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ABSTRACT

Duly, Andrew Jason Ph.D., Purdue University, December 2013. Transmit Signal
Design for MIMO Radar and Massive MIMO Channel Estimation. Major Professors:
David J. Love and James V. Krogmeier.

The widespread availability of antenna arrays and the capability to independently

control signal emissions from each antenna make transmit signal design increasingly

important for radar and wireless communication systems. In the first part of this

work, we develop the framework for a MIMO radar transmit scheme which trades off

waveform diversity for beampattern directivity. Time-division beamforming consists

of a linear precoder that provides direct control of the transmit beampattern and is

able to form multiple transmit beams in a single pulse. The MIMO receive ambiguity

function, which incorporates the receiver structure, reveals a space and delay-Doppler

separability that emphasizes the importance of the transmit-receive beampattern and

single-input single-output (SISO) ambiguity function. The second part of this work

focuses on channel estimation for massive MIMO systems. As the size of arrays

increase, conventional channel estimation techniques no longer remain practical. In

current systems, training sequences probe wireless channels in orthogonal directions

to obtain channel state information for block fading channels. The training overhead

becomes significant as the number of transmit antennas increases, thereby creating

a need for alternative channel estimation techniques. In this work, we relax the

orthogonal restriction on the sounding vectors and introduce a feedback channel to

enable closed-loop sounding vector design. A probability of misalignment framework

is introduced, which provides a measure to sequentially design sounding vectors.
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1. INTRODUCTION

Phased array radar took advantage of multiple antennas by forming spatial beams to

cohere power in space. This added another dimension to design the transmit signal in:

the spatial dimension. Phased array radars operated on the array manifold, transmit-

ting power in a subset of the spatial domain that characterizes line-of-sight channels.

In a similar manner, wireless communications were quick to adopt multiple antenna

signaling schemes, a technology that has been called multiple-input multiple-output

(MIMO) wireless communications. Unlike phased array, MIMO communications has

the capability to transmit linearly independent waveforms out of each antenna. The

radar community is recently starting to adopt this phenomenom and harness the

advantages of waveform diversity in what is now considered MIMO radar.

Although two very similar technologies, current literature does not draw strong

ties between MIMO radar and MIMO wireless communication. It is easy to see a

close relationship exists, but the scarcity of papers on the subject could be attributed

to the vastly different objectives used for each technology. Simply put, wireless com-

munications estimates the transmit signal given the channel, whereas radar estimates

the channel given the transmit signal. For wireless communications, the transmit

signal includes symbols (and therefore bits) of information to be conveyed to the

receiver. For radar, an estimate of the channel includes information on the target’s

range, velocity, and angle, among other parameters. The noncoherent MIMO radar

literature [1,2] seems to recognize a portion of this similarity, equating different look

angles of a target to channel fading. Coherent MIMO radar literature does not ex-

plicitly make these connections, although the implicit similarities are everywhere.

Furthermore, the hardware for coherent MIMO radar relates more to wireless com-

munications than noncoherent MIMO radar does. The close proximity of the transmit
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and receive antennas, grouped into arrays, more closely resembles the arrays used in

point-to-point MIMO wireless communication.

For wireless systems with multiple antennas, MIMO adds the spatial dimension

to the already well known time, frequency, and code dimensions. Independent fad-

ing across multiple spatial dimensions creates an opportunity to increase spectral

efficiency [3] by increasing channel capacity while keeping the frequency band fixed.

Knowlege of the channel’s spatial structure can be exploited through beamforming

and linear precoding to improve data throughput. In a similar fashion, phased array

radars control the spatial properties of its emissions through the beamforming weights

independently applied at each element. These beamforming weights were generally

very specific to the physical geometry of the radar scene. For example, beamforming

vectors were designed on the array manifold, a manifold in the Mt-dimensional space

which maximized power in the direction θ from array boresight. Adaptive beam-

forming vectors exist, which perturb beamforming vectors from the array manifold

to consider other phenomenom such as imperfect calibration of the array and inter-

ference in the channel. MIMO communications, on the other hand, is not necessarily

tied to the array manifold. Environments that contain a large amount of multipath,

known as highly scattering channels, are non-line-of-sight (NLOS) and off the array

manifold. A linear algebra interpretation of the channel is assumed, and beamforming

vectors are optimized in the Mt-dimensional vector space. In fact, channel capacity

gains are most readily had for highly scattering, non-line-of-sight channels, where the

SNR-maximizing beamforming vector is not on the array manifold.

Much like MIMO wireless communications, MIMO radar transmit schemes are

not strictly tied to the array manifold. In light of this, a lot of intuition is lost when

designing the transmit signals. Transmit waveforms are optimized according to some

criteria, such as power on target, interference minimization, target location estima-

tion, or target velocity estimation [2, 4–6]. Generally these optimizations must be

performed numerically, and transmit waveforms are derived with very little intuition

to the user except that they satisfy given spatial, delay, and Doppler constraints. To
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counteract this, hybrid transmit schemes based on the phased array yet utilizing the

waveform diversity of MIMO radar were explored in [7–9]. These techniques logically

divided the array into subarrays, where each subarray behaved as a phased array and

beamformed in a single direction. This created a transmit framework that was highly

intuitive to the designer and included multiple orthogonal transmit waveforms. These

papers traded off waveform diversity for simplicity of the hardware configuration and

increased power on target. The spatial domain (the individual antennas of the array)

was divided up to handle multiple orthogonal transmit signals. In order to logically

assign transmit elements to subarrays, the array aperture size decreased to a set of

smaller subarray apertures. A decreased aperture size decreases the array gain. This

leaves the question: can multiple orthogonal signals be transmitted without decreas-

ing the array aperture? The answer is yes, by dividing up the temporal domain of

the transmit signal instead of the spatial domain. This scheme, termed time-division

beamforming, is explored in this dissertation.

To accomplish this, we introduce the ideology of linear precoding. The transmit

signal is viewed as the product of two signals, the linear precoder and the pulse ma-

trix. Linear precoders are popular for coherent wireless communications [10], where

knowledge of the wireless channel is exploited at the transmitter for improved SNR

at the receiver. Linear precoders take advantage of the channel structure through

either instantaneous channel knowledge or knowledge of the channel’s second order

statistics and are able to exploit the virtually independent directions of the channel

to transmit multiple symbol streams. This enables improved data throughput for

wireless communication. In fact, it was shown that with perfect channel knowledge,

the MIMO channel capacity is achieved through linear precoding [11].

Linear precoding was applied to MIMO radar to maximize power across multple

spatial angles [12]. Although not explicitly stated as a linear precoder, the mathemat-

ical framework of linear precoding was used over multiple pulses in [13]. When linear

precoding is applied to the radar transmit signal, it gives a simple structure that

trades off beamforming gain with waveform diversity. Once again, this beamform-
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ing gain makes use of the entire array aperture, not just a portion of it as subarray

methods do.

Many of the numerical solutions for MIMO radar transmit signals do not incor-

porate the decades of research available for coded waveforms with specific delay and

Doppler properties. They mainly focus on designing waveforms with specific spatial

properties [6,14,15]. This limits the utility of current schemes in practice, as they are

only optimized in the spatial domain. Time-division beamforming, the MIMO radar

transmit scheme presented in this work, is able to independently control the spatial

and delay-Doppler properties through its unique pulse matrix structure. This pro-

vides a transmit scheme for MIMO radar that leverages existing waveforms designed

with ample range and Doppler resolution.

Radar systems are not the only technology that require careful design of the trans-

mit signal to estimate parameters of the channel. We already discussed the dichotomy

between radar and wireless communications, where the former estimates the channel

and the latter estimates the transmit signal. The performance of coherent wireless

communications is dependent on the ability to accurately estimate the channel. In

wireless channel estimation, the transmit signal (often called pilots or training se-

quences) is strategically designed to minimize channel estimation error. This premise

is similar to radar, with the difference being which channel information is considered

useful. Physical parameters such as the angle of dominant scattering paths are not

as important for wireless communications, which mainly focuses on estimating the

MtMr complex channel gains. For the second half of this dissertation, we turn our

attention from radar to wireless communication channel estimation and apply real-

istic constraints for emerging MIMO technologies with a large number of transmit

antennas.

Accurate channel estimation for wireless communication is required to maximize

link throughput. Beamforming vectors and linear precoders are designed according to

the channel estimate. Beamforming gain is a term used in the receive SNR function to

measure the spatial gain achieved by matching the transmit weights to the structure
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of the channel. Inaccurate channel estimates reduce beamforming gain, lowering the

effective SNR on receive and decreasing channel capacity [16].

Due to its importance, standard MIMO techniques are well documented for chan-

nel estimation. [17–19]. They include minimum mean square error channel estima-

tion, least squares channel estimation, and maximum likelihood channel estimation.

Furthermore, the training sequence is specifically designed according to any prior

knowledge of the channel, such as the channel’s second order statistics. If this is the

case, optimal training sequences were considered in [19] for uncorrelated Rayleigh

fading channels and in [20] for correlated channels.

Training for wireless communication transmits pilots known at both the transmit-

ter and receiver with the sole purpose to estimate the channel. Resources are devoted

to training in order to accurately estimate the channel. Beamformers or linear pre-

coders are designed with knowledge of the estimated channel to maximize receive

SNR for data transmission. Similar to MIMO radar, the pilots need to be designed

in order to extract useful information from the channel. This useful information is

application specific. An example would be to extract a channel estimate that min-

imizes the mean square error from the true channel. For line of sight channels, the

example might be to estimate the angle of the dominant scattering path.

A well known result for channel estimation shows the length of the training phase

to be proportional to the number of antennas for uncorrelated Rayleigh fading [19].

For systems with a large number of antennas, the overhead associated with train-

ing may become impractical. Massive MIMO communications, a subset of MIMO

communications that deals with a large number of antennas, has been initially pro-

posed for time-division duplexing (TDD) systems as a result [21]. It has been shown

that given an infinite number of antennas, matched filtering and eigenbeamforming

become optimal [22], specifically for the multiuser case. The problem then becomes

obtaining accurate channel estimates in massive MIMO without burdening the system

with training [23]. Suboptimal methods must be employed to accurately estimate the

channel without over burdening the communication system with training.
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One could interpret training as a mechanism to sound the channel and make

conclusions on the channel based on the output. This is the interpretation we carry

forth and denote the training sequence as a set of sounding vectors. In essence, the

transmitter sounds the channel, and the receiver estimates the channel from received

samples. Suppose now a feedback link could be utilized during the training phase.

Instead of designing the entire training sequence up front, the sounding vectors could

be sequentially designed as a function of the feedback. The transmitter could then

sound the channel, the receiver observe the output, determine the next sounding

vector, and the receiver feed back the designated sounding vector for the next channel

use. This sequence of events could be repeated multiple times throughout the training

phase. The addition of the feedback link to training has the potential to improve

channel estimation for shorter duration training intervals.

We implement this feedback-enabled training scheme for a multiple-input single-

output (MISO) wireless channel. Given the feedback link, many aspects of this system

still need to be addressed. Conventional channel estimators jointly estimate the chan-

nel direction and channel magnitude. As we will show, designing beamforming vectors

to maximize beamforming gain requires accurate estimation of the channel direction

only. We derive a generalized channel direction estimator to serve this purpose. In ad-

dition, it is not apparent how to design the sounding vector for the following channel

use. We would like to design the sounding vectors to probe the channel in the most

useful directions, with a maximal reduction of uncertainty in the channel estimate.

The sounding vectors would probe the channel space in directions that reveal the

most information about the channel. To accomplish this, we calculate the posterior

distribution of the channel. The difficulty comes in minimizing the variance of this

distribution as a function of the sounding vectors. We simplify the problem by dis-

cretizing the channel space; restricting it to lie in some discrete space. We then draw

inspiration from communication theory and choose sounding vectors from a codebook

which minimize the derived probability of misalignment.
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Although this feedback-enabled training scheme increases the system complexity

required for training, the promise of shorter training intervals makes it a viable scheme

for massive MIMO systems. The coherence time, the approximate time a channel

remains static, is completely dictated by the environment. Given optimal training,

if the number of transmit antennas increases, the time required to train will also

increase while the coherence time remains fixed. For small arrays, the training interval

for optimal pilots is not a burden and the increased signal processing necessary to

implement a feedback-enabled training scheme may not be practical. However, for

massive MIMO systems, the conventional training schemes must be modified in order

for training to remain feasible.
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2. RADAR BACKGROUND

Radars perform the duties of detecting, tracking, or imaging targets [24]. These

tasks can be accomplished through a variety of radar systems, such as pulsed, con-

tinuous wave, or SAR. This dissertation concentrates on pulsed radar systems, and

specifically looks at target detection and how recent advances in radar technology

can improve detection performance. A pulsed radar can be summarized by emitting

short bursts (or pulses) of energy and analyzing the echo. Echoes are returned from

targets of interest, targets not of interest, and stationary matter in the environment

(clutter). Noise and interference in the frequency band of interest also exist and must

be considered on receive. The echoes from targets not of interest may degrade receiver

performance much like the addition of interference and noise. Similar to clutter, these

echoes are functions of the transmitted pulse. As simple as the aformentioned pulsed

radar system sounds, the intricacies of each aspect has been extensively studied over

the years. We now review the basics of transmit emission and receive processing to

extract useful information about the target.

2.1 Radar Fundamentals

Our expressions here consider a single pulse on transmit. In practice, multiple

pulses are used, and target detection can be performed jointly across multiple pulses.

Transmit pulses are separated by a period of time known as the pulse repitition inter-

val (PRI), whose inverse is more commonly known as the pulse repitition frequency

(PRF). The PRF can be a static or time-changing parameter, and plays a critical role

in the resolvable target Doppler [25].

Let us consider a single transmit pulse. The real transmit signal is defined as,

x̃(t) = a(t)cos
(
2πfct+ θ(t)

)



9

for 0 ≤ t ≤ T . We define a(t) as the amplitude modulation, θ(t) as the phase

modulation, and fc as the given carrier frequency. Both a(t) and θ(t) are baseband

signals. In complex analytic form, the transmit signal can be notationally simplified

to,

x̃(t) = R
[
a(t)ej(2πfct+θ(t))

]
= R

[
x(t)ej2πfct

]
(2.1)

where R[·] denotes the taking the real part of its argument, ej2πfct is the complex

carrier sinusoid and the complex analytic baseband signal is

x(t) = a(t)ejθ(t).

Viewing the radar transmit pulse (and later receive structure) in the complex analytic

form improves clarity of the signal processing ideas presented and simplifies notation.

For radar systems with a single antenna, a single-target radar channel can be

modeled by an attenuation constant and a reflection coefficient. For algorithm de-

velopment, sometimes the path attenuation is lumped into the target’s reflection

coefficient. In accordance with electromagnetic theory, the emitted radar pulse x̃(t)

will reflect off of a target with a reflection coefficient commonly referred to as the

target’s radar cross section (RCS).

Targets are generally modeled as a collection of individual scatterers, which give a

large variation in the radar cross section as a function of look angle [25]. A common

set of models to statistically represent fluctuations in RCS are known as Swerling

target models [26].

Assume τ to be the round trip delay from a target at range R such that τ = 2R/c.

The baseband receive signal, assuming the complex analytic transmit signal of (2.1)

y(t) = αx(t− τ) + n(t)

where α is the complex scattering parameter and n(t) is the stationary complex

additive Gaussian noise.



