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Abstract. In this study, He’s Variational Approach Method (VAM) is used to obtain an 
accurate analytical solution for the nonlinear vibrations of Euler-Bernoulli beams subjected to 
axial loads. It is demonstrated that the method works very well for the whole range of initial 
amplitudes and does not need small perturbation. It is sufficiently accurate in the case of both 
linear and nonlinear physics and engineering problems. Finally, the accuracy of the solution 
obtained with the approximate VAM method is shown graphically and compared with that of 
the numerical solution. 
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Introduction 
 

The investigation of beam vibrations is an important issue in mechanical and civil 
engineering. Linear and nonlinear partial differential equations in space and time are presented - 
the governing equation of the nonlinear vibration of beams in space and time. Finding exact 
solutions for nonlinear equations are very difficult, therefore many researchers have worked on 
the asymptotic methods for nonlinear equations. We can reduce some nonlinear equations to 
ordinary equations by using the Galerkin method and then apply the direct techniques to solve 
them such as perturbation methods in time domain. In the recent years, many approximate 
analytical methods have been proposed for studying nonlinear vibration equations of beams and 
shells such as Homotopy perturbation [1], energy balance [2-5], variational approach [6-7], 
Iteration perturbation method [8], max-min approach [9] and other analytical and numerical 
methods [10-17]. 

The vibration problems of uniform Euler- Bernoulli beams have been considered a lot in the 
last decades. Biondi and Caddemi [18] studied on the flexural stiffness and slope discontinuities 
for uniform Euler–Bernoulli beam and applied a close form solution for the governing equation. 
Lai et al. [19] considered the nonlinear vibration of Euler-Bernoulli beam with different 
supporting conditions by applying the Adomian decomposition method (ADM). Naguleswaran 
[20] developed the work on the changes of cross section of an Euler–Bernoulli beam resting on 
elastic end supports. Pirbodaghi et al. [21] used homotopy analysis method (HAM) for analyzing 
the free vibration of Euler–Bernoulli beam. They illustrated that the amplitude of the vibration 
has a great effect on the nonlinear frequency and buckling load of the beams. Liu et al. [22] 
applied He's variational iteration method to obtain an analytical solution for an Euler-Bernoulli 
beam with different supporting conditions. In this study, we have applied Variational Approach 
Method (VAM) to solve the nonlinear vibration of Euler-Bernoulli beams. The paper is 
organized as follows: 

In section 1 we consider the mathematical formulation of the problem. The basic idea of 
variational approach method is presented in section 2. Then the application of the method for 
solving the nonlinear governing equation is provided in section 3. To show the applicability and 
accuracy of the proposed method, some comparisons between analytical and numerical solutions 
are presented in section 4. Finally, we show that VAM can converge to a precise cyclic solution 
for high nonlinear systems. 
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Mathematical Formulation 
 

Consider a straight Euler-Bernoulli beam of length L , a cross-sectional areaA , the mass per 
unit length of the beam m, a moment of inertia I , and a modulus of elasticity E  that is 
subjected to an axial force of magnitude P as shown in Fig. 1.  

 

 
Fig. 1. A schematic of an Euler-Bernoulli beam subjected to an axial load 

 
The equation of motion including the effects of mid-plane stretching is given by: 
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For convenience, the following non-dimensional variables are used: 
4 1 2 2, , ( ) ,x x L w w t t EI ml P PL EIρ′ ′ ′= = = =   

where 1 2( )I Aρ = is the radius of gyration of the cross-section. As a result Eq. (1) can be 

written as follows: 
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Assuming ( , ) ( ) ( )w x t W t xφ= , where ( )xφ is the first eigenmode of the beam [23] and 

applying the Galerkin method, the equation of motion is obtained as follows: 
2
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The Eq. (3) is the differential equation of motion governing the non-linear vibration of Euler-
Bernoulli beams. The center of the beam is subjected to the following initial conditions: 
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where maxW denotes the non-dimensional maximum amplitude of oscillation and 1 2,α α  and 3α  

are as follows: 
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Post-buckling load–deflection relation for the problem can be obtained from Eq. (3) as: 
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2
1 3 2( )P Wα α α= − −  (6) 

Neglecting the contribution of W in Eq. (6), the buckling load can be determined as: 

1 2c LP P α α= =−  

 
(7) 

Basic Concept of Variational Approach Method 
 

He [24] suggested a variational approach, which is different from the known variational 
methods in open literature. Hereby we give a brief introduction of the method: 

( ) 0u f u+ =ɺɺ  (8) 
Its variational principle can be easily established utilizing the semi-inverse method [24]: 
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2
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where T is period of the nonlinear oscillator, F fu
∂ =

∂
. Assume that its solution can be 

expressed as: 
( ) cos( )u t t∆ ω=  (10) 

where∆  andω are the amplitude and frequency of the oscillator, respectively. Substituting Eq. 
(10) into Eq. (9) results in:  
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Applying the Ritz method, we require: 

0

0

J

J
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(12) 

 
(13) 

But with a careful inspection, for most cases we find that: 
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Thus, we modify conditions Eq. (12) and Eq. (13) into a simpler form: 

0
J

ω

∂
=

∂
 (15) 

From which the relationship between the amplitude and frequency of the oscillator can be 
obtained. 
 
