12 research outputs found

    Higher-order approximation of cubic–quintic duffing model

    Get PDF
    We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillators with cubic–quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution which makes it a unique solution. It is demonstrated that this method works very well for the whole range of parameters in the case of the cubic-quintic oscillator, and excellent agreement of the approximate frequencies with the exact one has been observed and discussed. Moreover, it is not limited to the small parameter such as in the classical perturbation method. Interestingly, This study revealed that the relative error percentage in the second-order approximate analytical period is less than 0.042% for the whole parameter values. In addition, we compared this analytical solution with the Newton– Harmonic Balancing Approach. Results indicate that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems. Utter simplicity of the solution procedure confirms that this method can be easily extended to other kinds of nonlinear evolution equations

    Higher-order approximation of cubic–quintic duffing model

    Get PDF
    We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillators with cubic–quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution which makes it a unique solution. It is demonstrated that this method works very well for the whole range of parameters in the case of the cubic-quintic oscillator, and excellent agreement of the approximate frequencies with the exact one has been observed and discussed. Moreover, it is not limited to the small parameter such as in the classical perturbation method. Interestingly, This study revealed that the relative error percentage in the second-order approximate analytical period is less than 0.042% for the whole parameter values. In addition, we compared this analytical solution with the Newton– Harmonic Balancing Approach. Results indicate that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems. Utter simplicity of the solution procedure confirms that this method can be easily extended to other kinds of nonlinear evolution equations

    Nonlinear free vibration analysis of the functionally graded beams

    Get PDF
    Nonlinear natural oscillations of beams made from functionally graded material (FGM) are studied in this paper. The equation of motion is derived according to the EulerBernoulli beam theory and von Karman geometric nonlinearity. Subsequently, Galerkin’s solution technique is applied to obtain the corresponding ordinary differential equation (ODE) for the FGM beam. This equation represents a kind of a nonlinear ODE containing quadratic and cubic nonlinear terms. This nonlinear equation is then solved by means of three efficient approaches. Homotopy perturbation method is applied at the first stage and the corresponding frequency-amplitude relationship is obtained. Frequency-amplitude formulation and Harmonic balance method are then employed and the consequent frequency responses are determined. In addition, Parameter Expansion Method is utilized for evaluating the nonlinear vibration of the system. A parametric study is then conducted to evaluate the influence of the geometrical and mechanical properties of the FGM beam on its frequency responses. Different types of material properties and boundary conditions are taken into account and frequency responses of the system are evaluated for different gradient indexes. The frequency ratio (nonlinear to linear natural frequency) is obtained in terms of the initial amplitude and compared for different materials and end conditions

    Higher accuracy approximate solution for oscillations of a mass attached to a stretched elastic wire by rational harmonic balance method

    Get PDF
    A second-order modified rational harmonic balance method is used for approximately solve the nonlinear differential equation that governs the oscillations of a system typified as a mass attached to a stretched elastic wire for which the restoring force for this oscillator has an irrational term with a parameter lambda that characterizes the system. A frequency-amplitude relation is constructed and this frequency is valid for the complete range of oscillation amplitudes A and parameter lambda, and excellent agreement of the approximate frequencies with the exact one is demonstrated and discussed. The discrepancy between the approximate frequency and the exact one never exceed 0.12%. This error corresponds to lambda = 1. while for lambda < 1 the relative error is much lower. For example, its value is lower than 0.017% for lambda = 0.5

    Analytical study on the non-linear vibration of Euler-Bernoulli beams

    Get PDF
    In this study, He’s Variational Approach Method (VAM) is used to obtain an accurate analytical solution for the nonlinear vibrations of Euler-Bernoulli beams subjected to axial loads. It is demonstrated that the method works very well for the whole range of initial amplitudes and does not need small perturbation. It is sufficiently accurate in the case of both linear and nonlinear physics and engineering problems. Finally, the accuracy of the solution obtained with the approximate VAM method is shown graphically and compared with that of the numerical solution

