fragrance, biotechnology, pharmaceutical and fine chemical with scale of the 

processes differs by several orders of magnitude. Brief applications of this technology will 

be discussed in the following section. 

 

2.3.1. Petrochemical Industry 

The fundamental work of Broughton (UOP, Des Plaines, IL, USA) in the early 1960’s 

(Broughton and Gerhold, 1961) had opened the application of SMB chromatography in 

the petrochemical industry in which several million tons of product per year are produced 

using mainly zeolites as the solid phase thereafter. It was patented as the Sorbex process 

for the separation of  para-xylene from C8 hydrocarbons mixture on 100000 tons/yr scale. 

Recent application of this technology in the area of petrochemical industry includes the 

fractionation of C5-C6 paraffin (Mazzotti et al., 1996a)  and the product separation of both 
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Table 2.3 Moving bed application in petrochemical industry 
 
No. Process Application Adsorbent Contacting 

system 
Regeneration References 

1. Hypersorption C2H4 from refinery gas Activated 
carbon 

Dense moving 
bed 

Stream stripping Berg, 1946, 1951 
Kehde et al., 1948 

2. Arosorb aromatics and saturates separa-
tion from cracked naphtha 

Silica gel 8-column 
SMB 

Displacement 
(pentane desorbent) 

Eagle and Rudy, 
1950 

3. Aromax para-xylene from C8 aromatics X or Y zeolite 3-section 
SMB cascade 

Heavy aromatic 
desorbent 

Otani, 1973 

4. Molex linear/branched paraffins 5A zeolite Sorbex Light naphtha 
desorbent 

Broughton, 1968 
Broughton and 
Carson, 1969 

5. Olex Olefins from saturated isomers CaX or SrX Sorbex Heavy naphtha Broughton and 
Berg, 1969 

6. Parex para-xylene from C8 aromatics Sr-BaY 
K-BaX 

Sorbex para-diethyl 
benzene 

Broughton et al., 
1970 

7. Ebex Ethylbenzene from C8 aromatics NaY Sorbex Toluene De Rosset et al., 
1978 
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linear chain hydro-carbons from branched and cyclic hydrocarbon as well as alkenes from 

alkanes. 

The Sorbex process developed by UOP for numerous industrially separation works on 

the same principle as the SMB system even though the actual configuration is somewhat 

different. Instead of being contained in discrete beds separated by switch valves, the 

desorbent is contained in a single bed with subdivision into several sections. Brief 

information about Sorbex family processes are tabulated in Table 2.3 summarizing its 

application in petrochemical area. 

Another adaptation of SMB chromatography is used in converting natural gas into 

useful chemical feedstock. Tonkovich et al. (1993) used simulated countercurrent moving 

bed chromatographic reactor (SCMCR) in the oxidative coupling of methane to form 

ethane and ethylene (C2). In general, it is difficult to obtain C2 yields in excess of 20 to 

25% but the rapid separation of oxygen, methane and C2 products that occur in the 

SCMCR gives 65% methane conversion, 80% C2 selectivity and C2 yield slightly better 

than 50% with Sm2O3 catalyst at temperature about 1000 ºK. 

 

2.3.2. Food and Flavor Industry 

The very first application of chromatography is in the extraction and purification of 

complex mixtures of vegetal origin (Tswett, 1954). Nevertheless, chromatography has 

been identified as very expensive separation process and therefore its application is 

limited to the separation of biomolecules, where no other methods were suitable. 

Continuous effort on making chromatography as a powerful separation method has led to 

SMB chromatography, which can produce even low-value product at very good economy.  
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Most carbohydrates such as glucose, fructose, etc are chiral and chiral biological 

receptors might interact differently with the two enantiomers of a chiral flavor, fragrance 

or drug thus resulting in a different biological activity. For example, one enantiomer of 

limonene tastes like an orange while the other tastes like lemon. One enantiomer of 

vitamin C is an antioxidant, where as the other has almost no effects on human. The 

success of SMB chromatography in handling the separation of very difficult mixtures has 

paved the way to its application in food industry.  This took place shortly after the famous 

merit in petrochemical industry when industrial plants started to use Sarex process 

(Broughton et al., 1977), the Sorbex version for fructose-dextrose separation, since 1977. 

Many publications about carbohydrate separation using SMB process with regard to 

modeling, simulation and design strategies (Ching and Ruthven, 1985a, b, 1986; Hassan 

et al., 1995; Ma and Wang, 1997; Wooley et al., 1998; Azevedo and Rodrigues, 2001). 

Fructose-glucose systems have linear isotherms over a wide concentration range that they 

act as suitable test mixture for development of analytical and numerical solutions for 

performance prediction and design purposes. Most of the experimental investigation in 

fructose-glucose separation (Hashimoto et al., 1983a; Ching and Ruthven, 1985b, 1986; 

Mallman, 1998) used twelve columns more than 1 m to overcome or accommodate mass 

transfer resistance and dispersion effects into single non-ideality parameter. 

A comprehensive summary of SMB chromatography in the food industry are given in 

Table 2.4, particularly in the production of mono- and oligosaccharides (Kawase et al., 

2001). Another development includes the use of pseudo-simulated moving bed chro-

matography in the production of raffinose from beet molasses (Sayama et al., 1992) and in 
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Table 2.4 Moving bed application in food industry 
 
# Application Raffinate 

Product 
Extract 
Product 

Adsorbent Contacting 
system 

Desorbent References 

1. Fructose from 
glucose-fructose 

Glucose Fructose Ca2+ resin 8-column, 4-
section SMB 

Water 
desorbent 

Gembicki et al., 1997 

2. Fructose from 
glucose-fructose 

Glucose Fructose CaY Sorbex Water Broughton et al., 1977 
Bieser and de Rosset, 1977 

3. Fructose from 
glucose-fructose 

Glucose Fructose Ca2+ resin 3-section 
SMB  

Water Barker and Ching, 1980 

4. Xylose-arabinose 
from xylose-
arabinose-glucose 

Xylose Arabinose Ca2+ resin 4-zone SMB Water Balannec and Hotier, 1993 

5. Glutathione-
glutamic acid 

Glutathione Glutamic 
acid 

H+ resin 4-zone SMB HCl Maki, 1993 

6. Trehalulose-
fructose 

Trehalulose Fructose Ca2+ resin 12-column, 4-
zone SMB 

Water Nicoud, 1998 

7. Lactosucrose 
production 

Lactosucrose Glucose Cation 
exchange resin 

12-column, 4-
zone SMBR 

Water Kawase et al., 2001 

8. Dextran-fructose Dextran Fructose Ca2+ resin 12-column, 4-
zone SMB 

Water Coelho et al., 2002 
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the recovery of raffinose, sucrose, glucose and betaine from beet molasses mixture 

(Masuda et al., 1993).  

Application in flavor industry involves the use of integrated reaction-separation in a 

SCMCR or SMBR unit. The widest class of reaction to which reactive chromatography 

can be applied is esterification reaction, either catalyzed by acidic ion exchange resins 

(Sardin and Villermaux, 1979; Kawase et al., 1996; Mazzotti et al., 1997b) or by 

immobilized enzymes (Mensah and Carta, 1999; Migliorini et al., 2000). These 

applications utilize polarity difference between the two products, ester and water, for 

separation on many different adsorbent.  

 

2.3.3. Pharmaceutical and Fine Chemical Industry 

The healthcare sector has recently outperformed the overall market in an unfavorable 

market environment. One of the reasons behind this development is that industry leaders 

have given solid results. Another positive sentiment regarding the industry is that many 

analysts see an increase in drug application and approvals due to delay of several new 

drugs in the previous years. While most of these drugs are synthesized stereospecifically, 

the advent of powerful analytical and process scale separation techniques gives 

downstream process developers more options when the drugs are still in research pipeline. 

These options allow drug companies to evaluate a greater number of potentially less 

expensive synthesis methods and can present significant cost savings in the overall drug 

discovery process (Juza et al., 2000). 

Crystallization serves as the cheapest available method in general thanks to its low 

energy consumption and only enantiomerically pure seed crystals are required  (Profir and 
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Table 2.5 Chiral separation on SMB technology 
 
# Synthetic name, ‘trade 

name’, therapeutic or 
substance class 

Column 
number and 
size (length 
x ID, mm) 

CSP and mobile 
phase 

Amount 
of CSP 
(g) 

Selecti-
vity 
(approx) 

ee (%) 
in 
extract 

ee (%) 
in 
raffi-
nate 

Specific 
productivity 
(kg/kg/day) 

References 

1. 5,6,11,12-Tetrahydro-
2,8-dimethyl-5,11-
methanodibenzo[b,f][1,
5]diazocin, ’Tröger 
base’, chiral nitrogen 
model compound 

8 
(250 x 4.6) 

MCTA 
Ethanol 

15 2.0 97.4 96.4 0.006 Seebach et 
al., 1998 

2. (1-Aza-bicyclo-[2,2,2]-
oct-3-yl)-
methoxyimino-
acetonitril, agonist at 
muscarinic receptors 

8 
(105 x 26) 

Chiralpack AD 
Hexane/isoprop
anol (95:5, v:v) 

240 1.9 97.8 99.5 0.260 Guest, 1997 

3. 2-[(Dimethyl-amino)-
methyl]-1-(3-methoxy-
phenil)-cyclohexanol, 
’Tramadol’, analgesic 

12 
(100 x 21.2) 

Chiralpack AD 
Benzene/isopro
panol/diethylam
ine (95:5:0.1, 
v:v:v) 

240 2.1 99 >99.8 0.600 Cavoy et al., 
1997 

4. 5-(1,2,3,4-Tetra-hydro-
quinoline-6-yl)-6-
methyl-3,6-dihydro-
1,3,4-thiadiazine-2-one, 
‘EMD53986’, 
pharmaceutical 
intermediate 

8 
(54 x 26) 

Chiraspher 
Ethyl 
acetate/ethanol 
(95:5, v:v) 

90 3.3 99 73.8 0.17 Devant et al., 
1997 
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Table 2.5 Chiral Separation on SMB Technology (Cont’d) 
 
5. 3-(2-Methoxy-

phenoxy)-1,2-propane-
diol, ‘Guai-fenesin’, 
antitussive  

16 
(60 x 21) 

Chiralcel OD 
Heptane/ethanol
(65:35, v:v) 

201 2.4 98.8 99.2 0.080 Francotte and 
Richert, 1997 

6. (E)-(3R,5S,6E)-7-[2-
Cyclopropyl-4-(4-
fluoro-phenyl)-
quinolin-3-yl]-3,5-
dihydroxy-6-heptenoic 
acid, ‘DOLE’, pharma-
ceutical intermediate 

8 
(100 x 100) 

Chiralcel OF 
Hexane/isoprop
anol(50:50, v:v) 

3770 1.35 94.4 99.4 0.270 Nagamatsu et 
al., 1999 

7. 2,2’-Dihydroxy-1,1’-
binaphtol, intermediate 
for chiral catalysts 

8 
(105 x 26) 

DNBPG 
Heptane/isopro
panol (72:28, 
v:v) 

250 (ml) 1.4 89 97.8 0.03 
(kg/l/day) 

Pais et al., 
1997b 

8. D,L-Threonine, amino 
acid 

12 
(1000 x 25.4) 

Chirosolve-L-
proline 
Acetic acid 
(0.05 M) 
Copper acetate 
(0.125 µM) 

2800 
(ml) 

1.6 98 98 0.005 
(kg/l/day) 

Fuchs et al., 
1992a 

9. 2-Chloro-1-
(difluoromethoxy)-
1,1,2-trifluoro ethane, 
‘Enflurane’, ‘Ethrane’ 
inhalation anesthetic 

8 
(800 x 15) 

γ-Cyclodextrin 
nitrogen 

280 (ml) 1.34 98.4 98.4 0.026 
(kg/l/day) 

Juza et al., 
1998 
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Matsuoka, 2000). It is usually used in the generic drug market where manufacturing cost 

pressures are important and large quantities of stereoisomers are being processed (Mc 

Coy, 2001). Though enantioselective chromatography is more expensive, it consumes less 

time than crystallization and is readily scaleable to production levels from analytical data. 

Mostly there are two techniques in production scale enantioseparation namely batchwise 

and simulated moving bed (Francotte, 2001). 

The application of SMB chromatography in the area of pharmaceutical is tabulated in 

Table 2.5 (Juza et al., 2000). Even though most of the SMB applications in pharmaceu-

tical area have been conducted in liquid phase, the gas phase enantioseparation has been 

performed (Juza et al. 1998). A modified pilot unit designed for the separation of 

hydrocarbons was used for the separation of the enantiomers of the chiral inhalation 

anesthetic enflurane but they end up with low productivity and purity due to high 

operating temperature (T = 50 ºC). Relatively high purity can only be obtained for one 

outlet stream but complete separation (both pure outlet streams) has never been obtained. 

They, however, demonstrate that appropriate GC-SMB separation performance can be 

attained by properly adjusting the flow rate ratio, m2-m3. 

A capillary electrophoresis study for the separation of Piperoxan enantiomers based on 

difference in electrophoretic mobilities may be the latest application analog to SMB 

technology in the area of enantioseparation. Thome and Ivory (2002) used sulfated β-

cyclodextrin as chiral selector to optimize the buffer conditions, which produce the 

maximum peak separation time between the two enantiomer of Piperoxan, and chiral 

selector concentration. They find out that the enantiomers can be forced to move counter-

currently within the vortex stabilized apparatus by imposing a fluid flow opposite the 
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direction of electromigration. Relatively pure enantiomer can be collected by configuring 

the vortex stabilized electrophoresis apparatus with a feed port at the middle of the 

chamber axis and offtake ports near the cathode and anode.  

 

2.3.4. Protein Separation 

All amino acids, with the exception of glycine, are chiral in nature. Another example 

of chiral protein is the essential component of life itself, such as proteins and DNA. They 

are constructed from optically active building blocks. However, it is remarkable (although 

not yet fully understood) that, contrary to artificially synthesized molecule, all naturally 

occurring amino acids in living organisms have the same handedness. Chromatography 

has been proven to be the important protocol for purification of difficult molecules like 

protein, particularly pharmaceutical protein, at production scale due to attainable high 

purity level.  

Simulated moving bed chromatography has been employed for fractionation of 

various small volume expensive compounds like biotechnological and pharmaceutical 

products. It has been successfully applied in the purification of monoclonal antibodies 

(Gottschlich and Kasche, 1997), separation of amino acid (Maki, 1993; van Walsem and 

Thompson, 1997; Wu et al., 1998), and antibiotics (Jensen et al., 2000). Advantages of 

SMB include higher efficiency during separation of like molecules and reduced both 

solvent as well as buffer consumption (Jensen et al., 2000). 

Most published work on protein chromatography was largely concerned with process 

description. There are four different types of chromatography in the area of protein sepa-

ration: ion-exchange chromatography, affinity chromatography including hydrophobic 
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interaction chromatography, size exclusion or gel filtration chromatography and reversed 

phase chromatography. These techniques can be used alone or in combination at different 

stages of the process. Reversed phase chromatography is the least commonly used 

because the organic solvent, which is added to the aqueous element, tend to denature the 

protein. Size exclusion chromatography is the most often used but it is unable to separate 

protein of different charge, unless they are of different size.  

Size-exclusion chromatography remains a regular technique in the production of 

biopharmaceutical proteins (Leaver et al., 1987). It is a low efficiency technique due to 

limited selectivity of the resin material for the target protein or contaminants. High 

resolution can be attained by using larger ratio of sorbent material to feed volume to 

overcome the small differences in the distribution coefficients of each component. 

Product dilution is common and recycling of product fractions is needed to achieve high 

purity at reasonable yield and this will lead to increased desorbent and resin consumption.  

Size-exclusion chromatography in SMB has been applied both in the fractionation of 

dextran polymers (Ruthven and Ching, 1989) and modeling/optimization of protein 

separation (Houwing, 2003) as well as in the desalination of a single protein feed stream 

(Hashimoto et al., 1988). Gottschlich and Kasche (1997) used affinity SMB 

chromatography to isolate antibodies at 90% yield. They concluded that the recovery of 

two zones SMB depends on extract purity and the addition of two purging steps between 

adsorption/desorption steps can increase yield. Reversed-phase SMB chromatography has 

been used by Jensen et al. (2000) to optimize the purification of nystatin and the 

separation of bovine insulin in terms of solvent consumption while ion-exchange SMB 

chromatography has been used for process fine-tuning (van Walsem and Thompson, 
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1997; Houwing et al., 2002b), modeling (Houwing et al., 2002b, 2003) and optimization 

(Houwing et al., 2002a). 

There are two different operating modes for protein separation using SMB 

chromatography: the isocratic mode (Houwing et al., 2002a, 2003) and the gradient mode 

(Jensen et al., 1997; Houwing et al., 2002a, 2002b, 2003). The main difference relative to 

isocratic operation is that the salt concentration (Houwing et al., 2002b, 2003) or solvent 

strength (Jensen et al., 2000) is increased during the separation, either gradually or step-

wise. Yu and Wang (1989) had previously developed a general rate equation model to 

simulate the column dynamics in which the effects of axial dispersion, film and 

intraparticle diffusion, size exclusion, non-linear isotherm and variable separation factors 

were incorporated. The model gives good prediction with experiment result and 

extendable to ion exchange, adsorption and size exclusion systems. Scaling up procedure 

should be considered after such a preliminary work in this area. 

 

2.4. Optimization of Simulated Moving Bed 

SMB chromatography was developed in order to minimize the amount of solvent 

waste generated and maximize process throughput per gram of resin by eluting multiple 

column simultaneously and recycling the eluent. Nowadays, the development and 

optimization of SMB process usually start after the choice concerning suitable mobile and 

stationary phases has been made. Then the established theories are adapted to identify 

attractive operating conditions (Ruthven and Ching, 1989; Charton and Nicoud, 1995; 

Mazzotti et al., 1997a; Ma and Wang, 1997; Heuer et al., 1998; Gentilini et al., 1998; 

Zhong and Guiochon, 1996, 1998) 
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Process industry is usually aimed at maximizing production capacities while at the 

same time improving or at least, maintaining the product quality. Trade-off between the 

two requirements often exists and this phenomenon is particularly true and not avoidable 

in enantiomeric separation using simulated counter-current chromatography (Strube et al., 

1999), where product purities are crucial due to relatively stiff regulatory specification. 

High product purity is particularly the most critical requirement in drug manufacture. 

In the simulated countercurrent enantiomeric separation of SB-553261 and 1,1′-bi-2-

naphtol racemates, some variable contradict with each other. Operating conditions may be 

used as decision variable to optimize one performance parameter yet at the same time it 

turns out to be unfeasible on the basis of different considerations. In this case, optimal 

design of SMB process was explored for both throughputs as well as desorbent 

consumption rate and product purity. 

 

2.4.1. Optimization Algorithm 

A comprehensive optimization study using a state-of-the-art optimization technique, 

Genetic Algorithm will be carried out in this work. Genetic Algorithm is a non-traditional 

search and optimization method (Holland, 1975; Goldberg, 1989; Deb, 1995) that is well 

known in engineering optimization. This algorithm is essentially based on the mechanism 

of natural selection and genetics involving randomized but structured information 

exchange and survival of the fittest. It works with a population of points on a probabilistic 

platform requiring only the magnitude of hypothesis fitness value to evolve the next 

generation during the search therefore the algorithm does not require gradient information 

during the search, which may lead conventional algorithm trapped in local optima. 
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The main principle of Non Dominated Sorting Genetic Algorithm is almost similar to 

the general Genetic Algorithm. A set of population of chromosome is randomly generated 

and these chromosomes are sorted into several fronts according to their fitness values. 

One chromosome is dominated by the other chromosome if their real fitness value is 

worse than that other chromosome. These inferior chromosomes are then assigned a 

dummy fitness value which is directly proportional to their real fitness value and inversely 

proportional to their relative dimensionless distance between that particular chromosome 

and other chromosome (niche count). These dummy fitness values will help these inferior 

chromosomes to survive in the roulette wheel selection procedure so they will not 

disappear in the early stages. Thus, diversity of chromosomes in the mating pool is 

maintained and the algorithm might not converge to the wrong solution.    

The method of Genetic Algorithm used in this project is very versatile and applicable 

to almost any other engineering applications. The sorting and sharing mechanism 

introduced in Elitist Non-dominated Sorting Genetic Algorithm (Deb et al., 2002) has 

paved the way to multi-objective optimization which simultaneously leading to Pareto 

optimal solution. Pareto optimal solution emerges when there exist two objectives which 

contradicts one another. Any attempts to improve one objective function will jeopardize 

the other. The Pareto-set narrows down the choices and helps to guide a decision-maker in 

selecting a desired operating point (called the preferred solution) from among the 

(restricted) set of Pareto-optimal points, rather than from a much larger number of 

possibilities (Bhaskar et al., 2000). 

The Elitist Non-dominated Sorting Genetic Algorithm has proved to give better 

convergence criteria (Deb et al., 2002) as it maintains the concept of elitism in which the 
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good population is preserved by introducing dummy fitness value and later characterized 

in several fronts. The best populations are located in the first front and treated as the 

automatic qualifier for subsequent generation while the fronts of population with lower 

fitness value is preserved to maintain genetic variety. The recent modification with 

jumping genes (Kasat et al., 2002) has improved the diversity of hypothetic mating pool 

leading to much better spreading of solution and increased convergence speed. The 

jumping gene operations adapt a modified mutation operator, borrowing from the concept 

of jumping genes in natural genetics. Kasat et al. (2002) used NSGA-II-JG for the 

optimization of an industrial fluid catalytic cracking unit and reported Pareto optimal 

solutions in significantly less number of generations.  

The optimization study in this project is aimed at improving productivity for certain 

product purity requirement. A wide variety of other problem can, indeed, be formulated 

and solved depending upon one’s interest. 

 

2.4.2. Optimization Work on SMB 

The optimization works in open literature usually describe empirical investigation and 

few theoretical studies. It is desired that theoretical discussions are able to place empirical 

observations into proper perspective. In this case, the systematic use of computer program 

covering various model of SMB chromatography is mandatory for theoretical 

investigation of optimization problems. The use of numerical approach in optimization is 

preferred in optimization because experimental investigation is expensive but the model 

has to be reliable i.e. the physico-chemical data must be carefully quantified (Guest, 1997; 
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Kaspereit et al., 2002). The selection of suitable model for specific separation should be 

taken seriously (Ruthven and Ching, 1989; Guiochon, 2002). 

The design problem of a SMB process rely on appropriate setting of both internal 

liquid flow rates in each zone as well as solid flow rate to obtained certain separation task. 

The process performance is characterized by purity, recovery, solvent consumption and 

adsorbent productivity. Any optimization work begins with the selection of objective 

function. The objective function in industrial perspective will be product cost. The 

common objective function in academic studies is production rate (Guiochon et al., 1994; 

Biressi et al, 2000). The optimization works reported in literature include single objective 

and multi objective which will be discussed in the following. 

  

2.4.2.1. Single Objective Optimization 

Some studies in the area of simulated moving bed optimization employ single (scalar) 

objective function by incorporating several objectives with weightage factors (Storti et al., 

1988, 1995; Wu et al., 1998; Dünnebier and Klatt, 1999; Karlsson et al., 1999). These 

approaches, however, is not efficient and has the possibility of losing certain optimal 

solutions when the non convexity of the objective function arise due to a duality gap, 

which is difficult to be examined for complex real-life problems. 

In the area of pharmaceutical SMB separation, optimization work is started by the 

study to investigate the best stationary phase and mobile phase combination (Kruglov, 

1996; Schulte et al., 1997; Guest, 1997; Kartozia et al., 2002). In particular, Schulte et al. 

(1997) used specific productivity to compare the performance of different chiral stationary 

phase and found that this is largely affected by several parameters i.e. selectivity, number 
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of plates, saturation capacity, particle size, retention, solubility and viscosity. To focus 

only one or some of these parameters may be misleading and it is difficult to choose 

optimum combination only from experience. Optimization study of this type serve as 

good basis for the next study to determine the optimum operating condition for separation 

i.e. switching time, column number and distribution, volumetric flow rates, column 

dimension, etc. 

Kruglov et al. (1996) carried out optimization on the SCMCR for oxidative coupling 

of methane after preliminary evaluation on different adsorbent. Hydrophobic carbon 

molecular sieve is chosen due to its methane storing capability and efficient handling of 

the OCM effluent separation. They used switching time and methane/oxygen ratio in the 

make-up feed as decision variable to maximize the overall C2 selectivity. 

