

ENERGY-EFFICIENT FEATURE EXTRACTION ENGINE AND

SECURE CHIP IDENTIFICATION FOR UBIQUITOUS

SURVEILLANCE

ANASTACIA B. ALVAREZ

(BS ECE, University of the Philippines, 1998)

(MS EE, University of the Philippines, 2004)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2016

i

DECLARATION

I hereby declare that the thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Anastacia B. Alvarez

19 December 2016

ii

Acknowledgement

This journey has been long one, and challenging at times, and I am grateful to

Him above for the give of life, love, family and friends, without whom this wouldn’t

have been possible. My sincere gratitude to them.

First of all, to my supervisors, for their guidance and support. Massimo, thank

you for the guidance and patience especially during the critical phases of the projects,

and the opportunity to work on them. Prof. Ha Yajun, thank you for accepting me to

be your student, and for the advises especially during my first few years of study. Dr.

Zhou Jun, thank you for the valuable feedback and advise and for sparing your time for

consultations.

My heartfelt gratitude to the Professors who reviewed my research (or part of it),

for their comments and valuable criticism: Prof. Xu Yong Ping, Prof. Heng Chun Huat,

Prof. Yang Zhi, Dr. Rajesh Panicker, Prof. Ganesh Samudra and Prof. Vincent Lee. To

all Profs in the modules I attended (official and unofficial), thank you for sharing the

knowledge. To Prof. Adekunle Adeyeye and Ms. Hemamalini, thank you for helping

me through the process of the NUS graduate program.

Of course this would not have been possible without the support from the

University of the Philippines and the Faculty Development Program of ERDT through

the Department of Science and Technology. To ate Mimi and Ms. Daezelle, for making

sure we get our allowance. To my friends back home, Tess, Franz, Chrd, Marc, Benjo,

Mong and to everybody at EEEI, thank you for always welcoming me each time I come

home. Special mention to Louis and Rhands for being my unofficial consultants.

iii

To Wenfeng, my sincere thanks for being a very patient and ever dependable

mentor. Gopal, thanks for all your help with EQSCALE (even after you have left the

group), and to Longyang, for the discussion and assistance especially with the CAD

tools. The coffee, chats and good food are definitely appreciated as well, together with

Kien, Saurabh, Allan, Niranjani and Jim. Thanks to Harish, for the work with ORB,

and Isha for the work with the SRAM. And to the rest of the Green-IC group, thanks

for company.

Finally, and most importantly, to my family (Tatang, Mommy�, Ate Ay, Kuya

King, Chel, Caitlyn, Kayla and Jared), my in-laws (Tatay�, Nanay, Liza, Rhomie, Ding,

Chase, Omar�, Reiza, Ria and Marco), thanks for the love and support. And to my very

supportive and loving husband, Elbert, thank you for always believing and being there

for me. This one’s for you!

iv

Table of Contents

Declaration ... i

Acknowledgement ... ii

Table of Contents .. iv

Summary ... vi

Chapter 1 Introduction .. 1

1.1 Energy- and Power-Limited Designs ... 2

1.2 Thesis Overview .. 3

Chapter 2 Feature Extraction Algorithms and their Suitability for Energy-
Autonomous Computer Vision ... 6

2.1. Background ... 7

2.2. Metrics and Comparison ... 12

2.3. State-of-the-Art Hardware Implementations .. 17

2.3.1 SIFT .. 17

2.3.2 SURF .. 19

2.3.3 FAST-BRIEF .. 20

2.3.4 ORB .. 22

Chapter 3 ORB Algorithm and IC Design Considerations ... 23

3.1. Comparison of SIFT, SURF and ORB.. 23

3.2. Tuneable Knobs in ORB ... 26

3.2.1. Number of keypoints .. 26

3.2.2. Threshold ... 31

3.2.3. Descriptor length .. 33

3.2.4. Number of pyramid levels.. 34

3.2.5. Corner measure .. 37

3.3 Hardware Model .. 39

3.4. Summary ... 44

Chapter 4 EQSCALE Silicon Implementation and Results .. 45

4.1 RTL Design .. 45

4.1.1 CACHE and KEYPTS .. 46

4.1.2 CORE Design .. 48

4.2 RTL Simulations with Tuneable Knobs ... 57

v

4.3 EQSCALE Results ... 60

4.4 Effect of Cache Size ... 65

4.5 Further improvements to EQSCALE ... 69

4.5.1 Object Detection and Matching .. 70

4.5.2 Ranking ... 71

4.5.3 Other Energy-Efficient techniques .. 73

Chapter 5 SRAM for Image and Video Application ... 74

5.1 SRAM Basics and Metrics ... 74

5.2 State of the Art ... 76

5.2.1 Near-threshold SRAMs ... 77

5.2.2 Application-Specific SRAMs ... 80

5.3 Non-Precharged SRAM (NPSRAM) ... 81

Chapter 6 Secure Chip Identification Using PUFs ... 86

6.1 PUF Introduction .. 86

6.2 PUF Properties and Metrics ... 88

6.3 PUF Topologies and State of the Art ... 94

6.4 Static, Monostable PUFs .. 99

6.4.1 Design and Operation ... 99

6.4.2 Testchip Measurement and Comparison ... 103

6.5 Possible Future Work on PUFs .. 117

Chapter 7 Energy-Efficient Microcontroller for Wireless Sensor Nodes 124

Chapter 8 Conclusion .. 136

References ... 138

List of Publications ... 150

vi

Summary

Making machines more human has been a long-term research goal across

different disciplines. Computer vision plays a major role in this goal by giving the

machine a way to analyse and interpret an image by dividing images into smaller but

meaningful segments. One critical step in computer vision is feature extraction, which

identifies unique features of objects in an image or video. This could lead to a wide

range of applications, including ubiquitous surveillance, which involves area

monitoring, object detection, tracking, and remote sensing. For applications like

surveillance, real-time processing is usually required, making the processing and

analysis tasks more compute intensive, resource hungry, and therefore power

consuming. To cater to battery-operated devices, or those using power from energy

harvesting techniques, power consumption is pushed to sub-mW at tens of MHz

frequency. Thus, designers are faced with two opposing constraints: high throughput

and low energy.

An energy-quality scalable feature extraction accelerator (EQSCALE) is

presented as the first chip demonstration of the Oriented FAST Rotated BRIEF (ORB)

algorithm. In this accelerator, tuning knobs are introduced, allowing for adjustable

balance between the energy consumption and quality of the feature extraction

accelerator. As proof of concept, a 40nm testchip was designed and tested to have an

energy of 55.6pJ per pixel on VGA format at 30 fps, with area of 0.55 mm2. The effect

of the different knobs on energy and accuracy, as well as some intuition on the trade-

off between energy and performance is presented, to allow for scalability depending on

the need of the application.

Memory also plays a role in both performance and energy consumption of the

system. Leveraging on the high correlation of adjacent pixels in an image, a non-pre-

charged SRAM (NPSRAM) is proposed. Compared with conventional 8T SRAM, we

vii

show that NPSRAM can reduce energy by 30-75%, with 15% area overhead, at iso-

speed.

For ubiquitous surveillance, especially with sensor nodes for detecting and

tracking objects, confidential information are passed from node to node. With the ever-

growing number of IoT devices and nodes, security issues like node cloning are

expected to arise. There is therefore a need to ensure data authenticity, integrity and

confidentiality. For this, we propose to use chip identification using physically

unclonable functions (PUFs). A PUF is a function that maps an input challenge to an

output response in a repeatable but unpredictable manner, leveraging on chip-specific

random process variations. A novel class of mono-stable static (PUFs) for secure key

generation and chip identification is presented. From a statistical quality viewpoint, the

65nm PUF testchip achieved best-in-class reproducibility and uniqueness. Energy

consumption was likewise shown to be the best compared to state of the art in PUFs,

at 15fJ/bit.

viii

List of Tables

Table 2.1 Comparison Results .. 13

Table 2.2 SURF Implementation Summary .. 20

Table 2.3 FAST-BRIEF Implementation Summary ... 22

Table 3.1 Parameters considered and their trade-off .. 38

Table 3.2 Number of keypoints with NMS-3 and NMS-5 .. 40

Table 3.3 Look-up table for atan2 ... 42

Table 4.1 Area and Power Estimates for Detector Block ... 51

Table 4.2 Power and Area Estimates of CORE .. 56

Table 4.3 Normalized execution time vs descriptor length... 58

Table 4.4 Power consumption with different knob settings .. 59

Table 4.5 Energy consumption at 0.9V, 330MHz with different knob settings 60

Table 4.6 Comparison of Results .. 65

Table 4.7 Effect of increasing CACHE width by 3x .. 67

Table 4.8 Area Comparison between EQSCALE versions ... 67

Table 5.1 Comparison of SRAM bitcells .. 80

Table 5.2 Delay comparisons .. 83

Table 5.3 Energy comparisons .. 84

Table 5.4 Area comparisons ... 85

Table 6.1 Example of SRAM PUF Silicon Cost ... 89

Table 6.2 PUF Metrics and Typical Values .. 89

Table 6.3 NIST Statistical Test Suite .. 93

Table 6.4 Comparison of Different PUFs ... 105

Table 6.5 Summary of NIST Test Results .. 113

Table 7.1 I/O Pins of Fabricated Chip .. 126

Table 7.2 Processor Parameters at 100MHz ... 127

Table 7.3 Processor Parameters at 100kHz ... 127

Table 7.4 Benchmark code sizes ... 127

Table 7.5 Brownie Core Architecture ... 129

Table 7.6 Comparison of Brownie 32-bit and 16-bit Cores 130

Table 7.7 Code Size Comparison with 16- and 32-bit Cores 131

Table 7.8 Comparison of Cores at 0.5V, 7.5MHz .. 132

Table 7.9 BrownieMult16 Design Parameters .. 135

ix

List of Figures

Fig. 1.1 Supply vs energy/operation ... 2

Fig. 1.2 Feature extraction system overview .. 3

Fig. 2.1 SIFT Interest Point Detection .. 8

Fig. 2.2 SIFT keypoint description ... 9

Fig. 2.3 SURF Box Filters .. 9

Fig. 2.4 SURF Descriptor ... 10

Fig. 2.5 FAST interest point detection .. 11

Fig. 2.6 Benchmark images used for comparison ... 13

Fig. 2.7 Average number of detected keypoints ... 14

Fig. 2.8. Comparison for scale invariance .. 15

Fig. 2.9. Comparison for rotation invariance .. 15

Fig. 2.10. Comparison for scale invariance .. 15

Fig. 2.11. Comparison of detection time ... 16

Fig. 2.12. Comparison of total execution time .. 16

Fig. 2.13. Performance comparison using video sequence ... 17

Fig. 2.14. Breakdown of computational requirement in SIFT 18

Fig. 2.15. Unified Visual Attention Model (UVAM) ... 18

Fig. 2.16. SIFT 5-stage Pipeline Operation .. 19

Fig. 2.17. SURF Feature Extraction Architecture ... 20

Fig. 2.18. FAST Corner Detector .. 21

Fig. 2.19. FAST and BRIEF Unified Hardware Platform... 22

Fig. 3.1 Normalized execution times of SIFT, SURF and ORB 24

Fig. 3.2. Normalized matching performance of SIFT, SURF and ORB 25

Fig. 3.3 Effect of number of keypoints on performance ... 27

Fig. 3.4 Image matching in boat ... 29

Fig. 3.5 Total execution time of ORB for different images .. 30

Fig. 3.6 Effect of threshold on number of detected keypoints 31

Fig. 3.7 Relationship between threshold and number of keypoints 32

Fig. 3.8 Effect of threshold on execution time .. 32

Fig. 3.9 Description time with varying descriptor length ... 34

Fig. 3.10 ORB performance with varying descriptor length 34

Fig. 3.11 ORB performance vs number of pyramid levels ... 35

Fig. 3.12 Total Execution time vs number of pyramid levels 36

x

Fig. 3.13 FAST vs Harris corner measure .. 37

Fig. 3.14 Comparison of Harris and FAST speed and performance 38

Fig. 3.15 Comparison of NMS-3 and NMS-5 ... 40

Fig. 3.16 NMS-3 and NMS-5 illustration ... 41

Fig. 3.17 Representation of LUT for 256-pair pixels.. 43

Fig. 4.1 EQSCALE architecture ... 46

Fig. 4.2 Standard Cell Memory Schematic ... 47

Fig. 4.3 CACHE re-use access illustration ... 48

Fig. 4.4 Parallel detection of 7 pixels .. 49

Fig. 4.5 Det_unit operation ... 50

Fig. 4.6 Detector Block Diagram .. 51

Fig. 4.7 EQSCALE die photomicrograph ... 57

Fig. 4.8 Power consumption breakdown from PnR estimates 58

Fig. 4.9 Normalized Execution Time vs Threshold .. 58

Fig. 4.10 Execution cycles for different knob settings.. 59

Fig. 4.11 Measured fmax and power consumption of different blocks....................... 61

Fig. 4.12 Effect of VDD scaling on frame rate and energy per pixel. 61

Fig. 4.13 Energy-Quality tradeoff when tuning knobs at nominal VDD. 63

Fig. 4.14 Illustration of image matching at different values of Q. 63

Fig. 4.15 Quality vs. energy with joint EQ knobs combined with voltage scaling. 64

Fig. 4.15 Effect of cache width on re-access ratio .. 66

Fig. 4.16 EQSCALE v2 chip microphotograph .. 68

Fig. 4.17 NMS buffer size histogram .. 69

Fig. 4.18 Ranking buffer size histogram. .. 69

Fig. 4.20 Descriptor hamming distance histogram ... 70

Fig. 4.20 Illustration of proposed ranking implementation ... 72

Fig. 5.1 Conventional 6T SRAM .. 75

Fig. 5.2 SRAM sizing considerations for (a) read 0 and (b) write 0 contention 76

Fig. 5.3 Static noise margin for (a) read, (b) write, and (c) hold 76

Fig. 5.4 SNM for (a) read, (b) write and (c) hold at near-threshold voltage 77

Fig. 5.5 7T SRAM .. 77

Fig. 5.6 Schmitt trigger based SRAM ... 78

Fig. 5.7 Single-ended 6T SRAM using transmission gate as access transistors 79

Fig. 5.8 8T SRAM with separate read port .. 79

Fig. 5.9 Prediction-based SRAM for reduced bitline activity (PB-RBSA) 81

Fig. 5.10 Proposed non-precharged SRAM (NPSRAM) .. 82

Fig. 5.11 Estimated energy of memory array .. 85

xi

Fig. 5.12 NPSRAM bitcell layout ... 85

Fig. 6.1 Illustration of typical chip enrolment and subsequent in-field authentication

using challenge-response pairs (CRPs) from PUFs. ... 88

Fig. 6.2 Sample Inter- and Intra-PUF FHD showing decision threshold and Type I

(false positive) and Type II (false negative) errors. .. 91

Fig. 6.3 Sample speckle diagram ... 92

Fig. 6.4 Physical One-Way Function from a non-homogenous material 95

Fig. 6.5 Delay-based PUFs ... 95

Fig. 6.6 Butterfly PUF ... 97

Fig. 6.7 Metastability-based PUF .. 98

Fig. 6.8 PTAT-based PUF ... 99

Fig. 6.9 Static Mono-stable PUFs ... 100

Fig. 6.10 Sample statistical distribution of VX, VY and PUF_OUT 101

Fig. 6.11 Chip photomicrograph, Bitcell Layout and Test Macro Schematics 102

Fig. 6.12 RO-PUF Architecture and Layout ... 103

Fig. 6.13 Native Unstable Bit Count at Nominal Conditions 104

Fig. 6.14 SA_PUF dependence on EN voltage ... 106

Fig. 6.15 Percentage unstable bit versus (a) supply voltage and (b) temperature for

different PUFs ... 107

Fig. 6.16 Breakdown of percentage unstable bits in INV_PUF due to supply voltage

(left) and temperature (right) .. 108

Fig. 6.17 Effect of masking on unstable bits for Latch_PUF and SRAM_PUF with

varying (a) supply voltage and (b) tempretaure .. 109

Fig. 6.18 Effect of masking on unstable bits for RO_PUF 110

Fig. 6.19 Effect of body bias on stability .. 110

Fig. 6.20 Speckle diagram of the golden key (top) and spatial autocorrelation from die

#1 at nominal conditions for INV_PUF (left) and SA_PUF (right) 111

Fig. 6.21 INV_PUF (left) and SA_PUF (right) bias (top) and inter- and intra-PUF HD

statistical distribution (bottom). .. 112

Fig. 6.22 Energy per bit of INV_PUF and SA_PUF for varying voltage supply 114

Fig. 6.23 Trend of (a) native instability rate, (b) normalized area per bit, (c) normalized

energy per bit for different PUFs ... 116

Fig. 6.24 Block diagram of an improved PUF .. 118

Fig. 6.25 Possible circuits for runtime error detection .. 119

Fig. 6.26 Conventional node-to-node data transfer through server. 120

Fig. 6.27 PUF-enabled key exchange and node-to-node communication................. 121

Fig. 6.28 PUF-enhanced enhanced cryptography ... 122

xii

Fig. 7.1 Trends for Low-Power MCUs ... 124

Fig. 7.2 Microcontroller Block Diagram .. 125

Fig. 7.3 Instruction count per unrolled benchmark code .. 128

Fig. 7.4 LSAI instruction extension .. 129

Fig. 7.5 Area breakdown of BrownieMult16 core .. 132

Fig. 7.6 TEST pseudocode .. 133

Fig. 7.7 Power consumption per instruction at 0.5V, 10MHz 134

Fig. 7.8 Performance of the core using TEST code .. 134

1

Chapter 1

Introduction

Computers are known to outperform humans when it comes to computations and

logical operations. When it comes to analyzing images and video scenes, however,

humans could easily outperform computers. Research in computer vision and image

and video processing has been developing to narrow this gap [1]. Image and video

processing has become a trend in the last decade, with applications ranging from image

reconstruction, restoration and enhancement, image and video compression, to object

classification and real-time high-resolution 3D video rendering. These applications

require a lot of computations at a high rate. As such, much is required from the

computing unit.

With the increasing demand for high connectivity in the internet of things (IoT)

and ubiquitous surveillance, the demand for low-energy, real-time processing for

computer vision applications continues to grow. Thus, designers are faced with two

opposing constraints: high throughput and low energy [2]. Although desktop computers

and servers are able to keep up with these demands, for mobile devices, the increasing

power consumption becomes a challenge. To achieve low energy, designers have opted

to aggressively scale voltages into the sub- or near-threshold region [3], [4]. However,

scaling down voltage supply comes at a performance cost. To alleviate this problem,

pipelining and parallelism are explored.

Section 1.1, discusses existing techniques to achieve ultra-low power (ULP) and

energy-efficient designs. In Section 1.2, an overview of our research on energy-

efficient feature extraction system, as well as the flow of this thesis is presented.

2

1.1 Energy- and Power-Limited Designs

Moore’s law has predicted the scaling down of transistor sizes and increase in

transistor density per chip. Although power per transistor decreases due to the decrease

in transistor size, the increase in density results in an overall increase in power [5], [6].

To achieve ultra low power (ULP) consumption, aggressive voltage scaling has been

the most widely used, due to the quadratic relationship between the supply voltage and

power. With this decrease in VDD (to reduce power and therefore energy), comes the

trade-off of larger delay (therefore increase in energy). This trade-off is best illustrated

in [4] and shown in Fig. 1.1, where the minimum energy point (MEP).

Fig. 1.1 Supply vs energy/operation, divided into super-VTH, Near-VTH and sub-VTH
regions [4]

From Fig. 1.1, working in the super-VTH region is the conventional region and

results in high energy reduction with slight reduction in VDD. In the sub-VTH region,

delay increases exponentially with VDD. The near-VTH region is where a good balance

is between the change in energy and change in delay. The MEP may or may not be in

the near-VTH region, but the minimum delay point (MDP) is at a higher energy point

[7], [8]. Traditional designs have been targeting for the MDP, until energy constraints

started to be tighter, that they proposed the energy-delay (ED) product as a metric [8].

3

Depending on the application, some may favour energy over delay, using E2D or E3D

as metrics, or favour delay using ED2 or ED3.

Energy can be reduced at different levels of the design. At the architecture level,

parallelism, pipelining and instruction set architecture (ISA) design have been explored

[3], [6], [9]–[11]. At the circuit level, sizing, layout, and even new circuits have been

used to allow the system to operate properly at low voltages [7], [10], [12], [13].

1.2 Thesis Overview

Fig. 1.2 Feature extraction system overview

An overview of the feature extraction system (Fig. 1.2) shows an imager passing

data to a sub-frame buffer. Input rate to the buffer is assumed to be 30 frames/sec, by

default. These pixels are temporarily stored in a sub-frame buffer and processed by a

feature extraction accelerator, with an assumed input rate of 1 pixel per cycle. The

feature extraction passes keypoints to an object classifier to identify objects from a

database. A chip identification is needed to authenticate the device and the data it sends,

a task that is essential in visual surveillance systems. To control all these processes

(handshake between blocks, data security and chip authentication) a low-energy

microcontroller (not shown in the figure) is needed.

4

At the heart of the feature extraction system is EQSCALE – an energy-quality

scalable feature extraction accelerator. Chapter 2 starts with some basics and the state-

of-the-art in feature extraction algorithms. Metrics for comparison as well as literatures

comparing different algorithms are also presented.

Simulation results comparing the performance of three candidate algorithms,

namely SIFT [14]–[16], SURF [17], [18] and ORB [19] are presented in Chapter 3. In

this chapter, the concept of energy-quality scalability is introduced into the feature

extraction accelerator (EQSCALE) through tuneable knobs, allowing for adjustable

balance between energy and quality.

Details of the hardware implementation and chip testing results are presented in

Chapter 4. Using benchmark images, a quantitative analysis of the trade-off between

energy and quality for every knob, as well as for a combination of the knobs is shown.

Between the imager (currently external to the system) and the feature extraction

accelerator (see Fig. 1.2) is a sub-frame buffer (as opposed to an external full-frame

buffer), which is best implemented using an SRAM, for best balance between area and

speed. Chapter 5 presents simulation results for a non-precharged SRAM (NPSRAM),

which leverages on the high correlation of adjacent pixels in image. Different

topologies that could allow for non-precharged bitlines and their corresponding issues

and drawbacks are analyzed. The chapter is concluded with a comparison between the

conventional 8T SRAM and the NPSRAM.

Chapter 6 covers the concept of physically unclonable functions (PUFs) and their

applications in hardware security, such as for chip identification. Metrics and

discussion of the state-of-the-art are likewise covered. Finally, a novel class of static,

monostable PUFs is presented, together with the results and comparison with other

PUFs.

5

Results for the energy-efficient microcontroller design utilizing a customized

standard cell library for sub-/near-threshold operation is presented in Chapter 7.

Finally, we summarize the contribution of this thesis in Chapter 8. Discussion on

possible future work, including the object detection and classification block in Fig. 1.2,

is also included.

6

Chapter 2

Feature Extraction Algorithms and their Suitability for

Energy-Autonomous Computer Vision

One critical step in computer vision is feature extraction. Given an image or a

video scene, we, as humans with all the stored experience and complex visual system,

can easily distinguish and classify the objects within it, as well as a perceived depth

(i.e., foreground and background). In computers, on the other hand, an image is just a

2-D array of pixel intensities. To be able to identify objects, it has to extract relevant

information from the image or video frame. Similar to human vision system, feature

extraction for computer vision is a continuous (always on) process, processing videos

or scenes frame by frame. As such, aside from accuracy or quality of the algorithm, its

complexity and therefore energy consumption also has to be considered for it to be

suitable for energy-autonomous computer vision systems. It should be noted that recent

researches on deep neural networks (DNNs), or specifically convolutional neural

networks (CNNs), have shown remarkable results close to human accuracy in image

classification and recognition [20]. However, current hardware implementations of

CNNs occupy very large silicon area and suffer from high power consumption due to

their complexity [21]. As such, researchers are still working on implementation

optimizations for DNNs to reduce their silicon footprint and power consumption.

