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Abstract. We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find 
improved approximate solutions for strongly nonlinear Duffing oscillators with cubic–quintic 
nonlinear restoring force. This approach yields simple linear algebraic equations instead of 
nonlinear algebraic equations without analytical solution which makes it a unique solution. It is 
demonstrated that this method works very well for the whole range of parameters in the case of 
the cubic-quintic oscillator, and excellent agreement of the approximate frequencies with the 
exact one has been observed and discussed. Moreover, it is not limited to the small parameter 
such as in the classical perturbation method. Interestingly, This study revealed that the relative 
error percentage in the second-order approximate analytical period is less than 0.042% for the 
whole parameter values. In addition, we compared this analytical solution with the Newton–
Harmonic Balancing Approach. Results indicate that this technique is very effective and 
convenient for solving conservative truly nonlinear oscillatory systems. Utter simplicity of the 
solution procedure confirms that this method can be easily extended to other kinds of nonlinear 
evolution equations. 
 

Keywords: Artificial Parameter Lindstedt-Poincaré Method (APL-PM); Nonlinear Cubic-
Quintic Oscillation, Duffing equation. 

 

1. Introduction 
 

Since most phenomena in our world are essentially nonlinear and are described by nonlinear 
equations, the study of nonlinear vibrations and oscillations is of crucial importance in all areas 
of engineering sciences. Therefore, the investigation of approximate solutions of nonlinear 
equations can play an important role in the study of nonlinear physical phenomena. Recently, 
many analytical and numerical methods have emerged for solving complicated nonlinear 
systems.  Some of these problems which are related to the cubic–quintic Duffing equation 
include: the nonlinear dynamics of a beam on an elastic substrate [1], the generalized 
Pochhammer–Chree (PC) equations [2], and the compound Korteweg–de Vries (KdV) equation 
[3] in nonlinear wave systems and the propagation of a short electromagnetic pulse in a 
nonlinear medium [4]. More recently, many effective methods [5–55] have been presented to 
solve these complicated nonlinear oscillation systems including: Homotopy Perturbation [6–
10], Parameter-Expanding (Expansion) [11], Multiple Scale [12–14], Harmonic Balance and 
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Duffing Harmonic Balance [15-18], Incremental Harmonic Balance [19, 20], Variational 
Iteration [21-22], Variational Approach [23–26], Max-Min [27, 28], Amplitude-Frequency 
Formulation [29], Linearized Perturbation [30], Energy Balance [25, 31–32], Power Series [33], 
homotopy analysis [34], Finite Element [35], Iteration Procedures [36, 37], Newton–Harmonic 
Balancing [38], Lindstedt– Poincaré [39, 40], Improved Lindstedt– Poincaré [41, 42], as well as 
other powerful methods which are available in the literature [43-52]. 

Ramos [53-55] proposed an Artificial Parameter Lindstedt–Poincaré Method (APL-PM), to 
obtain periodic solutions. Applications of this method can be found in [53-55] for solving 
nonlinear evolution equations arising in mathematical fields. 

The main motivation of the present work is to extend the APL-PM to a generalized cubic–
quintic Duffing with variable coefficients. 
 
2. Artificial Parameter Lindstedt– Poincaré Method 

Because of this fact that many important equations raised in practical engineering systems [1, 
4] are in the form of Duffing equation, it seems to be more fundamental to consider equations 
presented in the following general form: 

 
2

( ) 0
d u

f u
dt

+ =  (1) 

With initial conditions 

(0) , (0) 0
du

u A
dt

= =  (2) 

Where ( )f u is an odd function, and u and t  are generalized dimensionless displacement 
and time variables. By defining a new independent variable replacing the time variable, 
t θ ω= , Eq. (1) can be can be written as [53]: 

 

[ ]2 ( ) , (0) , (0) 0u u p u f u u A uω ′′ ′+ = − = =  (3) 

Eq. (3) coincides with Eq. (2) for 1p = . Applying Artificial Parameter Lindstedt–Poincaré 
procedure, the displacement and angular frequency can be expressed as Eqs. (5) and (6), 
respectively: 

 
2

0 1 2 ...,u u pu p u= + + +  (4) 

2 2 2 2
0 1 2 ... .p pω ω ω ω= + + +  (5) 

Substituting Eqs. (4) and (5) into Eq. (3) results in: 

2 2 2 2 2 2
0 0 0

1 1 1

2 2 2 2
0 0

1 1

i i i
i i i

i i i

i i
i i

i i

p u p u u p u

p u p u f u p u

ω ω
+∞ +∞ +∞

= = =

+∞ +∞

= =

    ′′ ′′+ + + +    
    

    
= + − +    

    

∑ ∑ ∑

∑ ∑
 (6) 

Expanding Eqs. (6), gives: 
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0 2
0 0 0: 0 ,p u uω′′ + =  (7) 

1 2
1 1 1 0 0 0 0 1: ( , , , , ) 0,p u u K u u uω ω ω′′ ′ ′′+ − =  (8) 

2 2
2 2 2: ( , , , ) 0, 0,1 , 0,1,2 ,i i i jp u u G u u u i jω ω′′ ′ ′′+ − = = =  (9) 

. 