10

The receive signal y(t) represents the signal captured by the radar’s receive an-

tenna which is reflected from the target. The decision on whether a target is present

or not can be made using the output of a matched filter as a sufficient statistic. Let

us denote the matched filter as,

h(t) = x∗(−t).

The output of the matched filter is given as,

(y ∗ h)(t) =

∫ ∞
−∞

y(s)h(t− s) ds

=

∫ ∞
−∞

y(s)x∗(−(t− s)) ds

=

∫ ∞
−∞

[αx(s− τ) + n(s)]x∗(s− t) ds

= α

∫ ∞
−∞

x(u)x∗(u− (t− τ)) du+

∫ ∞
−∞

n(u+ τ)x∗(u− (t− τ)) du

where we use the substitution u = s− τ . Sampling the output of the matched filter

at t = τ will maximize the signal’s SNR.

The above result assumes the target is stationary. For many airborne and terres-

trial applications, the effect of target velocity on the radar return must be considered.

In addition to a target’s scattering coefficient, a target in motion will also impart a

Doppler shift on the reflected signal. The Doppler shift is a compressive effect, but

for narrowband signals simplifies to a shift in frequency. A waveform is considered

narrowband if,

2vTB

c
� 1

where TB is the time-bandwidth product, c the speed of light, and v the radial

velocity of the target towards a stationary radar. Given the radial velocity v, the

Doppler frequency is defined as,

fd =
2v

λ

where λ is the carrier’s wavelength. The effect of Doppler on narrowband signals is

easiest seen in the frequency domain, where the signal is shifted by fd.
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An important tool to analyze characteristics of the transmit signal resides in the

ambiguity function. Definitions of the ambiguity function differ throughout the cur-

rent literature. We define the ambiguity function slightly different from [27], where

it is defined as the envelope of the output of a matched filter when the input to the

filter is a time-delayed and Doppler-shifted version of the original signal. According to

Figure 2.1, we define the ambiguity function in a similar manner but as the complex

output ymf instead of its magnitude. To set up the problem, we look at the output

of the matched filter,

h(t) = x∗(−t)ej2πγ̂t

which is matched to the transmitted signal. The output of the matched filter with a

noiseless receive signal y(t) = x(t− τ)ej2πγt,

(y ∗ h)(t) =

∫ ∞
−∞

y(s)h(t− s) ds

=

∫ ∞
−∞

x(s− τ)ej2πγsx∗(−(t− s))e−j2πγ̂s ds

=

∫ ∞
−∞

x(s− τ)x∗(s− t)ej2πs(γ−γ̂) ds

=

∫ ∞
−∞

x(u)x∗(u+ τ − t)ej2π(u+τ)(γ−γ̂) du

= ej2πτ(γ−γ̂)

∫ ∞
−∞

x(u)x∗(u− (t− τ))ej2πu(γ−γ̂) du

where we let u = s− τ and generalize the Doppler term of the matched filter. If we

sample the output at t = τ̂ ,

(y ∗ h)(τ̂) = ej2πτ(γ−γ̂)

∫ ∞
−∞

x(u)x∗(u− (τ̂ − τ))ej2πu(γ−γ̂) du

= ej2πτ(γ−γ̂)

∫ ∞
−∞

x(u)x∗(u−∆τ)ej2πu∆γ du

where ∆τ = τ̂ − τ and ∆γ = γ − γ̂. In this fashion, we can describe the complex

ambiguity function as,

χ(τ, ν) = ej2πτ(γ−γ̂)

∫ ∞
−∞

x(t)x∗(t−∆τ)ej2π∆γt dt
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Fig. 2.1. A block diagram denoting the output to a matched filter with
mismatched delay and Doppler parameters.
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where x(t) is the transmit signal, ∆τ is the delay mismatch and ∆γ the Doppler

mismatch of the matched filter to the incoming signal.

Another useful interpretation of the ambiguity function is explained as the corre-

lation from the returns of two targets closely spaced in the delay and Doppler domain.

The ambiguity function is a two-dimensional function useful in characterizing the res-

olution between two targets close in delay (range) and Doppler (velocity). As one

will note, the conventional definition of the ambiguity function applies for a single

waveform. Extensions to multiple transmit waveforms and receive matched filters

exist, and the interpretation of the ambiguity function as the output of a matched

filter for MIMO radar is addressed in this work. As a result, an understanding of

the ambiguity function for a single waveform will remain essential for our later work,

where we look at a generalization of the ambiguity function for MIMO radar.

2.2 Phased Array Radar

Phased array radar deals with the same objectives as traditional radar with the

added capability of multiple antennas. Multiple antennas can aid in target detection

through either an array of antennas on transmit, an array of antennas on receive, or

both. For illustrative purposes, consider a linear array of Mr antennas on receive. If

the target is assumed to be in the far field, the impinging wavefront on the receive

array is assumed to be flat. Figure 2.2 illustrates an impinging wavefront from angle

θ relative array boresight.

Due to the geometry of the problem, for a narrowband receive signal it can be

approximated that each receive antenna observes the same signal with a specific phase

shift given by the array geometry. Given the carrier wavelength λ, the angle of arrival

θ, and the distance from array phase center as di, the phase shift for the ith antenna

is

φi =
2π

λ
disin(θ).
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wavefront

Fig. 2.2. Geometry of a linear array with an impinging wavefront. Details
the additional distance traveled by the wavefront from one antenna to the
next.
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Putting this phase progression in vector form, we can define what is typically referred

to as the array manifold or steering vector, where the first element is considered the

array phase center,

ar(θ) =
[
1 ej

2π
λ
d2sin(θ) · · · ej

2π
λ
dMr sin(θ)

]
The array manifold is parameterized by the angle of arrival, θ, of the impinging

wavefront from array boresight. Array boresight is the direction perpendicular to

the dimension of the array. The array manifold interpretation simplifies for uniform

linear arrays (ULA) as,

ar(θ) =
[
1 ej

2π
λ
dsin(θ) · · · ej(Mr−1) 2π

λ
dsin(θ)

]
where d is the common spacing between each and every element. A general rule-

of-thumb for array designers is to space antenna elements a distance of λ/2 apart

from each other. The reason for this is two-fold; any greater spacing would alias the

spatial sampling and result in grating lobes [25], and any closer spacing would increase

the mutual coupling [28]. Hence, if we set d = λ/2, the array manifold expression

simplifies even further as,

ar(θ) =
[
1 ejπsin(θ) · · · ej(Mr−1)πsin(θ)

]
Conventional phased array systems phase shift and combine the output of each

antenna in the array on receive. In the radar literature, this is referred to as receive

beamforming. In the wireless communications literature, this is commonly referred

to as receive combining. No matter the label used, the result is shown in Figure 2.3,

where wie
jφi represent the complex weights applied to each antenna. Mathematically,

this can be written in vector form as,

w =
[
w1e

jφ1 w2e
jφ2 · · · wMre

jφMr

]∗
.
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`

Fig. 2.3. The receive beamformer weights the output from each antenna
and sums them to produce output ȳ(t).

Let us define the receive signal at each element of the phased array as,

y(t) =


y1(t)

y2(t)
...

yMr(t)

 .

After receive beamforming, the scalar output is given by,

ȳ(t) = w∗y(t).

In general, these amplitude and phase weights are time-independent and remain

fixed for the entire pulse duration. They can be adjusted on a pulse-by-pulse basis.

However, as technology improves, this restriction may no longer be relevant and

improved receive processing may result. The ability to generalize receive beamforming

to replace the scalar weights by matched filters (or sets of matched filters) sets the

foundation for the mathematics of MIMO radar.
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2.3 MIMO Radar

Phased array radars have been known to provide increased target detection due

to their ability to spatially distribute transmit power in the radar channel. From a

hardware perspective, a single high power amplifier is no longer required, as was the

case for a single antenna. The task of amplifying the transmit signal can now be

distributed across the array aperture, with a power amplifier behind each transmit

element. With the addition of phase shifters at each element, the array can electroni-

cally steer its transmit beam by controlling each element’s phase shift; a huge benefit

over mechanically steered antennas. These advantages have led to the widespread

adoption of phased array radars.

Wireless communications saw capacity improvements with the capability to trans-

mit and receive using multiple antennas. In addition to phased array techniques for

communications, which increased receive SNR, the increase in available spatial dimen-

sions for high scattering channels provided the structure to transmit multiple symbol

streams. The wireless channel capacity has been shown to scale with the number of

antennas (specifically the minimum number of antennas at either the transmitter or

receiver [3]). The ability to increase the capacity of a link by fixing the bandwidth

(hence increasing spectral efficiency) prompted a large interest in MIMO wireless

communications.

The ability to transmit linearly independent waveforms out of each array element is

improving radar in a manner similar to wireless communications. Waveform diversity

allows increased performance of target detection, angle of arrival, localization, and

target tracking [29]. There are two major classifications for MIMO radar; noncoherent

MIMO radar [1, 2] and coherent MIMO radar [30]. The work of this dissertation

focuses on the latter. Noncoherent MIMO radar expands traditional multistatic radar

with geographically disparate transmitting and receiving sites. It is assumed the

receivers are separated far enough from each other that the returns from the target

to each receiver are subject to different scattering, as shown in Figure 2.4. This
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Tx/Rx 1
Tx/Rx 2

Tx/Rx 3

Fig. 2.4. Noncoherent MIMO radar with geographically separated trans-
mit and receive antennas.

reduces the chance that each and every return from the target experiences a large

attenuation due to poor scattering from the target. The terminology and methods in

the noncoherent MIMO radar literature are closely related to rich scattering channels

in communications, and performance can be written in a similar language. However,

noncoherent MIMO radar suffers from the challenges of synchronizing the widely

spaced transmit and receive sites to achieve such gains.

Coherent MIMO radar is the framework used in this work to define time-division

beamforming. It assumes the transmit elements (and the receive elements) are closely

spaced to each other. The size of the aperture for the transmit or receive array is on

the order of wavelengths. Hence, all emitted waveforms experience the same scattering

for a target in the far field. Although coherent MIMO suffers from low backscatter

due to the coherent scattering assumption, its principles are directly applicable to

implement on antenna arrays. Arrays have already proven themselves useful in radar

applications (i.e., phased arrays) and coherent MIMO radar promises to be the next

step.
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The current state of the art for coherent MIMO systems is summarized in the

tutorial paper of [30]. We now present the mathematical framework for classical

MIMO radar and show its properties.

MIMO radar provides the capability to transmit linearly independent waveforms

from each antenna. This is an improvement over phased array radar, which trans-

mits the same waveform which is phase shifted and/or amplitude weighted at every

element. For a MIMO radar with Mt transmit antennas, we define the continuous

time transmit signal

X(t) =


x1(t)

x2(t)
...

xMt(t)

 .

The transmit signal is restricted by a total power constraint, defined as∫ ∞
−∞

X∗(t)X(t) dt ≤ ρ

where it is assumed xi(t) has support on the interval [0, T ]. The time-covariance

matrix for a length T transmit signal is defined as,

R =

∫
X(t)X∗(t) dt.

The transmit time-covariance matrix is used to calculated the transmit beampattern,

which is a measure of the transmit energy distributed in space,

S(θ) = a∗t (θ)Rat(θ) (2.2)

where at(θ) is the transmit steering vector towards angle θ.

In its most general case, MIMO radar considers a set of Mt orthogonal waveforms

to be transmitted from the Mt antennas. This orthogonality constraint simplifies the

transmit time-covariance matrix to R = ρ
Mt

I. Consequently, plugging R = ρ
Mt

I into

(2.2) gives a beampattern that is independent of angle. Herein reveals one of the

largest benefits of MIMO radar: an omnidirectional beampattern. Spatial knowledge
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of the radar scene does not need to be known in advance. MIMO radar’s biggest

advantage can also be its largest drawback: an omnidirectional beampattern lacks an

increase in power on target and cannot take advantage of the array gain. To illustrate

this, we show a simple example of power on a target located at angle θ from transmit

array boresight. For a MIMO radar with orthogonal signaling and ‖X‖2
F = ρ, the

power on target is denoted as,

PMIMO = |a∗t (θ)X|2

= a∗t (θ)XX∗at(θ)

= a∗t (θ)

(
ρ

Mt

I

)
at(θ)

=
ρ

Mt

‖at(θ)‖2

= ρ

where the array manifold has norm ‖at(θ)‖2 = Mt. Now consider the phased array

transmit signal, with a single transmit waveform X = fp∗. We let the beamforming

vector steer towards θ, f = at(θ)√
Mt

with ‖f‖2 = 1 and ‖p‖2 = ρ. This gives the same

total power constraint as for the MIMO transmit signal, namely ‖X‖2
F = ρ. The

power on target is,

PPA = |a∗t (θ)X|2

= a∗t (θ)fp
∗pf∗at(θ)

= ρat(θ)ff
∗at(θ)

= ρMt.

From this canonical example, the phased array is able to increase the power on tar-

get by a factor of Mt, which is equal to the number of transmit elements. This is

commonly referred to as the array gain for phased array, which explains the ability of

the signal emissions from each antenna to constructively interfere at a specific angle.

This is in contrast to the given orthogonal MIMO radar transmit signal example,

where the orthogonal waveforms cannot coherently combine for any specific angle.
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In general, the MIMO radar literature is not restricted to orthogonal signal sets.

Hybrid schemes, where the number of orthogonal waveforms is less than the number

of transmit antennas, are also considered as a colocated MIMO radar technology.

The number of orthogonal waveforms can be observed by the rank of the transmit

time-covariance matrix, where a set of Mt orthogonal waveforms will give a full-

rank covariance matrix and a phased array radar transmit signal will give a rank-

1 covariance matrix. This leaves an open area to design signal sets whose time-

covariance matrix is of arbitrary rank. Time-division beamforming presents a simple

and intuitively pleasing solution to this problem.
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3. TIME-DIVISION BEAMFORMING FOR MIMO

RADAR

3.1 Introduction to Time-Division Beamforming

The ability of MIMO radars to transmit linear independent waveforms gives flex-

ibility to improve multiple target detection and estimation over legacy phased array

systems. The returns from multiple targets were shown to be linearly independent

in [31], where adaptive receive beamforming was shown to improve multiple target

detection performance. Signal design becomes a challenge as it has been shown the

transmit beampattern is a function of the auto- and cross-correlations of the transmit

signals [32]. Commonly, MIMO radars transmit orthogonal waveforms out of each

transmit antenna [33]. This waveform orthogonality is achieved through waveform

coding (amplitude, phase, or both), and, with the use of isotropic array elements, the

MIMO radar produces an omnidirectional beampattern. However, an omnidirectional

beampattern is not always desirable. In some applications, it may be required to co-

here power in certain spatial directions, accomplished through careful design of the

transmit signal cross-correlations [32]. To further complicate matters, clutter in the

radar scene may reduce the benefits of orthogonal waveforms on transmit. In [34],

a set of waveforms with low auto- and cross-correlations performed poorly due to

an inability to cancel out interference from clutter. To characterize this, a MIMO

cancellation ratio is introduced to serve as an alternative metric to design adaptive

MIMO radar waveforms.