Biressi et al. (2000b) proposed an optimization procedure to maximize specific 

productivity, defined as mass of racemate per unit time and volume of adsorbent, with 

purity and pressure drop as constraint. The algorithm is used in illustrative non-linear 

separation in which only three pieces of information is required: adsorption isotherm, Van 

Deemter equation and one pressure drop equation. Column distribution in each section 

and feed concentration is fixed during the search while column length and section, 

internal flow rates and switching time is employed as decision variables. After the 

optimization study, they also explored the effect of purity constraint, particle size and feed 

concentration to the optimal design parameter and found out that specific productivity can 

be increased by lowering purity constraint, using relatively small particle size and 

increasing feed concentration (in this case asymptotic value of specific productivity will 
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be reached at elevated feed concentration). Practical reasons avoid the use of these last 

three parameters as decision variables. 

In the field of protein separation, Houwing et al. (2002a) compare the optimum 

performance between isocratic and gradient operation for azeotropic separation of dilute 

mixture of bovine serum albumin and yeast protein on Q-Sepharose FF using NaCl as salt 

(Houwing et al., 1999). In addition to the common objective function appeared in most 

isocratic operation, i.e. maximizing throughput or minimizing desorbent consumption, 

they introduced salt consumption as additional objective as a result of gradient operation. 

The salt may have large implications on the process economy, possibly via environmental 

regulations. The optimization is carried out numerically using “constr” optimization 

function in Matlab 5.2. They considered three cases of single objective function including 

maximization of throughput by changing feed salt concentration, maximization of 

throughput and minimization of desorbent consumption (both by changing inlet salt 

concentration) and minimization of salt consumption by changing inlet salt concentration. 

Inlet salt concentration is actually the salt concentration in the lower sections. Houwing et 

al. (2003) also performed optimization on protein fractionation, this time by SMB size 

exclusion chromatography using two objective functions, purity/recovery and 

productivity. 

Dünnebier et al. (1999) have tried a staged sequential optimization algorithm, which 

consists of two loops: the inner and outer loop, on several case studies like enzymatic 

sucrose inversion (Meurer et al., 1996) and synthesis of β-phenethylacetate (Kawase et al., 

1996) based on SMB process. The inner loop is calculated by direct dynamic simulation 

in which the constraints are evaluated by integration of elution profiles while the outer 
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loop is solved by standard SQP algorithm in which the required gradients are evaluated by 

perturbation methods. Toumi et al. (2002) extend the application of this algorithm to 

Varicol system in which, like the previous study, two case study were used namely 

trytophan and phenylalanine separation on a poly-4-vinylpyridine resin (Wu et al., 1998) 

and glucose-fructose separation on an ion-exchange resin (Jupke et al., 2000). Minimized 

desorbent and maximized throughput are achieved for the former and latter case 

confirming the robustness of the algorithm but the selection of cost as objective function 

limit the applicability of the obtained optimum results because cost is time and site 

specific. 

Toumi et al. (2003) compared the optimum performance of SMB and Varicol process 

for the separation of propanolol isomers on Chiralpak AD. They used the same 

optimization algorithm (Dünnebier et al., 1999) which leads to a complex mixed integer 

non linear program (MINLP). The objective function chosen in the study is the 

maximization of feed throughput at purity (greater than 98%) and pressure drop constraint 

(equal to 20 bar). They later verified their finding by performing experiment at the 

optimal operating point suggested by the study and found that experimental purities were 

2-6% less than the prediction. They also highlighted the failure of equilibrium theory used 

in SMB in predicting the separation behavior of varicol process. The optimization also 

proved that Varicol allow more production than the conventional SMB process at the 

same number of column or Varicol need one column less than SMB for the same 

separation duty due to the flexible switching strategy at small number of column.  
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2.4.2.2. Multi Objective Optimization 

Only a few multi objective optimization studies are reported in the open literature. The 

first article will be the one reported by Zhang et al. (2002a) in which dominated sorting 

genetic algorithm is used in numerical optimization of SCMCR process for MTBE 

synthesis. They used equilibrium dispersive model with linear adsorption isotherm to 

describe the solute concentration in the solid phase. They executed 3 multi objective cases 

and found that the selection of operating parameter for SCMCR is not straightforward. 

The economical operation of an SCMCR process depends on by many factors according 

to dictating objective and other process specification i.e. purity, conversion, etc. 

Zhang et al. (2002b) also reported the first multiobjective optimization in the area of 

enantioseparation of chiral drug. They used experimentally validated mixing cell model 

(Ludemann-Hombourger et al., 2000) to simulate and optimize the separation of 1,2,3,4-

tetrahydro-1-naphtol racemic mixture. They performed both single and multi objective 

optimization and compared the performance of SMB and Varicol process. Two cases of 

multiobjective optimization were presented and it was found that Varicol operation lead to 

better performance compared to conventional SMB process. Optimum points are 

explained using equilibrium theory (Storti et al., 1995) by plotting in the m-operating 

plane. 

 

2.5. Update on Moving Bed Technology 

Traditional SMB as a powerful technology undergo incessant modification which 

brings improvement to its performance. These modification strategies do not breach the 

essence of countercurrent movement between the two phases and usually is applied to 
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further enhance the separation power, efficiency and applicability by incorporating 

reaction (SMBR), increasing process flexibility (Varicol), changing process geometry 

(ternary SMB and pseudo SMB) and applying gradient mode of operation (SF-SMB) 

which will be discussed in the following overview. 

 

2.5.1. Reactive SMB 

The concept of simultaneous reaction and separation might be the first introduced to 

SMB system as early as 1960’s by the work of Roginskii et al. (1961) and Magee (1963). 

The idea emerged to overcome the limitation of a reversible reaction where conversion 

rate is dictated by chemical equilibrium in which Gibbs free energy is at the minimum at a 

given temperature. Reactive distillation processes for examples have gained strong 

interest in the chemical industry, particularly in the production of ester (Agreda, 1986), 

ether (Isla and Irazoqui, 1996) and alcohol (Gonzales and Fair, 1997; Gonzales et al., 

1997). Another way to integrating reaction and separation is to combine a chemical or 

biochemical reaction with a chromatographic separation. 

Reactive SMB is a realization of unit operation which ability to accommodate 

continuous reaction with countercurrent contact for enhanced separation. It enables 

increased conversion, direct collection of pure products and driving the selectivity of a 

complex reaction (Falk and Seidel-Morgenstern, 1999). This device work under similar 

principle with SMB, the only difference is the composition of the feed (usually reactant at 

certain stoichiometric ratio) and the duality function of the stationary phase (as adsorbent 

and catalyst).  The application of reactive simulated moving bed has been reported for 

more than two decades ago when Zabransky and Anderson (1977) conducted zeolite 
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catalyzed alkylation reaction. Different types of reaction is also reported: isomerization A 

↔ B (Hashimoto et al., 1983b), decomposition reaction A ↔ B + C (Fricke et al., 1999), 

esterification A + B ↔ C + D (Mazzotti et al., 1996b; Kawase et al., 1996, 2001), 

alkylation A + B ↔ C + D (Kawase et al., 1999) and (de-)hydrogenation A + B ↔ C (Ray 

and Carr, 1995) 

Various applications, in term of system phases, have been reported both in the gas 

phase as well as in the liquid phase. Gas phase operations include the oxidative coupling 

of methane to form C2 products (Tonkovich et al., 1993; Tonkovich and Carr, 1994). 

Another example will be in the hydrogenation of mesitylene (Ray and Carr, 1995; 

Bjorklund and Carr, 1995) in which better conversion relative to fixed bed system is 

achieved. Here, the more retained component is obtained from an auxiliary purge step 

without recycling the effluent stream to other sections in the unit. In most cases above, the 

reactive SMB is packed with two different solid particles, either mixed or layered, one 

serves as catalyst and the other as selective sorbent. Dual role resin, with ability to act as 

catalyst and adsorbent, is later commercialized in favor of liquid phase application.  

Liquid phase reactions extend from acetic acid esterification catalyzed by sulfonated 

ion-exchange resins (Amberlyst 15). Mazzotti et al (1996b) used four section reactive 

SMB, in which one of the reactant (ethanol) is used as solvent, under open-loop 

conditions with pure acetic acid in the feed. They observe complete conversion of acetic 

acid with good separation of the reaction products. This system exhibits a rather rich 

dynamic behavior (Mazzotti et al., 1997b) due to the dual role played by the resin, as a 

catalyst and as a selective sorbent. Kawase et al. (1996) used the same stationary phase for 

esterification of phenethyl alcohol but this time a non-reactive solvent, 1,4-dioxane, is 
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used. They come up also with complete conversion and product withdrawal in pure but 

diluted form. Other liquid phase applications reported in literature is the production of 

resin intermediate (Kawase et al., 1999) and oligosaccharide (Kawase et al., 2001) using 

3- and 4-zone SMB respectively. 

 

2.5.2. Ternary and Pseudo-SMB 

Ternary and pseudo SMB are essentially an attempt to overcome the limitation of 

classical SMB process, i.e. inability to separate multi component mixtures, by applying 

flow rate/column/sequence adjustment but still maintaining SMB framework. There are 

four different types of modification reported in literature. The first is done by alternating 

two different adsorbents in the four zones configuration (Hashimoto et al., 1993) for the 

separation of starch-glucose-NaCl mixture or by varying working flow rates with respect 

to time within a switching period (Kearney and Hieb, 1992).  

The second type of modification consists of adding a fifth zone and modifying the 

elution strength within the five zones (Nicoud, 1999) or keeping the same desorbent 

within the entire configuration (Navarro et al, 1997). The third type will be feed 

discontinuity and switching column adequately (Ching et al., 1994; Masatake and 

Tamura, 1996; Mata et al., 2001). The last type consists of having two SMB combined in 

a single unit (Kim et al., 1992; Chiang, 1998; Wooley et al., 1998, Nicolaos et al., 2001). 

Navarro et al. (1997) used ternary SMB of type three in the simulation of sorbitol-

xylitol-mannitol mixture separation. In this case, sorbitol is withdrawn as extract product, 

xylitol as intermediate and mannitol as raffinate. They use axial dispersed flow model for 

5 zones SMB (as depicted in Figure 2.4) with 1/2/2/2/1 configuration. With individual 
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feed concentration used in the simulation is 100 g/l each, they can achieve theoretical 

purities of 58%, 38% and 94% of extract, intermediate and raffinate respectively. Their 

work, however, still need to be validated experimentally. 

Nicolaos et al. (2001) proposed ternary SMB with 4 different configurations for 

multicomponent mixture of M compound. Figure 2.5 correspond to 4+4 zone, 5+4 zone, 

8-zone and 9-zone equivalent TMB configuration. These configurations are defined for 

KEY=1 in which component 1 is separated from the (M-1) component in the mixture. 

They assessed the performance of each configuration under certain objectives, i.e. 

minimum specific solvent consumption and maximum productivity for a given pressure 

drop, and found that the 5-zone TMB alone and the 8-zone TMB are unable to produce 

three pure compounds at a time. It was shown that 5+4 zone SMB is the most suitable in 

which the most difficult separation has to be performed by the second TMB. This might 

be attributed to different solid recirculation rate in the dual SMB. 

 

 

 

 

 

 

 

 

 
Figure 2.4 Ternary SMB with 5-Zone configuration 
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Figure 2.5 Ternary multi zone SMB configuration 
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Another type of modification which belongs to the third type is pseudo SMB process. 

Pseudo SMB process is initially applied in sugar industry when Sayama et al. (1992) 

recover raffinose from beet molasses. The application was extended to multi component 

mixtures containing raffinose, sucrose, glucose and betaine (Masuda et al., 1993). The 

process is patented as JO SMB process and applied by the Japan Organo Company. 

 
 
 

 

 

 

 

 

 

 
Figure 2.6 Pseudo 4-zone SMB configuration (JO process) 
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Figure 2.7 Pseudo 4-zone SMB concentration profile (JO process) 
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constant of solute decreases as density of supercritical desorbent increases (Luffer et al., 

1990) and for non-linear competitive condition (i.e. overloaded column) in which density 

of supercritical desorbent increases as adsorbed loading decreases. SF-SMB operation 

enables the use of pressure gradient throughout specific zones of the simulated moving 

bed thus adsorption is not depending on mobile phase only but also on the applied 

pressure.  

Mostly CO2 is used as mobile phase in subcritical (Fuchs et al., 1992b) and/or 

supercritical chromatography due to its low viscosity resulting higher column efficiency 

and ability to perform separation at increased flow rates. Other reasons include its low 

economical value, non-toxicity and non-flammability. CO2 possess the potential to 

substitute organic solvents which is relatively more harmful in processing products related 

to human use i.e. food and pharmaceutical industry. SF-SMB operation also enables 

product withdrawal free of desorbent as the gaseous desorbent can be recycled after 

liquefaction in a condenser. 

The coupling of supercritical fluid chromatography with SMB chromatography, 

however, is started by Clavier et al. (1996) when they successfully separate γ-linolenic 

ethyl ester (GLA) and docosahexaenoic ethyl ester (DHA) on C18 bonded silica by 

applying pressure gradient from 174 bar (in zone I) to 138 bar (in zone IV). In their 

operation, it is desired to apply the maximum elution strength in zone I, in which 

desorption of the more adsorbed component takes place, and minimum elution strength in 

zone IV, in which the less adsorbed component must be retained by the stationary phase. 

They varied the adsorption strength of the mobile phase by playing with pressure in the 

zones of SMB to enable higher feed load therefore increasing productivity. This is 
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because steeper fronts of internal concentration profile are achieved by pressure gradient 

operation.  

An important factor to evaluate the choice of mobile phase for SF-SMB operation is 

the dependence of the solvation power to temperature and pressure. In supercritical 

region, the solvating power is a function of temperature and pressure and so is the affinity 

of a given solute to that particular supercritical fluid. The affinity of that solute for a given 

stationary phase is also a function of temperature (Perrut, 1994). The SF-SMB system is 

judged to be less feasible, relative to isocratic, if the solvation power is independent of 

temperature and pressure (for linear system) or pressure and modifier concentration (for 

non linear system). Denet et al. (2001) have shown this phenomena when they use SF-

SMB to separate the isomers of tetralol (1,2,3,4-tetrahydro-1-naphtol, a chiral 

pharmaceutical intermediate. They observed strong impact on separation performance 

even though the absolute change in selectivity, defined as the ratio of Henry’s constants of 

the two enantiomers, is relatively small. This is due to low separation factor (about 1.1) 

assuring SF-SMB is absolutely useful for this kind of separation. Productivity can be 

increased by almost three times, in comparison with isocratic operation, by rationalizing 

the unit behavior using triangle theory under linear and non-linear condition. 

Rationale between SF-SMB with triangle theory is performed under linear (Mazzotti 

et al., 1997c) and non-linear systems (Di Giovanni et al., 2001). For linear system, it was 

found that the pure separation regime for supercritical system is no longer of triangular 

shape but either a truncated or full rectangle. The size of the regime has been shown to 

increase indicating that pressure gradient mode is in favor of separation compared to 

isocratic mode. The coordinates of optimum point (in terms of productivity, solvent 
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consumption, recovery and enrichment) has also shifted from isocratic optimum point in 

the direction much further away from the diagonal (Mazzotti et al., 1997c). For non-linear 

systems, different adsorption isotherm must be used in different zones of the unit. Linear 

isotherm of Henry’s law type is used for low fluid phase concentration while Langmuir 

competitive isotherm is used for elevated concentration. In the frame of equilibrium 

theory, it was found that the linear and non-linear pure separation regions have different 

intersections with the diagonal. The pure separation regime for non-linear condition 

follows the triangular shape of an isocratic operation, especially at higher feed 

concentration, while the pure regime for linear condition still has the shape of a rectangle. 

The size of this region shrinks with increasing feed concentration as expected indicating 

that the separation task becomes increasingly difficult at higher feed load (Di Giovanni et 

al., 2001). 

The limitation of this approach is the limited solvating power for elution of polar and 

large molecules (Schulte and Strube, 2001), particularly when CO2 is used. These 

molecules are even difficult to be eluted on common stationary phases i.e. those based on 

silica. Only lipophilic compound exhibit high solubility in pure CO2 but this problem can 

be handled by adding polar modifier such as alcohols (Fuchs et al., 1992a) although this 

attempt doesn’t solve the entire problem. The presence of this modifier affects the mobile 

and stationary phase as it may increase the solvating power of the supercritical fluid while 

at the same time it can cause deactivation of the most active sites of the adsorbent which 

is responsible for solute retention. This phenomenon might affect solute retention time 

and peak shape under supercritical condition (Wright and Smith, 1986). 
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Another example of SF-SMB separation is the separation of phytol (3,7,11,15-

tetramethyl-2-hexadecen-l-ol) isomers with trans-isomer is used as fixer in perfume indus-

try (Depta et al., 1999). They used a dynamic model for SMB simulation to predict the 

region of complete separation taking into account different column configuration (4 and 8 

total column) and compressibility of the mobile phase. Later, Peper et al. (2002) optimize 

the separation of R- and S- Ibuprofen using numerical model. The operating condition for 

the model is based on prior experiment using 40º C and pressure ranges from 17 – 14 

MPa. 4.5% (wt) 2-propanol is used as modifier. They are able to increase productivity as 

high as 504 gracemate/kgsolid/day with 99% raffinate purity. Johannsen et al. (2002) 

compared the process performance of bi-naphtol enantiomers separation on 10 different 

stationary phases. They found that the Kromasil CHI-DMB and Chiralcel OJ phase were 

the most suitable for the bi-naphtol system. Numerical optimization revealed that 6-

column configuration (1/2/2/1) was sufficient for this separation. Further simulation and 

optimization study on phytol isomers using triangle theory leads to enhanced productivity 

up to 54 gfeed/lsolid/h. The earlier work of Pirkle et al. (1996) in examining some chiral 

stationary phases extensively over a wide range of temperature and mobile phase 

additives under sub/supercritical condition leads to better prospect of this system. 

 

2.5.4. Varicol Process 

Varicol is a new multicolumn continuous process which can be operated in all systems 

that is based on SMB platform (Adam et al., 2000; Ludemann-Hombourger et al., 2000). 

Similar to SMB process, Varicol consist of several number of column adequately 

connected in series with inlet or outlet ports between the columns. The difference is 
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asynchronous shift of these inlet/outlet ports thus it offers additional degrees of freedom, 

the subintervals after which the different ports are moved relative to the main period. This 

flexibility can be used to optimize the column distribution among the different zones. The 

column distribution is dynamic within the period, because lines are shifted at different 

times, allowing variation of zone length over time. Figure 2.8 describe the column 

evolution in a 4-sub interval Varicol process. 

 
 
 

 

  

 

 

 

 

Figure 2.8 Switching sequence for 4-sub interval Varicol process 
 
 

The average number of columns in different zones during one period is affected by the 

choice of these subintervals. The introduction of these parameters simplifies the process 

descriptions (Ludemann-Hombourger et al., 2000; Toumi et al., 2002) in which Varicol 

process is characterized by rational average number of column. The dynamic movement 

of inlet and outlet leads to obvious consequences in the design of Varicol unit. The two 

outlet lines must be connected to the recycling line before the eluent and feed lines as 

presented in Figure 2.9 below. In this way, contamination of product, when the number of 

column in zones II or III is zero, can be avoided. Likewise, the desorbent flow will not 
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contaminate the extract or raffinate line when the number of column is equal to zero in 

zone I or IV. 

 
 
 

 

 

 

 
Figure 2.9 Varicol design connection 

 
 
The first chiral separation performed using Varicol technology was reported by 

Ludemann-Hombourger et al. (2000) when they successfully isolated each isomer of 

1,2,3,4-tetrahydro-1-naphtol from its racemic mixture. Toumi et al. (2002) demonstrated 

the ability of Varicol to give higher efficiency in terms of product per amount of solid 

phase using two theoretical cases with linear and non-linear adsorption isotherm behavior. 

They found out that even higher efficiency, relative to SMB, is observed in small number 

of column. This finding is further confirmed by Ludemann-Hombourger et al. (2002) in 

rigorous optimization of SB-553261 chiral racemate. They found that the same amount of 

feed can be treated using smaller number of column in which improved specific 

productivity is attained at the expense of higher desorbent consumption. Optimization 

attempt on this new technology was carried out for two important objectives in chiral 

separation: minimizing desorbent consumption (Toumi et al., 2002) and maximizing 

productivity (Toumi et al., 2002; Toumi et al., 2003). 
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2.5.5. SMB and Process Control 

Until recently SMB plants are manually controlled by determining the set points of the 

operating parameters like flow rates and switching time. Process performance is assessed 

from the development of internal concentration profile or from the analysis of raffinate 

and extract product. Necessary adjustment to the set of operating parametric is simply 

introduced by manual setting. Some reason for this manual approach include the slow 

dynamic of chromatography processes, difficulty in applying online measurement and the 

inability to apply standard control algorithm to SMB process because its discrete nature. 

Operation of SMB at the economical optimum point may result in high sensitivities to 

disturbances and operating parameter changes. Measurement of internal concentration 

profile is expensive and can only be installed at the outlet of the separation columns. Most 

processes are operated in the neighbourhood of optimum condition to avoid off-spec 

production and to ensure sufficient robust margins. The task to control SMB separation 

process to ensure a safe and economical operation at certain product specification at any 

time is challenging. 

Recent research interest will be in the development of online process control devices 

to ensure the process operates within the theoretical optimal framework (Klatt et al., 2002) 

thus enabling direct control of the process. On-line detection methods (Marteau et al., 

1994) enable direct measurement of internal concentration profile and allow parameter 

fitting to an underlying model. Model based process control algorithms are combined with 

online optimization to automatically control all operating parameters simultaneously to 

keep process performance as close to optimal condition as possible (Klatt et al., 2002). 

Instabilities of the process can be instantly detected and corrected by the control method. 
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Important precondition for these approaches are reliable and fast multicomponent process 

analytics (Mannschreck, 1992). 

There are several strategies can be found in the area of automatic control of SMB 

chromatographic process. One example will be the control of the internal flow rates 

(Ando and Tanimura, 1986; Cohen et al., 1997; Hotier, 1998) which is difficult but can be 

treated as the basic layer for more advanced control approaches. Other authors suggest 

feedback control for certain operating variables, i.e. purity, yield, based on concentration 

measurements (Holt, 1995a, 1995b; Cansell et al., 1996; Couenne, 1999). They use 

Raman spectroscopy (Marteau et al., 1994) to measure the concentration at the outlet of 

the chromatographic column. Kloppenburg and Gilles (1999) used TMB model for 

geometric non-linear control to simulate the separation of C8 aromatics hydrocarbon based 

on asymptotically exact input/ouput-linearization principle. This approach, however, lacks 

of reliability for system in which deviation between SMB dynamics and TMB 

approximation persists i.e. in process with low number of column. In the other hand, it is 

not easy to use SMB model due to its discrete component thus exhibits complex hybrid 

dynamics. Recently, Klatt et al. (2002) used dispersive SMB model for linear isotherm 

(Dünnebier et al., 1998) to optimize and control SMB process for fructose-glucose 

separation. This is because SMB model represents the complete process dynamic which is 

essential for model-based control approach. They propose two-layer control scheme in 

which optimal operating trajectory is calculated off-line by model-based dynamic 

optimization and control objective involves maintaining process on the optimal trajectory 

despite disturbances and plant/model mismatch. The identification models based on 

simulation data along the optimal trajectory are combined with a suitable local controller. 
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Demand for development in this area is growing with time. Effort to use model-based 

approach is focused on enantioseparation process (Haag et al., 2001). Another develop-

ment from the control algorithm area, local linear ARX model was reported by Klatt et al. 

(2000) leading to the design of internal model controller. Natarajan and Lee (2000) 

combined the concepts of model predictive control and repetitive control. They applied 

balanced model reduction to SMB model leading to the design of repetitive model 

predictive controller. The combination of NARX model based on neural networks and non 

linear model predictive control is under investigation. In the area of online detection 

device, multiwave diode array UV and chiral polarimeter detector seem to be promising in 

the near future (Brandl et al., 1999). An automated, optimized and properly controlled 

process may save time in manufacturing and marketing of a new product. In case of 

pharmaceutical drug operation, short production time does not mean only economy of the 

drug itself but also the success or failure of the drug development. 
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Chapter 3 Simulated Moving Bed and Varicol Process 

 

3.1. Schematic Diagram of SMB and Varicol Process 

SMB system consists of cascade of columns arranged in a circular way. Each column 

is connected by a flexible valve injection and withdrawal ports. Columns are classified 

into four zones by two inlets (feed and desorbent) and two outlets (raffinate and extract) 

and loaded with resin that could be used both as catalyst and adsorbent. The discrete 

movements of the inlet and the outlet terminals of columns mimics solids flow in the 

opposite direction of liquid flow. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic diagram of 4-zone 8-column SMB with 2 columns per zone 
 
 

The key elements in SMB operations include the selection of an appropriate adsorbent 

and adjustment of internal flow rates. This is to ensure that the more retained species, 
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collected at the extract node, migrates with the stationary phase and the less retained 

species, withdrawn at the raffinate node, travels with the mobile phase. Comprehensive 

studies focusing the importance of adsorbent selection in order to maximize throughput 

(Schulte et al., 1997) and flow rates setting to ensure that each zone perform its specific 

role (Kawase et al., 1996) have been reported.  