Feature extraction goes through three major steps in analyzing an object in an

image: (1) detection, (2) description, and (3) matching. To detect objects, the computer

needs to find a point or set of points that may be unique to the object, such as edges,

corners and blobs. These are called interest points, keypoints or features. The next step

7

is representing these features so that they can be scale and rotation invariant, and unique

to the feature. This is called description. Finally, matching these described points

usually requires computing distances to see if they match.

Several detectors and descriptors have been proposed since the middle of 1900s.

Most common of which are the Scale Invariant Feature Transform (SIFT) [14] and the

Speeded Up Robust Features (SURF) [18]. Some background on these feature

extraction algorithms will be presented in Section 2.1. Section 2.2 will discuss the

metrics used in comparing these algorithms, as well as some comparison done using

these metrics. The state of the art in hardware implementation of feature extraction

accelerators is discussed in Section 2.3.

2.1. Background

The concept of feature detection was first proposed in 1950s, in their efforts to

understand our complex visual system [22], [23]. Its application in computer vision

was first demonstrated a decade after in the Summer Project [24], with the goal of

detecting an object. Different algorithms for feature extraction have been proposed

thereafter, using them for various applications, such as image detection, classification

and tracking, image stitching, and augmented reality, to name a few.

Edges are one of the most intuitive features to detect objects, allowing the

algorithm to draw the outline of the object. One way to detect edges is using Gaussian

filters, to highlight abrupt intensity changes in the image [25]. Lindeberg [26]

suggested that feature that catches the eye most are those that are stable at higher scales

(greater distance). They then proposed the use of the extrema of the Laplacian of

Gaussian (LoG) as an interest point detector to be scale invariant. One of the most

popular interest point detector and descriptor today is the Scale Invariant Feature

Transform (SIFT) [14]–[16]. Based on the work in [26], Lowe [16] proposed an

approximation of LoG by creating an image pyramid through levels of Gaussian

8

smoothed images and then taking the difference of adjacent Gaussian smoothed images

to create the difference of Gaussian (DoG). A candidate point is then considered an

interest point if it is the extrema (maximum or minimum) among its 8 neighbours

within the scale and the 9 neighbours each on the top and bottom scales (total of 26

neighbour pixels in the 3x3x3 region). Fig. 2.1 illustrates the image pyramid and the

interest point detection.

Fig. 2.1 SIFT Interest Point Detection. An image pyramid (left) is created through
levels of gaussian smoothed images (scales) and sub-sampled to create the next octave.
A candidate point is considered an interest point if it is the extrema within the 3x3x3
difference of Gaussian (DoG) region centered at the candidate point (right).

For a feature detected at location x,y, the magnitude, m, and orientation, θ, of

pixels around the interest point are calculated using the equations in Eq. 2.1 and Eq.

2.2, respectively, where p(x,y) is the pixel intensity. These are used for description, as

illustrated in Fig. 2.2. The descriptor window is then divided into 4x4 sub-windows.

Eight orientation bins are taken per sub-window, adding the magnitudes within the

same orientation bin. These magnitudes are then concatenated to form the 128-vector

(8 orientation bins x 4x4 sub-windows) SIFT descriptor.

9

���, �� = 	
�� + 1, �� −
��� − 1, �� +
��, � + 1� −
���, � − 1� (2.1)

���, �� = ����� ����,��������,����
�����,��������,��� (2.2)

Fig. 2.2 SIFT keypoint description. Gradient magnitude and orientation is computed at
each point in a region around the interest point (left). Samples are then accumulated
into orientation bins over 4x4 sub-regions (right). Orientation magnitudes are then
concatenated to form the descriptor vector.

Although SIFT was proposed more than a decade ago, it still remains popular

because of its superior performance. An almost similar but slightly simplified version

of the detector and descriptor is the Speeded Up Robust Features (SURF) [18]. Instead

of using DoG as an approximation of LoG, they simplified the smoothing through box

filters, as shown in Fig. 2.3. Image scales are likewise created using enlarged filter

boxes. Similar to SIFT, SURF interest points are also identified by finding the extrema

within the 3x3x3 neighbourhood.

Fig. 2.3 SURF Box Filters. From left to right, discretized Gaussian second order
derivatives in the y-direction, and xy-direction, and their approximations (grey regions
are zeros).

The descriptor is done using Haar wavelet responses in the x- (denoted as dx)

and y- (denoted as dy) directions. The descriptor vector becomes a little less complex,

10

that instead of having the orientation bins, the vector is formed by taking Σdx, Σ|dx|,

Σdy and Σ|dy| for each sub window and concatenating these values, to form the 64-

vector (4 parameters x 4x4 sub-windows) descriptor. Details of this vector is shown in

Fig. 2.4.

Fig. 2.4 SURF Descriptor. The grid is oriented along the dominant orientation. The
cumulative response along the x- and y- directions for each sub window are computed.
The descriptor vector is formed by concatenating the Σdx, Σ|dx|, Σdy and Σ|dx| for each
of the 4x4 sub window.

Corners are also useful features to detect objects in an image. The work in [27]

uses a combination of corners and edges to isolate objects from backgrounds. Since

Gaussian filters are complex, they used a simpler [-2 -1 0 1 2] filter [1] to approximate

the effect of Gaussian filtering. Another popular corner detector is the Features from

Accelerated Segment Test (FAST) [28], [29]. In Fig. 2.5, the idea is to compare the

intensity of the candidate pixel or interest point (labelled C in the figure) with those on

the circumference of a circle around it (highlighted numbered pixels in the figure). Each

of the surrounding pixels is labelled black if it is less (darker) than the candidate pixel

by at least a threshold value; it is labelled white if it is greater than the candidate pixel

by at least a threshold value; and grey if its intensity is just within a threshold of the

candidate pixel intensity. A candidate point is then considered a feature if at least n

(8<n<13) contiguous pixels are either all labelled white or all labelled black.

11

Fig. 2.5 FAST interest point detection. Point C is compared to 16 points around it to
determine if C is an interest point.

FAST is only a detector. That is, it detects only the location of an interest point

– it does not represent this interest point into a value or vector that can be matched with

points on a different image or in the database (for the case of objection recognition). In

this case, the description is done using other available algorithms. A commonly used

descriptor for FAST is the Binary Robust Independent Elementary Features (BRIEF)

[30]. BRIEF is done by defining a test τ on a patch p of size SxS as in Eq. 2.3, where

p(k) is the pixel intensity of p at k. The BRIEF descriptor f(p) is then the nd-dimensional

bitstring in Eq. 2.4, where nd is 128, 256 or 512.

��
; �, �� = �1 !
��� <
���
0 $�ℎ&'()& (2.3)

!*+�
� = ∑ 2.����
; �., �.��/./*+ (2.4)

The problem with FAST-BRIEF is that it is neither scale nor rotation invariant.

The group from Willow Garage proposed a FAST-BRIEF variant that is scale and

rotation invariant. They called their algorithm the Oriented FAST Rotated BRIEF

(ORB) [19]. Like SIFT and SURF, scale-invariance is achieved by creating an image

pyramid and getting features points at each scale. Rotation-invariance, on the other

hand, is achieved through the identification of orientation of the corner for each interest

point, and constructing the descriptor vector based on this orientation. Orientation is

done using the concept of moments and centroid. The moment, mpq, of a patch and the

corresponding centroid, C, are defined in Eq. 2.5 and Eq. 2.6, respectively. Having the

12

centroid, a vector is formed, connecting the center, O, and the centroid, C. The

orientation, θ, is then given in Eq. 2.7. Given the x,y locations for the test bitstring in

Eq. 2.3 and the patch orientation in Eq. 2.7, the locations are steered to get the new

feature vector.

��0 = ∑ ���01��, ���,� (2.5)

2 = �345
365

, 354
365

� (2.6)

� = �������7�, ��7� (2.7)

2.2. Metrics and Comparison

Several papers [31], [32] have compared different detectors and descriptors. In

[31] they focused on the matching performance of the descriptors, using recall and 1-

precision (shown in Eq. 2.8 and Eq. 2.9, respectively) as their metrics. The number of

correspondence would be the number of pairs identified as match using the distance

comparison.

'&8�99 = #;<==>;? 3@?;A>B
#;<==>B�<*C>*;>B (2.8)

1 −
'&8) $� = #D@EB> 3@?;A>B
#;<==>;? 3@?;A>B�#D@EB> 3@?;A>B (2.9)

Using the data set from [33], their comparison results (arranged according to

decreasing number of nearest neighbour correct matches) are shown in Table 2.1. A

snapshot of the data set is also shown in Fig. 2.6. It should be noted that the gradient of

location and orientation histogram (GLOH) is a descriptor proposed by the group,

which uses principal components analysis (PCA) for matching. It can be seen in the

table that GLOH performs best in their 2 metrics, followed closely by SIFT.

13

Table 2.1 Comparison Results [31]
Descriptor Recall 1-precision #correct matches

GLOH 0.25 0.52 192
SIFT 0.24 0.56 177

Shape context 0.22 0.59 166
PCA-SIFT 0.19 0.65 139
Moments 0.18 0.67 133

Cross Correlation 0.15 0.72 113
Steerable filters 0.12 0.78 90

Spin images 0.09 0.84 64
Differential invariants 0.07 0.87 54

Complex filter 0.06 0.89 44

Fig. 2.6 Benchmark images used for comparison

With regards to Table 2.1, it should be noted that the recall metric reflects the

same ranking as the number of correct matches, with the higher value corresponding to

more correct matches. However, the absolute value of recall does not give any intuitive

meaning. In [32], SIFT, SURF and PCA-SIFT, were compared using the same data set

as in Fig. 2.6. Aside from execution time, they also used repeatability (shown in Eq.

2.10) as a metric, where C(I1,I2) is the correspondence between image I1 and I2, and m1

and m2 are the number of features for I1 and I2, respectively. Their results show that

SURF is the fastest, while SIFT is the best in terms of repeatability with scale, rotation

and blur changes. SURF, however, is the best in terms of repeatability with change in

illuminations. It should be noted at this point that while recall is a metric for descriptors

14

(how well the representation uniquely identifies the feature), repeatability is a metric

for detectors (whether the same feature is identified under different variations of the

image).

'�,� = F�G4,GH�
3>@*�34,3H� (2.10)

A comparison of the detectors and descriptors were also done using the OpenCV

library [34], [35]. In terms of keypoint matching, they evaluated the average number

of detected features as well as the percentage tracking, for the different feature

detection algorithms. These are shown in Fig. 2.7 and Fig. 2.8, respectively. We can

see from Fig. 2.7 that FAST detects more than 7x features compared to others. For this

simulation, ORB always gives 702 features, which is set in the algorithm. In Fig. 2.8,

we can see that ORB is almost able to track all the detected features. In terms of rotation

invariance, they showed that SIFT and ORB perform best, as can be seen in Fig. 2.9.

In terms of scale invariance, on the other hand, SIFT and SURF perform best (Fig.

2.10).

Fig. 2.7 Average number of detected keypoints

15

Fig. 2.8. Comparison for scale invariance

Fig. 2.9. Comparison for rotation invariance

Fig. 2.10. Comparison for scale invariance

16

We can see from both results that SIFT does seem to be a good candidate for a

feature extraction algorithm. However, the drawback is the speed or execution time, as

was already shown in [32]. Using the OpenCV library, the same results are also

obtained, as shown in Fig. 2.11 and Fig. 2.12. The performance test was done on Mac

Book Pro 2.2 with Core 2 Duo 2.13 GHz platform.

Fig. 2.11. Comparison of detection time

Fig. 2.12. Comparison of total execution time

Finally, performance of these descriptors using a video sequence was compared,

and revealed that although SIFT and SURF still perform best, their performance still

needs improvement. This result is shown in Fig. 2.13.

17

Fig. 2.13. Performance comparison using video sequence

2.3. State-of-the-Art Hardware Implementations

In this section, we discuss state of the art hardware implementations of the

feature extraction methods discussed in the previous section. Specifically, we have

ASIC implementations of SIFT, SURF, FAST-BRIEF, and ORB FPGA

implementations. We conclude this section with a simple comparison of these

implementations.

2.3.1 SIFT

As was evident from the previous sections, SIFT has complex iterative

computations. It was shown in [36] that more than half of the operations in SIFT is in

Gaussian filtering. Their breakdown is shown in Fig. 2.14. As such implementations of

SIFT are typically done using massively parallel SIMD processors [36]–[42]. To

reduce computational complexity in the implementation of the SIFT algorithm,

implementations typically include a region of interest (ROI) detector and do the feature

extraction only on a portion of the image [37]–[41]. As an example, authors in [39],

[40] used what they call the Unified Visual Attention Model (UVAM), where they

process keypoint detection only on some region of interest (ROI). Their model is

illustrated in Fig. 2.15. We can see from the figure that their initial ROI selection is

based on some saliency mapping. The ROI is then adjusted based on feedback from

initial matching.

18

Fig. 2.14. Breakdown of computational requirement in SIFT [36]

Fig. 2.15. Unified Visual Attention Model (UVAM)

To achieve 30 fps with 640x480 resolution, massive parallelism using 4 single

input multiple data (SIMD) vector processing elements and 32 multiple input multiple

data (MIMD) scalar processing elements was implemented. Their results show 345mW

power consumption in 0.13um process. A later version of their design in [43] improved

on the UVAM by proposing the Context-Aware Visual Attention Model (CAVAM),

which incorporates temporal similarities between successive frames. For this

implementation, 31 heterogeneous cores -- with 4 simultaneous multithreading (SMT)

cores for feature extraction, were used. Increased hardware utilization was

19

accomplished with their 5-stage pipeline operation, as shown in Fig. 2.16. Each image

is divided into 16x16 tiles, and each tile is assigned to a thread in each of the SMT

cores for feature extraction. Their results show that they can process 30 fps of 720x1280

resolution with an average power of 320mW in 0.13um process.

Fig. 2.16. SIFT 5-stage Pipeline Operation

2.3.2 SURF

Jeon, et. al. [44], [45] proposed to use SURF as their feature extraction engine

for micro autonomous vehicle (MAV) navigation system. Unlike the work in [39] and

[43], they used full frame extraction of feature point, without ROI detection. One

simplification they did with the SURF algorithm is that instead of using multiple

octaves with 4 scales per octave, they used a single octave with 5 scales. This is

justifiable as they are targeting only 640x480 frame sizes, and therefore subsampling

the image may not give very relevant information. To reduce the storage requirements,

they divided the image into 11 sections with 88 pixels of overlap. Instead of SRAMs,

they used a FIFO for image storage, and duplicated the image integrator for the

descriptor block to eliminate the need of storing the integral image itself. In this way,

20

they are exchanging the additional image integrator with that of the SRAM for the

integral image. Their architecture is shown in Fig. 2.17.

Fig. 2.17. SURF Feature Extraction Architecture

To further reduce energy consumption, they proposed a hybrid FIFO architecture

using shift latches with balanced leakage compensation technique. They also operated

their system in 470mV supply voltage to further reduce their power consumption.

Summary of their results is shown in Table 2.2.

Table 2.2 SURF Implementation Summary

2.3.3 FAST-BRIEF

Park, et. al. [46] implemented FAST with BRIEF, using pattern-based matching.

After labelling the surrounding pixels as white (brighter than the center pixel by a

threshold), black (darker than the center pixel by a threshold) or grey (intensity within

threshold from center pixel), they assemble the labels into a string and compare with a

string of all whites and a string of all blacks (both of length n). The block diagram of

the detector is shown in Fig. 2.18. To speed up the process, they included an early

rejection hardware, which detects patterns that are definitely not corners. This is done

21

by examining the four compass directions (pixels 1,5, 9 and 13 of Fig. 2.5). To be a

corner in FAST-12 (n=12), at least 3 of these pixels have to be all white or all black. In

FAST-9 (n=9), at least two contiguous compass directions must be either both white or

both black. Otherwise, the candidate point is rejected as not a corner. With this

implementation, a segment test requires 1-3 cycles to complete. They also proposed a

unified hardware platform for interest point detection of FAST and matching with

BRIEF (Fig. 2.19). With this unified hardware platform, some resources (such as

memory storage) are shared between the interest point detection and matching

hardware, at the same time, load is somewhat balanced, resulting in an even pipeline

operation. Table 2.3 shows their implementation summary. It should be noted that

more than 90% of their chip’s area is occupied by the SRAM for the descriptor buffer.

Fig. 2.18. FAST Corner Detector

22

Fig. 2.19. FAST and BRIEF Unified Hardware Platform

Table 2.3 FAST-BRIEF Implementation Summary

2.3.4 ORB

To the best of our knowledge, ASIC implementation of the ORB algorithm has

not yet been proposed. There are, however, several FPGA implementations such as the

works in [47]–[50]. A comparison between SURF and ORB was done and it was shown

that ORB is 2-3x faster than SURF while occupying ~4x less FPGA area.

23

Chapter 3

ORB Algorithm and IC Design Considerations

Having established the necessary background on feature extraction algorithms

and their metrics in the previous chapter, this Chapter continues with simulation results

of the ORB algorithm implementation. Section 3.1 will cover some simple comparison

among SIFT, SURF and ORB, to justify the choice of implementing ORB as our feature

extraction algorithm. Analysis of the effect of individual knobs is presented in Section

3.2. Section 3.3 covers the hardware model to show the effect of implementation

simplification or approximations, and how the chosen knobs interact with the hardware

implementation.

3.1. Comparison of SIFT, SURF and ORB

OpenCV [51] was used to compare results for SIFT, SURF and ORB. Although

comparison of some (or all) of these algorithms have been done in previous works, as

discussed in the previous chapter, doing the comparison on our own allows us to verify

the comparisons as well as identify weaknesses and strengths of algorithms that would

likewise not be indicated in the comparisons. Knowing that each algorithm will have

some tuneable parameters that affect its performance, default values for these

parameters were used during comparison. For succeeding comparisons, we use

execution time and recall as our metrics. Execution time is divided into the 3 major

steps, namely, detection, description and matching for more intuitive analysis. It should

be noted that the actual execution time or execution cycles of the final hardware

implementation will be different from what we obtain from software simulations using

24

OpenCV, but the relative values for the different algorithms may still be indicative of

their relative performance.

The succeeding figures show the relative execution times of the 3 algorithms.

All values are normalized with respect to SIFT, which is the slowest of the three. It can

be seen from Fig. 3.1 that SURF is ~4x faster than SIFT in detection, and ~1.75x faster

in description. ORB, on the other hand is ~20x faster than SIFT in both detection and

description. Taking the total execution time (Fig. 3.1d), including time for matching,

SURF is ~2x faster than SIFT while ORB is ~20x faster than SIFT, despite its higher

matching time compared to both SIFT and SURF (Fig. 3.1c).

(a) (b)

(c) (d)

Fig. 3.1 Normalized execution times of SIFT, SURF and ORB: (a) average detection
time; (b) average description time; (c) average matching time; and (d) total execution
time.

25

(a)

(b)

(c)

Fig. 3.2. Normalized matching performance of SIFT, SURF and ORB using recall
metric, using different image variations: (a) boat image, for zoom and rotation; (b) bark
image, for zoom and rotation; and (c) graffiti image, for viewpoint vairiation.

26

Matching performance is evaluated using recall, which is simply the percentage

of correct matches (as discussed in Chapter 2), as metric. Fig. 3.2 shows the results for

3 different image sets: boat and bark for zoom with rotation invariance, and graffiti for

viewpoint invariance. All values are normalized with respect to the SIFT performance.

The x-axis represents increasing degree of variation (e.g., for rotation, higher degrees

of rotation from the base image 1). In terms of invariance to zoom and rotation (Fig.

3.2a and Fig. 3.2b) , it can be seen from the figure that ORB outperforms SURF and

SIFT for slight variations in rotation (i.e., for 1-2 comparison), but all 3 algorithms

perform almost equally for higher degrees of rotation. With regards to viewpoint

changes, SIFT and ORB perform equally better than SURF at lower degrees, while

ORB and SURF outperform SIFT at higher degrees.

3.2. Tuneable Knobs in ORB

Having established ORB’s superior speed and comparable performance with

SIFT and SURF, tuneable knobs that would allow us to play with energy-quality trade-

offs were identified. Several knobs are available both in the algorithm and in the

hardware implementation. Investigation of each one of these knobs, for their suitability

as energy-quality trade-off knobs, are presented in this section.

3.2.1. Number of keypoints

To reduce the number of keypoints in the database for matching, ORB

implements ranking of the keypoints and retains only a fixed number of keypoints for

description (and eventually matching). An obvious way to increase the number of good

matches is by increasing the number of keypoints. However, increasing the number of

keypoints comes at a penalty of larger memory requirement with more comparisons for

ranking, and therefore, higher energy.

27

(a)

(b)

(c)

Fig. 3.3 Effect of number of keypoints on performance for (a) boat, (b) graffiti and (c)
bark images

28

The default value of the number of retained keypoints is 400, and for our

purpose, we call this knob nfeat. Fig. 3.3 and Fig. 3.5 show the effect of varying nfeat.

The same 3 images (boat, graffiti and bark) were used for this analysis and for all

succeeding analyses in this chapter. As can be seen consistently for all three images in

Fig. 3.3, the performance in terms of matching percentage (percentage of good matches

relative to declared matches) decreases quadratically with increasing number of

retained keypoints, despite the increase in the number of good matches. This is best

explained by the fact that ORB uses the brute force method for matching, thereby

forcing a match for every retained keypoint (therefore increasing the divisor of

performance metric). Indeed, in practical image matching, there will most likely be

some keypoints that will not have a match from the keypoint database (i.e., occluded

images). As such, a thresholding method for matching is proposed and will be

discussed in more detail in the next chapter.

One thing to notice in Fig. 3.3 is that the last few image pairs (images 5 and 6 in

Fig. 3.3a, and images 4-6 in Fig. 3.3b and Fig. 3.3c) have no matches. A closer look at

these matches with the boat image (Fig. 3.4), shows that although there were a few

correct matches, they were not enough to detect an object and therefore OpenCV

erroneously reports a high value for number of correct matches. As a remedy, we set

this value to zero instead, to indicate that the object was not detected. Fig. 3.4a shows

the matching between boat image 1 and image 2, where almost all filtered matches are

correct. On the other hand, Fig. 3.4b shows the matching between boat image 1 and

image 6, where only a few of the filtered matches are correct, and therefore, the object

is not detected after using PROSAC [52] or RANSAC [53]. Thus, although there are

some correct matches (albeit very few), they are recorded as 0 since no object was

detected.

29

(a)

(b)

Fig. 3.4 Image matching in boat: (a) image 1 (left) & image 2 (right); and (b) image 1
(left) & image 6 (right). Lines connecting the two images are the declared matches.

With respect to the performance (Fig. 3.5), the time taken for computation of the

keypoints increases quadratically (as indicated by an R2 value closer to 1 for poly

compared to linear trendline) with the number of keypoints. So, care must be taken

when one is planning to increase the number of keypoints. Thus, instead of increasing

the number of keypoints to improve performance, we might also reduce the number

keypoints to reduce energy consumption. From the plots, retaining 200 to 400

keypoints seems to be reasonable, with only a slight increase in energy and ~2x good

matches.