In the co-located MIMO radar literature, transmit signal design can be divided

into two stages. First, a transmit signal covariance matrix R is obtained for a direc-

c© 2013 IEEE. Reprinted, with permission, from A.J. Duly, D.J. Love, and J.V. Krogmeier, “Time-
Division Beamforming for MIMO Radar Waveform Design,” IEEE Transactions on Aerospace and
Electronic Systems, April 2013.
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tional beampattern S(θ) according to some continuous or discrete measure. Second,

the transmit signal X is designed to match the given covariance matrix R. In [6], a

sequential quadratic programming is presented which designs a covariance matrix R

to match a particular beampattern. Given a desired full rank R, a suitable trans-

mit signal can be derived by a number of matrix decomposition methods, such as

eigenvalue or Cholesky decomposition. In general, transmit signals designed using

these methods are amenable to a total power constraint. To solve for a transmit

signal under a constant modulus constraint, an iterative approach [35] and a random

approach [32] have been developed. No guarantees, however, can be made as to how

closely the transmit signal covariance matrix matches a desired R.

Low rank covariance matrices may be of interest, especially if hardware limita-

tions restrict the number of linear independent waveforms emitted from the array.

Optimization techniques for MIMO radar waveform design with low-rank covariance

matrices were considered in [36, 37]. Subarray techniques, presented in [7–9], are al-

ternative ways of designing low rank covariance matrices. Subarray MIMO radars

are designed with M < Mt orthogonal waveforms and form a covariance matrix with

rank M .

If a priori information on targets, clutter, or noise is present, one may wish to

maximize target detection or parameter estimation performance. This relaxes the

objective of designing the transmit signal to match a given beampattern and places

more focus on the target, clutter, and noise information. Maximizing power in the

direction of known or estimated targets is discussed in [6], where sequential quadratic

programming methods design signals to approximate given beampatterns. Optimiza-

tion of the signal to interference plus noise ratio (SINR) for multiple targets was

investigated in [38] due to its widespread use for the single target case. Similar to

this paper, it was noted that a max-min opimization was required to accurately esti-

mate the scattering coefficients of multiple targets. An information theoretic objective

was introduced in [38], which combines metrics such as power on target, SINR, and

separation of the target and clutter subspaces. In this work, we use a similar max-
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min approach to optimize the time-division beamforming signal for receive SINR.

Extending the ideas and advantages of the phased array to the MIMO radar, [7] in-

troduces the notion of disjoint subarrays and [8, 9] design the transmit signal using

overlapping subarrays. The idea of dividing the total transmit array into subarrays,

where the transmit signal is designed according to subarray steering vectors, trades

off advantages of the phased array and omnidirectional MIMO radar.

Time division multiple access (TDMA) and beamspace MIMO motivate the time-

division beamforming transmit scheme presented in this work. TDMA in wireless

communications schedules users in non-overlapping time slots. In radar, TDMA

commonly refers to transmitting from a single element at a time [39]. For beamspace

MIMO [40], the transmit signal is represented by its singular value decomposition,

X = USV∗, where the columns of U represent the set of transmit beamforming vec-

tors transmitted simultaneously inside a given pulse X. Hence, for a given pulse, the

transmit signal is a weighted sum of the beamforming vectors. Slow-time beamspace

MIMO [13,41] designs the transmit signal across multiple pulses (in slow-time), while

making note of its use in fast-time. Time-division beamforming leverages these ideas

to create a signal that temporally multiplexes beamforming vectors.

3.2 System Setup

A target is considered to lie in the same plane as the antenna array such that

the its position can be described using two-dimensional spherical coordinates (r0, θ0),

where r0 represents the distance from a set of co-located1 transmit and receive arrays

and θ0 is the target’s angle from array boresight. The target is assumed to be in the

array’s far field, such that the impinging signal on the receive array is viewed as a

plane wave. The receiver samples the output of the matched filters for range (r̂0 and

the receive beamformer samples the angle bin centered at θ̂0). The array structure

1For the transmit and receive array to be co-located, the target range r0 must be much larger than
the separation between transmit and receive array such that both arrays view the target at the same
angle.
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can be general in nature (this work is not restricted to uniform linear arrays), with

only an array phase center and a reference angle (termed array boresight) required.

A signal is transmitted from the mth transmit element, reflected from a single target

with delay τ0 = 2r0/c, Doppler γ0, and angle θ0, and received at the jth receive

element is described by baseband signal

yj(t) = α0xm(t− τ0)ejψmejψjej2πγ0t + v(t)

where α0 is the target’s radar cross section (RCS), ψm (ψj) is the phase shift induced

by the path between the mth transmit element (jth receive element) and the target,

and v(t) is the continuous time complex additive white Gaussian noise with v(t) ∼

CN (0, σ2
n). For narrowband signals, we can approximate the receive signal at a given

element as a phase shifted version of the receive signal at the phase center of the

array. In vector form, this is best represented by the array steering vectors. The

signal received by all Mr elements in vector form

Y(t) = α0ar(θ0)a∗t (θ0)X(t− τ0)ej2πγ0t + V(t) (3.1)

where (·)∗ denotes complex conjugate transpose, V(t) ∼ CN (0, σ2
nI) describes the in-

dependent and identically distributed additive white Gaussian noise vector at the Mr

receive elements, X(t− τ0) is the set of Mt transmit signals with delay τ0, and at(θ0),

ar(θ0) represent the transmit and receive steering vectors, respectively. Although the

results of this paper hold for a general array structure, the simulations presume a

uniform linear array with interelement spacing d and transmit and receive steering

vectors of the form,

a∗t (θ) =
[
1 ej

2π
λ
dsin(θ) · · · ej

2π
λ

(Mt−1)dsin(θ)

]
aTr (θ) =

[
1 ej

2π
λ
dsin(θ) · · · ej

2π
λ

(Mr−1)dsin(θ)

]
where λ is the carrier wavelength.
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A MIMO radar has the ability to transmit different waveforms from each of the

Mt elements in the array, and in general can be described by

X(t) =


x1(t)

x2(t)
...

xMt(t)

 .

The mth baseband transmit signal is composed of a shifted chip waveform modulated

by complex amplitude scalars,

xm(t) =
N∑
n=1

xm,n u (t− (n− 1)tb) (3.2)

where u(t) is the unit-energy length tb chip waveform, xm,n ∈ C is the complex chip

value, and the transmit signal is of length T0 = tbN . The discrete MIMO radar

transmit signal is then defined by the Mt ×N matrix X, where [X]m,n = xm,n.

The discrete transmit signal will be constrained under a total power constraint,

tr (XX∗) ≤ ρN (3.3)

where ρ is a power scale factor.

3.3 Time-Division Beamforming

For a single transmission in a pulsed co-located MIMO radar, the current MIMO

radar literature (see [33] for an overview) emphasizes the use of orthogonal wave-

forms at the transmitter. Orthogonality of the Mt waveforms is commonly achieved

via waveform coding, an idea similar to spatial multiplexing in MIMO wireless com-

munications [17]. Implementation of waveform orthogonality in the spatial domain

gives subarray MIMO radars [7–9], where an orthogonal waveform is transmitted

from each spatially disparate subarray. Beamspace MIMO radars [40] transmit wave-

forms on orthogonal beams, where the beamforming vectors are orthogonal in the

Mt-dimensional space. With these types of orthogonal MIMO radars in mind, we
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propose an additional transmit scheme consisting of orthogonal waveforms in the

time domain.

Time-division beamforming is defined through temporally multiplexing a set of

pulses onto different beamforming vectors. Before we mathematically introduce the

structure of time-division beamforming, we first define linear precoding as a design

technique that resolves the transmit signal into a product of two matrices [10]

X(t) = FP(t). (3.4)

The Mt-element transmit signal matrix X(t) is the product of a linear precoder

F ∈ CMt×M and an M -element continuous pulse matrix P(t), where 1 ≤ M ≤ Mt.

Time-division beamforming uses the linear precoding framework with a specific pulse

matrix, namely

X(t) = FP(t)

=
[
f1 f2 · · · fM

]


p1(t)

p2

(
t− T0

M

)
...

pM
(
t− (M − 1)T0

M

)

 (3.5)

where fm is an Mt × 1 beamforming vector with
∑M

m=1 ‖fm‖2 = ρ/M , ρ is a power

scaling factor, and the pulse matrix is comprised of time-shifted instances of sub-

pulses, pm(t), each with with support [0, T0
M

]. The subpulse is defined in terms of chip

waveforms,

pm(t) =

N/M∑
n=1

pmn u (t− (n− 1)tb)

where u(t) is the unit-energy length tb chip waveform and pmn ∈ C is the complex

chip value. The continuous time subpulse is similar to the continuous time transmit

signal in (3.2) with reduced support. The M pulses in (3.5) are temporally orthogonal

as they are time-shifted by T0/M , equal to the support of pm(t). This is depicted

graphically in Figure 3.1. Under similar assumptions to [33], we model the set of M



28

. . .

...
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...

Fig. 3.1. A pictorial representation of the M pulses with temporal orthog-
onality.
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subpulses as orthogonal, ∫
pm(t)pn(t− τ) dt ≈ 0 (3.6)

for all m,n, τ excluding the self correlation case (m = n at τ = 0). The discrete

subpulse pm =
[
pm1, pm2, . . . pm N

M

]
is constrained such that ‖pm‖2 = N . Typically

N � M , and hence we assume N/M is an integer. The transmit signal of (3.5) can

also be interpreted as the set subpulses successively projected onto the M beamform-

ing vectors,

X(t) =
M∑
m=1

fmpm

(
t− (m− 1)

T0

M

)
.

Inspecting the transmit signal with a finer temporal granularity, the time-division

beamforming transmit signal is subdivided into M subintervals. For each subinterval,

the mth subpulse is projected onto the mth beamforming vector. These subintervals

are non-overlapping; a single beamforming vector is transmitted for each subinterval.

This allows for easy implementation of multiple beamforming vectors with a per-

element transmit power constraint or the requirement for constant modulus signals

transmitted out of each element. A visual representation of time-division beamform-

ing is shown in Figure 3.2. This normalized plot shows the transmit signal as a

function of spatial angle and time (within T0) for M = 3. The beamforming vectors

are set to the array manifold of an Mt = 9 element array, with fm =
√

ρ
MtM

at(θm).

The sum beampattern, which is the instantaneous beampattern integrated over the

entire pulse duration, is shown in Figure 3.3. Much like the interpretation in [42],

the sum beampattern is the sum of each subinterval’s beampattern. For the case pre-

sented, the sum beampattern is the sum of the three beams pointed in three different

directions.

Note that time-division beamforming generalizes the concept of a phased ar-

ray and always includes phased array transmission as a special case. Consider a

phased array transmission fphasepphase(t) where fphase denotes a ρ-norm beamforming

vector and pphase(t) represents a pulse with energy N having support [0, T0] . Typi-

cally fphase is chosen using the transmit array respone vector as fphase =
√

ρ
Mt

at(θ̂0).
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Fig. 3.2. Time-division beamforming transmit signal with M = 3 subin-
tervals, designed for targeting spatial angles θθθ = [−40◦, 45◦, 5◦].
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Fig. 3.3. Sum beampattern for the time-division beamforming signal of
Figure 3.2.
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This single phased array pulse can be written in time-division beamforming nota-

tion by letting pm(t) =
√

N
Empphase

(
t+ (m− 1)T0

M

)
for 0 ≤ t ≤ T0

M
where Em =∫ mT0

M

(m−1)
T0
M

|pphase(t)|2 dt. The beamforming vectors are defined as fm =
√

ρEm
MtN

at(θ̂0).

The pulse pphase(t) can then be written as,

pphase(t) =
M∑
m=1

√
Em
N
pm

(
t− (m− 1)

T0

M

)
Intrapulse steering and its effect on the transmit signal’s beampattern were ob-

served in [43, 44]. The transmit beampattern specifies the amount of power radiated

as a function of angle from array boresight. For narrowband signals, it can be written

as a function of the transmit matrix,

ST (θ) = |a∗t (θ)X|2 (3.7)

where θ is the angle from array boresight. To more accurately describe ST (θ), we label

it as the sum beampattern since it characterizes the amount of power directed towards

a specific angle over the entire pulse duration, T0 = tbN . The sum beampattern can

be expressed as the sum of instantaneous beampatterns,

ST (θ) =
N∑
n=1

|a∗t (θ)xn|
2 .

We term the beampattern produced by each column of the transmit signal matrix,

Sn(θ) = |a∗t (θ)xn|2, as the instantaneous beampattern. Hence, the sum beampattern

can be formed by beamspoiling or intrapulse beamsteering [43], and better control

of the sum beampattern can be had by designing xn [44]. It is interesting to point

out that even if the sum beampattern is omnidirectional, the instantaneous beampat-

tern may be very directive in nature. Time-division beamforming builds upon these

observations, providing a clear example of a MIMO transmit signal with intrapulse

steering according to the M beamforming vectors.

With the assumption that M ≤ Mt ≤ N , the rank(R) ≤ M is completely de-

termined by the beamforming vectors. We note that the transmit signal covariance

matrix is,

R =
1

N

∫
X(t)X∗(t) dt = FF∗.
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This indicates time-division beamforming covariance matrices are intrinsically low-

rank, and serve as an alternative design strategy towards the optimization in [36] to

design transmit signals with low-rank covariance matrices. Observe that given the

linear precoding framework with orthogonal pulses, the transmit beampattern reduces

to,

ST (θ) = Na∗t (θ)Rat(θ)

= Na∗t (θ)FF∗at(θ).

We can then conclude the transmit beampattern in (3.7) is only a function of the

beamforming vectors in F. The pulse matrix, which includes the set of orthogonal

subpulses, has no impact on the transmit beampattern.

In many ways, time-division beamforming is similar to subarray MIMO radar

transmit schemes. In general, subarray schemes divide the Mt element array into M

subarrays. One of M orthogonal waveforms is transmitted from a subarray of Mt/M

elements for a duration of T0. In comparison, time-division beamforming transmits

one of M orthogonal waveforms from Mt elements for a duration of T0/M . The

tradeoff lies in the fact that subarray schemes use fewer elements to transmit for a

longer duration, where time-division beamforming uses more elements to transmit for

a shorter duration. The advantage of time-division beamforming lies in it’s beam-

forming gain; using the full array at any given time. This tradeoff will be analyzed

with the receive SINR performance metric later in the paper.

