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RÉSUMÉ 

Des millions de personnes autour du monde sont touchées par le diabète. Plusieurs compli-

cations oculaires telle que la rétinopathie diabétique sont causées par le diabète, ce qui peut con-

duire à une perte de vision irréversible ou même la cécité si elles ne sont pas traitées. Des examens 

oculaires complets et réguliers par les ophtalmologues sont nécessaires pour une détection précoce 

des maladies et pour permettre leur traitement. Comme solution préventive, un protocole de dépis-

tage impliquant l'utilisation d'images numériques du fond de l'œil a été adopté. Cela permet aux 

ophtalmologistes de surveiller les changements sur la rétine pour détecter toute présence d'une 

maladie oculaire. Cette solution a permis d'obtenir des examens réguliers, même pour les popula-

tions des régions éloignées et défavorisées. Avec la grande quantité d'images rétiniennes obtenues, 

des techniques automatisées pour les traiter sont devenues indispensables. Les techniques automa-

tisées de détection des maladies des yeux ont été largement abordées par la communauté scienti-

fique. Les techniques développées ont atteint un haut niveau de maturité, ce qui a permis entre 

autre le déploiement de solutions en télémédecine. 

Dans cette thèse, nous abordons le problème du traitement de volumes élevés d'images réti-

niennes dans un temps raisonnable dans un contexte de dépistage en télémédecine. Ceci est requis 

pour permettre l'utilisation pratique des techniques développées dans le contexte clinique. Dans 

cette thèse, nous nous concentrons sur deux étapes du pipeline de traitement des images rétiniennes. 

La première étape est l'évaluation de la qualité de l'image rétinienne. La deuxième étape est la 

segmentation des vaisseaux sanguins rétiniens. 

L’évaluation de la qualité des images rétinienne après acquisition est une tâche primordiale 

au bon fonctionnement de tout système de traitement automatique des images de la rétine. Le rôle 

de cette étape est de classifier les images acquises selon leurs qualités, et demander une nouvelle 

acquisition en cas d’image de mauvaise qualité. Plusieurs algorithmes pour évaluer la qualité des 

images rétiniennes ont été proposés dans la littérature. Cependant, même si l'accélération de cette 

tâche est requise en particulier pour permettre la création de systèmes mobiles de capture d'images 

rétiniennes, ce sujet n'a pas encore été abordé dans la littérature. Dans cette thèse, nous ciblons un 

algorithme qui calcule les caractéristiques des images pour permettre leur classification en mau-

vaise, moyenne ou bonne qualité. Nous avons identifié le calcul des caractéristiques de l'image 
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comme une tâche répétitive qui nécessite une accélération. Nous nous sommes intéressés plus par-

ticulièrement à l’accélération de l’algorithme d’encodage à longueur de séquence (Run-Length Ma-

trix – RLM). Nous avons proposé une première implémentation complètement logicielle mise en 

œuvre sous forme d’un système embarqué basé sur la technologie Zynq de Xilinx. Pour accélérer 

le calcul des caractéristiques, nous avons conçu un co-processeur capable de calculer les caracté-

ristiques en parallèle implémenté sur la logique programmable du FPGA Zynq. Nous avons obtenu 

une accélération de 30,1 × pour la tâche de calcul des caractéristiques de l’algorithme RLM par 

rapport à son implémentation logicielle sur la plateforme Zynq. 

La segmentation des vaisseaux sanguins rétiniens est une tâche clé dans le pipeline du trai-

tement des images de la rétine. Les vaisseaux sanguins et leurs caractéristiques sont de bons indi-

cateurs de la santé de la rétine. En outre, leur segmentation peut également aider à segmenter les 

lésions rouges, indicatrices de la rétinopathie diabétique. Plusieurs techniques de segmentation des 

vaisseaux sanguins rétiniens ont été proposées dans la littérature. Des architectures matérielles ont 

également été proposées pour accélérer certaines de ces techniques. Les architectures existantes 

manquent de performances et de flexibilité de programmation, notamment pour les images de haute 

résolution. Dans cette thèse, nous nous sommes intéressés à deux techniques de segmentation du 

réseau vasculaire rétinien, la technique du filtrage adapté et la technique des opérateurs de ligne. 

La technique de filtrage adapté a été ciblée principalement en raison de sa popularité. Pour cette 

technique, nous avons proposé deux architectures différentes, une architecture matérielle person-

nalisée mise en œuvre sur FPGA et une architecture basée sur un ASIP. L'architecture matérielle 

personnalisée a été optimisée en termes de surface et de débit de traitement pour obtenir des per-

formances supérieures par rapport aux implémentations existantes dans la littérature. Cette implé-

mentation est plus efficace que toutes les implémentations existantes en termes de débit. Pour l'ar-

chitecture basée sur un processeur à jeu d’instructions spécialisé (Application-Specific Instruction-

set Processor – ASIP), nous avons identifié deux goulets d'étranglement liés à l'accès aux données 

et à la complexité des calculs de l'algorithme. Nous avons conçu des instructions spécifiques ajou-

tées au chemin de données du processeur. L'ASIP a été rendu 7.7 × plus rapide par rapport à son 

architecture de base. 

La deuxième technique pour la segmentation des vaisseaux sanguins est l'algorithme détec-

teur de ligne multi-échelle (Multi-Scale Ligne Detector – MSLD). L'algorithme MSLD est choisi 
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en raison de ses performances et de son potentiel à détecter les petits vaisseaux sanguins. Cepen-

dant, l'algorithme fonctionne en multi-échelle, ce qui rend l’algorithme gourmand en mémoire. 

Pour résoudre ce problème et permettre l'accélération de son exécution, nous avons proposé un 

algorithme efficace en terme de mémoire, conçu et implémenté sur FPGA. L'architecture proposée 

a réduit de façon drastique les exigences de l’algorithme en terme de mémoire en réutilisant les 

calculs et la co-conception logicielle/matérielle.  

Les deux architectures matérielles proposées pour la segmentation du réseau vasculaire réti-

nien ont été rendues flexibles pour pouvoir traiter des images de basse et de haute résolution. Ceci 

a été réalisé par le développement d'un compilateur spécifique capable de générer une description 

HDL de bas niveau de l'algorithme à partir d'un ensemble de paramètres. Le compilateur nous a 

permis d’optimiser les performances et le temps de développement. Dans cette thèse, nous avons 

introduit deux architectures qui sont, au meilleur de nos connaissances, les seules capables de trai-

ter des images à la fois de basse et de haute résolution. 
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ABSTRACT 

Millions of people all around the world are affected by diabetes. Several ocular complica-

tions such as diabetic retinopathy are caused by diabetes, which can lead to irreversible vision loss 

or even blindness if not treated. Regular comprehensive eye exams by eye doctors are required to 

detect the diseases at earlier stages and permit their treatment. As a preventing solution, a screening 

protocol involving the use of digital fundus images was adopted. This allows eye doctors to monitor 

changes in the retina to detect any presence of eye disease. This solution made regular examinations 

widely available, even to populations in remote and underserved areas. With the resulting large 

amount of retinal images, automated techniques to process them are required. Automated eye de-

tection techniques are largely addressed by the research community, and now they reached a high 

level of maturity, which allows the deployment of telemedicine solutions.   

In this thesis, we are addressing the problem of processing a high volume of retinal images 

in a reasonable time. This is mandatory to allow the practical use of the developed techniques in a 

clinical context. In this thesis, we focus on two steps of the retinal image pipeline. The first step is 

the retinal image quality assessment. The second step is the retinal blood vessel segmentation.  

The evaluation of the quality of the retinal images after acquisition is a primary task for the 

proper functioning of any automated retinal image processing system. The role of this step is to 

classify the acquired images according to their quality, which will allow an automated system to 

request a new acquisition in case of poor quality image. Several algorithms to evaluate the quality 

of retinal images were proposed in the literature. However, even if the acceleration of this task is 

required, especially to allow the creation of mobile systems for capturing retinal images, this task 

has not yet been addressed in the literature. In this thesis, we target an algorithm that computes 

image features to allow their classification to bad, medium or good quality. We identified the com-

putation of image features as a repetitive task that necessitates acceleration. We were particularly 

interested in accelerating the Run-Length Matrix (RLM) algorithm. We proposed a first fully soft-

ware implementation in the form of an embedded system based on Xilinx's Zynq technology. To 

accelerate the features computation, we designed a co-processor able to compute the features in 

parallel, implemented on the programmable logic of the Zynq FPGA. We achieved an acceleration 

of 30.1× over its software implementation for the features computation part of the RLM algorithm. 
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Retinal blood vessel segmentation is a key task in the pipeline of retinal image processing. 

Blood vessels and their characteristics are good indicators of retina health. In addition, their seg-

mentation can also help to segment the red lesions, indicators of diabetic retinopathy. Several tech-

niques have been proposed in the literature to segment retinal blood vessels. Hardware architec-

tures have also been proposed to accelerate blood vessel segmentation. The existing architectures 

lack in terms of performance and programming flexibility, especially for high resolution images. 

In this thesis, we targeted two techniques, matched filtering and line operators. The matched filter-

ing technique was targeted mainly because of its popularity. For this technique, we proposed two 

different architectures, a custom hardware architecture implemented on FPGA, and an Application 

Specific Instruction-set Processor (ASIP) based architecture. The custom hardware architecture 

area and timing were optimized to achieve higher performances in comparison to existing imple-

mentations. Our custom hardware implementation outperforms all existing implementations in 

terms of throughput. For the ASIP based architecture, we identified two bottlenecks related to data 

access and computation intensity of the algorithm. We designed two specific instructions added to 

the processor datapath. The ASIP was made 7.7× more efficient in terms of execution time com-

pared to its basic architecture. 

The second technique for blood vessel segmentation is the Multi-Scale Line Detector 

(MSLD) algorithm. The MSLD algorithm is selected because of its performance and its potential 

to detect small blood vessels. However, the algorithm works at multiple scales which makes it 

memory intensive. To solve this problem and allow the acceleration of its execution, we proposed 

a memory-efficient algorithm designed and implemented on FPGA. The proposed architecture re-

duces drastically the memory requirements of the algorithm by reusing the computations and 

SW/HW co-design.  

The two hardware architectures proposed for retinal blood vessel segmentation were made 

flexible to be able to process low and high resolution images. This was achieved by the develop-

ment of a specific compiler able to generate low-level HDL descriptions of the algorithm from a 

set of the algorithm parameters. The compiler enabled us to optimize performance and develop-

ment time. In this thesis, we introduce two novel architectures which are, to the best of our 

knowledge, the only ones able to process both low and high resolution images.  
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CHAPTER 1  INTRODUCTION 

1.1 Overview and motivation 

An estimated 285 million people worldwide are affected by diabetes [1]. With a further 7 

million people developing diabetes each year, this number is expected to reach 439 million by 

2030. Today, more than 2 million Canadians live with diabetes. According to data from the Na-

tional Public Health Institute of Quebec, 376,000 people had diabetes in 2003-2004 in the province. 

The most serious ocular complication of this disease is diabetic retinopathy, a leading cause of 

blindness and partial sightedness in Canadians under the age of 50. Diabetic retinopathy is an eye 

condition where elevated blood sugar levels cause blood vessels in the eye to swell and leak in the 

retina. Without treatment, the condition can result in irreversible vision loss or even blindness. 

With regular, comprehensive eye exams by an eye doctor, diabetic retinopathy can be detected 

early and treated. 

Blindness and visual loss can be prevented and avoided through early detection using digital 

fundus imaging. This approach involves taking color images of the retina, which allows eye doctors 

to monitor changes in the retina and to detect the presence of diabetic retinopathy. This solution 

has been proposed to make regular examination widely available, even to population in remote and 

underserved areas. Thus, millions of retinal images would potentially require evaluation in Canada 

and in the world (retinal images for all people with diabetes, and at least two images per eye). 

The current challenge is to make early detection using digital fundus imaging more accessible 

by reducing the cost and manpower required with an improved detection accuracy. Automated 

detection is a solution to meet this challenge. Most early detection programs use fundus images 

examined by human experts to detect the presence of specific lesions (microaneurysms, haemor-

rhages, exudates and cotton-wool spots) indicative of diabetic retinopathy. If such abnormalities 

are found −typically in 10% of the examined images− the patient is referred to an ophthalmologist 

or retinal specialist. 

The major weakness of the traditional solution is the human expert, who is expensive to train. 

Evaluating hundreds if not thousands of images per day is a tedious task, and most images have no 

abnormalities. In addition, the delay between taking the images and the result of the reading can be 

very long. This makes it impractical to inform the patients of the test result immediately at the point 
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of service. Thus, using an automated system to analyse retinal image abnormalities and to assist 

human experts to detect diabetic retinopathy is a very attractive approach that addresses the weak-

nesses of the traditional one. 

In 1987, Baudoin et al. [2] were the first to propose an image analysis method for microan-

eurysms detection, and since, several algorithms and approaches have been developed to detect 

other disease indicators (microaneurysms, haemorrhages …). To assist the development of more 

accurate detection algorithms and to determine how these different algorithms rank in terms of 

performance, publicly available annotated image databases have been established, and quality met-

rics have been proposed [3] to serve in algorithms comparison. Recent works have proved that 

automated detection of early diabetic eye disease can be as good as highly trained human experts 

[4], they have proved also that the existing algorithms are mature, and significant improvements in 

performance are difficult to achieve [3]. 

Several companies have started commercializing solutions to help and assist ophthalmolo-

gists. With the aim to make eye-health care accessible in low-income countries, Peek Vision de-

veloped the Portable Eye Examination Kit (Peek). It’s a clip-on hardware adapter for smartphones 

with an application. Peek is designed to be affordable and portable, and to be used by non-experts 

with minimal training to carry out eye-health checks. CARA of Diagnos Inc is also one of the 

commercialized solutions. CARA is a software solution and a Tele-ophthalmology platform that 

uses enhanced digital images to support the early detection of diabetic retinopathy. Statistics show 

that 50% of people with diabetes in the USA do not have access to any form of regular examination 

[3]. Tele-ophthalmology platform are a good alternative to solve the care-accessibility problem. 

Another advantage, analysis of cost-effectiveness automated detection systems showed that their 

cost is lower when compared to the manual methods [3]. 

Tele-ophthalmology system as novel tool takes advantage of technology to offer more op-

portunities for people with diabetes, and to provide to the community outreach better services. A 

tele-ophthalmology platform is based on a centralized processing system. Figure 1-1 shows the 

principle of a centralized processing system. This system would receive retinal images to be pro-

cessed via the Internet. The images could be sent from hospitals, clinics, and/or points-of-care. 

After processing, the centralized system would return back the examination results to the source. 
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Figure 1-1. Centralized processing system overview 

We can estimate that in the USA, if all underserved populations were to be provided with 

digital imaging, 32 million retinal images would require evaluation annually. This number assumes 

that 40% of the population affected by diabetes requires fundus images examination and that two 

images per eye are taken [3]. In other regions in the world, a greater number of images would 

require evaluation. 

Existing algorithms for automated detection of diabetic retinopathy require several minutes 

to process images of public databases when using general processors. Unfortunately, the resolution 

of these public databases images is much smaller than the one provided by recent retinal cameras 

(768 × 584 pixels images). Recent cameras provide high resolution images (4288 × 2848 pixels 

images), which implies a higher processing time to obtain a diagnostic result. 
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1.2 Problem statement 

In this thesis, we are addressing the problem of processing, in a reasonable time in the context 

of telemedicine, the large number of retinal images expected to be collected from a centralized 

processing system. This will require efficient processing systems. Moreover, accelerating the pro-

cessing will allow the realization of embedded processing systems that can be integrated with the 

retinal camera to allow on-site diagnostic. Hardware platforms (FPGAs or ASICs) are very ade-

quate for image processing algorithms acceleration. The aim of the proposed research is to intro-

duce suitable hardware architectures to accelerate the retinal image algorithms, which presents 

several important challenges. 

First, we consider the problem of retinal images quality assessment. This task is necessary 

for automated detection systems since it represents the first task of retinal image processing pipe-

line. This task is responsible of identifying images of good quality after acquisition and reject im-

ages of poor quality. This task require the computation of several image features which include 

complex algorithms difficult to parallelize by their nature. Accelerating such algorithms is very 

useful and favorable, which will allow the creation of mobile retinal capturing systems. Many ap-

proaches and algorithms for retinal image quality assessment have been proposed in the literature. 

However, there are no existing hardware implementations in this context.  

Secondly, we select the problem of retinal blood vessel segmentation. This is a key and com-

plex task in the process of eye disease detection. This task gains its importance because vessel 

features are good indicators of various pathologies. Detecting the blood vessels allows the evalua-

tion of these features that subsequently allows to detect the pathologies. Indeed, in CAD systems 

we usually remove segmented vessels and consider other structures as lesions. Selecting the ade-

quate algorithm is very important to get better results in terms of blood vessel detection quality.  

A third problem is to propose adequate architectures for the targeted algorithms. The com-

plexity of the architecture is very dependent to the algorithm complexity. Thus, selecting hardware 

friendly algorithms or making them hardware friendly is very important. A hardware friendly al-

gorithm is an algorithm that can take advantage of the hardware platform structure. It can be par-

allelized easily, and that can avoid complex computations. In other words, making an algorithm 

hardware friendly is to make its conception suitable for hardware implementation. We can achieve 

this goal by proposing several simplifications and modifications of the existing algorithms while 
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maintaining a good compromise between simplicity and accuracy. This should take in considera-

tion the algorithm requirements in terms of data access and functional units. 

Furthermore, existing retinal image datasets include images of low-resolution while recent 

advances in retinal imaging and cameras technology promote the use of image of higher resolution. 

Proposed hardware architectures should take this in consideration to solve the problem of architec-

ture scalability. The same architecture should be able to scale according to the image resolution 

with less development effort and minor modifications. Generally, optimized hardware architectures 

require the use of very-low level programming models, which increases the amount of needed ef-

forts. A task such as blood vessel segmentation require high computations precision to achieve the 

best algorithm accuracy in terms of blood vessel detection quality. Functional units and their opti-

mizations are not easy to scale, which represent an additional challenge. 

1.3 Research contributions 

The main objective of this research is to design and implement retinal image processing al-

gorithms on hardware platforms with the aim to achieve high throughput with a certain level of 

design flexibility. This section reviews the contributions of the different parts of this thesis. 

