76 research outputs found

    Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Radar Emissions

    Get PDF
    With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode. In this work, three spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms implemented via a digital array radar (DAR). The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result. The third design method produces simultaneous radar and communications beams in separate spatial directions while maintaining constant modulus by leveraging the orthogonal complement of the emitted directions. This orthogonal energy defines a trade-space between power efficiency gained from constraining waveforms to be constant amplitude and power efficiency lost by emitting energy in undesired directions. The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL) metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform. System specific waveform optimization is explored by incorporating the linear models of three different loopback configurations into the GISL metric to match the optimized waveforms to the particular systems

    Transmit Signal Design for MIMO Radar and Massive MIMO Channel Estimation

    Get PDF
    The widespread availability of antenna arrays and the capability to independently control signal emissions from each antenna make transmit signal design increasingly important for radar and wireless communication systems. In the rst part of this work, we develop the framework for a MIMO radar transmit scheme which trades o waveform diversity for beampattern directivity. Time-division beamforming consists of a linear precoder that provides direct control of the transmit beampattern and is able to form multiple transmit beams in a single pulse. The MIMO receive ambiguity function, which incorporates the receiver structure, reveals a space and delay-Doppler separability that emphasizes the importance of the transmit-receive beampattern and single-input single-output (SISO) ambiguity function. The second part of this work focuses on channel estimation for massive MIMO systems. As the size of arrays increase, conventional channel estimation techniques no longer remain practical. In current systems, training sequences probe wireless channels in orthogonal directions to obtain channel state information for block fading channels. The training overhead becomes signicant as the number of transmit antennas increases, thereby creating a need for alternative channel estimation techniques. In this work, we relax the orthogonal restriction on the sounding vectors and introduce a feedback channel to enable closed-loop sounding vector design. A probability of misalignment framework is introduced, which provides a measure to sequentially design sounding vectors

    Antena inteligente para aplicações RFID

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesThe adoption and proliferation of information systems in many business and personal activities leads to the need of tagging and tracking items and services. Radio frequency identi cation (RFID) systems were developed as an e ort to answer the increasing needs of particulars and enterprises alike for wireless identi cation of objects and data exchange services, enabling a large number of businesses to reduce costs and increase revenue. As to further develop the e ciency provided by businesses worldwide, smart antenna systems were introduced as core component in their production and service providing lines, opening the path for innovative and robust wireless RFID based communication schemes, providing advanced signal capturing, processing characteristics and enhanced tracking and process automation. Smart antennas can be installed within RFID readers, enabling them to more e ciently process returned echoes by the tags and therefore improving the identi cation mechanism. RFID reader architectures with an embedded smart antenna network reliably improve the throughput, the reading speed and position detection of tagged items. A smart antenna based circuit is proposed here for RFID assisted localization and for beam steering applications using a uniform linear array of microstrip directional antennas. Several beamforming and direction of arrival estimation methods were employed in order to analyze their performance and resolution based on the computational load, modulation, and the overall environment in which the smart anetnna system may be deployed.A adoção e proliferação de sistemas de informação em várias indústrias e atividades pessoais são responsáveis pela crescente necessidade de identifcar e rastrear itens e serviços. Sistemas de identificação por rádiofrequência (RFID) foram desenvolvidos de modo a responder às crescentes necessidades tanto de particulares como de empresas quanto à utilização de sistemas de identificaçao e de transmissão de dados sem _os, permitindo a redução de despesas e o aumento de receitas a várias empresas. De modo a melhorar a eficiência de empresas a uma escala global, sistemas de antenas inteligentes foram introduzidos nas suas linhas de manufatura e de prestação de serviços como um componente central, abrirando o caminho para esquemas de comunicação sem _os inovadores e robustos, baseados em RFID, facultando processos de captura e processamento de sinal avançados capazes de fornecer melhorias em aplicações de rastreamento e automação de processos. Antenas inteligentes podem ser instaladas em leitores RFID, permitindo um melhor processamento de sinais transmitidos pelas etiquetas, dando origem a um método de identificação mais eficiente. A arquitectura de leitores RFID com uma rede de antenas inteligentes embutida garante melhorias na taxa de transferência e na rapidez de leitura de informação assim como na deteção de itens etiquetados. Um circuito baseado em sistemas de antenas inteligentes é proposto neste trabalho para localização assistida dispositivos RFID e para direccionamento de feixe através da utilizaçao de um agregado linear e uniforme de antenas microstrip diretivas. Várias técnicas de direcionamento de feixe e de estimativa de angulo de chegada foram utilizados, de modo a analisar o desempenho e a resolução de cada algoritmo de acordo com a carga computacional, modulação utilizada e o ambiente em que o sistema de antenas inteligentes poderá ser implementado