3.3.1 Receiver Design

The linear MIMO radar receiver applies matched filtering and receive combining

(also referred to as receive beamforming) to the target return received in the pres-

ence of interference and additive noise. The linear receive model will be developed

for a single target case, and subsequently extended to the M target scenario. In [4],

it was shown that a set of matched filter outputs form a sufficient statistic for an-

gle estimation and target detection given orthogonal waveforms on transmit. If the
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Fig. 3.4. A linear receiver with a bank of M matched filters behind each
receive element and a linear receive combiner w.

transmit signal is designed using the linear precoder in (3.4), the receiver need only

contain a bank of M matched filters behind each receive element. The bank of M

matched filters are denoted by an M × 1 vector H(t) = 1
N

P∗(−t)ej2πγ̂0t. As shown

in Figure 3.4, this bank of matched filters is replicated behind each antenna element,

where hm(t) = 1
N
p∗m((m− 1)T0

M
− t)ej2πγ̂0t is the mth element of H(t). After matched

filtering, the received signal (up to a constant phase ambiguity due to Doppler) is

described by an Mr ×M matrix Ymf (∆τ0,∆γ0, θ0, θ̂0),

Ymf (∆τ0,∆γ0, θ0, θ̂0) = α0ar(θ0)a∗t (θ0)FXXX p(∆τ0,∆γ0) + V̄ (3.8)

where ∆τ0 = τ̂0− τ0 and ∆γ0 = γ0− γ̂0 are the delay and Doppler mismatch, respec-

tively, and V̄ is the noise correlation matrix after matched filtering with vec
(
V̄
)
∼
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CN (0, σ
2
n

N
I). The pulse correlation matrix XXX p(∆τ0,∆γ0) is the output of the matched

filter bank to the set of M pulses mismatched in delay by ∆τ0 and Doppler by ∆γ0,

XXX p(∆τ0,∆γ0) =
1

N

∫ ∞
−∞

P(t)P∗(t−∆τ0)ej2π∆γ0t dt. (3.9)

Note that XXX p(∆τ0,∆γ0)→ IM as ∆τ0 → 0 and ∆γ0 → 0, as the set of M pulses are

designed to be orthogonal.

Adaptive or non-adaptive processing techniques combine the outputs of the matched

filter banks to perform receive combining and produce a decision statistic

yc,mf0 (∆τ0,∆γ0, θ0, θ̂0) = w∗vec
(
Ymf (∆τ0,∆γ0, θ0, θ̂0)

)
, (3.10)

where vec(·) vertically stacks the columns of its argument matrix into a single vector.

The MrM×1 receive combiner w operates on the received signal from all Mr elements

processed over all M subintervals.

3.3.2 Multiple Target Scenario

Thus far, we have described the setup for a co-located MIMO radar with a single

target. In the general case, M targets are located at different angles. Let θθθ =

[θ1, . . . , θM ]. The targets’ ranges and Dopplers are all taken to be equal, as this

represents the worst-case scenario2,

Y(t) =
M∑
m=1

αmar(θm)a∗t (θm)X(t− τ0)ej2πγ0t + V(t). (3.11)

The receive signal after matched filtering is described by

Ymf (∆τ0,∆γ0, θθθ, θ̂θθ) =
M∑
m=1

αmar(θm)a∗t (θm)FXXX p(∆τ0,∆γ0) + V̄.

Since we analyze this multiple target scenario for a single multidimensional pulse (a

single burst of energy), the same transmit signal must be used for all M targets. A

2Multiple targets at the same range and Doppler represent the worst case for detection performance
as the targets’ delay and Doppler cannot aid in detection by range or Doppler gating. This does not
consider the fact that different Dopplers will diminish the orthogonality properties of the waveforms
on receive.
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Fig. 3.5. A linear receiver with a bank of M matched filters behind each
element, with a set of receive combiners designed for each of the M targets.

receive combiner can be used for each target to distinguish the return of interest from

the other targets. The decision statistic for the mth target is formed after projecting

the vectorized matched filter output onto the mth receive combiner

yc,mfm (∆τ0,∆γ0, θθθ, θ̂θθ) = w∗mvec
(
Ymf (∆τ0,∆γ0, θθθ, θ̂θθ)

)
.

Figure 3.5 details the linear receiver for M target detection. A matched filter bank

exists behind each antenna element, with a separate linear combiner for all M targets.

The output of the mth combiner is the decision statistic yc,mfm (∆τ0,∆γ0, θθθ, θ̂θθ).
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3.3.3 Beampattern

Given an ideal point scatterer in the far field for a specified transmit signal and

receive combiner, the transmit-receive beampattern is the receive power as a function

of the point scatterer’s angle. For a linear precoded transmit signal, it can mathe-

matically be described as the square of the decision statistic in (3.10) with zero delay

and Doppler mismatch and unit-amplitude RCS,

STR(θ0, θ̂0) =
∣∣∣yc,mf0 (∆τ0 = 0,∆γ0 = 0, θ0, θ̂0)

∣∣∣2
= |w∗ (IM ⊗ ar(θ0)a∗t (θ0)) vec(F)|2

= |w∗ (IM ⊗ ar(θ0)) (IM ⊗ a∗t (θ0)) vec(F)|2

= |aTr (θ0)WcFTact(θ0)|2

= |a∗t (θ0)FW∗ar(θ0)|2 (3.12)

where ⊗ denotes the Kronecker product, w, F are the designed receive combiner and

linear precoder, and w = vec(W).

3.4 Ambiguity Function Analysis

A general form for the MIMO receive ambiguity function is derived using the

transmit signal, matched filter, and receive combiner. For time-division beamforming,

the MIMO receive ambiguity function is shown to display a space and delay-Doppler

separability.

3.4.1 MIMO Receive Ambiguity Function

The single-intput single-output (SISO) ambiguity function is defined the output

of a matched filter when the input is a Doppler-shifted and time-delayed version of

the original signal p(t) [27],

X (∆τ0,∆γ0) =
1

N

∫ ∞
−∞

p(t)p∗(t−∆τ0)ej2π∆γ0t dt (3.13)
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where ∆τ0 is the delay mistmatch and ∆γ0 is the Doppler mismatch for the received

signal p(t). The 1/N factor is included in the definition to normalize the waveforms to

unit-energy and also to stay consistent with the notation as the output of the matched

filter. The ambiguity function is useful to study the characteristics of the receive signal

when the estimate of target delay and Doppler is slightly inaccurate. The ambiguity

function for a single waveform and single antenna can be interpreted in two different

ways. One interpretation looks at the output of a matched filter, when the matched

filter is set to the same transmitted waveform with delay ∆τ0 and Doppler ∆γ0.

The other interpretation is to consider two closely spaced targets. These targets are

spaced close together in both the delay and Doppler domains. The ambiguity function

then measures the correlation of the returns from these two closely spaced targets.

The latter definition has been extended to MIMO radar in [42], and we extend the

definition of a SISO ambiguity function using matched filters in this work. For co-

located arrays and narrowband signal assumptions, four scalar target parameters are

required to define the MIMO receive ambiguity function: delay mismatch, Doppler

mismatch, and the true and estimated angles from array boresight. Unlike for delay

and Doppler, the ambiguity function cannot be defined in terms of angle mismatch

and must be defined in terms of θ0 and θ̂0 as the ambiguity function is not angle

invariant.

The MIMO ambiguity function of [42] looks at a similar noiseless receive signal.

They include the case for Mt orthogonal waveforms. Under the far field, coherent

scattering, and narrowband signal assumptions, we can write the receive signal for

general MIMO radar as,

Z̄(t; θ0, τ0, γ0) = ar(θ0)a∗t (θ0)P(t− τ0)ej2πγ0t
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where X(t) = ρP(t) is the set of Mt transmit waveforms. Since ρ is a scalar power

constraint, we will remove it from the ambiguity function expressions to simplify

notation. The correlation of the returns from two closely spaced targets is,

XXXMIMO = tr

[∫
Z̄(t; θ0, τ0, γ0)Z̄∗(t; θ̂0, τ̂0, γ̂0) dt

]
= a∗r(θ0)ar(θ̂0) · a∗t (θ0)XXX p(∆τ0,∆γ0)at(θ̂0) (3.14)

As was noted in [42], this MIMO ambiguity function displays a separability between

space and time.

Previous work has shown in great detail the extension of the ambiguity function

to multiple transmit antennas by analyzing the correlation between the receive sig-

nals from two closely spaced targets. The question remains whether there is a similar

interpretation if we extend the concept that considers the ambiguity function as the

output of a matched filter. In order to do this, we must consider a linear receive com-

biner in addition to the bank of matched filters behind each element in our definition.

We now explore this idea further.

The matched filter banks, linear precoder, and receive combining vectors are de-

signed for a single target with parameters Ω̂0 = [τ̂0, γ̂0, θ̂0]. For a MIMO radar that

employs the general linear precoding framework with M orthogonal waveforms at the

transmitter and the receiver output of (3.8), the noiseless received signal from a single

target with true parameters Ω0 = [τ0, γ0, θ0] is

Z(t) = ar(θ0)a∗t (θ0)FP(t− τ0)ej2πγ0t.

Matched filtering the noiseless receive signal gives an Mr ×M matrix

Zmf (∆τ0,∆γ0, θ0, θ̂0) = ar(θ0)a∗t (θ0)FXXX p(∆τ0,∆γ0)

where ∆τ0 = τ0 − τ̂0, ∆γ0 = γ0 − γ̂0, and XXX p(∆τ0,∆γ0) is as defined in (3.9).

Zmf (∆τ0,∆γ0, θ0, θ̂0) is similar to the matched filter output of the receive signal in

(3.8) only without receiver noise, which is consistent with the SISO ambiguity func-
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tion definition. It will be useful to describe the outputs of the bank of matched filters

in Figure 3.5 in vector form,

vec
(
Zmf (∆τ0,∆γ0, θ0, θ̂0)

)
=
(
XXX p(∆τ0,∆γ0)⊗ ar(θ0)a∗t (θ0)

)
vec (F)

where ⊗ is the Kronecker product and the identity vec(AXB) =
(
BT ⊗A

)
vec(X)

is used to transform a vectorized matrix product into a Kronecker product. We can

now show the ambiguity function result for a general transmit signal X(t) = ρP(t)

which includes the receive combiner.

Definition 3.4.1 The MIMO receive ambiguity function for a general MIMO trans-

mit signal X(t)

XMIMO-Rx(∆τ0,∆γ0, θ0, θ̂0) = yc,mf0

= w∗vec (ar(θ0)a∗t (θ0)XXX p(∆τ0,∆γ0))

= a∗t (θ0)XXX p(∆τ0,∆γ0)W∗ar(θ0) (3.15)

= w∗
(
I⊗ ar(θ0)

)(
I⊗ a∗t (θ0)

)
vec
(
XXX p(∆τ0,∆γ0)

)
(3.16)

= vec(a∗r(θ0)W)∗vec
(
a∗t (θ0)XXX p(∆τ0,∆γ0)

)
(3.17)

= aTr (θ0)WcXXX T
p (∆τ0,∆γ0)act(θ0) (3.18)

= a∗t (θ0)XXX p(∆τ0,∆γ0)W∗ar(θ0). (3.19)

where w = vec(W).

We note that for the specific case of receive combiner, W = ar(θ̂0)a∗t (θ̂0), the

MIMO receive ambiguity function simplifies to the MIMO ambiguity function of [42],

which was repeated in this work in (3.14).

If we consider a linear precoded MIMO transmit signal, we get a very similar form

of MIMO receive ambiguity function as for the general transmit signal.

Corollary 1 Consider a linear precoded MIMO transmit signal of the form X(t) =

FP(t). The MIMO receive ambiguity function reduces to,

XLP(∆τ0,∆γ0, θ0, θ̂0) = a∗t (θ0)F · XXX p(∆τ0,∆γ0) ·W∗ar(θ0). (3.20)
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A separability exists between XXX p(∆τ0,∆γ0) and the transmit weights, a∗t (θ0)F, and

receive weights, W∗ar(θ0).

In [45], the separability property of phased array radar is shown for a four-

dimensional ambiguity function of delay, Doppler, azimuth, and elevation. The az-

imuth and elevation properties of the ambiguity function are designed independently

from the delay and Doppler properties for a single phase-shifted transmit signal. We

show the result in [45] is similar to Definition 3.4.1.

Corollary 2 Consider a phased array transmit signal. For any M , let fm =
√

ρEm
MtN

at(θ̂0)

and pm(t) =
√

N
Empphase

(
t+ (m− 1)T0

M

)
. Let E = diag(

√
E1,
√
E2, . . . ,

√
EM) such that

[E]m,m =
√
Em. By designing the receive combiner to be w = 1√

MrN

(
E⊗ ar(θ̂0)

)
, we

can simplify the MIMO receive ambiguity function as

XPA(∆τ0,∆γ0, θ0, θ̂0)=

(√
ρ

MtMr

a∗r(θ̂0)ar(θ0)a∗t (θ0)at(θ̂0)

)
·
∫
pphase(t)p

∗
phase(t−∆τ0)ej2π∆γ0t dt

where the MIMO receive ambiguity function is a scaled version of the ambiguity func-

tion for pphase(t), with the scale factor dependent on the mismatch between θ̂0 and

θ0.

Considering one last special case, assume the set of M subpulses are identical,

p1(t) = · · · = pM(t) = p(t).

Corollary 3 For large N and common subpulses, the ambiguity function simplifies

to

XTDBF

(
∆τ0,∆γ0, θ0, θ̂0

)
= a∗t (θ0)FW∗ar(θ0) · X (∆τ0,∆γ0). (3.21)

The MIMO receive ambiguity function simplifies to the product of the SISO ambiguity

function in (3.13) and the complex argument of the transmit-receive beampattern,

STR(θ0, θ̂0), in (3.12).



41

Proof: For large N and small delay mismatch ∆τ0, we assume the pulse cor-

relation matrix in (3.9) behaves like a scaled identity,

XXX p(∆τ0,∆γ0) = IM
1

N

∫
p(t)p∗(t−∆τ0)ej2π∆γ0t dt.

The expression is then simplified by |ab|2 = |a|2|b|2 for a, b ∈ C.

The effect of delay and Doppler rest solely in the X (∆τ0,∆γ0) term. As a result,

p(t) can be designed using signals with favorable delay-Doppler properties, many of

which are detailed in [46]. The spatial properties rest soley in the transmit-receive

beampattern evaluated at θ0. Hence, Corollary 3 states, under time-division beam-

forming, the temporal and spatial properties can be designed independently through

p(t) and w,F, respectively. With this in mind, this work focuses on the design of

the receive combiners and linear precoder, as they play important roles in spatial

resolution.

This MIMO receive ambiguity function differs from previous definitions in the

current literature [42,47]. The MIMO ambiguity function in [42] compares the inner

product between the signal returns from two targets with target parameters Ω0,Ω1.

This indicates how the return from a target with parameters Ω0 is correlated with

the return from a target with parameters Ω1, giving a sense of how well these returns

can be distinguished from one another. In [47], the MIMO ambiguity function is

the output of a bank of matched filters after phase shifting and summing (designed

according to Ω̂0) where the return is from a target with parameters Ω0. The MIMO

receive ambiguity function extends the work in [47] by replacing the coherent phase-

shifted sum by a linear receive combiner w. For example, the MIMO ambiguity

function in [47] is a specific case of the MIMO receive ambiguity function in (3.15) if

w = 1M ⊗ ar(θ̂0), where 1M is a length-M vector of all ones.

3.5 Linear Precoder and Receive Combiner Design

The MIMO radar transmit signal plays an important role in multiple target de-

tection. In general, detection of targets in MIMO radar boils down to sampling the
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space in delay, Doppler, and angle. These samples are compared to a threshold for

a given false alarm probability. The signal-to-interference-plus-noise ratio (SINR) of

these samples proves crucial to target detection performance [48]. In addition, the

lack of orthogonality in the returns from multiple targets necessitates the use of SINR

as the performance metric to optimize in this work.

