17 research outputs found

    Homogeneous and heterogeneous MPSoC architectures with network-on-chip connectivity for low-power and real-time multimedia signal processing

    Get PDF
    Two multiprocessor system-on-chip (MPSoC) architectures are proposed and compared in the paper with reference to audio and video processing applications. One architecture exploits a homogeneous topology; it consists of 8 identical tiles, each made of a 32-bit RISC core enhanced by a 64-bit DSP coprocessor with local memory. The other MPSoC architecture exploits a heterogeneous-tile topology with on-chip distributed memory resources; the tiles act as application specific processors supporting a different class of algorithms. In both architectures, the multiple tiles are interconnected by a network-on-chip (NoC) infrastructure, through network interfaces and routers, which allows parallel operations of the multiple tiles. The functional performances and the implementation complexity of the NoC-based MPSoC architectures are assessed by synthesis results in submicron CMOS technology. Among the large set of supported algorithms, two case studies are considered: the real-time implementation of an H.264/MPEG AVC video codec and of a low-distortion digital audio amplifier. The heterogeneous architecture ensures a higher power efficiency and a smaller area occupation and is more suited for low-power multimedia processing, such as in mobile devices. The homogeneous scheme allows for a higher flexibility and easier system scalability and is more suited for general-purpose DSP tasks in power-supplied devices

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Flexible Hardware Architectures for Retinal Image Analysis