    Adaptive beamforming and switching in smart antenna systems

    Get PDF
    The ever increasing requirement for providing large bandwidth and seamless data access to commuters has prompted new challenges to wireless solution providers. The communication channel characteristics between mobile clients and base station change rapidly with the increasing traveling speed of vehicles. Smart antenna systems with adaptive beamforming and switching technology is the key component to tackle the challenges. As a spatial filter, beamformer has long been widely used in wireless communication, radar, acoustics, medical imaging systems to enhance the received signal from a particular looking direction while suppressing noise and interference from other directions. The adaptive beamforming algorithm provides the capability to track the varying nature of the communication channel characteristics. However, the conventional adaptive beamformer assumes that the Direction of Arrival (DOA) of the signal of interest changes slowly, although the interference direction could be changed dynamically. The proliferation of High Speed Rail (HSR) and seamless wireless communication between infrastructure ( roadside, trackside equipment) and the vehicles (train, car, boat etc.) brings a unique challenge for adaptive beamforming due to its rapid change of DOA. For a HSR train with 250km/h, the DOA change speed can be up to 4⁰ per millisecond. To address these unique challenges, faster algorithms to calculate the beamforming weight based on the rapid-changing DOA are needed. In this dissertation, two strategies are adopted to address the challenges. The first one is to improve the weight calculation speed. The second strategy is to improve the speed of DOA estimation for the impinging signal by leveraging on the predefined constrained route for the transportation market. Based on these concepts, various algorithms in beampattern generation and adaptive weight control are evaluated and investigated in this thesis. The well known Generalized Sidelobe Cancellation (GSC) architecture is adopted in this dissertation. But it faces serious signal cancellation problem when the estimated DOA deviates from the actual DOA which is severe in high mobility scenarios as in the transportation market. Algorithms to improve various parts of the GSC are proposed in this dissertation. Firstly, a Cyclic Variable Step Size (CVSS) algorithm for adjusting the Least Mean Square (LMS) step size with simplicity for implementation is proposed and evaluated. Secondly, a Kalman filter based solution to fuse different sensor information for a faster estimation and tracking of the DOA is investigated and proposed. Thirdly, to address the DOA mismatch issue caused by the rapid DOA change, a fast blocking matrix generation algorithm named Simplifized Zero Placement Algorithm (SZPA) is proposed to mitigate the signal cancellation in GSC. Fourthly, to make the beam pattern robust against DOA mismatch, a fast algorithm for the generation of at beam pattern named Zero Placement Flat Top (ZPFT) for the fixed beamforming path in GSC is proposed. Finally, to evaluate the effectiveness and performance of the beamforming algorithms, wireless channel simulation is needed. One of the challenging aspects for wireless simulation is the coupling between Probability Density Function (PDF) and Power Spectral Density (PSD) for a random variable. In this regard, a simplified solution to simulate Non Gaussian wireless channel is proposed, proved and evaluated for the effectiveness of the algorithm. With the above optimizations, the controlled simulation shows that the at top beampattern can be generated 380 times faster than iterative optimization method and blocking matrix can be generated 9 times faster than normal SVD method while the same overall optimum state performance can be achieved