Consider a multiple target scenario, with M targets all at the same range and

Doppler but at different angles. The receive SINR is defined as the ratio of power

returned from the target of interest to the power of the returns from all other M − 1

targets plus additive white Gaussian noise. In detecting the mth target, our model

expresses the returns of the other M − 1 targets as interference. The receive SINR

for the mth target is calculated for a single pulse after receive combining with delay

mismatch ∆τ0 and Doppler mismatch ∆γ0,

SINRm =
E [|αmw∗mvec (ar(θm)a∗t (θm)FXXX p(∆τm,∆γm))|2]

E

[∣∣∣∑l 6=m αlw
∗
mvec

(
ar(θl)a∗t (θl)FXXX p(∆τl,∆γl) + V̄

)∣∣∣2] (3.22)

where E[·] denotes the joint expectation over the RCS values αm ∼ CN (0, σ2
m) and

the receive noise. Receive SINR as a design metric was acknowledged in [6], but

not utilized since the focus of that work was on transmit beamforming. The main

idea in [6] of simultaneously maximizing power on target and minimizing the cross-

correlation of the targets’ returns is similar to the idea we use of maximizing the

receive SINR. Our method serves as an alternative transmit design strategy using

time-division beamforming and receive SINR as optimization criteria.

To improve the receive SINR in (3.22), wm and F must be optimized. However,

the SINR expression in (3.22) is a function of the delay and Doppler mismatch of M

targets, which is likely unknown to the user. We will design the receive combiners and

linear precoders to the SINR expression where it is assumed zero delay and Doppler

mismatch. In this fashion, the SINR expression for the mth target can be rewritten

as

SINRm =
w∗m

(
σ2
mRmf̃ f̃∗R∗m

)
wm

w∗mRm,intwm
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where Rm = (IM ⊗ ar(θm)a∗t (θm)), f̃ = vec(F), and Rm,int =
∑
l 6=m

σ2
l Rlf̃ f̃

∗R∗l + σ2
n

N
I.

3.5.1 Phased Array Time-Division Beamforming

To incorporate the phased array’s ability to cohere power in space, phased array

time-division beamforming designs the individual beamforming vectors according to

the array’s transmit steering vectors. The mth column of F is steered towards the

estimated angle of the mth target,

F =

√
ρ

MtM

[
at(θ̂1) at(θ̂2) · · · at(θ̂M)

]
.

For each subinterval, this linear precoder design maximizes power towards a specific

angle. Phased array time-division beamforming possesses low complexity to design,

with the added benefit of constant modulus entries for improved amplifier efficiency.

Considering a point target at θm, power will be placed on the target for all M

subintervals. Albeit maximum power will be directed towards the target during the

mth subinterval, the other subintervals apply power to the target as long as it does not

reside in a spatial null. Although phased array time-division beamforming maximizes

power on target for a given subinterval, it cannot guarantee maximum energy on

target for a given pulse. This uncovers a need to jointly optimize the complete set of

beamforming vectors in F, an optimization we denote as max-min SINR time-division

beamforming.

3.5.2 Max-Min SINR Time-Division Beamforming

Transmit signal design to maximize the sum power directed at M targets was

considered in [6]. In that work, it was noted that sum power may not be a suitable

metric for target detection. Maximizing the sum power directed towards all M targets

does not imply a sufficient amount of power is directed towards each and every target.

Extending this idea to the metric of target receive SINR, maximizing the sum SINR

does not guarantee a sufficient SINR for target detection. To mitigate this, we propose
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a max-min optimization on the receive SINR. We denote the target with the lowest

SINR as the weakest target, and form a max-min optimization to increase the receive

SINR of the weakest target,

[wopt,1, . . . ,wopt,M , f̃opt] = argmax
w1,...,wM ,̃f

min
m

SINRm (3.23)

where f̃ obeys the total power constraint ‖f̃‖2 ≤ ρ.

This max-min optimization focuses on maximizing the SINR of the target with the

weakest (or minimum) receive SINR. This optimization solves for optimal transmit

precoder and M optimal receive combiners. Since optimizing over wm and f̃ in (3.23)

is non-convex, an alternating maximization method can be used as an approach to

optimize each parameter independently.

Given f̃ , the receive combining matrix W is constructed by designing the individ-

ual receive combiners, wm. The per target receive SINR is maximized by choosing

the receive combiner as the MMSE combiner,

wopt,m = R−1
m,intRmf̃

where Rm,int =
∑
l 6=m

σ2
l Rlf̃ f̃

∗R∗l +σ2
nI and Rm = (I⊗ ar(θm)a∗t (θm)). The derivation of

the optimal receive combiner is given in Appendix A. The optimal receive combining

matrix is then Wopt = [wopt,1 wopt,2 · · ·wopt,M ].

Given W, the optimization in (3.23) reduces to

f̃opt = argmax
f̃≤ρ

min
m

σ2
mw∗mRmf̃ f̃∗R∗mwm

w∗m

(∑
l 6=m

σ2
l Rlf̃ f̃∗R∗l + σ2

n

N
I

)
wm

.

This optimization is equivalent to optimizing over the vectorized linear precoder’s

covariance matrix with a rank constraint,

R̃opt = argmax
R̃�0

rank(R̃)=1

tr(R̃)≤ρ

min
m

σ2
m tr

(
w∗mRmR̃Rmwm

)
∑
l 6=m

σ2
l tr

(
w∗mRlR̃R∗lwm

)
+ σ2

n‖wm‖2
N
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where R̃ = f̃ f̃∗ and R̃ � 0 denotes R is a positive semidefinite matrix. Imposing the

rank 1 constraint guarantees that f̃ can be found from the dominant eigenvector of

R̃. Finally, introducing an auxiliary variable κ, referred to as the power threshold,

the max-min optimization becomes

max κ

such that SINRm =
σ2
mtr

(
R̃R∗mwmw∗mRm

)
∑
l 6=m

σ2
l tr
(
R̃R∗lwmw∗mRl

)
+ σ2

n‖wm‖2
N

≥ κ

for m = 1, 2, . . . ,M

R̃ � 0

rank(R̃) = 1

tr(R̃) ≤ ρ.

This optimization can be formed as a convex optimization problem if the power

threshold κ is given and the rank constraint on R̃ is relaxed,

max κ

such that σ2
mtr

(
R̃R∗mwmw∗mRm

)
− κ

∑
l 6=m

σ2
l tr
(
R̃R∗lwmw∗mRl

)
≥ κσ2

n‖wm‖2

N

for m = 1, 2, . . . ,M

R̃ � 0 (3.24)

tr(R̃) ≤ ρ.

Fortunately, relaxing the constraint on the rank of R̃ is an equivalent optimization to

constraining R̃ to be rank 1 as [49] showed the optimal R̃ will always be rank 1. With

this in mind, the optimization is convex if the power threshold κ is known. The power

threshold is not known ahead of time, and is estimated using an iterative technique

which chooses κ by bisecting the realizable space. In Appendix B, it is shown that κ

is bounded by 0 ≤ κ ≤ ρMNMtMr‖wm‖2/σ2
n. Initially, the realizable space for κ is

Υ0 = {υmin
0 , υmax

0 } where υmin
0 , υmax

0 are the upper and lower bounds on κ, respectively.

At the initial stage, κ0 = υmax
0 . At the mth stage of the iterative process, κm is
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plugged into the convex optimization in (3.24) and a convex optimization program,

e.g. CVX [50], is used to determine if the optimization is feasible or not. If feasible, κm

lies in the realizable space and this space is subsequently reduced to Υm = {κm, υmax
m−1}.

If infeasible, Υm = {υmin
m−1, κm}. The next iteration chooses κm+1 by bisecting Υm,

i.e. κm+1 =
(
υmin
m + υmax

m

)
/2. The iteration stops when the power threshold percent

change is less than ε, |κm+1 − κm|/κm < ε.

In summary, the max-min SINR optimization alternates between (a) solving for

W given f̃ and (b) solving for f̃ given W. The initialization of f̃ heavily affects

the performance of the optimization as this alternating method only produces a lo-

cally optimal solution [51]. Depending on the initial f̃ , the local maximum can be

the global maximum. In general, this is accomplished by running the optimization

initializing with random f̃ and selecting the value that yields the greatest minimum

SINR. Empirically, we found that initializing with f̃ =
√

ρ
MtM

[aTt (θ̂1) · · · aTt (θ̂M)]T

provided results equivalent to those which were randomly initialized. A summary of

the max-min SINR method is given in Algorithm 1.

3.6 Simulations

In this section, we compare the SINR performance of the proposed phased array

and max-min SINR time-division beamforming signals to existing transmit schemes.

We compare these schemes to omnidirectional MIMO (transmitting orthogonal wave-

forms from each antenna element), overlapping subarrays [8, 9], and disjoint subar-

rays [7]. The conventional phased array is not considered in these simulations due to

its narrow main beam and subsequently poor receive SINR for multiple targets.

Consider a co-located transmit and receive array of Mt = Mr = 9 elements in a

uniform linear array with d = λ/2 element spacing. The total transmit power is 0dB,

with a σ2
n = −10dB receive noise variance giving a receive SNR of 10dB. All sim-

ulations assume M = 3 targets, with each target parametrized by {τm, γm, θm, αm}.

We assume M is known with estimates θθθ = [θ1 · · · θM ] and ααα = [α1 · · ·αM ] and all M
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Algorithm 1 Max-Min SINR Optimization

1: Initialize: f̃ =
√

ρ
MtM

[aTt (θ̂1) · · · aTt (θ̂M)]T , κ0 = ρMNMtMr‖wm‖2
σ2
n

2: repeat

3: wm = R−1
m,intRm for m = 1, 2, . . . ,M

4: repeat

5: κm =
(
υmin
m−1 + υmax

m−1

)
/2

6: R̃ = argmaxR̃ minm SINRm, see (3.24)

7: if optimization feasible then

8: Υm = {κm, υmax
m−1}

9: else if optimization infeasible then

10: Υm = {υmin
m−1, κm}

11: end if

12: until |κm − κm−1|/κm−1 < ε

13: f̃ given by eigenvector decomposition of R̃

14: SINRm = σ2
mw∗

mRmR̃R∗
mwm

w∗
mRm,intwm

for m = 1, 2, . . . ,M

15: SINRmin
m = minm SINRm

16: until |SINRmin
m − SINRmin

m−1|/SINRmin
m−1 < δ

17: return f̃ ,w1,w2, . . . ,wM
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targets are located in a common range bin. The common range bin assumption stems

from the orthogonal subpulse assumptions. If the set of M subpulses are designed

to be approximately orthogonal, matched filtering on receive would be able to sepa-

rate the returns from multiple targets except when the targets are all located at the

same range. The assumption that the number of targets is known could apply to air

traffic control, where this information is tracked. Estimates of the target locations θ̂θθ

and RCS amplitudes α̂αα = [|α1| · · · |αM |] can be acquired through another system or

through previous scans of the space using time-division beamforming. For example,

designing the time-division beamforming transmit signal to beamform towards M

angle bins with α̂m = 1 represents a target detection problem. The M angle bins

per transmission could be chosen in a random or deterministic manner to cover the

entire visible space, with a target present or target absent decision made for each

range-angle bin.

The normalized transmit beampattern is shown in Figure 3.6, where power is

concentrated towards θ̂θθ = [−30◦, 15◦, 20◦]. A vertical line is plotted at each target

location. The beampattern is a function of the power averaged over the entire pulse

duration T0. We note that the max-min SINR transmit signal doesn’t necessarily pro-

duce the maximum transmit power among all schemes. The max-min SINR transmit

signal was designed to maximize the per target SINR on receive. Since the return

from a target at −30◦ would remain fairly uncorrelated from the targets at 15◦ and

20◦, less power is directed towards −30◦. Although not shown, the time-averaged

power for each element varies significantly among the schemes, a property that could

affect waveform implementation. For the transmit beampatterns in Figure 3.6, the

phased array time-division beamforming, omni-directional MIMO, and disjoint sub-

array transmit schemes all maintain constant modulus transmit signals for constant

modulus subpulses. The max-min SINR time-division beamforming transmit signal

has a peak-to-average power ratio of 1.1, where the overlapping subarrays signal has

a peak-to-average power ratio of 1.3. Depending on the hardware, the improved
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Fig. 3.6. Normalized transmit beampatterns for M = 3 targets and α̂αα =
[1 1 1]. Vertical lines represent targets at −30◦, 15◦, 20◦.

performance of these two schemes could be diminished due to practical amplifier

constraints.

The design objective of maximizing the weakest target’s SINR will serve as a

benchmark to compare the various transmit schemes. To see how these transmit

schemes perform for various target locations, we will define the average minimum

SINR for M targets as

Eθθθ,ααα

[
min
m

SINRm

]
(3.25)

where the vector of M target locations is uniformly distributed as

θθθ = [θ1, θ2, . . . , θM ] ∼
M∏
m=1

U
(
−π

2
,
π

2

)
(3.26)
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Fig. 3.7. Average minimum SINR performance for M = 3 targets as a
function of target RCS variance, where αm ∼ CN (0, σ2

α).

and the target RCS values are independently distributed as αm ∼ CN (0, σ2
α).

The minimum SINR is plotted as a function of the RCS variance, σ2
α in Figure

3.7. For this simulation, the transmit signals are designed with perfect knowledge of

target locations, θ̂θθ = θθθ, and the minimum SINR is averaged over 700 realizations of

θθθ,ααα.

The time-division beamforming schemes give an increased minimum SINR on

average for random target locations and RCS values. On receive, the linear combiner

for all schemes uses knowledge of θ̂θθ and α̂αα to isolate the return of interest from the

interference. For many of the iterations we ran, the optimal receive combiner turned

out to be a zero-forcing combiner, where wm was maximally correlated with the
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return from the mth target yet constrained to lie in the nullspace of the received

interference [3]. Max-min SINR time-division beamforming gives a 2dB improvement

over phased array time-division beamforming, most notably due to its use of α̂αα in

designing the transmit signal. Despite an average 2dB drop in performance, the

phased array time-division beamforming transmit signal remains appealing due to its

constant modulus property for improved high-power amplifier efficiency. The disjoint

subarray and omnidirectional MIMO schemes perform poorly due to the weak or

nonexistent directivity in their transmit beampatterns. For M = 3 disjoint subarrays

in an Mt = 9 element array, each subarray contains 3 elements and poorly coheres

power due to its small aperture.

For all the simulations in this section up to this point, it is assumed the linear

precoder and receive combiner are designed with perfect knowledge of the target

locations, θ̂θθ = θθθ. As one might expect, the receive SINR for each target will be

reduced if target location estimates are imperfect. We now introduce the alignment

error for the mth target (defined in radians)

∆θm = θm − θ̂m.

For our simulation, ∆θm is independently and identically distributed as a wrapped

Gaussian distribution with probability density function

f(∆θm;µm, σ∆) =
1

σ∆

√
2π

∞∑
m=−∞

exp

(
− (∆θm − µm + 2πm)2

2σ2
∆

)
,

where µm and σ2
∆ are similar in form to the mean and variance of the normal distri-

bution. For our simulations, µm = θm and σ2
∆ is equal for all targets.

The effect of this alignment error results in beamshape loss3. Since the receive

combiner wm is also a function of θ̂θθ, the SINR for all transmit schemes (including

omnidirectional MIMO) is reduced by alignment error. The average minimum SINR

as a function of alignment error variance σ2
∆ is shown in Figure 3.8 for M = 3 targets

3Although beamshape loss usually refers to a phased array and the loss in power on target due to
beam pointing error, we use it here as the drop in SINR due to beamforming vectors designed with
imperfect target location estimates.
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with Mt = Mr = 8 and θθθ chosen from the uniform distribution in (3.26) transmitted

at 5dB and averaged over 900 realizations of ∆θm.
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Fig. 3.8. The effect of alignment error on average minimum SINR for
M = 3 target scenario with θθθ chosen randomly.