    Get PDF
    RÉSUMÉ Des millions de personnes autour du monde sont touchées par le diabète. Plusieurs complications oculaires telle que la rétinopathie diabétique sont causées par le diabète, ce qui peut conduire à une perte de vision irréversible ou même la cécité si elles ne sont pas traitées. Des examens oculaires complets et réguliers par les ophtalmologues sont nécessaires pour une détection précoce des maladies et pour permettre leur traitement. Comme solution préventive, un protocole de dépistage impliquant l'utilisation d'images numériques du fond de l'œil a été adopté. Cela permet aux ophtalmologistes de surveiller les changements sur la rétine pour détecter toute présence d'une maladie oculaire. Cette solution a permis d'obtenir des examens réguliers, même pour les populations des régions éloignées et défavorisées. Avec la grande quantité d'images rétiniennes obtenues, des techniques automatisées pour les traiter sont devenues indispensables. Les techniques automatisées de détection des maladies des yeux ont été largement abordées par la communauté scientifique. Les techniques développées ont atteint un haut niveau de maturité, ce qui a permis entre autre le déploiement de solutions en télémédecine. Dans cette thèse, nous abordons le problème du traitement de volumes élevés d'images rétiniennes dans un temps raisonnable dans un contexte de dépistage en télémédecine. Ceci est requis pour permettre l'utilisation pratique des techniques développées dans le contexte clinique. Dans cette thèse, nous nous concentrons sur deux étapes du pipeline de traitement des images rétiniennes. La première étape est l'évaluation de la qualité de l'image rétinienne. La deuxième étape est la segmentation des vaisseaux sanguins rétiniens. L’évaluation de la qualité des images rétinienne après acquisition est une tâche primordiale au bon fonctionnement de tout système de traitement automatique des images de la rétine. Le rôle de cette étape est de classifier les images acquises selon leurs qualités, et demander une nouvelle acquisition en cas d’image de mauvaise qualité. Plusieurs algorithmes pour évaluer la qualité des images rétiniennes ont été proposés dans la littérature. Cependant, même si l'accélération de cette tâche est requise en particulier pour permettre la création de systèmes mobiles de capture d'images rétiniennes, ce sujet n'a pas encore été abordé dans la littérature. Dans cette thèse, nous ciblons un algorithme qui calcule les caractéristiques des images pour permettre leur classification en mauvaise, moyenne ou bonne qualité. Nous avons identifié le calcul des caractéristiques de l'image comme une tâche répétitive qui nécessite une accélération. Nous nous sommes intéressés plus particulièrement à l’accélération de l’algorithme d’encodage à longueur de séquence (Run-Length Matrix – RLM). Nous avons proposé une première implémentation complètement logicielle mise en œuvre sous forme d’un système embarqué basé sur la technologie Zynq de Xilinx. Pour accélérer le calcul des caractéristiques, nous avons conçu un co-processeur capable de calculer les caractéristiques en parallèle implémenté sur la logique programmable du FPGA Zynq. Nous avons obtenu une accélération de 30,1 × pour la tâche de calcul des caractéristiques de l’algorithme RLM par rapport à son implémentation logicielle sur la plateforme Zynq. La segmentation des vaisseaux sanguins rétiniens est une tâche clé dans le pipeline du traitement des images de la rétine. Les vaisseaux sanguins et leurs caractéristiques sont de bons indicateurs de la santé de la rétine. En outre, leur segmentation peut également aider à segmenter les lésions rouges, indicatrices de la rétinopathie diabétique. Plusieurs techniques de segmentation des vaisseaux sanguins rétiniens ont été proposées dans la littérature. Des architectures matérielles ont également été proposées pour accélérer certaines de ces techniques. Les architectures existantes manquent de performances et de flexibilité de programmation, notamment pour les images de haute résolution. Dans cette thèse, nous nous sommes intéressés à deux techniques de segmentation du réseau vasculaire rétinien, la technique du filtrage adapté et la technique des opérateurs de ligne. La technique de filtrage adapté a été ciblée principalement en raison de sa popularité. Pour cette technique, nous avons proposé deux architectures différentes, une architecture matérielle personnalisée mise en œuvre sur FPGA et une architecture basée sur un ASIP. L'architecture matérielle personnalisée a été optimisée en termes de surface et de débit de traitement pour obtenir des performances supérieures par rapport aux implémentations existantes dans la littérature. Cette implémentation est plus efficace que toutes les implémentations existantes en termes de débit. Pour l'architecture basée sur un processeur à jeu d’instructions spécialisé (Application-Specific Instruction-set Processor – ASIP), nous avons identifié deux goulets d'étranglement liés à l'accès aux données et à la complexité des calculs de l'algorithme. Nous avons conçu des instructions spécifiques ajoutées au chemin de données du processeur. L'ASIP a été rendu 7.7 × plus rapide par rapport à son architecture de base. La deuxième technique pour la segmentation des vaisseaux sanguins est l'algorithme détecteur de ligne multi-échelle (Multi-Scale Ligne Detector – MSLD). L'algorithme MSLD est choisi en raison de ses performances et de son potentiel à détecter les petits vaisseaux sanguins. Cependant, l'algorithme fonctionne en multi-échelle, ce qui rend l’algorithme gourmand en mémoire. Pour résoudre ce problème et permettre l'accélération de son exécution, nous avons proposé un algorithme efficace en terme de mémoire, conçu et implémenté sur FPGA. L'architecture proposée a réduit de façon drastique les exigences de l’algorithme en terme de mémoire en réutilisant les calculs et la co-conception logicielle/matérielle. Les deux architectures matérielles proposées pour la segmentation du réseau vasculaire rétinien ont été rendues flexibles pour pouvoir traiter des images de basse et de haute résolution. Ceci a été réalisé par le développement d'un compilateur spécifique capable de générer une description HDL de bas niveau de l'algorithme à partir d'un ensemble de paramètres. Le compilateur nous a permis d’optimiser les performances et le temps de développement. Dans cette thèse, nous avons introduit deux architectures qui sont, au meilleur de nos connaissances, les seules capables de traiter des images à la fois de basse et de haute résolution.