30

(a)

(b)

(c)

Fig. 3.5 Total execution time of ORB for different images: (a) boat, (b) graffiti, (c)
bark

31

3.2.2. Threshold

The number of keypoints is also affected by the threshold used to classify

surrounding pixels as either bright, dark or grey. The higher the value of threshold, the

lesser the number of keypoints detected. The default value is 20, and for our purpose,

we call this knob thresh. Fig. 3.6 shows the effect of threshold on the number of

keypoints. It can be seen from the figures that indeed, the number of keypoints

decreases with increasing threshold value. The relationship between threshold and

number of keypoints (Fig. 3.7) is a quadratic decay down to a threshold value less than

40 (indicated by the red trend line), after which, the number of keypoints decays

exponentially. This shows that for this set of benchmark images, threshold values

below 40 may not give enough keypoints, causing the matching to fail. Of course, this

conclusion is image-dependent, and the reasonable threshold value may vary

depending on the image contrast.

Fig. 3.6 Effect of threshold on number of detected keypoints

32

Fig. 3.7 Relationship between threshold and number of keypoints. For threshold <40,
relationship is quadratic (red); for threshold >40, relationship is exponential.

Fig. 3.8 shows the effect of threshold on execution time. From the figure, a slight

decrease in detection time with increasing threshold is observed, which can be

attributed to the decrease in number of clustered keypoints, thereby reducing the time

needed to do the non-maximal suppression. However, no apparent trend can be seen in

terms of the effect of threshold on total execution time.

Fig. 3.8 Effect of threshold on execution time

33

3.2.3. Descriptor length

ORB uses 32 bytes for description. These bits are results of comparisons of pairs

of pixel intensities, which are chosen based on their correlation (with the lower

correlation preferred). The pairs are arranged in order of increasing correlation, with

the least correlation pair corresponding to the MSB of the description vector. Thus,

reducing the number of bits for the descriptor (keeping the lower correlations and

discarding the higher ones) could have less impact on the accuracy of the descriptor for

matching. For our purpose, we call this knob nlength, and we considered 2 possible

values: 32B and 16B. This knob affects only the description, and is proportional to the

size of the memory used for the comparison database as well as the computation effort

to do brute force matching. Similarly, since description is done by bitwise comparison

of the pixel pairs, reducing the length of the descriptor reduces the number of

comparisons needed, and therefore, the time to do description, or the number of

comparators needed if done in parallel.

Fig. 3.9 shows the effect of descriptor length on the description time (detection

time is unaffected by this knob). Indeed, we can see that the description time for the

16B is always lower than that of the 32B, and the average description time for 32B

length is 1.34x that of the 16B length. This shows great potential to reduce energy

consumption of the ORB feature extraction accelerator. In terms of performance, on

the other hand, no apparent trend can be found, as shown in Fig. 3.10. For the graffiti

image pairs, the 16B length shows higher number of correct matches compared to the

32B descriptor length. This could be due to the dissimilarity in the keypoints within the

image, therefore the most uncorrelated half of the descriptor length is enough to declare

a match. The opposite, however, is seen in the boat image pairs, while the bark image

pairs shows higher for some pairs and lower for others. For these image pairs, reducing

the descriptor length to 16B from 32B could cause mismatches, thereby reducing the

34

number of correct matches. In terms of averages, however, the average number of

correct matches for the 32B descriptor length is slightly higher (additional 3 correct

matches on average) than that of the 16B.

Fig. 3.9 Description time with varying descriptor length

Fig. 3.10 ORB performance with varying descriptor length

3.2.4. Number of pyramid levels

Like SIFT, ORB addresses scale invariance by creating several scales of the

image or pyramid levels, and detecting keypoints on those pyramids. Each of these

pyramid levels is smoothened by a Gaussian filter to reduce the response along its

35

edges. Fig. 3.11 shows the number of good matches with respect to number of pyramid

levels. It can be seen from the figure that, contrary to what we would expect, increasing

the number of levels in fact reduces the number of good matches. This could be

explained by the fact that the number of keypoints are almost N-tupled for N pyramid

levels, but is eventually filtered into a fixed number of features, as dictated by nfeat

(section 3.2.1).

Fig. 3.11 ORB performance vs number of pyramid levels

Looking at the execution time in Fig. 3.12, this trend in performance does not

translate to any trend in execution time. Translating to energy, although execution time

is almost constant, each additional pyramid is a new set of Gaussian filters and

corresponding memory – therefore additional hardware resource and power, and thus

higher energy. Thus, for our implementation, the pyramid levels was set to 1, without

tuneability. It should be noted that in the current ORB as proposed in [19], analysis of

the effects of the pyramid levels on the performance was not done in details. Adding

octaves, similar to SIFT, and resolving keypoints across scales and octaves may need

to be further explored. As such, until a revised algorithm for this is added onto ORB,

having the additional pyramid levels may not be as useful as it was for SIFT.

36

(a)

(b)

(c)

Fig. 3.12 Total Execution time vs number of pyramid levels for different images: (a)
graffiti; (b) bark; and (c) boat images

37

3.2.5. Corner measure

Two corner measure algorithms offered with OpenCV were chosen from: Harris

[27] and FAST [29]. This corner measure is used for NMS after the initial FAST feature

detection. The computational complexity of the Harris corner measure is higher than

FAST corner measure, as depicted by the higher execution time of the Harris corner

measure (Fig. 3.13a). This, however, comes at a penalty in performance (Fig. 3.13b).

(a)

(b)

Fig. 3.13 FAST vs Harris corner measure in terms of (a) execution time and (b) number
of good matches

38

Fig. 3.14 Comparison of Harris and FAST speed and performance using several image
pairs

Comparing good matches and execution times for different pairs of images, we

can see in Fig. 3.14 that no apparent clustering is found, thereby leading us to conclude

that both are comparable. Since FAST corner measure would be easier to implement,

with less compute resource requirement, compared to Harris, all succeeding data will

be based on the FAST corner measure, unless otherwise specified. We summarize all

the tuneable parameters we have discussed, and their relative effects in Table 3.1

below.

Table 3.1 Parameters considered and their trade-off
Parameter Definition Range of values

(default in bold)
Effect

nfeat no. of retained
keypoints

200, 400, 800,
1200, 1600, 2000

~3x increase in execution
time and performance from

400 to 2000 keypoints
levels no. of pyramid

levels
2, 4, 6, 8, 10 ~20% decrease in

performance from 2 to 10
levels

nlength descriptor
length (bytes)

16, 32 1.3x higher description time
from 16 to 32

thresh threshold 20, 30, 40 slight decrease in detection
time and quadric decrease in
detection time with decrease

in threshold

39

3.3 Hardware Model

To approximate the effect of simplifications or approximations done for the

hardware implementation, a Matlab model of the ORB hardware was implemented.

Detection is done using string pattern comparison, as discussed in [46]. This design

presents a simple implementation requiring only a 32-bit register, 16-bit adders,

comparators and a simple FSM. The threshold knob thresh plays a role in this stage, as

an input to the comparators to determine whether a pixel is to be labelled as dark, bright

or grey. The lower the value of thresh, the more keypoints there will be. It should be

noted at this point that one issue introduced by the detector is the repetitive access to

same pixels, as each pixel will be needed by 16 different possible keypoints. Aside

from these, pixels will also have to be re-accessed for description, in case of a keypoint.

Details of the cache design considerations will be covered later in this section.

A non-maximal suppression (NMS) block processes all identified keypoints

from FAST detection. This process removes redundant points, and retains the one that

is the most representative of the corner. As was shown in the previous section, FAST

corner measure is faster than Harris corner, although the later may have more correct

matches. For the hardware implementation, the FAST corner was chosen, reusing the

value measured from detection. A keypoint is considered a corner if it has the highest

corner measure within its nxn neighbourhood, where n could be 3 or 5. For simpler

discussion, we refer to them here as NMS-n. In the OpenCV implementation of the

ORB algorithm, they used NMS-3. It can be seen in Fig. 3.15 that the number of

keypoints is reduced, while keeping the white spot feature of the butterfly. As point of

comparison, we show the number of keypoints of the base image (image_1) of all the

benchmark images in Table 3.2. We include the resulting number of filtered keypoints

using NMS-3 and NMS-5. Comparing the data from Table 3.2, NMS-3 reduces the

number of keypoints to somewhere 25.49% to 38.96%, while NMS-5 reduces the

number of keypoints to 21.55% to 34.27%.

40

Fig. 3.15 Comparison of NMS-3 and NMS-5. NMS-5 reduces the number of keypoints
while keeping the relevant feature.

Table 3.2 Number of keypoints with NMS-3 and NMS-5

Image Size # FAST
keypoints

#keypoints
after NMS-3

#keypoints
after NMS-5

Boat 680 x 850 21128 6510 5034
Cars 600 x 900 5675 2146 1642
UCB 600 x 800 14941 5802 4695
Trees 700 x 1000 42628 13620 10362
Bike 480 x 640 3624 1412 1242

Graffiti 640 x 800 3503 893 755
Linus 640 x 480 992 384 326

Monarch 512 x 768 2912 864 726
Monarch2 480 x 640 2641 732 617

The difference in NMS-3 and NMS-5 filtered keypoints is further illustrated in

Fig. 3.16. The pixel values of the inset image on the upper right corner of Fig. 3.15 is

shown in the left image of Fig. 3.16. The identified FAST keypoints are highlighted in

red. The corresponding scores of the pixels are shown on the right image of Fig. 3.16,

where only the keypoints have non-zero scores. For NMS-3, the keypoint with score of

1366 (highest in the area) invalidates all adjacent keypoints. The keypoint with score

of 495 do not have adjacent neighbours that are keypoints and therefore remains a valid

keypoint. For the case of the keypoint with score of 1208 (lower left), although it is not

41

within the close neighbour of 1366, it is still invalidated because it has adjacent

neighbours that have higher scores. Thus, for NMS-3, both keypoints with scores 1366

and 495 are passed on as valid keypoints. For the NMS-5, all keypoints within the 5x5

neighbourhood of the keypoint with a score of 1366 are invalidated (including that with

a score of 1208). Although the keypoint with score of 495 (upper right) is not within

this neighbourhood, it still becomes invalidated because there are keypoints within its

5x5 neighbourhood that have higher scores. Thus, for NMS-5, only the keypoint with

score of 1366 is passed on as a valid keypoint. Indeed, this is what we should expect,

since this is one corner and therefore should only have one representative keypoint.

Fig. 3.16 NMS-3 and NMS-5 illustration. Pixel values (left) of a corner from Monarch
image results to corresponding scores (left). Identified FAST keypoints are highlighted
in red.

After NMS, the filtered keypoints within a frame are ranked. The ranking is

based on the corner measure used in the NMS block, therefore no additional compute

resource is needed for the corner measure. The nfeat parameter (default value of 400)

indicates how many features or keypoints to retain per frame. To reduce extra logic for

this implementation, we use only 1 bit for nfeat to choose between 200 or 400 keypoints

(‘0’ = 200; ‘1’ = 400). The insertion sort algorithm was used for this implementation

as it is well suited for data being added only at runtime. To reduce the number of cycles

needed to rank the keypoints, the whole stack was divided into 10 bins such that the

worst-case number of comparison is reduced to 50.

Description starts by taking the orientation or angle of rotation of the corner

feature, based on the intensity centroid of the 15x15 patch around the keypoint. As

42

shown in the previous chapter, the computation resource needed would be multipliers

(for mpq computation), and a divider and trigonometric computation for atan2. In the

OpenCV implementation of ORB, the trigonometric function itself was used. For the

trigonometric computation, an 8-bin look-up table was used. Since the angle is used to

compute for rotated X and Y values, the cosine and sine values of the angles were stored

in the LUT instead of the atan2. Table 3.3 below shows the look-up table. Data is

accessed by specifying the address (last column). As can be seen from the table, fixed-

point representations were used to avoid the complexity of floating point arithmetic.

Table 3.3 Look-up table for atan2

Aside from Table 3.3, another LUT for the 256-pairs of pixels to be compared is

also included. Fig. 3.17 shows these points, with the keypoint as center, and within a

25x25 patch. For each pair, the pixel ‘O’ is compared with pixel ‘◊◊◊◊’. The 256-bit

description is a concatenation of all O-◊◊◊◊ comparisons (1 if greater, 0 otherwise).

43

Fig. 3.17 Representation of LUT for 256-pair pixels. The 25x25 patch is centered on
the keypoint at (0,0). The comparison between O and ◊◊◊◊ for each of the 256 lines dictate
the bit value for description.

Aside from the comparison, the Descriptor block also needs to ensure that cache

accesses are from different banks. This is because the cache banks are designed to have

only one read port, despite the cache having two read ports (which means that each

read data must come from separate banks). Since the pixel pairs that need to be accessed

are non-deterministic (unlike in the Detector and Orientation and blocks), there is no

telling whether the two pixels are from the same bank. In such cases where they are

from the same bank, they have to be accessed at separate read cycles, thereby further

increasing the time needed to finish the description time. Since each access is 7-pixels

wide, determining which particular pixel to use for comparison also has to be

performed. Due to limitation in number of pads, the descriptor vectors are outputted 4

bits at a time.

Another possible contention is the access to KEYPTS, where the keypoints for

description are stored. The Ranking block accesses KEYPTS both for reading (to

compare and perform ranking) and writing (to store newly processed keypoints). The

Orientation block, on the other hand, accesses KEYPTS to read the keypoint

44

coordinates, X and Y. Thus, a KCtrl block was added to facilitate arbitration between

these accesses. Priority is given to the Ranking block as it is the more critical block in

terms of timing. Handshaking between the Orientation and Descriptor blocks are

handled within the blocks themselves and no further arbitration is needed.

It should be noted that since we can only keep a patch of the image (equal to

the size of the cache), we need to compute for the orientation and descriptor vector of

the keypoints before we can replace the patch. Thus, we end up describing a lot more

than the number of keypoints specified by nfeat. From simulations using the

benchmark images, we get 5x more keypoints.

3.4. Summary

In this chapter, SIFT, SURF and ORB feature extraction algorithms were

compared using OpenCV. It was shown that SURF is 2x faster than SIFT while ORB

is 20x faster that SIFT, with all three having comparable performance in terms of

matching percentage. This justifies the choice for using ORB as the base feature

extraction algorithm. To allow for energy-quality scalability, several knobs were

examined in terms of their effectivity in reducing energy without sacrificing too much

on performance. Three knobs were eventually identified: the number of retained

keypoints, nfeat, the length of descriptor, nlength, and detection threshold, thresh.

In terms of approximations or simplifications with regards to hardware

implementation of ORB, doing NMS within a 5x5 neighbourhood (NMS-5) was shown

to be better than NMS-3 (NMS within a 3x3 neighbourhood) by effectively reducing

the number of keypoint by ~4% without losing the feature. In terms of orientation

computation, atan2 is approximated using an 8-bin LUT for angle computation.

45

Chapter 4

EQSCALE Silicon Implementation and Results

The hardware model for the ORB accelerator was presented in the previous

chapter. In this chapter, we will cover more details of the hardware implementation,

including other issues and design considerations with regards to parallelism and cache

architecture. Details of the RTL design are presented in Section 4.1. Section 4.2 covers

the RTL simulation and measurement with the tuneable knobs identified in the previous

chapter. Energy-quality scalability using the tuneable knobs, is shown using our 40nm

CMOS test chip, which we call EQSCALE. This is presented in Section 4.3. To

improve the cycle timing of EQSCALE, a second version was designed, increasing

CACHE capacity by 3x. The results and comparison of the 2 versions are presented in

Section 4.4. Finally, Section 4.5 covers further optimizations that can be done on the

feature extraction accelerator to improve in area and energy efficiency.

4.1 RTL Design

Fig. 4.1 shows the proposed architecture of the ORB accelerator. The CACHE

and KEYPTS blocks are latch-based memories for low-voltage operation. The CACHE

stores a patch of the image, while KEYPTS stores the coordinates and scores of ranked

keypoints. The CORE comprises five pipelined blocks: Detector, NMS, Ranking,

Orientation and Descriptor.

46

Fig. 4.1 EQSCALE architecture comprises a 2.7kB latch-based memory (CACHE) and
a 0.9kB latch-based KEYPTS memory. Input rate is 1 pixel per cycle, with 8 bits per
pixel. Knobs to alter the EQ trade-off are the threshold, thresh, number of retained
features, nfeat, and length of descriptor, nlength.

4.1.1 CACHE and KEYPTS

CACHE and KEYPTS are latch-based memory using the standard cell memory

(SCM) from [54], [55]. KEYPTS, on the other hand, is designed to have 18-bit words,

arranged in 2 banks with 200 words/bank (~0.9kB). The simplified schematic of the

SCM is shown in Fig. 4.2. For write operation (highlighted in red), address decoding

(through WAD) is done in half a cycle and then the latches become transparent, taking

DataIn as input. Data from the output of the latches go straight to read multiplexers

(highlighted in blue). Read addresses are clocked in through registers and are used to

decode (through RAD) the select signals for the read multiplexers.

47

Fig. 4.2 Standard Cell Memory Schematic. Items in red highlight the write circuitry
while items in blue show the read circuitry.

One energy consumption component not typically considered is the access to

external memory. Access to external memory requires two orders more than on-chip

cache access [56]. For this reason, we want to minimize or completely remove the

external memory accesses. In EQSCALE implementation, we do this by performing

description on the keypoints while they are still in the cache and before they are

replaced. Thus, the need for an external frame buffer DRAM is eliminated. As

mentioned in the previous chapter, this comes at a disadvantage of doing description

on keypoints even if they are not among the top ranked keypoints. CACHE is designed

to have a 7-pixel word (56 bits), arranged in 4 pages of 6 16-word banks/page. Thus,

at one time, CACHE holds 64 rows of 42 pixels of the image (~2.7 kB). CACHE has

2 read ports, with 2 read addresses RAdd1 and RAdd2. Each bank, however, has only

one read port. Therefore, RAdd1 and RAdd2 should access different banks at a time.

From Fig. 4.1, 3 different blocks request read access from CACHE through the

MemCtrl: Detector, Orientation and Descriptor. An illustration of the re-use of CACHE

data (detection then description) and accessed locations is shown in Fig. 4.3.

48

Fig. 4.3 CACHE re-use access illustration. Detector accesses a word within the pink
shaded area of the CACHE while Orientation and Descriptor access a word within the
blue-shaded area of the CACHE.

The Detector block accesses pixels as they are written onto the CACHE. As an

illustrative example in Fig. 4.3, Detector accesses a pixel within the pink-shaded page

of the CACHE. In case of a keypoint, Orientation and Descriptor will need to access

pixels around the keypoint. In Fig. 4.3, for example, the keypoint will be somewhere

in the blue-shaded page of CACHE. After filling the whole CACHE, the contents at

the top will be replaced, and Detector will move on to process the newly refilled data.

However, if Descriptor is not done with this area yet, it will issue a STALL, thereby

halting the overwriting of data. Once Descriptor is done with the page, the operation

can proceed. Although this results in extra logic (to determine when to stall and when

to resume), it allows Detector then possibly Orientation and Descriptor to reuse the

data currently held in CACHE, and therefore once the data has been replaced, there

will be no need to re-access it (thereby eliminating the need for an external DRAM

storage.

4.1.2 CORE Design

Detection process is done in the Detector, NMS and Ranking blocks, while

description is done in the Orientation and Descriptor blocks. The Detector block

receives the data (2 sets of 7 pixels per access) directly from the cache. Detection is

done using string pattern comparison, as discussed by Park, et. al. [46]. This design

49

presents a simple implementation requiring only a 32-bit register, 16-bit adders,

comparators and a simple FSM. To reduce the number of cache accesses (and therefore

reduce access energy), detector implementation is done in parallel (7 parallel pattern

detectors). The process starts by converting the pixels to bits, based on the threshold

value. This is performed in the 2-stage pipelined Formatter block, which requires 7

cache accesses in 13 cycles. In Fig. 4.4, it is shown that detection of 7 pixels can be

done with only 2-word accesses (middle). The 42-pixel row of an image patch in the

CACHE, divided into 6 banks (1 word per row), of which 7 interest points in the middle

are processed for detection, is shown (top). For each 2-word row access (banks 2 and

3), the pixels for the 16-pixel circle and its corresponding center is sent to the

corresponding Det_unit block, which converts the 16-pixel circle to their

corresponding bit strings.

Fig. 4.4 Parallel detection of 7 pixels. Image window with 42 pixels per row is stored
in CACHE, of which 7 pixels are keypoint-detected (top). For each access, pixels for
each 16-pixel circle and the center interest point are sent to corresponding detector units
(below).

The operation of the Det_unit is shown in Fig. 4.5. For each interest point, for

every row access from CACHE (first access is the middle row), the interest point

(labelled C in each of the 7 circles in Fig. 4.4) and the 2 pixels belonging to the 16-

pixel circle are sent to the Det_unit (as Ai in the left circuit in Fig. 4.5). It should be

50

noted that for the case of the top and bottom rows, there are 3 pixels per circle. For

these cases, the corresponding RAdd1 and RAdd2 values to CACHE are kept for 2

accesses, where for the second round, the output of the 2nd parallel structure is ignored.

Each pixel is then converted into 2 bits, text_bright_i and text_dark_i. Aside from the

bit strings for detection, the corresponding scores (sum_bright and sum_dark) are also

needed in case the interest point is indeed a keypoint (top right). To ensure proper

timing, a simple 3-state FSM generates the needed control signals (bottom right).

Fig. 4.5 Det_unit operation, to convert the pixels to their corresponding bit strings
(text_bright and text_dark) for detection (left). Scores are also computed (top right).
Generation of the control signals for handshake is also shown (right bottom).

After the Formatter block is the Rotator block, which is also implemented as 7

parallel units, one for each text output from Formatter. This block requires 3-6 cycles,

depending on input pixel. Lastly, an 8-state SerialFSM block is added to give the output

(valid/invalid) per pixel and necessary control signals. The simplified block diagram

for the detector is shown in Fig. 4.6.

51

Fig. 4.6 Detector Block Diagram

As can be seen from the figure, the whole detection process takes a maximum of

28 cycles (and minimum of 25). Due to parallelism, however, this brings the detection

time to 28/7 = 4 cycles per pixel. Synthesizing using a commercial 40nm CMOS

technology shows an area estimate of 0.015 sq.mm and an estimated total power of

2.61 mW at 330MHz with 0.9V supply. The breakdown of power and area for each

sub-block is shown in Table 4.1 below.

Table 4.1 Area and Power Estimates for Detector Block
Block Leakage Power (uW) Total Power (mW) Area (sq. um)

Formatter 2.44 1.43 8053.72
Rotator 1.53 0.95 5894.94

SerialFSM 0.37 0.23 1276.96
DETECTOR 4.35 2.61 15225.61

The NMS block performs non-maximal suppression of the identified keypoints

to remove redundant points, and retain the one that is the most representative of the

corner. As discussed in the previous chapter, a 2D NMS for 3-neighborhood (NMS-5)

was implemented. For this implementation, a 7x5 entry memory was used. An entry

contains the relative X, relative Y, and corner measure (which we refer here as sum) for

each keypoint. In case a pixel is not a keypoint, its corresponding entry is simply

invalidated and not included in the comparison. The controller is an 8-state FSM, and

at worst-case, it takes 28 cycles to perform NMS on one row of data. A row of data is

essentially 7 pixels (as with the detector), although the number of keypoints per row

would vary depending on the input image. Due to the image scanning pattern assumed

52

for the cache, a row of data would have a maximum of 3 keypoints. A new row is

indicated by the assertion of an EOR signal. After receiving 5 of these signals (i.e. 5

rows of data from detector block), the keypoints in the middle row (if any) are

compared with its neighbouring 5x5 region. After processing the middle row (row 3),

the first row (row 1) is discarded and the same process is done when the next EOR

signal is received. To ensure proper timing between the detector and NMS block, a

separate array was used to store the keypoints (X, Y and sum) and EOR count

(essentially a row indicator) from detector whenever a new keypoint is received while

the NMS block is executing.