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.2 Switching profile of 4-zone 5-column SMB and Varicol processes 
 
 

Varicol process (Adam et al., 2000) adopts similar apparatus in which the four 

terminal points are not shifted concurrently as in SMB operation. The overall switching 

time is divided into several subintervals and this number of subinterval depends on the 

magnitude of switching time due to operation feasibility. In fact, one column can be 

moved more than once during a switching period but the column configuration at the end 

of the switching interval returns to that attained by the SMB before the switching 
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operation. Figure 3.2 demonstrate switching development of 4-zone SMB in comparison 

with 4-subinterval Varicol process. 

 
 

Table 3.1 Possible column configurations for SMB and Varicol processes 
 

0/1/1/2 1/0/1/2 1/1/1/1 1/2/1/0 2/1/1/0 
0/1/2/1 1/0/2/1 1/1/2/0 2/0/1/1  

Ncol = 4  
(with 3-zone 

configuration) 0/2/1/1 1/1/0/2 1/2/0/1 2/1/0/1  
Ncol = 5 1/1/1/2 1/1/2/1 1/2/1/1 2/1/1/1  

1/1/1/3 1/2/1/2 1/3/2/1 2/2/1/1  
1/1/2/2 1/2/2/1 2/1/1/2 3/1/1/1  Ncol = 6 
1/1/3/1 1/3/1/2 2/1/2/1   
1/1/1/4 1/2/1/3 1/3/2/1 2/1/3/1 3/1/1/2 
1/1/2/3 1/2/2/2 1/4/1/1 2/2/1/2 3/1/2/1 
1/1/3/2 1/2/3/1 2/1/1/3 2/2/2/1 3/2/1/1 Ncol = 7 

1/1/4/1 1/3/1/2 2/1/2/2 2/3/1/1 4/1/1/1 
1/1/1/5 1/2/3/2 1/5/1/1 2/2/3/1 3/2/1/2 
1/1/2/4 1/2/4/1 2/1/1/4 2/3/1/2 3/2/2/1 
1/1/3/3 1/3/1/3 2/1/2/3 2/3/2/1 3/3/1/1 
1/1/4/2 1/3/2/2 2/1/3/2 2/4/1/1 4/1/1/2 
1/1/5/1 1/3/3/1 2/1/4/1 3/1/1/3 4/1/2/1 
1/2/1/4 1/4/1/2 2/2/1/3 3/1/2/2 4/2/1/1 

Ncol = 8 

1/2/2/3 1/4/2/1 2/2/2/2 3/1/3/1 5/1/1/1 
 
 

Each zone in SMB process accounts for specific function. Zone I, between the 

desorbent and the extract stream, allows solid regeneration by ensuring complete 

desorption of the more retained component from the solid phase. This helps to reduce 

contamination of the raffinate product as zone I becomes zone IV in subsequent 

switching. Zone II, the section between the extract and the feed injection point, is 

responsible for desorption of the less retained component off the adsorbent in order for the 

feed section has a head start. Zone III, the section between the feed and the raffinate 

nodes, is the adsorption zone for the more retained component to prevent this component 

from being conveyed by the mobile phase to the raffinate collection outlet. Solvent 



                                                                          Simulated Moving Bed and Varicol Process 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

 75 

regeneration takes place in zone IV, the section between the raffinate and the desorbent 

port, whose role is to ensure adsorption of the less retained component. 

Subdivision of bed (or columns) results in numerous possible configuration of SMB 

and Varicol process. High number of total columns of a SMB, or Varicol, unit is preferred  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 Schematic diagram of 3-zone 4-column SMB/Varicol process 

 
 
as it allows more flexibility in column configuration thus introduces more degree of 

freedom in defining the right combinations of columns in respective zones. This effect is 

largely exercised by Varicol process, because it overcomes the rigidity of SMB in 

acquiring countercurrent motion between the mobile and the stationary phase. There are 

only 4 possible configurations for a 5-column SMB unit while in contrast, 11 
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configurations for 6-column setup. Table 3.1 spells out the detail of possible configu-

rations for 4-zone setup, except for 4-column unit. 

The principle of 3-zone SMB (Bjorklund et al., 2001) is applied to 4-column Varicol 

process as can be seen in Figure 3.3. The number of columns could take zero value for 

certain configurations. For illustration, configuration 2/1/1/0 results in the absence of zone 

IV while there are 2 columns in zone I and 1 column each for zone II and III to constitute 

3-zone 4-column Varicol unit. This is particularly true for process in which the desired 

product has absolutely no or little affinity toward the adsorbent. Thus zone IV, whose 

main task is to prevent the less retained component from entering zone I, is no longer 

needed. 
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Chapter 4 Optimal Operation of Moving Bed Process for Chiral Drug Separation  

 

4.1. Background of Enantio-Separation 

Majority of the biologically active compounds such as flavors, nutrients, 

agrochemicals and pharmaceuticals are chirals and approximately more than 50 % of 

today’s top selling drugs are single enantiomers. This phenomenon makes the 

stereoselective synthesis of chiral compounds is of substantial interest. The chiral drug 

industry soared through a major milestone in the past few years, as annual sales in this 

rapidly growing segment of the drug market surpassed $100 billion for the first time. This 

compound is now close to one third of all drugs sales worldwide. The industry’s 

continuing growth is rooted, in part, in fundamental biochemistry. The biological 

messenger molecules and cell surface receptors that medicinal chemists try to affect are 

chiral, so drug molecules must match their asymmetry. 

Over the course of ten years, the pharmaceutical industries realize the necessity to 

produce drugs in optically pure form. One important reason for the proliferation of the 

interest in chiral technologies and intermediates, which can yield optically pure 

therapeutics, is the FDA’s policy statements commencing in 1992 regarding chiral drugs. 

It requires in vitro pharmacological studies to be conducted on both chiral forms of new or 

improved drugs submitted for evaluation. A similar, albeit slightly weaker, directive has 

been issued by the European Council for Proprietary Medicinal Products. 

Another reason for producing single isomer drugs is the sales potential which hurtles 

past $100 billion as illustrated in Table 4.1 and shows no signs of slowing. The growth ra- 
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Table 4.1 Chiral drug global sales data 
 

Global Sales ($ Millions) Drug Application 

1998 1999 2000 

Cardiovascular 21,906 24,805 26,012 

Antibiotics/antifungal 19,756 20,907 23,265 

Hormones/endocrinology 12,297 13,760 17,345 

Cancer 8,006 9,420 13,360 

Central nervous system 7,027 8,592 13,720 

Hematology 6,730 8,580 11,445 

Antiviral 6,131 7,540 13,446 

Respiratory 4,305 5,087 8,795 

Gastrointestinal 1,718 2,998 5,355 

Ophthalmic 1,482 1,794 2,070 

Dermatological 1,124 1,270 1,540 

Analgesics 842 1,045 1,135 

Vaccines 568 676 1,100 

Other 7,947 8,527 7,425 

Total $99,389 $115,001 $146,013 

Source: Technology Catalysts International Corp. 
 
 
te for these sales has been about 20% for the last 5 years and it is predicted that 75% of 

synthetic pharmaceuticals will be chiral as of the year 2000. The regulatory requirements, 

market potential, recent technology advances and promising foreseeable prospect suggest 

that chiral technologies will become a very lucrative area of biopharmaceutical research 
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and commercialization. This is true not only for pharmaceutical companies that develop 

new drugs, but also for those that develop chiral intermediates, which are used 

subsequently in the synthesis of optically pure drugs. 

 

4.2. Numerical Simulation of SMB and Varicol Process 

In the open literature, the only reported results on the Varicol process are those of 

Ludemann-Hombourger et al. (Ludemann-Hombourger et al., 2000, 2002) for the 

enantioseparation of 1,2,3,4-tetrahydro-1-naphtol and the optical isomers of SB-553261 

racemate using Chiralpak AD 20 µm as CSP. These experimental results will be used as a 

measure of reliability of the numerical approach in this study. 

There are numerous different models can be applied to simulate the counter current 

moving bed chromatographic process but the mixing cell model is used in this work due 

to the usual conditions of high performance preparative chromatography (Golshan-Shirazi 

and Guiochon, 1994). The column is assumed as a cascade of ideal mixing cells. For each 

column of the process, the mass balance for each compound i in the mixing cell k during 

Nth switching period for SMB can be written as follows (Charton and Nicoud, 1995): 
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The mass balance equation for component i in mixing cell k during the Mth switching 

period for Varicol will be: 
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                                                                                                     0 ≤ t ≤ ts; M = 1, 2, 3 or 4 
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in which C and C  are the concentration in the mobile and stationary phase respectively, J 

is the theoretical number of cells in the column and )(0 φt is the zero retention time of the 

column in sectionφ (I, II, III or IV) and is given by 

)(
0 )(

φ

ε
φ

Q
Vt col=                                                                                                                    (4.3) 

)(φQ is the volumetric flow rate in the column in sectionφ andε  is the column external 

porosity, used as 0.43. The boundary conditions used to simulate the process is based on 

periodic regime of the process meaning that the boundary conditions are changing over 

time corresponding to the position of the different lines. Initial condition is derived from 

the fact that the column is empty as the process initializes then:  
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Boundary condition is derived from the mass balance at the inlet node of each zone in 

SMB. When the desorbent stream is connected at the inlet of zone I, the resulting mass 

balance will be: 
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When extract product is withdrawn at the end of zone I, the mass balance at the beginning 

of zone II will give: 
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The mass balance when the feed stream is connected to the inlet of section III will give: 
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The mass balance at the beginning of zone IV when raffinate product is withdrawn at the 

end of zone III will be: 
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The raffinate concentration of component i is simply equal to its concentration at the 

last cell of section III, while the extract concentration is its concentration at the last cell of 

section I. The internal flow rates QI, QII, QIII and QIV can be simply computed if the 

measurable quantities QF, QE, QR and QD are known. Each time switching operation is 

performed, a new BVP has to be solved. The detail of derivation is given in Appendix A.  

The resulting first order differential equations were solved using DIVPAG (based on 

Gear’s algorithm) in IMSL library. The aim of this mathematical model is to study how 

the disturbances ignited by periodical switching procedure are propagated along the 

system. Some important process performance parameter introduced here are: 

 

Purity (Pur) = 
dtC
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Recovery (Rec) = F
iF

st
Lz

)N(
,iI

CQ

dtC)QQ( ∫−
×

=φ+φφ
0100                                                   (4.11) 

Solvent Consumption (SC) = 
dtC)QQ(

Q
st

Lz
)N(

,iI
S,Ri

D

∫−∑ =φ+φφ
= 0

                                 (4.12) 

 
where i = component-I (R-enantiomer for extract product, S-enantiomer for raffinate 

product), φ  = zone in SMB (I for extract product, III for raffinate product).  

 

4.3. Calculation of Theoretical Number of Plate 

The separation was carried out at 25 °C on Chiralpak AD with an average particle size 

of 20 µm whose void fraction is calculated based on the productivity data given by 

Ludemann-Hombourger et al (2002) as clearly described in Appendix B. Molecular 

structure of SB-553261 is given as follows : 

 

 

Figure 4.1 Molecular structure of SB-553261 
 
 

Desorbent will be a mixture of acetonitrile-methanol 80/20 (v/v) and at the rate of 1.5 

ml/min, the retention times of the R-enantiomer and S-enantiomer are 5.78 minutes and 

8.89 minutes respectively. The chromatogram, resulting from elution experiment, 
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corresponding to an analytical injection of the racemic mixture into a 10 mm I.D. column 

is shown as follows: 

 

 

Figure 4.2 Breakthrough curve during single column experiment (pulse  
injection at Q = 1.5 ml/min, Vinj = 10 µl, Cinj = 1 g/l, UV detection λ = 310 nm) 

 
 

The number of plate requirement is first determined by means of the column 

hydrodynamic data given by Ludemann-Hombourger et al. (2002) as follows: 

 
uH 35

1 1063.1106 −− ⋅+⋅=     (SI unit)                                                                           (4.13) 

uH 35
2 1064.2106 −− ⋅+⋅=     (SI unit)                                                                          (4.14) 

 
Since Q = 1.5 ml/min and A = 0.7854 cm2 then u = 1.9099 cm/min. The number of 

plate can be easily calculated by dividing the length of single column by the HETP and 

we obtain 2553 plate according to eq. (4.13) and 1588 plate according to eq. (4.14). This 
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result, however, can not be used since it will consume massive computation time for 

simulation and we opt for different method to determine this parameter. 

Desty et al. (1963) provide another way of calculating the number of plate 

requirement by taking into account the retention time of a single enantiomer and the base 

peak width of its chromatogram according to the following correlation: 

 
2

'16 







=

b

R
eff w

tN                                                                                                              (4.15) 

 
with tR′ is the adjusted retention time, defined as the solute total elution time minus the 

retention time of an unretained peak (hold-up time), and wb is the base peak width, 

defined as the bar segment of the peak base and projected on to the time or volume axis. 

By examining the chromatogram in Figure 4.2, we obtain for the S-enantiomer and R-

enantiomer respectively: 

442
1.1
78.516

2

=





=effN                                                                                                (4.16) 

and 

390
8.1
89.816

2

=





=effN                                                                                                 (4.17) 

In later stage, simulation was run using the average value of 400 but it was found that 

120 plates are enough to give good prediction to the SMB profile as given by the author 

as it is unwise to obtain slightly better accuracy at the expense of high computation time. 

The validation of this decision can be visualized in the following figure. 
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Figure 4.3 Simulated elution profile for enantioseparation of SB-553261 
 
 

Retention times of the R-enantiomer and S-enantiomer in Figure 4.3 are ~5.8 minutes 

and ~8.5 minutes respectively, thus simulation with 120 plates has been proven to provide 

result close to experiment. 

 

4.4. Model Validation 

The experimental condition tabulated in Table 4.2 is taken from the work of 

Ludemann-Hombourger et al. (2002). Few overloaded injections were given to determine 

the adsorption isotherm and classical optimization procedure is employed in estimating 

the isotherm parameters (Nicoud and Seidel-Morgenstern, 1996). Liquid and adsorbed 

phase equilibrium is well represented using a modified competitive Langmuir adsorption 

as in Table 4.2.  

Ci and iC are the concentration of species i in the mobile phase and stationary phase 

respectively. Component 1 and 2 refer to S- and R-enantiomer respectively. The number 

of theoretical plate used in the entire study is 120 which have been verified in Section 4.3. 

It is desired to use experimental condition of 5-column Varicol (Q1 = 17.49 ml/min) as the 
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Table 4.2 Column specification and adsorption isotherm for SMB experiment 
used by Ludemann-Hombourger et al. (2002) 

 
Column dimension 10 mm ID and 81 mm bed length 

Feed Concentration CF1 = CF2 =32                                                                           (g/l) 

Adsorption isotherm   

(g/l) 

  

(g/l)             

Pressure drop / column  ∆P / L = 2.5 · 109·u                                                           (SI Unit) 

Column efficiency H1 = 6·10-5 + 1.63·10-3·u                                                  (SI Unit) 

H2 = 6·10-5 + 2.64·10-3·u                                                  (SI Unit) 

 
 
reference conditions in order to compare the performance of 4-column Varicol, 5-column 

SMB and 5-column Varicol. This is because the high recovery reported for 5-column 

Varicol experiment which indicates the ease of performing experiment at the given setting 

and it will help experimental verification towards optimum result obtained in this work.  

Table 4.3 summarizes the result when the model is further verified at this setting. It 

can be seen that the simulation result is somewhat different from the experimental result 

as not all details about the 5-column experimental configuration was published in 

Ludemann-Hombourger et al. (2002). Further validation is given for 6-column SMB 

(Figure 4.4) to prove the reliability of the model in predicting the system behavior as well 

as in finding the optimum process operating condition. 

21

1
11 1696.00338.01

294.035.1
CC

CCC
⋅+⋅+

⋅
+⋅=

21

2
22 1696.00338.01

509.1
17.1

CC
CCC

⋅+⋅+
⋅

+⋅=
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Figure 4.4 Concentration profile on 6-column SMB (Nplate = 120, Q1 = 15.3 ml/min, 
QF = 0.3 ml/min, QR = 1.79 ml/min, QD = 8.55 ml/min, ts = 1.11 min, 1/2/2/1 setup) 

 
 

Table 4.3 Performance comparison for 5-column, 4-subinterval Varicol process 
 

Process Parameter Reference (L-H et al., 2002) This work 

Q1 (ml/min) 17.49 

QE (ml/min) 7.59 

QF (ml/min) 0.3 

QD (ml/min) 9.78 

ts (min) 0.925 

Lcol (cm) 8.1 

χ 0.95/1.85/1.5/0.7 1/1.75/1.5/0.75* 

   Calculated Parameter 

PurR (%) 99.7 99.988 

PurE (%) 96.8 99.057 

RecR (%) 96.8 99.697 

RecE (%) 99.9 98.598 

Pr (gproduct/day) 13.413 13.706 

SC (m3
desorbent/kgproduct) 1.05 1.028 

* Varicol switching sequence: J/J/L/I 
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4.5. Sensitivity Study 

The purpose of sensitivity study is to determine the respond of the objective function 

when incremental changes are applied to a particular variable while the other variables 

remain fixed.  These variables include the variables that appear in both the objective 

function as well as in the constraints. These studies might serve as a source of information 

about the upper and or lower limit of a specific variable, in case it has the potential to be 

used as decision variables. 

The variables which are considered affecting the optimal objective function in this 

system are switching time (ts), feed flow rate (QF), raffinate flow rate (QR) and desorbent 

flow rate (QD). In this sensitivity study, two objective functions which play a key role in 

the chiral separation process performance will be used, namely productivity and purity. 

Furthermore, we will observe how the complex interplay between these variables affects 

the magnitude of the objective function.   

The purity in this work is defined as the ratio of concentration of one enantiomer to 

the total concentration of both enantiomers while productivity is defined as grams of 

specific enantiomer in product line per day as in eq. (4.9) and (4.10) respectively. This is 

for easy comparison with the works of Ludemann-Hombourger et al. (2002). 

 

4.5.1 The Effect of Switching Time 

Switching time as a measure of solid velocity will indisputably possess an apparent 

impact on productivity and purity as depicted in Figure 4.5(a) and (b). Productivity of 

both enantiomer is used as the objective function in Figure 4.5(a) and this figure informs 

us that the productivity of raffinate and extract contradict each other at the range of 0.8 - 



Optimal Operation of Moving Bed Process for Chiral Drug Separation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

89 

1.2 min. With the increase of switching time, PrR increases but PrE decreases due to 

insufficient QD. The purity tends to increase from ts = 0.8 min to 1 min and decreases 

subsequently. The behavior of purity below and beyond ts = 1 min can be easily 

understood if the relative velocity of the two components to be separated are considered. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.5 Sensitivity study: (a) Plot of productivity vs switching time (b) Plot of 

purity vs switching time 
 
 

The countercurrent separation of the components is achieved by appropriately 

specifying the internal flow rates in the columns and the switching time. Petroulas et al. 

(1985) defined for true countercurrent moving bed chromatographic reactor (CMCR) a 

parameter, σi, called relative carrying capacity of the solid relative to the fluid stream for 

any component i as  

 

gu
su

igu
su

ii NK δσ
ε
ε == −1                                                                                            (4.18) 

 
where us and ug are respectively solid phase and fluid phase velocity. They showed that to 

achieve countercurrent separation between the two components, one must set σ greater 

than 1 for one (species move with the solid phase) and less than 1 (species move with the 
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fluid phase) for the other. When σ = 0, it represents fixed bed. Ray et al. (1994) re-defined 

the above parameter, σ, by replacing the solid-phase velocity, us, in CMCR by a 

hypothetical solid phase velocity, ζ, defined as ζ = Lcol/ts. They found, both theoretically 

(Ray et al., 1994) and experimentally (Ray and Carr, 1995), that simulation of the 

countercurrent movement between two components can be achieved when redefined σ's 

were set such that it is greater than 1 for one and less than 1 for the other component. It 

was observed that for the reference run, countercurrent separation occurs (σ > 1 for one 

component and σ < 1 for the other) around ts equal to 1, while both components travel co-

currently (σ > 1 for ts < 1 min and σ < 1 for ts > 1 min) spoiling the separation and 

thereby, the purity. An illustrative example in the calculation of relative velocity of each 

species in zone II can be found in Appendix C and the result is tabulated in Table 4.4 

below, in which the best separation performance takes place when the relative velocity 

reaches the maximum value indicating the two species travel in opposite direction, the 

less retained component travel with the mobile phase and the more retained component 

travel with the stationary phase. The optimum value of switching time is characteristic to 

the respective system and it depends on the internal flow rate and column configuration.  

 
 

Table 4.4. Relative velocity of each species in zone II at various switching time for 
enantioseparation of SB-553261 racemate 

 
δ σ V ts 

(min) δS δR σS σR VS VR ∆V 

0.8 2.1793 3.5512 0.752725 1.226576 1.525216 1.31797 0.207246 

0.925 2.1793 3.5512 0.651005 1.060822 1.383668 -0.168453 1.552121 

1.2 2.1793 3.5512 0.501817 0.817717 1.975157 0.504852 1.470305 
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4.5.2 The Effect of Feed Flow Rate 

Figure 4.6 shows that up to feed flow rate of 2.5 ml/min, productivity increases and 

purity decreases as the feed flow rate increases. The phenomena emerging from the figure 

are explicable as productivity will increase as increasing feed flow rate will supply more 

component to be processed but the separation task becomes more difficult resulting in 

decreased purity. Feed flow rate, however, does not significantly affect the purity at the 

feed range beyond 2.5 ml/min. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Sensitivity study: (a) Plot of productivity vs feed flow rate (b) Plot of 
purity vs feed flow rate 

 
 

Figure 4.6 tells us that no separation can occur at high feed rate indicating that the 

incoming feed will simply eluted out of the column. The trend, however, reveals that we 

can at least maintain desired high purity at low feed rate and real optimization problem 

can be exercised by using feed flow rate as the objective function with purity in the 

penalty term to see how high the feed rate can be maximized at a certain high purity 

requirement. 
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4.5.3 The Effect of Raffinate Flow Rate 

A contradictive relation between variables can be seen in the relation between purity 

and or productivity with raffinate flow rate (Figure 4.7) when it is used as decision 

variables. In studying the effect of raffinate flow rate, the extract flow rate is 

automatically adjusted to compensate the change of raffinate flow rate in order to satisfy 

mass balance of the system. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 Sensitivity study: (a) Plot of productivity vs raffinate flow rate (b) Plot of 
purity vs raffinate flow rate 

 
 

Any increase in raffinate flow rate beyond a certain point will reduce the raffinate 

purity while alternately, increase the extract purity. Figure 4.8 (grey represents S-

enantiomer and black represents R-enantiomer) shows the steady-state concentration 

profiles inside the columns under the following conditions: Q1 = 17.49 ml/min, QF = 0.3 

ml/min, Lcol = 8.1 cm and χ = 1/2/1/1. At lower raffinate flow rates, QR = 1.5 ml/min, the 

raffinate concentration is high. Although some portions of less retained component appear 

in the extract withdrawal port, but no trace of the more retained component is found near 

the raffinate withdrawal port. This explains the high raffinate purity and low extract purity 

at lower raffinate flow rate. The reduction of liquid flow rates in Zone II and III causes the 
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more retained component to be selectively adsorbed in zone IV, thereby instigating 

mobile phase concentration build-up of the less retained component in zone IV. This 

concentration is high enough to be transferred from zone IV to zone I due to recycle, and 

subsequently, appear at the extract withdrawal port polluting the extract product. Raffinate 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Effect of raffinate flow rate on steady state concentration profile for 5-
column SMB. (a) QR = 1.5 ml/min, (b) QR = 2.5 ml/min, (c) QR = 3.5 ml/min 

 
 

                                                            (a)

0

5

10

15

20

25
Co

nc
en

tra
tio

n 
(g

/L
)

RFED

t  = 0
t = t s/2
t = t s

                                                            (b)

0
1
2
3
4
5
6
7

Co
nc

en
tra

tio
n 

(g
/L

)

RFED

                                                            (c)

0

1

2

3

4

5

6

Co
nc

en
tra

tio
n 

(g
/L

)

RFED



Optimal Operation of Moving Bed Process for Chiral Drug Separation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

94 

productivity is low at this point but gradually increases up to a fixed value with the 

increase of raffinate flow rate. However, the extract productivity decreases as some of the 

more retained component appears in the raffinate withdrawal port due to increasing 

raffinate purity.  