----------ABSTRACT Millions of people all around the world are affected by diabetes. Several ocular complications such as diabetic retinopathy are caused by diabetes, which can lead to irreversible vision loss or even blindness if not treated. Regular comprehensive eye exams by eye doctors are required to detect the diseases at earlier stages and permit their treatment. As a preventing solution, a screening protocol involving the use of digital fundus images was adopted. This allows eye doctors to monitor changes in the retina to detect any presence of eye disease. This solution made regular examinations widely available, even to populations in remote and underserved areas. With the resulting large amount of retinal images, automated techniques to process them are required. Automated eye detection techniques are largely addressed by the research community, and now they reached a high level of maturity, which allows the deployment of telemedicine solutions. In this thesis, we are addressing the problem of processing a high volume of retinal images in a reasonable time. This is mandatory to allow the practical use of the developed techniques in a clinical context. In this thesis, we focus on two steps of the retinal image pipeline. The first step is the retinal image quality assessment. The second step is the retinal blood vessel segmentation. The evaluation of the quality of the retinal images after acquisition is a primary task for the proper functioning of any automated retinal image processing system. The role of this step is to classify the acquired images according to their quality, which will allow an automated system to request a new acquisition in case of poor quality image. Several algorithms to evaluate the quality of retinal images were proposed in the literature. However, even if the acceleration of this task is required, especially to allow the creation of mobile systems for capturing retinal images, this task has not yet been addressed in the literature. In this thesis, we target an algorithm that computes image features to allow their classification to bad, medium or good quality. We identified the computation of image features as a repetitive task that necessitates acceleration. We were particularly interested in accelerating the Run-Length Matrix (RLM) algorithm. We proposed a first fully software implementation in the form of an embedded system based on Xilinx's Zynq technology. To accelerate the features computation, we designed a co-processor able to compute the features in parallel, implemented on the programmable logic of the Zynq FPGA. We achieved an acceleration of 30.1× over its software implementation for the features computation part of the RLM algorithm. Retinal blood vessel segmentation is a key task in the pipeline of retinal image processing. Blood vessels and their characteristics are good indicators of retina health. In addition, their segmentation can also help to segment the red lesions, indicators of diabetic retinopathy. Several techniques have been proposed in the literature to segment retinal blood vessels. Hardware architectures have also been proposed to accelerate blood vessel segmentation. The existing architectures lack in terms of performance and programming flexibility, especially for high resolution images. In this thesis, we targeted two techniques, matched filtering and line operators. The matched filtering technique was targeted mainly because of its popularity. For this technique, we proposed two different architectures, a custom hardware architecture implemented on FPGA, and an Application Specific Instruction-set Processor (ASIP) based architecture. The custom hardware architecture area and timing were optimized to achieve higher performances in comparison to existing implementations. Our custom hardware implementation outperforms all existing implementations in terms of throughput. For the ASIP based architecture, we identified two bottlenecks related to data access and computation intensity of the algorithm. We designed two specific instructions added to the processor datapath. The ASIP was made 7.7× more efficient in terms of execution time compared to its basic architecture. The second technique for blood vessel segmentation is the Multi-Scale Line Detector (MSLD) algorithm. The MSLD algorithm is selected because of its performance and its potential to detect small blood vessels. However, the algorithm works at multiple scales which makes it memory intensive. To solve this problem and allow the acceleration of its execution, we proposed a memory-efficient algorithm designed and implemented on FPGA. The proposed architecture reduces drastically the memory requirements of the algorithm by reusing the computations and SW/HW co-design. The two hardware architectures proposed for retinal blood vessel segmentation were made flexible to be able to process low and high resolution images. This was achieved by the development of a specific compiler able to generate low-level HDL descriptions of the algorithm from a set of the algorithm parameters. The compiler enabled us to optimize performance and development time. In this thesis, we introduce two novel architectures which are, to the best of our knowledge, the only ones able to process both low and high resolution images