It should be noted, however, that the left (right) edge of the scanned image will

not be compared with the left (right) column of the image, thereby possibly having

more keypoints than when doing NMS in software. This limitation, being due to the

finite cache memory. Simulations with benchmark images, however, show that this

limitation adds only at most 10% of keypoints and does not affect the overall detection

performance. Synthesizing the design using a commercial 40nm CMOS standard cell

library gives a total area of 8898 um2 and total estimated power is 1.57 mW at 330

MHz with 0.9V supply.

After the NMS block is the Ranking block, which simply ranks all keypoints

within the frame. The ranking block uses the sum from NMS block for ranking. The

nfeat parameter, which indicates the number of retained features or keypoints per

frame, is used as input to this block. For this implementation, we use only 1 bit for

nfeat to choose between 200 or 400 keypoints (‘0’ = 200; ‘1’ = 400).

The ranked keypoints (identified by the relative X and Y values), as well as their

corresponding sum (corner measure) are stored in a separate memory, we refer here as

KEYPTS. The RTL implementation uses pointer arrays (next and prev) to store and

keep track of the rank of incoming keypoints. These are stored in a memory array in

53

the Ranking block to perform sorting. The insertion sort algorithm was used for this

implementation as it is well suited for data being added only at runtime. As with any

other sorting algorithm, the first N (where N is the number of keypoints to be retained)

will be stored in KEYPTS and their relative ranking will be determined by the pointers

in the Ranking block. To reduce the number of cycles needed to rank the keypoints

thereafter, the whole stack was divided into 10 bin such that the worst-case number of

comparison is reduced to 50. Index values of every bin's last sum is stored in a separate

memory named as checkpoint array. Once a new keypoint sum is received, it is

compared with existing sum values that are fetched from KEYPTS by going through

the checkpoint indexes to determine the bin that the sum belongs to. Each sum value in

that bin is then obtained from KEYPTS and compared against the input sum one at a

time until the final rank is determined. For the first 400/200 values (nfeat 1/0), index

of every sum is stored in the array pointers after ranking and once the array is full, the

index of the sum with least value is discarded whenever an input sum is greater than

the least sum value. To reduce the memory read access count, the value of the least

sum is stored locally so that the input sum is discarded if its value is less than the least

sum value.

Synthesizing the design using a commercial 40nm CMOS standard cell library

gives a total area of 0.067 mm2, of which 40% is from non-combinational cells. The

total estimated power at 330 MHz with 0.9V supply 8.42 mW, most of which is from

the registers.

As discussed in the last section of the previous chapter, the Orientation block

uses LUTs to implement the angle computation. Synthesizing the design using a

commercial 40nm CMOS standard cell library gives a total area of 8382 um2 and the

total estimated power at 330 MHz, 0.9V supply is 0.823 mW.

54

The Descriptor block, takes the input from the Orientation block to get data from

CACHE and form the descriptor vector of a keypoint. The descriptor may be either 128

bits or 256 bits, depending on the nlength knob (‘1’ for 256 and ‘0’ for 128).

Description is done by simply comparing pairs of pixels within a 32x32 patch centered

on the keypoint. For this implementation, the pixel pairs to be compared are already

determined in the Orientation block, and therefore the Descriptor block only needs to

access the specific pixels, do a comparison, and output either a 0 (if first pixel is lighter

than the second) or 1 (otherwise). Aside from the comparison, the Descriptor block also

needs to ensure that cache accesses are from different banks. This is because the cache

banks are designed to have only one read port, despite the cache having two read ports

(which means that each read data must come from separate banks). Since the pixel pairs

that need to be accessed are non-deterministic (unlike in the Detector and Orientation

and blocks), there is no telling whether the two pixels are from the same bank. In such

cases where they are from the same bank, they have to be accessed at separate read

cycles, thereby further increasing the time needed to finish the description time. Since

each access is 7-pixels wide, determining which pixel to use for comparison also needs

to be performed. Due to limitation in number of pads, the descriptor vectors are

outputted 4 bits at a time.

RTL implementation of the Descriptor block use an 8-state FSM. One of the

states takes care of the second read access in the case where both pixels are from the

same cache bank. Another state takes care of determining which pixel from the 7-wide

cache data is to be used for comparison. Comparison of the pixels is done in another

state. The rest of the states take care of cache access and ensuring proper timing of

signals. Synthesizing the design using a commercial 40nm CMOS standard cell library

gives a total area of 1397 um2, of which 70% is from register. The total estimated power

at 330 MHz, 0.9V supply is 0.25 mW, most of which is due to register dynamic power.

55

To integrate all these blocks together, several blocks had to be added. First, since

detection does not start with every first pixel (description will need a 32x32 patch

around the pixel), a MemCtrl block is added to generate an enable signal (DetEN) to

tell the Detector block to start. It is also in the MemCtrl block where address to cache

is generated. Furthermore, to avoid contention in cache access from either Descriptor

or Orientation blocks, the MemCtrl block also acts as an arbiter for cache access.

Priority is given to the Descriptor block since keypoint description needs to be

completed first before a new keypoint from the Orientation block can be handled.

Since both Detector and NMS require 28 cycles to process a row of 7 pixels, no

further handshake is needed between them. This is not true, however, between the NMS

and Ranking blocks. Since the NMS block could have a maximum of 3 keypoints per

row, a 3-entry buffer (which we call KPBUF) was included to ensure that each keypoint

is passed to the Ranking block only when the Ranking block is done processing the

previous keypoint. Due to ranking process taking a longer time, it is still possible for

the buffer to be filled before the Ranking block finishes processing. As such, a stall

signal is generated within KPBUF and sent to MemCtrl to stall the detection process,

and therefore generation of new keypoints. Another possible contention is the access

to KEYPTS, where the keypoints for description are stored. The Ranking block

accesses KEYPTS both for reading (to compare and perform ranking) and writing (to

store newly processed keypoints). The Orientation block, on the other hand, accesses

KEYPTS to read the keypoint coordinates, X and Y. Thus, a KCtrl block was added to

facilitate arbitration between these accesses. Priority is given to the Ranking block as

it is the more critical block in terms of timing. Handshaking between the Orientation

and Descriptor blocks are handled within the blocks themselves and no further

arbitration is needed.

It should be noted that since we can only keep a patch of the image (equal to the

size of the cache), we need to compute for the orientation and descriptor vector of the

56

keypoints before we can replace the patch. Thus, we end up describing a lot more than

the number of keypoints specified by nfeat. From simulations using the benchmark

images, we determined we are getting 5x more keypoints.

Summary of the area and power estimates (at 330MHz, 0.9V supply) of CORE

block is shown in Table 4.2. From the table, we can see that the Ranking block occupies

66% of the CORE area, and contributes 62% of its total power.

Table 4.2 Power and Area Estimates of CORE
Block Leakage

Power (uW)

Total Power

(mW)

Area

(sq. um)

PnR Area

(sq. um)

% Area

WCtrl 0.128 0.098 526.73 816.56 0.50

MemCtrl 0.338 0.075 914.46 970.02 0.59

Detector 5.89 2.33 18440.68 25648.38 15.55

NMS 2.5 1.53 9172.62 9978.07 6.05

Ranking 20.7 8.50 72077.75 109200.8 66.22

KCtrl 0.196 0.13 701.72 1001.6 0.61

Orientation 3.15 0.84 8890.56 12621.95 7.65

Descriptor 0.379 0.22 1431.66 1887.13 1.14

Others 0.219 0.086 685.14 2791.35 1.69

CORE 33.5 13.81 112841.3 164915.8 100

The die photomicrograph, with the corresponding dimensions of the blocks (after

90% shrinkage) is shown in Fig. 4.7. The die is 850umx1850um prior to shrinkage

(1.27 mm2 after shrinkage), with an active area of 0.55 mm2. It can be seen from the

figure that the CORE area is ~33% of total active area (without pads), while the

CACHE is just slightly smaller at ~30%.

57

Fig. 4.7 EQSCALE die photomicrograph Die area = 765umx1665um = 1.27mm2. Core
area = 607.5umx297um = 0.18mm2. Active area = 1304umx423um = 0.55mm2

4.2 RTL Simulations with Tuneable Knobs

Simulations were done on the placed and routed design to get the power and

energy estimates with the different knobs identified the previous chapter. Fig. 4.8

shows that CORE consumes more than 90% of the total power (and even higher when

considering actual image vectors as inputs). From Fig. 4.9, PnR simulation results

follow the same trend as that of the OpenCV simulation in terms of execution time. In

terms of the descriptor length knob, nlength, Table 4.3 shows that the normalized

execution time is considerably reduced compared to the OpenCV simulations, although

both consistently show a decrease in energy with shorter descriptor length, as was

predicted in Chapter 3. Fig. 4.10 shows the effect of the different knobs (nfeat, nlength

and thresh) on the number of execution cycles. The default configuration (thresh=20,

nfeat=1, and nlength=1) has the highest execution cycles. When increasing the thresh

knob from 20 to 30 (30 to 40), the number of keypoints detected is reduced, causing

the number of cycles required by execution to be reduced by 25% (31%). Changing

from nfeat from 400 (N1) to 200 (N0) reduces execution cycles by 34%. This is due to

the reduced comparisons required in the Ranking block. When reducing nlength from

32 bytes (L1) to 16 bytes (L0), the number of comparisons and cache accesses needed

in the Descriptor block is reducing, thus, the execution time is cut down (by 34%).

58

Combining nlength (L0) with a thresh (higher value) gives the best result, with a 60%

reduction in execution cycles.

(a) (b)
Fig. 4.8 Power consumption breakdown from PnR estimates (a) assuming arbitrary
data and (b) using actual image as input

Fig. 4.9 Normalized Execution Time vs Threshold

Table 4.3 Normalized execution time vs descriptor length

 Normalized Execution Time

nlength PNR Simulation OpenCV Simulation

0 0.623348055 0.825352113

1 1 1

Table 4.4 shows the power consumption of the three blocks with different knob

settings. It is interesting to note that the total power consumption does not change much

0

0.2

0.4

0.6

0.8

1

15 20 25 30 35

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 t
im

e

Threshold

Normalized Execution Time Vs Threshold

OpenCV Simulation PNR Simulation

59

with knob settings. This can be explained from what we saw in Fig. 4.8, where majority

of the power consumption is from internal power of CORE. This means that the energy

of the accelerator will be dictated by the corresponding execution time as dictated by

the knob settings. As an illustration, taking a VGA image as input, the corresponding

energy at 0.9V and 330MHz frequency is shown in Table 4.5. As was predicted in the

previous chapter, the highest energy is when thresh is set at the lowest (most number

of detected keypoints) value and both nfeat and nlength are set to 1 (400 retained

keypoints and 32B descriptor length). From the table, we can also see the same decrease

in energy when thresh is increased from 20 to 30 (30 to 40). With regards to descriptor

length, nlength, the consumed energy is reduced by 24-33% when the descriptor length

is reduced from 32 bytes to 16 bytes. Lastly, in terms of nfeat, energy consumption is

reduced by upto 34% for the case of thresh=20.

Fig. 4.10 Execution cycles for different knob settings

Table 4.4 Power consumption with different knob settings

Block

Total average power (mW)

nlength=0
thresh=20

nlength=1
thresh=16

nlength=1
thresh=20

nlength=1
thresh=30

nlength=1
thresh=36

CORE 12.00 12.00 12.00 12.00 12.00
CACHE 0.93 0.96 0.96 0.96 0.94
KEYPTS 0.56 0.56 0.56 0.56 0.56

Total 13.50 13.52 13.52 13.52 13.51

60

Table 4.5 Energy consumption at 0.9V, 330MHz with different knob settings
Knob Settings Energy per frame (uJ) Energy/pixel

thresh nfeat nlength CORE CACHE KEYPTS TOTAL (nJ)

20 0 1 77.94 6.24 3.65 87.83 0.2859

20 1 0 78.92 6.32 3.70 88.94 0.2895

20 1 1 118.96 9.52 5.58 134.06 0.4364

30 0 1 74.63 5.97 3.50 84.10 0.2738

30 1 0 61.08 4.89 2.86 68.84 0.2241

30 1 1 89.36 7.15 4.19 100.70 0.3278

40 0 1 61.29 4.91 2.87 69.07 0.2248
40 1 0 46.67 3.74 2.19 52.59 0.1712
40 1 1 61.29 4.91 2.87 69.07 0.2248

It should be noted that for Table 4.5, the energy consumption was computed

based only on one frame, without considering the frame rate requirement. For example,

having a high threshold value will result in shorter execution time (and therefore lower

energy) compared to that with a lower threshold value. As such, one configuration will

finish a frame faster than the other, and will therefore have to wait longer, which is the

case of over-margined designs. For EQSCALE, we propose to leverage on this by

relaxing the supply voltage, thereby further reducing energy consumption. This will be

further discussed in the succeeding section.

4.3 EQSCALE Results

Fig. 4.11 shows the measured maximum operating frequency, fmax, for different

supply voltages, and the corresponding power consumption of the ORB accelerator

testchip in 40nm CMOS. In Fig. 4.11a, the maximum frequency at 0.9V and 1V are the

same, which we attribute to the testing setup limiting the operating frequency of the

system. Thus, we consider only supply voltages from 0.6V to 0.9V. The trendline

equation was included to allow for interpolation between measured points. It can be

seen in Fig. 4.11b that, consistent with the simulation results in Table 4.4, the CORE

consumes most of the power (~90%).

61

(a)

fmax
(MHz)

Supply
(V)

Power (mW)

KEYPTS CACHE CORE TOTAL

45 1 0.18 0.30 3.14 3.6190
45 0.9 0.14 0.23 2.52 2.8820
40 0.8 0.09 0.16 1.76 2.0077
30 0.7 0.16 0.09 1.02 1.2765
15 0.6 0.04 0.09 0.39 0.5152

(b)

Fig. 4.11 Measured (a) maximum clock frequency fmax and (b) power consumption of
different blocks at fmax

Fig. 4.12 Effect of VDD scaling on frame rate and energy per pixel.

Energy per frame can be calculated using the data in Fig. 4.11 and the number

of execution cycles needed per frame. Energy reduction is then possible through VDD

62

scaling, which in turn reduces frequency of operation. This translates to a degradation

in performance either through the reduction in image resolution or frame rate. Fig. 4.12

shows the impact of the VDD scaling on the frame rate and energy per pixel, for a VGA

image. As can be seen from the figure, energy per pixel can be scaled from 310 pJ to

166 pJ when scaling VDD from 09V to 0.6V, and frame rate from 30 fps to 10 fps.

In EQSCALE, we use quality as a third dimension to this energy-performance

tradeoff. Through the tunable knobs, we can tradeoff quality with energy and/or

performance. Fig. 4.13 shows the energy-quality tradeoff when EQ knobs are

individually swept in a 40nm testchip. Using recall as the matching performance

metric, it can be seen from the figure that ORB turns out to have approximately the

same quality as SIFT, when tuned to maximum quality (Q=1). At nominal VDD and

maximum quality, EQSCALE consumes a power of 2.9mW at VGA and 30fps, which

results to an energy per pixel of 310pJ/pixel. When reducing nlength from 256 down

to 128 bits, the energy is reduced by 34% compared to the 256-bit default value, with

a quality degradation of 10% (see red curve in Fig. 4.13). Analogously, when reducing

nfeat from 400 down to 200, the energy decreases by 35% with a quality degradation

of 42% (see green curve in Fig. 4.13). Increasing thresh knob from 20 to 40 (60)

reduces energy by 48% (64%) and degrades quality by 19% (53%). At thresh=60, ORB

achieves approximately the same quality as SURF. At such quality, successful image

recognition is still achieved, as confirmed by the bounding box around the recognized

object, as generated by an offline RANSAC [53] algorithm done in MATLAB. As an

example, Fig. 4.14 shows sample matching images using the graffiti image from [33]

for different quality targets. At maximum quality (i.e., Q=1), the image is properly

matched, as indicated by the green box on the image on the right. At minimum

allowable quality (i.e., Q=0.4), many keypoints are missed and object detection starts

failing, as indicated by the smaller size of the bounding box. At lower quality (e.g.,

63

Q=0.12), keypoints are no longer properly matched and thus no object is detected (i.e.,

the green bounding box disappears).

Fig. 4.13 Energy-Quality tradeoff when tuning knobs nfeat, nlength and thresh at
nominal VDD.

Fig. 4.14 Illustration of image matching at different values of Q.

The energy reduction in Fig. 4.13 is determined by the reduced number of

execution cycles per frame, which also increases the throughput. Such excess

64

throughput can be used to relax the clock cycle, enabling more aggressive voltage

scaling and further energy gains. When co-optimizing multiple knobs and VDD scaling,

energy is further reduced, as shown in Fig. 4.15. Comparison between the solid lines

in Fig. 4.15 and those in Fig. 4.13 reveals that VDD scaling offers an additional ~20%

reduction in energy. When all knobs are adjusted for minimum energy, the 40nm

testchip shows an energy/pixel of 55.6pJ and power consumption of 513uW on VGA

format and 30fps. It should be noted that some combinations of EQ knobs (specifically,

combining nlength and nfeat) may result in below minimum allowable quality (red

boxes in Fig. 4.15).

Fig. 4.15 Quality vs. energy with joint EQ knobs combined with voltage scaling.

Table 4.6 shows the comparison of EQSCALE with state of the art feature

extraction ASIC implementations discussed in Chapter 2. Some parameters are

normalized with respect to 40nm for easier comparison. Compared to [44], EQSCALE

achieves 5.3X power reduction, thanks to the lower complexity of ORB. EQSCALE

has the lowest energy/pixel at iso-technology, with an energy reduction of 5.7X and

7.5X over [46] and [44], respectively. EQSCALE also shows 1.8X area reduction

compared to [46], thus exhibiting a favorable area/energy tradeoff as needed in IoT

65

applications.

Table 4.6 Comparison of Results

Parameter JSSC’13
[57]

TCASVT’13
[46]

JSSCC’14
[44]

This Work

technology 0.13 µm 0.13 µm 28 nm 40 nm

supply voltage 0.65 ~ 1.2V 1.2V 0.47V 0.6-0.9V

on-chip memory 382kB SRAM 128kB SRAM ~7kB FIFO ~4kB Latch-Based

clock frequency 50~200MHz 200MHz 27MHz 15-45MHz

normalized
clock frequency*

 17.15-
68.6MHz

68.6 38.57 15-45MHz

energy-quality
scalable

NO NO NO YES

power 320mW 182mW 2.7mW 0.51-2.9 mW

energy/pixel 11.57 nJ 0.93 nJ 0.293 nJ 55.6-310 pJ

normalized
energy/pixel*

3.97 nJ 0.32 nJ 0.42 nJ 55.6-310 pJ

area (mm2) 32 10.24 2.22 0.55

normalized
area** (F2/106)

1893.49 605 2831.63 343.75

frame rate
(resolution)

30fps (HD) 94.3fps (HD) 30fps (VGA) 30fps (VGA)

targeted
application

Unmanned
Aerial

Vehicles

Embedded
Vision
System

Micro
Autonomous

Vehicles
(MAV)

MAV, Smart
Cameras

algorithm SIFT FAST-BRIEF SURF ORB

operation
matching with

external
database

maching with
descriptor

cache

upto
description

upto description

* normalized with respect to 40 nm technology, assuming 0.7X energy decrease/generation
** F is the minimum feature size of the technology

4.4 Effect of Cache Size

For the case of the EQSCALE implementation in the previous section, detection

is done in parallel for 7 pixels within a row. Since description works within a 31x31

patch around a keypoint, 42 pixels are accessed per row. This means that 5/6 of the

66

pixels will need to be re-accessed in later time for detection. A possible improvement

would be to widen the effective cache width to reduce the cache re-access ratio per

row. We refer to Fig. 4.4 for illustration, to do detection on 7 pixels, we need to access

42 pixels of the row. For a detection on 14 pixels, we access 42x2 = 84 pixels. In

general, for detection of 7*N pixels, we access 42*N. Thus, the re-access ratio is

42*N/7*N = 6. This means that we are accessing each pixel 6 times to perform that

whole feature extraction. Widening the width reduces this re-access ratio, which is

proportional to the energy consumption. This is better illustrated in Fig. 4.16, where

EQSCALE v1 (the implementation in the previous section where width = 42) re-access

is 6. Increasing the CACHE width by 3x gives a re-access ratio of 1.38, which is 4.3x

better than EQSCALE v1. This is labelled as EQSCALE v2.

Fig. 4.16 Effect of cache width on re-access ratio. Corresponding points for EQSCALE
v1 and EQSCALE v2 (3x size) are indicated.

The re-access of pixels affects energy consumption through increase in access

energy, as well as through increase in number of cycles to do the operation. Table 4.7

extends this phenomenon to the overall performance of the ORB accelerator. The

column N represents the number of columns, same as the variable N in the previous

paragraph. The frequency column is the required frequency to work with the indicated

67

image resolution. As can be seen from the table, EQSCALE v2 is ~4x faster than

EQSCALE v1, at the cost of 3x area. It should be noted that the frequency indicated in

the table is an optimistic value (actual required frequency will be higher).

Table 4.7 Effect of increasing CACHE width by 3x

One issue with the EQSCALE v1 implementation is that it seems far too slow

compared to others in Table 4.6. Indeed, this is also confirmed in Table 4.7. Another

reason (which is not considered in Table 4.7) is because access to memory is halted

each time keypoint description is in progress. This increases the execution time, and

therefore reduces the frame resolution possible given a fixed frame rate and same knob

settings or accuracy. One solution is to add another set of read ports for CACHE. Doing

all these changes to the CACHE affects not only the CACHE but the other blocks as

well.

Table 4.8 Area Comparison between EQSCALE versions

Block
EQSCALE v1 EQSCALE v2

Synthesis

Area (µµµµm2)

Layout Area

(µµµµm x µµµµm)

Synthesis

Area (µµµµm2)

Layout Area

(µµµµm x µµµµm)
CORE 99930.60 675 x 350 134323.66 785 x 480

CACHE 82127.60 420 x 470 252675.88 1010 x 520
KEYPTS 27833.45 240 x 355 38406.16 240 x 415

TEST 6199.58 375 x 100 11936.81 375 x 100
CLKGEN 451.05 230 x 100 326.69 230 x 100

SCANCHAIN 825.73 260 x 100 825.73 260 x 100
TOTAL 1850 x 850 2500 x 880

Area is one of the obvious changes from EQSCALE v1 to EQSCALE v2. The

area comparison between the two versions is shown in Table 4.8. For EQSCALE v2,

68

indeed, CACHE is ~3x larger. To support the increase in CACHE size, and therefore

the address width, CORE area likewise increased. From the table, CORE is 1.6x larger

and KEYPTS is 1.2x larger. The microphotograph of the die is shown in Fig. 4.17.

Fig. 4.17 EQSCALE v2 chip microphotograph

The Detector block remains the same, taking 7 parallel detections at a time. To

simplify memory access arbitration, the two sets of read ports are separated such that

one pair is for detection (Detector + NMS) while the other pair is for description

(Orientation + Descriptor). For NMS, the FIFO size is expected to contain all pixels in

5 rows. Having 91 interest points per row, 5 rows would require a FIFO size of 455

entries. To reduce the needed size, statistical simulations were done to determine the

optimal FIFO size that would be as small as possible but without interrupting the

operation due to overflow. Histogram of needed NMS buffer size considering

consecutive 5 rows for the different images is shown in Fig. 4.18. It is shown in the

figure that a maximum size of 129 was determined for the images considered. Since

this is image dependent, margin was added, making the NMS buffer size of 140. In the

unlikely case that an overflow still occurs (number of keypoints in 5 consecutive rows

is greater than 140), a stall is generated to halt the detection until space is cleared out.

69

Fig. 4.18 NMS buffer size histogram. Maximum size needed for the considered data is
129.

Fig. 4.19 Ranking buffer size histogram. Maximum number of entries needed is 38.