 

4.5.4 The Effect of Desorbent Flow Rate 

The effect of desorbent flow rate is examined over a relatively wider range to see if 

there is any possibility of improvement. The productivity of raffinate and extract 

contradict each other within the entire range as shown in Figure 4.9(a). 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Sensitivity study: (a) Plot of productivity vs desorbent flow rate (b) Plot of 
purity vs desorbent flow rate 

 
 

It can be understood that as desorbent flow is increased up to 10 ml/min, the effect of 

desorbent is exercised mainly in zone I. There is enough desorbent to wash the more 

retained component off the adsorbent and most of them will emerge at the extract line 

rather than the raffinate line.  This also explains why the productivity of the more retained 

component at the extract line increases as the desorbent flow rate increases. Consequently, 

purity remains and productivity increases steadily. This is mainly due to the huge linear 
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velocity of the desorbent causing the desorbent to travel very fast in section I that there is 

enough time for it to wash the more retained component off the adsorbent At desorbent 

flow rate beyond 10 ml/min, all the retained component is completely diluted by the 

excess desorbent and extract productivity will reach its asymptotic value. The excess 

desorbent, however, reduces raffinate productivity by carrying the less retained 

component toward the extract line thus polluting the extract stream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Effect of desorbent flow rate on steady state concentration profile for 
5-column SMB. (a) QD = 9.5 ml/min, (b) QD = 10 ml/min, (c) QD = 10.5 ml/min.  
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Figure 4.9 (b) indicates that the highest purity for both streams can be achieved when 

the desorbent flow rate is around 10 ml/min. The trend is further comprehended when the 

effect of desorbent flow rates on the steady state concentration profiles are examined 

(Figure 4.10). Figure 4.10 uses similar conditions as those used in Figure 4.8. When 

desorbent flow rate is less than 10 ml/min, the strongly adsorbed component is not 

completely washed out of zone I and it breaks through at the raffinate port when it 

becomes zone III in subsequent switching. When the desorbent flow rate is greater than 

that is required for purging, it will simply lower the extract purity.     

This preliminary study is very important since it provides us a lot of information such 

as the range of decision variables that enable high purity separation, i.e. ts between 0.8 – 

1.2 min and relatively low feed rate. This study inadvertently reveals the infeasible region 

for separation such as ts beyond 1 min, feed rate beyond 2.5 ml/min and eluent beyond 10 

ml/min because no high purity enantiomer can be obtained from these regions. This study 

also helps identifying the most sensitive parameter which might affect the process and the 

complex interaction between parameters in moving bed chromatography.  

 

4.6. Single Objective Optimization  

The first optimization work in this study is the single objective optimization and is 

meant to compare the result with the work of Ludemann-Hombourger et al.(2002). The 

objective function formulated in this study is based in view of economic consideration as 

maximizing the amount of feed will raise more income and minimizing eluent 

consumption will suppress process expenses. 
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4.6.1. Case 1. Single Objective Optimization: Maximization of throughput 

In general, purity will decrease as feed flow rate is increased making the separation 

task much more difficult. In order to test whether the feed flow rate can be increased 

without jeopardizing the purity requirement, and to test the optimization procedure based 

on GA, the following optimization problem was solved:  

 
      Max         I = QF [QF, QR, ts, χ]                                                                                (4.19) 

      Subject to PurR and PurE ≥ Experimental value (in L-H et al., 2002)                   (4.20) 

 
The chosen objective function was the maximization of the feed flow rate, QF, subject 

to target purities of extract, PurE and raffinate, PurR streams greater than experimental 

reported values by Ludemann-Hombourger et al. (2002). Four decision variables were 

used for this optimization study as indicated in eq. (4.19): feed flow rate, QF, raffinate 

stream flow rate, QR, switching time, ts and column configuration, χ. In order to be able to 

compare our results with those of Ludemann-Hombourger et al. (2002), four cases were 

solved (see Table 4.5) corresponding to the experimental values for flow rates Q1 and QD 

used in their work with respect to 6-column SMB and 4, 5 and 6 columns Varicol 

respectively. Since only four flow rates could be selected independently, while the other 

four were determined by mass balance equations at points 1-4 (see Figure 3.1), the 

remaining two flow rates (in this case, QF and QR) were used as decision variables. The 

third decision variable was the switching time ts, which clearly had a strong influence on 

the purity of the outlet streams (see Figure 4.5). The bounds for ts lie between the 

breakthrough times of the two components for a specific CSP. 
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Table 4.5 Optimization attributes used in single objective optimization 
 

Problem Objective Constraints Decision variables 

SMB 
Case 

1 
Varicol 

Max QF 

PurR and PurE ≥ 

Experimental value 

(in L-H et al., 2002) 

0.3 < QF < 0.7 ml/min 

1 < QR < 10 ml/min 

0.4 < ts < 1.2 min 

χ [See Table 3.1] 

SMB 
Case 

2 Varicol 
Min QD 

PurR and PurE ≥ 

Experimental value 

(in L-H et al., 2002) 

4 < QD < 12 ml/min 

0.5 < QR < 10 ml/min 

0.4 < ts < 1.2 min 

χ [See Table 3.1] 

Fixed Variables: Lcol = 8.1 cm 

a Ncol = 4, Q1 = 21.3 ml/min Case 1: QD = 13.06 ml/min, Case 2: QF = 0.3 ml/min 

b Ncol = 5, Q1 = 17.5 ml/min Case 1: QD = 9.78 ml/min, Case 2: QF = 0.3 ml/min 

c Ncol = 6, Q1 = 15.3 ml/min Case 1: QD = 8.55 ml/min, Case 2: QF = 0.3 ml/min 

d Ncol = 6, Q1 = 15.3 ml/min Case 1: QD = 9.05 ml/min, Case 2: QF = 0.33 ml/min 

 
 

The fourth decision variable used was the column configuration (χ). For a fixed 

number of total columns (Ncol), there exists number of possible column configurations. In 

a SMB system, there is only one column configuration, which is fixed with time. 

However, there are many possible column configurations in Varicol process depending on 

the number of sub-time intervals. In order to somehow restrict this variety, we considered 

here only 4-sub-time interval Varicol process, assuming that in each subinterval the unit 

could take any one of the configurations possible for the SMB unit as listed in Table 3.1. 

For example, for a 5-column SMB process, χ = J indicates the column configuration 

1/2/1/1. Whereas, for a 4-subinterval 5-column Varicol process, χ = I-J-I-K indicates that 
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the sequence of column configurations I-J-I-K is used within the 4-subinterval global 

switching period (Table 4.6).  In terms of time average column length, this corresponds to 

 
 

Table 4.6 Optimum column configuration for SMB and Varicol process for chiral 
drug separation 

 
Ncol χ Column χ Column χ Column χ Column χ Column 

4 A 0/1/2/1 B 0/2/1/1 C 1/1/1/1 D 1/1/2/0 E 1/2/1/0 

 F 2/0/1/1 G 2/1/1/0       

5 H 1/1/1/2 I 1/1/2/1 J 1/2/1/1 K 2/1/1/1 L 1/2/2/0 

6 M 1/1/1/3 N 1/1/3/1 O 1/1/2/2 P 1/2/2/1 Q 2/1/1/2 

 R 1/3/1/1 S 2/1/1/2 T 2/1/2/1 U 2/2/1/1 V  

 
 
the configuration 1.25/1.25/1.5/1. The optimization formulation, the bounds of the 

decision variables, constraints, and the fixed parameter values used were summarized in 

Table 4.5. In order to get meaningful optimum solutions, the bounds for the decision 

variables were estimated using the equilibrium theory (Storti et al., 1995; Mazzotti et al., 

1997) and sensitivity analysis of the model.  

For 4-column Varicol process, there will be 13 possible column configurations (Refer 

to Table 3.1) but this number reduces as there are only 7 optimum column configurations 

for 4-column Varicol as suggested in Table 4.6. Preliminary study showed that steady 

state condition could not be achieved when the number of column in zone III (between the 

feed port and raffinate withdrawal port) was set to zero. Therefore every configuration 

involving zero column in zone III will not be examined throughout the study. Steady state 

operation can be achieved for the rest of the configuration even though they give 
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reasonably low purity but it might benefit of high productivity and low eluent 

consumption. The best purity was given by 1/1/1/1 configuration while the best 

productivity was given by 1/0/2/1 configuration. 

 

4.6.2. Case 2. Single Objective Optimization: Minimization of desorbent consump-

tion 

In order to reduce operating cost, minimization of desorbent flow rate was selected as 

objective function. Desorbent is needed in chromatographic column to desorb (purge) the 

strongly adsorbed component and it has significant impact on purity of the extract stream. 

It is desirable to see how far the desorbent requirement can be reduced (thereby reducing 

operating cost) without sacrificing the required purity. Hence, we solved the following 

optimization problem: 

 
      Min          I = QD [QD, QR, ts, χ]                                                                               (4.21) 

      Subject to PurR and PurE ≥ Experimental value (in L-H et al., 2002)                   (4.22) 

 
Similar four decision variables were used as in case I except QD which is a decision 

variable in this case while QF is fixed (see Table 4.5). Yet again, four cases was 

considered (see Table 4.5) corresponding to the experimental values of flow rates Q1 and 

QF used in the work of Ludemann-Hombourger et al. (2002) with respect to 6-column 

SMB and 4, 5 and 6 columns Varicol respectively. 

In solving constrained optimization using Genetic Algorithm, penalty methods have 

been mostly used with large value of constant, R. The constraints that are handled here is 

inequality constraint and bracket operator penalty term is not used in this case as mostly 
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suggested since it is not needed to penalize all the feasible points due to the relative 

importance of the magnitude of objective function rather than constraint violation. 

Instead, a modified infinite barrier penalty is used since it penalizes only the infeasible 

point and takes the following form: 

 
[ ]iiii cgcgR −−−=Ω )(                                                                                              (4.23) 

 
with R as penalty term (in this case 1000 is used), ci is the purity requirement for 

separation and gi represents the purity obtained from simulation. As can be examined 

from the above form, the penalty term assigns no penalty to feasible points since for 

feasible points, (gi-ci) will be equal to its absolute value so in this case, Ω will be zero. In 

the case of infeasible points, (gi-ci) will be negative because gi < ci and its absolute value 

is subtracted from that negative term and then multiplied by the penalty parameter, R so a 

penalty proportionate to constraint violation is assigned to the objective function. 

Thus the objective function will be of the form: 
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Non Dominated Sorting Genetic Algorithm is designed for maximization problem 

making transformation is necessary to convert maximization problem into minimization 

problem and transformation of the form  
I

I
+

=
1

1   is used in all related minimization pro- 
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Table 4.7 Single objective optimization results 
Performance 4-column Varicol 4-column SMB 

Parameter L-H et al., 2002 Case 1a Case 2a Case 1a Case 2a 

Q1 (ml/min) 21.3 21.3 21.3 21.3 21.3 

QF (ml/min) 0.3 0.56 (+86%) 0.3 0.46 (+53%) 0.3 

QD (ml/min) 13.06 13.06 8.09 (-38%) 13.06 10.11 (-23%) 

QR (ml/min) 4.58 5.50 3.90 5.25 1.66 

ts (min) 0.8 0.60 0.60 0.70 0.77 

χ (-) 0.85/1.5/1.15/0.5 A/D/D/E C/C/D/F C C 

QE (ml/min) 8.78 8.11 4.49 8.27 6.97 

PurR (%) 99.6 99.85 99.75 99.98 99.99 

PurE (%) 96.6 99.00 97.40 98.95 97.08 

Y(gprod/gCSP/day) 0.906 1.698 0.918 1.431 0.913 

RecR (%) 87.8 100 97.68 100 97.43 

RecE (%) 99.9 98.90 98.57 98.73 97.64 

SC (m3/kgprod) 1.392 0.750 0.859 0.889 1.080 

 
 

Table 4.7 Single objective optimization results (Cont’d) 
Performance 5-column Varicol 5-column SMB 

Parameter L-H et al., 2002 Case 1b Case 2b Case 1b Case 2b 

Q1 (ml/min) 17.5 17.5 17.5 17.5 17.5 

QF (ml/min) 0.3 0.51 (+70%) 0.3 0.46 (+54%) 0.3 

QD (ml/min) 9.78 9.78 5.71 (-42%) 9.78 6.24 (-36%) 

QR (ml/min) 2.49 4.96 1.89 2.05 0.89 

ts (min) 0.93 0.74 0.72 0.91 0.75 

χ (-) 0.95/1.85/1.5/0.7 I/J/I/K H/K/K/K J J 

QE (ml/min) 7.59 5.33 4.12 8.19 5.65 

PurR (%) 99.7 99.94 99.83 99.97 99.94 

PurE (%) 96.8 99.28 99.85 99.17 99.33 

Y(gprod/gCSP/day) 0.725 1.271 0.747 1.149 0.745 

RecR (%) 96.8 100 100 100 99.83 

RecE (%) 99.9 98.71 99.29 98.65 99.33 

SC (m3/kgprod) 1.05 0.600 0.596 0.664 0.653 
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Table 4.7 Single objective optimization results (Cont’d) 
Performance 6-column SMB 6-column Varicol 

Parameter L-H et al., 2002 Case 1c Case 2c Case 1c Case 2c 

Q1 (ml/min) 15.3 15.3 15.3 15.3 15.3 

QF (ml/min) 0.3 0.43 (+44%) 0.3 0.46 (+54%) 0.3 

QD (ml/min) 8.55 8.55 5.57 (-35%) 8.55 5.40 (-37%) 

QR (ml/min) 1.79 3.39 1.39 3.23 1.57 

ts (min) 1.11 0.89 0.87 0.90 0.83 

χ (-) P P P N/P/T/T O/N/T/T 

QE (ml/min) 7.06 5.60 4.47 5.78 4.13 

PurR (%) 99.6 99.98 99.97 100 99.91 

PurE (%) 95.6 99.92 99.33 99.66 99.43 

Y(gprod/gCSP/day) 0.60 0.91 0.62 0.98 0.62 

RecR (%) 85 100 99.86 100 99.90 

RecE (%) 99.9 99.08 97.98 98.98 99.43 

SC (m3/kgprod) 0.922 0.613 0.586 0.576 0.565 

 

 

Table 4.7 Single objective optimization results (Cont’d)  
Performance 6-column Varicol 6-column SMB 

Parameter L-H et al., 2002 Case 1d Case 2d Case 1d Case 2d 

Q1 (ml/min) 15.3 15.3 15.3 15.3 15.3 

QF (ml/min) 0.33 0.53 (+59%) 0.33 0.50 (+50%) 0.33 

QD (ml/min) 9.05 9.05 5.60 (-38%) 9.05 5.72 (-37%) 

QR (ml/min) 1.89 4.46 1.29 2.36 1.20 

ts (min) 1.11 0.84 0.85 1.04 0.88 

χ (-) 1/2.25/2/0.75 T/T/R/U S/T/P/T P P 

QE (ml/min) 7.49 5.11 4.64 7.19 4.85 

PurR (%) 99.7 99.95 100 100 99.99 

PurE (%) 95.6 99.66 99.60 99.49 99.60 

Y(gprod/gCSP/day) 0.664 1.104 0.696 1.031 0.683 

RecR (%) 85.1 100 100 100 100 

RecE (%) 99.9 99.33 99.20 96.60 99.02 

SC (m3/kgprod) 0.888 0.533 0.532 0.571 0.544 
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blem. In this problem, inequality constraint is used rather than equality constraint due to 

the stringent condition imposed by equality constraint in finding adequate solution.  

In total there are 6 variables in chiral separation process so if in the first two single 

objective cases, 3 variables are fixed then we have 3 degree of freedom. Likewise, we will 

have 4 degree of freedom if 2 variables are fixed in the last case. The lower and upper 

bounds for each decision variables is obtained from the sensitivity study. 

Flow rate in section I, QI was chosen as fixed variables because QI was the highest 

flow rate in SMB process and by fixing QI, it would not violate the pressure drop 

constraint along the column as defined in Table 4.2. Volume of adsorbent, Vcol was 

chosen as fixed variables to correspond to the experiment carried out by Ludemann-

Hombouger, et. al. (2002), whose experimental data and results were used in this work. 

Table 4.7 compares the optimum results obtained with GA for both cases 1 and 2 with 

that of the experimental results of Ludemann-Hombourger et al. (2002). It is seen that the 

GA optimization leads to a larger feed flow rate (for case 1) and smaller desorbent flow 

rate (for case 2) for 6-column SMB and 4, 5 and 6 columns Varicol compared to the 

reported results. The table also lists the optimum values of QR, ts, and column 

configuration (χ) as well as calculated values of extract flow rate (QE), product purity 

(Pur), recovery (Rec), yield (Y), and solvent consumption (SC). From Table 4.7 it can be 

seen that optimization leads to an optimum QF = 0.56 ml/min, an increase of 86% over the 

experimental QF of 0.3 for the 4-column Varicol system. Similarly, when desorbent flow 

rate (QD) is minimized, an optimum QD = 8.1 ml/min was obtained, a decrease of 38% 

over the experimental QD of 13.06 for the 4-column Varicol system. An average im-

provement of about 55% in the amount of feed (throughput) can be handled while about 
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30-40% savings of desorbent requirement (although not simultaneously) without 

sacrificing product purities.  

It is observed that the optimum switching time for the Varicol process is smaller than 

that of SMB. Varicol offers more flexibility, and therefore, does not require long 

residence time as in SMB. The optimum column distribution (χ) for the 4-column Varicol 

process is χ = A/D/D/E (which corresponds to 0.75/1.25/1.75/0.25) for case 1, while χ = 

C/C/D/F (≡1.25/0.75/1.25/0.75) for case 2. It shows that more columns are needed in zone 

3 for case 1 and in zone 1 for case 2. Table 4.7 also reveals that improvement in Varicol 

over SMB is more obvious when the total number of columns is less, which imparts that 

Varicol offers more flexibility at relatively small number of columns. Note that in Table 

4.7, shaded cells represent optimum values and the numbers in bracket for QF and QD are 

% improvement over the experimentally reported results. 

These comparisons, relative to single-objective optimization problems show the 

reliability and efficiency of genetic algorithm (GA) in finding optimal operating 

conditions, which compare well with previous literature results and actually lead to 

improved values of the objective functions. The unique capabilities and superiority of the 

GA will clearly appear later when considering multi-objectives optimization problems.  

 

4.7. Multi-Objectives Optimization 

Multi-objectives optimization problems arise when several objectives are entailed 

from the system and they usually appear to contradict with one another. The fact that a 

certain objective can not be improved without forfeiting the others will lead to the concept 
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Table 4.8 Optimization attributes used in multi-objectives optimization 

 
Problem Obj. funct. Constraints Decision variables Fixed variables 

SMB 
Case 

3 
varicol 

Max PrR 
Max PrE 

 
 

PurR > 90% 
PurE > 90% 

 
 

8 < QD < 15 ml/min 
2 < QR < 10 ml/min 

0.3 < ts < 1 min 
3 < Lcol < 7 cm 
χ [See Table 3.1] 

Q1=17.49 ml/min 
QF = 0.3 ml/min 

Ncol = 4 or 5 

SMB 
Case 

4 
varicol 

Max PurR 
Max PrR 

 

 
PurR > 90% 
PurE > 99% 

8 < QD < 15 ml/min 
2 < QR < 10 ml/min 

0.3 < ts < 1 min 
3 < Lcol < 7 cm 
χ [See Table 3.1] 

Q1=17.49 ml/min 
QF = 0.3 ml/min 

Ncol = 4 or 5 

SMB 
Case 

5 
varicol 

Max PurE 
Max PrE 

PurR > 99% 
PurE > 90% 

8 < QD < 15 ml/min 
 2 < QR < 10 ml/min 

0.3 < ts < 1 min 
3 < Lcol < 7 cm 
χ [See Table 3.1] 

Q1=17.49 ml/min 
QF = 0.3 ml/min 

Ncol = 4 or 5 

SMB 
Case 

6 
varicol 

Max QF 

Min QD 

PurR > 99% 
PurE > 99% 

0.2 < QF < 0.45 ml/min 
5 < QD < 12 ml/min 
1 < QR < 5 ml/min 

0.3 < ts < 1 min 
χ [See Table 3.1] 

Q1=17.49 ml/min 
Lcol = 8.1 cm 
Ncol = 4 or 5 

SMB 
Case 

7 
varicol 

Max PrR 
Max PrE 
Min Lcol 

PurR > 90% 
PurE > 90% 

8 < QD < 15 ml/min 
2 < QR < 10 ml/min 

0.3 < ts < 1 min 
3 < Lcol < 7 cm 
χ [See Table 3.1] 

Q1=17.49 ml/min 
QF = 0.3 ml/min 

Ncol = 4 or 5 

SMB 
Case 

8 
varicol 

Max PrR 
Max PrE 
Min QD 

PurR > 90% 
PurE > 90% 

8 < QD < 15 ml/min 
2 < QR < 10 ml/min 

0.3 < ts < 1 min 
χ [See Table 3.1] 

Q1=17.49 ml/min 
QF = 0.3 ml/min 

Lcol = 8.1 cm 
Ncol = 4 or 5 
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of Pareto optimal solution in which all the solutions are equally good and non-dominating 

each other. Numerous multi-objectives optimization problems can be formulated and they 

are vital particularly in the design of a new system. Process economy governs the 

formulation of objective function as tabulated in Table 4.8. 

 

4.7.1. Case 3. Two Objectives Optimization: Maximization of raffinate and extract 

productivity 

In two objectives optimization, productivity of raffinate and extract were employed as 

objective function with raffinate flow rate, eluent flow rate, switching time and column 

configuration as decision/dependent variables. Purity of both streams greater than 90% 

served as inequality constraint and was incorporated in the same way as in the previous 

case. The process parameter in case 1b single objective optimization was used in this 

multi-objectives optimization: Q1 = 17.49 ml/min and QF = 0.3 ml/min. 

Relative performance of 4-column Varicol, 5-column SMB and 5-column Varicol is 

assessed under the same condition and the result can be observed in Figure 4.11 where 

each point in the Pareto set corresponds to a set of decision variables. It is clearly shown 

that 5-column Varicol offers more room for improvement indicated by the size of the 

Pareto set, followed by 5-column SMB and 4-column Varicol. The optimum 

configuration for 4-column Varicol in the Pareto set is χ = B-B-C-F which means the 

column configuration is 1/1/1/1 for the first two subinterval followed by 1/2/1/0 for the 

third sub interval and 2/1/1/0 for the last sub interval. The optimum column configuration 

for 5-column SMB is χ = I which is essentially 1/2/1/1 configuration and this is similar to 

experimental column configuration.  
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Figure 4.11 Pareto optimal solution and plot of decision variables (case 3) for SMB 

and Varicol systems 
 
 

Significant transition from 4-column Varicol to 5-column SMB is observed, especially 

in terms of raffinate productivity but 5-column SMB slightly suffers in terms of extract 

productivity. It can be seen that the experiment is almost performed in the optimum range 
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for 4-column Varicol suggested in this study. Improved productivity of both stream is 

achieved with 5-column Varicol with χ = H-I-J-J indicating more column is needed in 

section III (between the feed and raffinate withdrawal port) during the early sub switching 

and similarly, one more column is needed in section I (between the eluent port and the 

extract withdrawal port) during the last subswitching. Purity of extract product achieved 

in this case is greater than 99% thus is not shown in Figure 4.11 while other operating 

parameter is kept constant for the sake of fair comparison. 

 

4.7.2. Case 4. Two Objectives Optimization: Maximization of raffinate purity and 

productivity 

Simultaneous maximization of purity and productivity of raffinate stream for a given 

feed flow rate is subjected to a constraint that the purity of extract stream must be greater 

than 99%. High product purity is typically an important requirement in drug manufacture 

although for a binary mixture with a low separation factor (KA/KB < 1.15), the high purity 

requirement entails high cost and low throughput. In this case optimal design of SMB and 

Varicol processes were performed at the design stage. Table 4.8 lists the objective 

function, constraints, decision variables and fixed parameter values used in this study. 

Five decision variables (QD, QR, ts, Lcol, χ) were used in the optimization study. Since QF 

and Q1 (this comes directly from fixing the maximum allowable pressure drop in the 

system) were fixed, only two other flow rates (among QD, QR, QE, Q2, Q3 and Q4) could 

be determined independently. We selected QD and QR as the two decision variables. 