. 

. 
 

Where 0 0 0( , , , )jK u u u ω′ ′′  and ( , , , )i i i jG u u u ω′ ′′  are linear differential term. These 
equations can be solved stage by stage. For the primary stage, the solution of Eq. (7) is: 

 

0 cos( )u A θ=  (10) 

By substituting Eq. (10) into Eq. (8): 

1 2
1 1 0 1: ( cos( ), sin( ), cos( ), , ) 0p u u K A A Aω θ θ θ ω ω′′+ − − − =  (11) 

Using Fourier expansion series, we can rewrite the right hand of Eq. (11) in the following 
form: 

 

( ) ( )

0 1

2 1 2 1 1
0 0

( cos( ), sin( ), cos( ), , )

cos 2 1 cos 2 1 cos( )n n
n n

K A A A

b n t b n t b t

θ θ θ ω ω

ω ω ω
∞ ∞

+ +
= =

− −

   = + = + ≈   ∑ ∑
  (12) 

By setting 1 0b =  and solving it, we can achieve0ω . The solution of Eq. (7) using 0ω  gives 

1u .  Then, solving Eq. (8) with 0ω  and 1u  yields 1ω . These stages can continue for better 
results.  

 
3. Implementation of APLPM to cubic–quintic Duffing model 

 
We governed the cubic–quintic Duffing model by a nonlinear differential equation with all 

real and positive coefficients. In this regard, the general form of cubic–quintic Duffing 
equation, Eq. (13), is considered. 

 

3 5 0, (0) , (0) 0
du du

u u u u A
dt dt

α β γ+ + + = = =  (13) 

In order to use the APLPM, by applying new variable, t θ ω= , we have: 

[ ]( )2 3 51 0, (0) , (0) 0u u p u u u u A uω α β γ′′ ′+ = − − − = = =  (14) 

Where u du dθ′′ = . Substituting Eqs. (5) and (6) into Eq. (14) and equating the terms with 
the identical powers ofp , yields:  

 
0

0 0: 0 ,p u u′′ + =  (15) 

2 2
1 5 31 1

1 1 0 0 0 0 0 02 2 2 2 2
0 0 0 0 0

: ,p u u u u u u u u
ω ω γ β α
ω ω ω ω ω

′′ ′′+ = − − − − − +  
   

(16) 
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2
2 2

4 2 2 2 22 2
0 1 1 0 0 1 1 0 2 01 1 1 1 1

12 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0

:

5 3
,

p u u

u u u u u u uu u u
u

γ ω β ω ωω ω α
ω ω ω ω ω ω ω ω

′′ +

′′′′
= − − + − − + − − −

 (17) 

. 

. 

. 
 

3.1.  First-order analytical approximation 

At this step, we solve Eq. (15) with the initial values (0)u A=  and (0) 0u′ = , which is 

leads to 0 cosu A θ= . Substituting 0u into Eq. (16) and simplifying the result, we obtain:  

( )3 3 5 5
1 1 2

0

1
cos cos cos cosu u A t A A Aα θ β θ γ θ

ω
′′+ = − + +  (18) 

It is possible to apply the following Fourier series expansion: 

( ) ( )1 1 1 2 1
1

cos cos 2 1n
n

u u A b b nθ θ
∞

+
=

′′  + = + + + ∑  (19) 

where 1b is as follow: 

( )
( )

2 3 3 5 5
1 2 0

0

2 4

2
0

4
. cos cos cos cos

18 24 15

24

b A A A d

A A A

π
ϕ α ϕ β ϕ γ ϕ ϕ

πω

β α γ

ω

 = + + 

+ +
= −

∫
 (20) 

Substituting Eq. (20) into Eq. (19) gives: 
 

( )

( )

2 2 4
0

1 1 2
0

2 1
1

24 18 24 15
cos

24

cos 2 1n
n

A A A A
u u

b n

ω β α γ
θ

ω

θ
∞

+
=

 − + +
 ′′+ =
 
 

 + + ∑

 (21) 