Application of the Variational Approach Method 
 

Consider the Eqs. (3) and (4) for the vibration of an Euler-Bernoulli beam. Its variational 
formulation can be readily obtained as follows: 
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Assume that its solution can be expressed as: 
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max( ) cos( )W t W tω=  (17) 
 
By substituting Eq. (17) into Eq. (16) we obtain: 
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The stationary condition with respect to Wmax leads to: 
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We have: 
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Solving Eq. (21), according toω , the non-linear frequency is: 
 

2
1 2 3 max

1
4( ) 3

2NL P Wω α α α= + +  (22) 

It's period can be written in the form: 
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Non-linear to linear frequency ratio is: 
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According to Eq. (17) and Eq. (22), we can obtain the following approximate solution: 
 

2
max 1 2 3 max

1
( ) cos( 4( ) 3 )

2
W t W P W tα α α= + +  (25) 

 
Results and Discussions 
 

To illustrate and verify the accuracy of the Variational Approach Method (VAM), 
comparison with published data and exact solutions is presented. The exact frequency Exactω  for 

a dynamic system governed by Eq. (3) can be derived, as shown in Eq. (26), as follows: 
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Table 1 represents the comparison of nonlinear to linear frequency ratio (NL Lω ω ) with 

those reported by Azrar et al. [25] and the exact one. The maximum relative error of the 
analytical approaches is 2.004109 % for the first order analytical approximations as it is shown 
in the Table 1. 

 
Table 1. Comparison of non-linear to linear frequency ratio ( NL Lω ω ) for the simply supported beam 

Wmax 
Present Study 

(VAM)  
Exact  

solution 
Pade approximate 

P{4,2} [25] 
Pade approximate 

P{6,4} [25] 

Error % 

( ) /VAM ex exω ω ω−  

0.2 1.044031 1.0438823 1.0438824 1.0438823 0.014211 

0.4 1.16619 1.1644832 1.1644868 1.1644832 0.146604 

0.6 1.345362 1.3397037 1.3397374 1.3397039 0.422385 

0.8 1.56205 1.5505542 1.5506741 1.5505555 0.741395 

1 1.802776 1.7844191 1.7846838 1.7844228 1.028712 

1.5 2.462214 2.4254023 2.4261814 2.4254185 1.517775 

2 3.162278 3.1070933 3.1084562 3.1071263 1.776077 

2.5 3.881044 3.8079693 3.8099164 3.8080203 1.918985 

3 4.609772 4.5192025 4.5217205 4.5192713 2.004109 
 

To further illustrate and verify the accuracy of this approximate analytical approach, 
comparisons of the time history oscillatory displacement response for Euler-Bernoulli beams 
with exact solutions are presented in Figs. 2-3. From Figs. 2-3 it is observed that the motion of 
the system is a periodic one and the amplitude of vibration is a function of the initial conditions. 
Fig. 4 represents the phase plane for this problem obtained from VAM for 3 0.5α =  to 3 2.5α = . It 

is periodic with a center at (0, 0). This situation also occurs in the unforced, undamped cubic 
Duffing oscillators. The Influence of 3α  on nonlinear to linear frequency and of 1α  

are 

presented in Figs. 5-6. The effect of different parameters 3α and 1α  are studied in Fig. 7 

simultaneously. It illustrates that VAM is a very simple method that quickly converges and is 
valid for a wide range of vibration amplitudes and initial conditions. The accuracy of the results 
shows that the method can be potentiality used for the accurate analysis of strongly nonlinear 
oscillation problems. 

 

 
Fig. 2. Comparison of analytical solution of ( )W t  based on time with the exact solution for simply 

supported beam, max 1 2 30.6, 1, 0, 3W α α α= = = =  
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Fig. 3. Comparison of analytical solution of dW dt  based on time with the exact solution for a simply 

supported beam, max 1 2 30.6, 1, 0, 3W α α α= = = =  

 

 
Fig. 4. The phase plane for max 1 20.6, 1, 0, 3W pα α= = = =  

 

 
Fig. 5. Influence of 3α  on the nonlinear to linear frequency base on maxW  for 1 21,   0.5,   2 pα α= = =   
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Fig. 6. Influence of 1α  on the nonlinear to linear frequency base on maxW  for 2 31,   3,   3pα α= = =  

 

 
Fig. 7. Sensitivity analysis of nonlinear to linear frequency for max 21,   3,   3W pα= = =  

 
Conclusion 
 

A fairly uncomplicated but effective method for non-natural oscillators − He’s Variational 
Approach Method has been applied for analysis of the nonlinear vibration of Euler-Bernoulli 
beams. It has been established that VAM is clearly effective, convenient and does not require 
any linearization or small perturbation, and is adequately accurate in the case of both linear and 
nonlinear problems in physics and engineering. It can be observed that the results of VAM 
require smaller computational effort and already a first-order approximation leads to accurate 
solutions. Variational Approach Method can be simply extended to any nonlinear equation for 
the analysis of nonlinear systems. The obtained results from the approximate analytical solutions 
are in excellent agreement with the corresponding exact solutions. 
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