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    Piattaforme multicore e integrazione tri-dimensionale: analisi architetturale e ottimizzazione

    Get PDF
    Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.I sistemi integrati moderni sono architetture many-core, in cui spesso lo spazio di memoria è condiviso fra i processori. Per ridurre i consumi, molte di queste architetture sostituiscono le cache dati con memorie scratchpad gestite in software, per massimizzarne la località alle CPU e aumentare le performance. Questo significa che i dati devono essere spostati manualmente da parte del programmatore. Inoltre, tradurre in perfomance l’enorme parallelismo potenziale delle piattaforme many-core non è semplice. Per supportare la programmazione, diversi programming model sono stati proposti, e siccome lavorano ad un alto livello di astrazione, sfruttano delle librerie di runtime che forniscono servizi di base quali sincronizzazione, allocazione della memoria, threading. Queste librerie hanno un costo, che nei sistemi integrati è troppo elevato e ostacola il raggiungimento delle piene performance. Questa tesi analizza come un programming model ad alto livello di astrazione – OpenMP – possa essere efficientemente supportato, se il suo stack software viene adattato per sfruttare al meglio la piattaforma sottostante. In una prima parte, studio diversi meccanismi di sincronizzazione e comunicazione fra thread paralleli, portati sulle piattaforme many-core. In seguito, li utilizzo per scrivere un runtime di supporto a OpenMP che sia il più possibile efficente e “leggero” e che supporti paradigmi di parallelismo multi-livello e irregolare, spesso presenti nelle applicazioni moderne. Una seconda parte della tesi esplora le architetture eterogenee, ossia con acceleratori hardware. Queste architetture soffrono di problematiche sia i) per il processo di design della piattaforma, che ii) di scalabilità della piattaforma stessa (aumento del numero degli acceleratori e dei processori), che iii) di programmabilità. La tesi propone delle soluzioni a tutti e tre i problemi. Il linguaggio di programmazione usato è OpenMP, sia per la sua grande espressività a livello semantico, sia perché è lo standard de-facto per programmare sistemi a memoria condivisa

    Optimierung der Energie und Power getriebenen Architekturexploration für Multicore und heterogenes System on Chip