No secular term in 1u  requires that: 

( )2 2 4
0

2
0

24 18 24 15
0

24

A A A Aω β α γ

ω

− + +
=  (22) 

Solving Eq. (22), we obtain the first order approximate solution of Eq. (1) as follow: 
2 4

1 0

3 5
,

4 8th

A Aβ γ
ω ω α= = + +  (23) 

Where angular frequency 0ω  is the first-order analytical approximation. Eq. (23) gives the 
same frequency resulted in by the applications of the harmonic balance and the first order 
approximation of Newton–harmonic balancing approach [38]. Therefore, the corresponding 
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approximate analytical periodic solution 1u can then be achieved by substituting Eq. (23) into 
Eq. (16) as: 

 

( )
( )

3 2 2 2 2

1 2 4

sin cos 2 cos 6 7

6 8 6 5

A A A
u

A A

θ θ γ θ β γ

α β γ

+ +
= −

+ −
 (24) 

 

3.1. Second-order analytical approximation 

To determine the second-order approximate solution, it is necessary to substitute 

0 cosu A θ=  and Eqs. (23) and (24) into Eq. (17). So, we can obtain: 

( )
2 2 22 4

2 8 8 2 8 6 6 6 2 8 4

6 4 2 4 4 2 4 4 2 8 2
1

6 2 2 4 2 2 2 2 2 8 6
1

4 2

cos
,

6 6 8 5

80 cos 200 cos 288 cos 290 cos

132 cos 384 cos 144 cos 25 cos

228 cos 180 cos 384 cos 35 72

36 3

A
u u

A A

A A A A

A A A A

A A A A A

A

ψ θ

β α γ

ψ γ θ γ θ γ β θ γ θ

γ β θ γ ω θ β θ γ θ

γ β θ β θ βω θ γ γ β

β

′′ + =
+ +

= − − − + +

+ − + +

+ + − − +

− + 2
184α ω

 (25) 

Similar to the first step, using the Fourier series, the right hand of Eq. (25) will become as: 

( ) ( )

( )

( )

2 2
2 1 0

0

2 1
1

8 2 4 2 2
1

6 4 2 2 2
1 1

2 1
1

4
cos cos 2 1 cos cos

cos 2 1

65 36 1536
0.25 cos( )

96 960 1152

cos 2 1

n
n

n
n

n
n

A b n d

b n

A A
A

A A A

b n

π
ψ θ θ ψ ϕ ϕ θ

π

θ

γ β αω
θ

β γ γω ω β

θ

∞

+
=

∞

+
=

∞

+
=

  = + =    

 + + 

  + +
=    + + +   

 + + 

∑ ∫

∑

∑

 (26) 

From Eqs. (25) and (26) we can obtain the secular term as: 
 

8 2 4 2 2
1

6 4 2 2 2
1 1

65 36 1536
0.25

96 960 1152

A A
A

A A A

γ β αω

β γ γω ω β

  + +
   + + +   

 (27) 

No secular term in 2u  requires that: 
 

( )( )
( )

2 2 4 2 4 2 2

1 22 4

18 24 15 65 96 36

24 6 8 5

A A A A A

A A

β α γ γ β γ β
ω

β α γ

− − + + +
=

+ +
 (28) 
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From Eqs. (23 and 28) into Eq. (5), we can obtain the angular frequency 2thω as a more 
accurate and higher-order approximation compared to 0ω : 

 
2 2

2 0 1thω ω ω= +  (29) 

 
4. Illustrative examples of cubic–quintic Duffing oscillators 

 
In order to verify the effectiveness of the proposed higher-order analytical approximate 

method, the exact solutions and another approximate solution, namely, Newton–harmonic 
balancing approach is used to compute the angular frequencies of the cubic–quintic oscillator 
for different parameters. The various approximate solutions are presented in Figs. 1–4. Tables 
1–4 list the corresponding numerical results of angular frequencies. These figures and tables 
correspond to small and large amplitudes of oscillation for different parameters of α , β  and 
γ . For reference, the exact frequency eω  is obtained by direct integration of governing 
nonlinear differential Eq. (1) of the dynamical system. Imposing the initial conditions, the 
solution is [38]: 

 

( )
1

2 1 22 4
2 30

2 4

1

2 4

2 2 4

4

3 2 4

( ) ,
2 1 sin sin

,
2 3

3 2
,

6 3 2

2
.