We started our work by analyzing the context of retinal image processing and their hardware 

implementations in order to identify opportunities for acceleration and efficient implementation. 

We identified two main tasks to be addressed. The first task was the retinal image quality assess-

ment. We thus proposed an embedded system to compute the RLM features for retinal images. The 

RLM features provide quantitative information describing textural properties of retinal images, 

which eventually allows to differentiate images according to their quality. Our first solution was 

completely software. In order to accelerate the execution of the algorithm, we proposed a hardware 

co-processor to be implemented on the programmable fabric of Zynq FPGA. We designed, imple-

mented and tested the system with the co-processor. Our results show improvements over the soft-

ware implementation. This contribution was published in a conference paper entitled "A run-length 

encoding co-processor for retinal image texture analysis," presented in the International Confer-

ence on ReConFigurable Computing and FPGAs (ReConFig) in 2015 [5]. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7393354
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7393354


6 

 

 

The second task identified to be accelerated was the retinal image blood vessel segmentation. 

To that effect, we targeted two different techniques. The first technique is based on matched filter-

ing. There exist several hardware implementations of this algorithm, however there are several 

limitations in terms of performances and programming flexibility. In this thesis, we designed a 

scalable and optimized architecture of the matched filter. The adopted low-level programming 

model with several optimizations allowed us to achieve better performances in terms of execution 

time in comparison with existing implementations. To overcome the problem of programming flex-

ibility and to keep low level optimizations, we proposed a tool able to generate automatically a 

low-level hardware description of the algorithm based on a set of its parameters. With the aim of 

comparing two implementation strategies, we proposed a novel architecture based on an ASIP. 

This second architecture was improved by designing two specific instructions integrated into the 

Xtensa processor datapath, which allowed the improvement of the ASIP performances when exe-

cuting the matched filter algorithm. These contributions were published first in a conference paper 

entitled "A scalable hardware architecture for retinal blood vessel in high resolution fundus im-

ages," presented in the Conference on Design & Architectures for Signal & Image Processing in 

2014 [6], and in an extended version in a paper entitled "Flexible architectures for retinal blood 

vessel segmentation in high-resolution fundus images," published in the Journal of Real-Time Im-

age Processing in 2016 [7]. 

The second targeted technique for retinal blood vessel segmentation is based on the MSLD 

algorithm. In this thesis, we introduced an optimized memory-efficient architecture for the MSLD 

algorithm. This architecture was designed and implemented in a Zynq FPGA. It benefits from 

HW/SW co-design to satisfy the memory requirements of the algorithm. Results in terms of blood 

vessel segmentation accuracy are shown in addition to acceleration results over CPU and GPU 

implementations. To be able to target low and high resolution images, the automatic generation of 

low-level HDL description of the algorithm was made possible by the development of a tool that 

takes as input the algorithm parameters. In addition, we provide also a full comparison table of our 

implementations with existing ones. These contributions were published first in a conference paper 

entitled "Memory Efficient Multi-Scale Line Detector Architecture for Retinal Blood Vessel Seg-

mentation" presented in the Conference on Design & Architectures for Signal & Image Processing 

in 2016 [8], and have been submitted in an extended version to the IEEE Transactions on Circuits 

https://arxiv.org/abs/1612.09524
https://arxiv.org/abs/1612.09524
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and Systems for Video Technology in a paper entitled "Memory Efficient Flexible Architecture for 

Retinal Blood Vessel Segmentation Using a Multi-Scale Line Detector," Jan. 2017 [9]. 

1.4 Thesis organization 

This thesis is divided into 6 chapters. Chapter 2 reviews the important background material 

and related works that are used in this thesis. In Chapter 3, we present an implementation of a co-

processor to accelerate a feature extraction algorithm. In chapter 4, we present flexible architectures 

for matched filtering technique for retinal blood vessel segmentation. Chapter 5 presents a memory-

efficient architecture for a multi-scale algorithm for retinal blood vessel segmentation. Chapter 6 

presents a general discussion where we present the novelty of our work and its limitations. Chapter 

7 concludes the thesis by summarizing our contributions and outlining our recommendations and 

future research directions



8 

CHAPTER 2 LITERATURE REVIEW 

In this chapter, we examine the relevant literature for our research subject. Two topics which 

are directly related to our research were selected: algorithmic aspects of the automated detection 

of diabetic retinopathy and their hardware architectures and implementations. For the automated 

detection of diabetic retinopathy, we start by describing the eye anatomy and the manifestations of 

eye diseases. Then, we present the different parts of an automated detection system using digital 

fundus images and the existing approaches. For the second topic, we review the proposed hardware 

architectures and implementations of retinal image processing algorithms. High level synthesis of 

image processing algorithms is also presented. 

Accordingly, this chapter is organized as follows. Section 2.1 introduces the diabetic reti-

nopathy disease and its symptoms. In section 2.3, the retinal image processing pipeline and its 

hardware implementations are presented and described. Section 2.2 presents the public databases 

and metrics established by the scientific community to evaluate the effectiveness and the advances 

in disease detection quality. Section 2.4 reviews the architectural considerations for the implemen-

tation of image processing algorithms. This include the data access, hardware function evaluation 

and processor architectures for image processing applications. Section 2.5 reviews the existing 

tools for HDL description generation for image processing algorithms. Finally, section 2.6 defines 

our research objectives.  

2.1 Diabetic retinopathy  

The human eye is the most powerful sensor for the perception of its environment. By analogy, 

it’s often compared to a camera, and the camera sensor can be seen analogous to the retina. The 

retina is the inner surface of the eye and consists of transparent tissue of several layers of cells 

designated to absorb and convert light into neural signals [10]. Once converted to neural signals 

and collected to the optic nerve in the optic disc, the impulses are transmitted to the brain. The 

nutritional support of the retina is provided by blood vessels. Figure 2-1 highlights the different 

anatomical parts of the retina (Macula, fovea, optic disc and the blood vessels).  

In most cases, visual disorders are consequences of vascular changes that diabete causes to 

the eye. Neovascular glaucoma, diabetic neuropathies, cataract and diabetic retinopathy are the 
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most common diabetic eye diseases. In this section and in the rest of this proposal we will concen-

trate on diabetic retinopathy. 

 

Figure 2-1. Normal retina anatomical parts 

Diabetic retinopathy is the most prevalent ocular complication of diabetes, and a leading 

cause of blindness in American adults [3]. It occurs when high blood sugar levels provoke the 

abnormal growth of blood vessels. These new blood vessels are weak. They can swell and leak 

fluid or even close off completely and damage the cells of the retina. A healthy retina is necessary 

for good vision. Patients with diabetic retinopathy first start noticing changes in vision. But over 

time, diabetic retinopathy can get worse and cause vision loss. Usually, diabetic retinopathy affects 

both eyes. Figure 2-2 shows the difference between the normal vision and vision with diabetic 

retinopathy.  

The detection of diabetic retinopathy is possible by detecting its symptoms in fundus images. 

These symptoms are: microaneurysms, haemorrhages, hard exudates, soft exudates and neovascu-

larisation. Microaneurysms appear as small red dots in the retina. Due to blood vessel damage, 

small blood vessels may rupture and cause intraretinal haemorrhages that appear either as small 

red spots or larger round-shaped blots. The hard exudates are lipid formations leaking from the 

weakened blood vessels and appear yellowish with well-defined borders. Soft exudates are small 
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microinfarcts pale areas with diffuse borders. Neovascularisation is the growth of new fragile ves-

sels due to the extensive lack of oxygen and obstructed capillary in the retina [11]. The different 

cited symptoms are shown in Figure 2-3. 

  

-a- -b- 

Figure 2-2. a- Normal vision, b- Vision with diabetic retinopathy [12] 

   

-a- -b- -c- 

  

-d- -e- 

Figure 2-3. Diabetic retinopathy symptoms: a- Microaneurysms, b- Haemorrhages, c- Hard 

exudates, d- Soft exudates, e- Neovascularisation [11]. 
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2.2 Retinal image processing pipeline 

In any complete automated system for eye diseases detection, four steps are necessary as 

shown in Figure 2-4. These four steps are: retinal images quality assessment, retinal images en-

hancement, features extraction (blood vessels, lesions, microaneurysms …) and disease detection. 

 

Figure 2-4. Main steps of an automated eye disease detection system 

2.2.1 Quality assessment 

Image quality evaluation is a common problem in image processing systems. For medical 

imaging and especially diabetic retinopathy detection, sufficient image quality is necessary for fur-

ther processing to ensure reliable diagnosis. The quality determines the ability of a human expert 

or an automated system to correctly detect disease symptoms from the image. When the image 

quality is not sufficient, it becomes difficult or impossible to make a reliable clinical judgment on 

the presence or absence of any eye disease. Several published works report that 10% of the acquired 

mydriatic (pupil dilation) images are rejected [13] due to insufficient quality. For single field non-

mydriatic (no pupil dilation), the rejection rate can be up to 20.8% [14]. Assessing the retinal image 

quality represents an important limiting factor for automated diabetic retinopathy detection. To 

avoid the costs associated with processing useless images, which must be replaced in a second 

patient sitting, the research community started to develop vision-based solutions to assess the qual-

ity of the retinal images [15, 16]. The quality of the acquired retinal image should be assessed as a 

first step, and this task should be executed immediately after the acquisition of the images. Retinal 

fundus images quality assessment algorithms can be grouped in three different categories: histo-

gram based methods, retina morphology methods and “bag-of-words” methods [17]. 

In histogram-based methods, the quality of a given image is determined through the differ-

ence between its histogram of certain features and the mean histogram of a set of good-quality 

images as reference. Based on this, Lee and Wang [18] were the first to address the problem of 

automatic evaluation of fundus image quality. They employed the global histogram of the image 

intensities approximated by a Gaussian distribution. This approach was extended by Lalonde et al. 
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[19] using two different sets of features: the edge magnitudes distribution and the local pixel inten-

sity distribution. 

In retina morphology methods, features describing the retinal structure are used to evaluate 

their quality. A vessel segmentation algorithm was used by Usher et al. [20] to estimate the image 

blurring. This algorithm uses the area of the detected vessels as a specific feature for the retinal 

fundus images. Fleming et al. [15] presented a method that evaluates the image clarity using vessel 

area in the macula region, and the field definition using the relative position of the fovea and the 

length of the main vessel arcades. The image clarity and field definition are finally combined to 

generate a global quality metric. 

In “bag-of-words” methods, a pattern recognition classifier (Support Vector Machine, Naïve 

Bayes, etc.) is employed to classify the occurrence of some common words automatically generated 

from the raw features in the test set. Niemeijer et al. [21] employed this approach to evaluate the 

fundus image quality. The authors use the color and second order statistics of the image as two sets 

of raw features to provide a compact representation of the structures found in an image. A different 

set of features was employed by Paulus et al. [22] : the pixel gray levels and the Haralick texture 

features. 

The quality assessment of retinal images is still an open topic for research. There are several 

algorithmic challenges to be addressed such as the creation of public datasets with images of dif-

ferent quality. Without public datasets, it would be difficult to classify the algorithms based on 

their performances. Even if the quality assessment is the most critical step in terms of execution 

time since it’s the first task of the pipeline, the hardware implementation and acceleration of its 

algorithms in the context of the retina have not been addressed yet. 

2.2.2 Retinal image enhancement 

Acquired images through cameras may be contaminated by a variety of noise sources (e.g. 

photon or on chip electronic noise), distortions, shading or improper illumination. Eventually, the 

image quality is reduced, which affects the performance and efficiency of any subsequent pro-

cessing algorithms. A pre-processing and enhancement step is necessary. Image enhancement al-

gorithms consist of a collection of techniques which aim to improve the visual appearance of an 

image.  
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For retinal fundus image systems, image enhancement is the second step for an automated 

detection system. In the retina context, the aim is to reduce the noise, to correct the non-uniform 

illumination and to improve the contrast. The illumination can be non-uniform in retinal images 

due to the variation of the retina response and the imaging systems non-uniformity. To correct the 

non-uniform illumination, Yang et al. [23] proposed to divide the image by an over-smoothed ver-

sion of it using a spatially large median filter. Many authors employ standard local or global histo-

gram equalization techniques as Sopharak et al. [24]. 

In an RGB fundus image, the green channel is always considered the best to exhibit a good 

contrast of the structures of interest according to the background. Hence, it is a common practice 

in the literature to use the green channel for segmentation purposes. This has a major advantage, 

instead of processing the three channels, the calculation efforts are reduced to the processing of the 

green channel. 

The background subtraction technique is one of the popular techniques for image enhance-

ment in the literature. This technique is based on the estimation of the retina background with a 

large median filter applied on the green channel of the image [25]. This technique was refined by 

Cree et al. [26] to reduce the inter-patient color variability assuming that the background-less fun-

dus image has colors normally distributed. The color of the new image is equalized to a reference 

one instead of simple histogram equalization. A hardware implementation of the background tech-

nique can be parallelized to improve the execution of the algorithm.  

The contrast enhancement is a popular technique in biomedical image processing. This tech-

nique is very effective in making interesting silent parts more visible. Walter et al. [27] proposed 

to enhance the contrast of fundus images by applying a gray level transformation to the original 

grayscale image. Contrast limited adaptive histogram equalization (CLAHE) [28] is very popular. 

In this technique, the image is split into disjoint regions. In each region a local histogram equali-

zation is applied. The boundaries between the regions are eliminated with a bilinear interpolation. 

Several hardware architectures have been proposed to implement image enhancement algo-

rithms. Tsutsui et al.[29] proposed hardware architecture for real-time Retinex video image en-

hancement. In order to efficiently reduce the enormous computational cost required for high reso-

lution image enhancement, processing layers and repeat counts of iterations are determined accord-

ing to a software evaluation result. The implemented architecture is able to support WUXGA 
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(1920×1200) at 60 fps. Hanumantharaju et al. [30] proposed hardware architecture for a new algo-

rithm for adaptive color image enhancement based on Hue-saturation value (HSV) color space. 

This algorithm uses a saturation feedback to enhance contrast and luminance of the color image, 

while the saturation component is enhanced by stretching its dynamic range to get rich color dis-

play. This algorithm was implemented on Xilinx Virtex II FPGA. 

Bo-Hyun et al. [31] proposed a new algorithm for image enhancement with less computa-

tional complexity. This new algorithm consists of a decimation filter, contrast enhancement and 

color enhancement blocks. Simulation and experimental results show better performances with 

lower complexity when compared to conventional algorithms. Zhang et al. [32] proposed digital 

color enhancement architecture based on reflectance/illumination model. The approach uses the 

approximation techniques for efficient estimation of log2 and its inverse to promote the log-domain 

computation and to eliminate multiplications, divisions and exponentiations. With effective color 

space conversion, the HSV-domain image enhancement architecture is able to achieve a through-

put rate of 182.65 (MOPS) on Xilinx Virtex II FPGA at a clock frequency of 182.65MHz. 

Image filtering is an essential part of image enhancement techniques and plays an important 

role in image processing. Azizabadi et al. [33] proposed hardware architectures for image filters 

including Gaussian, median and weighted median filters. The aim of the implemented architecture 

is to optimize the speed and the area. The proposed architectures are implemented and synthesized 

in ASIC with 65 nm technology. The authors report a maximum frequency of 1 GHz for median 

filter and 666.67 MHz for both Gaussian filter and weighted median filter. An FPGA implementa-

tion of median and weighted median filter for image processing was presented in [34] by Fahmy 

et al. The input samples are first used to construct a cumulative histogram, which is used to find 

the median value. The resource usage of the design is kept independent of the window size, but 

dependant on the number of bits of the data samples, which offers an efficient implementation of 

large-windowed median filtering. This method was extended to the weighted median filter. Reza 

et al. [35] proposed a suitable architecture for high speed VLSI and FPGA of the contrast limited 

adaptive histogram equalization (CLAHE) algorithm. The goal of this implementation is to mini-

mise the latency without sacrificing precision. The maximum latency encountered in this approach 

is about half frame. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azizabadi,%20M..QT.&newsearch=true
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2.2.3 Features extraction 

One goal of computer image processing is the efficient and effective visual features extrac-

tion. Deciding which visual features to extract and choosing the best way to extract them are crucial 

problems in many image processing tasks. Retinal image features extraction is a main step in many 

automated detection system. In this step, the aim is to detect retina anatomy and disease symptoms. 

Extracting retina anatomy facilitates the task of identifying disease symptoms. In the literature, 

many works target the retina anatomy, this includes the optical disk, fovea and blood vessels. Dis-

ease symptoms are also targeted, such as microaneurysms, lesions and exudates. In this section we 

will review two of the most important features of retinal images, blood vessels and microaneu-

rysms. 

2.2.3.1 Blood vessel extraction 

The ability to distinguish retinal blood vessels from other structures is a step of great im-

portance for diabetic retinopathy detection and in many retinal imaging applications. For diabetic 

retinopathy detection, the aim is to extract the retinal blood vessels to remove them and to identify 

red lesion candidates which are symptoms of diabetic retinopathy. A large number of algorithms 

have been published relating to the detection of retinal blood vessels. A complete review of the 

existing methods for retinal blood vessels detection can be found at [36]. There exist other methods 

based on tracking techniques [37] and supervised methods [38, 39] to deal with the retinal blood 

vessel detection problem. In this section we will present some existing algorithms and their hard-

ware implementations.  

Matched filtering is a popular technique for vessels detection in retinal images. It is based on 

the convolution of a 2-D kernel with the retinal image. The kernel is designed to model a feature 

based on its properties in the image at some unknown position and orientation. The matched filter 

response indicates the presence of the feature. For retinal images, the properties of the blood vessels 

are exploited to design the matched filter kernels. Three main properties are usually used: blood 

vessels can be approximated by a piece-wise linear segments since they have a limited curvature, 

the diameter of the vessels decrease as they move radially outward from the optic disc, the intensity 

profile of the cross section of the vessel approximates a Gaussian curve. The matched filtering 

technique can benefit greatly from a parallelized hardware implementation.  
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Chaudhuri et al. [40] were the first to propose a two-dimensional linear kernel with a Gauss-

ian profile to segment the retinal blood vessels. The kernel is rotated 12 times with an increment 

of 15° to fit into vessels of different orientations. The highest response of the filter in each pixel of 

the image is selected and is thresholded to provide a binary vessel tree image. Some problems of 

the proposed matched filter are noticed. The kernel may be quite large and needs to be applied at 

several orientations especially for high resolution images, which result in a computational over-

head. The kernel responds optimally to vessels that have the same form as the proposed kernel, and 

may not respond to those vessels with a different profile. It’s also possible that the matched filter 

respond to some present pathologies in the image, especially with the retinal background variations, 

which increases the number of false detections.  