For small alignment error variance, the results are similar to that of Figure 3.7.

However, as the alignment error variance increases and the angle estimates are not

as accurate, performance drops off. The time-division beamforming transmit signal

appears to be more sensitive to target location estimate errors, as compared to the

scanned phased array.



53

3.7 Conclusion for Time-Division Beamforming

Time-division beamforming separately designs the transmit signal’s spatial and

temporal properties through a linear precoder and pulse matrix, respectively. The

pulse matrix is of similar form to the omnidirectional MIMO radar, constructed of

M orthogonal waveforms. However, in this work, the orthogonality constraint is met

through time-division multiplexing (i.e., a temporal orthogonality). We allow the

number of pulses to be less than or equal to the number of transmit antennas, and a

linear precoder maps the M orthogonal waveforms to Mt transmit antennas.

We defined a MIMO receive ambiguity function that incorporates the linear pre-

coder, pulse matrix, and linear receiver. Time-division beamforming produces an

MIMO receive ambiguity function with spatial and delay-Doppler separability. This

separability allows existing signals with favorable delay and Doppler properties to

be used in the pulse matrix. We then focused on designing the linear precoder for

desirable spatial properties.

For M spatially separated targets located at the same range and Doppler, a max-

min optimization was formed to maximize the minimum SINR, or in other words

to maximize the SINR of the target with the weakest return. This optimization

was carried out by the proposed max-min SINR method. The returns of the other

M − 1 targets served as interference in the SINR model. Locally optimal linear

precoders and receive combiners were found and their SINR performance compared

to existing MIMO radar transmit signal schemes. Furthermore, it was shown that

even with inaccurate measurements of target locations, the transmission of correlated

waveforms improved the receive SINR over the transmission of orthogonal waveforms.

The performance, complexity, and power constraint of each transmit signal must

be taken into account and weighted differently depending on application. No sin-

gle transmit scheme works the best for all applications. For instance, the max-min

SINR optimization produces a linear precoder that yields the best minimum SINR

performance on average, yet is computationally intensive to construct. The phased
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array linear precoder, which can be interpreted as an intrapulse steering of the beam

in various directions, performed almost as well with far less complexity and met the

more stringent constant modulus power constraint. The subarray techniques provide

for low complexity schemes, with disjoint schemes obeying uniform element power

constraints.
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4. WIRELESS CHANNEL ESTIMATION

Coherent wireless communication systems require knowledge of the channel to detect

the transmit signal at the receiver. For a narrowband channel, channel knowledge

represents information on the complex scalar gains between the transmit and receive

antennas. If channel knowledge is available (at either the transmitter or the receiver),

significant capacity gains can be achieved over noncoherent signaling. For this rea-

son, a large body of work exists on techniques to obtain channel knowledge at the

transmitter and receiver.

Channel state information (CSI) is the term commonly used to describe either

the instantaneous channel or the second-order statistics of the wireless channel. If

the receiver has channel knowledge, the system possesses channel state information at

the receiver (CSIR). Symbol estimation algorithms provide improved performance and

simplicity with CSIR. If the transmitter has channel knowledge, the system possesses

channel state information at the transmitter (CSIT). For single antenna systems, this

is useful for power and rate control. For multiple antenna systems, this is used for

transmit beamforming or linear precoding to increase SNR at the receiver.

4.1 Coherence Time for Block Fading Channels

A block-fading channel model assumes the channel remains fixed for a certain

duration known as the coherence time [3]. Although wireless channels are constantly

varying due to the ever changing environment, block-fading channels are appropriate

for slowly varying channels. The channel remains fixed for a given coherence time, or

block. An uncorrelated channel realization is then drawn for the next block. If the

coherence time is less than the codeword length (i.e., the codeword spans multiple

coherence intervals), a fast fading channel is assumed. Conversely, if the coherence
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time is greater than the codeword length, a slow fading channel is assumed. With

knowledge of the coherence time, coherent wireless communication systems divide

the coherence interval into two phases, a training phase and a data transmission

phase [19]. During the training phase, signals known a priori to both the transmitter

and receiver are propagated through the channel. These signals are generally referred

to as pilots or training sequences. With knowledge of the pilots, the receiver is able

to estimate the current channel. If a feedback path exists between the receiver and

transmitter, the channel estimate (or a quantized version of it) can be fed back to

obtain CSIT. The channel estimate is then used during the data transmission phase

to aid in symbol transmission and detection.

Given the transmit structure for block-fading channels just discussed, multiple

design variables still need to be addressed to maximize channel capacity for a given

coherence time. If too little resources are applied to the training phase, a poor

estimate of the channel will result and suboptimal beamforming during the data

transmission phase will reduce receive SNR. If too many resources are applied to the

training phase, an accurate channel estimate will be had but the power and time to

subsequently transmit data will be scarce. These tradeoffs are explored in [19], where

the optimal training length and optimal transmit power are discussed for various

SNR’s.

4.2 MISO Channel

Consider a multiple-input single-output (MISO) wireless channel with M trans-

mit antennas and a single receive antenna. In coherent communications, the wireless

channel is considered known and aids in signal transmission and detection. Consid-

ering a single channel use, the input-output relationship is

r = x∗ (αh) + n (4.1)

where x ∈ CM×1 is the transmitted signal with E [‖x‖2] = ρ, ρ denotes the transmit

power, r ∈ C is the received signal, n ∼ CN (0, σ2
n) the additive noise, and αh is the
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MISO wireless channel. The channel is comprised of the complex scalar channel gain

α and the channel direction h, with ‖h‖ = 1. The input-output equation is defined

in a slightly unconventional way, where the channel is projected onto the transmit

signal. We write it in this manner to set up the problem for channel estimation, as

this notation more closely resembles the linear form for vector estimation [52].

MISO wireless systems are restricted to beamforming; transmitting a single sym-

bol from the M transmit antennas at each channel use. A beamformed transmit

signal is defined as x = fs, where the beamforming vector f and complex symbol s

are constrained to ‖f‖ = 1 and E[|s|2] = ρ. Fig. 4.1 shows beamforming for a MISO

channel. For the MISO system described in (4.1), the receive SNR is defined as

SNR =
ρ|α|2|f∗h|2

σ2
n

. (4.2)

Separating the channel into a scalar gain term and a vector on the complex unit-

sphere clearly shows the impact the channel direction has on receive SNR. For a

given power constraint ρ, the receive SNR is maximized when the beamforming gain,

|f∗h|2, is maximized. Since ‖f‖ = ‖h‖ = 1, the beamforming gain is maximized when

the beamforming vector is aligned with the true channel direction, f = h. In general,

the true channel direction is unknown for a given block, and must be estimated.

4.3 Background on MISO Channel Estimation

In wireless communications, accurate channel state information plays a central

role in realizing the gains afforded by coherent communications. In light of this,

much literature exists to design training sequences to estimate the channel. For a

block-fading channel model, [19] addressed capacity maximizing values for various

parameters, including the length of the training phase and the total power used for

training.

Consider a discrete time interval T , composed of the discrete training interval K

and the discrete data transmission interval D, where T = K + D. For the training

phase, we will borrow some of the language typically used for the data transmission
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f

Fig. 4.1. Transmit and receive structure for beamforming across a MISO
channel.
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Fig. 4.2. Transmit and receive structure for training the MISO channel
with sounding vector wk.

phase. We will refer to each discrete time use for training as a channel use. With

this interpretation in mind, the beamforming vectors specifically designed for training

will be termed sounding vectors. We will, however, use a different notation for the

beamforming vectors used for training; wk is the sounding vector for the kth channel

use. The sounding vectors and receive signal for the training phase are illustrated in

Fig. 4.2.

In general, the training phase jointly estimates the channel magnitude and di-

rection, g = αh. We will use this notation to describe common channel estimation

techniques. The pilots are defined by the pilot matrix W ∈ CM×K , and the input-

output channel relationship is given by,

y =
√
ρW∗g + n (4.3)
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where ρ is the total transmit power for each channel use and M is the number of

transmit antennas. The sounding vector matrix W is composed of K sounding vectors

(one for each channel use),

W =
[
w1 w2 · · · wK

]
.

Three common ways to estimate the channel are through the maximimum likeli-

hood (ML) estimate, minimimum mean square error (MMSE) estimate, and the least

squares (LS) estimate,

ĝML =
1
√
ρ

(WW∗)−1 Wy

ĝMMSE =
1
√
ρ

(
σ2
n

ρ
I + WW∗

)−1

Wy

ĝLS =
1
√
ρ

(WW∗)−1 Wy

The maximum likelihood estimator and least squares estimator assume W to be of

rank M , implying K ≥M . The mean square error of ĝMMSE is given by

MSE = tr

[(
I +

ρ

σ2
n

WW∗
)−1

]
.

In [19], the pilot matrix which minimizes the mean square error of the channel estimate

obeys the property

WW∗ =
K

M
I. (4.4)

This result shows that WW∗ must be a scaled identity matrix; the pilot matrix must

consist of orthogonal pilots, or orthogonal sequences, transmitted out of each transmit

element. Of course, it is important to mention that the type of pilot matrix in (4.4)

minimizes the mean square error on the channel estimate under the assumption that

individual channel gains are independently drawn from a standard complex normal

distribution, [g]i ∼ CN (0, 1). Optimal pilots with knowledge of the channel’s second

order statistics for correlated channels were designed in [20].

The problem of choosing the optimal length of the training phase was also con-

sidered in [19] for MIMO channel estimation. From that work, it was proven that
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the optimal discrete training interval is equal to the number of transmit antennas,

K = M . This holds true for all coherence times T and transmit power constraints ρ.

The problem arises when the transmit array contains a large number of elements, as

is assumed in much of the massive MIMO literature [21]. The length of the training

phase scales with the number of transmit elements, which can have an impact on data

throughput for very large arrays.

The coherence time is typically fixed or assumed fixed based on the environment.

Furthermore, the coherence time is completely independent of any transmit or receive

processing, and is purely a function of the electromagnetic properties of the local

environment. For this reason, T is considered fixed. One can see that if the system

assumes optimal pilots according to [19], with T = K + D = M + D, then as

the number of antennas increases the number of channel uses to optimally train the

channel increases as well. The problem arises when the number of channel uses to

train approaches T . When this happens, there are very few channel uses left for

data transmission and system throughput will suffer. Suboptimal training schemes

must be used for this case, where a hit in channel estimation performance is taken

when K < M . This provides an open area to design suboptimal training schemes for

massive MIMO systems, and is exactly the scenario for which our beam alignment

scheme was created.

4.4 Previous Work on Adaptive Sampling

Channel estimation with training sequences of length less than the number of

transmit antennas was considered for distributed transmit beamforming systems in

[53]. The set of training sequences which minimizes the mean square error of the

MMSE channel estimate was shown to be approximately similar to those maximizing

the expected beamforming gain, which again renders a training signal matrix with

orthogonal columns. The optimal full-rank set of receive beamforming vectors for

angle of arrival estimation was derived in [54]. The channel gain term was treated as
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a deterministic unknown, and beamforming vectors derived to minimize the variance

on the angle of arrival estimate.

Thus far, the referenced literature pertains to a class of open-loop schemes in

which the training sequence is predetermined. These training sequences cannot be

adapted to knowledge gathered of the instantaneous channel. Alternatively, adaptive

training schemes use a feedback link from the receiver to the transmitter to guide the

design of the training sequence. Closed-loop training for massive MIMO beamforming

systems was considered in [55]. Improvements in average receive SNR were shown

by utilizing the training sequences received in previous channel blocks. Line-of-sight

channel estimation for large arrays in backhaul cellular networks is presented in [56].

Adaptive subspace sampling, where samples from previous channel uses aid in beam-

former design, gave improved beamforming gain over non-adaptive techniques. Pilot

beampatterns were sequentially designed for massive MIMO systems in [57] through

the use of a Kalman filter for spatially and temporally correlated channels. Feedback

is inherent in a radar system, where [58] adapted the transmit beamforming vector

to current channel conditions. Additionally, earlier work in [59] actively designed

waveforms for improved sequential hypothesis testing. Considering the compressed

sensing literature, adaptive schemes estimate sparse (only a few number of nonzero

elements) vectors in [60].

In this work, we consider channel estimation for beamforming systems in a single

coherent channel block. A feedback channel allows adaptation of the training sequence

after each channel use. The training sequence is comprised of sounding vectors, which

are sequentially designed in a manner that aligns the estimated channel direction

with the true instantaneous channel direction. The channel gain term is treated

as a nuisance parameter, and its maximum likelihood estimate used in the channel

direction estimator. With the inclusion of a feedback link, estimating the channel

direction can be seen as an adaptive sampling scheme. The set of K sounding vectors

behave as the projection matrix of an unknown channel direction h. This work focuses

on frequency division duplexing (FDD) systems, where channel reciprocity cannot be



63

used for transmit beamforming. Nonetheless, this scheme remains applicable for time

division duplexing (TDD) systems without the need for a feedback channel.



64

5. CLOSED-LOOP BEAM ALIGNMENT FOR CHANNEL

ESTIMATION

We present a feedback-enabled training algorithm targeted towards underdetermined

training, where the number of channel uses for training is less than the number of

transmit antennas. As we have shown in the previous chapter, the optimal training

sequence requires K ≥ M . In light of this, the algorithm presented in this chapter

takes advantage of a feedback link to improve channel estimation performance when

K < M .

To estimate the wireless channel, assume K channel uses are available for this task.

Let xk represent the training signal for the kth channel use. If the transmit signal for

data transmission is restricted to beamforming, it is natural to restrict the training

signal in the same fashion. The training signal, xk = wksk, is comprised of a M -

dimensional sounding vector wk and a training symbol sk. A total power constraint ρ

is enforced for each channel use, so we constrain ‖wk‖ = 1 and E[|sk|2] = ρ. Both wk

and sk are known ahead of time at the transmitter and receiver. Taking into account

proper pulse shaping, matched filtering, and symbol detection, the receive sample for

the kth channel use is given by

yk =
√
ραw∗kh + nk. (5.1)

We use this specific notation for the input-output channel equation following the

convention in estimation theory, where typically the vector to be estimated is a column

vector projected onto a known matrix or vector.

To aid in sub-optimal channel estimation for the case where K < M , we consider

a limited-rate feedback channel from the receiver to the transmitter as shown in Fig.

5.1. Let W represent the set of possible sounding vectors, W = {w(`) ∈ CM×1 :

‖w(`)‖ = 1} . Due to the restricted bandwidth of the feedback channel, we design W
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Fig. 5.1. Block diagram illustrating the proposed training scheme. The
receiver selects the sounding vector from the codebook W for the next
channel use and feeds back the codeword index to the transmitter.

to be a discrete set with |W| = L, where |W| denotes the cardinality of the set W ,

and make this codebook available ahead of time to both the transmitter and receiver.

For the kth channel use, the receiver calculates an estimate of h and decides on the

appropriate w(`) ∈ W to sound the (k + 1)th channel use. The index of this sounding

vector is fed back to the transmitter, as described in Fig. 5.1.