Operation of the Ranking block remains the same, except that similar to the NMS

block, the buffer size has to be increased. In EQSCALE v1, the buffer size was 3

entries, corresponding to the maximum number of keypoints per row. For the case of

EQSCALE v2, the rate at which the Ranking block can process data also has to be

considered. After similar extensive simulations, it was determined that a buffer size of

45 entries should suffice (maximum seen is 38). The histogram is shown in Fig. 4.19.

Like in the case of the NMS block, a stall signal (to halt NMS and then possibly

Detector) is generated in the unlikely case that an overflow occurs.

4.5 Further improvements to EQSCALE

As illustrated in Chapter 1 (Fig. 1.2), an object detection and classification block

is needed to complete the image analysis process. Matching is currently done offline,

following the brute force method used in the original ORB. There are several other

possible approaches for implementation, and we mention some of them in Section

4.5.1. From previous sections, the Ranking block occupies most of the CORE area and

70

consumes most of its power. Therefore, improving the Ranking block would be a

worthy endeavour, and is discussed in Section 4.5.2. Finally, other energy-efficient

schemes related to the energy-quality scalability of EQSCALE are covered in Section

4.5.3.

4.5.1 Object Detection and Matching

As mentioned in the previous chapter, matching in ORB is done via brute force

method, forcing a match for each retained keypoint by comparing them with every

keypoint in the database. As such, the recall values were low, despite successful object

detection. One advantage of ORB over SIFT and SURF is the short descriptor length.

Thus, bitwise comparison can be done in parallel (at the expense of additional

hardware). Instead of forcing a match between described keypoints and the database, a

nearest neighbour threshold can be applied, below which, no match will be declared.

The histogram of hamming distances between pairs of keypoint 256-bit descriptors is

shown in Fig. 4.21, showing a mean of 127 and standard deviation of 14.3. This means

that we can use 127-3*14.3 = 84 as a threshold, above which they are not a match.

Fig. 4.20 Descriptor hamming distance histogram shows a mean of 127 and standard
deviation of 14.3 for 256-bit length descriptor.

71

Object detection and classification can be done by removing outliers using

PROSAC [52] or RANSAC [53], and/or using bag of words or keypoints [58]–[60].

One area that can benefit from using the bag of words is classification using a large

database. Object classification can be done, using machine learning, to match inexact

histograms with histograms from the database. Region-of Interest (ROI) detection can

be done in parallel, to reduce the effective size of the image to be processed.

4.5.2 Ranking

Cache data reuse to eliminate the need for external frame buffer memory dictates

that description be done on some keypoints (before they are replaced in CACHE) even

if they are not one of the top ranked keypoints within the frame. Thus, the nfeat knob,

which limits the described keypoints only to those with high corner scores, does not

really offer the best energy reduction advantage it is supposed to offer. An alternative

would be to reduce the complexity of the Ranking block and keep only a few of the

lower scores within the top nfeat keypoints. In this way, the KEYPTS block can be

reduced or completely removed, at the same time reducing the number of cycles needed

for the Ranking block. This idea is simplified below in Fig. 4.21. Fig. 4.21a shows the

current implementation of the Ranking block, where a new item (score) is compared

with checkpoint values to find the corresponding 40-entry bin that the new item belongs

to. Since there are 10 checkpoints, with 40 entries per bin, maximum number of

comparison to insert the new item is 50.

In this proposed algorithm, a new entry is simultaneously compared with 3

pointer values: MAX, MID and MIN (Fig. 4.21b). MAX is the highest score in the frame.

MID is the highest score within the KEYPTS memory. MIN is the lowest value with

the nfeat retained keypoints in the frame. It should be noted that nfeat is used as a

counter and a new knob enqueue may be added to indicate the size of the KEYPTS

buffer. Fig. 4.21c shows the simplified flowchart for each new item. If score<MIN, the

72

entry is simply discarded. A counter for the number of retained keypoints is included,

if it is less than nfeat, then data are simply inserted. Otherwise, values in the KEYPTS

memory may be replaced. If score is between MIN and MID, it is inserted onto the

KEYPTS memory. If the memory is full, MID will be pushed out and replaced if

counter < nfeat; otherwise, MIN will be pushed out and replaced. If score>MAX, MAX

is replaced by score. If counter = nfeat (counter stops at nfeat), MAX is pushed into

KEYPTS (replacing MID with MAX and pushing MIN out). If score is between MAX

and MID and counter=nfeat, score is pushed into KEYPTS (similar to MAX, without

replacing MAX). If, however, counter<nfeat, then the KEYPTS entries and pointers are

retained as is.

(a)

(b)

(c)

Fig. 4.21 Illustration of proposed ranking implementation. EQSCALE ranking
implementation is shown in (a). Modified version (b) uses less number of pointers and
less KEYPTS entries. Algorithm is shown in (c)

73

It should be noted that in all these cases, a single cycle simultaneous comparison

is enough to determine if the new entry will be described or not. The complexity of the

actual ranking is also reduced to the first comparison plus the number of enqueue items.

The total number of described keypoints will be equal or less than the current

EQSCALE implementation.

4.5.3 Other Energy-Efficient techniques

The possibility of having an ROI detection was mentioned in Section 4.5.1.

Aside from reducing the effective size of the image to be processed, and therefore

reduce the number of detections needed per frame, ROI detection also gives more space

and freedom for energy-quality scaling. For example, feature extraction can start with

a lower quality target prior to ROI detection, and eventually (after ROI detection or

estimation) increase the quality target with the smaller image size. Since the effective

size is smaller, execution time will be less and therefore EQ knobs can be adjusted to

improve the quality. Similarly, the ROI also serves as an EQ knob, since the image size

is approximately proportional to the number of execution cycles. By adjusting the

voltage (and therefore frequency), depending on the size of the ROI, energy is

effectively reduced for a given quality target.

A voltage-frequency-architecture co-optimization completes this cycle, allowing

for some blocks (i.e., parallel detector units, KEYPTS bank) to be switched off to

reduce power consumption, for the same voltage and frequency settings. This of course

requires careful exploration of the methodology to determine optimal configuration of

voltage, EQ knobs and power gate switches for a given quality target, image resolution

and image type or application.

74

Chapter 5

SRAM for Image and Video Application

Memory contributes to a significant percentage of area and power consumption

in digital systems. The universal choice for dense on-chip memory is the static random

access memory (SRAM). We have shown in the previous chapter that the feature

extraction accelerator can do away with the external DRAM for the frame buffer.

However, due to the necessary re-access and possible stalls, a sub-frame buffer is

needed. For our purpose, an SRAM is a suitable option, giving the best balance between

area and energy.

In this chapter, we will cover the design and simulation results of our proposed

low energy SRAM for image and video applications. We start with some background

and metrics on SRAMs in Section 5.1. Section 5.2 will cover the state of the art in

SRAM bitcells for low energy and near-/sub-threshold operation, including

application-specific SRAMs for image and video. Finally, we discuss simulation results

for our proposed low energy non-precharged SRAM (NPSRAM) for image and video

applications.

5.1 SRAM Basics and Metrics

An SRAM has three possible operations: (1) standby; (2) read; and (3) write.

Associated with the 3 operations are the 3 possible failures. Although not common in

normal strong inversion operation, lowering the VDD could cause a hold failure, where

the cell is unable to retain its value. A read failure, on the other hand, happens when

the cell value is flipped during a read operation, due to the precharged bitlines. A write

75

failure is the opposite of the read failure, where a write operation fails to flip the cell

value as intended.

The de facto implementation of SRAMs is the 6T SRAM [61] as shown in Fig.

5.1. For a read operation, the wordline WL activates the access transistors M5 and M6,

allowing the Q and Q’ to be written to BL and BL’, respectively. Since the access

transistors and NMOS transistors, which are not good passers of logic 1, the bitlines

(BL and BL’) are precharged to VDD prior to activating WL. For a write operation, the

intended values for Q and Q’ are placed in BL and BL’, respectively, prior to activating

WL.

Fig. 5.1 Conventional 6T SRAM

It should be noted that the only difference between a read and a write access as

discussed in the previous paragraph, is the value on BL or BL’ (one of is 0 during a

write operation, while both are 1 during a read operation. As such, care must be taken

in sizing the transistors to avoid read or write failures. This is illustrated in Fig. 5.2,

showing. Fig. 5.2a shows a possible read 0 contention, where, where the internal value

is 0, and because of the precharge in the bitline, the internal value (rather than the

bitline) could flip. To avoid this, M1 and M5 should be sized such that the voltage at

the internal node (in this case, Q’) does not go higher than the switching threshold of

the forward inverter. Fig. 5.2b, on the other hand, shows a possible write 0 contention,

where the internal value (in this case Q) can flip the bitline instead of copying it. This

76

can be avoided by sizing M4 and M6 such that the internal node voltage (Q) will be

pulled down enough to switch the feedback inverter.

(a) (b)

Fig. 5.2 SRAM sizing considerations for (a) read 0 and (b) write 0 contention

To quantify the robustness of the SRAM, the static noise margin (SNM) is used

[62]. Read (write) margin indicates the amount of noise the SRAM can tolerate before

a read (write) failure occurs. This can be visually illustrated using the butterfly curve

[63], [64], such as that shown in Fig. 5.3. The SNM is the length of the side of the

largest square that can fit in the eye of the butterfly curve.

Fig. 5.3 Static noise margin for (a) read, (b) write, and (c) hold [64]

5.2 State of the Art

Although guidelines for sizing the 6T SRAM minimizes the probability of

failure, this alone is not enough when operating at near- or sub-threshold voltages. Fig.

5.4 shows a sample butterfly curve of a 6T SRAM at near-threshold. It can be seen that

the SNMs are degraded compared to that in Fig. 5.3, and especially for read SNM, no

the curves overlap, indicating that a read failure may occur. With the demand for low

power and low energy, operating at near-/sub-threshold is almost mandatory, and the

77

memory system should also be compatible. As such, several other bitcell topologies

have been proposed.

Fig. 5.4 SNM for (a) read, (b) write and (c) hold at near-threshold voltage

5.2.1 Near-threshold SRAMs

To alleviate the read static margin degradation in near-threshold operation, a 7T

transistor was proposed [65], as shown in Fig. 5.5. Their approach is to break the

forward path during a read operation, by adding a data protection transistor as

highlighted in the figure. As discussed in the previous section, the problem with read

operation is that the precharged bitline results in a possible read 0 failure. In this case,

because of the added transistor, the forward inverter is disconnected from ground, and

therefore V2 will not go low enough to flip the inverter. Read 0 failure is thus avoided.

Fig. 5.5 7T SRAM [65] with added data protection transistor to remove read 0 failure.

78

Another solution to improve SRAM robustness is to replace the inverter with a

Schmitt trigger, as shown in Fig. 5.6. Using a Schmitt trigger allows the switching

threshold up or down depending on the direction of the data switching. They modified

the Schmitt trigger to reduce the number of transistors, as highlighted in Fig. 5.6a, and

were able to show successful operation down to 160mV [66]. They further modified

the circuit to improve the read margin, as shown in Fig. 5.6b [67].

(a)

(b)

Fig. 5.6 Schmitt trigger based SRAM: (a) replacing inverter with a modified Schmitt
trigger [66], (b) modified version for improved read margin [68].

79

Another 6T SRAM (Fig. 5.7) uses transmission gate instead of the NMOS access

transistor [69], [70], however, it requires virtual supplies for proper operation. They

were able to show proper operation down to 193mV.

Fig. 5.7 Single-ended 6T SRAM using transmission gate as access transistors [69].

One of the most popular topology to date for near-threshold SRAM is the 8T

[71], where the read bitline is separated from the write bitlines. Thus, the internal node

is not affected by the read port, and therefore read margin is greatly improved. The

schematic is shown in Fig. 5.8. To reduce leakage power in the read bitline (and

therefore allow more bitcells to be connected), a footer can be used [72]. Other

modifications in the read buffer circuitry have been proposed to further reduce the

minimum operating voltage and reduce leakage power [73]–[76]. A summary of the

different topologies is presented in Table 5.1 for better comparison.

Fig. 5.8 8T SRAM with separate read port [71]

80

Table 5.1 Comparison of SRAM bitcells

S
R

A
M

nu
m

be
r

of

tr
an

si
st

or
s

nu
m

be
r

of

po
rt

s

te
ch

no
lo

gy

(n
m

)

ar
ra

y
si

ze

(b
it

s)

V
D

D
,m

in

(m
V

)

sp
ee

d

no
rm

al
iz

ed

ar
ea

 (
w

rt
 6

T
)

7T
[65] 7 5 90 32x8x16 440

50MHz
@ 0.5V 1.13

ST1
[66] 10 3 130 256x16 160 2
ST2
[68] 10 4 130 128x16 150

270kHz
@300mV 2

TG
[70] 6 3 130 128x16 193

5.6MHz
@0.5V 1.42

8T
[71] 8 4 65 32kb 410

295MHz
@0.41V

F-8T
[72] 8 4 65 8x256x128 350 1.3
SE10
[74] 10 5 65 256k 400

475kHz
@0.4V 1.66

D10
[73] 10 5 130 480k 200

120kHz
@0.2

RS
[75] 10 6 180 64x32 300

5.2.2 Application-Specific SRAMs

When it comes to image and video data, one area we can leverage on is the high

correlation of neighbouring pixel values. For a greyscale image, a pixel is usually

represented using 8 bits and, per literature [77], more than 50% of the variations in

pixel value lie within 3 bits of the data, showing the high correlation of the pixel values.

As such, they proposed a prediction-based scheme to reduce the bitline switching [77],

[78]. Their bitcell is similar to the footed 8T [72], but with 2 read ports (Fig. 5.9). The

footer values are dictated by the predicted values (pred and predB). During a write

operation, values are sent to BL and BLB then WWL is asserted to write BL and BLB to

Q and QB, respectively. During a read operation, RBL0 and RBL1 are precharged to

VDD and the predictions, pred and predB are set before RWL is asserted. If the prediction

is correct, the bitline with a 0 prediction will be discharged, while the other bitline is

disconnected from ground. If the prediction is wrong, both bitlines will remain at VDD.

Obviously, the prediction mechanism is critical to their system. Indeed, their results

81

show that if all predictions are wrong, the access energy will be ~20% more than that

of 8T. In the opposite extreme, if all predictions are correct, the resulting access energy

will be ~20% less at nominal voltage and up to ~40% less at 0.6V.

Fig. 5.9 Prediction-based SRAM for reduced bitline activity (PB-RBSA) [77]

Another application-specific SRAM design for image and video leverages on the

fact LSBs of a pixel will not affect the image that much, and therefore can be allowed

to make errors. Thus, they proposed a heterogenous SRAM sizing [79], using larger

sized 6T SRAMs for LSBs and smaller 6T SRAMs for MSBs. Similarly, work in [80]

proposed to use 8T SRAMs for MSBs and 6T SRAMs for LSBs, while [81] proposed

to use 8T SRAMs for LSBs and 10T SRAMs for MSBs.

5.3 Non-Precharged SRAM (NPSRAM)

Given the high correlation between adjacent pixels in an image or video, the

probability of getting almost equal values with successive access is high. This

motivates our implementation, which reduces bitline switching by removing the pre-

charge cycle of the SRAM. Thus, we have a non-precharged SRAM (NPSRAM). Our

approach is to reduce the switching activity of the bitlines by simply removing the

bitline pre-charging phase, unlike in [77], where bitline switching is reduced through

prediction of values. This is justifiable because we expect the data to be almost always

the same (with probability greater than 60%). For our purpose, we designed a 256x64x2

memory array without column multiplexing. This design was simulated in a 65nm

Low-Power (LP) CMOS process.

82

To reduce energy consumption further, we target a near-threshold voltage

operation of 0.5V, as going into near-/sub-threshold voltage reduces power

consumption quadratically. However, this requires different additional assist

mechanisms to allow robust performance and perform proper read and write operations.

The most common way is to separate the read and write port, like that of the 8T

transistor [71]. We use the same concept of separating the read from the write port in

the 8T. Furthermore, we propose to reduce the energy consumption even further by

removing the precharge phase, thereby removing unnecessary 0-1-0 transition in the

bitline. To support the removal of the precharging phase, we add an inverter with

enough gain to the access transistor to drive the bitline. The circuit is shown in

Fig. 5.10 Proposed non-precharged SRAM (NPSRAM)

For additional read and write assist, we investigated three different flavours of

our design: (1) Base; (2) Drowsy and (3) Assisted. The base design would have the

minimal assist, with just wordline boosting to ensure proper write. The drowsy design

is based on the drowsy cache concept [82], where the supply voltage is reduced when

not reading. During a read operation, the voltage is returned to 500mV. The assisted

version is effectively an opposite approach as the drowsy, where the voltage is reduced

during a write operation. For both the drowsy and assisted versions, wordline boosting

was still considered. Although other assist techniques [83] have already been proposed

and shown to be effective, we limited out investigation to these techniques to have the

simplest possible assist circuitry that will ensure proper operation of the bitcell.

83

We evaluated the performance of the designs using 2000-pt Monte Carlo

simulations in Cadence Virtuoso®. Delay and energy were evaluated to choose which

scheme to implement. One thing to take note for these three schemes/flavours is that

all three can still be tested with the same memory array, provided proper separation of

supply voltages and signals is ensured. Thus, in terms of area, both drowsy and assisted

versions will have the same area. The base design can be made smaller, since the supply

voltage can be routed horizontally or vertically, whichever could give better area. For

the case of drowsy and assisted, the supply voltage must be routed horizontally as each

row could have a different voltage depending on whether it is doing a read

(VDD=500mV) or a write (VDD=350mV). For our design, the drowsy and assisted

versions are 1.4x larger than the base.

Table 5.2 shows the delay comparison of the three schemes mentioned above. It

should be noted that these values were evaluated without the necessary drivers (some

signals are still ideal), decoders and sense amplifiers. Delays are measured as the

VDD/2 delay, which should be a pessimistic estimate once sense amplifiers are

inserted. For simplicity and for fair comparison, we have set the wordline boosting to

200mV above the supply (500mV). Thus, the supply voltage of the buffer drivers for

the read wordline (RWL) and write wordline (WWL) is 700mV. We include the 8T in

our comparison. For fairness, we also implement the same assist techniques with the

8T.

Table 5.2 Delay comparisons
Bitcell µµµµ

Mean Delay (ns)
σσσσ

Delay Stdev (ns)
µµµµ + 3σσσσ

(ns)
8T 15 2.84 23.52

Base 10.8933 1.5 15.39
Drowsy 11.1 1.92 16.9
Assisted 16.72 5.11 32.06

It can be seen from Table 5.2 that the base design could be faster than the 8T,

which in turn is faster than the drowsy or assisted schemes. The faster response of the

84

base design is expected since the supply voltage is constant and no timing penalty for

supply voltage switching is incurred.

Another more important parameter we are concerned with is the energy

consumption. To approximate the energy of the whole memory array, we evaluate

active and idle energy consumption of cells and extrapolate to get the total energy of

the whole array for read and write operations as well as when idle. Table 5.3 shows the

energy comparison of the bitcell schemes, including that of the 8T cell for comparison.

Table 5.3 Energy comparisons
Bitcell Read

Energy (fJ)
Write

Energy (fJ)
Idle Energy

(fJ)

8T 796.42 804.49 117.2
Base 1083.05 906.91 597.89

Drowsy 778.92 870.77 256.384
Assisted 713.07 778.5 195.26

From Table 5.3, we can see that although the base design gave the best

performance in terms of speed in Table 5.2, it also has the highest energy. This is

because the supply voltage for the base design is constantly at 500mV, unlike in other

bitcells (including the 8T), where the voltage is lowered to 350mV during some parts

of the operation. Looking at the energy consumption of the drowsy and assisted

versions, on the other hand, we can say that our proposed bitcell has the potential of

offering a low energy alternative SRAM bitcell. Comparing the drowsy and assisted

versions, we can also say that the assisted consumes less energy compared to the

drowsy version, making it more suitable for our low-energy application requirement.

To approximate the energy consumption of the whole array, we used the energy

per operation (including energy when idle) of the SRAM and extrapolate for the whole

256x64 array. Shown in Fig. 5.11 is the energy per operation of an 8T SRAM and our

proposed non-precharged SRAM (labelled here as NP2). We can see from the figure

that our design can potentially save 50% of read energy. Write energy will essentially

be the same for both as we are applying the same write-assist technique to both SRAMs.

85

Fig. 5.11 Estimated energy of memory array

After showing the promise of the proposed SRAM, we proceeded with the layout

of the bitcells (Fig. 5.12) as well as the peripherals circuitry, such as the drivers and

decoders. Shown in Table 5.4 is the area comparison of the SRAM with the 8T SRAM.

We can see from the table that the proposed SRAM cell incurs a 15% area overhead

relative to the 8T SRAM.

Fig. 5.12 NPSRAM bitcell layout

Table 5.4 Area comparisons

Metric 8T NP2
Area (F2) 750 859

Normalized Area 1 1.15
Normalized to 6T 1.3 1.5

86

Chapter 6

Secure Chip Identification Using PUFs

This chapter covers some background on physically unclonable functions

(PUFs) and a discussion on our work on PUFs for secure chip identification. Section

6.1 covers the basic introduction to PUFs. Section 6.2 discusses the properties of PUFs

and the metrics used to evaluate them. The state of the art in PUFs is covered in Section

6.3, followed by our proposed class of static monostable PUFs in Section 6.4. Finally,

in Section 6.5, we cover some possible future work with PUFs.

6.1 PUF Introduction

The pervasiveness and the prospectively very large number of deployed nodes

monitoring the environment, people and goods, makes security a fundamental

challenge, especially in IoT applications. Security issues are expected to arise in terms

of data authenticity, integrity and confidentiality. Indeed, it is necessary to assure that

the data and the sender are legitimate, the data has been sent uncorrupted, and

oftentimes data needs to be unreadable from an unintended receiver. Accordingly,

security must be assured down to the hardware level, as the authenticity and the

integrity need to be assured also in terms of the hardware implementation of each

device or node (i.e., each node needs to be confirmed to be authentic and intact, while

signalling in case it has been counterfeited or tampered with).

In the recent past, Physically Unclonable Functions (PUFs) have emerged as

potentially highly secure and lightweight solution to ensure data and hardware security,

assuring trustworthiness down to the chip level [84]–[88]. A PUF is a function that

87

maps an input (digital) challenge to an output (digital) response in a repeatable but

unpredictable manner, leveraging on chip-specific random process variations. PUFs

are sometimes referred to as “silicon biometrics”, i.e. something equivalent to a “chip

fingerprint” that is unique for each die. As such, it eliminates the need to store any key,

as the latter is naturally generated and embedded into the chip during its manufacturing.

This avoids the need for key programming (e.g., via fuses or e-Flash), and makes

devices less prone to the many existing attacks that uncover the content of memories

[89], as discussed below.

PUFs are used for chip identification and authentication [86]–[88], [90], [91],

secure key storage and lightweight encryption [84], [92], hardware-entangled

cryptography [93] and identification of malicious hardware [94]. In this thesis, we

focus on PUFs for chip identification and authentication, and cover the other

applications towards the end of the chapter. Chip identification and authentication are

typically performed by preliminarily storing all challenge-response pairs (CRPs) of the

chip PUF in a secure database, during a first enrolment phase. These (or a subset

thereof) are used to verify the response of the chip to a given challenge during in-field

operation, making sure not to reuse CRPs to reduce susceptibility to cloning, and

counteract replay attacks. Fig. 6.1 shows an illustration of the enrolment process and

chip authentication.

To keep data secure during transmission, it is typically encrypted using a key

that is stored externally, or in an on-chip non-volatile memory (NVM). Unfortunately,

storing the key off chip or in an on-chip NVM facilitates the recovery of the key by

other parties. Indeed, several studies have shown that NVM are prone to attacks and

easy to read out [95], [96]. PUFs replace the conventional key storage, and hence offer

superior robustness against invasive attacks, as they do not store information but rather

recreate the keys when the chip is being powered on.