    Get PDF
    The contribution of this work builds on top of the established virtual prototype platforms to improve both SoC design quality and productivity. Initially, an automatic system-level power estimation framework was developed to address the critical issue of early power estimation in SoC design. The estimation framework models the static and dynamic power consumption of the hardware components. These models are created from the normalized values of the basic design components of SoC, obtained through one-time power simulation of RTL hardware models. The framework allows dynamic technology node reconfiguration for power estimation models. Its instantaneous power reporting aids the detection of possible hotspot early into the design process. Adding this additional data in conjunction with a steadily growing design space of complex heterogeneous SoC, finding the right parameter configuration is a challenging and laborious task for a system-level designer. This work addresses this bottleneck by optimizing the design space exploration (DSE) process for MPSoC design. An automatic DSE framework for virtual platforms (VPs) was developed which is flexible and allows the selection optimal parameter configuration without pre-existing knowledge. To reduce exploration time, the framework is equipped with several multi-objective optimization techniques based on simulated annealing and a genetic algorithm. Lastly, to aid HW/SW partitioning at system-level, a flexible and automated workflow (SW2TLM) is presented. It allows the designer to explore various possible partitioning scenarios without going into depth of the hardware architecture complexity and software integration. The framework generates system-level hardware accelerators from corresponding functionality encoded in the software code and integrates them into the VP. Power consumption and time speedups of acceleration is reported to the designer, which further increases the quality and productivity of the development process towards the final architecture. The presented tools are evaluated using a state-of-the-art VP for a range of single and multi-core applications. Viewing the energy delay product, a reduction in exploration time was recorded at approximately 62% (worst case), maintaining optimal parameter accuracy of 90% compared to previous techniques. While the SW2TLM further increases the exploration versatility by combining modern high-level synthesis with system-level architectural exploration.Der Beitrag dieser Arbeit baut auf dem etablierten Konzept der virtuellen Prototyp (VP) Plattformen auf, um die Qualität und die Produktivität des Entwurfsprozesses zu verbessern. Zunächst wurde ein automatisches System-Level-Framework entwickelt, um Verlustleistungsabschätzung für SoC-Designs in einer deutlich früheren Entwicklungsphase zu ermöglichen. Hierfür werden statischen und dynamischen Energieverbrauchsanteile individueller Hardwareelemente durch ein abstraktes Modell ausgedrückt. Das Framework ermöglicht eine dynamische Anpassung des Technologieknotens sowie die Integration neuer Leistungsmodelle für Drittanbieterkomponenten. Die kontinuierliche Erfassung der Energieverbrauchseigenschaften und ihre grafische Darstellung Benutzeroberfläche unterstützt zusätzlich die frühzeitige Identifikation möglicher Hotspots. Durch die Bereitstellung zusätzlicher Daten, in Verbindung mit einem stetig wachsenden Entwurfsraum komplexer SoCs, ist die Identifikation der richtigen Parameterkonfiguration eine zeitintensive Aufgabe. Die vorgelegten Konzepte erlauben eine gesteigerte Automatisierung des Explorationsprozesses. Techniken der mehrdimensionalen Optimierung, basierend auf Simulated Annealing und genetischer Algorithmen erlauben die Identifikation von geeigneten Konfigurationen ohne vorheriges Wissen oder Erfahrungswerte Schließlich wurde zur Unterstützung der HW/SW -Partitionierung auf System-Ebene ein flexibler und automatisierter Workflow entwickelt. Er ermöglicht es dem Designer verschiedene mögliche Partitionierungsszenarien zu untersuchen, ohne sich in die Komplexität der Hardwarearchitektur und der Softwareintegration zu vertiefen. Das Framework erzeugt abstrakte Beschleunigermodelle aus entsprechenden Softwarefunktionen und integriert sie nahtlos in den ausführbare VP. Detaillierte Daten zum Energieverbrauch, Beschleunigungsfaktor und Kommunikationsoverhead der Partitionierung werden erfasst und dem Designer zur Verfügung gestellt, was die Qualität und Produktivität des weiter erhöht. Die vorgestellten Tools werden mit einer modernen VP für verschiedene SW-Anwendungen evaluiert. Bei Betrachtung des Energieverzögerungsprodukts wurde eine Verringerung der Explorationszeit um mehr als 62% bei 90% Parametergenauigkeit festgestell. Darauf aufbauend, erleichtert die automatisierte Untersuchung verschiedener HW/SW Partitionierungen die Entwicklung heterogener Architekturen durch die Kombination moderner HLS mit Architektur-Exploration auf der Systemebene

    Acoustic Source Localisation in constrained environments

    Get PDF
    Acoustic Source Localisation (ASL) is a problem with real-world applications across multiple domains, from smart assistants to acoustic detection and tracking. And yet, despite the level of attention in recent years, a technique for rapid and robust ASL remains elusive – not least in the constrained environments in which such techniques are most likely to be deployed. In this work, we seek to address some of these current limitations by presenting improvements to the ASL method for three commonly encountered constraints: the number and configuration of sensors; the limited signal sampling potentially available; and the nature and volume of training data required to accurately estimate Direction of Arrival (DOA) when deploying a particular supervised machine learning technique. In regard to the number and configuration of sensors, we find that accuracy can be maintained at state-of-the-art levels, Steered Response Power (SRP), while reducing computation sixfold, based on direct optimisation of well known ASL formulations. Moreover, we find that the circular microphone configuration is the least desirable as it yields the highest localisation error. In regard to signal sampling, we demonstrate that the computer vision inspired algorithm presented in this work, which extracts selected keypoints from the signal spectrogram, and uses them to select signal samples, outperforms an audio fingerprinting baseline while maintaining a compression ratio of 40:1. In regard to the training data employed in machine learning ASL techniques, we show that the use of music training data yields an improvement of 19% against a noise data baseline while maintaining accuracy using only 25% of the training data, while training with speech as opposed to noise improves DOA estimation by an average of 17%, outperforming the Generalised Cross-Correlation technique by 125% in scenarios in which the test and training acoustic environments are matched.Heriot-Watt University James Watt Scholarship (JSW) in the School of Engineering & Physical Sciences
    corecore