Al-Rawi et al. [41] proposed an improved matched filter to detect the retinal blood vessels. 

They used an optimization method based on exhaustive search to find the best parameters of the 

filter. Then they proposed an automated method to find the best threshold to segment the retinal 

blood vessels based on the number of connected components and Euler number. Zhang et al. [42] 

proposed to use the matched filter with the first-order derivative of a Gaussian to reduce the false 

detections produced by the original matched filter and to detect the missed fine vessels. Dalmau et 

al. [43] proposed to combine the matched filter with a segmentation strategy by using a Cellular 

Automata, while Zolfagharnasab et al. [44] proposed a new kernel function with Cauchy distribu-

tion to improve the accuracy of the retinal vessel detection. These works introduce new segmenta-

tion methods or propose new kernel functions for the blood vessel cross section intensity approxi-

mation to improve the original matched filter. 

Mathematical morphology is also used for vessels detection. The basic morphology of the 

retinal blood vessels is known a priori to be comprised of connected linear segments [45]. Zana et 

al. [46] proposed a method based on the fact that vessels are piecewise linear and connected. Hence, 

mathematical morphological operators are used to differentiate the vessels from the background. 

Jiang et al. [47] propose to threshold the image at different levels by multi-threshold probing tech-

nique, and uses a verification procedure to detect the vessels in the segmented images. The final 

segmentation is obtained by a combination of those segmented images returned in each step [45]. 

Lam et al. [48] proposed to employ the normalized gradient vector field to detect the centerlines 

after the use of the gradient vector field to detect vessel like objects. To reduce the falsely detected 

vessels, the authors proposed to use a pruning step to remove all vessel pixels that are far away 
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from the centerlines. The same authors proposed a new method in [49]. This method deals with the 

bright and dark lesions. The authors proposed the use of three different concavity measures to 

detect the vessels and to distinguish them from the lesions. 

Supervised methods have been widely proposed because of their performance [50-53]. A 

weakness of supervised methods is that they depend on the training set. Thus, in a system where 

images of different resolutions must be processed, the supervised methods must be trained with a 

set of representative images of each resolution. In addition, these methods are generally imple-

mented on CPUs or GPUs because any update to the classifier may require a new implementation 

and major modifications, and are thus not suitable for custom processor implementations unless 

great efforts are paid. 

Line operators detectors are an unsupervised method used to segment retinal blood vessels. 

These methods were previously used in mammography, were introduced by Ricci et al. [52] as a 

feature extractor with a classifier for retinal blood vessels detection [52]. Multi-scale line operators 

were also introduced and used in [54-56]. Nguyen et al. [45] proposed the MSLD algorithm for 

retinal blood vessel detection. By changing the length of a basic line detector, line detectors of 

varying scales are achieved, and their responses at different scales are linearly combined to produce 

a final segmentation. Multi-scale operation is achieved by changing the length of a basic line de-

tector, which is more suitable for hardware implementation than Gaussian pyramids as in [55]. 

Contrary to supervised methods, a single parameter change makes this algorithm suitable for im-

ages of different resolutions. 

Three main implementation strategies are followed to implement blood vessel segmentation 

algorithms. These strategies are based on the use of CPUs, GPUs or custom processors in FPGAs. 

Most of the existing approaches are implemented in software in CPUs [45-49]. Palomera-Perez et 

al. [44] proposed a parallel multiscale feature extraction and region growing algorithm applied for 

high-resolution images. The algorithm is implemented on 14 parallel CPUs. The proposed ap-

proach is able to process images of 2890 × 2308 pixels 9× faster in comparison with a serial im-

plementation with 8% less accuracy. Becker et al. [57] proposed an approach that both maps and 

localizes retinal blood vessels in real-time on a video targeting an intraocular surgery application. 

The algorithm was implemented in an Intel i7 CPU. It processes 30-40 frames per second with an 

image resolution of 400 × 304. The presented CPU implementations give satisfactory results in 



18 

 

 

terms of segmentation quality but they are computationally intensive due to their high complexity 

and they are too slow to achieve onsite, real-time processing during the patient’s visit. While CPUs 

present the most flexible development and implementation process, they still do not have enough 

computation power to deal with large number of high-resolution images. 

 Many GPU implementations are also presented in the literature. Krause et al. [58] imple-

mented a local Radon transform based algorithm on GPU. This implementation is able to process 

images of size 4288 × 2848 pixels in 1.2 s on an NVIDIA Geforce GTX680. Argüello et al. [59] 

proposed a hybrid strategy based on global image filtering and contour tracing for retinal blood 

vessel extraction. Its GPU implementation processes images of the DRIVE database in an average 

of 0.014 s. For high-resolution images of 4288 × 2848 pixels, the execution time is 0.753 s. Sava-

rimuthu et al. implemented a matched filter for blood vessel detection in human forearms [60]. 

When implemented in GPU, the algorithm is able to process 44 images of 640 × 480 pixels each 

second. This implementation does not consider high-resolution images.  

 Several features extraction algorithms in general are implemented in FPGA such as in [61] 

[62] [63] [64]. Many others are proposed for retinal blood vessel segmentation. Savarimuthu et al. 

[60] have also implemented their algorithm as a custom processor in FPGA. For the same image 

size, this implementation is able to process 215 images per second. In [65], an FPGA implementa-

tion of a programmable SIMD architecture for vessel tree extraction in retinal images was pre-

sented. The implemented algorithm is based on an active contour technique called Pixel-Level 

Snakes (PLS) and morphological operations. This implementation requires a total of 1.349 s to 

extract the vessel tree from 768 × 584 pixels images. Koukounis et al. [66] presented a hardware 

architecture implemented in FPGA for retinal vessel segmentation targeting portable embedded 

systems. The implemented architecture processes images of 768 × 584 pixels in 0.0523 s. Alonso-

Montes et al. [67] presented a hardware approach for an authentication system based on the retinal 

blood vessels extraction using local dynamic convolutions and morphological operations. This ap-

proach was implemented and tested in a fine-grained single instruction multiple data (SIMD) pro-

cessor array. The execution time required to process a 768 × 584 pixels image is 0.1925 s excluding 

the I/O operations. These implementations only consider images of low-resolution.  

The previous cited implementations achieve significant improvements over software imple-

mentations in terms of execution time. Some of them are partially able to process low resolution 
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images of public databases in a reasonable time. However, in a telemedicine context, more im-

provements are necessary especially when processing high-resolution images. This is especially 

true for hardware implementations where the memory size and bandwidth are real challenges [68]. 

CPU and GPU implementations are flexible for parameters tuning when changing the image reso-

lution. However, custom architectures are specific to a given set of algorithm parameters and image 

resolution, and tend to be inappropriate in situations where images of different resolutions must be 

processed such as in telemedicine. This is true unless the problem of ease of hardware architecture 

customization is resolved. 

2.2.3.2 Microaneurysms detection 

Microaneurysms are one of the symptoms of diabetic retinopathy, and their detection is es-

sential in the process of diabetic retinopathy detection and grading. Detecting the microaneurysms 

in fundus images is a very vivid field for the automatic detection of eye diseases community. The 

first automated approach for the segmentation of retinal microaneurysms was described by Bau-

doin et al. [2]. Since then, many approaches have been proposed in the literature. The two most 

relevant approaches are: Morphological approach and Region growing approach [69].  

Morphological processing is a collection of techniques used for image component extraction. 

This approach is most commonly used for microaneurysms detection. Niemeijer et al.[70] used a 

hybrid approach to detect the red lesions by combining the prior works by Spencer et al. [25] and 

Frame et al. [71]. Spencer et al. used morphological processing to detect microaneurysms. A bilin-

ear top-hat transformation and matched filtering were used to provide an initial segmentation. 

Frame et al. proposed a list of features to characterise microaneurysms. These features are used by 

a classifier to decide which candidates are microaneurysms. Kande et al. [72] used a matched filter 

for contrast enhancement of red lesions, the enhanced lesions are then segmented by relative en-

tropy based thresholding. A top-hat transformation is applied to supress the enhanced blood ves-

sels. The candidates red lesions are classified from other dark segments using a support vector 

machine. The linear filtering and thresholding are employed by Matei et al. [73] to identify the 

presence of specific retinal lesions like microaneurysms. 

Spencer et al. [25] and Frame et al. [71] have used region growing algorithm to find final 

candidate object set after the detection of the retinal vessel tree. Cree et al. [74] proposed a method 

for microaneurysms detection based on region growing algorithm to find the underlying candidate 
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morphology. Feature classification is used to distinguish microaneurysms from other spurious ob-

jects. Usher et al. [75] used region growing algorithm to detect the microaneurysms. After prepro-

cessing, microaneurysms are extracted using recursive region growing and adaptive intensity 

thresholding. The classification of the detected lesions is done by neural network. Streeter et al. 

[76] proposed a microaneurysms detection algorithm in color images based on region growing. 

After preprocessing, the blood vessel tree are extracted and removed. Thresholding and region 

growing are applied by taking a candidate seed image, after the region growing, the features are 

extracted.  

Neural networks are also used and considered because they are able to detect the regions that 

contain the microaneurysms and reject other regions. To achieve this goal, the image is divided 

into several windows. According to a multi-stage training, the presence of microaneurysms is de-

tected in these windows by the neural network. Generally, neural networks, support vector machine 

(SVM) and naïve Bayes techniques are used for the classification of the detected candidates. 

2.3 Public datasets and metrics 

Automated detection systems can significantly decrease the manual labour in diagnosing 

large quantities of retinal fundus images. Several algorithms have been developed in the literature. 

Annotated data is necessary to test and evaluate algorithms. There are some publicly available 

annotated databases of retinal fundus images. These databases are different in goals, characteristics 

and completeness level. Their main goals are vessel segmentation, diabetic retinopathy and micro-

aneurysms detection. Each public database provides a gold standard reference which is necessary 

for algorithm training and testing, also called Ground Truth data. The most known public databases 

are: ROC [77], DRIVE [51] and STARE [78]. 

The ROC (Retinopathy Online Challenge) is a microaneurysms dataset. This database is part 

of a multi-year online competition of microaneurysms detection that was arranged by the Univer-

sity of Iowa in 2009. This database contain 50 training images with available annotated images and 

50 test images where the annotated images were withheld by the organizers. The images are JPEG 

compressed and were acquired using a Topcon NW100, a Topcon NW200 and Canon CR5-45NM 

non-mydriatic camera at 45° field of view. There are three different image sizes present in the 
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database: 768 × 576, 1058 × 1061 and 1389 × 1383 pixels [77]. The DRIVE (Digital Retinal Im-

ages for Vessel Extraction) consist of a total of 40 color JPEG compressed fundus images. Between 

the 40 images, 7 contain pathology (exudates, hemorrhages and pigment epithelium changes). The 

images were acquired using a Canon CR5 non-mydriatic 3-CCD camera with 45° field of view. 

The images are 8 bits per color with a resolution of 768 × 584 pixels [51]. The STARE database 

contains 20 images for blood vessel segmentation. 10 among these images contain pathology. The 

images were captured using a Topcon TRV-50 fundus camera with 35° field of view. The resolu-

tion of the images is 605 × 700 pixels with 8 bits per color. All the images were segmented man-

ually by two observers [78]. 

Metrics have also been developed to compare and evaluate algorithms. Algorithms can be 

evaluated against a ground truth image dataset using sensitivity, specificity and accuracy metrics. 

The sensitivity is a ratio between 0 and 1, which is the number of true-positives (TP) divided by 

the sum of the total number of false-negatives (FN) (incorrectly missed) and true-positives as 

shown in Equation (2-1). Specificity is also a ratio between 0 and 1, which is the number of true-

negatives (TN) divided by the sum of the total number of false-positives (FP) (incorrectly thought 

to have disease) and true-negatives as shown in Equation (2-2). The accuracy metric is computed 

as shown in Equation (2-3). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2-1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (2-2) 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2-3) 

An automated detection system can be better evaluated through a receiver operating charac-

teristics (ROC) curve. This curve is obtained by setting, for example, 100 different thresholds, and 

obtaining sensitivity and specificity pairs of the algorithm at each of these thresholds. The resulting 

sensitivity/specificity pairs are plotted in a curve which represents the sensitivity on the vertical 

axis and the complement to 1 of the specificity on the horizontal axis. A compact representation is 

possible by reducing the curve to a single number, the area under the ROC curve or AUC, which 

is a number between 0 and 1, where 1 denotes perfect performance. 
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2.4 Architectural considerations for the implementation of image 

processing algorithms 

One of the main goals of image processing is to extract useful information from images and 

video. This task is difficult and many different algorithms are proposed. Image processing algo-

rithms are often applied on large volumes of data, which implies high memory bandwidth require-

ments, and real-time processing implies high computational loads. The insufficient performance 

observed in GPP (general purpose processors) and GPU (Graphical Processing Unit) implementa-

tions has led to the use of hardware architecture and reconfigurable computing. Hardware archi-

tectures are often considered to accelerate their execution, especially to meet to main requirements: 

needs for data, and computationally needs. In this section we review some aspects of hardware 

implementations of image processing algorithms. First, the aspect of data access and processor 

architectures for image processing is discussed. Existing hardware implementations for image 

quality assessment, image enhancement and features extraction are reviewed with more attention 

to retinal image processing algorithms. 

2.4.1 Data access for image processing  

Data access is an important problem in image/video processing application. Image 

processing applications are both computationally and data intensive. Based on data dependencies, 

some algorithms require data from a relativelly small neighborhood, this includes point or pixel 

operators (such as gamma correction, threshoding) and window operators (such as 2-D 

convolution, erosion and dilation). Some other algorithms depend on data from the entire image 

like the Fast Fourier Transform and histogram techniques, or several images like motion 

estimation.  

To allow efficient access to structured data such as in 2D or 3D images, Larabi et al. [79] 

proposed a low-cost n-dimensional cache architecture for FPGA-based image and signal pro-

cessing systems on chip. They developed a theoretical model for the architecture and a methodol-

ogy to define the cache’s practical implementation based on the application and system parameters. 

Using this solution, numerical results indicate that 50% improvement in run-time performance can 

be achieved.  
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Deepa et al. [80] addressed the problem of on-chip memory management. To avoid memory 

redesigning when data access policy changes, the authors proposed a sub-bank dual port memory 

architecture, which consists of a modified single port memory to function as a true dual port 

memory with the help of two-port memory control unit, clock and address generators. This archi-

tecture is implemented and verified for an image coding algorithm (Lapped Biorthogonal Trans-

form based low complexity Zerotee codec (LBT-LZC)) to achieve high throughput and lower 

power consumption. Khalvati et al. [81] addressed the local image processing algorithms with the 

aim to improve the efficiency of their hardware implementations by developing a “window mem-

orization” technique. This technique identifies similar neighbourhoods of pixels to skip them and 

to minimize the redundant computations. The authors applied this technique to the Kirsch edge 

detector and median filter. A typical speedup factor of 1.58× with 40% less hardware is reported 

when compared to conventional optimized techniques. 

Yu et al. [82] studied the case of sliding window operations in image processing. To estimate 

the maximal possible speedup, they defined three upper bounds according to: the area constraints, 

memory bandwidth constraints and on-chip memory size constraints. Then they determined with 

analytical representation the three upper bounds, and they considered the tightest one to decide on 

the hardware implementation of the algorithm. In addition, they proposed a new buffering method 

to build efficient memory hierarchy for the sliding window algorithms. 

2.4.2 Hardware function evaluation for image processing 

Image processing algorithms are computationally intensive, and involve the use of 

mathematical complex functions. These functions are very hardware consuming and represent a 

bottleneck for several algorithms. Computing this functions quickly and accuratly is a major goal 

in hardware design in general.  

To solve this problem, Deng et al. [83] proposed a systematic approach for automatic 

generation of look-up-tables (LUT) for function evaluation and minimization in hardware resource 

for FPGAs. The developed approach support a class of functions and include sine, cosine, 

exponentials, gaussians, the central B-splines and certain cylinder functions that are frequently 

used for signal and image processing applications. To optimize their implementations in hardware, 

the function evaluation is based on numerical approximation using Taylor polynomials. For design 

space exploration, the proposed approach involves a search in three-dimensional space (data 
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precision, sampling density and approximation degree) to meet customer requirements (accuracy, 

speed, area and on-chip memory).  

Sasao et al. [84] proposed to use LUTs cascade to reduce circuit complexity. This method is 

suitable for automatic synthesis. They developed a synthesis method to convert a MATLAB-like 

specification into LUT cascade design. Experimental results of this approach show its efficiency 

when implemented on FPGA. Zhang et al. [85] proposed a special-purpose compiler that automat-

ically generates customized look-up-tables and implementations for elementary functions under 

user given constraints. The generated implementations include a C/C++ code as well as a 

MATLAB-like code that can be translated directly to hardware module on FPGA platforms. The 

experimental results in image processing applications show significant resource saving to designs 

on FPGAs. 

Lee et al. [86] proposed an automated system for function evaluation unit generation. The 

system selects the best function evaluation hardware for a given function, accuracy requirements, 

technology mapping, and optimization metrics (area, throughput and latency). They proposed also 

an automated bit-width optimization technique for minimizing the sizes of the operators in the data 

path. They explored a vast design space for fixed-point 𝑠𝑖𝑛(𝑥), 𝑙𝑜𝑔(𝑥) and √𝑥 to provide optimal 

function evaluation results for range and precision combinations between 8 and 48 bits. 

Oskar Mencer [87] proposed a parameterized module-generators for pipelined function eval-

uation using look-up-tables, adders, shifters, multipliers, and dividers. The author discussed the 

trade-offs involved between (1) full look-up-tables, (2) bipartite (look-up add) units, (3) look-up 

multiply units, (4) shift-and-add based CORDIC units, and (5) rational approximation. An example 

shows that the look-up multiply unit produces competitive designs with data width up to 20 bots 

when compared with shift-and-add based CORDIC units. It shows also that look-up multiply 

method or rational approximation can produce efficient designs for large data widths when evalu-

ating functions not supported by CORDIC. 