88

Fig. 6.1 Illustration of typical chip enrolment and subsequent in-field authentication
using challenge-response pairs (CRPs) from PUFs.

6.2 PUF Properties and Metrics

Ideally, an array of PUF bitcells generate chip-specific keys that are:

• unpredictable, leveraging on on-chip random process variations

• repeatable, by amplifying random variations, while rejecting global

variations and noise [85]

• not directly accessible or measurable externally, once the enrolment phase

is completed.

There are two main types of PUFs: weak PUFs and strong PUFs. Weak PUFs

have limited number of challenge-response pairs, making them equivalent to random

key generators that are typically used for encryption and decryption. Weak PUFs

essentially provide chip ID, whereas strong PUFs offer a very large number of

89

challenge-response pairs (CRPs) for one-time CRPs. Considering the expected long

lifespan required by different applications, PUFs with very large number of CRPs (and

therefore large area) are very expensive and typically infeasible. As a numerical

example, Table 6.1 shows an example of the cost for a PUF with 256-bit key in 65nm

[90], [97], assuming 5 cents/mm2. As can be seen, the cost of the PUF exceeds the

typical target of $1/chip.

Table 6.1 Example of SRAM PUF Silicon Cost
(encrypted) data
transmitted every

PUF Capacity
(MB)

PUF area
(mm2)

silicon cost
(US$)

1 hour 5 24 1.2

10 minutes 32 147 7.4

1 minute 320 1,478 74

Table 6.2 PUF Metrics and Typical Values

metric measured by typical value ideal value

stability Unstable Bits 1 - 60% 0

repeatability Intra-PUF FHD 0.8 - 15% 0

uniqueness Inter-PUF FHD 30 - 60 % 50%

identifiability Inter/Intra HD 5 - 80 ∞

randomness 0/1 Bias 40 - 60 % 50%

Given the fundamental PUF properties, such as stability, repeatability,

uniqueness and randomness [94], and knowing the statistical nature of process

variations, several metrics have been introduced to quantify the quality of PUF bitcells.

In the following, such metrics are summarized in Table 6.2, where typical values based

on current literature are also reported. In detail, any PUF output should ideally remain

the same under fluctuating environmental conditions (e.g., voltage, temperature), and

at any process corner. Actual PUFs are not able to provide perfectly stable outputs, due

90

to non-perfect rejection of noise, global and environmental variations. Stability is

measured by counting all bits that become unstable across repeated PUF evaluations

and environmental conditions, within the specified range of voltage and temperature of

operation.

Repeatability (or reproducibility) and uniqueness are measured from the

Hamming Distance (HD) across several measurements of PUF keys. Such

measurements are compared to a reference “golden” key [94] that is taken as the first

measurement under nominal conditions. Repeatability is the average intra-PUF

Hamming Distance (HD) between the golden key and several key evaluations with the

same challenge in the same chip, under different environmental conditions. Highly

reproducible PUFs should have low intra-PUF Hamming distance (ideally zero).

Uniqueness, on the other hand, is taken as the average inter-PUF HD between the

golden key and key evaluations from different chips under the same PUF input [84].

The inter-PUF HD should be close to the ideal value equal to half the length of the PUF

key (e.g., the ideal inter-PUF HD of a 256-bit key is 128). Alternatively, the fractional

Hamming Distance (FHD) can be used to quantify reproducibility and uniqueness [85],

where the Hamming distance is simply expressed as a percentage of the key length, or

the number of bits N in a PUF key (ideal inter-PUF FHD is 50%). Identifiability

quantifies the distinguishability of a PUF instance to other instances, and is loosely

taken as the ratio of the inter-PUF and intra-PUF HD (on the assumption that it is both

repeatable and unique), where a larger value is desired [84], [94], [98].

Fig. 6.2 shows an example of probability distribution function of reproducibility

(intra-PUF FHD) and uniqueness (inter-PUF FHD). A perfectly identifiable PUF

ideally has no intersection between the inter-PUF and intra-PUF curves, which means

that a single PUF response is enough to determine whether the chip is authentic or not.

In practical cases, the two curves in Fig. 6.2 have an intersection, and an optimal

decision threshold needs to be chosen to determine whether a given PUF is identifiable.

91

Such decision threshold is set by the point where Type I and Type II errors are

minimized. Type I error is the false positive, where an invalid key is accepted as a valid

one. Type II error, on the other hand, is the false negative, where a valid key is

discarded as an invalid one.

Fig. 6.2 Sample Inter- and Intra-PUF FHD showing decision threshold and Type I
(false positive) and Type II (false negative) errors.

Regarding chip authentication, false rejection rate (FRR) and false acceptance

rate (FAR) can be used as relevant metrics to assess its quality and security level [99],

[100]. Referring to Fig. 6.2, FRR corresponds to the probability of having an output

with FHD under the false negative area, whereas FAR corresponds to the area under

the false positive area. Accordingly, the PUF yield I can be defined as the probability

of correct authentication, i.e. I = 1 − JKL − JLL. The bit error rate (BER) or the

percentage of unstable bits can also be used as a metric of the quality of chip

authentication, when the whole array is considered, rather than dividing the array into

keys of length N.

92

Another important property of PUFs is the randomness of its responses, as

needed to ensure their unpredictability. Randomness is routinely quantified through the

statistical characterization in terms of 0/1 bias (defined as the probability of having a 1

in a PUF output bit [101]), the entropy [84], and more thoroughly through the NIST

randomness tests [102]. The NIST statistical test suite [102] is a set of tests to quantify

the randomness of a stream of bits. Version 2.1.2 contains 15 tests, each one exercising

one property to test randomness. The simplest of these tests is the frequency test, which

computes the 0/1 ratio of the whole bitstream. For each of the tests, certain parameters

need to be preliminarily set (e.g., length of bitstream n, block size M). Table 6.3 shows

the complete list of the tests and parameters to be set.

To quantify the randomness of PUF responses across different positions of PUF

bitcell within the die, the autocorrelation function (ACF) is routinely used to detect

repeating or correlated patterns among different responses [84], [98]. The correlation

between PUF output bits is generally due to layout-dependent variations [90], [97],

[103]. Visually, randomness can be represented in the form of the speckle diagram

shown in Fig. 6.3, where each pixel represents a PUF bitcell and the PUF output 0’s

(1’s) are represented with black (white) pixels. From the figure, the distribution looks

somewhat random (i.e., there are no clear patterns) and the 0/1 bias is also close to ideal

value of 0.5.

Fig. 6.3 Sample speckle diagram [97]

93

Table 6.3 NIST Statistical Test Suite

NIST test description
minimum stream

length n
other

parameters

Frequency Test
takes ratio of number

of 1’s and 0’s
100 --

Frequency test
within a block

ratio of 1’s and 0’s
with M-bit block

100
M ≥ 20

M > 0.01�

Runs test
relative oscillation of

bit stream
100 --

Longest Run of
Ones

length of longest
consecutive 1’s with a

block
128

M (set based
on preset n)

Binary Matrix
Run

rank of disjoint sub-
matrix

38 ⋅ M ⋅ S M, S

DFT
detect periodic

features
103 --

Non-
overlapping

Template

detect occurrence of
patterns in an m-bit

window
106 � = [2,10]

Overlapping
Template

detects occurrence of
patterns, with overlaps

included
106 � = [2,10]

Universal
Statistical Test

number of bits
between matching

patterns
387,840

T = [6,16];
S = 10 ∗ 2V

Linear
Complexity

Test

length of equivalent
LFSR

106 M

Serial Test
detect frequency of
overlapping patterns

--
� <

9$W�� − 2

Approximate
Entropy

detect frequency of
overlapping patterns

--
�

< 9$W�� − 5

Cumulative
Sums

random walk 100 --

Random
Excursions Test

random walk cycle 106 --

Random
Excursions

Variant Test

deviations from a
random walk

106 --

Most devices nowadays are tightly energy constrained, being either battery

operated or energy harvested, hence the energy consumption of the PUF is another

important metric. To abstract the energy from the PUF organization and size, the most

commonly adopted metric is the energy per bit, obtained by dividing the average energy

94

per access by the number of bits within the key. The energy per bit of existing PUFs

typically ranges from tens of fJ/bit to tens of pJ/bit [90], [97].

Silicon cost in terms of area is another important PUF metric. The effective area

per bit (obtained by considering the actual number of available PUF bits obtained after

removing unstable bits, and including the area cost of the circuitry performing post-

processing on the raw PUF output) may be used as a metric. Robustness to ageing and

chip lifetime are assessed through accelerated ageing tests [99], [104], [105]. Modelling

complexity, in terms of the number of brute force trials needed to model the PUF, can

likewise be used to characterize PUFs [99].

6.3 PUF Topologies and State of the Art

The concept of PUFs have been introduced in the early 2000s, and they have

been initially referred to as ICID [106], Physical One-Way Functions (POWF) [107],

or Physical Random Functions (PRF) [91], among others. ICID uses an array of

MOSFET to generate the random values from random process mismatch, via FET drain

current. The physical one-way function was proposed as a solution to the need for a

one-way function (easy to evaluate but difficult to invert) for cryptographic

applications. The approach uses a laser to scatter light through an inhomogeneous

structure (at some precise angle, which serves as the challenge), as shown in Fig. 6.4.

The resulting optical speckle diagram is hashed to obtain the key. Most of the literature

has then reverted to silicon-based solutions, leveraging the low-cost and high-volume

capability of CMOS chips.

Most of the existing silicon PUFs can be classified as either delay-based or

memory-based PUFs [91], [108]–[110]. In delay-based PUFs, bits are generated by

comparing the delay of two nominally identical paths. The sign of the random delay

difference between the two delays determines the output bit. One of the earliest

implementation of such a concept is the ring oscillator (RO) PUF [91], [109], whose

95

digital output is determined by the relative frequency of each selected pair of nominally

identical ring oscillators. Fig. 6.5a shows the general diagram of a ring oscillator PUF,

where the challenge selects two of the available ring oscillators, and the corresponding

response depends on whether the frequency of the first selected oscillator is greater

than the second or not. Knowing that these inverter chain ring oscillators tend to be

very sensitive to environmental conditions, several techniques have been introduced to

improve the high native instability rate, and poor statistical quality of this pair-wise

comparison. Some of these techniques include the adoption of k-sum or 1-out-of-k

masking techniques [109], [111].

Fig. 6.4 Physical One-Way Function from a non-homogenous material

(a)

(b)

Fig. 6.5 Delay-based PUFs: (a) ring oscillator (RO) PUF [109], (b) arbiter PUF [111]

96

Another delay-based PUF is the arbiter PUF [100], [109], [111], shown in Fig.

6.5b. It compares the delay of two delay lines, and suffers from the same limitations as

the RO PUF [91], [111]. An improved delay-based version was recently proposed [98],

based on the oscillation collapse in an even-stage ring of delay-adjustable stages. The

delay is set by an applied input (PUF challenge) via inverter replica multiplexing. The

native instability of PUF outputs was substantially reduced at the cost of much higher

energy and the need for CTAT biasing.

All above delay-based PUFs are also intrinsically vulnerable to PUF modelling

attacks, which can capture and clone the content of the entire PUF with very low effort.

Indeed, the PUF output is dictated by the overall PUF delay, which is in turn defined

by the sum of the delays of cascaded stages. Since each stage delay is fixed (although

unpredictable), identifying all stage delays from the analysis of the PUF outputs entails

only a linear complexity, making the PUF easy to clone [112].

In memory-based PUFs, a bistable structure of two cross-coupled inverters is

used to generate the output bits. They leverage on the natural tendency of cross-coupled

inverters to resolve to a preferred state at the power-up, as determined by their

asymmetry due to random variations [109]. For example, SRAM PUFs leverage this

property in SRAM bitcells [108], [113]. Other similar PUFs are the Latch PUF [88],

DFF PUF [114], butterfly PUF [110], and the buskeeper PUF [115], which is similar

to the SRAM PUF albeit without the write ability, as access transistors are removed

since PUF bitcells are read-only. The butterfly PUF follows the same concept of

leveraging on the unstable state of cross-coupled inverters. It was proposed for

implementation in an FPGA and uses the available cross-coupled latches instead of

inverters, as shown in Fig. 6.6. The operation starts by asserting the excite signal,

thereby forcing the PUF to be in the unstable state. This signal is then released and after

97

a few clock cycles, out signal settles to its natural stable state determined by the random

variations in the related logic gates.

Fig. 6.6 Butterfly PUF [110]

A recent literature on memory-based PUFs and their experimental

characterization has shown that PUFs typically have poor stability [116], and are highly

vulnerable to semi- invasive attacks such as electrical and optical probing [89]. The

same vulnerability to semi-invasive attacks is found in other PUFs that rely on the same

principle, such as senseamp [117], [118]. For such PUFs, reasonable levels of stability

are typically achieved through substantial temporal redundancy at the expense of

energy consumption [119]. Other proposed PUFs are based on:

• the glitch generated in digital paths, although they suffer from high instability

rates [120]

• the difference in leakage current generated by nominally identical transistors,

although at the cost of large energy due to the necessary circuitry for

current/voltage references and opamp [121]

• DRAM errors under different wordline voltage, although such PUFs are

highly vulnerable to non-invasive attacks [87]

• the variations in supply network resistance, although this requires the

generation of very large currents [119]

98

• open or short connection in vias [122]

• oxide breakdown in OTP ROMs [123]

• capacitance mismatch [124]–[126]

A hybrid PUF was proposed in [84], [127], [128], combining delay and

metastability as sources of randomness. The basic bitcell is shown in Fig. 6.7, where

bistability is forced through the pre-charge transistors controlled by clk0 and clk1. The

randomness in delay is introduced through the clock skew between clk0 and clk1. To

reduce unstable bits, significant temporal majority voting is employed. Soft dark bit

masking was also used in [127] by modulating the load in the bit and bit’, and masking

bits that become unstable with the change in the load. Indeed, load modulation simply

injects controlled perturbation in the stability of the PUF bitcell, which in turn permits

to identify the truly stable bitcells that do not change output even in the presence of

such perturbation.

Fig. 6.7 Metastability-based PUF [84]

To achieve adequate native stability despite voltage and temperature

fluctuations, authors in [103] proposed to use a proportional-to-absolute-temperature

(PTAT) as a bitcell. Fig. 6.8 shows the bitcell and the architecture and principle of

operation of the PTAT-based PUF. As seen in the figure, the PUF bitcell output is

99

determined by the sign of the difference between Out_l and Out_r, both of which are

independent of voltage and temperature. Aside from the high resiliency against voltage

and temperature variation, another noteworthy feature of this PUF is its good area

efficiency (only 727F2/bit, being F the minimum feature size of the adopted process),

as enabled by the shared header per column.

Fig. 6.8 PTAT-based PUF [103]

6.4 Static, Monostable PUFs

In this section, we present our proposed novel class of static mono-stable PUFs

[90], [97] for extremely low energy operation and low native instability rate, which

relies on the amplification of random transistor mismatch through two complementary

current mirrors.

6.4.1 Design and Operation

Fig. 6.9 shows two implementations of the same general concept. Fig. 6.9a

shows the INV_PUF bitcell implementation of this concept, which comprises the

cascode current mirrors M1-M4 and M5-M8. The two 1:1 current mirrors see the same

current flowing through their respective input transistors (M3 and M5), and tend to

mirror it to their output transistors (M4 and M6, respectively). Without mismatch, M4

and M6 would conduct the same saturation current (1YZ,[\] and 1Y^,[\]), and node Y

would assume the same voltage as node X (e.g., _̀ `/2), due to the symmetry of the

topology in Fig. 6.9a. However, random mismatch between M1-M2 and M7-M8 makes

100

these currents unpredictably different. The large output small-signal impedance RY at

node Y (Fig. 6.9a) translates the difference in such currents into a large voltage

deviation. Accordingly, the voltage at node Y becomes essentially _̀ ` if 1YZ,[\]-

1Y^,[\]>0, or ground if 1YZ,[\]- 1Y^,[\]<0. Thus, a digital output that is dominantly

defined by the random mismatch between the two current mirrors is generated.

Fig. 6.9 Static Mono-stable PUFs [97] (a) INV_PUF and (b) SA_PUF

In statistically infrequent cases with extremely small mismatch, 1YZ,[\] −

 1Y^,[\] might still be close enough to zero even under random variations, so that the

voltage deviation at node Y is not full swing, and the PUF output bit PUF_OUT

becomes unstable. However, the percentage of such unstable bits will be shown to be

very small, as expected from the large impedance at node Y. As an example, Fig. 6.10

shows the statistical distribution of the voltage at node X, Y, and PUF_OUT due to the

random mismatch, and shows that the voltage in X is rather insensitive to mismatch,

whereas Y is very sensitive to it, and its voltages are mostly associated with digital high

and low level (as defined by the traditional low- and high-input thresholds of the

subsequent buffer). The infrequent intermediate voltages are associated with unstable

bits, as discussed above. Similar considerations hold for PUF_OUT. In Fig. 6.9b, the

101

alternative SA_PUF topology adds a sense amplifier (transistors M9-M13) after M1-

M8 to further increase the voltage gain (and thus reduce the number of unstable bits)

and introduce additional random mismatch through the sense amp offset.

Fig. 6.10 Sample statistical distribution of (a) VX, (b) VY and (c) PUF_OUT under
variations (5k-pt Monte Carlo simulation)

To verify the functionality and effectiveness of these PUF bitcells, a PUF array

with 3,040 bits was implemented in 65nm CMOS technology. The transistor sizes used

are shown in Fig. 6.9c, and the chip photomicrograph and the layout of the bitcell macro

are shown in Fig. 6.11. Outputs are scanned out via a latch-based scan chain. The latch

scan chain effectively implements a latch PUF, when isolating the INV_PUF and

SA_PUF output from the scan chain through a multiplexer between the PUF output

and the scan chain input. As in Fig. 6.11, when LOAD is set to 1 at the power up,

intrinsic power-up state of latches is routed through INV_SCAN_IN and SA_SCAN_IN

to the latch, instead of the PUF output. In this way, the first 95x32=3,040 output bits

will correspond to the Latch_PUF output. Setting the signal LOAD to 0 uses the output

of the PUF as input to the latch. Subsequently changing LOAD to 1 forms the scan

chain, allowing these data to be scanned out serially.

102

Fig. 6.11 Chip photomicrograph, Bitcell Layout and Test Macro Schematics

The testchip also includes a ring oscillator PUF (RO_PUF) to allow fair

comparison at iso-technology. The design of the RO_PUF is similar to [109], and

consists of 5-stage ring oscillators. The inverters within the chain are 3-stack HVT

transistors, each with a size of 450nm/60nm (300nm/60nm) for the PMOS (NMOS).

The driving inverter uses LVT transistors of same size, without stacking. The

architecture of the RO_PUF is shown in Fig. 6.12, where the two-hot decoder ensures

that 2 of the 1024 ring oscillators are selected at a time. The frequency dividers are

programmable (divide by 8/16/32/64) to evaluate the difference between the

frequencies of the selected ring oscillators. The selector signals SA<9:0> and SB<9:0>

serve as PUF challenge inputs to choose the specific ring oscillator output to be routed

103

to freq_out1 and freq_out2 outputs, respectively. These outputs in turn are compared

to get the RO_PUF output bit. Overall, the testchip permits to compare the two versions

of the proposed PUF with latch and ring oscillator PUF sharing the very same die. Fair

comparison with SRAM PUF is enabled by the measurements on an available SRAM

array [129] implemented in the same technology.

Fig. 6.12 RO-PUF Architecture and Layout

6.4.2 Testchip Measurement and Comparison

For all stability tests, 400 evaluations were performed per configuration,

marking bits that change at any evaluation as unstable. The measured percentage of the

native unstable bits at nominal condition (1V supply, 25oC temperature) is plotted in

Fig. 6.13 versus the number of evaluations. From this figure, INV_PUF exhibits native

bit instability of only 2.34% (for the most unstable die), and the SA_PUF offers a

further improvement (1.88%), as expected from the voltage gain amplification and the

104

additional random variations introduced by the senseamp in Fig. 6.9b. As shown in

Table I, the native bit instability of the proposed class of PUFs is an order of magnitude

lower than all other PUFs, whose instability ranges from 16.66% (SRAM_PUF) to

more than 30%, which is just slightly higher, but still consistent with previous reported

results [127], [130], [131]. Note that for the RO_PUF was designed for 0.5 V operation

and tests were performed at this voltage, as instability becomes even worse above this

voltage. Interestingly, the proposed PUF achieves a native stability that is comparable

to one of the best techniques [84], although the latter needs the joint adoption of three

enhancement techniques that worsen energy efficiency (temporal majority voting),

testing cost (burn-in) and area efficiency (unstable bit masking). In other words, the

proposed PUF class is intrinsically more robust and trustworthy than all above PUFs,

and can be made 100% stable through very limited design/tuning effort (e.g., by

masking unstable bits to predefined values as in [84]).

Fig. 6.13 Native Unstable Bit Count at Nominal Conditions for (a) INV_PUF and (b)
SA_PUF

105

Table 6.4 Comparison of Different PUFs

S
A

_
P

U
F

65
 n

m

1.
88

0.
6-

1V
,

25

-8
5C

5.
33

0.
16

3

12
00

0

0
.5

0
0
5

0.
50

15

0
.0

0
3
4

14
8.

68

P
A

S
S

0.
99

66

0.
03

63

T
ab

le
 6

.4
 C

om
pa

ri
so

n
of

 D
if

fe
re

nt
 P

U
F

s

IN
V

_
P

U
F

65
nm

2.
34

0.
6-

1V
,

25

-8
5C

5.
72

0
.0

1
5

60
00

0.
50

16

0.
50

14

0
.0

0
3
4

1
4

9
.0

5

P
A

S
S

0.
99

67

0.
03

63

*
 f

a
b

ri
ca

te
d

 w
it

h
 t

h
e

 s
a

m
e

 t
e

ch
n

o
lo

g
y

 a
s

IN
V

_
P

U
F

 a
n

d
 S

A
_

P
U

F

P
T

A
T

 [
10

3]

65
nm

7.
1 1.
1

7
2

7

0.
49

28

0
.5

0
0
1

0.
00

57

88

P
A

S
S

1

0.
01

9

[9
8]

40
nm

12
.5

0.
7-

0.
9V

12
.5

17
.7

5

20
62

0.
50

07

0.
01

01

50

P
A

S
S

0.
02

8

[8
4]

22
nm

30

0.
7-

0.
9V

30

0.
19

96
28

0.
48

05

0.
51

00

0.
02

68

19

P
A

S
S

1

0
.0

1

S
R

A
M

_
P

U
F

*

65
nm

16
.6

6

0.
6-

1V

55
.7

3

1.
1

80
6

0.
61

41

0.
33

21

0.
06

02

6

P
A

S
S

0.
99

0.
01

6

R
O

_
P

U
F

*

65
nm

18
.1

6

0.
4-

0.
5V

53
.9

0.
47

5

39
00

0

0.
50

23

0.
47

38

0.
04

58

10

P
A

S
S

0.
99

5

0.
08

8

IC
ID

 [
10

6]

0.
35

 u
m

1
.3

1.
1-

5V
,

-2

5-
25

0C

5

83
33

.3
33

17
08

0.
49

11

0.
01

34

37

A
rb

it
er

 [
10

0]

0.
18

 u
m

9.
8

1.
8V

 +
/-

2%
,

27
-7

0C

4.
82

0.
17

12
5

70
84

03

0.
38

00

L
a

tc
h

 [
88

]

0.
13

um

3.
04

0.
9-

1.
2V

5.
46

87
5

0.
93

43
69

0.
50

55

P
U

F

T
ec

h
n

o
lo

g
y

S
ta

b
il

it
y

 (
%

 n
a

ti
v

e
u

n
st

a
b

le

b
it

s
a

t
n

o
m

in
a

l
co

n
d

it
io

n
)

V
-T

 V
a

ri
a

ti
o

n

%
er

ro
r

w
it

h
 V

T
 v

a
ri

a
ti

o
n

E
n

er
g

y
 (

p
J

/b
it

)

A
re

a
 (

F
2
/b

it
)

R
a

n
d

o
m

n
es

s

(B

ia
s

=
 P

ro
b

a
b

il
it

y
 o

f
1

)
U

n
iq

u
en

es
s

(M

ea
n

 I
n

te
r-

P
U

F
 F

H
D

)

R
ep

ea
ta

b
il

it
y

(M
ea

n
 I

n
tr

a
-P

U
F

 F
H

D
)

Id
en

ti
fi

a
b

il
it

y

(I
n

te
r-

P
U

F
/I

n
tr

a
-P

U
F

 F
H

D
)

N
IS

T
 T

es
t

en
tr

o
p

y

A
u

to
co

rr
el

a
ti

o
n

 F
u

n
ct

io
n

@

9
5

%
 c

o
n

fi
d

en
ce

106

For completeness, the stability for the SA_PUF was also studied as a function of

the bias voltage of the senseamp tail EN in Fig. 6.9b, which was set at VDD/2 for most

tests. Fig. 6.14a plots the measured and simulated stability versus the EN voltage, and

shows that this bias voltage does not affect the stability of the PUF, except for

extremely low voltages. Indeed, the unstable bit count remains essentially constant for

EN voltages ranging from 0.25 V to 0.75 V (Fig. 6.14a), the spatial distribution of 0’s

and 1’s is random, and bias (Pr[1]) is close to 0.5 (Fig. 6.14c). Instead, very low EN

voltages below 0.25 V degrade the stability (up to 22%) and the distribution of 0’s and

1’s (bias of 0.94) under the extreme case of grounded EN terminal (Fig. 6.14d). This is

because a very low EN voltage (e.g., below 0.25 V) essentially turns the tail transistor

off, and the senseamp pulls the output node of SA_PUF towards VDD, effectively

introducing an undesirable systematic offset (Fig. 6.14b).