6 3 2

e

k
A

k t k t dt

A A
k

A A
k

A A

A
k

A A

π

π
ω

β γ
α

β γ
α β γ

γ
α β γ

−=
+ +

= + +

+
=

+ +

=
+ +

∫

 (30) 

The approach presented herein is suitable for small as well as large amplitudes of oscillation. 
The various limiting approximations for A → ∞ can be derived based on Eqs. (23) and (29) as 
follows:  

 

1  1  ( ) ( )
1.05856

( ) ( )lim lim
th th

A Ae e

A T A

A T A

ω

ω→∞ →∞

= =  (31) 

2  2  ( ) ( )
0.99958

( ) ( )lim lim
th th

A Ae e

A T A

A T A

ω

ω→∞ →∞

= =  (32) 

From Eqs. (31) and (32), it is obvious that the relative errors of the first-order and second-
order approximations of APL-PM as compared to the exact solution are less than 5.86 % and 
0.042 %, respectively. It is noted that the maximum errors of the third-order approximation of 
Newton–harmonic balancing approach to the exact solution is 0.23. As it can be seen through 
Tables 1-4, the first-order solutions of two approximate methods are equal and relatively 
inaccurate. Although the third-order solution of NHBA is good, the second-order solution of 
APL-PM is excellent.  
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The frequency ratio and amplitude relationship of the cubic–quintic Duffing oscillator 

governed by 3 5 0u u u u′′ + + + =  is shown in Fig. 1. As observed, the second-order 

approximation of the proposed method has satisfactory agreement with the exact solution 

for [ ]0.1,1000A ∈ . Figs. (2-4) are also related to, 3 52 0u u u u′′ + + + = , 
3 55 3 0u u u u′′ + + + =  and 3 510 100 0u u u u′′ + + + = , respectively.  
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Fig. 1. Comparison of approximate frequencies with the exact frequency for cubic–quintic Duffing 

oscillator for 1α β γ= = =  
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Fig. 2. Comparison of approximate frequencies with exact frequency for the cubic–quintic Duffing 

oscillator for 2α = and 1β γ= =  
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Fig. 3. Comparison of approximate frequencies with the exact frequency for cubic–quintic Duffing 

oscillator for 5, 3α β= = and 1γ =  

 

0.999

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009

1.01

1.011

0.1 1 10 100 1000

Amplitude A

R
a
tio

Second-Second--order of NHBA

Third--order of NHBM

Second--order of APLPM

 
Fig. 4. Comparison of approximate frequencies with the exact frequency for cubic–quintic Duffing 

oscillator for 1, 10α β= = and 100γ =  

 
The proposed APL-PM for the second-order analytical approximation demonstrates 

noticeable improvement as compared with the lower-order analytical approximation. It is also 
observed that the method is effective for solving highly nonlinear oscillators with cubic and/or 
quintic nonlinearity and it has clear advantage over the classical perturbation method, which is 
restricted by the presence of a small parameter in the governing differential equation. 
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Table 1. Percentage of errors for comparison of approximate frequencies with exact frequency for 
1α β γ= = =  

 

 

 
 
Table 2. Percentage of errors for comparison of approximate frequencies with exact frequency for 

2α = and 1β γ= =  
 

 

 

 

5. Conclusion 
 
The Artificial Parameter Lindstedt–Poincaré method has been applied to obtain periodic 

solution for truly cubic-quintic nonlinear oscillator. The major conclusion is that this approach 
provides excellent approximation to the solution of these nonlinear systems with high accuracy 
for the whole solution domain. The analytical representations obtained using the Artificial 
Parameter Lindstedt–Poincaré technique give excellent approximations to the exact solutions 
for the whole range of amplitude values. 

These approximate solutions are better than the approximate solutions obtained using the 
Newton–harmonic balancing approach. For the second order approximation, the maximum 
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relative error of the analytical approximate frequency obtained using the APL–PM for the 
cubic-quintic oscillator is 0.04%, while the relative error is 1.08% when the second order 
approximation is considered for the Newton–harmonic balancing approach. An interesting 
feature considered in this paper is to show that the second order approximation result of APL–
PM is better than the third order approximation of Newton–harmonic balancing approach, 
which constitutes 0.23%.  

 
 

Table 3. Percentage of errors for comparison of approximate frequencies with exact frequency for 

5, 3α β= = and 1γ =  
 

 

 
 
Table 4. Percentage of errors for comparison of approximate frequencies with exact frequency for 

1, 10α β= = and 100γ =  
 

 

 
In general, the first-order periodic solution of APL–PM is generally acceptable as compared 

to the exact solution while the second-order periodic solution is in good and excellent 
agreement with the exact solution. In summary, proposed method is simple in its principle, and 
can be used to solve other conservative truly nonlinear oscillators with complex nonlinearities.  
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