2.4.3 Processor architecture for image processing 

Pure hardware solutions have been proposed for a long time as a good solution to accelerate 

image processing algorithms. To deal with the flexibility, some authors proposed generic architec-
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tures for low-level window-based image processing algorithms (sliding window functions and spa-

tial filters). Torres-Huitzil et al. [88] proposed a compact FPGA-based systolic architecture for real-

time image processing. The architecture target window-based image operators include generic im-

age convolution, gray-level image morphology and template matching. The computational core of 

the architecture is a configurable 2-D systolic array of processing elements. The architecture pro-

vides a throughput of 3.16 GOPs at a 60 MHz clock frequency for a 7×7 systolic array when 

implemented in FPGA. Saldana et al. [89] proposed a reconfigurable systolic-based architecture 

for low-level image processing. The architecture is customizable to perform operations for 3×3, 

5×5 and 7×7 window coefficients. The architecture consists of 2D systolic array of processing 

elements. The architecture is based on parallel modules with internal pipeline operation, where 

every processing element can be configured according to a control word. To reduce the number of 

access to data memory and to extend the array capabilities, the arrays are provided with image 

buffers. The architecture is able to achieve a throughput of around 3.6 GOPS. Ariyadoost et al. [90] 

proposed a 2-D systolic adaptive DLMS FIR filters for image processing. The systolic architecture 

consists of some cell processors in tree scheme were used for improving speed of noisy image 

filtering. 

Increasing demands on computational power for image/video processing applications moti-

vated the use and the development of customizable processors. Instead of designing pure hardwired 

architectures, customizable processors reduce the efforts and offer the possibility to accelerate the 

computationally demanding parts of an application. In this context, Application Specific Instruc-

tion-set Processors (ASIP) have emerged as a promising solution to provide high flexibility and 

high computational efficiency in order to increase design reusability and short time-to-market.  

Asri et al. [91] proposed a novel ASIP methodology and architecture for image processing. 

The designed ASIP can handle both image scaling and image enhancement using the same proces-

sor architecture, based on common pattern extraction and resource sharing methodology. Simula-

tion results show that the proposed ASIP overwhelmed conventional ARM and RISC Processor. 

Liao et al. [92] proposed two ASIPs. An ASIP with a reconfigurable multi bank memory module 

and an SIMD computation pipeline, designed for pixel level image processing, and a 2-D ASIP 

with a slide register module and reconfigurable ALU modules, designed for 2D image processing. 

The first ASIP can perform color conversion, Gamma correction and dithering applications 4 to 10 

times faster compared to its base processor. For the second ASIP can perform color interpolation, 
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3x3 edge detection, median filter and 5x5 edge detection applications 5 to 43 times faster when 

compared to its base processor. 

Instruction level parallelism and data level parallelism are employed to try to propose more 

efficient VLIW and SIMD processor architectures. A flexible VLIW processor is proposed by 

Brost et al. [93] for real-time image processing. The authors developed a VLIW VHDL processor 

model with a variable instruction set and a customizable architecture. The authors realized a rapid 

prototyping of embedded contactless palm print extraction on an FPGA and obtained a processing 

time of 145.6 ms per image. Wittenburg et al. [94] proposed HiPAR-DSP, a parallel VLIW RISC 

processor targeting real-time image processing applications. The authors tried to analyse a wide 

class of image processing algorithms ‘properties, to propose this architecture that gains perfor-

mance from data/instruction level parallelism. This processor is designed for: 3x3 convolution, 

1024 complex samples FFT and gray-level histogram applications, and is able to reache a perfor-

mance of more than 2 GOPS. 

Kyo et al. [95] proposed the IMAP-CE, as an SIMD linear processor arrays based on an 

integrated memory array processor architecture. The IMAP-CE integrates 128 VLIW processing 

elements with a RISC control processor to provide a single instruction stream for the processor 

array. The IMAP-CE can reach a peak performance up to 51.2 GOPS operating under 100 MHz. 

Koenig et al. [96] proposed the KHARISMA processor architecture. This architecture consists of 

a reconfigurable instruction set multi grained array that integrates coarse/fine grained run time re-

configurable blocks. These blocks can be combined to realize different instruction set Architec-

tures that may execute in parallel.  

Stevens et al. [97] proposed the BioThreads architecture. It consists of a VLIW-based multi-

processor that target biomedical image processing applications. In addition to instruction and data 

parallelism, this architecture handles efficiently the thread-level parallelism. This is possible with 

the aid of a novel mechanism for the dynamic creation and allocation of software threads to un-

committed processor cores by implementing key POSIX Threads primitives directly in hardware, 

as custom instructions. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wittenburg,%20J.P..QT.&searchWithin=p_Author_Ids:37427007000&newsearch=true
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2.5 Tools for HDL description generation for image processing 

Processing of small sized images is used in several biomedical and military applications (ar-

tificial retina, UAVs and guided missiles) [98]. Traditional VGA, NTSC, PAL use medium sized 

images while medical imaging and several other applications need more resolution (QSXGA 

2560x2048 and more) and high quality images. To overcome the real-time constraint for high res-

olution image processing, reconfigurable hardware and FPGAs has been proposed. FPGAs present 

some advantages with their reprogramability and parallelism possibilities while targeting real-time 

applications. However, the low-level programming model of FPGAs is their major disadvantage. 

With the vast range of image processing applications, traditional design methodologies (starting 

the system design from scratch) are inefficient and the need to new methodologies to describe 

modern image processing techniques becomes increasingly necessary. The goal is to meet time and 

performance constraints (area, energy) while offering shorter time to develop the technology and 

to bring it to the market. 

High Level Synthesis (HLS) refers to the generation of synthesizable RTL from user defined 

behavioral description automatically. The research in HLS has led to the development of several 

tools like Vivado of Xilinx with the aim to generate hardware from a high level description. High 

level descriptions are usually coded in C, ANSI C, C++ and MATLAB. The HLS methods can be 

classified into two approaches: the annotation and constraint driven approach, and the source di-

rected compilation approach [99]. In the first approach the source code is preserved in C or C++ as 

much as possible. Annotation and constraint files are used to drive the compilation process, such 

as SPARK, SeaCucumber, SPC, Stream-C, Catapult C and DEFACTO etc. The second approach 

modifies the source language to let the designer to specify, for instance, the amount of parallelism 

or the size of variables, such as ASC, C2Verilog, Handel-C, Handy-C, Bach-C and SpecC etc. 

Desmouliers et al. [100] proposed an image and video processing platform (IVPP) based on 

FPGA. IVPP is a hardware/software co-design platform implemented on FPGA using high-level 

synthesis. It consists of a Microblaze processor with a front-end (capturing video data) and a back-

end (displaying processed data). Hardware blocks synthesized from HLS language can be inte-

grated and plugged-in to provide complete hardware solution. The authors presented also a frame-

work that supports custom logic (user peripherals). A development tool called Synphony C High 
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Level Synthesis tool is used to convert C-based algorithms to hardware that can be easily incorpo-

rated into IVPP. 

Andriamisaina et al. [101] developed a multimode architecture with dedicated design flow 

and its associated HLS tool GAUT for image processing applications. The tool generates a single 

RTL hardware architecture optimized in area from a unified description of a set of time-wise mu-

tually exclusive tasks and their throughput constraints. The authors proposed a joint-scheduling 

algorithm to reduce the register, the steering logic and the controller complexities. This approach 

shows a significant area saving compared to the state-of-the art techniques. Boubekeur et al. [102] 

designed a high level synthesis tool targeting massively parallel image processing ASICs. From a 

high level description, the tool is able to generate an optimized SIMD (Single Instruction Multiple 

Data) mesh connected array of one-bit processing elements with minimized resources. This tool 

targets low-level image processing applications to generate dedicated optimized ASIC in terms of 

area and performance. 

Hannig et al. [103] proposed an automatic synthesis of highly complex, throughput optimized 

architecture of an adaptive multi-resolution filter for medical image processing. The designed filter 

includes 16 parallel working modules, where the most computationally intensive module achieves 

software pipelining by a factor of 85 (computations of 85 iterations overlap each other). The im-

plemented technique contributed to reduce the complexity and power efficiency. Also it was able 

to reduce the productivity gap of embedded system design by almost two orders of magnitude. 

Yazhuo et al. [99] designed a parameterized architecture model in high level synthesis for auto-

mated generation of hardware frames for all image processing applications. They employed data 

reuse to reduce the number of data memory accesses. A special control unit is designed to dominate 

the dataflow and to make it possible to store a small part of the data values in internal RAM and 

smart buffer while providing sufficient memory bandwidth for the custom data path.  

Shatnawi et al. [104] developed a technique for scheduling and processor allocation during 

the synthesis of integrated heterogeneous pipelined processing elements for DSP applications. The 

new technique produces high efficiency when compared to homogeneous implementations results. 

The proposed technique achieved efficiency in hardware implementation at logic-level by shrink-

ing the processing units counts used without compromising the rate and delay optimality criteria. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Andriamisaina,%20C..QT.&searchWithin=p_Author_Ids:37294925500&newsearch=true
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Improvement in high level synthesis performance during the synthesis of some image processing 

algorithms was detected. 

Benkrid et al. [105] developed a high level description environment to bridge the gap be-

tween application design and hardware description, and to allow efficient compilation to the form 

of EDIF netlist. This approach is based on parameterized description of task-specific architectures. 

The developed system targets Xilinx XC 4000 and Virtex series FPGAs. 

2.6 Summary and research objectives 

In this chapter we introduced the algorithmic aspects of the automated detection of eye dis-

eases using digital retinal images. In any automated detection system of the diabetic retinopathy, 

three main parts are necessary, the retinal images quality assessment, the retinal image enhance-

ment and their features extraction. These three parts are reviewed throughout this chapter. Con-

cerning the hardware implementations, we started first by discussing the architectural considera-

tions for the implementation of image processing algorithms. We detailed especially three points: 

(1) the data access, (2) hardware function evaluation, and (3) the processors architectures for image 

processing. We then surveyed existing tools for HDL description generation for image processing 

algorithms.  

After this literature review, and after analysing the context of retinal image processing and 

their hardware implementations, we have identified several opportunities for acceleration and effi-

cient implementations for two algorithm classes: retinal image quality assessment, and retinal 

blood vessel segmentation. To the extent of our knowledge, hardware implementations targeting 

retinal image quality assessment have not been proposed yet. For retinal blood vessel segmentation, 

the existing implementation are limited in terms of performances especially in the context of tele-

medicine. There are no hardware implementations able to process high resolution images. The ex-

isting ones are targeting images of low resolution and their scalability issue is not discussed. Our 

research objectives have been defined in the light of these limitations. 

The main objective of this research is to design and implement algorithms for retinal image 

processing on hardware platforms with the aim of achieving high throughput while maintaining  

level of flexibility. In order to reach our goals, the following specific objectives are identified: 
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 Propose adequate optimized hardware architectures for retinal image processing algo-

rithms especially retinal image quality assessment and blood vessel segmentation algo-

rithms. The proposed architecture should satisfy the high performance requirements in a 

telemedicine context. 

 Develop a tool able to generate optimized low-level HDL descriptions automatically for 

the proposed architectures. We aim to propose a tool able to keep low level programming 

constructs while saving programming flexibility in same time. 

 Simulate, implement, test and evaluate several architectures and designs of retinal image 

processing to assess the performance of the proposed solutions, and compare it with exist-

ing works.  

Next chapter will focus on retinal image quality assessment algorithm and its acceleration as 

a first task in the retinal image processing pipeline.
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CHAPTER 3 CO-PROCESSOR FOR RUN LENGTH ENCODING      

ALGORITHM 

Retinal image quality assessment is the first task in the pipeline of automated retinal image pro-

cessing systems. This task is necessary because it allows to avoid collecting images of insufficient 

quality for automated processing. Such a task could also be integrated with retinal cameras to allow 

taking rapid decisions if new acquisitions are necessary. In this chapter, we present a Zynq-based 

system to compute Run-Length encoding Matrix features for retinal image texture analysis. The 

aim is to accelerate the algorithm and allow the development of an embedded quality assessment 

system for retinal images. A software version of the algorithm was first implemented on PC and 

an ARM CPU of the Zynq platform. To improve the performance of the software implementation, 

we propose a co-processor architecture implemented in the programmable logic portion of the Zynq 

platform. 

3.1 Introduction 

Retinal image quality assessment as a first task in the pipeline has to be fast enough to allow 

fast decision on the acceptance or not of the acquired retinal image. Figure 3-1 shows examples of 

bad quality retinal images that should be rejected. Several research studies have shown that image 

texture analysis can be used for an objective assessment of the quality of the retinal images [18, 

106]. In [107], an algorithm for retinal image quality assessment based on image texture analysis 

was developed. The proposed algorithm employed the local sharpness and texture features by ap-

plying the cumulative probability of blur detection metric and run-length encoding algorithm, re-

spectively. The algorithm demonstrated sufficient robustness to detect relevant images for auto-

mated diagnosis using image texture analysis. Unfortunately, image texture analysis algorithms are 

computationally intensive due to their high complexity. For retinal image quality assessment, the 

images should be analysed on site after image acquisition but before transmission to a remote tel-

emedicine processing system. This represents a challenge for embedded retinal imaging especially 

with high resolution retinal images. 
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Figure 3-1. Examples of bad quality retinal images 

Several hardware implementations have been developed to accelerate image texture analysis 

algorithms. Tahir et al. [108] proposed an FPGA implementation of the Grey-Level Co-occurrence 

Matrix (GLCM) and Haralick texture features to accelerate their computation. To demonstrate the 

efficiency of the developed architecture, they implemented a multispectral computer vision system 

for automatic diagnosis of prostatic cancer. The results show that the performance of an FPGA is 

approximately 9× faster than that of a Pentium 4 PC. Akoushideh et al. [109] proposed a hardware 

architecture implemented on FPGA to compute the GLCM matrix and their features. The results 

show that the hardware implementation is 214× faster than the software implementations. 

Bouris et al. [110] proposed an FPGA-based implementation of the SURF (Speeded-Up Ro-

bust Features) detector. The results show that the implemented system outperforms a state-of-the-

art dual-core Intel CPU by at least 8×. Yao et al. [111] proposed an architecture of optimised SIFT 

(Scale Invariant Feature Transform) feature detection for an FPGA implementation of an image 

matcher. The proposed FPGA implementation is able to detect the features of a typical image of 

640 × 480 pixels within 31 milliseconds. 

The Run-length encoding algorithm constitutes a common block in numerous applications 

such as retinal blood vessel segmentation [112], neovascularization detection [113] and data trans-

fer and image compression [114]. The algorithm encodes an image by counting runs of pixels with 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Akoushideh,%20A.R..QT.&searchWithin=p_Author_Ids:37991199800&newsearch=true
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a given value in (typically four) different directions, which is useful for data compression applica-

tions. For retinal image quality assessment, we need to compute the Run-Length Matrix (RLM) 

and its features, which is useful for retinal image quality assessment. Several hardware implemen-

tations of the run-length encoding algorithm have been presented [115, 116], but the RLM features 

computing is not discussed since their computation is not necessary for the targeted applications. 

In this work, we are interested on the implementation of the run-length encoding algorithm for 

retinal images texture analysis on a Zynq platform. This chapter makes the following contributions:  

 It proposes an embedded system for retinal image RLM features computation. This first solu-

tion is completely software. 

 It proposes a hardware co-processor to accelerate the RLM image features computation. 

 It implements the RLM features to provide quantitative information describing textural prop-

erties of images. 

3.2 Run-Length Matrix and RLM Features 

The use of RLM was proposed by Galloway [117] for texture feature extraction. Run-length 

encoding is used to represent strings of symbols in an image matrix. The gray level run is defined 

as a set of consecutive, collinear pixels having the same gray level. The length of the run is the 

number of pixels in the run. For a given image, a RLM 𝑝(𝑖, 𝑗) is defined for a specific direction as 

the number of runs with pixels of gray level 𝑖 and run length 𝑗 in that direction. The first dimension 

𝑖 corresponds to the gray level of the pixel. The size 𝑀 of 𝑖 is the maximum gray level of the pixel. 

The second dimension 𝑗 corresponds to the run length. The size 𝑁 of 𝑗 is equal to the maximum 

run length. Figure 3.2 shows an example of an image and its corresponding run-length matrix. 

 

Figure 3-2. a. Image and b. its corresponding Run Length Matrix 
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Using this computed matrix 𝑝(𝑖, 𝑗), the following three features can be computed (originally 

proposed by Galloway [19]): 

1. Short Run Emphasis (SRE) 

𝑆𝑅𝐸 =  
1

𝑛𝑟
 ∑ ∑

𝑝(𝑖, 𝑗)

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

=  
1

𝑛𝑟
 ∑

𝑝𝑟(𝑗)

𝑗2

𝑁

𝑗=1

 

(3.1) 

2. Long Run Emphasis (LRE) 

𝐿𝑅𝐸 =  
1

𝑛𝑟
 ∑ ∑ 𝑝(𝑖, 𝑗). 𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

=  
1

𝑛𝑟
 ∑ 𝑝𝑟(𝑗). 𝑗2

𝑁

𝑗=1

 

(3.2) 

3. Run Percentage (RP) 

𝑅𝑃 =  
𝑛𝑟

𝑛𝑝
 

(3.3) 

Where 𝑛𝑟, 𝑛𝑝, M and N are the total number of runs, the number of pixels in the image, the 

number of RLM rows and the number of RLM columns, respectively. 

The following features were later proposed by Chu et al. [118] and Dasarathy and Holder 

[119]. 