Switching time (ts), length of each column (Lcol) and distribution (for SMB) and sequence 

(for Varicol) of columns were selected as the other decision variables. 
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Figure 4.12 Pareto optimal solution and plot of decision variables (case 4) for SMB 
and Varicol systems 

 
 

Relative performance of 4-column Varicol, 5-column SMB and Varicol was assessed 

under the same conditions and the result is shown in Figure 4.12. The Pareto optimal 

solution obtained represents the maximum possible productivity and purity of raffinate 
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streams. The benefit of multi-objectives optimization study is evident upon observing the 

wide range of operating points available in the optimal Pareto set. If conventional 

techniques were used, we would have been able to predict only one point at a time on the 

Pareto optimal curves, by fixing either one and maximizing the other.  

The figure clearly shows that 5-column Varicol offers more room for improvement 

indicated by the magnitude of the Pareto set, followed by 5-column SMB and 4-column 

Varicol. The maximum attainable productivity and purity of raffinate stream in a 4-

column Varicol system are less than that could be obtained in a 5-column SMB. In other 

words, the increase achieved in a 5-column SMB system is due to the increase of one 

column (which implies a 25% increase of stationary phase) outweighs the improvement 

attainable due to the increase in flexibility in a 4-column 4-subinterval Varicol system, 

which on the other hand does not imply any additional cost. Each point on the Pareto set 

corresponds to a set of decision variables.  

The optimum configuration for 4-column 4-subinterval Varicol in the Pareto set is χ = 

B-A-D-D, which means the column configuration, is 0/2/1/1 for the first sub-interval, 

0/1/2/1 for the second sub-interval followed by 1/1/2/0 for the last two sub-intervals. This 

corresponds to average column configuration of 0.5/1.25/1.75/0.5. The optimum column 

configuration for 5-column SMB is χ = J, which is essentially 1/2/1/1, while for 5-column 

Varicol it is χ = I-I-J-J, which corresponds to 1/1.5/1.5/1. Significant transition from 4-

column Varicol to 5-column SMB and finally to 5-column Varicol is observed indicating 

the difficulty in obtaining high extract product purity (>99%). The optimum column 

distribution for both 4 and 5-column Varicol process indicates that zone II (between the 

extract withdrawal port and the feed entry port) and zone III (between the feed and 
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raffinate withdrawal port) is critical in maximizing the productivity and purity of the 

raffinate product. This is expected as the primary job for zone II and zone III is to desorb 

less strongly adsorbed component and retain more strongly adsorbed component.  

 

4.7.3. Case 5. Two Objectives Optimization: Maximization of extract purity and 

productivity 

The optimization problem studied in this case is exactly similar to case 4 except it is 

done for maximization of productivity and purity of extract stream subject to purity of 

raffinate stream greater than 99%. Low purity product can be obtained in large amount 

while high purity product ends up in small quantity. Case 4 and 5 co-exist in this study as 

adequate information about the relative importance of raffinate and extract product is not 

available and this dilemma can be resolved by assuming the two products are of equal im-

portance.  

The Pareto set in Figure 4.13 shows that 5-column Varicol maintains its narrow 

dominance over 5-column SMB and 4-column Varicol, and concurrently confirms the 

previous finding that it is relatively easier to satisfy high raffinate purity constraint than 

high extract purity. This is because the less adsorbed component is always moving with 

the mobile phase. The optimum column configuration for 4- and 5-column Varicol are χ = 

C-C-E-G (≡1.25/1.25/1/0.5) and χ = H-J-J-K (≡1.25/1.5/1/1.25) respectively while the 

same for 5-column SMB is χ = K (≡2/1/1/1).  

The optimal column configuration for 4- and 5-column Varicol requires more columns 

in zone I (between the desorbent and extract port) and II (between the feed and extract 

withdrawal port) as the extract is the product of interest. This is in line with the role of zo- 
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Figure 4.13 Pareto optimal solution and plot of decision variables (case 5) for SMB 

and Varicol systems 
 
 
ne II, assuring complete desorption of the less strongly adsorbed component from the 

adsorbent, as the adsorbent has just been in contact with fresh feed in zone III. 

Subsequently, the desorbent will desorbs the more strongly component from the adsorbent 
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thus more column is needed in zone I. As expected, figure 4.13 shows desorbent flow rate 

increases as extract productivity increases while raffinate flow rate is slightly scattered as 

this variable was found to be less sensitive, in line with previous finding that pure 

raffinate stream is easier to obtain, towards the objective functions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Pareto optimal solution and plot of decision variables (comparison 
between case 3, case 4 and case 5) for SMB and Varicol systems 
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The decision variables in Figure 4.13 demonstrate much similar trend in which 

desorbent flow rate increases as extract productivity increases. In addition, a comparison 

between case 3, case 4 and case 5 for 5-column SMB is illustrated in Figure 4.14 where 

case 3 exhibits relatively higher raffinate and extract product over case 4 but only higher 

raffinate productivity over case 5. The Pareto for case 3 is optimized under 90% minimum 

purity requirement and gives better result at relatively close decision variable given it has 

more lenient purity constraint (Refer to Table 4.8). 

 

4.7.4. Case 6. Two Objectives Optimization: Maximization of throughput and 

minimization of desorbent consumption 

Another case of multi-objectives optimization is formulated in view of economic 

consideration. In this case optimal process operation conditions were determined to 

reduce operating costs by minimizing desorbent flow rate while increasing revenue by 

increasing productivity through maximization of feed flow rate for product purities greater 

than a specified value.  

The choice of the two objective functions, as in Table 4.8, enables to maximize 

production using minimum solvent for product purities greater than 99% of both extract 

and raffinate streams for 5-column SMB and 4 and 5-column Varicol systems. Similar to 

earlier cases, Q1, the column flow rate in zone I, was fixed at 17.49 ml/min to keep the 

maximum system pressure drop constant, and the total CSP used was also fixed by fixing 

Lcol = 8.1 cm and Ncol = 4 or 5. The dependence of pressure drop on liquid flow rate is 

shown in Table 4.2 and the fact that zone I has the highest flow rate of all zones have 
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necessitated the need to set Q1 to keep the system working within the maximum tolerable 

pressure drop.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.15 Pareto optimal solution and plot of decision variables (case 6) for SMB 

and Varicol systems 
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The details of the optimization formulation together with the bounds used for the 

decision variables are reported in Table 4.8. Note that the two variables (QF and QD) 

appear in the objective functions as well as in decision variables. The Pareto optimal 

solutions (QF vs QD) and the values of the associated decision variables are shown in 

Figure 4.15. The Pareto shown in the figure indicate that both the SMB and Varicol pro-

cesses need to increase desorbent consumption in order to increase throughput. Secondly, 

for similar conditions, the Varicol process consumes less desorbent (QD) than an 

equivalent SMB process for the same feed flow rate, QF; or for similar desorbent 

consumption, the Varicol process can treat more feed. Thus, it is confirmed and quantified 

that the flexibility due to the non-synchronous shift of the input/output ports in a Varicol 

process achieves the same desired target purity with less eluent and/or treats more feed. 

Increasing desorbent consumption compensates the increase in amount of feed to be 

treated as the separation task becomes for difficult. More desorbent is needed to ensure 

sufficient desorption of the strongly adsorbed component from the adsorbent. The 

optimum column configuration for 4-column Varicol is C-B-C-D (≡0.75/1.25/1.25/0.75) 

while for 5-column SMB is H (≡1/1/1/2) and for 5-column Varicol is I-H-K-J 

(≡1.25/1.25/1.25/1.25). The trends are expected as more desorbent is needed when the 

feed flow rate is increased. Again, 5-column Varicol outweigh 4-column Varicol and 5-

column SMB and it conveys that 5-column Varicol consume less desorbent or for the 

same amount of desorbent, it can treat more feed compared to 4-column Varicol and 5-

column SMB.  
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4.7.5. Case 7. Three Objectives Optimization: Maximization of raffinate and extract 

productivity and minimization of solid requirement 

Three objectives optimization is formulated in view of economic consideration related 

to the investment involved in every chiral separation process. The dilemma of high initial 

cost has motivated the needs of increasing productivity at low fixed cost. Thus, an 

additional objective function is needed to compensate the increase in productivity that is, 

minimizing solid requirement. This is similar to minimizing column length (at fixed 

column ID) as amount of CSP required for separation is directly related to the volume of 

column. The fixed and decision variable for three objective optimization are essentially 

similar to those of previous two objectives optimization. 

The Pareto set represented in Figure 4.16 is showing consistency with the previous 

one in terms of the size of the Pareto (Figure 4.11). Another similarity is the tendency that 

5-column SMB perform in raffinate productivity and suffer in extract productivity relative 

to 4-column Varicol even though this indication is not quite obvious in the previous case. 

The column configuration for 4-column Varicol and 5-column Varicol are also similar but 

there are two unique column configurations that constitute the Pareto set for 5-column 

SMB. The upper part of the Pareto set is generated by χ = J indicating more column in 

zone 1 (between eluent port and extract withdrawal port) is needed to increase extract pro-

ductivity and the lower part is given by χ = I similar to case II.  Time and again, 5-column 

Varicol displays its superiority over 5-column SMB and 4-column Varicol. Purity of 

raffinate product achieved in this case is greater than 99% and in all optimization result 

presented in this work, the decision variable demonstrate similar trend such as raffinate 

flow rate increases as raffinate productivity increases. 
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Figure 4.16 Pareto optimal solution and plot of decision variables (case 7) for SMB 

and Varicol systems 
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4.7.6. Case 8. Three Objectives Optimization: Maximization of raffinate and extract 

productivity and minimization of desorbent consumption  

The problem formulation for case 7 and 8 looked similar in which the only difference 

comes from the third objective function. The third objective function in case 7 represents 

the minimization of fixed cost yet this time, it represents the minimization of operating 

cost. Case 7 and 8 exist concurrently to provide the decision maker and or operator more 

options in operating the system as cost information is site and time specific. 

The Pareto optimal solution for 4-column Varicol, 5-column SMB and 5-column 

Varicol interestingly converge to the same solution as displayed in Figure 4.17. In 

general, increased desorbent consumption will follow the increase in total number column 

because it also implies the increase of adsorbent involved in the separation. The behavior 

of the system in the region of limited desorbent could be understood as 4-column Varicol 

tends to attain higher productivity at reasonable desorbent while 5-column SMB/Varicol 

prefers to minimize their desorbent consumption due to their originally high 

productivities. This phenomenon can be justified if new definition, namely desorbent 

consumption per column (QD/column), is used over the course of the separation. Figure 

4.17(b) shows comparable magnitude of QD/column for 4-column Varicol, 5-column 

SMB and 5-column Varicol. 

 Another interesting finding is the sensitivity of the decision variables for each 

solution obtained using this specific objective function. Small changes made toward any 

decision variable will cause significant deviation in the objective function in Figure 

4.17(a). This can be understood as desorbent is critical in enantioseparation and all points 

in Figure 4.17(a) are obtained in the condition of limited presence of desorbent. Figure 
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4.17(f) shows the common feature in every chromatographic separation: the ease of 

obtaining raffinate product at higher purity relative to extract product.  Column configura- 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.17 Pareto optimal solution and plot of decision variables (case 8) for SMB 
and Varicol systems 
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tion for 4-column Varicol is 1/1/1/1, 1/1/1/1, 1/2/1/0 and 2/1/1/0 while for 5-column SMB 

is 1/2/1/1. Switching sequence of 1/1/2/1, 1/2/1/1, 2/1/1/1 and 2/1/1/1 constitute the 

Pareto for 5-column Varicol in Figure 4.17. The optimization results, however, indicates 

that similar productivity can be achieved at relatively lower desorbent requirement 

compared to that used in the experiment. 

 

4.8. Pure Separation Regime for Binary Separation 

For better understanding of the reliability of the optimization results it is worthwhile 

to discuss the results using equilibrium theory applied to countercurrent chromatography 

(Storti et al., 1995). They showed that the unit behavior could be explained in terms of the 

flow rate ratio parameters relative to the four zones of the unit: 

 

( )ε
ε

−

−
=

1col

colsj
j V

VtQ
m ,         j = 1 ~ 4                                                                                  (4.26) 

 
In particular, the flow rate ratio parameter m1 has to be larger than a critical value (σi 

in eq. (4.18) to be less than 1 for both components) in order to achieve complete 

regeneration of the solid phase from the strongly adsorbed (heavy) component, while m4 

has to be smaller than a critical value (σi > 1 for both components) in order to achieve 

complete regeneration of the liquid phase from the weakly adsorbed (light) component. 

Once both such conditions are satisfied,  it is possible to identify in the (m2-m3) parameter 

plane a triangular region, which includes all pairs of values leading to complete separation 

(σ > 1 for one component and σ < 1 for the other), i.e., the two components are recovered 

pure in the extract and in the raffinate, respectively. This region, which depends only on 

the adsorption isotherms and also feed concentration,  has been calculated and represented  
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Figure 4.18 Optimum operating regime in m2-m3 plane for enantioseparation of SB-

553261 racemate using 5-column SMB (case 6)  
 
 
in Figure 4.18 for 5-column SMB and in Figure 4.19 for 5-column Varicol process. In the 

upper right region, with respect to that of complete separation, a pure extract stream is 

obtained, while the raffinate is polluted. In the lower left region, only the raffinate and not 

extract is obtained pure. Finally, it is worth pointing out that the distance from the 

diagonal of a point in the (m2 - m3) plane is directly proportional to productivity and inver- 

 
 

 

 

 

 

 

 

 
Figure 4.19 Optimum operating regime in m2-m3 plane for enantioseparation of SB-

553261 racemate using 5-column Varicol (case 6)  
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sely proportional to desorbent requirement. The vertex of the complete separation 

triangular region gives thus the optimal operating point with respect to such two process 

performances. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.20 m operating plane for enantioseparation of SB-553261 racemate using 5-
column SMB (case 6)  

 
 

In order to interpret the results of the optimization, the optimal values of the decision 

variables in Figure 4.15 have been re-plotted in terms of the four flow rate ratio 

parameters, mj,  as shown in Figure 4.20 for 5-column SMB and Figure 4.21 for 5-column  

 
 

 

 

 

 
 
 
 
 

Figure 4.21 m operating plane for enantioseparation of SB-553261 racemate 
using 5-column Varicol (case 6) 
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Varicol process, respectively. Both figures reveal that all operating points on the Pareto 

correspond to a substantially constant value of m1, in agreement with equilibrium theory, 

which predict a constant lower bound for such parameter. Only for the points 

corresponding to the higher feed flow rate we observe an increase of m1. This is due to the 

necessity to improve the solid regeneration in zone I in order to avoid that the heavier 

component entering zone IV and then pollutes the raffinate. This indicates that zone I is 

critical in controlling the purity in the raffinate as production increases. It is better to 

control the regeneration of the solid from the heavy component in zone I. On the other 

hand, m4 undergoes smaller changes, indicating that zone IV is much less critical to 

achieve the desired separation performance in the particular case under examination.  

It is seen that the values of m2 and m3 obtained in each case do change very little as 

the feed flow rate increases. This is consistent with the equilibrium theory result, which 

indicates that the optimal operating point (the vertex of the triangle) is independent of the 

feed and eluent flow rates. Moreover, the values of m2 and m3 should not vary a lot, 

according to equilibrium theory, which would see them constant and corresponding to the 

vertex of the complete separation region. However, due to dispersion phenomena, same 

change in m2 and m3 is observed, and actually they both tend to decrease, as moving along 

the Pareto.  

Switching time increases as feed flow rate increases (see Figure 4.15) because one has 

to increase the residence time in order to achieve high purity separation. The increase in 

switching time initiates the increase of m1 at fixed value of Q1. The declining value of m2 

and m3 is expected, as the internal flow rates tend to decrease with the increase of feed 

flow rate. This phenomenon is consistent with the increase in switching time (Figure 4.15) 
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as contact between fluid phase and solid phase has to be maximized as the separation 

becomes more and more difficult. The reduction of flow rate in zone IV is merely the net 

effect of increasing desorbent consumption as the feed flow rate increases. The reduced 

flow rate compensates the increase in switching time (eq. 4.26) and it contributes to the 

decrease of m4. The value of m1 for 5-column Varicol is somewhat smaller than that of 

SMB due to the smaller switching time while the magnitude of m2, m3 and m4 for both 

systems are more or less similar.  

The comparison of m values in Figure 4.20 and 4.21 between SMB and Varicol 

systems also explain the ability of the latter to handle more feed than SMB process at the 

same size of triangle. As a consequence of the fact that the performance of the separation 

(i.e. the flow rate ratio parameter values) remains substantially constant for all the 

operating points along the Pareto, also the optimal column configuration remains the same 

both for the 5-column SMB and the 4- and 5-column Varicol processes, and equal to 

1/1/1/2, 0.75/1.25/1.25/0.75 and 1.25/1.25/1.25/1.25 respectively. Note that the flexibility 

of Varicol in distributing the column in the various zones of the unit allows making such a 

transition more smoothly and following closer the separation needs, than the SMB 

process. This justifies the improvement in its performance. 

Figure 4.18 and 4.19 show the location of each optimum point within the m2-m3 plane 

for 5-column SMB and Varicol respectively. The complete separation region with 99% 

purity requirement forms a triangle with the maximum amount feed which can be handled 

is precisely located at the vertex of the triangle. The optimum points (stretching along one 

side of the triangle) move toward the vertex as the feed flow rate increases. The fact that 

optimum points lie on the border of the triangle is expected as the optimum point will opt 
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to move away from the diagonal line. Both reveal that the size of the triangle is relatively 

small, indicating the difficulty level for the enantioseparation and even though the size of 

the triangle is almost similar, Varicol can treat up to QF = 0.435 ml/min, slightly more 

amount of feed than SMB (QF = 0.4 ml/min) at 5-column configuration. Figure 4.18 and 

4.19 explicitly show that the complete separation region is independent of the feed flow 

rate. It is worth observing that the interpretation above, based on equilibrium theory basic 

concepts, helps to rationalize the results of the optimization procedure, which when 

plotted in terms of the original variables (i.e. Figure 4.15) appear a bit confusing 

 

4.9. The Effect of Sub-interval and Partial Feed Operation 

Optimized results of SMB and Varicol, both single objective as well as multi 

objectives, process have shown that Varicol process performed better than the traditional 

SMB process due to flexibility of the former. The enhanced performance of n-column 

Varicol process, however, never emulate that of (n+1)-column SMB process. This is 

because the advantage of having one extra column and therefore more solid phase for 

higher purity and increased productivity. It is theoretically possible to further boost 

Varicol performance by manipulating its flexibility or applying partial feed operation. 

Sub-interval operation introduces more additional degree of freedom to the system. A 

more flexible allocation of stationary phase to each of the four zones can be attained 

adjusting to each local separation task. It might happen that a smooth transition is 

necessary for a certain column configuration before shifting to another.  Optimization 

formulation in case 3 (objective function, fixed and decision variable, upper and lower 
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bounds, etc.) are used, with further subdivision of switching interval, to illustrate the 

concept.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.22 The effect of subinterval for 5-column Varicol (case 3)  

 
 

Figure 4.22 showed the effect of sub-switching interval, onto 4-zone Varicol process, 

with maximum productivity as the objective function. The optimal switching sequence for 
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3-subinterval is I/J/K while for 4-subinterval it consists of I/J/K/K. The upper part of 5-

subinterval Pareto is given by I/J/K/K/K while the lower part is made of J/I/J/J/J. This 

column distribution can be expounded that more column in zone III is mandatory in the 

early switching for sufficient feed loading and extra column in zone I is necessary in the 

latter period to regenerate the considerably saturated adsorbent.  

The switching distribution at higher subinterval suggests that column regeneration is 

more critical during the whole process. The improvement at higher subinterval is marginal 

thus proper consideration is required, especially at extremely small magnitude of 

switching time.  

 

 

 

 

 

 

 

 

 
 

Figure 4.23 Discrete feed operation for 5-column 4-interval SMB process 
 
 

Another distinct adaptation to SMB and Varicol process is the asynchronous 

introduction of feed to the system. The idea is essentially similar to application of solvent 
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Zone I 

Zone II 

Zone III 

Zone IV 

QD 

QF2 

QR 

QE 

Zone I 

Zone II 

Zone III 

Zone IV 

QD 

QF1 

QR 

QE 

Zone I 

Zone II 

Zone III 

Zone IV 

QD 

QF3 

QR 

QE 

Zone I 

Zone II 

Zone III 

Zone IV 

QD 

QF4 

QR 

QE 

0 ~ ¼ ts ¼ ts ~ ½ ts ½ ts ~ ¾ ts ¾ ts ~ ts 



Optimal Operation of Moving Bed Process for Chiral Drug Separation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

130 

introduced by Kearney and Hieb (1992) followed by flow rate optimization (Kloppenburg 

and Gilles, 1999) and comparison with total feed operation (Zang and Wankat, 2002). 

In discrete feed operation, the system is fed at discrete interval to allow proper 

allocation due to the idea that the highest portion of feed should be given, i.e. in the 

absence of separation, at early switching period. Like sub-interval operation, discrete feed 

operation introduces more degree of freedom than constant feed operation. Optimization 

formulation in case 3 is used as reference, i.e. constant feed operation, in this study. 

Extract flow rate is allowed to adjust according the mass balance constraint while the total 

amount of feed per unit time is kept constant, with switching time is discretized into 4 

interval, according to 

 
[QF · ts ]total  = [QF1 + QF2 + QF3 + QF4]discrete · ¼ ts                                                        (4.27) 
 
 

Figure 4.24 summarize the optimum result for both 5-column 4-interval SMB and 

Varicol in comparison with constant feed operation for case 3-optimization formulation. 

High extract purity is obtained for all systems; therefore it is not plotted in Figure 4.24. 

Length of column is fixed for fair comparisons. Yet two values, one for SMB and another 

for Varicol system, are used, which were obtained from the optimization earlier.  

For SMB system, low value of Lcol (~5.58 cm) leads to two configurations: K for the 

upper part of the Pareto for discrete operation (solid black triangle) and J for the middle 

part (empty black triangle). Column sequence J/K/K/K is obtained for shorter column 

Varicol (~6.02 cm). SMB column distribution for higher value of Lcol (~5.98 cm) is I as 

indicated by solid grey triangle and Varicol switching sequence is given by J/J/K/K at 
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column length about 6.09 cm. It can be seen that discrete feed operation leads to higher 

values of objective function.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 Comparison between discrete feed and constant feed operation for 5-
column 4-interval SMB and Varicol processes (case 3) 
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The average feed flow rate was 0.3 ml/min for both constant feed and discrete feed 

operations in Figure 4.24 while feed distribution for discrete feed operation, for shorter 

column length, is given in Figure 4.25 indicating that the highest feed load is required at 

the first interval and the requirement plunges almost to nothing for the 2nd interval. Feed 

loading shoots up again, at the third interval for SMB and at the fourth interval for varicol,  

 

 
Figure 4.25 Feed profile for discrete feed and constant feed operation for 5-column 

4-interval SMB and Varicol processes (case 3) 
 
 
but this time the amount is less than the initial loading. Different feed loading behavior is 

observed for longer column. The highest feed rate is applied at the first interval and 

immediately sinks at the next subinterval for SMB system while feed behavior for longer 

column Varicol repeats feed behavior for shorter SMB (see Figure 4.25). This finding is 

obvious as there is no separation takes place at the beginning of the interval thus higher 

feed flow is necessary to initiate loading. The loading process is relaxed when sufficient 

amount of feed presents in the system as it focuses on separation task. This cycle repeated 

again for the third and last sub interval at smaller magnitude due to reduced capacity of 

the adsorbent in treating the previous load.  
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An extreme improvement is expected for more complicated system i.e. integrated 

reactor-separator system as task distribution is more obvious in such system. The process 

scenario will be high feed loading at the initial interval, medium loading at the middle 

interval as reaction takes place and low loading at the end of the interval for separation. 