Let us assume the channel direction vector belongs to the set h ∈ H, where H can

be any continuous space, finite set, subspace, or manifold. We consider the vector

form of the receive sample in (5.1) for k channel uses,

yk = α
√
ρW∗

kh + nk

where Wk = [w1,w2, . . . ,wk] is the set of k sounding vectors and yk is the k × 1

complex receive sample vector. After k channel uses, the maximum a posteriori

probability (MAP) channel direction estimator is given by,

ĥ(k) = argmax
h∈H

p (h|yk,Wk, α) .
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The posterior distribution for h is conditioned on the received sample vector, set

of sounding vectors, and channel magnitude. In general, the channel magnitude α is

unknown. From (4.2), we saw that the beamforming gain is the magnitude squared

of the correlation between the beamforming vector and the true channel direction;

the beamforming gain is not impacted by the magnitude of the true channel α. If

the beamforming vector for data transmission is f = ĥ(k), then the sounding vectors

should be designed to maximize beamforming gain, |h∗ĥ(k)|2. Since we are only

interested in accurately estimating the channel direction to maximize receive SNR,

we treat α as a nuisance parameter. From a Bayesian perspective, given a prior on α

the dependence on α could be removed by averaging over the prior,∫
p(h|yk,Wk, α)p(α) dα.

However if we model αh as uncorrelated Rayleigh fading, then h is uniformly dis-

tributed over the M -dimensional unit-sphere and α is a real random variable with a

chi distribution. Integrating over a chi prior does not give a tractable result. Hence

we resort to composite estimation techniques, and take the frequentist approach and

model the channel gain α as an unknown deterministic nuisance parameter.

Given h, the maximimum likelihood of the channel magnitude is

α̂h = argmax
α∈C

p (yk|h,Wk, α) =
h∗Wkyk√
ρ‖W∗

kh‖2
.

This result can be shown by minimizing the squared norm ‖yk−α
√
ρW∗

kh‖2 over all

α ∈ C. The generalized channel direction estimator is given by assuming a uniform

prior for h and substituting α̂h into the MAP estimator,

ĥ(k) = argmax
h∈H

p (h|yk,Wk, α̂h)

= argmin
h∈H

‖yk − α̂h
√
ρW∗

kh‖2

= argmax
h∈H

|y∗kW∗
kh|2

‖W∗
kh‖2

= argmax
h∈H

dk(h) (5.2)
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Fig. 5.2. The estimated channel direction is the h that best aligns the
vector W∗

kh with yk.

where dk(h) =
|y∗
kW

∗
kh|

2

‖W∗
kh‖2

. In essence, this channel estimator finds the channel vector

h ∈ H whose projection onto Wk most closely aligns in the direction of yk. This is

illustrated in Fig. 5.2. The normalizing term ‖W∗
kh‖2 removes any notion of vector

magnitude, leaving the estimator to choose the channel estimate ĥ(k) to align W∗
kĥ

(k)

with yk. We can show that the quantity dk(h) is maximized when the unit vector

W∗
kh/‖W∗

kh‖ points in the same direction as yk. This is equivalent to,

W∗
kh = γ yk

for any real scalar γ. We can then show the optimal channel direction to be,

ĥ
(k)
opt = γ

Wk (W∗
kWk)

−1 yk

‖Wk (W∗
kWk)

−1 yk‖
+
√

1− |γ|2z

where z ∈ Null{Wk} and 0 < |γ| ≤ 1. In theory, there is no unique solution that

maximizes (5.2). All that is required is the projection of h onto span{Wk} is aligned
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in the same direction as Wk (W∗
kWk)

−1 yk. Furthermore, z can be of any direction

or magnitude as long as it lies in the subspace of the channel not yet sounded. We

showed in Section 4.2 that the SNR-maximizing transmit beamformer is set to the

true channel direction. If the channel direction is unknown, then the beamformer is

set equal to the estimated channel direction, f = ĥ(k). Physically implementing a

transmit beamformer onto a real array may be limited by the hardware in practice.

For example, if the phase shifters behind each element can only be set to one of 2B

phases, the transmit beamformer (considering a constant amplitude profile) can be

one of M2B directions, where B is the number of bits to control each phase shifter.

The set of available transmit beamformers could also be limited to the array manifold.

The beamformer would then be parameterized by a single parameter, θ, which points

a beam towards a particular direction θ. These two examples show restrictions on

the transmit beamformer enforced by hardware constraints. It follows naturally to

to restrict the channel codebook in the same fashion. Suppose the channel codebook

consists of N unit-norm vectors H = {h1, h2, . . . , hN}. One can also argue that for

large enough N , discretization of the channel space becomes an acceptable approxi-

mation. Consider a cap with radius ε on each vector hn, as shown in Fig. 5.3. If N

is large enough, the entire channel space will be covered with N caps, and the true

channel direction is guaranteed to be separated by at most a distance ε from one of

the discretized channel codewords in H. This applies to channel spaces that contain

the entire M -dimensional space or only a portion of it, such as the array manifold.

5.1 Probability of Misalignment

As one might expect, the set of k sounding vectors in Wk has direct influence on

the performance of the channel estimator in (5.2). We first state our assumptions

before introducing the probability of misalignment, a metric optimized to select the

sounding vector for the following channel use. At any given channel use, we restrict

the set of sounding vectors to a codebook W . For the (k + 1)th channel use, w(l) is
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Fig. 5.3. Approximating the channel space H picturing each vector with
a radius-ε cap on it. If N is large enough, the entire channel space will be
covered and be well approximated by H.
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chosen from W to minimize the probability of misalignment. We assume the current

channel direction estimate is given by (5.2) and the channel space H is discretized.

With these assumptions, successive sounding vectors are selected by minimizing the

probability of misalignment.

We adopt a similar approach to the average probability of error for symbol trans-

mission in communications [61]. Instead of detecting signals, we are interested in

detecting the true channel direction from some discrete channel codebook H. Let us

define the misalignment event as M =
{
ĥ(k+1) 6= h

}∣∣yk,Wk+1,h, α̂h. The probabil-

ity of the misalignment event is the probability the estimated channel vector is not

the true channel vector given h. Since h is unknown, the probability of misalignment

is the expectation of Pr
(
M =

{
ĥ(k+1) 6= h

}∣∣yk,Wk+1,h, α̂h

)
, with the expectation

taken over h.

Pmisalign = Eh

[
Pr
(
M
∣∣∣yk,Wk+1,h, α̂h

)]
=

N∑
i=1

Pr
(
M
∣∣∣yk,Wk+1,hi, α̂hi

)
p

(k)
i

=
N∑
i=1

Pr

(
dk+1(hi) < max

[{
dk+1(hj)

}
j 6=i

])
p

(k)
i (5.3)

where p
(k)
i = p (hi|yk,Wk+1, {α̂hi}) are the updated priors after k channel uses and

α̂h the maximum likelihood channel magnitude estimates given h. Since we are

conditioning on the previous k receive samples, the priors are replaced by the updated

priors in the probability of misalignment expression, which are defined as,

p
(k)
i = p (hi|yk,Wk+1, {α̂hi})

=
p (yk|hi,Wk, α̂hi) p (hi|Wk, α̂hi)

N∑
n=1
n6=i

p (yk|hn,Wk, α̂hn) p (hn|Wk, α̂hn)

.

One can interpret Pr (dk+1(hi) < max [{dk+1(hj)}j 6=i]) as the probability W∗
khi is not

the channel codeword that most closely aligns with yk.
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Note that dk+1(h) =
|y∗
k+1W

∗
k+1h|

2

‖W∗
k+1h‖2

is a random variable, with

yk+1 =

 yk
√
ραw∗k+1h + nk+1


where nk+1 ∼ CN (0, σ2

n). Given the randomness of yk+1 and the unknown channel

direction and magnitude, we can choose the sounding vector for the (k + 1)th channel

use to minimize the probability of misalignment,

wk+1 = argmin
w(`)∈W

Pmisalign

where Wk+1 = [Wk w(`)]. To further see how to calculate the probability of mis-

alignment and evaluate the expression in (5.3) for a given wk+1, yk and Wk, we first

study the binary channel codebook.

5.2 Binary Channel Codebook

We approximate the channel using a binary channel codebook, H = {h1,h2}.

Despite being an extremely course discretization of the channel space, we show the

probability of misalignment can be found in closed from for a binary channel code-

book. We can write the probability of misalignment as,

Pmisalign = Pr
(
dk+1(h1) < dk+1(h2)

)
p

(k)
1

+ Pr
(
dk+1(h2) < dk+1(h1)

)
p

(k)
2 . (5.4)

The probability of misalignment in (5.4) is the weighted sum of pairwise error prob-

abilities (PEP), where assuming h2 is true the probability h1 is chosen is

PEP (h2 → h1) = Pr

(
|y∗k+1W

∗
k+1h1|2

‖W∗
k+1h1‖2

>
|y∗k+1W

∗
k+1h2|2

‖W∗
k+1h2‖2

)
. (5.5)

Since
y∗
k+1W

∗
k+1hi

‖W∗
k+1hi‖

is a Gaussian random variable, the pairwise error probability is the

probability the magnitude of one Gaussian random variable exceeds the magnitude of

another. This is similar to the probability of error of envelope detection for correlated
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binary signals in [61]. However, the results there do not hold when each variable is

a linear function of the same scalar Gaussian random variable. To see this property

explicitly, we can decompose the channel estimator (assuming h2 is true) as

y∗k+1W
∗
k+1h2

‖W∗
k+1h2‖

=
y∗kW

∗
kh2 +

√
ρα̂∗h2

h∗2wk+1w
∗
k+1h2

‖W∗
k+1h2‖

+
w∗k+1h2

‖W∗
k+1h2‖

nk+1.

Note that each
y∗
k+1W

∗
k+1hi

‖W∗
k+1hi‖

, for all i, are functions of the same random noise compo-

nent nk+1. Comparing the magnitudes of variables which are functions of the same

Gaussian random variable is analyzed in the following lemma.

Lemma 1 Consider two Gaussian random variables,

X = µx + qxn ∼ CN (µx, |qx|2)

Y = µy + qyn ∼ CN (µy, |qy|2)

where µx, µy, qx, qy are all constant complex scalars and n ∼ CN (0, 1). Then,

Pr
(
|X|2 > |Y |2

)
= (5.6)

1−Q1

(∣∣∣µyq∗y−µxq∗x|qy |2−|qx|2

∣∣∣ , ∣∣∣µxqy−qxµy|qy |2−|qx|2

∣∣∣) if |qy|2 > |qx|2

Q1

(∣∣∣µyq∗y−µxq∗x|qy |2−|qx|2

∣∣∣ , ∣∣∣µxqy−qxµy|qy |2−|qx|2

∣∣∣) if |qy|2 < |qx|2

1
2

[
1 + erf

(
|µy |2−|µx|2

2
√

2|µ∗yqy−µ∗xqx|

)]
if |qy|2 = |qx|2

Proof: See Appendix C.

Given Lemma 1, we can calculate the pairwise error probability assuming h2 is true,

Pr
(
dk+1(h1) > dk+1(h2)

∣∣∣h = h2,yk,Wk+1, α̂h2

)
= Q1

(∣∣∣∣µyq∗y − µxq∗x|qy|2 − |qx|2

∣∣∣∣ , ∣∣∣∣µxqy − qxµy|qy|2 − |qx|2

∣∣∣∣)
where the parameters are set (assuming |qy|2 < |qx|2) as

µx =
y∗kW

∗
kh1 +

√
ρα̂∗h2

h∗2wk+1w
∗
k+1h1

‖W∗
k+1h1‖

qx =
w∗k+1h1

‖W∗
k+1h1‖

µy =
y∗kW

∗
kh2 +

√
ρα̂∗h2
|w∗k+1h2|2

‖W∗
k+1h2‖

qy =
w∗k+1h2

‖W∗
k+1h2‖

.
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With the ability to calculate the pairwise error probabilities in (5.5), the probability of

misalignment in (5.4) directly follows. If the probability of misalignment is calculated

for each w(`) ∈ W , then the sounding vector for the (k + 1)th channel use is given by

wk+1 = argmin
w(`)∈W

Pmisalign. (5.7)

where Wk+1 = [Wk w(`)]. Given yk and Wk, this optimization chooses the sounding

vector which minimizes the probability of misalignment. The PEP’s in the probability

of misalignment expression are weighted by the updated priors. In a sense, the optimal

sounding vector attempts to maximally separate the vector projections, W∗
k+1hi, in

the (k+ 1)-dimensional space. The updated priors more heavily weigh the PEP’s for

the likely codewords, ensuring these codewords are particularly spread out from one

another.

5.2.1 Impact of Channel Codeword Correlation on Beamforming Gain

We now turn our attention to understanding how the channel direction estimator

behaves as a function of channel codeword correlation. Assuming the binary channel

codebookH = {h1,h2}, we denote the correlation coefficient between the two channel

codewords as ρh = |h∗1h2|. We plot the average beamforming gain in Fig. 5.4 as a

function of ρh for various k. The beamforming gain is averaged over 5000 iterations

for M = 4 antennas and a receive SNR of 0dB. The sounding vector codebook W

contains unit-norm vectors in the subspace spanning the dimensions of the two channel

codewords. To isolate the performance as a function of channel codeword correlation,

we restricted |α| = 1. In the following section, we focus on the impact of |α| on

the beam alignment performance. Each curve in Fig. 5.4 represents the average

beamforming gain after the kth channel use. As expected, the average beamforming

gain increases as a function of channel use. Furthermore, for a given channel use, a

binary channel codebook with higher correlation shows increased beamforming gain.

This follows from the fact that the received samples will have high SNR if either

channel codeword is true, as wk projects strongly onto both channel codewords. The
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Fig. 5.4. Average beamforming gain as a function of codeword correlation,
ρh, for a binary channel codebook and M = 4.
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Fig. 5.5. Average beamforming gain as a function of channel use k for
three different correlated binary codebooks with M = 16.

beamforming gain quickly saturates in the number of channel uses; for ρh = 0.9,

adding extra channel uses doesn’t improve beamforming gain drastically. Even after

k = 4 channel uses, the average beamforming gain is heavily influenced by ρh. Low ρh

cannot achieve the same beamforming gain on average as higher correlated channel

codebooks. This stems from the fact that the energy of sounding vectors must be

more spread out for slightly correlated channel codewords.

Now consider a MISO system with M = 16 transmit antennas and similar pa-

rameters as just described for M = 4. The average beamforming gain is plotted as

a function of channel use k for three sets of binary channel codebooks, each with a

different correlation coefficient of ρh = {0.1, 0.5, 0.9}. For ρh = 0.9, the average beam-

forming gain after a single channel use is high, yet additional channel uses buy very
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little in terms of performance gain. Channel codebooks which are only slightly cor-

related receive the most benefit from additional channel uses, as shown for ρh = 0.1.

As a function of ρh, the beamforming gain on average is larger for more highly corre-

lated channel codewords. This is because the sounding vectors must further spread

out there energy in space to detect whether h1 or h2 is true. However, we see that

an interesting phenomenon at k = 4, where beamforming gain becomes higher for

ρh = 0.1. This can be attributed to the fact that enough power has been projected

through the channel, and the increased separation of the two channel codewords now

benefits channel estimation.