4. Low Gray-Level Run Emphasis (LGRE) 

𝐿𝐺𝑅𝐸 =  
1

𝑛𝑟
 ∑ ∑

𝑝(𝑖, 𝑗)

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

=  
1

𝑛𝑟
 ∑

𝑝𝑔(𝑖)

𝑖2

𝑀

𝑖=1

 

(3.4) 

5. High Gray-Level Run Emphasis (HGRE) 

𝐻𝐺𝑅𝐸 =  
1

𝑛𝑟
 ∑ ∑ 𝑝(𝑖, 𝑗). 𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

=  
1

𝑛𝑟
 ∑ 𝑝𝑔(𝑖). 𝑖2

𝑀

𝑖=1

 

(3.5) 

6. Short Run High Gray-Level Emphasis (SRHGE) 
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𝑆𝑅𝐻𝐺𝐸 =  
1

𝑛𝑟
 ∑ ∑

𝑝(𝑖, 𝑗). 𝑖2

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

(3.6) 

7. Long Run Low Gray-Level Emphasis (LRLGE) 

𝐿𝑅𝐿𝐺𝐸 =  
1

𝑛𝑟
 ∑ ∑

𝑝(𝑖, 𝑗). 𝑗2

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

 

(3.7) 

8. Long Run High Gray-Level Emphasis (LRHGE) 

𝐿𝑅𝐻𝐺𝐸 =  
1

𝑛𝑟
 ∑ ∑ 𝑝(𝑖, 𝑗). 𝑖2. 𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

(3.8) 

The proposed system is divided into four steps to compute the image features, as shown in 

Figure 3-3: image acquisition, mask generation, RLM computing and RLM features computing. 

 

Figure 3-3. Different steps for computing the image features 
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3.2.1 Image acquisition 

The retinal images are taken using a retinograph which is a camera with special optics ca-

pable of taking images of the retina. The image acquisition step is responsible for loading the retinal 

image into the processing system and transferring it onto a server.  

3.2.2 Mask generation  

The retinal image is square, while the retina is round. The retina does not occupy the whole 

image. The mask is a binary image of the same size and it identifies which pixels of the image 

correspond to the retina. Figure 3-4 shows an example of an original image and the corresponding 

generated mask. 

3.2.3 Run-Length Matrix computation 

In this step, we compute the RLM and its features as described in the section II. We compute 

four matrices corresponding to different orientations (0°, 45°, 90° and 135°) to increase the size of 

the features set. Only the pixels inside the mask are considered. We compute the four matrices for 

each channel of the image: red, green and blue channels. 

3.2.4 Features computing 

In this step, we compute the following 8 features since they contribute efficiently to differ-

entiate the images based on their quality. The 8 features are described in section 3.2 by the equa-

tions (3.1) to (3.8). 
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Figure 3-4. Original image and the corresponding mask 

 

3.3 Zynq based architecture 

The proposed system is implemented in a Zynq-7000 AP SoC that integrates a dual-core 

ARM Cortex–A9 based processing system (PS) and a 7-series Xilinx Programmable Logic fabric 

(PL) in a single device. The PS and PL of Zynq communicate using the Xillybus core [22]. The 

Xillybus core is a hardware module that communicates with the ARM processor through the AXI 

bus and DMA buffers to transfer data. Any additional custom logic should be connected and inter-

faced to the Xillybus core via FIFOs. The ARM processor is clocked at 667 MHz and runs the 

Linux operating system. Figure 3-5 shows an overview of the proposed Zynq-based system. 

3.3.1 Data analysis 

The maximum size of the RLM for 8-bit per color pixels is 256 × image width. The longest 

possible run is equal to the image diagonal. This situation does not occur in general for retinal 

images. In order to reduce RLM size we analyzed a representative image dataset. This proprietary 

dataset includes 213 retinal images. We computed the RLMs for these images and found that the 

maximum value of the run-length does not exceed 257 pixels, while the image width for high res-

olution images often exceeds 1000 pixels. The maximum value of the runs was found to require 18 

bits for its representation. We take these values to be representative of the vast majority of retinal 

images. 

 

Figure 3-5. Overview of the Zynq-based system  
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3.3.2 RLM features co-processor  

Our first implementation of the proposed system to compute the RLM features is a software 

implementation of all the four steps in C++ with OpenCV. We are interested on the RLM features 

algorithm (steps 3 and 4). To accelerate this algorithm, we propose to keep the RLM computing 

(step 3) in software and move its features computing (step 4) in hardware in a co-processor to get 

benefits from the parallelism in programmable logic. The software plays the role of host and sends 

the matrix to the co-processor then receives computed results. The software interfaces with the co-

processor via two 32-bit × 512 FIFOs as shown in Figure 3-5. The stream between the PS and the 

PL is done through a generic 32-bit AXI stream interface while the PL to PS stream is through a 

high-performance AXI port.  

The co-processor architecture is shown in Figure 3-6. The computation of the features is done 

in parallel. Modules F1 to F8 share the same input which is the values of the RLM. 

In each clock cycle a new value is obtained and the computed features are updated until the 

last value of the RLM. The F8 calculator module computes the RP feature. In the first stage of F8, 

we accumulate the run-length values to compute the number of runs, and then the computed fea-

tures are divided by the number of runs. We can see in the Figure 3-7 that the output from the F8 

calculator (number of runs) is shared with the other modules as input of a divider. 

All computations are done in fixed-point. The fractional part is represented by 18 bits to 

ensure an acceptable precision. For the integer part, we consider that the RLM values are 18 bits 

wide for a 256 × 257 matrix size. The division operation is performed by multiplication by the 

reciprocal. The divisor values are limited to the interval [12,2572] and the corresponding recipro-

cals are stored in a look-up-table. Two division modules are necessary, to divide by 𝑖 and 𝑗. The 

quotients are reused for other features. 

A state-machine manages the communications and the different steps of the co-processor. 

The behavior of the state machine is described in Figure 3-7. If data is available in the FIFO, the 

state changes from the Idle to the Features computing state. If all data of the RLM is processed, the 

state changes from Features computing to the Last division state. In this state, the division by the 

number of runs is performed and the state changes to the Send results state. In the Send results 
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state, the computed features are sent back to the host. Since the computed features are represented 

by more than 32 bits, two clock cycles are necessary to send each feature to the host 32 bits at a 

time. 

 

 Figure 3-6. RLM features co-processor architecture 

3.4 Results and discussion 

This section presents and discusses the results. We implemented the system using the Zed-

Board with a Zynq-7000 SoC platform which incorporates the XC7Z020-1CLG484CES device. 

Figure 3-8 shows the proposed system for RLM features computing for retinal images. The imple-

mented software-based approach was first developed for a desktop computer and then ported to the 

Zynq platform under the Linux operating system. 
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Features computing

Last division

Send results

Data available

< 16

Result sent

RLM read

Data not 

available

 

Figure 3-7. State machine sequencer of the co-processor 

Table 3.1 shows the programmable logic resources utilization with and without the co-pro-

cessor. Other than the co-processor, the programmable logic includes communication and user in-

terface modules. These modules are necessary for the Linux operating system to be able to display 

in a VGA screen, and to communicate with the PL via the Xillybus core. 
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Figure 3-8. Overview of the proposed system for RLM features computing 

Table 3.2 shows the execution time for several image sizes executed on the Zynq PS. As 

expected, the processing time grows approximately linearly with the number of pixels. Table 3.3 

presents the execution time for three test cases for an image of 2496 × 1664 pixels. The first test 

case is the pure-software solution executed on an Intel Core i7 2620, 2.7 GHz processor. 

Table 3.1. Programmable logic resources usage 

Resources RLM  

co-processor 

Communication and user 
interface modules 

Total / %  

Flip-Flops 348 4177 4525 (4%) 

LUT 1012 4762 5774 (10%) 

BRAM/FIFO 5 5 5 (3%) 

DSP48E1s 36 0 36 (13%) 

 

Table 3.2. Execution time under Zynq PS for several image sizes 

Image size Execution time (All software) 

1620 × 1444 1.9 s 

2588 × 1958 4.3 s 

3456 × 2304 6.7 s 

 

The execution time for an image of 2496 × 1664 pixels with four color channels (Red, 

Green, Blue and Gray) executed in an i7 CPU is 597 ms. This one is faster than the Zynq based 

implementation; however, such a CPU is not suitable for an embedded system. The second test 

case is the pure-software solution for the RLM features computing executed on the Zynq PS run-

ning Linux. The execution time is 3.5 s. The third case shows the results of the RLM features 

computing when the co-processor is used. In this case, the execution time is 116 ms, which repre-

sent an acceleration by a factor of 30.1×. 
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Table 3.3. Execution time under Zynq PS for several image sizes 

Test case Platform Execution time Speedup 

All software i7-2620 CPU, 10GB RAM 597 ms  

RLM features only: software Zynq PS (ARM-A9, 667 MHz, 
512 MB RAM) 

3.5 s 1 

RLM features only: software + co-
processor 

Zynq PS + PL  116 ms 30.1× 

By adding the co-processor in PL, the number of LUTs and flip-flops slightly increases. The 

RLM co-processor necessitates 348 flip-flops, 1012 LUTs and 36 DSP48E1s as additional area. 

The additional 13% of DSP48E1s slices and 2% of LUTs and flip-flops is fully justified when 

considering the acceleration by a factor of 30.1×. 

3.5 Conclusion 

This chapter presented a co-designed system implemented on the Zynq 7000 platform to 

compute retinal image features using run-length encoding. The whole system is implemented first 

in software. For high resolution retinal images of 2496 × 1664 pixels, the execution time for four 

color channels in an i7 CPU is 597 ms. When compared to a software implementation on the zynq 

platform, the i7 CPU implementation is faster. However, the Zynq platform is more suitable for an 

embedded system. To accelerate the processing, a hardware co-processor for RLM features com-

puting is implemented on the programmable logic which achieves an acceleration of 30.1×. We 

implemented and tested the RLM features computing for four color channels of the image. Future 

works will integrate this system as a retinal image features generation engine. The generated fea-

tures will be used with a classifier to decide if the image quality is acceptable for automated diag-

nosis. 
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CHAPTER 4 FLEXIBLE ARCHITECTURES FOR RETINAL BLOOD 

VESSEL SEGMENTATION USING MATCHED FILTERING 

In this chapter, we address the problem of retinal blood vessel segmentation using the 

matched filtering approach. We present several hardware architectures targeting FPGA and ASIP 

implementations. Our contribution is in the flexibility and scalability of the proposed architectures 

to deal with images of low and high resolutions. This important issue has not yet been properly 

addressed in the literature of hardware implementations for retinal images processing. 

4.1 Introduction 

Retinal blood vessel segmentation as a main task in automated systems of several eye dis-

eases detection is an active research topic. Several research works are presented in chapter 2. Sev-

eral challenges are noticed in the literature review. The need of acceleration using hardware archi-

tectures is crucial to practical utilization of automated systems especially for large scale systems 

such as in telemedicine. Proposed architectures in the literature are all targeting images of low 

resolution. With recent advances in imaging technology, images of high resolution are more avail-

able and favorable regarding their quality and the possibility to detect small vessels. Proposing 

optimized hardware architectures and making them scalable is a difficult task, hence, scalability is 

an important factor when algorithm parameters are to be adapted to image resolution accordingly. 

In this chapter, we present a scalable hardware architecture for the matched filter algorithm 

for retinal blood vessels segmentation. The matched filter algorithm was chosen because of its 

popularity and performances. However, the matched filter algorithm is computation intensive since 

it requires the computation of several window convolutions for each pixel in the image. This can 

become a serious bottleneck especially for high-resolution images after they have become the norm 

with recent advances in retinographs technology. The proposed architecture uses several architec-

tural optimizations to reduce the area utilization and to accelerate processing. The architecture is 

optimized in terms of resources utilization and throughput. We also propose a tool for automatic 

HDL description that takes as input the matched filter algorithm parameters. Our tool makes the 

algorithm parameters selection more flexible and generates a specific HDL description based on 

an optimized scalable architecture template. In this chapter we also propose an Application Specific 
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Instruction-set Processor (ASIP) based on the Tensilica Xtensa LX extensible processor for the 

matched filter algorithm. In this chapter we make the following contributions: 

 Design and implementation of a hardware architecture for matched filter. 

 A new architecture for the matched filter based on an ASIP with two additional custom 

instructions. 

 A compiler is introduced to automatically generate optimized low-level hardware descrip-

tions, suitable for FPGA implementation, from any algorithm set of parameters. 

 Comprehensive results are provided in terms of blood vessel segmentation quality with 

respect to computations accuracy. 

4.2 Matched filter algorithm description 

In this section we describe the implemented matched filter algorithm for retinal blood vessel 

segmentation. The matched filter was first proposed for eye blood vessel segmentation in [40] and 

is one of the most often used algorithms. It is a template matching algorithm, based on the prior 

knowledge of the objet to be recognized. The matched filter approximates the intensity of the vessel 

cross-section by a Gaussian shape curve. Figure 4-1 shows the intensity profile of a cross section 

of a typical retinal blood vessel for different orientations. 

As proposed by Chaudhuri et al. [40], the matched filter is designed based on three main 

properties: 

 Blood vessels usually have small local curvature and can be approximated by piecewise linear 

segments. 

 The vessels appear darker relative to the background. 

 The intensity profile varies by a small amount from one vessel to another.  

Based on these properties, a Gaussian function is used as a model to fit the blood vessels and 

the matched filter kernel can be expressed by (4.1): 
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Figure 4-1. Retinal blood vessel (a) and the intensity profile of its cross section for different ori-

entations 

𝑘(𝑥, 𝑦) =  {
− exp (−

𝑥2

2𝜎2
) − 𝑚, ∀ |𝑦| ≤

𝐿

2
, |𝑥| ≤ 3𝜎

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

 
(4.1) 

where L is the length of the vessel segment assumed as piece-wise line in the kernel, 𝜎 defines the 

spread of the intensity profile and 𝑚 is used to normalize the filter response and to get a zero mean 

value. 𝑚 is expressed by (4.2). 

𝑚 = ( ∫ 𝑒𝑥𝑝 (
−𝑥2

𝜎2
)  𝑑𝑥

3𝜎

−3𝜎

) /6𝜎 (4.2) 

Using equations (4.1) and (4.2), one line of the kernel is calculated. Assuming that the ves-

sels have fixed width and orientation for a short piece-wise line, the model is extended to two 

dimensions by duplicating the calculated line L times to create a 2D kernel as shown in Figure 4-

2. The pair (𝑥, 𝑦) are the coordinates of each element in the kernel. Since the vessels may appear 

in any orientation, several rotated instances of the kernel are considered. Kernels with different 

orientations are calculated using (4.3): 
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Figure 4-2. 2D kernel of the matched filter 

[𝑢 𝑣] = [𝑥 𝑦] [
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] (4.3) 

where (𝑢, 𝑣) are the new rotated coordinates of (𝑥, 𝑦), and 𝜃 is the rotation angle. (𝑢, 𝑣) are trun-

cated at ±3𝜎 and the kernel width is 6𝜎 + 1. Each rotated kernels is convolved with the retinal 

image, and the maximum response for each pixel to a given kernel then is registered to indicate the 

presence of the vessels. Using 12 kernels separated by an angle of 15° is generally considered 

adequate to detect vessels with acceptable accuracy [41]. 

4.3 Proposed architectures for the matched filter algorithm 

In this section, we give an overview of the blood vessel segmentation system and describe in 

more detail the two proposed architectures.  

4.3.1 Scalable hardware matched filter architecture  

In this section, we describe the proposed scalable hardware architecture and its HDL descrip-

tion generation. The Figure 4-3 gives an overview of the system that includes the proposed scalable 

hardware architecture for retinal blood vessel segmentation. The retinal image is stored in gray 

scale in the on-chip memory of the FPGA. On-chip memory is not suitable for storing high-reso-

lution images, and the data input/output issue must be solved. However, using an image buffer 

allows to process the image data in streaming, and just a small part of the image must be stored. 

This is normally the green channel, which exhibits the best contrast for vessel segmentation pur-

poses [41]. This memory is addressed by an address generator. The processing results are stored in 
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a video memory and can be displayed on a VGA screen using a VGA controller. They can also be 

passed on for further processing and diagnosis. 

Address 
Generator

Image Memory Matched Filter Video Memory

VGA Controller
VGA Screen

 

Figure 4-3. Retinal blood vessel detection system overview 

The proposed matched filter architecture is shown in Figure 4-4. It is composed of three 

major modules: the Image Buffer, the Convolution Unit and the Max Selector Unit. 

The Image Buffer receives a pixel stream from an on-chip memory. The Image Buffer uses 

parallelism to manage access to the pixel to be processed and to its neighborhood with no delay. It 

is designed using a shift register. The length of the shift register is (𝑁 − 1) × 𝐼𝑚𝑎𝑔𝑒𝑊 + 𝑁, where 

𝑁 and 𝐼𝑚𝑎𝑔𝑒𝑊 are the kernel and image width, respectively. The kernels are square matrices of 

𝑁 × 𝑁 coefficients.  

Pixel input

Max Selector

MF Output

Convolution 

Unit
Kernel

Image Buffer

N

 

Figure 4-4. The matched filter scalable architecture overview 

The main processing module is the Convolution Unit. The Convolution Unit first performs 

the multiplication between the kernel coefficients and the image pixels. The products are then 
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added to calculate the filter response for a given kernel for each pixel. Since the coefficients of the 

kernel are constant signed integers of low value, we replace the multipliers by left shifts and addi-

tions. After the multiplication stage, a fully pipelined adder tree is used to calculate the sum of the 

products. A specific Convolution Unit is created for each kernel for the different angles. This al-

lows the calculation of the convolution for all kernels in parallel. Figure 4-5 shows a simplified 

architecture of the Convolution Unit with eight inputs. The Convolution Unit is scalable in the 

number of inputs, number of pipeline stages and adder tree structure. 

The Max Selector Unit finds the maximum response of the filter for all kernels. The number 

of inputs is equal to the number of kernels (𝐾𝑒𝑟𝑛𝑒𝑙_𝑛𝑏𝑟). The proposed architecture instantiates 

the 𝐾𝑒𝑟𝑛𝑒𝑙𝑠_𝑛𝑏𝑟 Convolution Units with the Image Buffer and the Max Selector Unit. 

The matched filter parameters are selected according to a specified blood vessels segmenta-

tion quality. Due to parameters tuning, hand coding is not an attractive solution when parameters 

are changed. We propose to generate a synthesizable VHDL description of the matched filter ar-

chitecture automatically using a developed tool based on the proposed scalable architecture as a 

template. 