This result clearly shows the advantage of applying discrete/gradient operation and still 

could be further enhanced by applying discrete desorbent flow rate as well. 
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Chapter 5  

Optimization Study for Continuous Chromatographic Separation 

of a Chiral Intermediate 

  

5.1. The Application of 1,1’-bi-2-naphtol 

The development of a highly enantioselective chiral catalysts for asymmetric synthesis 

has encouraged strong interest among scientists to resolve racemic mixture of these 

potential catalysts into its optically pure form. The catalytic asymmetric carbon-carbon 

bondforming reactions are the most popular in the field of asymmetric catalysis (Noyori, 

1994). A number of remarkably effective catalysts have been synthesized from chiral 

alcohol, making it the highly valuable intermediates for the manufacturing of chiral 

pharmaceuticals and agricultural products. Several highly enantioselective catalyst from 

alcohol derivatives have been reported in the literature such as β-amino alcohol (Noyori et 

al., 1990), pyrrolidinylmethanols (Soai et al., 1987), 1,3-dioxolan-4,5-dimethanol/DINOL 

(Schmidt and Seebach, 1991) and 1,1’-bi-2-naphtol/BINOL (Kitajima et al., 1996). The 

later is preferred due to its distinctive features: BINOL ligands contain hard oxygen atoms 

that is used to coordinate with hard metal centers such as Al(III), Ti(IV),  Zn(II) and 

Ln(III) to produce highly enantioselective Lewis acid catalyst for many asymmetric 

organic transformations such as Diels-Alder reactions (Maruoka et al., 1988; Maruoka and 

Yamamoto, 1989; Terada et al., 1991; Bao et al., 1993), Michael additions (Tomioka et 

al., 1989; Jansen and Feringa, 1990), Mukaiyama aldol-ene reactions (Mikami and 

Matsukawa, 1993) and glyoxylate-ene reactions (Van der Meer and Feringa, 1992; Terada 

et al. 1994). BINOL and its derivatives have been regarded as important chirality source 
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for many chemical processes. The C2-symmetric chiral 1,1’-bi-2-naphtol is also used as 

chiral auxiliaries in stoichiometric and catalytic asymmetric synthesis such as aza Diels-

Alder reactions (Hattori and Yamamoto, 1992), enantioselective protonations (Ishihara et 

al., 1994), nitroaldol reactions (Sasai et al., 1992), hydroformylations (Sakai et al., 1993; 

Nozaki et al., 1997), alkylation (Chan et al., 1997), oxidations (Komatsu et al., 1993; 

Reetz et al., 1997), enantioselective reduction of ketone (Noyori et al, 1984a, 1984b; 

Suzuki et al. 1990) and epoxidations (Bougauchi, 1997). Optically active binaphthyl 

derivatives have been applied in host-guest chemistry, molecular recognition and 

enantioselective chromatography separation (Helgeson et al., 1974; Lehn et al., 1978; 

Sogah and Cram, 1979; Lingenfelter et al., 1981; Artz et al., 1985; Castro et al., 1989). 

BINOL derivatives have been used to control the stereochemistry of polymer structures in 

polymerization processes (Okamoto and Nakano, 1994; Nakano and Sogah, 1995). 

 
 

 
Figure 5.1 Molecular structure of 1,1'-bi-2-naphtol optical isomer 

 
 
The 1,1’-bi-2-naphtol molecule is classified as axially chiral molecule due to restricted 

rotation of the two naphthalene rings. The single bond joining the two aromatic ring 

systems can not rotate freely. Both enantiomers of 1,1’-bi-2-naphtol serve important 

application in asymmetric reactions such as asymmetric reductions (Noyori et al., 1984b; 
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Suzuki et al., 1990), asymmetric alkylation (Fuji et al., 1990; Maglioli et al., 1992), 

asymmetric induction (Whitesell, 1989) and asymmetric catalysis (Maruoka et al., 1988; 

Bao et al., 1993). They are also found useful in synthesis of chiral macrocycles (Lehn et 

al., 1978; Sogah and Cram, 1979) or as a chiral host for optical resolution and chiral shift 

reagent for the determination of optical purity and absolute configurations of a wide range 

of chiral compound. BINOL has a remarkable enantio-differentiating property but its 

application is dictated by the cost of this material due to complexity encountered in 

obtaining it in optically pure form. Methods for preparation of optically active BINOL are 

well reported in literature ranging from classical resolution to enzymatic hydrolysis of 

their derivatives such as fractional crystallization of diastereomeric cyclic phosphate ester 

derivatives (Jacques and Fouquay, 1988; Truesdale, 1988; Tamai et al., 1990; Gong et al., 

1991; Brunel and Buono, 1993; Fabbri et al., 1993), enzymatic hydrolysis of the diester of 

1,1’-bi-2-naphtol (Kazlauskas, 1989, 1991), resolution through inclusion complexes 

(Kawashima and Hirayama, 1990; Tanaka et al., 1993; Toda et al., 1994; Hu et al., 1995) 

and enantioselective oxidative coupling of 2-naphtol in the presence of chiral amines 

(Smrcina et al., 1993; Nakajima et al., 1995). Some of these methods will only give one 

pure enantiomer, either R or S, thus requiring some modification in the resolution 

procedure and or chiral resolving agent. Chow et al. (1996) have pointed out that they fail 

to resolve 4,4’-dibromo-1,1’-bi-2-naphtol using Toda’s procedure although the same 

method is able to resolve 1,1’-bi-2-naphtol in good optical purity. The unsubstituted 1,1’-

bi-2-naphtol could be resolved using enzymatic method but poor solubility of the 4,4’-

dibromo derivative in the medium lead to another failure. Expensive chiral sources and 

complicated experiment parts are also leaving scientist a challenge to come up with a 
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more simple and practical method with good reproducibility. Moreover, the need to 

produce in synthetic scale is another important factor that should come into consideration 

in choosing the appropriate method to prepare BINOL in considerably high purity.  

Several practical resolutions of BINOL by chromatography employing chiral 

stationary phase are developing rapidly. Racemic mixture of 1,1’-bi-2-naphtol can be 

synthesized from its starting material (2-naphtol) catalyzed by copper(II) catalyst in air 

(Noji et al., 1994). This is followed by optical resolution by isolating one species from its 

racemic mixture, usually involving the use of resolving agent 

 

5.2. Mathematical Model of SMB and Varicol Process 

There are two ways of simulating the SMB (Ruthven and Ching, 1989): the first, 

known as equivalent True Moving Bed (TMB) approach, which represents each of the 

four sections as counter-current bed and solid moves with a velocity, us (which is 

equivalent to the ratio of bed length (Lcol) to the switching time of an actual SMB 

process). The solid moves counter-currently in relation to the fluid phase and the problem 

is reduced to writing the pertinent mass balance equations for each of the species involved 

in each of the four countercurrent sections, together with the global mass balance around 

the eluent, extract, feed and raffinate port. Steady state condition is indicated with 

stationary internal profiles and constant product concentrations. The second, known as 

actual SMB approach, represents the system as an array of fixed beds connected in series 

with moving boundary conditions at regular time intervals. The steady state is actually a 

periodic condition with moving internal profiles at a definite pattern. The product 
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concentration varies within a period despite similar cycle averages to that of TMB 

approach and this is known as cyclic steady state. 

 Dispersive plug flow models are used in this study to simulate 4-zone SMB behavior 

with linear driving force approximation to describe the mass transfer kinetics between the 

two phases. The dispersive plug flow model assumes rapid mass transfer across the 

column thus implying one dimensionality of the system that concentration and velocities 

are radially homogeneous but it accounts for a finite extent of axial dispersion. Axial 

dispersion was taken into account for the mobile phase while plug flow was considered 

for the stationary phase. The mass balance for each component of a racemic mixture can 

be expressed by convection-dispersion PDEs as described below. 

Mass balance of component i in the mobile phase: 
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Mass balance of component i in the stationary phase:  
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Initial condition, 

when N = 0, 
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when N ≥ 0,       
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Extract/Raffinate port, 
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The assumptions made in the modeling of SMB process are: 

1. The process is isothermal 
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2. Mobile phase velocity is constant throughout the process 

3. Negligible compressibility of the mobile phase 

4. Porous and spherical particle for the stationary phase are uniform in size 

5. Negligible concentration gradient in the radial direction of the bed 

6. Local equilibrium exist for each component between the pore surface (monolayer) 

and the stagnant fluid phase inside the macropore 

7. Dispersion coefficients of all components are independent of concentration 

The model consider the influence of a finite column efficiency as a small correction 

but the validity of this model is confirmed when the column efficiency is high such as in 

the case of RPLC of small molecules of moderate polarity. The adsorption equilibrium 

isotherms (Nicoud and Seidel-Morgenstern, 1993; Nicoud, 1995) are given by the 

following expressions: 
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The PDEs from the above mass balance equations with all accompanying adsorption 

isotherms, initial and boundary conditions were solved using the method of lines 

(Schiesser, 1991). The PDEs are discretized in space using Finite Difference Method to 

convert it into a set of several-coupled ODE-IVPs. The resulting stiff ODE of initial value 

kind was solved using DIVPAG subroutine in IMSL library based on Gear’s algorithm.  
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5.3. Model Validation 

The model is verified by comparing with the experimental and simulation results 

reported by Pais et al. (1997a, 1997b, 1998). The experimental conditions used by them 

are tabulated in Table 5.1 and the comparative results are shown in Table 5.2 to Table 5.5. 

The results show that our SMB model under predicts the experimental result in terms of 

purity while the simulation results reported by Pais et al. (1997a, b, 1998) over predicts at 

similar operating conditions.  

 
Table 5.1 Experimental and simulation process parameter for enantioseparation of 

1,1'-bi-2 naphtol racemate 
 

Parameter Table 5.2 Table 5.3 Table 5.4 Table 5.5 

Lcol, cm 10.5 10.5 10.5 10.5 

Column ID, cm 2.6 2.6 2.6 2.6 

ε 0.4 0.4 0.4 0.4 

CF, g/l 2.9 2.9 2.9 2.9 

Q1, ml/min 56.83 56.83 56.83 56.83 

QE, ml/min 16 17.98 16 17.98 

QR, ml/min 9.09 7.11 9.09 7.11 

QF, ml/min 3.64 3.64 3.64 3.64 

QD, ml/min 21.45 21.45 21.45 21.45 

ts, min See Table 5.2 2.75 See Table 5.4 See Table 5.5 

χ 2/2/2/2 See Table 5.3 2/2/2/2 See Table 5.5 
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Table 5.2 Comparison between experimental (Pais et al., 1997a) and simulation 
result for enantioseparation of 1,1'-bi-2 naphtol racemate at various switching time 

 
Pur(%) Rec(%) SC(l/g) Y(g/h/ls) Run  ts  

min E R E R E R E R 

 Exp.  74 93.8 96 66.6 2.47 3.57 2.27 1.58 

1 Pred.1 2.55 76.8 92.3 - - - - - - 

 Pred.2  71.7 90.9 94.1 63.2 2.53 3.76 2.23 1.5 

 Exp.1  93 96.2 97.3 91.6 2.44 2.59 2.31 2.17 

2 Pred.1 2.75 95.4 97.6 - - - - - - 

 Pred.2  91.7 96.3 96.4 92 2.46 2.58 2.29 2.18 

 Exp.1  95.6 95.4 95 96.1 2.48 2.45 2.27 2.3 

3 Pred.1 2.80 97.4 98.2 - - - - - - 

 Pred.2  94.5 96.4 96.4 95.1 2.47 2.5 2.28 2.26 

 Exp.1  91.5 70.9 61.5 94.7 3.86 2.51 1.46 2.24 

4 Pred.1 3.05 97.9 85.8 - - - - - - 

 Pred.2  96.4 79.2 74.1 97.9 3.21 2.43 1.76 2.32 

1 Pais et al. (1997a) 
2 This work 
 
 
The resulting concentration profiles are also compared with the experimental and the 

simulation results reported by Pais et al. (1998). Figure 5.2 demonstrate that the 

experimental and the simulated concentration profiles based on the operating conditions 

used in Pais et al. (1998) are comparable, and therefore, reliability of the SMB model in 

predicting the internal concentration profiles. 
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Figure 5.2 Experimental and simulated concentration profile on 8-column SMB 
based on operating parameter in Pais et al., 1998 (symbol: experiment, black: 

simulation by Pais et al., grey: simulation by this work) 
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Table 5.3 Comparison between Experimental (Pais et al., 1997a) and simulation 
result for enantioseparation of 1,1'-bi-2 naphtol racemate at various column 

configurations 
 

Pur(%) Rec(%) SC(l/g) Y(g/h/ls) Run  χ 

E R E R E R E R 

 Exp.1  93 96.2 97.3 91.6 2.44 2.59 2.31 2.17 

A Pred.1 2/2/2/2 95.4 97.6 - - - - - - 

 Pred.2  91.7 96.3 96.4 92 2.46 2.58 2.29 2.18 

 Exp.1  94.8 95 97.1 96.8 2.45 2.45 2.3 2.29 

B Pred.1 1/3/3/1 97 94.5 - - - - - - 

 Pred.2  93 91.7 91.7 94.2 2.59 2.52 2.17 2.23 

 Exp.1  92.6 95.2 97.5 94.5 2.44 2.52 2.31 2.24 

C Pred.1 1/2/4/1 94.6 94.3 - - - - - - 

 Pred.2  89.2 91.5 91.9 90 2.59 2.64 2.18 2.13 

1 Pais et al. (1997a) 
2 This work 
 

Table 5.4 Comparison between experimental (Pais et al., 1997b) and simulation 
result for enantioseparation of 1,1'-bi-2 naphtol racemate 

 
Pur(%) Rec(%) SC(l/g) Y(g/h/ls) Run  ts  

min E R E R E R E R 

Exp.1 94.5 98.9 99.1 94.1 2.37 2.5 2.37 2.25 
1 

Pred.2 
172 

91 98.2 98 90.9 2.42 2.62 2.32 2.15 

Exp.1 93 96.2 97.3 91.6 2.44 2.59 2.31 2.17 
2 

Pred.2 
165 

91.7 96.3 96.4 92 2.46 2.58 2.29 2.18 

1 Pais et al. (1997b) 
2 This work 
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Table 5.5 Comparison between experimental (Pais et al., 1998) and simulation result 
for enantioseparation of 1,1'-bi-2 naphtol racemate 

 
Case  Pur(%) 

  

ts 

min 
χ α Pe 

E R 

Exp.1 89.7 95.3 
SMB4 

Pred.2 
6 1/1/1/1 36 2000 

86.7 91.3 

Exp.1 95.9 98.7 
SMB8 

Pred.2 
3 2/2/2/2 18 1000 

95.1 96.7 

Exp.1 96.8 99.1 
SMB12 

Pred.2 
2 3/3/3/3 12 667 

96.5 97.6 

1 Pais et al. (1998) 
2 This work 

 

5.4. Sensitivity Analysis 

SMB chromatography utilizes operating variables which have different effect on the 

separation performance. Some variables may exercise insignificant effect while other may 

dictate the overall process performance in distinctive way. It is of particular interest to 

study the effect of switching time (ts), raffinate flow rate (QR), desorbent flow rate (QD) 

and number of columns in any particular zone (NØ) on the purity and the productivity of 

the enantiomers collected at the raffinate and extract ports. Purity and productivity, as 

process performance parameter, is chosen as the two objective functions due to their vital 

role in assessing the viability of chiral separation process. 

The sensitivity analysis is performed by varying one variable at a time keeping all 

other variables fixed, mostly at values at which the experiment was done. At this end, it 

may provide rudimentary information whether the experiments are carried out within the 
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optimum framework. The information, however, is premature to be regarded as optima as 

intricate interaction between each decision variable introduces adversity to such stochastic 

optimization procedure. 

 

5.4.1. The Effect of Switching Time 

Figure 5.3 (a) and (b) represent the impact to separation performance when switching 

time is varied keeping all other parameters constant at the reference value listed in Table 

5.1. In general, switching time is directly linked to solid phase velocity, and therefore, the 

residence time of the components within the columns. Increasing switching time will 

lower the solid velocity thereby increasing residence time of the component as switching 

time is inversely proportional to solid velocity. Hence, increase of switching time will 

allow enough time for the components to be positioned along the raffinate and extract 

withdrawal port just before the switching operation is performed. 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 The effect of switching time on purity and productivity 
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The purities of both enantiomers, however, deteriorate when the switching time is 

increased beyond 3 minutes. It can be seen from Figure 5.3(b) that the components tend to 

move with the mobile phase rather than with the stationary phase and it contributes to the 

increase of raffinate productivity. An interesting phenomenon from Figure 5.3(a) is that 

there are two apexes: one for raffinate purity and another for extract purity. This finding 

indicates that it is difficult to obtain both enantiomers at high purity by merely regulating 

the switching time. Similar phenomenon is depicted in Figure 5.3(b) as the maximum 

productivity of both components can not be achieved at a single value of switching time.  

 

5.4.2. The Effect of Feed Flow Rate 

Figure 5.4 demonstrate almost linear relationship between purity and productivity 

when the feed flow rate is varied over the range of 3 to 6 ml/min. In examining the effect 

of feed flow rate, the extract stream is allowed to adjust to the changes of feed flow rate 

according to the mass balance causing the increase of extract flow rate as feed flow 

increases. 

 

 
Figure 5.4 The effect of feed flow rate on purity and productivity 
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The experimental feed flow rate is 3.64 ml/min and it is interesting to study the 

behavior of the system under high feed loading. The trend in Figure 5.4 is as expected: 

purity deteriorates at elevated feed flow rate as the separation task becomes more intense 

but productivity rises due to the increasing availability of both enantiomers in the entire 

system.  

 

5.4.3. The Effect of Raffinate Flow Rate 

The figure below represents the effect of raffinate flow rate on the productivity of less 

retained component in raffinate stream and that of more retained component in the extract 

port. The decreased productivity of more retained component in the extract stream is 

reasonable at sufficiently high raffinate flow rate as some of the strongly adsorbed 

component emerge at the raffinate port thus less extract product is collected. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.5 The effect of raffinate flow rate on purity and productivity 
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the extract line. The reduced flow rate in the section between raffinate withdrawal port 

and the desorbent inlet port forces component in this section to be conveyed toward the 

raffinate line and pollutes the raffinate product stream. 

  

5.4.4. The Effect of Desorbent Flow Rate  

The effect of desorbent flow rate helps to improve the quality of separation as its role 

is to remove the more retained component from the stationary phase. Purity and 

productivity of both component improve as the desorbent flow rate increases up to 20 

ml/min then they exhibit contradictive behavior beyond 20 ml/min. Figure 5.6(a) 

demonstrate that the more retained component is effectively removed from the adsorbent 

as desorbent flow rate rises to 20 ml/min. This also helps in increasing raffinate purity, as 

the columns are clean to begin with. However, at a relatively very high mobile phase 

velocity (desorbent flow rate greater than 20 ml/min), purity decreases as high desorbent 

flow rate, causes some of the less retained component to emerge at the extract port. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6 The effect of desorbent flow rate on purity and productivity 
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This explains the deteriorating extract purity and raffinate productivity at the condition 

of excess desorbent (wash out condition). The high mobile phase velocity is in favor of 

raffinate purity as it ensures that no strongly adsorbed component travel to raffinate 

withdrawal port to contaminate raffinate product stream as observed in Figure 5.6(a). The 

excess desorbent completely wash the more retained species off the adsorbent in zone I 

thereby extract productivity attain a steady value at fixed amount of feed. 

 

5.4.5. The Effect of Number of Column 

Figure 5.7(a) and (b) portray the effect of number of column in zone I on the purity 

and the productivity of both product streams. In examining the effect of number of 

columns, all process parameters were kept constant at the experimental setting listed in 

Table 5.1 except the switching time. It can be seen that varying number of columns in 

zone I will affect raffinate purity only, while changes are hardly seen for productivity. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7 The effect of number of column in zone I on purity and productivity 
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purity can not be improved further by varying the number of column in zone I. Increasing 

number of column in zone I will assure complete desorption of the more retained 

component in this zone thus helps in avoiding the contamination of raffinate stream. 

The influence of number of columns in zone II can be visualized in Figure 5.8 where 

improvement can be achieved by increasing the number of columns in zone II. This zone 

is responsible for desorption of the less retained component and it can be seen that zone II 

is important in improving purity and productivity for this enantioseparation. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 The effect of number of column in zone II on purity and productivity 
 
 

Improved extract purity is obvious as increasing the number of column in zone II will 

increase residence time thus allowing more time for the less retained component to be 

desorbed from the pores of the adsorbent. Hence, the columns in zone II will be free from 

the less retained component when zone II becomes zone I in the next switching. The 

liquid entering zone III will be rich in less retained component, as a result of improved 

desorption of this component in zone II, resulting in higher purity and productivity of 

raffinate stream. 
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Figure 5.9(a) and (b) is showing variation of number of columns in zone III, and it 

indicates that the number of columns in zone III more or less exhibits similar effect on the 

separation performance as that of zone I. Zone III involves mainly in adsorption of the 

strongly adsorbed component thus improved raffinate performance is expected from 

varying the number of columns in this zone. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9 The effect of number of column in zone III on purity and productivity 

 
 

Raffinate purity indeed shows slight increasing trend but no significant changes can be 

observed in productivity thus Figure 5.9(b) implies that one column in zone III is enough 

for the separation to take place.    

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10 The effect of number of column in zone IV on purity and productivity 
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The impact of the last zone in 4-zone SMB is well described in Figure 5.10 where 

insignificant effect on the purity and the productivity was observed when the number of 

column in zone IV was varied. The liquid entering zone IV is rich in less retained 

component thus the role of zone IV is to mainly ensure removal of desorbent from 

adsorbent. This will make the adsorbent pores available for adsorption of less retained 

component and prevent them from entering zone I to contaminate extract stream. 

Enhanced performance in the extract stream is therefore expected but it turns out that this 

zone IV is insensitive. 

 

5.5. Optimization Study 

The optimization problem for simulated counter-current process is to find the 

optimum switching time, internal flow rates and column configuration to satisfy specified 

purity or productivity requirement. As has been shown previously in the sensitivity 

analysis, some variables contradict each other i.e. high feed load increase productivity at 

the expense of high desorbent consumption rate and relatively lower product purity 

making this system prone to multi-objectives optimization study. Optimization study of 

simulated moving bed has been reported in the open literature is the work of Storti et al. 

(1988, 1995), Dunnebier and Klatt (1999), Karlsson et al. (1999), Wu et al. (1999) 

employing a weightage factor to convert several objective functions into one objective 

function. In this study, first single objective function optimization is performed to test 

whether the optimization algorithm can result in improved solution compared to the 

experimental results reported by Pais et al. (1997a, 1997b, 1998). Multi-objectives 

optimization is carried out to provide decision makers with set of solutions which will 
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enable them to choose the appropriate operating condition suitable to certain 

circumstances. 

 

5.5.1 Single Objective Optimization 

 In order to test the optimization procedure, single objective optimization study was 

performed to compare the result of this work with those reported by Pais et al (1997a), 

which were obtained by simulation-optimization without following any systematic 

optimization procedure. The first hypothesis made at the initial stage of this work is that 

there exists at least one of the operating variables in the experimental work reported by 

Pais et al. (1997a) that can still be improved. Single objective optimization study, as 

tabulated in Table 5.6, is first carried out before multi-objectives optimization studies.  

 

5.5.1.1. Case 1. Single Objective Optimization: Maximize feed flow rate 

The purpose of single objective optimization study is to find out whether process 

performance can be improved maintaining at least the same quality of separation. In most 

enantioseparation process, purity is regarded as the important parameter, and it will 

decrease as feed flow rate is increased or as desorbent flow rate is decreased. In the first 

case of single objective optimization, it is desired to see how high the feed flow rate can 

be increased maintaining a predefined purity. The optimization problem formulated for 

SMB and Varicol is described as follows: 

 
Max I = QF[QF, QR, ts, χ]                                                                               (5.11) 

 Subject to PurR and PurE ≥ Experimental value (in Pais et al., 1997a)                 (5.12) 
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The desired purity is used as an inequality constraint and its value is targeted to be 

greater than the reported experimental purity. The total number of column is kept constant 

to enable direct comparison with the existing system. The flow rate in zone I is also 

treated as fixed variable to ensure the whole system working below the allowable pressure 

drop range.  

 
 

Table 5.6 Single objective optimization attributes used in the enantioseparation of 
1,1'-bi-2 naphtol racemate  

 
Problem Objective Function Constraints Decision variables 

SMB 

Case 1 

Varicol 

Max QF 

PurR and PurE ≥ 

Experimental value 

(Pais et al., 1997a) 

3.5 < QF < 4 ml/min 

1 < QR < 10 ml/min 

2 < ts < 4 min 

χ [See Table 3.1] 

SMB 

Case 2 
Varicol 

Min QD 

PurR and PurE ≥ 

Experimental value 

(Pais et al., 1997a) 

18 < QD < 21 ml/min 

1 < QR < 10 ml/min 

2 < ts < 4 min 

χ [See Table 3.1] 

Fixed Variables: Lcol = 10.5 cm, Ncol = 8, Q1 = 56.83 ml/min 

Case 1: QD = 21.45 ml/min Case 2: QF = 3.64 ml/min 

 
 
 

Incorporating modified infinite barrier penalty function, similar to eq. (4.24) and 

(4.25), to the objective function develops the optimization code and a large penalty 

weightage is used to penalize only the unfeasible points. 
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5.5.1.2. Case 2. Single Objective Optimization: Minimize desorbent flow rate 

The desorbent flow rate minimization is chosen as the objective function as it serves 

as one component that constitutes the total cost of separation. Desorbent is needed in 

chromatographic column to desorb the most strongly adsorbed component from the 

adsorbent thus reducing the desorbent flow rate will have significant impact on the 

process performance especially purity. It is required to see how low the desorbent can be 

used at the limit of achieving a definite purity requirement.  