5.2.2 Impact of Channel Magnitude on Beamforming Gain

The receive SNR is a product of the squared channel magnitude, |α|2, which acts

as a gain term for the transmitted signal. Using similar simulation parameters as

in Section 5.2.1, we now hold the binary channel codebook correlation coefficient

fixed and plot the beamforming gain as a function of |α|. For ρh = 0.3, the average

beamforming gain is plotted in Fig. 5.6 as a function of channel use k. As one might

expect, the average beamforming gain increases as |α| increases. However, there is a

knee where the rate of increase severely drops. This knee, around |α| = 4, shows where

the effect of receive noise becomes insignificant for the channel direction detection

problem. Any additional channel gain does not improve beamforming gain. When

this happens, the system needs to sound additional directions instead of requiring

higher SNR receive samples.

If we increase the binary channel codebook correlation to ρh = 0.7, the average

beamforming gain is plotted in Fig. 5.7. For easy comparison, we have plotted the

beamforming gain in Fig. 5.7 using the same vertical scale as in Fig. 5.6. As we

saw in our analysis of the effect of codebook correlation on beamforming gain, the

average beamforming gain is larger for ρh = 0.7 over ρh = 0.3. However, for |α| ≥ 2

the additional beamforming gain for ρh = 0.7 over ρh = 0.3 is diminished. This effect
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Fig. 5.6. Average beamforming gain as a function of |α| for M = 4 and a
channel codebook correlation ρh = 0.3.
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Fig. 5.7. Average beamforming gain as a function of |α| for M = 4 and a
channel codebook correlation ρh = 0.7.
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can once again be attributed to the fact that the receive samples are well above the

noise floor.

5.3 N-ary Channel Codebook

We now extend our scope to the N-ary channel codebook. Let,

H = {h1, h2, . . . , hN}

where where ‖hi‖2 = 1.The probability of misalignment is defined as

Pmisalign =
N∑
i=1

Pr
(
M
∣∣∣yk,Wk+1,hi, α̂hi

)
p

(k)
i

Due to the N -ary nature of the problem, the probability of misalignment cannot

be exactly defined in terms of the pairwise error probabilities, as was the case for

the binary channel codebook. As with the average probability of error for multiple

transmit signals, we can place an upper bound on the probability of misalignment

using a union bound approximation,

Pmisalign ≤
N∑
i=1

N∑
j=1

PEP (hi → hj) p
(k)
i (5.8)

Through simulation, we have found an expression containing the pairwise error prob-

abilities for the two most likely codewords to work well for beam alignment purposes.

Let h(1) represent the most likely channel codeword and h(2) represent the second

most likely channel codeword. A sounding vector w(`) ∈ W is chosen to minimize the

expression,

Pmisalign ≈ PEP
(
h(1) → h(2)

)
p

(k)
(1) + PEP

(
h(2) → h(1)

)
p

(k)
(2).

The sounding vectors are then selected from W in the same manner as (5.7).

5.4 Simulations

In this section, we present numerical results to validate the efficiency of the pro-

posed closed-loop channel estimation scheme. Sampling the antennas one-by-one to
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estimate the channel no longer remains practical for large arrays, as the training phase

could exceed the coherence of a given channel. For this reason, these simulations tar-

get shortened training intervals, particularly the case where K < M .

First, we consider the channel direction to be drawn from a binary channel code-

book. Although this creates a large quantization error, the exact expression for

the probability of misalignment provides insight for larger codebooks. The average

beamforming gain E
[
|h∗ĥ(k)|2

]
is plotted for each channel use in Fig. 5.8 for a MISO

channel with M = 16, 32 and |W| = 32, 64, respectively. The channel gain term

α is randomly chosen as a sum of M independent zero-mean unit-variance complex

Gaussian random variables. An open loop scheme is also shown, where the sounding

vectors are orthonormal for all channel uses. Furthermore, the open loop scheme esti-

mates αh using a minimum mean square error estimator, and quantizes the estimate

to the channel codebook H.

The simulations are extended to an N−ary channnel codebook in Fig. 5.9. The

channel direction h is randomly drawn from a |H| = 32 (for M = 16) or |H| = 64

(for M = 32) codebook. Results show up to a 2dB improvement over the open loop

scheme, especially for K = 5.

5.5 Conclusion to Closed-Loop Beam Alignment

This work developed a closed-loop beam alignment scheme which, through the use

of feedback, sequentially designs sounding vectors to probe the channel in an efficent

manner. A generalized MAP detector was developed to jointly perform the chan-

nel estimation and channel quantization. Beamforming gain is maximized when the

transmit beamformer aligns with the channel direction. This revealed a need to accu-

rately estimate the channel direction, with the unknown channel magnitude replaced

by its maximum likelihood estimate. The exact probability of misalignment is derived

for a binary channel codebook, and an approximation is given for the N -ary channel

codebook. Sounding vectors are selected from a predetermined codebook to minimize
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the probability of misalignment, a metric updated with knowledge of the previous re-

ceive samples in a Bayesian framework. The closed-loop beam alignment scheme

shows improved beamforming gain over conventional orthogonal training signals. Im-

provement was shown especially for the K < M case, which becomes increasingly

important for systems with large arrays.
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6. SUMMARY

The body of literature on MIMO radar signals continues to grow as the hardware

technology required for implementation becomes more practical. Many issues, how-

ever, remain to be addressed to advance MIMO radar to a state usable for today’s

radar requirements. We review a few hybrid approaches to MIMO radar, trading off

the array gain of phased array radars with waveform diversity. Our novel contribu-

tion was an additional hybrid scheme, which we termed time-division beamforming

for MIMO radar. Central to time-division beamforming was the unique structure of

the transmit signal matrix to include a linear precoder and a specific pulse matrix.

We defined the MIMO receive ambiguity function, which generalized the single

waveform ambiguity function to multiple waveforms. Although many generalizations

of the ambiguity function exist, the MIMO receive ambiguity function incorporates

the receive beamformer. The receive beamformer plays a large role in the discrim-

ination of returns from two targets closely spaced in angle. We observed a strong

separability in the MIMO receive ambiguity function, where for time-division beam-

forming the MIMO receive ambiguity function decomposes into the product of two

terms; the transmit-receive beampattern and the SISO ambiguity function. This

spatial and delay-Doppler separability shows a number of interesting properties of

time-division beamforming. First, the spatial properties of the transmit signal are

entirely dependent on the linear precoder. The transmit beampattern is once again

revealed to be the sum of the instantaneous beampatterns, which are defined as the

beampatterns of the individual beamforming vectors. Accurate beampattern con-

struction can be accomplished through design of the individual beamforming vectors

in the linear precoder. Second, the delay and Doppler properties are defined by the

single pulse p(t), independent of the linear precoder used.
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Given the time-division beamforming transmit structure, the work would not be

complete without methods to design the individual beamforming vectors. We chose

a multiple target scenario, with the goal to maximize detection performance of M

targets located in the same range bin but separated in angle. A max-min SINR

algorithm was presented to design both the transmit and receive beamformers, and

performance was shown compared to simple beamformer designs and existing hybrid

MIMO subarraying schemes.

Although the primary task of wireless communications is to transmit bits from the

transmitter to the receiver, coherent communication requires the channel to first be

estimated. The design of training sequences to estimate a wireless channel were shown

to be very similar to the design of transmit signals for MIMO radar. The difference

exists on the objective or criteria to evaluate. Instead of designing the transmit

signal to maximize SINR on multiple targets, the problem was cast to design training

sequences to estimate the MISO channel direction.

A feedback-enabled training scheme was introduced for a MISO wireless commu-

nication system. We addressed a suboptimal channel estimation solution for massive

MIMO, where optimal estimation schemes become impractical for large arrays. A

simple and intuitively pleasing generalized channel estimator was derived to estimate

the channel direction. The channel magnitude was considered a nuisance parameter;

designing transmit beamforming vectors to maximize receive SNR are only concerned

with estimating the channel direction for MISO systems.

Given the derived channel direction estimator, it is not straightforward how to

design successive sounding vectors to minimize estimation error. To overcome this,

the channel space was discretized and the sounding vectors were restricted to a code-

book. From there, we developed the probability of misalignment, which indicated how

likely the estimator would choose a channel codeword not closest to the true channel

direction. In order to derive the probability of misalignment, an important result

calculated the probability the magnitude of one Gaussian random variable exceeds
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the magnitude of another. This result is specific to the channel estimation problem,

where each random variable is a linear function of the same noise term.

Results from the feedback-enabled training scheme showed improved beamforming

gain over conventional open-loop training for a small number of channel uses. The

open-loop training scheme was cited to be optimal when the number of channel uses

is equal to the number of transmit antennas. We saw a significant improvement in

beamforming gain for closed-loop training over open-loop for just a few channel uses.

When the optimal number of channel uses to train are not available or prove too

costly, the closed-loop beam alignment scheme provides improved beamforming gain

over conventional open-loop schemes.
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A. SINR-MAXIMIZING RECEIVE COMBINER

The SINR of the mth target can be written in Rayleigh quotient form as

SINRm =
σ2
m

∣∣∣w∗m (I⊗ ar(θm)a∗t (θm)) f̃
∣∣∣2

w∗mRm,intwm

where f̃ = vec(F) and Rm,int =
∑
l 6=m

σ2
l (I⊗ ar(θl)a

∗
t (θl)) f̃ f̃∗ (I⊗ ar(θl)a

∗
t (θl))

∗ + σ2
nI.

Furthermore, since Rm,int is positive semi-definite, we can use any standard decompo-

sition method and let Rm,int = D∗D. Making a change of variables gives zm = Dwm,

SINRm =
σ2
m

∣∣∣z∗m(D∗)−1 (I⊗ ar(θm)a∗t (θm)) f̃
∣∣∣2

z∗mzm
.

Designing zm to maximize SINRm is achieved by maximizing the numerator (as this

fraction is scale invariant to zm). Note that the numerator is quadratic in zm and can

be written as,

σ2
m|z∗m(D∗)−1 (I⊗ ar(θm)a∗t (θm)) f̃ |2

≤ σ2
m‖zm‖2 ‖(D∗)−1 (I⊗ ar(θm)a∗t (θm)) f̃‖2.

The above Schwartz inequality reaches equality when zm = (D∗)−1 (I⊗ ar(θm)a∗t (θm)) f̃ .

Substituting this into zm = Dwm gives the value of wm that maximizes SINRm,

wm = R−1
m,int (I⊗ ar(θm)a∗t (θm)) f̃ .
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B. POWER THRESHOLD UPPER BOUND

Since κ is a power threshold, it must be nonnegative and hence is lower bounded by

κ ≥ 0. The upper bound can be calculated by taking the SINR for a single target

scenario, where there is no interference from other targets

κmax =
tr
(
R̃R∗mwmw∗mRm

)
σ2
n

≤ ρNtr (RmR∗mwmw∗m)

σ2
n

=
ρMN‖wm‖2tr (ar(θm)a∗t (θm)at(θm)a∗r(θm))

σ2
n

=
ρMN‖wm‖2Mttr (ar(θm)a∗r(θm))

σ2
n

=
ρMNMtMr‖wm‖2

σ2
n

where tr(A⊗B) = tr(A)tr(B), tr(AB) ≤ tr(A)tr(B), and Rm = IM ⊗ar(θm)a∗t (θm).
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C. PROBABILITY THE MAGNITUDE OF ONE

RANDOM VARIABLE EXCEEDS ANOTHER

CORRELATED RANDOM VARIABLE

Consider two Gaussian random variables

X = µx + qxn

Y = µy + qyn

where both X and Y are functions of the same scalar noise term n ∼ CN (0, 1). In this

format, Pr(|X|2 > |Y |2) distinguishes itself from the expression in Appendix B of [61],

where for a scalar noise term n, E[|X−µx|2]E[|Y −µy|2]−|E [(X − µx)(Y − µy)∗]|2 =

0. Thus, we must find another method to solve for Pr(|X|2 > |Y |2).

First, let’s analyze the inequality,

|X|2> |Y |2

|µx + qxn|2> |µy + qyn|2

0> |µy|2 + |qy|2|n|2 + 2Re{µ∗yqyn} −
(
|µx|2 + |qx|2|n|2 + 2Re{µ∗xqxn}

)
0>
(
|qy|2 − |qx|2

)
|n|2 + 2Re{(µ∗yqy − µ∗xqx)n}+

(
|µy|2 − |µx|2

)
0> |n|2 + 2Re

{
µ∗yqy − µ∗xqx
|qy|2 − |qx|2

n

}
+
|µy|2 − |µx|2

|qy|2 − |qx|2

assuming |qy|2 > |qx|2. Completing the square results in,∣∣∣∣n+
µyq

∗
y − µxq∗x

|qy|2 − |qx|2

∣∣∣∣2 <
|µyq∗y − µxq∗x|2

(|qy|2 − |qx|2)2
− |µy|

2 − |µx|2

|qy|2 − |qx|2∣∣∣∣n+
µyq

∗
y − µxq∗x

|qy|2 − |qx|2

∣∣∣∣2 <

∣∣∣∣µxqy − qxµy|qy|2 − |qx|2

∣∣∣∣2
Since n ∼ CN (0, 1), the left side of the inequality is a noncentral chi-squared random

variable with k = 2 degrees of freedom and a mean,

λ =

∣∣∣∣µyq∗y − µxq∗x|qy|2 − |qx|2

∣∣∣∣2
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The cumulative distribution function of a noncentral chi-squared random variable is

P (x; k, λ) = 1−Q k
2
(
√
λ,
√
x), where QM(·, ·) is the generalized Marcum Q-function.

It follows that,

Pr

(∣∣∣∣n+
µyq

∗
y − µxq∗x

|qy|2 − |qx|2

∣∣∣∣2 < ∣∣∣∣µxqy − qxµy|qy|2 − |qx|2

∣∣∣∣2
)

= 1−Q1

(∣∣∣∣µyq∗y − µxq∗x|qy|2 − |qx|2

∣∣∣∣ , ∣∣∣∣µxqy − qxµy|qy|2 − |qx|2

∣∣∣∣) .
The above derivations holds for the case when |qy|2 > |qx|2. We can completely

determine the probability for three separate cases (which depend on the magnitudes

of qx and qy) as,

Pr
(
|µx + qxn|2 > |µy + qyn|2

)
=

Pr

(
|Z|2 <

∣∣∣µxqy−qxµy|qy |2−|qx|2

∣∣∣2) if |qy|2 > |qx|2

Pr

(
|Z|2 >

∣∣∣µxqy−qxµy|qy |2−|qx|2

∣∣∣2) if |qy|2 < |qx|2

Pr
(
V < |µy |2−|µx|2

2

)
if |qy|2 = |qx|2

where Z = n+
µyq∗y−µxq∗x
|qy |2−|qx|2 is a complex Gaussian random variable and V = Re{µ∗yqy −

µ∗xqx}Re{n} − Im{µ∗yqy − µ∗xqx}Im{n} is a real Gaussian random variable. |Z|2 is a

noncentral chi-squared random variable with Pr(|Z|2 < z) = 1−Q1(
√
λ,
√
z) and V

is the sum of two independent real Gaussian random variables, with Pr(V < v) =

1
2

(
1 + erf

(
v/
√

2|µ∗yqy − µ∗xqx|2
))

. We then conclude the result in (5.6).
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