 

Figure 4-5. A simplified architecture of the Convolution Unit 

An overview of the tool is given in Figure 4-6. It is implemented in MATLAB 7.12.0. From 

a set of parameters (𝐿, 𝜎, 𝐾𝑒𝑟𝑛𝑒𝑙_𝑛𝑏𝑟, 𝐼𝑚𝑎𝑔𝑒𝑊, 𝐼𝑚𝑎𝑔𝑒𝐻), the tool generates the synthesizable 

VHDL code of the different components of the proposed architecture. In the kernel generation 

stage, the0° kernel is calculated using the L and σ parameters. The other kernels are then generated 

by rotating this kernel by steps equal to 180 / kernel_nbr. The second step is the Image Buffer 
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generation. The Image Buffer is generated based on two parameters: the image size and kernel 

width. The next step is the Convolution Unit generation. For each kernel, a corresponding Convo-

lution Unit is generated. Each unit is specific to the kernels coefficients. The resulting unit area is 

minimized by:  

 eliminating multiplication by 0 coefficients; 

 replacing the multipliers by shift and add operations; and, 

 minimizing the internal signal widths. 

Kernels Generation

Image buffer Generation

Convolution unit Generation

Instantiation module generation

c
c

c

Kernel_nbr

Filter Parameters:

L, σ,  Kernel_nbr, ImageW, ImageH  

Matched Filter HDL description
 

Figure 4-6. Matched filter generation steps 

The throughput of the unit is maximized by fully pipelining the adder tree as shown in Figure 

4-5. Replacing the multiplication by left shifts and additions doesn’t affect the segmentation per-

formances and gives exact results because the coefficients are integers. For example, Figure 4-7 

shows how a multiplication by the coefficient 6 can be done with two shifts and one addition.  

The last step is the generation of the instantiation module that incorporates the different mod-

ules. File generation time is negligible, while architecture synthesis time depend on the area of the 
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circuit. For 12 kernels of 27 × 27 pixels, synthesis time is about 80 minutes using XST synthesizer 

of Xilinx on a 3.4 GHz i7 processor with 16 GB of RAM. 

2 left shifts 1 left shifts

X

X × 6

X × 2X × 4

 

Figure 4-7. Replacing multiplication by left shifts and additions 

4.3.2 Proposed ASIP for matched filter algorithm 

In this section, we describe the proposed ASIP for retinal blood vessel segmentation. ASIPs 

offer solutions to trade-off flexibility and efficiency. They have the capability to extend the instruc-

tion-set of a processor with a set of customized instructions to gain in performance for a specific 

application. The proposed ASIP is based on the Xtensa extensible processor. The Xtensa LX2.0 

processor is configurable in terms of pipeline length and cache. In addition, the Xtensa is extensible 

allowing us to extend the processor by defining application specific instructions. 

Based on the basic architecture of the Xtensa processor, we proceeded to a first architectural 

exploration to define the best cache memory configuration. Table 4.1 shows some of the parameters 

and associated legal values available. As a second step, we profiled the code on the basic Xtensa 

architecture with the selected cache memory parameters. Based on the profiling results, we identi-

fied two major bottlenecks. The first bottleneck is the convolution operation that takes 83% of the 

total cycles. The second bottleneck is the data access to get the pixels of the window to be con-

volved with the kernel, this step takes more than 7% of the total cycles. 

One of the important features of the Tensilica is the ability to profile the application code, to 

analyze and generate custom instructions automatically with the XPRES tool. The generated cus-

tom instructions are named Tensilica Instruction Extension (TIE). Before proceeding to the design 

of custom instructions, we generated the TIEs automatically using XPRES of Tensilica. The tool 

proposed to generate 15 TIEs. 
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Table 4.1. Parameters of the basic architecture of the Xtensa processor 

Parameter Value 

Pipeline length 7 

Core speed 312 MHz 

Instruction/Data cache size 32Kb 

Instruction/Data cache line size 64 bytes 

Instruction/Data cache associativity 4 

 

To accelerate the execution of the retinal blood vessel segmentation application, we designed 

and added two custom instructions to the basic processor as shown in Figure 4-8. The datapath of 

the processor was modified to include the two added instructions. These two custom instructions 

were designed to deal with identified bottlenecks: the problem of data access and arithmetic com-

putations of the convolution operation. To reduce the time of access to the kernel coefficients, we 

decided to store them in a table near the processor.  

 

Figure 4-8. Datapath of the proposed ASIP 

4.3.2.1 Custom instruction Line_comp 

To accelerate the convolution operation, which constitutes the main bottleneck of our appli-

cation, we added an instruction called Line_comp (Line compute). The role of this instruction is to 

perform a convolution between one line of the kernel coefficients and corresponding line of pixels 

in a window as shown in Figure 4-9. All the multiplication operations are realized by shifts and 
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adds to minimize the area needed for the instruction. Using this instruction, computing the convo-

lution between a kernel of N×N coefficients and an N×N pixels window is reduced to a single 

operation performed N times instead of N×N operations.  

 

Figure 4-9. The Line_comp instruction architecture 

4.3.2.2 Custom instruction Addr_comp 

 To deal with the problem of data access, a second custom instruction was added to the 

processor called Addr_comp (Address compute) instruction. At each cycle, the processor needs to 

compute the address of the needed pixels to realise the convolution operation with the kernel coef-

ficients. Instead of computing the address for each pixel at each cycle, the Addr_comp instruction 

does it once for all N×N pixels of the window. The input of this instruction is the central pixel’s 

coordinates, and the output are the addresses of the N×N pixels that correspond to the kernel win-

dow. This group of addresses is stored in a special table inside the instruction’s datapath. To read 

the data from the memory, we read at each cycle one address that contains four pixel values. The 

number of read pixels for each kernel line is a multiple of four. When N is not a multiple of four, 

the last pixel is discarded and not considered for later computations. For example, when N=11, we 
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access three addresses, each with four pixels. The 12th pixel is not considered. The number of 

loaded pixels is limited by the memory data bus to 32 bits. 

4.4 Matched filter implementation results 

Before starting the presentation of our results, we explain how the experiments are conducted 

and validated. The matched filter architecture was implemented on FPGA and on ASIP. For the 

FPGA implementation, we synthesized and implemented the architectures in a Xilinx Kintex-7 

(XC7K480T-1FFG1156). For the ASIP implementation, the matched filter algorithm was de-

scribed in C++ to target the Xtensa processor. Table 4.2 shows results of blood vessel segmentation 

quality. Area under the curve and accuracy quality measures are computed for DRIVE dataset as 

described in section 2.3 and presented in the table. The mean values for all images are also pre-

sented. The implemented matched filter is able to segment the blood vessels with a mean accuracy 

of 92.18%. 

Figure 4-10 illustrates a sample of retinal image with its corresponding mask, and Figure 4-

11 illustrates a sample of a green channel of a retinal image with the matched filter response as 

implemented in FPGA and in the ASIP. For the first solution implemented on FPGA, we studied 

the effect of the number of kernels on the FPGA resources utilization and the maximum frequency 

of the designed circuit (for the first architecture). As shown in Figure 4-12 and Figure 4-13, when 

the number of kernels is increased, the FPGA resources increase also. This can be explained by the 

fact that the added kernels require more resources to realize the implied convolution units. On the 

other hand, the maximum frequency is decreased each time is added additional kernel. Each added 

kernel means an additional input to the Max Selector unit, which contributes to make its critical 

path longer, thus, the frequency is reduced. This could avoided using a pipelined Max Selector 

unit. 
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Figure 4-10. Original image and the corresponding mask 

 

Figure 4-11. Green channel of a retinal image with the matched filter response 

Table 4.2. Quality measures of blood vessel detection using DRIVE dataset. 

No ACC AUC No ACC AUC 

1 0.9278 0.9362 11 0.9080 0.9123 

2 0.9266 0.9153 12 0.9127 0.9127 

3 0.9192 0.9132 13 0.9151 0.9149 

4 0.9149 0.9152 14 0.9324 0.9187 

5 0.9125 0.9143 15 0.9336 0.9322 

6 0.9250 0.9167 16 0.9122 0.9174 

7 0.9286 0.9246 17 0.9252 0.9187 

8 0.9151 0.9232 18 0.9234 0.9305 

9 0.9182 0.9273 19 0.9348 0.9242 

10 0.9234 0.9262 20 0.9276 0.9212 

   Mean 0.9218 0.9207 
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Figure 4-14 and Figure 4-15 illustrate the effect of the kernel size on resources utilization 

and the maximum frequency, respectively, for the same number of kernels (12 kernels). As can be 

seen in Figure 4-14, when the kernel size is increased, the FPGA resources are also increased. We 

can explain this by the fact that larger kernels require more multiplications and additions to realize 

the convolution operation between the pixel window and the kernel coefficients, thus, more FPGA 

resources are required to realize the Convolution Unit. As shown in Figure 4-15, the size of the 

kernel implies a slight decrease of the maximum frequency. This is expected since the Convolution 

Unit is pipelined, and the slight decrease may be due to the imbalanced pipeline stages. 

 

Figure 4-12. FPGA resources utilization as a function of the number of kernels of size 15 × 15 
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Figure 4-13. FPGA maximum frequency as a function of the number of kernels of size 15 × 15 

 

Figure 4-14. FPGA resources utilization as a function of kernel size (for 12 kernels) 
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Figure 4-15. FPGA maximum frequency as a function of kernel size (for 12 kernels) 

Figure 4-16 shows the estimated number of cycles needed to execute the matched filter pro-

gram in the Xtensa processor for different configurations. These configurations are: base_conf 

(Xtensa processor without TIE), Xtensa processor with the different automatic generated TIEs and 

the Xtensa processor with the designed TIEs. This figure shows that the TIE_10 reduces the num-

ber of total cycles from 13.8 × 108 cycles to 4.9 × 108 cycles. This reduction represents a speedup 

of 2.78×. For the TIE_2, the reduction is even greater and the number of total cycles passes from 

1.38 × 109 cycles to 4.8 × 108 cycles, which represents a speed-up of 2.89×. The TIE_2 represents 

the best solution generated automatically in terms of number of total clock cycles. Our custom TIEs 

achieve the best speedup overall, by a factor of 7.78× over the base configuration. 

Figure 4-17 gives a comparison between all the automatically generated TIEs and the de-

signed TIE for additional area and speedup factors. The automatically generated TIEs doesn’t ex-

ceed a speedup factor of 3×, while the additional area is still relatively low (less than 0.65 KGates 

which represents 0.72× of the basic processor area). The designed custom TIEs consume more 

additional gates when compared to the other TIEs. The area of the designed ASIP with the two 

custom instructions is 4.3× the area of the basic processor, this represents a real gain of 1.8× 

area/speed. 
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Figure 4-16. Number of cycles for the Xtensa processor for each TIE 

 

Figure 4-17. Comparison between the designed TIE and the generated TIEs in terms of Speed-up 

and additional gates 

Table 4.3 shows the estimated efforts for the design and verification of the two architectures 

with three approaches. For the hand-coded hardware design, the effort is very important (105 man-

hours). The ASIP design requires a significant effort (40 man-hour) with more flexibility in case 

of changes. This flexibility is due to the software nature of the application. The designed TIEs are 
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described in a language very similar to Verilog. If we decide to change the parameters of the 

matched filter, we should modify the description of the TIEs. The most productive option however 

is with the automated generation tool proposed in this paper, since producing an architecture from 

any set of parameters requires less than one hour. The verification effort for the three approaches 

follows a similar pattern. 

Table 4.3. Estimated design and verification efforts 

Architecture Design effort 

(man-hour) 

Verification effort 

(man-hour) 

Hardware (hand coding) 105 45 

ASIP 40 6 

Hardware (with tool) < 1 < 1 

4.5 Verification of the matched filter designs 

To verify the correctness of the produced results by the matched filter architectures, we com-

pared them with a bit-accurate reference MATLAB models. Each pixel of the output image was 

compared to the corresponding pixel of the model. The verification process proved the correctness 

of the produced results by our proposed architectures. 

4.6 Conclusion 

In this chapter, two architectures for the retinal blood vessel segmentation are proposed, designed 

and implemented. The first architecture is a scalable hardware architecture based on the matched 

filter algorithm. To avoid hand coding when selecting the algorithm parameters, a software tool 

was developed to generate an HDL description of the matched filter automatically from a set of 

parameters, and based on the optimized proposed architecture as template. In this work, we targeted 

high-resolution fundus images and the achieved improvements over the state-of-the-art implemen-

tations can reach a factor of 14 × for 4288 × 2848 image size. We evaluated the effects of the 

matched filter parameters on FPGA resources utilization and maximum clock frequency. The sec-

ond architecture is based on an application-specific instruction-set extension for a Tensilica Xtensa 

LX ASIP. With only two additional custom instructions requiring an additional 4× the area of the 

basic processor, the ASIP achieved a significant speedup of 7.76× when compared to the basic 



60 

 

 

processor, while retaining all its flexibility. An estimated man-hour efforts for the design and ver-

ification of the two architectures show that the hardware architecture necessitates more efforts than 

the ASIP for the design and the verification. For future works, we will focus on the integration of 

pre- and post-processing algorithms to evaluate the performance of the developed system.  
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CHAPTER 5 MEMORY-EFFICIENT ARCHITECTURE FOR RETINAL 

BLOOD VESSEL SEGMENTATION 

In this chapter, we present a novel architecture for retinal blood vessel segmentation based 

on the MSLD algorithm. The proposed architecture was made memory-efficient to deal with the 

algorithm requirements in terms of memory requirements of the algorithm. We propose a specific 

compiler able to generate HDL descriptions of the MSLD algorithm automatically from a set of its 

parameters. We also present and discuss the results of the proposed solution. The implemented 

architecture was evaluated in terms of execution time, FPGA resources utilization, maximum clock 

frequency and blood vessels segmentation quality.  

5.1 Introduction 

In this chapter, we present a hardware architecture for Multi-Scale Line Detector (MSLD) 

algorithm for retinal blood vessels detection. The MSLD algorithm was chosen because of its pop-

ularity and performances in terms of segmentation quality. The MSLD algorithm was also chosen 

because of its potential and ability to detect small vessels [56]. However, the MSLD can be memory 

intensive because intermediate results from multiple scales must be stored. This can become a se-

rious impediment in the case of high-resolution images which are now the norm with modern reti-

nographs. The algorithm was made hardware friendly to achieve significant performances. The 

MSLD memory requirements problem was also considered [8]. Our proposed solution is based on 

computation reuse and parallel implementation of the computations at each scale. The architecture 

is optimized in terms of resources utilization and throughput. HDL description of our hardware 

architecture is generated automatically using a developed tool that takes as input the algorithms 

parameters. Our tool makes the algorithm parameters selection more flexible and generates a spe-

cific HDL description based on an optimized scalable architecture template. In this chapter we 

make the following contributions: 

 Design of a memory-efficient architecture for the MSLD algorithm. 

 A specific compiler is introduced to automatically generate optimized low-level hardware 

descriptions, suitable for FPGA implementation, from any algorithm set of parameters. 

 A GPU implementation is also proposed and compared to the FPGA implementation. 

 Comprehensive results are provided in terms of blood vessel segmentation quality with 
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respect to computations accuracy. 

5.2 MSLD algorithm description 

The MSLD algorithm was proposed by Nguyen el al. [45] as a generalized case of the line 

detector first proposed by Ricci et al. [52]. The basic line detector is applied to the inverted green 

channel where the retinal blood vessels appear brighter than the background. For each pixel of the 

image, we consider a window of 𝑊 × 𝑊 pixels and the average gray level is computed as 𝐼𝑎𝑣𝑔
𝑊 . 

We consider also twelve lines of length 𝑊 pixels centered on the pixel to process and oriented in 

12 directions as shown in Figure 5-1. The average gray level is computed along each line, and the 

maximum value is defined as 𝐼𝑚𝑎𝑥
𝑊  and the line response at this pixel is then computed as: 

𝑅 = 𝐼𝑚𝑎𝑥
𝑊 − 𝐼𝑎𝑣𝑔

𝑊  (5.1) 

To improve the line detector for retinal blood vessel detection, Nguyen el al. [45] proposed 

the generalized line detector that works at multiple scales. The MSLD is based on varying the 

length of the aligned lines and (5.1) is redefined as: 

𝑅𝑊
𝐿 = 𝐼𝑚𝑎𝑥

𝐿 − 𝐼𝑎𝑣𝑔
𝑊  (5.2) 

where 1 ≤ 𝐿 ≤ 𝑊, 𝐼𝑚𝑎𝑥
𝐿  and 𝐼𝑎𝑣𝑔

𝑊  are defined as above. Line detectors at different scales are 

achieved by changing the value of 𝐿. 

For each scale, we standardize the values of the raw response image to make them have zero 

mean and unit standard deviation distribution. The main purpose of the standardization is to achieve 

better contrast between the blood vessels and the retinal image background. The standardization is 

defined as: 
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Figure 5-1. A 13 × 13 window with its different scales and orientations 

𝑅′ =  
𝑅 − 𝑅𝑚𝑒𝑎𝑛

𝑅𝑆𝑡𝑑


(5.3) 

where 𝑅′ is the standardized response value, 𝑅 is the raw response value, 𝑅𝑚𝑒𝑎𝑛 and 𝑅𝑆𝑡𝑑 are the 

mean and standard deviation of the raw response values, respectively. 

The response at each image pixel is the linear combination of the line responses of different 

scales, defined as: 

𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =  
1

𝑛𝐿 + 1
 (∑ 𝑅𝑊

𝐿 + 𝐼𝑖𝑔𝑐

𝐿

) (5.4) 

where 𝑛𝐿 is the number of scales, 𝑅𝑊
𝐿  is the response of the line detector at scale L and 𝐼𝑖𝑔𝑐 is the 

value of the inverted green channel at the corresponding pixel. 

5.3 Proposed MSLD memory-efficient architecture 

Before presenting the proposed architecture, we show how the architecture was made 

memory-efficient. Next, the proposed architecture is presented from pixel input to the output 
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MSLD response where all the different modules of the architecture are described. Figure 5-2 shows 

an overview of the proposed architecture. 

5.3.1 Memory-efficiency 

Figure 5-3 shows the CPU and custom architecture flow details. For the CPU flow, once 

the image and mask are acquired, the raw response computation can be started. For each value of 

the raw response, the computation of the mean and standard deviation values is started. The raw 

response for scale 𝑖 is stored in memory before the standardization step. The standardization re-

quires the value of the raw response at each pixel, the mean value and the standard deviation for 

the scale 𝑖. The standard response is then computed. At the same time, the combined response is 

computed by accumulating the standardized responses. Consequently, we store the new combined 

response once a new scale is processed. The final combined response is obtained once the last scale 

is processed. 