The following formulation for SMB and Varicol processes is considered: 

 
      Min           I = QD[QD, QR, ts, χ]                                                                               (5.13) 

      Subject to PurR and PurE ≥ Experimental value (in Pais et al., 1997a)                 (5.14) 

 
The details of optimization formulation (objective function, constraints, fixed variables 

and bounds for each decision variables) are well summarized in Table 5.6. Column 

configuration is employed as one of the decision variables and its optimum value is 

tabulated in Table 5.7. It is worth to note that 4 sub-intervals are used in Varicol process 

due to the magnitude of switching time. There are 20 and 35 possible configurations for 7-

column and 8-column Varicol systems respectively. 

 
Table 5.7 Optimum column configuration for SMB and Varicol processes for 

enantioseparation of 1,1'-bi-2 naphtol racemate 
 
Ncol χ Column χ Column χ Column χ Column χ Column 

 A 1/1/2/3 B 1/1/3/2 C 1/2/2/2 D 1/2/3/1 E 1/3/1/2 

7 F 1/3/2/1 G 2/1/3/1 H 2/2/1/2 I 2/2/2/1 J 2/3/1/1 

 K 3/1/2/1         

L 1/2/2/3 M 1/3/2/2 N 1/3/3/1 O 2/1/3/2 P 2/2/2/2 
8 

Q 2/2/3/1 R 2/3/2/1 S 3/2/2/1     
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The result of single objective optimization is summarized in Table 5.8 in which the 

reference value presented was used for SMB experimental study while the optimized 

value is given for both SMB and Varicol system. Shaded column represents optimum 

values of objective function and decision variables and the number in bracket are 

percentage improvement over experimental results. Optimum result clearly exhibits 

improvement as expected. Higher feed rate or lower desorbent flow rate is achieved 

relative to experimental value for the SMB process. 

 
Table 5.8 Single objective optimization result in the enantioseparation of 1,1'-bi-2 

naphtol racemate  
 

Process 8-column SMB 8-column Varicol 

Parameter Ref. case 1 Case 2 case 1 case 2 

Q1(ml/min) 56.83 56.83 56.83 56.83 56.83 

QE(ml/min) 16 19.40 19.53 18.49 17.16 

QR(ml/min) 9.09 5.74 5.39 6.65 6.83 

QF(ml/min) 3.64 3.69(+1.26%) 3.64 3.69(+1.47%) 3.64 

QD(ml/min) 21.45 21.45 21.28(-0.82%) 21.45 20.35(-5.15%) 

ts(min) 2.75 3.00 3.03 2.96 2.93 

Lcol(cm) 10.5 10.5 10.5 10.5 10.5 

χ(-) P L L L/NP/M L/M/P/O 

PurR(%) 96.2 96.20 96.22 96.2 96.39 

PurE(%) 93 93.00 93.06 93.00 93.05 

RecR(%) 91.6 92.55 91.55 93.01 93.3 

RecE(%) 97.3 95.98 95.93 96.07 95.98 

SCR(l/g) 2.59 2.54 2.56 2.52 2.44 

SCE(l/g) 2.44 2.45 2.44 2.44 2.37 

YR(g/h/ls) 2.17 2.22 2.17 2.24 2.21 

YE(g/h/ls) 2.31 2.30 2.27 2.31 2.28 
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This improvement can be achieved by reducing internal liquid flow rates and pseudo 

solid velocity (implicitly enclosed in Table 5.8). This phenomenon is evident as it is 

desirable to enhance the countercurrent contact between the mobile and the stationary 

phase by increasing the residence time of the component along the column, at high feed 

flow rate. The column configuration is L for SMB and L/N/P/M for Varicol.  

Desorbent flow rate can be minimized up to 0.82 % and 5.15 % for SMB and Varicol 

respectively by significantly increasing internal liquid flow rate, although the solid flow 

rate was slightly changed from the reference value. This fact is understandable, as high 

liquid internal flow rate will ensure that adsorption-desorption in each zone attained 

satisfactorily at the condition of minimum desorbent flow rate. Optimization result 

displayed in Table 5.8 shows only slight improvement over the reference value in terms of 

operating variable such as purity, recovery, solvent consumption and specific yield. The 

result obtained in this work shows that there is not much room for improvement with 

single objective function. However, it shows the ability of genetic algorithm to locate the 

better optimal (global optima) solution of this system. 

 

5.5.2. Multi-Objectives Optimization 

SMB operating variables often affect the performance in conflicting ways making 

single objective optimization not sufficient for real-life industrial design. Hence, multi-

objectives optimization is essential for SMB and Varicol systems particularly when it is 

desired to satisfy more than one criterion, for example, purity and productivity of one 

particular stream.  Multi-objective optimization will lead to the concept of Pareto, a set of 
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Table 5.9 Multi objective optimization attributes used in the enantioseparation of 
1,1'-bi-2 naphtol racemate  

 
Problem Obj. funct. Constraints Decision variables Fixed variables 

SMB 
Case 

3 
varicol 

Max PurR 
Max PurE 

 
 

PurR > 90% 
PurE > 90% 

 
 

18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
8 < Lcol < 13 cm 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 

SMB 
Case 

4 
varicol 

Max PrR 
Max PrE 

 
 

PurR > 90% 
PurE > 90% 

 
 

18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
8 < Lcol < 13 cm 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 

SMB 
Case 

5 
varicol 

Max PurR 
Max PrR 

 

 
PurR > 90% 
PurE > 95% 

18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
8 < Lcol < 13 cm 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 

SMB 
Case 

6 
varicol 

Max PurE 
Max PrE 

PurR > 95% 
PurE > 90% 

18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
8 < Lcol < 13 cm 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 

SMB 
Case 

7 
varicol 

Max QF 
Min QD 

PurR > 95% 
PurE > 95% 

3 < QF < 6 ml/min 
18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 

SMB 
Case 

8 
varicol 

Max PrR 
Max PrE 
Min QD 

PurR > 90% 
PurE > 90% 

18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
8 < Lcol < 13 cm 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 

SMB 
Case 

9 
varicol 

Max PrR 
Max PrE 
Min Lcol 

PurR > 90% 
PurE > 90% 

18 < QD < 35 ml/min 
5 < QR < 15 ml/min 

2 < ts < 4 min 
8 < Lcol < 13 cm 
χ [See Table 3.1] 

Q1  = 56.83 ml/min 
QF = 3.64 ml/min 

Ncol = 7 or 8 
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equally good non-dominated solution,  in which one objective can be improved at the cost 

of the other objective function.  

Product purity, as a supreme separation feature, has been frequently used to measure 

the feasibility of a separation method. The purity of both enantiomer of 1,1'-bi-2-naphtol 

has been shown earlier to contradict each other in sensitivity analysis. Purity optimization 

serves as a good problem to introduce the concept of non-dominating solution as 

represented in Pareto Set. Minimum purity of 90% is used to penalize infeasible points 

during the search. 

 

5.5.2.1. Case 3. Multi-objectives Optimization: Maximize raffinate and extract purity 

The optimization problem formulated is to maximize the purity of the raffinate and the 

extract streams simultaneously. The choice of decisions was based on the ease of 

operating the process conveniently. In this case, purity is treated both as constraint (in 

order to have products with purity greater than a specified value) as well as objective 

function. The Pareto for 7-column SMB and Varicol, and 8-column SMB are compared in 

Figure 5.11. Two problems are formulated for 8-column SMB, one with Lcol as decision 

variable, and the other with fixed Lcol to enable direct comparison between optimum 

results at existing design and to measure the dependency of purity with respect to column 

length.  

The figure shows that 7-column SMB with optimal configuration [χ = C (1/2/2/2)] can 

only achieve medium range of purity while 7-column Varicol can achieve better purity. 

The column switching sequence for 7-column Varicol is A/C/C/D and this is equivalent 

with 1/1.75/2.25/2 which is very close to the SMB optimal configuration. Varicol process,  
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Figure 5.11 Multi-objectives optimization results (case 3) for SMB and Varicol 
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gives relatively higher purity, as expected, than 7-column SMB especially in the raffinate 

stream. The experimental purity obtained for 8-column SMB (Pais et al., 1997a) lies near 

the 7-column Varicol (See Figure 5.11). Purity in this case was found to depend on the 

length of column and desorbent rate. Higher product purity is possible for 8-column SMB 

especially when the length of column is allowed to vary at the expense of high desorbent 

flow rate.  

 For optimization at existing design, the Pareto set for 8-column SMB consists of two 

unique configurations. For the upper part (higher extract purity, black triangle) the 

optimal configuration is M (χ = 1/3/2/2) while for the lower part (higher raffinate purity, 

gray triangle) it is R (χ = 2/3/2/1). When the column length was allowed to vary, the 

Pareto shifted towards even higher purity and the optimum column configuration obtained 

was R (χ = 2/3/2/1) for the entire Pareto range.  

Figure 5.11(a) shows that zone I is less important at low raffinate purity but is vital for 

high raffinate purity. This is understandable as the task of zone I is to ensure smooth 

desorption of the more retained component to be eluted at the extract withdrawal port, so 

that the liquid eluting from zone I is rich in the more retained component. The task of 

zone II is to ensure desorption of the less retained component from the adsorbent to the 

liquid phase. With increasing number of columns in zone II, the liquid entering zone III 

will be richer in the less retained component and this will increase the driving force for 

the more retained component in zone III to be adsorbed in the solid phase. This 

phenomenon will help the system to attain high raffinate purity. 
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5.5.2.2. Case 4. Multi-objectives Optimization: Maximize raffinate and extract pro-

ductivity 

The specific ability of SMB chromatography to separate difficult mixtures has secured 

it to be the popular method to handle small volume expensive chemicals. Both 

enantiomers of 1,1'-bi-2-naphtol are of equal importance, depending on its application. 

The productivities of raffinate and extract streams have been shown to contradict in 

sensitivity analysis, and therefore, they serve as a good objective function leading to 

Pareto optimal solution. If conventional optimization techniques were used, we would be 

able to predict only one point at a time on the Pareto optimal curves by fixing one of the 

productivity values and maximizing the other. This effort will consume considerable 

computation time but the results would be more meaningful.  

The problem formulation is almost similar to case 3 (Table 5.9) but the objective 

function is modified to incorporate productivity. The purity constraint in this case was set 

to be greater than 90% to acquire more feasible solutions. Productivities of both streams 

are used as objective function with raffinate flow rate, desorbent flow rate, switching 

time, length of column (except in one of the two cases for 8-column SMB) and column 

configuration as decision variables. Like the previous cases, all variables except length 

can be manipulated in optimization at design stage when Lcol is relaxed. 

The column configurations for upper (black square, symbols) and lower part (grey 

square, symbols) of Pareto for 7-column Varicol are G/F/I/I and E/F/I/I respectively. The 

reference experimental point is achieved by 8-column SMB with configuration P 

(2/2/2/2). Two column configurations constitute the Pareto for 8-column SMB with fixed 

length.  The upper part (black triangle) is achieved by S (3/2/2/1) and the lower part (grey  
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Figure 5.12 Multi objective optimization results (case 4) for SMB and Varicol 
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triangle) by R (2/3/2/1) configuration. The column configuration when length is used as 

decision variable is P (2/2/2/2), same as the reference experimental configuration. The 

two different column configurations that constitute 8-column SMB Pareto (Figure 5.12) 

when length is fixed can be understood as extract productivity is more dominant than the 

raffinate productivity (at the upper part of the Pareto), zone I requires an extra column to 

increase elution of the more retained component from the adsorbent. On the contrary, the 

extract productivity is more inferior to the raffinate productivity at the lower part of the 

Pareto, hence zone II, as explained earlier, need more columns to enrich the mobile phase 

with raffinate product. 

 

5.5.2.3. Case 5. Multi-objectives Optimization: Maximize raffinate purity and pro-

ductivity 

The combination of (S)-1,1’-bi-2-naphtol and Ti(O-i-Pr)4 is found to be highly 

enantioselective for the reaction of aromatic aldehydes (Moore and Pu, 2002). 

Nonetheless, the (S)-1,1’-bi-2-naphtol is deemed to be more superior than its (R) 

counterpart when used as chiral ligand in alkylation of a variety of aromatic aldehydes to 

chiral alcohol (Chan et al., 1997).  

In this case, the objective functions are formulated based on the two qualities of 

raffinate stream: purity and productivity. These two parameters have been shown to 

contradict each other in our earlier sensitivity analysis. The extract purity constraint of 

greater than 95% is used to avoid the loss of the more retained component in the raffinate 

line. There is no sub-case in which the Lcol is fixed because the length of column for 8-

column SMB converges around its design value used in the experiment.  The optimum re- 
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Figure 5.13 Multi-objectives optimization results (case 5) for SMB and Varicol 
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sult of case 5 is well represented in Figure 5.13 in which extreme improvement over 

experimental (reference) value is achieved even under stringent extract purity constraint. 

The column configuration for 7-column SMB is D (2/3/2/1) and the switching sequence 

for 7-column Varicol is C/C/E/F, which corresponds to 1/2.5/1.75/1.75. The Pareto 

optimal solution for 8-column SMB is given by two column configurations: the upper part 

(black triangle) is by P (2/2/2/2) whilst the lower part (grey triangle) is given by R 

(2/3/2/1). This result shows the significance of zone II over the other zones in dictating 

the quality of raffinate product. It has been mentioned earlier that more columns in zone II 

will enrich the liquid stream-entering zone III with the less retained component and 

raffinate product quality will improve with the aid of zone III. 

The total length of the separation column is comparable between 7-column SMB, 7-

column Varicol and 8-column SMB as depicted in Figure 5.13(b). Increased desorbent 

consumption rate as in Figure 5.13(c) is the outcome of enhanced quality of raffinate pro-

duct and to satisfy the extract purity requirement. The plot of constraint as depicted in 

Figure 5.13(f) points out that no feasible points are lost. The smaller Pareto size for 7-

column SMB in Figure 5.13(a) is due to the fact that each terminal point of the Pareto is 

dictated by purity constraint. The upper edge is governed by extract purity constraint 

[PurE ≥ 95%, see Figure 5.13(f)] and the lower edge is controlled by raffinate purity 

constraint [PurR ≥ 90%]. 
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5.5.2.4. Case 6. Multi-objectives Optimization: Maximize extract purity and produc-

tivity 

(R)-1,1'-bi-2-naphtol is found useful mostly in polymeric application. Its derivative is 

used in tandem asymmetric reactions (Yu et al, 2000). Copolymer catalyst synthesized 

from (R)-1,1'-bi-2-naphtol or BINOL and 2,2'-bis(diphenylphosphino)-1,1'-binaphtyl or 

BINAP, either in individual or combination state, demonstrate outstanding 

stereoselectivity in asymmetric addition to aldehydes or in hydrogenation of ketones. 

Later, (R)-1,1'-bi-2-naphtol is used as the starting material to produce chiral polymer 

catalyst, poly(R)-binaphtol. Instead of merely giving high yields and selectivity, this new 

chiral catalyst can be recovered and reused without losing its enantioselectivity (de Vains, 

2001). 

The fixed and decision variables are almost similar to the previous case. Raffinate 

purity greater than 95% is employed as a constraint to maintain the recovery of the more 

retained component in the extract stream. Similar to case 5, there are only 3 sub-cases in 

this case as the decision variable Lcol, when used as decision variables, converges nearly 

to design length of 10.5 cm. The Pareto solution for 7-column SMB, 7-column Varicol 

and 8-column SMB is given in Figure 5.14(a) with similar trend as before in which the 8-

column SMB was found to be more superior to 7-column Varicol and 7-column SMB.  

The reference value for 8-column SMB experimental result reported by Pais et 

al.(1997a), is achieved by using 7-column Varicol with B/D/I/G (1.5/1.5/2.75/1.25 in 

average) column configuration for the upper part of the Pareto (black square, Figure 

5.14a) while D/F/K/I (1.75/2/2.25/1) for the lower part (grey square). The 7-column SMB 

is given by G configuration (2/1/3/1) and 8-column SMB by P (2/2/2/2).  It is obvious that  
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Figure 5.14 Multi-objectives optimization results (case 6) for SMB and Varicol 
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zone I and III are critical for extract product and this is understandable considering the 

roles of zone I and III. The role of zone III is to ensure adsorption of the more retained 

component onto the adsorbent while zone I is responsible for its desorption from the 

adsorbent. The two column configuration that constitute 7-column Varicol Pareto Set 

exhibit similar trend as it starts with allowing more column in zone III (to capture the 

more retained component in the adsorbent) and followed by giving extra column in zone I 

in the subsequent switching (to wash off the more retained component from the 

adsorbent).  

Comparison between Figure 5.13 and Figure 5.14 implies that raffinate product is 

easier to obtain than the extract product due to the narrow distance between each Pareto in 

Figure 5.13(a) relative to the Pareto in Figure 5.14(a). Besides, slight increase of decision 

variables in Figure 5.13(b)-(e) is able to improve the objective function significantly even 

under extract purity requirement greater than 95%. The improved objective function in 

Figure 5.14(a), however, is achieved with decision variables close to the experimental 

value[Figure 5.14(b)-(e)] 

 

5.5.2.5. Case 7. Multi-objectives Optimization: Maximize feed and minimize desor-

bent rate 

One important case in any enantioseparation is the simultaneous maximization of 

throughput (capacity) and minimization of desorbent consumption. In general, desorbent 

consumption will increase as the feed load increases as the separation task becomes more 

difficult. 
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Figure 5.15 Multi-objectives optimization results (case 7) for SMB and Varicol 
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column length. Purity constraint is chosen to be greater than 95% to accommodate 

commercial market requirement.  

The column configuration for 7-column SMB is I (2/2/2/1) while for 8-column SMB 

is Q (2/2/3/1). The sequence for 7-column Varicol is B/C/C/D, which is equal to 

1/1.75/2.5/1.75 in terms of average column within a switching interval. It clearly shows 

that more columns are needed in the feed zone as no separation occurs during the first 

sub-switching interval. When sufficient amount of feed is present in the system, 

separation is needed straight away, therefore more column are required in zone II rather 

than in zone III. The number of columns in zone III is relaxed to allow enough time for 

separation to take place but it is still important as zone II and zone III are responsible for 

separation in SMB. Zone IV, whose role is to prevent raffinate product from entering zone 

I, become less important at the end of the interval as most of the components have been 

separated in the first 3 sub-switching and the sequence repeated.  

Pareto set in Figure 5.15(a) shows that 7-column SMB and Varicol are able to tolerate 

feed load up to 4.8 and 5.15 ml/min while 8-column SMB feed limit stands at 5.6 ml/min. 

Any attempt to extend feed flow rate below this limit result in contaminated extract 

product meaning extract purity constraint is violated. Switching time increases with feed 

flow rate as residence time should be increased when separation task become more 

difficult. Productivity of raffinate and extract will increase and this is marked by the 

increasing raffinate flow rate at higher feed loading. The decision variables in this case 

have arranged themselves in such a way to anticipate the increasing task of separation. 

 



Optimization Study of Continuous Chromatographic Separation of a Chiral Intermediate 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

173 

5.5.2.6. Case 8. Multi-objectives Optimization: Maximize raffinate and extract pro-

ductivity and minimize desorbent rate 

Three objectives optimization is formulated in view of economic consideration related 

to investment and operating cost involved in chiral separation process. One of the 

advantages of SMB chromatography over elution chromatography is the ability to achieve 

higher productivity at lower solvent consumption. The dilemma of high separation cost 

has motivated the needs of increasing throughput while simultaneously reducing operating 

cost as low as possible. Due to the way the original NSGA code has been written, the 

third objective function is considered by taking reciprocal value of desorbent flow rate 

because minimization is essentially the inverse of a maximization problem. 

The performance of 7-column and 8-column SMB, and 7-column Varicol is compared 

with an additional case where the length of the 8-column SMB was fixed as a measure of 

improvement that can be made over the existing design. Figure 5.16(a) and (b) show that 

treating column length (Lcol) as decision variable can improve the system performance. In 

contrast to case 4, the Pareto optimal solution for 7-column Varicol is not able to emulate 

the reference experimental value and this is expected because of introduction of the third 

objective function, which renders more restriction to the system. The decision variables of 

7-column Varicol in Figure 5.16(c) and (d) pointed out the ability of optimization package 

in finding optimal solutions even when discontinuity persists. The optimum column 

configurations are C (1/2/2/2) for 7-column SMB and Q (2/2/3/1) for 8-column SMB 

while the flexible 7-column Varicol is given by 2 sets of configuration: the upper part by 

I/F/I/I and the lower part by C/C/F/I. The column configurations follow the previous trend  
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Figure 5.16 Multi-objectives optimization results (case 8) for SMB and Varicol 
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noting that zone I is more likely for extract stream (upper configuration is equal to 

1.75/2.25/2/1) and zone IV is crucial for raffinate product (lower configuration correspond 

to 1.25/2.25/2/1.5). This is further justified as the optimal column configurations obtained 

are P (2/2/2/2) and M (1/3/2/2) for the upper and lower part of the Pareto for 8-column 

SMB when length was allowed to vary. Zone I clearly makes a great impact on the 

performance of extract product while zone IV is essentially responsible for the desorption 

of the desorbent from the adsorbent. In this way, zone IV allows more time for adsorption 

for the strongly adsorbed component into the pores of adsorbent, particularly when zone 

IV become zone III in the next switching cycle. We notice similar trends for column 

configuration in all optimization run: zone I and III control the separation for the extract 

product and zone II and IV are responsible for the raffinate product. 

 

5.5.2.7. Case 9. Multi-objectives Optimization: Maximize raffinate and extract pro-

ductivity and minimize column length 

The next case of three objectives optimization is another effort to facilitate SMB 

chromatography to become an ultimate separation method by minimizing the capital cost 

of separation. Length of column is directly related to the amount of chiral stationary phase 

(which is quite expensive) needed to perform the separation. Thus, the additional 

objective function is needed to compensate the increase in productivity and it is 

incorporated in the same way as in case 8.  

The optimum results for case 9 are well represented in Figure 5.17(a)-(g). As the 

length of column is used as one of the objective functions, there will be only 3 sub-cases 

in the problem formulation.  The bounds, constraints, fixed and decision variables for case  
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Figure 5.17 Multi-objectives optimization results (case 9) for SMB and Varicol 
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9 are essentially similar to those in case 8 while the modified additional objective function 

is augmented in the same fashion as before.  The optimal column configuration for the 

Pareto for 7-column SMB is given by F (1/3/2/1) while for 8-column SMB it is Q 

(2/2/3/1).  

Column configuration of C/D/F/J constitutes the upper part of Varicol Pareto while 

the lower part is governed by C/D/I/J. Overall, all the Pareto optimal solutions shown in 

Figure 5.17 are slightly inferior to those of Figure 5.12 but trade off is obtained for the 

length of column as portrayed in Figure 5.17(b) where no single optimum length higher 

than the experimental length is used.  

Direct comparison between Figure 5.16(a) and 5.17(a) indicates that both Pareto are 

marginally equal and it implies two analogous consequences: lower desorbent flow rate is 

required for longer column while higher desorbent flow rate is needed if the columns are 

shorter. The decision maker reserves full right to decide which is more economically 

viable, saving fixed cost by using smaller amount of chiral stationary phase or lowering 

operating cost by using less desorbent.  

Chiral separation process by moving bed chromatography becomes more 

economically attractive with the information presented in case 8 and case 9 thus offering 

more challenges to kick off new dimension in both designing more competitive separation 

process as well as establishing universal recognition. 

 

5.6. Complete Separation Region 

An attempt to use triangle theory with linear adsorption isotherm and ideal model has 

been done for the separation of 1,1’-bi-2-naphtol using 4-column SMB by Lai and Loh 
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(2002). The points in complete separate region were utilized to run SMB experiment and 

to predict the good separation region under non-linear equilibrium and mass transfer 

effects. Triangle theory is also used in this study to verify the optimization result under 

non-linear equilibrium with linear mass transfer approximation for case 3 (8-column 

SMB, fixed column length). 

 
 

 

 

 

 

 

 
Figure 5.18 Plot of binary separation plane for optimization case 3 

 
 

Figure 5.18 demonstrates agreement with the triangle theory for binary separation in 

which the pure separation region (purity requirement greater than 97%) is in triangular 

form with optimum point is located at the vertex of the obtuse triangle. The experimental 

point is located in the pure raffinate region. The fact that optimum point should always be 

located at the vertex of the triangle is obvious as optimization in SMB system is actually a 

matter of flow rate regulation in each zone so as to attain counter current movement of the 

two separating species. 