    An analytical technique to obtain higher-order approximate periods for nonlinear oscillator

    Get PDF
    ABSTRACT: This paper presents simulation results of the influence of wide range modulation index values ( ) in carrier-based PWM strategy for application in generating the stepped waveform. The waveform is tested for application in single-phase half-bridge modular multilevel converters (MMCs) topology. The results presented in this paper include a variation of the fundamental component (50 Hz) in the voltage output.  It also studies total harmonic distortion of the output voltage (THDv) and the output current (THDi) when the modulation index is changed over the linear-modulation region, 0 < < 1. It also explores the effect of a modulation index greater than 1. Moreover, different output voltage shapes, as a consequence of varied on MMCs, are also illustrated for showing the effect of varying the value of on sub-module of MMCs. ABSTRAK: Penulisan ini berkenan simulasi pengaruh pelbagai nilai indeks modulasi     ( ) dalam strategi PWM berasaskan aplikasi dalam menghasilkan bentuk gelombang yang bertingkat. Bentuk gelombang ini diuji untuk aplikasi dalam topologi MMCs. Penilaian dan hasil dari artikle ini termasuk variasi komponen asas (50 Hz) dalam voltan keluar. Ia juga meneliti jumlah penyelarasan harmonik voltan keluar (THDv) dan arus keluaran (THDi) apabila indeks modulasi ditukar dalam rantau modulasi linear, 0 < <1. Ia juga meneroka kesan indeks modulasi lebih daripada 1. Selain itu, bentuk voltan keluar yang berbeza sebagai akibat dari pelbagai  pada MMCs juga digambarkan untuk menunjukkan kesan berbeza-beza nilai  pada sub-modul MMCs

    Analytical solutions to nonlinear mechanical oscillation problems

    Get PDF
    In this paper the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method the dynamic behavior of oscillation systems can be easily approximated using He Chengtian’s interpolation. The comparison of the obtained results from Max-Min method with time marching solution and the results achieved from literature verifies its convenience and effectiveness. It is predictable that He's Max-Min Method will find wide application in various engineering problems as indicated in the following cases

    Periodic Solution of Nonlinear Conservative Systems

    Get PDF
    Conservative systems represent a large number of naturally occurring and artificially designed scientific and engineering systems. A key consideration in the theory and application of nonlinear conservative systems is the solution of the governing nonlinear ordinary differential equation. This chapter surveys the recent approximate analytical schemes for the periodic solution of nonlinear conservative systems and presents a recently proposed approximate analytical algorithm called continuous piecewise linearization method (CPLM). The advantage of the CPLM over other analytical schemes is that it combines simplicity and accuracy for strong nonlinear and large-amplitude oscillations irrespective of the complexity of the nonlinear restoring force. Hence, CPLM solutions for typical nonlinear Hamiltonian systems are presented and discussed. Also, the CPLM solution for an example of a non-Hamiltonian conservative oscillator was presented. The chapter is aimed at showcasing the potential and benefits of the CPLM as a reliable and easily implementable scheme for the periodic solution of conservative systems

    Free Vibration Analysis of Quintic Nonlinear Beams using Equivalent Linearization Method with a Weighted Averaging

    Get PDF
    In this paper, the equivalent linearization method with a weighted averaging proposed by Anh (2015) is applied to analyze the transverse vibration of quintic nonlinear Euler-Bernoulli beams subjected to axial loads. The proposed method does not require small parameter in the equation which is difficult to be found for nonlinear problems. The approximate solutions are harmonic oscillations, which are compared with the previous analytical solutions and the exact solutions. Comparisons show the accuracy of the present solutions. The impact of nonlinear terms on the dynamical behavior of beams and the effect of the initial amplitude on frequencies of beams are investigated. Furthermore, the effect of the axial force and the length of beams on frequencies are studied
    corecore