 The software implementation of the MSLD algorithm is memory intensive. CPUs typically 

cannot process all scales in parallel, and, thus, the processing is done in a sequential manner. For 

each scale, the intermediate results (the raw response and the combined response) must be stored 

in memory. The amount of memory necessary is thus equal to 2× the size of the original image as 

shown in Figure 5-3.b. 

The custom parallel flow avoids the use of external memory such as in [120, 121], and does not 

store the intermediate responses of the different scales. Instead, it computes the raw responses 

twice. For the first run, the mean and standard deviation values are computed and stored. For the 

second run, the raw responses are computed again, which allows standardization of the raw re-

sponses on the fly using the stored mean and standard deviation values without the need to re-

compute them. The custom parallel implementation takes advantage of the parallelism allowed. A 

fully parallel data path is a suitable solution to handle the different scales and to re-compute the 

raw responses twice very swiftly. The custom parallel implementation shrinks the memory require-

ments from 2 images to 2 × number of scales values. 
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Figure 5-2. MSLD architecture overview 
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Figure 5-3. a. CPU and b. Custom parallel architecture flows 

5.3.2 Line buffers 

The line buffers provide data to the rest of the MSLD architecture. The modules require 

access to the image pixels corresponding to the window centered on the pixel to be processed. For 

this purpose, a shift register of length (𝑊 − 1) × 𝑁𝑐𝑜𝑙𝑠 + 𝑊 is used, where 𝑁𝑐𝑜𝑙𝑠 is the number 

of columns of the retinal image. Since the MSLD works on the inverted green channel, the pixels 

of the image are subtracted from 255 before being pushed to the line buffer. All pixels inside the 

window are needed to compute the mean value of the window. Only the pixels that correspond to 

the line detector for the twelve different orientations are fed to the modules that compute the line 

response. Figure 5-4 shows the structure of the line buffers to access the pixels in parallel inside 

the window. This figure shows an example of a 5×5 window. 
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Figure 5-4. Structure of the line buffers for window pixels access 

5.3.3 Line Response Computing Module (LRCM) 

This module is responsible of computing one line response corresponding to one orientation. 

The inputs of this module are the 𝑊 pixels corresponding to that orientation. Along a given line 

and for each scale, we compute the mean value of the intensity level of the pixels. The outputs of 

this module are the line responses at the different scales. As can be seen in Figure 5-2, the MSLD 

architecture uses twelve parallel LRCMs. 

Figure 5-5 shows the architecture of the LRCM block. This figure shows how the pixels of 

one line (from a window of 11 × 11 pixels) are arranged to realize a fully pipelined adder tree. The 

output of scale 1 is used to compute the result for scale 2 and so on. In this way, the computations 

are reused to reduce the number of functional units. At each stage of the pipeline, the adders are 

tailored for the exact word-length of the outputs. The output of each scale is multiplied by the 

corresponding reciprocal coefficient to realize the division by the number of pixels and then com-

pute the mean value. By reusing the computations and word-length optimization, resource con-

sumption is reduced. Pipelining reduces the critical path and increases throughput. 

5.3.4 Raw Response Computation Module (RRCM) 

 For each pixel of the window, the line response is computed for the twelve different orien-

tations and at different scales. The goal behind this operation is to compute one raw response at 

each scale. For this purpose, the outputs of the twelve LRCM blocks, as shown in Figure 5-2 are 

routed to the six RRCM (the number of scales equals (𝑊 + 1)/2, so for an 11 × 11 window there 

are six scales). The RRCM blocks are responsible for computing the raw response for one scale. A 
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RRCM block has twelve inputs that correspond to one scale but from different lines and one input 

for the mean value inside the window. As can be seen in Figure 5-2, the RRCM for the scale 1 has 

for inputs the 𝑆1 outputs of the twelve LRCM blocks and the mean value of the window (in red 

color). 
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Figure 5-5. Line response computing module 

Figure 5-6 shows the architecture of an RRCM block. The response of each scale is the dif-

ference between the mean value of the pixels inside the window and the maximum response of the 

twelve lines. The mean value computation module is designed as a fully pipelined tree with opti-

mized word-length optimized to increase the frequency and reduce computation resources, respec-

tively. Finding the maximum response of the twelve lines is realised by comparing the inputs two 

by two in parallel and in a pipelined way as shown in Figure 5-6. 
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Figure 5-6. Raw response computation module architecture 

5.3.5 Mean and standard deviation values computation 

 Mean and standard deviation values are necessary for responses standardization. They are 

computed in a streaming way, in parallel with the raw response computation. To compute the mean 

value, the intensity values of the raw responses that correspond to the ROI (Region Of Interest) are 

accumulated. At the same time, the number of accumulated values is counted since the ROI is 

circular and the number of pixels inside it is unknown. The ROI is defined by the mask by a one 

bit signal. The mean value is computed by computing the sum of the pixel values and at the last 

pixel of the image, the sum is divided by the number of pixels to get the final mean value. The 

variance value is also computed in a similar manner. 

 The square of the intensity of the raw responses is computed and then accumulated when 

the pixel is inside the ROI. To compute the standard deviation, the square root of the variance is 

computed as shown in Figure 5-7. The red part shows the computation of the number of pixels 

inside the ROI. The blue part shows the mean computation, and the green part shows the standard 

deviation computation. The mean and standard deviation are computed for each scale. Until this 

step, all the computations are done in a streaming manner and in parallel for all the scales without 

saving the raw responses. Instead, we save the mean and standard deviation for all the scales. 
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5.3.6 Standardized and Combined Response Computation 

The mean and standard deviation values are computed to standardize the raw responses. The 

standardization step necessitates the raw response and the mean and standard deviation values at 

the same time. This can be a challenging problem because of the requirements for large on-chip 

memory to store the raw responses while computing the mean and standard deviation values. To 

overcome this problem, we propose to save the mean and standard deviation values for the different 

scales, which results in very low memory requirement in comparison with the raw responses saving 

requirements. Once the mean and standard deviation values are computed and stored, the compu-

tation of the raw responses is restarted for a second time without re-computing the mean and stand-

ard deviation values since they were already computed and stored. 

For this second pass, each processed pixel for all the scales is standardized and combined 

on the fly according to (5.3) and (5.4). Figure 5-8 shows the principle of re-computing the raw 

responses to avoid saving them and to reduce the memory requirements. As can be seen in Figure 

5-8, in the first pass the raw responses, the mean and standard deviation values are computed. The 

objective is to avoid saving the raw responses since the on-chip memory is not sufficient to save 

such a large amount of data. For an 11×11 pixels window, six scales are handled in parallel, and 

the memory requirements are 6× greater than the original image if stored. 
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Figure 5-8. Principle of re-computing raw responses to avoid saving them  

Figure 5-9 shows the architecture of the standardization and combined response computa-

tion module. For this purpose, we use six standardization modules, one for each scale. The inputs 

of the standardization modules are the newly computed raw response of the corresponding scale, 

the mean and standard deviation values. 

5.3.7 Operations scheduling 

 Operations scheduling is a vital task for the functioning of the entire system. Since the 

number of inputs of each scale is variable, the number of pipeline stages is also variable. For scale 

1, only the center pixel of the window is needed, while scale 𝑛 needs 𝑊 bits to compute the line 

response. As shown in Figure 5-5, the pixel values are added two by two with full pipeline. The 

scale 1 response is computed in the first stage of the pipeline, the scale 2 response is computed 

after two pipeline stages and so on for the other scales responses. 
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Figure 5-9. Combined response computation architecture 

 To properly compute the raw responses at each scale, the outputs of the LRCM module 

must be synchronized and sent at the same time to the RRCM modules. For this purpose, registers 

are added to the outputs of the scales to balance the pipeline and to delay the first computed re-

sponses to get them out at the same time with result of the scale n (largest scale). This can be seen 

in Figure 5-5, where registers are connected to the output of the multipliers. For example, the scale 

1 response is delayed by six clock cycles using six registers. For scale 2, four registers are added, 

and the outputs are fully synchronized. 

This is not the only place where registers are added to synchronize the outputs. The RRCM 

module needs the mean value of the window, where the window contains a large number of pixels 

(𝑊2 pixels). The number of stages of the RRCM module and the LRCM module is different, and 

then the first computed outputs should be delayed to meet the outputs of the second module. This 

is achieved by adding the necessary number of registers to balance the two pipelines. 

5.3.8 MSLD architecture scalability 

In all figures we considered a generic architecture except for Figure 5-4 and Figure 5-5 

where we considered a window size of 5×5 and 11×11 pixels, respectively, for clarity but without 

loss of generality. Since the MSLD parameters (window size, the line rotation step and the number 

of scales) all depend on the image size, it is crucial to be able to scale the architecture easily to the 
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new parameters when changing the image size. Writing a generic architecture of the MSLD algo-

rithm in a hardware description language is a tedious task. In addition, hand coding of the MSLD 

architecture is very time consuming and hard to modify when modifying the algorithm parameters. 

The MSLD algorithm is very computationally intensive with complex functional units. To increase 

the throughput and to reduce resource consumption, computations reuse and deep optimizations 

using low-level programming are necessary. A trade-off between design time, deep hardware op-

timizations and architecture scalability must be considered. To solve these problems, a specific 

compiler for the MSLD algorithm was designed. The compiler is able to generate low-level hard-

ware description of the algorithm for any set of parameters. 

 The compiler accepts as input the parameters of the MSLD algorithm. A high-level descrip-

tion describes the different functional units of the algorithm as functions:  

 The line buffer function which accepts as input the image width and the size of the window. 

 The adder tree with mean value computation of the window. This function accepts as param-

eters the number of input pixels and the precision of the mean value. 

 The comparator tree function which finds the maximum value. The input parameters of this 

function are the number of inputs and the function to realize (max or min). 

 The line response computing function. This function evaluates, for each line, which pixels 

must be accessed for a given orientation and then computes the response at different scales. 

The input parameters of this function are the orientation and the precision of the response 

computation. This function is called twelve times to generate the different modules for the 

twelve orientations. 

 The raw response computing function, which computes for each scale the raw response of the 

MSLD. This function accepts as parameters the number of scales and the orientation. This 

function is called twelve times to generate the different modules for the twelve orientations. 

 The standard deviation and mean value computing function. This function is called many times 

to generate the standard deviation and mean values computation modules for each scale.  

 The sequencer function. This function generates the state-machine that synchronizes the dif-

ferent modules of the architecture. It computes also the number of pipeline stages of each 

module to be able to schedule the different modules tasks. 
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 The wrapper function, which generates a wrapper module to instantiate the different modules. 

In addition to the parameters of the functions, each function needs the input and output flow 

of data. Each function is responsible for the optimization of the module to be generated. The wrap-

per function instantiates the different modules and generate one core of the MSLD algorithm. 

5.4 MSLD implementation results 

In this section we present the results of the MSLD algorithm implementation. The MSLD 

algorithm was implemented on three platforms, CPU, GPU and FPGA. The first implementation 

on CPU was realized in C++ and implemented on an Intel i7-2600 CPU @ 3.4GHz with 16 GB of 

RAM. The GPU implementation was described in OpenCL and implemented on an Nvidia Quadro 

2000M GPU. The FPGA implementation was coded in VHDL and implemented on a Zynq®-7000 

SoC XC7Z020-CLG484-1. We tested our architectures for both high and low-resolution images. 

Images of low resolution come from the publicly available DRIVE dataset [51]. High-resolution 

images come from a private database and were collected through the telemedicine platform of Di-

agnos Inc. In next sections we present the implementations results. 

The Zynq-7000 AP SoC that includes a dual-core ARM processing system (PS) with a 7-

series Xilinx Programmable Logic fabric (PL) in a single device. This makes it an adequate plat-

form for clinical applications where the PS plays the role of a host to feed the PL with the image 

and its mask to process them and then receive the processed image. The communication PS-PL is 

established using the Xillybus core [122], which consists of an AXI bus with a DMA buffer to 

transfer the data between the two sides. The hardware core of the MSLD is connected to the Xilly-

bus core via FIFOs. The ARM processor runs an embedded Linux operating system and is clocked 

at 667 MHz. 

 The first step to process the retinal image is the image and mask loading. The mask is a 

binary image that defines the ROI that corresponds to the retina. We use a binary image mask with 

the same size as the retinal image. Figure 5-10 shows an example of an original image and its 

corresponding mask. Once the image and its mask are available to the Linux OS, a program running 

on the ARM processor loads them and starts sending them to the PL at the same time. Only the 

green channel is processed. To ensure the synchronization of image and mask transfer to the MSLD 
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core, we combine the pixel information (8 bits) and the mask information (1 bit) into one word of 

16 bits. The traffic from the PS to PL is established for 16-bit data. 

 

Figure 5-10. Original image and the corresponding mask 

 Figure 5-11 shows a sample of an original retinal image with its binarized MSLD response. 

To evaluate the blood vessel detection performance, we used DRIVE dataset a publically available 

database collected by Staal et al. [51]. To evaluate the algorithms, we use the area under the curve, 

sensitivity, specificity and accuracy metrics described in chapter 2. Table 5.1 shows the quality 

measures of blood vessel detection for the CPU and FPGA implementations for 20 images of the 

DRIVE database. As can be seen in Table 5.1, the quality measures of the CPU implementation 

are comparable. The difference in results is due to the fixed point computations precision of the 

FPGA implementation compared to the floating point full precision of the CPU. The FPGA imple-

mentation functional units are optimized in terms of word-length. The integer part of the signals 

are all set to handle the maximum value. 

The number of bits of the fractional part is set based on some conducted experiments. Figure 

5-12 shows the blood vessel detection quality measures as a function of the number of fractional 

bits. As can be seen in the figure, using more fractional bits improves the quality of blood vessel 

detection. However, when using 20 bits, the AUC and ACC are slightly improved while SE and 

SP are decreased. Using 18 bits for the fractional is an acceptable compromise in terms of precision 

and FPGA resources utilization. Hence, all our results are shown based on 18 bits for the fractional 

part. 
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Figure 5-11. Original retinal image and binarized MSLD 

Table 5.1. Quality measures of blood vessel segmentation for DRIVE database images – CPU 

and FPGA implementations 

 CPU FPGA 

Image # AUC SE SP ACC AUC SE SP ACC 

1 0.9561 0.7942 0.9723 0.9489 0.9582 0.8038 0.9686 0.9470 

2 0.9459 0.7408 0.9816 0.9455 0.9459 0.7483 0.9766 0.9424 

3 0.9131 0.7152 0.9664 0.9298 0.9129 0.7271 0.9598 0.9259 

4 0.9226 0.6654 0.9858 0.9431 0.9254 0.6806 0.9788 0.9391 

5 0.9244 0.7030 0.9793 0.9418 0.9265 0.7155 0.9741 0.9390 

6 0.9183 0.7007 0.9686 0.9308 0.9169 0.7107 0.9645 0.9287 

7 0.9178 0.6883 0.9699 0.9326 0.9209 0.7013 0.9625 0.9279 

8 0.9103 0.6678 0.9652 0.9278 0.9098 0.6813 0.9574 0.9227 

9 0.9277 0.7301 0.9659 0.9382 0.9300 0.7392 0.9621 0.9360 

10 0.9294 0.7345 0.9734 0.9449 0.9320 0.7515 0.9668 0.9411 

11 0.9290 0.6958 0.9756 0.9393 0.9269 0.7027 0.9693 0.9347 

12 0.9339 0.7667 0.9632 0.9386 0.9341 0.7766 0.9573 0.9347 

13 0.9261 0.7061 0.9731 0.9352 0.9289 0.7182 0.9682 0.9327 

14 0.9423 0.7884 0.9589 0.9388 0.9439 0.7983 0.9533 0.9350 

15 0.9451 0.7739 0.9641 0.9443 0.9454 0.7901 0.9538 0.9368 

16 0.9513 0.7470 0.9744 0.9446 0.9503 0.7538 0.9698 0.9416 

17 0.9413 0.7552 0.9657 0.9397 0.9408 0.7580 0.9635 0.9382 
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18 0.9544 0.8026 0.9624 0.9440 0.9537 0.8055 0.9572 0.9398 

19 0.9723 0.8579 0.9749 0.9608 0.9714 0.8685 0.9681 0.9561 

20 0.9539 0.8161 0.9609 0.9455 0.9530 0.8237 0.9539 0.9400 

Total  0.9358 0.7425 0.9701 0.9407 0.9363 0.7527 0.9643 0.9370 

 

 

Figure 5-12. Quality measures with respect to precision of fixed point computation 

For high-resolution images of 3504 × 2336 pixels, we use a window of size W = 41 pixels. 

The loop is thus executed 21 times and 2 images of 3504 × 2336 pixels are stored in memory. For 

the FPGA implementation, only 2 × 21 values are stored. For low-resolution images such as those 

of the DRIVE database, the parameter 𝑊 of the MSLD algorithm is set to 15. Eight scales are 

considered (for 𝐿 from 1 to 15 with a step of 2). For the CPU implementation, the loop is executed 

8 times and two images of 565 × 584 pixels are stored in memory, while the FPGA implementation 

needs to store 2 × 8 values. 

Table 5.2 shows the FPGA and CPU implementation performances for low-resolution im-

ages (565 × 584 pixels). The low-resolution images are only considered for comparison purposes. 

The execution time for the FPGA is 0.014 s with a throughput of 71.4 frames/s (f/s). The execution 
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time for the CPU is 0.988 s with a throughput of 1.012 f/s. The FPGA implementation is 70.6× 

faster than the CPU implementation. The table also shows FPGA, GPU and CPU implementation 

performances for high-resolution images (3504 × 2336 pixels). For higher resolution images, the 

generated circuit consumes more resources than what is available in the Zynq XC7Z020-CLG484-

1. For this reason, our circuit was regenerated for the Zynq 7Z045-FFG900-2 FPGA. The execution 

time of the FPGA is 0.447 s with a throughput of 2.2 f/s. The execution time for the GPU imple-

mentation is 50 s with a throughput of 0.02 f/s. The FPGA implementation is 111× faster than the 

GPU implementation. The execution time for the CPU is 144.6 s with a throughput of 0.006 f/s. 

The FPGA implementation is 323.5× faster than the CPU implementation. The FPGA implemen-

tation is faster than CPU and GPU implementations for both low and high-resolution images. 