The relative velocity of the species is calculated by virtue of the relative carrying 

capacity as defined by Petroulas et al. (1985) with all the required parameter in its 

calculation is tabulated in Table 5.10. It can be seen that both enantiomers move counter-
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currently in zone II, III and IV in which separation take place while both species travel 

with the liquid phase in zone I (σ>>1) in which column regeneration takes place. 

 
Table 5.10 Condition for counter-currency for case 3 in each SMB zone for 

enantioseparation of 1,1′-bi-2-naphtol racemate  
 

δ σ V Zone in 

SMB δS δR σS σR VS VR ∆V 

Zone I 4.035 5.595 0.510634 0.708054 1.041017 0.474596 0.566421 

Zone II 4.035 5.595 0.824862 1.143768 0.250317 -0.122229 0.372546 

Zone III 4.035 5.595 0.74752 1.036524 0.450776 -0.053733 0.504509 

Zone IV 4.035 5.595 0.894959 1.240965 0.145745 -0.202598 0.348343 

 
 

The component, however, is not supposed to move counter-currently in zone IV as 

both components must travel with the solid phase due to desorbent regeneration. The 

counter-currency in this case emerged due to the lack of freedom in choosing the flow rate 

in zone IV. The flow rate in zone IV is related to the desorbent flow rate and the flow rate 

in zone I. This means better separation is possible if QI is treated as decision variables in 

case 3 but it is fixed in this particular case due to pressure drop constraint.  

 
 

 

 

 

 

 
 
 

Figure 5.19 Plot of binary separation plane under various purity constraints 
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When purity constraint is made more stringent, the triangle region shrinks but its 

shape does not change as can be seen in Figure 5.19. It indicates that there exist numerous 

operating conditions to operate SMB that satisfy lower purity requirement. The optimal 

point should also move from one vertex to another as the triangle shrinks for more 

stringent separation. 

 
 

 

 

 

 

 

 

Figure 5.20 Plot of m flow rate parameter for all points in Pareto case 3 
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case only slightly increases as shown in Figure 5.11(e). It means solid phase dominates 

the separation in zone I while the liquid phase controls it in zone II and zone III.  

The overall phenomenon in each zone in SMB is similar, high purity can be achieved 

by maximizing the contact between liquid and solid phase. It has been mentioned earlier 

that purity and productivity contradict each other thus raffinate flow rate will decrease to 

compensate the increase in raffinate purity. This explains the increase of m4 as the flow 

rate in zone IV will be the difference between flow rate in zone III and raffinate flow rate. 

At high raffinate purity, the raffinate flow rate decreases drastically thereby the increase 

of m4 is more apparent than that of low purity. QIV can also be defined as the difference 

between flow rate in zone I, QI and desorbent consumption, QD but since QI is fixed and 

QD slightly scattered, it can be concluded that m4 is not governed by the latter. Flow rate 

parameter, as depicted in Figure 5.20, serves as a good tool to understand the phenomenon 

inside the moving Bed system. 

 

5.7. The Effect of Flow Rate in Zone 1 (Q1) on Countercurrent Separation 

It has been discussed in the previous section that better separation is possible when 

both species travel countercurrently only in zone II and III. Specifically, both components 

should travel with the mobile phase in zone I to ensure perfect regeneration of the 

adsorbent from the more retained component because zone I will become zone IV in the 

subsequent switching. Likewise, they are preferred to travel with the stationary phase in 

zone IV for complete regeneration of the mobile phase from the less retained component.  

Complete regeneration in zone IV is not attained for optimum results in case 3 (See 

Table 5.10) thus it is desired to reformulate optimization case 3 by treating Q1 as decision 
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variable. The concept illustrated in this section is designated only for SMB system. The 

upper bound for this variable is selected so as to maintain column pressure drop still 

below the tolerable limit. All setting for other variables are kept similar to its original 

value in case 3 in which column length is not allowed to vary for the sake of fair 

comparison. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21 The effect of Q1 on optimum points in case 3 
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of extract stream for the new Pareto is somewhat smaller than the old one due to pressure 

drop constraint (direct impact on upper and lower bound of Q1). 

Despite the unique shape of the new Pareto for variable Q1, it can be seen from Figure 

5.21 that treating Q1 as decision variable can bring about considerable improvement. 

Profile of flow rate in zone I (Q1) is given in Figure 5.22. It can be seen that Q1 has a 

slight declining trend with increasing raffinate purity. From the mass balance at the inlet 

of zone I, this is plausible because it implies that Q4 is decreasing at constant desorbent 

rate as shown in Figure 5.21(b). Both components must travel with the solid phase thus 

internal flow rate in zone IV should be reduced according to eq. (4.18) described 

previously.  

 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5.22 Profile of flow rate in zone I (Q1) vs raffinate purity  

 
 

The relative carrying capacity (σ) for a particular optimum point on the Pareto set for 

case 3 is given in Table 5.10 given previously. The details of calculation can be found in 

Appendix C. Although this point is one of the optimum points along the Pareto for case 3, 

it can be seen that task allocation is poor, as both component moves in the same direction 

in zone IV. 
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Similar calculations are done, for comparison, using an optimal point when Q1 is 

varied and is summarized in Table 5.11. The tabulated results show that each zone in 

SMB system has now performed its specific role. Counter-currency only takes place in 

zone II and zone III in which σ < 1 for the weakly adsorbed component and σ > 1 for the 

strongly adsorbed component. In this way, better separation can be obtained due to 

additional degree of freedom enacted to the system. 

 
Table 5.11 Condition for counter-currency for variable Q1 in each SMB zone for 

enantioseparation of 1,1′-bi-2-naphtol racemate  
 

δ σ V Zone in 

SMB δS δR σS σR VS VR ∆V 

Zone I 4.035 5.595 0.523053 0.725274 0.863662 0.379802 0.483860 

Zone II 4.035 5.595 0.82802 1.148147 0.196724 -0.129377 0.326100 

Zone III 4.035 5.595 0.739939 1.026012 0.332888 -0.025421 0.358309 

Zone IV 4.035 5.595 1.105089 1.532335 -0.090070 -0.348331 0.258261 
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Chapter 6 Conclusions and Recommendation 

 

6.1. Optimal Operation of SMB and Varicol Processes for Chiral Drug Separation 

First part of the thesis focuses on multi-objective optimization study for chiral drug 

separation. The work was initiated by modeling of published experimental study reported by 

Ludemann-Hombourger et al. (2002). This includes the determination of solid void fraction 

and theoretical number of plates for the separation of SB-553261, the development of 

breakthrough curves from single column experiment and numerical modeling of SMB and 

Varicol process. Moreover, the model was modified to describe 4-column Varicol, adapted 

from the concept of 3-zone SMB. 

The next phase of the work consisted of a sensitivity study using the experimentally 

verified simulation model. At this phase, it was found that many process parameters in SMB 

separation process contradict various performance indexes, which necessitates an 

optimization study for this system. This study also revealed that experimental results reported 

by Ludemann-Hombourger et al. (2002) is not too far from the optimum solution, but the 

complex interplay between decision variables was not studied thoroughly. 

Single objective optimization was subsequently carried out to test the optimization 

algorithm based on genetic algorithm. An adaptation of genetic algorithm, namely, non-

dominated sorting genetic algorithm with jumping genes, was used in obtaining Pareto 

optimal solutions. Several numerical parameters that include selection of random seed, 

mutation and crossover probability, penalty parameter, etc were involved. It was found that 

optimum results are much better for all sets of experimental results reported by Ludemann-

Hombourger et al. (2002). In two objectives functions, i.e. simultaneous maximization of 
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feed flow rate and minimization of desorbent flow rate, it was found that approximately 55% 

and 38% improvement can be achieved for the first and second objective function 

respectively. The next phase of the work was related to industrial design issues. Most 

industrial application involves several objectives and mostly these objectives are conflicting 

to each other. The solutions of these optimization problems are well summarized in all the 

Pareto Set obtained for different optimization formulations in chapter 4. Two objectives 

functions explored in this study include simultaneous maximization of raffinate and extract 

productivity, maximization of raffinate purity and productivity, maximization of extract 

purity and productivity, and finally the most prominent objectives in chiral drug industries: 

maximization of feed loading (capacity) and minimization of desorbent requirement. Three 

objectives optimization studies outlined simultaneous maximization of raffinate and extract 

productivity coupled with minimization of column length and/or minimization of desorbent 

requirement. 

It was found that zone II and zone III were important to improve raffinate product quality 

(purity and productivity) while zone I and zone II were critical for extract product quality. No 

trend can be observed for the maximization of feed flow rate and minimization of desorbent 

rate except that that feed flow rate is linearly proportional to desorbent requirement, meaning 

more desorbent is required at higher feed loading capacity. In all optimization cases that 

involve simultaneous maximization of raffinate and extract productivity (including three 

objective optimization), it was found that zones I and II are critical. 

The ranges for optimum decision variables are found to be away from those predicted by 

simple sensitivity study, indicating that multi-objectives optimization study is required. It 

was found that Varicol outperforms SMB process in all cases while enhanced performance is 
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achieved at relatively smaller number of columns. Extract flow rate is allowed to change in 

all cases of optimization according to mass balance constraint. Flow rate in zone I is fixed to 

a certain value in all cases of optimization to ensure pressure drop on the system is not 

excessive. 

Finally, the optimum results have been examined for agreement with triangle theory by 

plotting in m2-m3 operation plane and all internal phenomena in each zone of the system has 

been explained using triangle theory. Moreover, further benchmarking on the effect of sub-

interval and discrete feed operation has been applied to SMB and Varicol system. The 

concept mimics gradient operation in SMB operation and works by utilizing the additional 

degrees of freedom introduced to the system. Enantioseparation employing SMB technology 

may mostly be found at the preparative scale for the time being, due to the nature of chiral 

drug as small volume expensive material, but scale-up procedure is reported elsewhere 

(Zenoni et al., 2002). 

 

6.2. Optimization Study of Continuous Chromatographic Separation of a Chiral 

Intermediate in SMB and Varicol System 

The trend of chiral chemistry would be heading to catalytic asymmetric synthesis, which 

involves the use of chiral catalysts to accelerate the production of single enantiomer 

compounds for pharmaceutical use as well as wide ranges of other applications. This 

technique has been devised by three scientists: Monsanto retiree William S. Knowles and 

Professor Ryoji Noyori of Nagoya University in Japan for their work on catalytic asymmetric 

hydrogenation reactions, and Professor K. Barry Sharpless of Scripps Research Institute on 

catalytic asymmetric oxidations. 



Conclusions and Recommendation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

 188 

In general, there are two ways of producing pure enantiomeric from of a compound: 

conventional chemical synthesis and asymmetric synthesis. Both approaches have their own 

advantages and disadvantages. Conventional synthesis might end up with chirality element in 

the molecule but it is economically interesting. The method is suitable for compound whose 

counter species is not harmful or inactive. Asymmetric synthesis, on the other hand, can 

selectively produce certain species at high purity with the virtue of a chiral selector, which is 

very expensive. This method is less effective when both enantiomers of the compound are of 

equal importance.  

In a bid to cover the increasing demand of (R)- and (S)-1,1'-bi-2-naphthol, SMB 

chromatography method seems promising due to ease of operation and high purity separation. 

The success of numerical model to quantify internal concentration profiles is also an 

encouraging factor to eliminate the hectic experimental work. SMB based model is used in 

all optimization work in this study which gives better agreement with experimental results 

compared to TMB based model (Pais et al. 1997a, b, 1998). Sensitivity study was also 

performed for this system with similar results as in the previous study with chiral drug 

separation but this time number of columns was also explored as decision variable. 

Single objective function and multi-objectives function optimization were carried out to 

determine how much the process performance could be improved for the existing system. 

The optimization work on this topic was rather difficult as it involves large number of 

columns. Approximately 20 and 35 column configurations were possible for 7-column and 8-

column configurations, and therefore, optimization work was quite tedious to ensure global 

optimality of all the solutions in Pareto Set. Optimum condition for maximization of feed 

flow rate was achieved by reducing internal liquid flow rates and pseudo solid phase velocity. 
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This is obvious, as residence time must be increased to enhance countercurrency. For 

minimization of desorbent flow rate, optimum condition required an increase in internal 

liquid flow rate, at almost fixed solid flow rate, to ensure sufficient adsorption-desorption 

mechanism at the condition of minimum solvent present in the system. The switching time 

for Varicol was smaller in magnitude than SMB due to more flexibility endowed by variation 

of solid velocity from one cycle of operation to another. 

A distinct phenomenon noticed from multi-objectives optimization study was the effect 

of column configurations to the objective functions, which was not apparent in sensitivity 

study. Both purity and productivity hardly showed any changes when the number of columns 

of each zone was varied at fixed values of other operating parameters. Improvement could be 

attained, even though not as extreme as the previous case in chiral drug separation, by 

appropriate selection of column configurations. These optimum configurations, however, 

depended on the objective function being studied. There were 5 cases of two objective 

functions and 2 cases of three objective functions explored in this work. It was observed that 

zones II and IV were responsible for raffinate stream quality, while zones I and III were 

crucial for improving extract stream quality. Another plausible conclusion was, when 

comparing case 5 and case 6 in Chapter 5, that raffinate product was easier to obtain because 

slight disturbances in decision variables was able to drastically improve the objective 

function even under strict extract purity requirement. 

For optimization involving three objectives, it was found that the Pareto Sets for two 

cases, maximization of raffinate and extract productivity and minimization of solid and/or 

solvent requirement, evaluated in this work are marginally equal. This phenomena lead to the 

following implication: little amount of solid phase demands more desorbent to achieve 



Conclusions and Recommendation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 

 190 

optimal separation and vice versa. Optimum column configurations suggested in these two 

cases are also in agreement with those concluded previously. These pedestal results are 

useful as this information allow to understand in designing the operation as well as design of 

SMB and Varicol process and allows the decision maker to decide on the favorable operating 

condition which often depends on time, location and market conditions. Higher order multi-

objectives optimization study i.e. higher than three objectives is felt unnecessary it may 

introduce too many conflicts among the objectives and thus is not practical in real life. 

 

6.3. Recommendation for Future Work 

The current work is limited to the merit of SMB and Varicol process for binary 

separation of chiral compounds, and therefore, it would be valuable if the scope for future 

work is extended to reactive system such as esterification, hydrogenation, etherification or 

isomerization reaction. This may exert more operating variables, e.g. feed concentration/ratio, 

as changes/disturbances applied will shift the equilibrium of a reversible reaction. Numerical 

model has also been established and verified for agreement with experimental studies for the 

production of bisphenol A, a resin intermediate, from phenol and acetone, and the synthesis 

of β-phenethyl acetate, used in fragrance industry. Kawase et al., 1999 reported experimental 

studies using 3-zone SMB unit without recycle for the production of bisphenol and 

experimental studies on 4-zone SMB unit with recycle for the synthesis of β-phenethyl 

acetate from β-phenethyl alcohol and acetic acid. Both products result from the reversible 

reactions and follow non-linear adsorption behavior on the solid phase, which has dual role, 

as adsorbent and catalyst. Optimization work on these reactive systems is expected to give 
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even more interesting results due to more complex conflicting behavior and process 

constraint. 

Reactive system such as the organic synthesis of bisphenol A, entails many disturbances 

during operation. Problems like deteriorating resin activity (by adsorption of water), 

accumulation of by-product and inconsistent raw material quality might arise during 

operation. Automatic control is essential for implementation of this kind of systems. A static 

program based on Microsoft Visual Basic® has been developed to simulate the development 

of SMB internal concentration profile in the absence of disturbances. Further work, however, 

is still needed to convert this program to allow on-line simulation and optimization before 

providing output/response to the controller. 

The future trend of SMB operation is in implementation of gradient operation which has 

been proven to allow both increased throughput, i.e. the volume of feed load per volume of 

adsorbent, as well as reduced desorbent consumption per feed volume. Hence, it is necessary 

to apply temperature gradient, particularly for reactive systems in which physico-chemical 

data for each compound such as in the esterification of β-phenethyl acetate is available in 

open literature (Yadav and Mehta, 1994). Examples of gradient operation reported in the 

literature include temperature gradient in sugar separation (Ching and Ruthven, 1986), 

pressure gradient in supercritical fluid chromatography (Mazzotti et al., 1997c), solvent 

gradients for enantio-separation of ionone (Abel et al., 2002) and salt gradient in protein 

separation (Houwing et al., 2002b).  
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APPENDIX A. Mixing Cell Model 
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where  
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for component B 
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Then taking the derivative of eq.(A.5), 
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Substituting this derivative to eq.(A.4), 
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Rearranging, 
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Similarly for component A, we first take the derivative of eq.(A.3) as follows: 
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Substituting this derivative to eq.(A.2), we obtain 
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Rearranging,
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Boundary Condition, 

At the eluent port, 

                                                                                            
( )

1

)(
,1)(

, Q
CQQ

C
N
lastiEN

firsti

−
=                                                          ……….(A.12) 

At the feed port, 
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APPENDIX B.  Calculation of CSP usage & void fraction in SB-553261 separation. 

 

Table B.1 Experimental Data on Productivity and Desorbent Consumption 
 

 Productivity 
(kgprod/kgCSP/day) 

Eluent Cons. 
(m3

desorbent/kgprod) FeedQ /Q  

6-column SMB 
1/2/2/1 

0.604 0.922 0.0369 

6-column VARICOL 
<1>/<2.25>/<2>/<0.75> 

0.664 0.888 0.0409 

5-column VARICOL 
<0.95>/<1.85>/<1.5>/<0.7> 

0.725 1.050 0.0297 

4-column VARICOL 
<0.85>/<1.5>/<1.15./<0.5> 

0.906 1.392 0.0233 

Adapted from Ludemann-Hombouger et al (2002)  
 

6 column SMB (Eluent Flow Rate : 8.55 ml/min) 

Product Flow Rate = 
min

102733.910
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min
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6
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prod
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ml
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CSP

CSP

CSP

CSP
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prod
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⋅ −

 

 

6 column VARICOL (Eluent Flow Rate : 9.05 ml/min) 

Product Flow Rate = 
min

100191.110
888.0

min
05.9

5
3

6
3

prod

prod

kg
ml
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kg
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ml
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CSP = 
column
g
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5 column VARICOL (Eluent Flow Rate : 9.78 ml/min) 

Product Flow Rate = 
min
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4 column VARICOL (Eluent Flow Rate : 13.06 ml/min) 

Product Flow Rate = 
min

103822.910
392.1

min
06.13

6
3

6
3

prod

prod

kg
ml
m

kg
m

ml
−− ⋅=×  

CSP = 
column
g

hrday
hr

kg
g

column
daykg

kg

kg
CSP

CSP

CSP

CSP

prod

prod

728.3min60241000
4906.0

min
103822.9 6

=×××
×

⋅ −

 

It is assumed that the amount of CSP used in this separation is about 3.7 g CSP per 

column and this value is later used in the calculation of CSP void fraction according to the 

following relation (ρ = 1g/cm3): 

g CSP per column = colV)1( ε−  

Since Vcol = 6.48 cm3 then we obtain ε = 0.43 
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APPENDIX C. Calculation of σ and Vi 

 

As defined by Petroulas et al. (1985) σ, the relative carrying capacity is defined as 

follows:                                    iavgii CK=γ  and 
g

s
ii u
u

δσ =       

with ii NK
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εδ −

=
1  and  
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+

+
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at low concentration (γi << 1),              
)1(
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i
gi uV

δ
σ

+
−

=  

 

C.1. Calculation of σ and Vi used in Chapter 3 

Data : ε = 0.43, Lc = 0.081 m, A = 7.854 x 10-5 m2, NKA = 1.644, NKB = 2.679, KA = 

0.0338 and KB = 0.1696 
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The effect of switching time 
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C.1.3. ts = 1.2 min (Ci avg = 0.21785 g/l) 

Zone II,  QII = 9.9 cm3/min, ugII = 12.60504 cm/min 
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C.2. Calculation of σ and Vi used in Chapter 4 

Data: ε = 0.4, Lc = 10.5 m, A = 5.3093 cm2, NS = 80.0595, NR = 80.0429, KA = 0.0336 

and KB = 0.0466  
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C.2.1. Zone I 

QI = 56.83 cm3/min, ug1 = 10.703859 cm/min 
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C.2.3. Zone III 

QIII = 40.031195 cm3/min, ug3 = 7.539825 cm/min 

210173328.68373.10336.0 −×=⋅=Sγ (~0) and   724919.0

min
849563.18

min
386472.3

035.4 ==
cm

cm

Sσ  

min
411929.0

)035.41(
)724919.01(539825.7 cmVS =

+
−

=  

210561818.88373.10466.0 −×=⋅=Rγ (~0) and  005186.1

min
849563.18

min
386472.3

595.5 ==
cm

cm

Rσ  

min
005929.0

)595.51(
)005186.11(539825.7 cmVR −=

+
−

=  

min
417858.0 cmVVV RS =−=∆  

 

C.2.4. Zone IV 
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APPENDIX D. Equilibrium Dispersive Model  
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kiC  :  concentration in the mobile phase for component I at column k and Nth switching 
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,
N
kiq  :  equilibrium concentration in the stationary phase for component i at column k 

and Nth switching 
 ε     :  porosity of the column packing 

LD  :  axial dispersion coefficient  

   v         :  mobile phase linear velocity (
A
Qi
ε

) 

 
Langmuir adsorption isotherm, 

[ ])(
,

)(
,

)(
, N

ki
N
kii

N
ki qqk
dt
dq

−= ∗     with    )(
,

')(
,

'

)(
,

'

)(
,

)(
,

)(
,)(

, 11 N
kjj

N
kii

N
kii

N
kjj

N
kii

N
kiiN

ki CKCK
CNK

CKCK
CNK

q
++

+
++

=∗  

Using Finite Difference Approximation, we obtain 
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APPENDIX E.  

Elitist Non-dominated Sorting Genetic Algorithm with Jumping Genes 

 

GA is a search technique developed by Holland (1975) that mimics the process of 

natural selection and natural genetics. In this algorithm, a set of decision variables are first 

coded in the form of a set of randomly generated chromosomes, thereby creating a 

‘population (gene pool)’. A model of the process is then used to provide values of the 

objective function (reflects its ‘fitness’ value) for each chromosome. The Darwinian 

principle of ‘survival of the fittest’ is used to generate a new and improved gene pool 

(new generation). This is done by preparing a ‘mating pool’, comprising of copies of 

chromosomes, the number of copies of any chromosome being proportional to its fitness 

(Darwin's principle). Pairs of chromosomes are then selected randomly, and pairs of 

daughter chromosomes generated using three operations (reproduction, crossover and 

mutation) similar to those in genetic reproduction. The gene pool evolves, with the fitness 

improving over the generations.  

 

In order to handle multiple objective functions and to find Pareto-optimal solutions, 

the simple genetic algorithm (SGA) has been modified to Non-dominated Sorting Genetic 

Algorithm I (NSGA-I), which differs from SGA only in the way the selection operator 

works (Deb, 2001). NSGA-I uses a ranking selection method to emphasize the good 

points and a niche method to create diversity in the population without losing a stable sub-

population of good points. In the new procedure, several groups of non-dominated 

chromosomes from among all the members of the population at any generation are 
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identified. To distribute (spread out) the points evenly, the fitness value is assigned 

according to a sharing procedure. The population is found to converge rapidly to the 

Pareto set.  

 

However, experience with NSGA-I indicates that this algorithm has some 

disadvantages. The sharing function used to evaluate niche count of any chromosome 

requires the values of two parameters, which are difficult to assign a-priori. In addition, 

NSGA-I does not use any elite-preserving operator and so, good parents may get lost. Deb 

et al. (2002) have recently developed an elitist non-dominated sorting genetic algorithm 

(NSGA-II) to overcome these limitations. In NSGA-II, a different sorting and sharing 

method is used, which reduces the numerical complexity to 2
PMN  operations in contrast 

to MNp
3 operations required for NSGA-I, where M is the number of objective functions, 

and Np is the number of chromosomes in the population.  

 

Kasat et al. (2002) recently introduced a modified mutation operator, borrowing from 

the concept of jumping genes (JG) in natural genetics. This algorithm is being called as 

NSGA-II-JG. This is a macro-macro mutation, and counteracts the decrease in the 

diversity created by elitism. The jumping genes operation is carried out after crossover 

and normal mutation in NSGA-II. A part of the binary strings in the selected 

chromosomes is replaced with a newly (randomly) generated string of the same length. 

Only a single jumping gene was assumed to replace part of any selected chromosome. 

This helps save considerable amounts of the computation time (at times, gives correct 

solutions, which are missed by other algorithms) and is important for compute-intense 
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multiobjective problems like that of the SMB and Varicol process. Nandasana et al. 

(2003) has reviewed recently the applications of different adaptations of NSGA in 

chemical engineering.  