Fig. 6.14 SA_PUF dependence on EN voltage in terms of (a) unstable bit percentage
and (b) senseamp systematic offset, and resulting speckle diagram at (c) EN=0.75V
and (d) EN=0.

The resilience to PVT systematic and environmental variations was evaluated by

measuring stability across different voltages, temperatures and different process

corners. Regarding the effect of voltage on the bit stability, Fig. 6.15a shows that the

native stability of the proposed class of PUFs is degraded only slightly (3.64% and

3.53% for INV_PUF and SA_PUF) in the wide voltage range from 0.6 to 1 V. On the

107

other hand, the stability of the other measured PUFs (latch and SRAM) is severely

degraded to 50-70% within the same voltage range. Overall, the proposed class of PUFs

enables an order of magnitude improvement in stability, compared to most of the other

PUFs. Specifically, a native stability improvement from 10.68X (at 1 V) to 14.11X (at

0.6 V) is found compared to latch and SRAM PUF, and a 9.76X (or better) compared

to [84] at 0.7 V (at larger voltages). As only exception where the stability improvement

is lower than an order of magnitude, the proposed PUFs achieve a stability

improvement of 2.5X compared to [98], which is however three orders of magnitude

worse than the proposed PUF in terms of energy (see Table 6.4). Regarding the impact

of the temperature on stability, Fig. 6.15b shows that native instability at 85 oC is 4.4%

and 4.3%, respectively for INV_PUF and SA_PUF, which is 10.31X (or better) lower

than all other PUFs. Comparing INV_PUF and SA_PUF, the latter is slightly more

stable than INV_PUF under temperature variations.

Fig. 6.15 Percentage unstable bit versus (a) supply voltage and (b) temperature for
different PUFs

108

Fig. 6.16 Breakdown of percentage unstable bits in INV_PUF due to supply voltage
(left) and temperature (right)

To gain a better understanding of instability, the contributions of on-chip noise,

voltage and temperature variations were separately analyzed. In particular, the

contribution due only to noise was obtained by evaluating the number of unstable bits

across 400 repeated accesses at a given voltage and temperature. The contribution of

voltage variations was then obtained by removing the noise contribution (i.e.,

discarding the unstable bits due to noise alone) and considering the bits that flip when

the voltage is reduced below the nominal voltage (1 V). Similar considerations hold for

temperature variations. The resulting instability contributions of noise and voltage

(temperature) for INV_PUF are shown in Fig. 6.16a (Fig. 6.16b). Results for SA_PUF

are just slightly better (~0.033% at 0.6 V and ~0.039% at 85 oC) and were hence

omitted. From Fig. 6.16a, the instability due to the noise is approximately constant

(∼1.7%) across a wide range of voltages and temperatures, and dominates the total

instability at relatively high voltages (0.8 V and above). This means that the total

unstable bits will be reduced by ~1.7% when applying masking as in [84]. The

instability due to voltage variations ranges from 0 to 2.1% when decreasing the voltage

109

down to 0.6 V, while the contribution of temperature variations ranges from 0 to 2.57%

when increasing the temperature to 85 oC.

The same procedure was followed for the other PUFs to mimic the effect of

unstable bit masking, as shown in Fig. 6.17 for the Latch_PUF and SRAM_PUF, and

Fig. 6.18 for RO_PUF. From Fig. 6.17, the difference between the masked and

unmasked data for Latch_PUF ranges from 3.86% to 18.53%, while for SRAM_PUF

is 9.11% to 13.82%. For the RO_PUF, the effect of voltage and temperature on the

RO_PUF stability, with and without masking, is shown in Fig. 6.18. The data in this

figure confirms that the RO_PUF is indeed highly unstable (as is evident in the 100%

unstable bits at 0.3 V) and would need additional circuitry to improve its stability. Like

the other PUFs, we can also see that the difference between the unstable bit count with

and without masking is also high for both change in voltage and change in temperature,

further confirming that the RO_PUF is sensitive to voltage and temperature changes.

In [84], temporal majority voting was introduced prior to replacing the unstable bits

with predefined ones, to reduce the number of unstable bits by 53%.

Fig. 6.17 Effect of masking on unstable bits for Latch_PUF and SRAM_PUF with
varying (a) supply voltage and (b) tempretaure

110

Fig. 6.18 Effect of masking on unstable bits for RO_PUF

Fig. 6.19 Effect of body bias (to mimic systematic threshold variation) on stability,
measured at (a) 1V and (b) 0.6V supply, and the corresponding speckle diagram and
bias at (c) 1V and (d) 0.6V supply.

Finally, the impact of systematic transistor variations was studied by modifying

the PMOS threshold voltage through body biasing, which permits to introduce a skew

between the NMOS and PMOS transistor strength (i.e., emulate different process

corners). The instability is plotted in Fig. 6.19 as a function of the PMOS body bias

voltage, VBP. From Fig. 6.19a, the percentage of unstable bits is increased to only 4.4%

under 300 mV forward body biasing at 1 V supply, which corresponds to a 46-mV

111

systematic threshold voltage change (i.e., ∼3 standard deviations). Similar

considerations hold at near-threshold voltages (Fig. 6.19b). The bias is only marginally

affected by systematic variations as it changes only by 0.0007 (0.0089) at 1V (0.6V),

as shown in Fig. 6.19c (Fig. 6.19d). These results show that the proposed class of PUFs

is highly resilient to PVT variations, as stability of a few percentage points is

maintained even under 3-σ threshold voltage variations, voltage variations of 0.4 V and

temperatures up to 85 oC.

Fig. 6.20 Speckle diagram of the golden key (top) and spatial autocorrelation from die
#1 at nominal conditions for INV_PUF (left) and SA_PUF (right)

The measured spatial distribution of INV_PUF and SA_PUF bits is shown in

Fig. 6.20, which was obtained from measurements of die #1 of the implemented 65nm

PUF array testchip under nominal condition (VDD = 1 V, 25oC). When grouping bitcells

in typical 256-bit PUF words [84], the probability of generating a 1 in die #1 is very

close to the ideal value of 0.5 (0.5072 for INV_PUF, 0.5046 for SA_PUF). Very similar

results are obtained for all other tested dice. The spatial autocorrelation function value

at 95% confidence level is close to the ideal value of 0 (less than 0.0363 for both

INV_PUF and SA_PUF), showing a fundamental independence of every bit value from

112

its neighboring bits, and thus confirming effective rejection of layout-dependent

variations.

Fig. 6.21 INV_PUF (left) and SA_PUF (right) bias (top) and inter- and intra-PUF HD
statistical distribution (bottom).

Regarding uniqueness of the PUF, from Fig. 6.21, the inter-PUF HD across 10

dice has average values of 128.35 for INV_PUF and 128.38 for SA_PUF, which are

very close to the ideal value of 128. This confirms that the proposed class of PUFs

exhibits very good uniqueness, in the sense that different dice will statistically have

largely different values for the same input [85]. As summarized in Table 6.4, the

proposed class of PUFs achieves the best uniqueness among most PUFs, being the latch

PUF the second best with 126.43 inter-PUF HD. As only exception, the PUF in [98]

has a marginally better inter-PUF HD of 128.18.

Regarding the reproducibility, the average intra-PUF HD of the proposed class

of PUFs is 0.8611 (0.8635) for INV_PUF (SA_PUF), which is close to the ideal zero

value. These values are an order of magnitude better compared to [84], SRAM, latch,

and ring oscillator PUFs, and 3X better compared to [98]. Regarding identifiability, the

ratio of the inter- and intra-PUF HD of 149X for both INV_PUF and SA_PUF is the

113

highest to date, and shows 7.8X improvement over [84], 3X improvement over [98]

and 20-30X over ring oscillator, latch and SRAM PUFs.

Table 6.5 Summary of NIST Test Results

PUF randomness was quantitatively assessed through statistical NIST tests

[102], as more rigorous and systematic approach compared to bias analysis and visual

inspection of the golden key mask (Fig. 6.20). For each NIST test, the p-value was

evaluated to quantify the level of randomness of the PUF. In general, a p-value greater

than 0.01 is desired to consider an arbitrary source of information random with 99%

confidence, and higher values indicate a higher confidence about the source

randomness [102]. Table 6.5 shows the average p-value for the NIST tests applied on

the proposed PUFs. From the table, we can also see that INV_PUF and SA_PUF pass

all applicable NIST tests (tests that require n>3,040 were omitted). Also, the proposed

PUFs consistently have high p-values in individual NIST tests, with no value below

0.28. Hence, the proposed PUF class has high degree of randomness.

Fig. 6.22 shows the energy consumption per bit of the proposed bitcells as a

function of the supply voltage. The minimum energy point for both INV_PUF and

SA_PUF lies at around 0.9 V, although the latter has an energy that varies only weakly

when reducing the voltage due to the additional (and fairly constant) power

contribution of the tail current in the senseamp, SA_PUF has an energy per bit that is

11X higher than INV_PUF, for supply voltages from 0.8 to 1 V and assuming an EN

voltage of 0.5 V in SA_PUF. This energy gap can be narrowed by lowering EN voltage,

although INV_PUF is expected to have lower energy in any case.

114

Fig. 6.22 Energy per bit of INV_PUF and SA_PUF for varying voltage supply

As summarized in Table 6.4, INV_PUF offers a 39.4X energy reduction in the

energy per bit at iso-technology, compared to the best previously reported value of 0.19

pJ in 22 nm CMOS [84]. The energy of the few PUFs that were implemented in other

technology nodes, such as [84], were scaled to the same 65-nm technology by assuming

a 0.7X reduction in capacitance per technology node. Due to its relatively higher

consumption compared to INV_PUF, SA_PUF offers only 3.63X improvement over

[84]. Observe that the energy advantage obtained by INV_PUF is further enhanced

when comparing the PUFs at iso-stability, thanks to the superior stability of the

proposed PUF. Indeed, other PUFs requires substantial stability enhancement to reach

the same level achieved by INV_PUF, translating into additional consumption that

further degrades their energy efficiency. The effective area per bit in Table I was

quantified by the ratio of the array area and the actual number of stable (i.e., usable)

bitcells. The area per bit of the proposed PUFs is comparable to the most reasonable

PUFs, being it 1.5X lower (higher) than [84] for the INV_PUF (SA_PUF). As

expected, the SRAM PUF has better area efficiency than any other PUF, with the PUF

in [98] being the second best. From Table 6.4, INV_PUF is usually preferable between

the proposed PUFs, by virtue of its lower energy and area, and relatively similar

statistical characteristics. On the other hand, SA_PUF is preferable only when the

requirements in terms of output statistical properties are so stringent that the increased

area and energy cost is justified. Neither of the two proposed topologies requires any

115

calibration or additional reference/biasing circuitry.

A more complete list of fabricated PUFs can be found in the new public PUF

database [132] we compiled. Extracted trends in terms of native instability rate, area,

and energy are shown in Fig. 6.23. From Fig. 6.23a, the metastability-based PUFs have

the worst native instability rate, while the monostable PUFs exhibit the best native

instability rate. The high native instability rate in metastability-based PUFs is reduced

through post-processing and other stability enhancement techniques that increase

testing time (i.e., cost). For the rest of the PUFs, the native instability rate has slightly

increased over the years. From Fig. 6.23b, the area per bit is highest for delay-based

PUFs, due to the large number of stages required to 1) limit the oscillation frequency

to acceptable values that can be distinguished by the subsequent circuitry, 2) to mitigate

the instability rate of individual ring oscillators via k-sum or 1-out-of-k masking [109],

[111]. In general, the area efficiency of PUF bitcells has improved over time, especially

due to the adoption of more digital approaches that offer better density than analog

ones. Analog PUF bitcells have an opposite trend, as their area tends to increase over

time, when area is normalized to the square of the minimum feature size of the

technology. This is mostly because of their analog nature, which does not enable

shrinking with finer technologies.

From Fig. 6.23c, the energy per bit is improving, thanks to the adoption of more

energy-aware PUFs. The circuit improvements in terms of energy dominate the benefits

of mere technology scaling. This is shown by Fig. 6.23c, which plots the energy

normalized to the energy consumed by a minimum-sized inverter in the same

technology, and hence represents a technology-independent metric. Interestingly, from

Fig. 6.23c delay-based PUFs are an exception, as they tend to have larger energy per

bit over the years. This is due to the need for a larger number of ring oscillators or

oscillations to maintain acceptable stability, in spite of the progressively worse native

stability in Fig. 6.23a.

116

(a)

(b)

(c)

Fig. 6.23 Trend of (a) native instability rate, (b) normalized area per bit, (c) normalized
energy per bit for different PUFs [132]

117

6.5 Possible Future Work on PUFs

Some prior work enables the capability to assure a well-defined stability safety

margin at the output word level [101], as a form of robustness assurance against

individual bit instability. Other prior work focuses on improving the stability of PUF

bitcells without quantitative stability assurance at run-time. For example, introducing

burn-in hardening in [84] improves stability at the expense of significantly longer

testing time. Another way to improve the statistical quality and suppress a limited

number of unstable bits is through digital post-processing, at the expense of

substantially larger silicon area and energy. The post-processing block can be a mixture

of the following techniques:

• Error Correcting Code (ECC), which introduces a large area/energy overhead

especially for high levels of targeted security, as its complexity grows

exponentially in applications requiring wider PUF outputs; post-processing also

leaks information and makes the PUF more vulnerable to physical attacks [118].

Various ECCs were used [101], such as 2D Hamming [91], BCH [128], [133],

two-stage ECC [134], soft-decision ECC [135], [136], Index-Based Syndrome

[137], Code-Offset Syndrome [91], [109], [138]–[141], pattern matching

techniques [140], and fuzzy extractors [139]

• temporal majority voting across repeated PUF readings, which typically slow

down and increase the energy per access by more than an order of magnitude

[84], [128], [142]

• on-the-fly PUF bitcell masking [127], and PUF redundancy [98], [109], which

skips the bitcells that are found to be unstable at testing time by storing the bit

error map in an additional volatile memory array [84], [118], [143]; this

approach may introduce significant area/energy overhead, and considerably

widens the opportunities to perform successful invasive attacks (e.g., interfering

with PUF operation by writing on the additional memory).

118

Fig. 6.24 shows an example where ECC is used to improve the reliability of the

PUF [GCD02]. In this implementation, redundant information is generated for each

challenge-response pair, to allow the correction of the PUF output. The ECC overhead

is ~14 kgates, which is about an order of magnitude bigger than the PUF array itself.

Similarly, in [144], ECC encoder was shown to have an area of ~3-12 kgates, with the

ECC decoder requiring an even larger area of ~20-75 kgates.

Fig. 6.24 Block diagram of an improved PUF that utilizes ECC to improve the PUF
reliability.

Detection of instability was proposed in [143] during the PUF response

generation, as shown in Fig. 6.25a. In this circuit, an unwanted 1-0 (0-1) transition

results in a rising edge of the clock at the top (bottom) flipflop, which in turn sets

VALID low. Similarly, in Fig. 6.25b, error is detected at boot time in [127], and is

thereafter masked to a predefined value. In this circuit, error is indicated by a difference

in the outputs of the latches, which in turn disables the latches, thereby keeping the

error signal despite possible switches in PUFbit. In Fig. 6.25c, similar error detection

in Fig. 6.25b is done using an XOR gate. Like Fig. 6.25a, this error produces a clock

rising edge in the flipflop, thereby latching out the fixed logic 1 output to denote that

an error has occurred.

119

(a)

(b)

(c)

Fig. 6.25 Possible circuits for runtime error detection: (a) glitch detector from [143];
(b) dark bit masking from [127]; and (c) canary-type detection

Having a stable secret key embedded within the chip allows for proper chip

authentication [91], [145]. Such keys can also be used as cryptographic keys [85] to

encrypt data sent over wireless channel [146], or to establish a trusted communication

between nodes in the network [147]. For node-to-node communications, the concept of

combining a PUF with a crypto-core can also be used to reduce the circuit complexity

and energy required for continuous authentication, thereby reducing the required PUF

capacity at a given level of security. Conventional node-to-node communication is

illustrated in Fig. 6.26, where CRPs are used to authenticate both nodes each time data

is transferred between them. Instead, a more efficient security scheme is introduced in

Fig. 6.27. In this “PUF-enabled node-to-node communication” scheme, secure PUF

120

key exchange is enabled at the authentication phase through cryptography. After one-

time authentication, both nodes can communicate with each other securely through

encryption and decryption using the exchanged keys, and without server assistance

(therefore not needing a large CRP database). This makes communication over

complex networks scalable, as the database is involved only at the first communication

between nodes. As can be seen in the figure, node-to-node communication is simplified

through the joint use of PUF and cryptography, which permit to securely exchange keys

over an insecure channel, and avoiding the very energy- and area-hungry public-key

cryptography. Such interesting and synergistic use of PUFs and cryptography is here

introduced and named “PUF-enhanced cryptography”.

Fig. 6.26 Conventional node-to-node data transfer through server, which needs to
constantly assist the two nodes during their communications.

121

Fig. 6.27 PUF-enabled key exchange and node-to-node communication.

Another interesting ramification of PUF-enhanced cryptography is the ability to

substantially strengthen the security of a crypto-core against cryptanalytic attacks, by

appropriately embedding a PUF into it. As illustrated in Fig. 6.28, PUF-enhanced

cryptography goes beyond the traditional scheme of securely storing a single crypto-

key, and permits to extend the crypto-key compared to the size imposed by the crypto-

algorithm, thus making it stronger against cryptanalytic attacks. Traditionally, key

extension is not possible since its length is dictated by the encryption standard.

However, in PUF-enhanced cryptography, a PUF with capacity larger than the key is

used to generate repeatable but unpredictable new keys that are combined with the

conventional user key to generate the fixed length enhanced key used by the on-chip

crypto-core. To this aim, the key enhancer in Fig. 6.28 is introduced to dynamically

concatenate the user and PUF keys, and then compress them into the pre-defined

length. Although the key enhancer in Fig. 6.28 is shown to be outside the crypto-core

122

(i.e., without interfering with conventional operation), it can also extend to the inside

of the latter, and operate across several blocks of plaintext. The encryption sequence is

initialized by the user key, and then managed by a key enhancer. The key enhancer can

likewise be a simple finite state machine, which generates time-varying challenges to

a PUF, or a lightweight cipher itself [148]. As a result, as opposed to the traditional

scheme that uses a single private key, the PUF-enhanced cryptography scheme in Fig.

6.28 actually uses a larger set of keys, whose number is basically limited by the desired

PUF capacity.

From an attacker point of view, guessing the private crypto-key of a typical

cryptography system requires an effort that is (exponentially) defined by the size of the

single key size. Instead, in the PUF-enhanced cryptography scheme in Fig. 6.28, the

search space for the crypto-key is enlarged by the capacity of the PUF, thus easily

making the key search unfeasible even under very powerful equipment and computing

resources. In practical cases, the PUF-enhanced cryptography permits to drastically

strengthen the security of an existing algorithm with (1) limited area cost, thanks to the

exponential increase of the size of the key search space, under PUF capacity extension,

and (2) no throughput penalty, since the generation of the PUF output is generally much

faster than encryption. When using PUFs like in [97], the latter property is enabled by

the intrinsically high speed of the PUF architecture, since PUF bits are always available

at the output and only need to be routed to the circuitry that consumes them.

Fig. 6.28 PUF-enhanced enhanced cryptography

123

The above mentioned dynamic change of the key over time is a tool to improve

the strength of PUF-enhanced cryptography against cryptanalytic attacks. In the case

of IoT devices relying on energy harvesting, changing keys becomes a necessity as

dictated by the availability of supply. For example, in [149] key generation is divided

into several phases and precomputation is done whenever supply available, and

intermediate results are stored, for use in the next phase.

In summary, PUF-enhanced cryptography permits to drastically enhance the

security of a crypto-core by leveraging its synergy with a PUF, to generate time-varying

crypto-keys instead of having a fixed one. In addition, the adoption of such PUF to

enhance the crypto-algorithm also permits to easily scale up the level of security on

demand. Indeed, the level of security defines the number of PUF words that are needed,

and hence it only affects the periodicity of the key enhancer for a given PUF capacity.

Also, the PUF unambiguously authenticates the die that the crypto-core runs on. In

addition, the addition of a PUF to a crypto-core generally entails a very small energy

overhead, as the energy per bit of a PUF is typically 2-3 orders of magnitude smaller

than a crypto-core. Very similar considerations hold for the area efficiency. These

features are particularly interesting in the context of the Internet of Things, as they

make crypto-algorithms and crypto-cores affordable in terms of area and energy, thus

enabling continuous and ubiquitous security. When a much higher level of security is

occasionally needed, the PUF enhancement permits to further scale it up at a very low

area/energy cost.

124

Chapter 7

Energy-Efficient Microcontroller for Wireless Sensor

Nodes

Microcontrollers have been the enablers for embedded and emerging

applications like wearable electronics and environment sensors [150]–[152]. They

control system operations such as data transfer, external communications and power

management, which is critical for battery-operated and energy-autonomous systems.

To promote sustainable energy, several world-wide green initiatives have been set for

2020, such as, but not limited to, reducing energy use by 20% and increasing the share

of renewable energy to 20% [153]. In line with this aim, several researches focus on

using power from harvested energy [76], [152], [154]. Correspondingly, the trend in

MCUs is towards power efficiencies of 10uW/MHz or less, as shown in Fig. 7.1 [153].

Fig. 7.1 Trends for Low-Power MCUs

125

One way to reduce power consumption is to aggressively scale the supply

voltage to sub- or near-threshold operation [3], [4]. In this chapter, a near-threshold

energy-efficient microcontroller SoC for WSN application is presented, to investigate

some techniques for energy-efficient design methodology. The design features the

following techniques: (1) instruction set architecture (ISA) extension for reduced

number of cycles per operation; (2) near-threshold operation of MCU core; and (3) a

customized standard cell to ensure proper operation at sub/near-threshold supply

voltage [155].