Table 5.2. FPGA versus CPU implementation performances 

Image size Platform Time (s) Throughput 

(f/s) 

Speed Up 

565×584 

(W = 15) 

CPU 0.988 1.012 1 

FPGA 0.014 71.428 70.5 × 

3504×2336 

(W = 41) 

CPU 144.611 0.006 1 

GPU 50 0.02 2.9× 

FPGA 0.447 2.232 323.5 × 

 

Table 5.3 shows the FPGA resources utilization for the MSLD architecture for DRIVE data-

base images. The FPGA implementation uses 20% of the FPGA LUTs and 50% of its DSP Blocks. 

The maximum clock frequency is 60.4 MHz. This implementation achieves real-time execution of 

the MSLD algorithm with a throughput of 71 f/s. 

Table 5.3. Logic utilisation for the MSLD algorithm for DRIVE database images 

FPGA Resources Used Availa-

ble 

Utilisation 

LUTs 10427 53200 20% 

Flip-Flops 7498 106400 7% 

DSP Blocs 110 220 50% 

Maximum Frequency 60.443 MHz 
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Using our designed compiler, we are able to generate an HDL description from a given set 

of the MSLD algorithm parameters. This represents an important gain in development time com-

pared to manual coding. The same thing can be stated for the design verification efforts, since it 

requires global verification, while in manual coding, the verification should be done for each ele-

ment of the design. 

Figure 5-13 and Figure 5-14 show the FPGA resource consumption and frequency with re-

spect to the MSLD window size (𝑊). Figure 5-13 shows the FFs and LUTs necessary for the 

MSLD architecture for different values of 𝑊. Increasing the window size from 15 to 41 pixels 

implies an increase in the number of FFs by 5.8× and the LUTs by 4.8×. We can explain this by 

the fact that larger windows involve more pixels to process in parallel by the different functional 

units. Also, larger windows involve more scales (Ex: for 𝑊 = 15, 8 scales are necessary while 𝑊 =

41 necessitates 21 scales). Each scale requires several functional units. The number of DSP Blocks 

is also increased since the number of inherent computations is increased. In the same time and 

accordingly, the maximum clock frequency of our architecture is decreased from 60 MHz for 𝑊 = 

15 pixels to 40 MHz for 𝑊 = 41 pixels. 

 

Figure 5-13. DSP blocks and circuit frequency as function of the window size 
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Figure 5-14. Resources utilization as function of the window size 

5.5 Verification of the MSLD designs 

Design and verification are complimentary tasks. As we did for the implemented matched 

filter in Chapter 4, we verified the correctness of the produced results by the MSLD architecture. 

A bit-accurate reference MATLAB model was developed, and each pixel of the output image was 

compared to the corresponding pixel produced by the model. The verification process proved the 

correctness of the MSLD architecture results. 

5.6 Conclusion 

In this chapter, a memory efficient custom architecture for the MSLD algorithm was pro-

posed. It minimizes memory requirements, thanks to computations reuse and parallelism. The pa-

per also presented a compiler able to generate low-level hardware descriptions of the architecture 

for a given set of parameters that include: image size, number of scales, number of line orientations 

and number of bits involved in the computations. The compiler generates pipelined functional units 

to increase the throughput. An FPGA implementation of the proposed architecture was realized on 

a Zynq platform for real-time retinal blood vessel segmentation from fundus images. The MSLD 

algorithm was also implemented on a CPU and on an Nvidia GPU. Acceleration factors of 70× and 

323× of the FPGA implementation among software implementation are reported for low and high-
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resolution images, respectively, with comparable accuracy. In comparison with the GPU imple-

mentation for high-resolution images, the FPGA implementation is 111× faster.   
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CHAPTER 6 GENERAL DISCUSSION  

This thesis introduced new hardware architectures for retinal image analysis. In this chapter, 

we discuss and compare the proposed implementations and highlight the limitations of our work. 

 Our first contribution is the proposal of a co-processor for the RLM features computations 

to analyze retinal image textures. Analyzing retinal image textures allows the description of the 

image and subsequently will help to classify the retinal images regarding their quality. Our aim 

was to accelerate the task of retinal image texture analysis by accelerating the RLM features com-

putation. Our co-processor achieved good performances when compared to the original software 

implementation with an acceleration of 30.1×.  

It is difficult to compare our work to other existing works in the literature, since existing 

works are all software implementations on CPUs. However, the proposed implementation of the 

RLM features computation for retinal quality assessment could be improved. The bottleneck of the 

RLM algorithm is the irregularity in memory access. FPGAs are able to offer a high level of par-

allelism, however, the limited clock frequency is a real issue. Therefore, only a serial execution (on 

a CPU) with high clock frequency can accelerate the access to the memory and improve the exe-

cution of the algorithm. Another limitation of our work is that the features computation task is not 

integrated with other tasks to realize a complete embedded system able to evaluate the quality of 

retinal images. A complete system would require the extension of our work to include a prepro-

cessing step to allow the computation of more features with the integration of a classification algo-

rithm. 

Our other contributions concern the design and implementation of blood vessel segmentation 

architectures. In the following paragraphs, we compare our proposed implementations to existing 

hardware implementations described in the literature. The results are summarized in Table 6.1, 

which is organized by type of algorithm, segmentation accuracy, platform, image size, execution 

time, and throughput. The segmentation accuracy is computed for images of the DRIVE dataset. 

Throughput is generally considered to be the most important metric. However, an overall perfor-

mance comparison is difficult to make and cannot be based on throughput alone. It must consider 

factors and parameters such as energy, ease of programmability, the nature and complexity of the 

algorithm and platform. Depending on the nature of the implementation, e.g. in a Data Center or 

an embedded system, some algorithms are more appropriate than others. 
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For our results for retinal blood vessel segmentation, and as expected, high resolution images 

require more time to execute the algorithm. However, we can observe that the relation between 

execution time and number of pixels is not always linear. It is strongly affected by the algorithm 

parameters and complexity. For example, in the case of the MSLD algorithm implemented on 

FPGA, when the image size is increased from 565 × 584 to 3504 × 2336, the number of pixels 

grows by 24×, but the execution time grows by 159×, from 0.014 s to 2.232 s. 

 Table 6.1. Summary of existing implementations of Retinal Blood Vessel Detection Algorithms 

Ref Algorithm 
Accuracy  

(DRIVE) 
Platform 

Image size 

(Pixels) 

Time  

(s) 

Throughput  

(pixel/sec) × 𝟏𝟎𝟒 

[44] 

O
th

er
s 

m
et

h
o

d
s 

Features Extraction and Region 

Growing 

0.925 Several computers 2890 × 2308 73.991 9.0 

[65] Active contour (PLS) + Morphology 0.9180 SIMD - FPGA 768 × 584 1.349 33.2 

[58] Local Radon Transform 0.9468 GPU 4288 × 2848 1.200 1017.7 

[57] Fusion + Registration - CPU 400 × 304 - - 

[53] CNN - GPU 565 × 584 0.085 388.2 

[60] 

F
il

te
ri

n
g

 b
as

ed
 m

et
h

o
d

s 

Matched Filtering - FPGA 640 × 480 0.005 6604.8 

 GPU 640 × 480 0.023 1351.7 

[66] Matched filtering 0.9240 FPGA 768 × 584 0.052 857.6 

[59] Global Image Filtering + Contour 

Tracing 

0.9431 GPU 4288 × 2848 

565 × 584 

0.753 

0.014 

1621.8 

2356.9 

This 

work 
 

  

 

Matched Filtering 

 

 

 

 

0.9218 

 

Xtensa with custom 

TIEs 

320 × 240 0.576 13.3 

768 × 584 3.340 13.4 

3504 × 2336 59.493 13.7 

 

 

FPGA 

640 × 480 0.002 15360.0 

768 × 584 0.002 22425.6 

3504 × 2336 0.054 15158.0 

4288 × 2848 0.083 14714.0 

[52] 

L
in

e 
o
p
er

at
o

r 
b
as

ed
 m

et
h
o
d
s 

Line op + SVM 0.9646 CPU - - - 

[54] MSLO + K-means 0.9387 CPU 565 × 584 7.600 4.3 

[55] MSLO - CPU 768 × 576 120.000 0.4 

[56] MSLD + Tensor voting 0.9479 CPU 565 × 584 1099.000 < 0.1 

[45] MSLD 0.9407 CPU 565 × 584 2.500 13.2 

This 

work 

MSLD 0.9370 

0.9407 

0.9407 

FPGA 3504 × 2336 

 

2.232 366.7 

GPU 50.000 16.4 

CPU 144.611 5.7 

0.9370 FPGA 565 × 584 0.014 2356.9 

0.9407 CPU 0.988 33.4 
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For the matched filter algorithm, and as can be seen in Table 6.1, our proposed system im-

plemented in Kintex-7 FPGA (XC7K480T-1FFG1156) outperforms all the existing matched filter 

implementations in terms of execution time. For a 640 × 480 image size, our system is 2.3× faster 

than the one proposed in [60] and implemented in Spartan-3. When synthesized for the same FPGA 

component, our system is 1.46× faster. For an image size of 768 × 584 pixels, the proposed system 

is 19× faster than the one proposed in [66] implemented in Spartan-6 FPGA. In [66], the proposed 

architecture includes a thresholding step in addition to the matched filter, which may affect the 

speed of the global architecture. When synthesized for the same FPGA component, our system is 

14× faster. For high-resolution images of 4288 × 2848 pixels, our proposed system is 14× faster 

than the proposed GPU implementation in [58]. As mentioned, we obtained the highest perfor-

mances in comparison with CPU, GPU and FPGA implementations. This is due to several hard-

ware optimizations with parallelism and pipeline techniques utilization. Our FPGA implementation 

of the matched filter presents the lowest execution time an overcome all other implementations. 

However, the segmentation quality is limited to 92.18 % in terms of accuracy. Table 6.2 summa-

rizes the speedups of our system when compared to the previous works, when using the same and 

different implementation platforms. 

 Table 6.2. Speedup of our matched filter FPGA implementation over similar implementations. 

Ref Platform Image size Speedup 

[60] 
Spartan-3 vs Spartan-3 

640 × 480 
1.46 × 

Kintex-7 vs Spartan-3 2.3 × 

[66] 
Spartan-6 vs Spartan-6 

768 × 584 
14 × 

Kintex-7 vs Spartan-6 19 × 

[58] Kintex-7 vs GPU 4288 × 2848 14 × 

 

For the architecture based on the ASIP, the performances are less than those of the hardware 

architectures targeting FPGAs. However, the ASIP implementation still better than several CPU 

implementations such as in [44] and [54] [56] in terms of execution time. 

For the MSLD implementation, and among the line operator based methods, our FPGA and 

GPU implementations are the fastest in terms of execution time. The FPGA implementation 

achieves the highest performance in term of execution time. For the other algorithm categories, our 

implementation is better than many in terms of throughput and segmentation accuracy, such as the 



85 

 

works in [44, 65, 66]. In comparison with the GPU implementation in [59], the execution time and 

throughput for images of DRIVE dataset are the same, while they outperform in terms of segmen-

tation accuracy. However, the GPU implementations in [58] and [59] are performing better than 

our implementations in terms of execution time for high-resolution images, but we believe that our 

implementation has more potential if power consumption are considered since GPUs are much less 

power efficient [123, 124].  

Taking into consideration the retinal blood vessel segmentation quality, the implementation 

in [52] presents the highest performances with 96.46% segmentation accuracy. However, the exe-

cution time is not reported. Complex algorithms such as in [56] present high segmentation accu-

racy, but they are implemented on CPUs and the execution time is very high. The work in [60] is 

not applied to retinal blood vessels and thus, we are not able to compare in terms of segmentation 

quality. By implementing the MSLD algorithm, we achieved better segmentation accuracy than 

our matched filter implementation with an improvement of 1.5%.  

In conclusion, the ASIP implementation is flexible and allows the modification of the archi-

tecture parameters easily, but, in terms of performances, this implementation is not to be selected 

when execution time is an important factor and needs to be reduced. Among the cited FPGA im-

plementations, our implemented matched filter outperforms all other implementations in terms of 

execution time. In addition, and to the best of our knowledge, our implementations are the only 

ones targeting low and high-resolution images. Our architectures are made scalable and flexible, 

thus, we are able to scale the architectures for any image size using our developed specific com-

piler. The limitations of our hardware architectures for retinal blood vessel segmentation are more 

concerning the segmentation accuracy. This aspect should be improved. 
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CHAPTER 7  CONCLUSION AND FUTURE WORK 

In this thesis, we introduced several hardware architectures for retinal image processing. 

Firstly, we addressed the retinal image quality assessment. This is the first task in the pipeline. 

Texture analysis is a good solution to characterize retinal image quality and allow their classifica-

tion. Run-length encoding features can help to analyze the texture of the images, however, the 

nature of the algorithm does not allow its parallelization. We found that the best way to accelerate 

the algorithm is to partition the algorithm to software and hardware parts. We get benefit from the 

Zynq new technology of Xilinx to implement the software part in the integrated Arm processor. 

The features computation was designed as a co-processor in the programmable logic of Zynq. This 

choice was made to allow the parallel computation of all RLM features at the same time. This 

solution achieved better results when compared to its all software version. 

Secondly, we addressed the hardware implementation of retinal blood vessel segmentation. 

Countless algorithms have been proposed to solve this problem, mainly implemented on CPUs. 

Recently, more GPU implementations have been published and fewer hardware architectures. In 

this thesis, we propose several hardware architectures targeting mainly matched filtering and line 

operator techniques. We first designed a hardware architecture for the matched filter algorithm and 

implemented it on FPGA. Our optimized architecture achieved better results when compared to 

existing hardware architectures. The adaptation of the proposed architecture to different image 

sizes was challenging. The challenge is to keep the low level optimizations to get efficient imple-

mentation while allowing the adaptation of the architecture to different image sizes, especially high 

resolution images. To allow this flexibility, we designed a specific compiler able to generate the 

HDL description of the architecture from a set of algorithm parameters. This was a contribution 

since it was the first architecture able to address low and high resolution images. We have also 

proposed an ASIP-based architecture for the matched filter algorithm. The ASIP was developed 

based on an Xtensa processor with two additional specific instructions. The two added instruction 

allowed the acceleration of the matched filter execution, however, when compared to our hardware 

architecture implemented on FPGA, we found that the ASIP is not a favorable option when execu-

tion time need to be reduced, but, it is a nice option to consider especially when flexibility is a main 

factor. 
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For the targeted line operator technique for blood vessel segmentation, we considered the 

MSLD algorithm. This choice is mainly dictated by the performance of this technique in terms of 

blood vessel segmentation quality. This technique allows a significant improvement against other 

techniques in terms of segmentation accuracy, however, this technique is multi-scale which makes 

it computation and memory intensive. In this thesis, we proposed a memory efficient architecture 

able to solve the memory problem and allow the acceleration of the algorithm. This solution is 

based on software/hardware partitioning, thanks to Zynq technology of Xilinx. To allow the adap-

tation of the architecture to different image resolutions, we developed a specific compiler to gen-

erate HDL description of the algorithm from a set of its parameters.  

The developed hardware architectures for matched filtering and line operators are compared 

in terms of resources utilization, maximum clock frequency and in terms of retinal blood vessel 

segmentation quality. The proposed MSLD architecture implemented on FPGA represents a good 

compromise between segmentation quality and execution time. 

Even though the proposed architectures have presented multiple contributions in the field of 

hardware design for retinal imaging, several improvements could be proposed to the solutions pre-

sented and, moreover, many extensions could be provided. 

To improve the proposed system for RLM features computing, we think that a better solution 

will require a platform with a CPU connected via a high speed bus such as PCI to the FPGA. The 

CPU will benefit from its high frequency to compute the run-length matrix and send it via PCI to 

the FPGA to allow the computation of the features in parallel. For an embedded system able to 

execute a full retinal image quality assessment task, we recommend to use a Zynq platform and 

adopt a co-designed solution based on SW/HW partitioning. We also recommend the use of new 

tools such as SDSoC from Xilinx or high-level synthesis tools such as Vivado-HLS. 

Many authors have proposed improved matched-filter like techniques based on the modifi-

cation of kernel coefficients for a better fit with vessel models such as in [44]. Based on our pro-

posed architecture for the matched filter, and using our developed compiler, we can implement 

these new algorithms with fewer efforts to achieve better segmentation accuracy.  One other im-

provement to the matched filter that can easily be mapped to the architecture is the use of multi-

scales. It has already been proven that multi-scale matched filters perform better than matched 
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filters in mono scale and allow the segmentation of vessels of different sizes [125]. Based on our 

architecture, the implementation of a multi scale matched filter is possible with fewer efforts.  

The proposed architecture of the MSLD algorithm can be reused in different manners to 

improve the blood vessel segmentation quality. The line operator technique proposed first to gen-

erate features of vessels in mono scale. These features have been used to classify pixels as vessel 

or non-vessel pixels. A possible improvement is to use our architecture to generate blood vessel 

features at multiple scales to allow there classification as vessel or non-vessel pixels using a clas-

sifier such as in the original implementation of line operators by Ricci et al. [52]. The classifier has 

to be integrated and implemented on FPGA to improve the execution time. An interesting future 

work would be to address the algorithmic part of the MSLD algorithm. For instance, the combined 

response of the different scales is a linear combination of the different scales responses. A possible 

contribution is to include optimization and introduce a weighted combination. This contribution to 

the algorithm can be easily transferred to the hardware implementation based on the proposed ar-

chitecture and the specific compiler. 

In this thesis, we always preferred the use of low level programming models. To ensure an 

enough flexibility in case of changes to the algorithm parameters change, we developed specific 

compilers able to generate HDL descriptions automatically. An interesting future work would be 

to implement the algorithms using high-level synthesis tools such as Vivado-HLS of Xilinx and 

compare with the results of proposed low level programming. 

Recently, deep-learning approaches have become very popular to solve computer vision 

problems. For retinal image processing, several authors proposed algorithms based on deep-learn-

ing for blood vessel segmentation and have achieved interesting results. However, for high-resolu-

tion images, the training and inferring are time consuming tasks. Deep-learning FPGA implemen-

tations are also an active research area. A nice contribution would be to propose hardware archi-

tectures and implementations of a deep-learning approach for retinal blood vessel segmentation on 

FPGA.
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