    Mathematical optimization and game theoretic methods for radar networks

    Get PDF
    Radar systems are undoubtedly included in the hall of the most momentous discoveries of the previous century. Although radars were initially used for ship and aircraft detection, nowadays these systems are used in highly diverse fields, expanding from civil aviation, marine navigation and air-defence to ocean surveillance, meteorology and medicine. Recent advances in signal processing and the constant development of computational capabilities led to radar systems with impressive surveillance and tracking characteristics but on the other hand the continuous growth of distributed networks made them susceptible to multisource interference. This thesis aims at addressing vulnerabilities of modern radar networks and further improving their characteristics through the design of signal processing algorithms and by utilizing convex optimization and game theoretic methods. In particular, the problems of beamforming, power allocation, jammer avoidance and uncertainty within the context of multiple-input multiple-output (MIMO) radar networks are addressed. In order to improve the beamforming performance of phased-array and MIMO radars employing two-dimensional arrays of antennas, a hybrid two-dimensional Phased-MIMO radar with fully overlapped subarrays is proposed. The work considers both adaptive (convex optimization, CAPON beamformer) and non-adaptive (conventional) beamforming techniques. The transmit, receive and overall beampatterns of the Phased-MIMO model are compared with the respective beampatterns of the phased-array and the MIMO schemes, proving that the hybrid model provides superior capabilities in beamforming. By incorporating game theoretic techniques in the radar field, various vulnerabilities and problems can be investigated. Hence, a game theoretic power allocation scheme is proposed and a Nash equilibrium analysis for a multistatic MIMO network is performed. A network of radars is considered, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since no communication between the clusters is assumed, non-cooperative game theoretic techniques and convex optimization methods are utilized to tackle the power adaptation problem. During the proof of the existence and the uniqueness of the solution, which is also presented, important contributions on the SINR performance and the transmission power of the radars have been derived. Game theory can also been applied to mitigate jammer interference in a radar network. Hence, a competitive power allocation problem for a MIMO radar system in the presence of multiple jammers is investigated. The main objective of the radar network is to minimize the total power emitted by the radars while achieving a specific detection criterion for each of the targets-jammers, while the intelligent jammers have the ability to observe the radar transmission power and consequently decide its jamming power to maximize the interference to the radar system. In this context, convex optimization methods, noncooperative game theoretic techniques and hypothesis testing are incorporated to identify the jammers and to determine the optimal power allocation. Furthermore, a proof of the existence and the uniqueness of the solution is presented. Apart from resource allocation applications, game theory can also address distributed beamforming problems. More specifically, a distributed beamforming and power allocation technique for a radar system in the presence of multiple targets is considered. The primary goal of each radar is to minimize its transmission power while attaining an optimal beamforming strategy and satisfying a certain detection criterion for each of the targets. Initially, a strategic noncooperative game (SNG) is used, where there is no communication between the various radars of the system. Subsequently, a more coordinated game theoretic approach incorporating a pricing mechanism is adopted. Furthermore, a Stackelberg game is formulated by adding a surveillance radar to the system model, which will play the role of the leader, and thus the remaining radars will be the followers. For each one of these games, a proof of the existence and uniqueness of the solution is presented. In the aforementioned game theoretic applications, the radars are considered to know the exact radar cross section (RCS) parameters of the targets and thus the exact channel gains of all players, which may not be feasible in a real system. Therefore, in the last part of this thesis, uncertainty regarding the channel gains among the radars and the targets is introduced, which originates from the RCS fluctuations of the targets. Bayesian game theory provides a framework to address such problems of incomplete information. Hence, a Bayesian game is proposed, where each radar egotistically maximizes its SINR, under a predefined power constraint

    Multi-user beamforming on intelligent reflecting surface and networks

    Get PDF
    Full abstract available: pages i-iii. A new type of retrofitted low-cost material is recently proposed and made it possible to control (or program) part of the wireless channel around us. It is called the intelligent reflecting surface (IRS), also named reconfigurable intelligent surface (RIS) or metasurface. The metamaterial composed surface can realize selective EM properties by integrating artificially designed electronic elements that can be controlled by processors (e.g. field programmable gate array (FPGA)). Therefore, the wireless channel is controllable with such IRS posting on the ceiling and wall. Specifically, this functionality is realized by controlling the excitation and phase of each electronic element on the surface. The phase and amplitude of the EM wave impinging on the surface can be reflected in a designed manner of EM wave’s superposition. From this view, the wireless transmission can be enhanced by focusing the signal power while mitigating the interference power

    Analysis and design of smart antenna arrays (SAAs) for improved directivity at GHz range for wireless communication systems.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2018.Abstract available in PDF file

    Collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities

    Get PDF
    In recent years, wireless sensor networks have attracted considerable attention in the research community. Their development, induced by technological advances in microelectronics, wireless networking and battery fabrication, is mainly motivated by a large number of possible applications such as environmental monitoring, industrial process control, goods tracking, healthcare applications, to name a few. Due to the unattended nature of wireless sensor networks, battery replacement can be either too costly or simply not feasible. In order to cope with this problem and prolong the network lifetime, energy efficient data transmission protocols have to be designed. Motivated by this ultimate goal, this PhD dissertation focuses on the design of collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities. On the one hand, by resorting to collaborative beamforming, sensors are able to convey a common message to a distant base station, in an energy efficient fashion. On the other, sensor nodes with energy harvesting capabilities promise virtually infinite network lifetime. Nevertheless, in order to realize collaborative beamforming, it is necessary that sensors align their transmitted signals so that they are coherently combined at the destination. Moreover, sensor nodes have to adapt their transmissions according to the amounts of harvested energy over time. First, this dissertation addresses the scenario where two sensor nodes (one of them capable of harvesting ambient energy) collaboratively transmit a common message to a distant base station. In this setting, we show that the optimal power allocation policy at the energy harvesting sensor can be computed independently (i.e., without the knowledge of the optimal policy at the battery operated one). Furthermore, we propose an iterative algorithm that allows us to compute the optimal policy at the battery operated sensor, as well. The insights gained by the aforementioned scenario allow us to generalize the analysis to a system with multiple energy harvesting sensors. In particular, we develop an iterative algorithm which sequentially optimizes the policies for all the sensors until some convergence criterion is satisfied. For the previous scenarios, this PhD dissertation evaluates the impact of total energy harvested, number of sensors and limited energy storage capacity on the system performance. Finally, we consider some practical schemes for carrier synchronization, required in order to implement collaborative beamforming in wireless sensor networks. To that end, we analyze two algorithms for decentralized phase synchronization: (i) the one bit of feedback algorithm previously proposed in the literature; and (ii) a decentralized phase synchronization algorithm that we propose. As for the former, we analyze the impact of additive noise on the beamforming gain and algorithm’s convergence properties, and, subsequently, we propose a variation that performs sidelobe control. As for the latter, the sensors are allowed to choose their respective training timeslots randomly, relieving the base station of the burden associated with centralized coordination. In this context, this PhD dissertation addresses the impact of number of timeslots and additive noise on the achieved received signal strength and throughputEn los últimos años, las redes de sensores inalámbricas han atraído considerable atención en la comunidad investigadora. Su desarrollo, impulsado por recientes avances tecnológicos en microelectrónica y radio comunicaciones, está motivado principalmente por un gran abanico de aplicaciones, tales como: Monitorización ambiental, control de procesos industriales, seguimiento de mercancías, telemedicina, entre otras. En las redes de sensores inalámbricas, es primordial el diseño de protocolos de transmisión energéticamente eficientes ya que no se contempla el reemplazo de baterías debido a su coste y/o complejidad. Motivados por esta problemática, esta tesis doctoral se centra en el diseño de esquemas de conformación de haz distribuidos para redes de sensores, en el que los nodos son capaces de almacenar energía del entorno, lo que en inglés se denomina energy harvesting. En primer lugar, esta tesis doctoral aborda el escenario en el que dos sensores (uno de ellos capaz de almacenar energía del ambiente) transmiten conjuntamente un mensaje a una estación base. En este contexto, se demuestra que la política de asignación de potencia óptima en el sensor con energy harvesting puede ser calculada de forma independiente (es decir, sin el conocimiento de la política óptima del otro sensor). A continuación, se propone un algoritmo iterativo que permite calcular la política óptima en el sensor que funciona con baterías. Este esquema es posteriormente generalizado para el caso de múltiples sensores. En particular, se desarrolla un algoritmo iterativo que optimiza las políticas de todos los sensores secuencialmente. Para los escenarios anteriormente mencionados, esta tesis evalúa el impacto de la energía total cosechada, número de sensores y la capacidad de la batería. Por último, se aborda el problema de sincronización de fase en los sensores con el fin de poder realizar la conformación de haz de forma distribuida. Para ello, se analizan dos algoritmos para la sincronización de fase descentralizados: (i) el algoritmo "one bit of feedback" previamente propuesto en la literatura, y (ii) un algoritmo de sincronización de fase descentralizado que se propone en esta tesis. En el primer caso, se analiza el impacto del ruido aditivo en la ganancia y la convergencia del algoritmo. Además, se propone una variación que realiza el control de lóbulos secundarios. En el segundo esquema, los sensores eligen intervalos de tiempo de forma aleatoria para transmitir y posteriormente reciben información de la estación base para ajustar sus osciladores. En este escenario, esta tesis doctoral aborda el impacto del número de intervalos de tiempo y el ruido aditivo sobre la ganancia de conformación
    corecore