The block diagram of the microcontroller is shown in Fig. 7.2. The main block

is named as Core. Being a Harvard architecture core, the instruction memory (IMEM)

and data memory (DMEM) are separate. IMEM is a 2kB memory, with 16-bit word

access. The DMEM is a 4kB memory, also with 16-bit word access. The list of input

and output pins of the chip is given in Table 7.1. The core was designed using

ASIPMeister®, a processor designer with the Brownie [156], [157] core as the base

processor.

Fig. 7.2 Microcontroller Block Diagram

126

Table 7.1 I/O Pins of Fabricated Chip

PIN Direction Description Value

CLK IN Synchronous system 10MHz freq

BL_async_reset IN Asynchronous reset

for bit loading

‘1’ for reset

BL_EN IN Bit loading enable

signal

‘1’ to enable data input

System_async_reset IN Asynchronous reset ‘1’ for reset

IMEM_SEL IN Select between ‘0’ for eDRAM

MEM_PROBE[1:0] IN Choose byte to

output to

TEST_DATA

“00” for IMEM LSB;

“01” for IMEM MSB;

“10” for DMEM LSB;

“11” for DMEM MSB

EXTINT_IN IN External interrupt to ‘1’ for interrupt

SERIAL_DATA_IN IN Serial input to be

EXTCATCH_OUT OUT Signals recognition

TEST_DATA[7:0] OUT Multiplexed byte

from DMEM or

IMEM, as indicated

by MEM_PROBE

SLEEP_OUT OUT Sleep ‘1’ for sleep

ASIPMeister® was used to generate the HDL codes for a 32-bit RISC processor.

The generated codes use IP from Synopsys Designware® and were synthesized using

Synopsys Design Vision®. Compiler and assembler tools for the processor were also

provided with the ASIPMeister tool. Area, power and speed estimates are shown in

Table 7.2 and Table 7.3, for 100MHz and 100kHz clock frequency, respectively. The

1.2V library is the standard cell that came with the design kit, while the 0.5V and 0.3V

libraries are custom libraries for subthreshold operation [155]. Synthesis with 0.3V was

done only with 100kHz clock frequency constraint as it is cannot run at 100MHz.

127

Table 7.2 Processor Parameters at 100MHz
Parameter 1.2V Library 0.5V Library

Area (sq. um) 42447.24 62210.88

Dynamic Power (uW) 433.73 25.48

Leakage Power (nW) 3390.9 347.11

Slack (ns) + 93.13 + 0.03

Table 7.3 Processor Parameters at 100kHz
Parameter 1.2V Library 0.5V Library 0.3V Library

Area (sq. um) 44694.72 57614.40 65144.88

Dynamic Power 254.62 uW 951.38 nW 120.69 nW

Leakage Power 3.59 uW 318.91 nW 161.57 nW

Slack (ns) + 9759.79 + 9403.86 + 92.03

Table 7.4 Benchmark code sizes
Benchmark Code length

(32-bit words)

Longest loop

(32-bit words)

Crypt3 1098 678

AES 1179 571

RLE 287 --

Three benchmarks, namely crypt3, AES and RLE, were used to profile the

processor. Both crypt3 and AES are encryption algorithms, while RLE (run length

encoding) is a compression algorithm. The compiler was used to obtain the assembly

codes from the benchmark C codes. Table 7.4 shows the instruction count and longest

loop for the three benchmarks. From the table, we can say that we would need at least

1179x32 bits of program memory if we want to be able to perform AES, or 1098x32

bits for crypt3.

In the absence of a debugger for the processor, loops from the assembly code

generated from the compiler were manually unrolled to determine the percentage usage

of the different instructions and identify possible instructions to optimize. The

corresponding percentages per benchmark is shown in Fig. 7.3. For all three

benchmarks, the instructions with the highest percentages are NOP, ADDI, LW, LSOI

and ADD.

128

(a)

(b)

(c)

Fig. 7.3 Instruction count per unrolled benchmark code

129

Careful examination of the assembly code shows that the NOP instructions can

be reduced through compiler improvements, and thus were excluded from the analysis

for instructions for ISA extension. One such extension is the combination of ADD and

LSOI, as illustrated in Fig. 7.4.

Fig. 7.4 LSAI instruction extension

With the initial extensions (LSAI and branches) as well as improvements to

reduce NOP, the total program memory needed for crypt3 was reduced by around 26%.

By doing this, leakage power of the system can potentially be reduced through the use

of a smaller program memory.

The Brownie core comes in 16-bit (BrownieMicro16) and 32-bit

(BrownieSTD32) versions. Table 7.5 shows the basic architecture of these cores. The

two cores were compared in terms of area, power consumption and IMEM size

requirement. Synopsys Design Vision® was used to synthesize the designs using a

limited (generic gates only, with no adder or multiplier cell) customized standard cell

for 500mV supply [10], [155] and a target frequency of 100 kHz. Table 7.6 shows the

result of this comparison.

Table 7.5 Brownie Core Architecture
Parameter BrownieSTD32 BrownieMicro16

Base Architecture RISC RISC
Memory Architecture Harvard Harvard

Data length 32 16
Addressing Byte Byte
of GPRs 32 16

of pipeline stages 4 3
Floating Point Unit 0 0

Forwarding Full forwarding Full forwarding

130

Table 7.6 Comparison of Brownie 32-bit and 16-bit Cores
Parameter BrownieSTD32[19] BrownieMicro16 [20]

Area (sq. um) 57614.88 12052.08
Dynamic Power (nW) 951.38 197.81
Leakage Power (nW) 318.91 61.46

Total Power (uW) 1.27 0.30
Slack (ns) 9403.86 9866.65

As expected, we can see from Table 7.6 that the 16-bit core, BrownieMicro16,

is smaller and consumes less power than its 32-bit counterpart, BrownieSTD32. This

is because the BrownieMicro16 is a 16-bit processor, with 16 16-bit registers in the

register file while the BrownieSTD32 is a 32-bit processor with 32 32-bit registers in

the register file. What was not expected, however, was their more than 4x difference in

area. In terms of power consumption, there is a 4x difference in total power

consumption of BrownieMicro16 compared to BrownieSTD32. This can still be due to

the more complex design of the BrownieSTD32 compared to that of BrownieMicro16.

One thing to note, however, is that since the target application is that of WSNs, the

cores are expected to be idle most of the time, and therefore consume mostly leakage

power. Thus, in this respect, the BrownieMicro16 is still a better choice because of its

low leakage power. The speed of the two cores are comparable, showing that both can

reach upto 1MHz operating frequency.

One possible benefit of a 32-bit processor over a 16-bit one could be the length

of code needed to implement a certain task. The length of code would determine the

size of the IMEM needed. And, knowing that memory units are usually leaky, we want

to minimize the IMEM size needed. We determine the size requirement by taking the

C code of representative WSN applications. These C codes were then compiled and

assembled using the compiler and assembler that came with the core. The produced

assembly code was not optimal, so we modified the assembly code a little, removing

unnecessary NOPs. For the case of the BrownieMicro16, manual conversion from the

original BrownieSTD32 had to be done since no compiler and assembler were provided

131

with the BrownieMicro16. After conversion, unnecessary NOPs were likewise

removed, to have a fair comparison with the 32-bit version. We then determine the

minimum size of IMEM needed by getting the nearest power of two size that could

contain the largest code. Table 7.7 shows the resulting code lengths with three

benchmarks used. The BrownieSTD32_mod represents the modified assembly code

after removal of the unnecessary NOPs.

Table 7.7 Code Size Comparison with 16- and 32-bit Cores
Benchmark BrownieSTD32 BrownieSTD32_mod BrownieMicro16

Crypt3 697 609 657

RLE 168 142 142

FIR 30 30 39

We can see from Table 7.7 that except BrownieSTD32_mod indeed has shorter

code length compared to BrownieMicro16. The longer code length of the FIR

benchmark in the BrownieMicro16 core is because of the absence of a multiplier in the

BrownieMicro16. The FIR benchmark is composed mostly of multiply and add

commands, while the other two benchmarks are mostly compare and add. Thus, the

absence of a multiplier unit in the BrownieMicro16 core forces the core to perform

multiplication using a series of additions, thereby producing a lengthy code. Comparing

all three benchmarks, however, the longest one is still the Crypt3. Thus, it is the Crypt3

benchmark that will dictate the size of the IMEM. Based on the data from Table 7.7,

we get a minimum IMEM size of 32kb for the BrownieSTD32 and 16kb for the

BrownieMicro16. Thus, the BrownieMicro16 core is still a better choice compared to

BrownieSTD32. Seeing the effect of the absence of a multiplier in the BrownieMicro16

core, we then proceeded to extending its instruction to include multiplication in order

to reduce code length, and more importantly, the number of cycles.

A 16x16 multiplier unit in the BrownieMicro16 core was added, to go with the

mult ISA extension. The new core with the additional multiplier unit (BrownieMult16)

was synthesized using Synopsys Design Compiler® with the complete customized

132

500mV standard cell library [158].The comparison of the original BrownieMicro16

with the new BrownieMult16, for a 7.5MHz operation at 0.5V is shown in Table 7.8.

Table 7.8 Comparison of Cores at 0.5V, 7.5MHz
Parameter BrownieMicro16 BrownieMult16

Area (sq. um) 12639.60 18026.28
Dynamic Power (uW) 3.27 3.33

Leakage Power (nW) 60.38 94.05
Total Power (uW) 3.33 3.42

Slack (ns) 0.03 0

Because of the addition of the multiplier unit, the increase in area and power is

expected. It should be noted, though, that although the area increase is almost 50%, the

increase in total power is less than 3%. This results in less than 0.5uW/MHz energy

efficiency of the processor core. By adding the multiplier unit, the FIR code length is

now 30, same as that of 32-bit version, which can be translated to an even better

performance in terms of number of clock cycles for the operation.

After verifying the functionality of the design, it was automatically placed and

routed using Cadence SoC Encouter® and the resulting area of the core was

approximately 180um x 180um. The area breakdown is shown in Fig. 7.5.

Fig. 7.5 Area breakdown of BrownieMult16 core

133

The peripheral block in Fig. 7.2 was mainly added for interfacing and testing. It

is composed of the bitloading circuit (for serial input to parallel output), a 128x16-bit

memory array to act as alternate IMEM, a 64x16-bit ROM containing randomized

numbers for key generation, and some multiplexers as well as synchronizing circuits

for reset. The resulting area estimate for the peripheral block is 30657 sq.um, of which,

almost 95% is from the alternate IMEM.

A sample short pseudocode for testing (labelled as TEST) is shown in Fig. 7.6.

Based on timing reports from synthesis, it was determined that the critical path would

involve addition with register operands (ADD). Because of the complexity of the

multiplier which is expected to be completed within 1 cycle, the MUL instruction was

also included.

Fig. 7.6 TEST pseudocode

Fig. 7.7 shows the power consumption per operation of the core when ran at

0.5V supply and 10MHz clock frequency. We can see from the figure that the power

consumption of a NOP operation is only slightly less than a SLEEP operation. Also,

the power consumption of TEST, which should include the critical path, is just slightly

lower than a LD operation. Comparing the NOP and SLEEP with the LD and TEST, we

can see that the NOP/SLEEP consumes just slightly above half of that consumed by a

LD operation. It should be noted that these data are only for the core (IMEM, DMEM

and peripheral block not included).

134

Fig. 7.7 Power consumption per instruction at 0.5V, 10MHz

Fig. 7.8 Performance of the core using TEST code

Fig. 7.8 shows the performance of the core for different supply voltage and clock

frequency. It can be seen that the maximum efficiency point of the core is at around

320mV with a frequency of around 750kHz. The operating point near the intersection

of the efficiency and frequency plot is around 500mV with a frequency of 16.5MHz.

Table 7.9 summarizes the design parameters of the core. It should be noted that the data

in Table 7.6 refers only to the core. In this experiment, we were able to show the

effectiveness of the custom library for 500mV. Our MCU’s efficiency of 1.86 uW/MHz

135

is also comparable with that of the SleepWalker MCU in [159], which has 2uW/MHz

using also a 65nm CMOS technology.

Table 7.9 BrownieMult16 Design Parameters
Parameter Value

Technology 65nm CMOS

Supply Voltage 500 mV

Frequency 10 MHZ

Average Power 18.55 uW

Efficiency 1.86 uW/MHz

136

Chapter 8

Conclusion

This thesis presents a base framework for the design of ubiquitous computer

vision systems. In today’s era of internet of things and ubiquitous computing, the

demand for high connectivity, especially with battery operated systems or those with

embedded energy harvesting units, continuous to increase. Ubiquitous surveillance

systems are not an exception. Scene analysis and object detection and classification

through feature extraction requires continuous processing and therefore energy

consumption. This poses more stringent constraints in current designs, compelling

designers to design for sub- or near-threshold voltage operation, or propose energy-

efficient techniques.

Energy-quality scalability adds another dimension to the existing energy-

performance trade-off. In EQSCALE (Chapters 3 and 4), we introduce tuneable knobs

to allow balance between energy and quality (in terms of image resolution and

matching percentage). We showed that we are able to provide an order improvement

in energy consumption with a feature extraction hardware with similar area and

complexity. Compared with a feature extraction hardware with similar energy

consumption, the area of EQSCALE is an order smaller.

With the data re-use in EQSCALE, an external DRAM (frame buffer) is no

longer necessary. Instead, an SRAM that serves as a sub-frame (less than 1/3 of a

frame) buffer can be used. Leveraging on the correlation between adjacent pixels in an

image, a non-precharge SRAM (Chapter 5) was proposed. By removing the precharge

stage, 50% of the energy consumption compared to 8T SRAM can potentially be saved.

The resulting speed is comparable to 8T, with 15% area overhead.

137

To ensure the authenticity and security of data, a light weight physically

unclonable function was proposed for use as chip identification (Chapter 6). A class of

static, monostable PUFs was presented, and results have shown that it has the best

repeatability, identifiability and randomness compared with other PUFs. It consumes

15fJ/bit of energy, which is at least an order lower compared to other PUFs.

Low yield due to variations is another key limitation when designing in sub- or

near-threshold voltages. This can be improved through upsizing, or by adding more

margin in the design to allot for the variations. Using a customized standard cell

designed for near-threshold operation, a 16-bit MCU with modified instruction set was

designed (Chapter 7). A maximum energy efficiency point at around 320mV (sub-

threshold) with a frequency of 750kHz was achieved using a commercial 65nm CMOS

technology. Although ISA extension results in slightly larger area and power, it reduces

energy consumption by decreasing the number of cycles required to finish one task.

138

References

[1] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2011.

[2] Y. Pu et al., “From Xetal-II to Xetal-Pro : On the Road Towards An Ultra
Low-Energy and High Throughput SIMD Processor,” IEEE Trans. Circuits

Syst. Video Technol., vol. 21, no. 4, pp. 472–484, 2011.

[3] Y. Pu, J. Pineda de Gyvez, H. Corporaal, and Y. Ha, “An Ultra-Low-Energy
Multi-Standard JPEG Co-Processor in 65 nm CMOS With Sub/Near
Threshold Supply Voltage,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp.
668–680, Mar. 2010.

[4] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-Threshold Computing: Reclaiming Moore’s Law Through Energy
Efficient Integrated Circuits,” Proc. IEEE, vol. 98, no. 2, pp. 253–266, Feb.
2010.

[5] M. Pedram and J. M. Rabaey, Power Aware Design Methodologies.
KluwerAcademic Publishers, 2002.

[6] D. M. Markovic, “A Power / Area Optimal Approach to VLSI Signal
Processing,” University of California, Berkeley, 2006.

[7] D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey,
“Ultralow-Power Design in Near-Threshold Region,” Proc. IEEE, vol. 98, no.
2, pp. 237–252, Feb. 2010.

[8] J. Burr and A. Peterson, “Ultra Low Power CMOS Technology,” in NASA

Symposium on VLSI Design, 1991, p. 11.1.1-11.1.12.

[9] B. Zhai et al., “Energy-Efficient Subthreshold Processor Design,” IEEE

Trans. Very Large Scale Integr. Syst., vol. 17, no. 8, pp. 1127–1137, 2009.

[10] Z. Wenfeng, “Ultra Energy-Efficient Sub-/Near-Threshold Computing:
Platform and Methodology,” National University of Singapore, 2013.

[11] S. Mysore, B. Agrawal, F. T. Chong, and T. Sherwood, “Exploring the
Processor and ISA Design for Wireless Sensor Network Applications,” in
International Conference on VLSI Design (VLSID), 2008, pp. 59–64.

[12] A. Wang and A. Chandrakasan, “A 180-mV subthreshold FFT processor using
a minimum energy design methodology,” IEEE J. Solid-State Circuits, vol.
40, no. 1, pp. 310–319, Jan. 2005.

[13] A. Wang and A. Chandrakasan, “A 180mV FFT Processor Using
Subthreshold Circuit Techniques,” in IEEE International Solid-State Circuits

Conference (ISSCC), 2004, vol. 34, no. 3, pp. 380–387.

[14] D. G. Lowe, “Object recognition from local scale-invariant features,” in
International Conference on Computer Vision, 1999, pp. 1150–1157 vol.2.

139

[15] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
2003.

[16] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[17] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF : Speeded Up Robust
Features,” in European Conference on Computer Vision (ECCV), 2006, pp.
404–417.

[18] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(SURF),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346--359, 2008.

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in International Conference on Computer

Vision, 2011, pp. 2564–2571.

[20] S. Park et al., “An Energy-Efficient and Scalable Deep Learning/Inference
Processor with Tetra-Parallel MIMD Architecture for Big Data Applications,”
IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 6, pp. 838–848, 2015.

[21] A. Ardakani, C. Condo, and W. J. Gross, “Sparsely-Connected Neural
Networks: Towards Efficient VLSI Implementation of Deep Neural
Networks,” in International Conference on Learning Representations (ICLR),
2017, pp. 1–14.

[22] H. B. Barlow, “Summation and Inhibition in the Frog’s Retina,” J. Physiol.,
vol. 119, pp. 69–88, 1953.

[23] K. A. C. Martin, “A Brief History of the ‘Feature Detector,’” Cereb. Cortex,
vol. 4, no. 1, pp. 1–7, 1994.

[24] S. Papert, “The Summer Vision Project.” pp. 1–6, 1966.

[25] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, 1986.

[26] T. Lindeberg, “Scale-space theory : A basic tool for analysing structures at
different scales,” J. Appied Stat., vol. 21, no. 2, pp. 225–270, 1994.

[27] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in
Alvey Vision Conference, 1988, pp. 147–151.

[28] E. Rosten and T. Drummond, “Fusing points and lines for high performance
tracking,” in EEE International Conference on Computer Vision (ICCV’),
2005, pp. 1508–1515.

[29] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” Lect. Notes Comput. Sci., vol. 3951, pp. 430–443, 2006.

[30] M. Calonder, V. Lepetit, and P. Fua, “BRIEF : Binary Robust Independent
Elementary Features,” in Lecture Notes in Computer Science, 2010, pp. 778–
792.

[31] K. Mikolajczyk and C. Schmid, “Performance evaluation of local
descriptors.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp.
1615–30, Oct. 2005.

140

[32] L. Juan and O. Gwun, “A Comparison of SIFT , PCA-SIFT and SURF,” Int. J.

Image Process., vol. 3, no. 4, pp. 143–152, 2009.

[33] Katholieke Universiteit Leuven, Inria Rhone-Alpes, and Center for Machine
Perception, “Affine Covariant Features.” [Online]. Available:
http://www.robots.ox.ac.uk/~vgg/research/affine/.

[34] I. Khvedchenia, “Feature Descriptor Comparison Report,” Computer Vision

Talks, 2011. [Online]. Available: http://computer-vision-
talks.com/2011/08/feature-descriptor-comparison-report/.

[35] I. Khvedchenia, “Comparison of OpenCV’s Feature Detection Algorithms II,”
Computer Vision Talks, 2011. [Online]. Available: http://computer-vision-
talks.com/2011/07/comparison-of-the-opencvs-feature-detection-algorithms-
ii/.

[36] D. Kim, K. Kim, J. Kim, S. Lee, S. Lee, and H. Yoo, “81.6 GOPS Object
Recognition Processor Based on a Memory-Centric NoC,” IEEE Trans. Very

Large Scale Integr. Syst., vol. 17, no. 3, pp. 370–383, 2009.

[37] K. Kim, S. Lee, J. Kim, M. Kim, and H. Yoo, “A 125 GOPS 583 mW
Network-on-Chip Based Parallel Processor With Bio-Inspired Visual
Attention Engine,” IEEE J. Solid State Circuits, vol. 44, no. 1, pp. 136–147,
2009.

[38] J. Kim et al., “A 201.4 GOPS 496mW Real-Time Multi-Object Recognition
Processor with Bio-Inspired Nueral Perception Engine,” in IEEE Journal of

Solid State Circuits (JSSC), 2009, vol. 45, no. 1, pp. 150–152.

[39] S. Lee, J. Oh, J. Park, J. Kwon, M. Kim, and H. Yoo, “A 345 mW
Heterogeneous Many-Core Processor With an Intelligent Inference Engine for
Robust Object Recognition,” IEEE J. Solid State Circuits, vol. 46, no. 1, pp.
42–51, 2011.

[40] S. Lee, J. Oh, M. Kim, J. Park, J. Kwon, and H.-J. Yoo, “A 345mW
Heterogenous Many-Core Processor with an Intelligent Inference Engine for
robust object recognition,” in IEEE International Solid-State Circuits

Conference (ISSCC), 2010, vol. 43, no. 3, pp. 1116–1128.

[41] J.-Y. Kim, S. Oh, S. Lee, M. Kim, J. Oh, and H.-J. Yoo, “An attention
controlled multi-core architecture for energy efficient object recognition,”
Signal Process. Image Commun., vol. 25, no. 5, pp. 363–376, Jun. 2010.

[42] Y. Su, K. Huang, T. Chen, Y. Tsai, S. Chien, and L. Chen, “A 52mW Full HD
160-Degree Object Viewpoint Recognition SoC with Visual Vocabulary
Processor for Wearable Vision Applications,” in Symposium on VLSI Circuits,
2011, pp. 258–259.

[43] J. Oh et al., “Low-Power Real-time Object-Recognition Processors for Mobile
Vision Systems,” IEEE Computer, pp. 38–50, 2012.

[44] D. Jeon et al., “An Energy Efficient Full-Frame Feature Extraction
Accelerator With Shift-Latch FIFO in 28 nm CMOS,” IEEE J. Solid-State

Circuits, vol. 49, no. 5, pp. 1271–1284, 2014.

[45] D. Jeon, Y. Kim, I. Lee, Z. Zhang, D. Blaauw, and D. Sylvester, “A Low-
Power VGA Full-Frame Feature Extraction Processor,” in International

141

Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp.
2726–2730.

[46] J. Park, H. Kim, and L. Kim, “A 182 mW 94.3 f/s in Full HD Pattern-
Matching Based Image Recognition Accelerator for an Embedded Vision
System in 0.13-μm CMOS Technology,” IEEE Trans. Circuits Syst. Video

Technol., vol. 23, no. 5, pp. 832–845, 2013.

[47] K. Lee and K. Byun, “A hardware design of optimized ORB algorithm with
reduced hardware cost,” Adv. Sci. Technol. Lett., vol. 43, no. Multimedia, pp.
58–62, 2013.

[48] K. Lee, “A Design of an Optimized ORB Accelerator for Real-Time Feature
Detection,” Int. J. Control Autom., vol. 7, no. 3, pp. 213–218, 2014.

[49] P. Viswanath, P. Swami, K. Desappan, and A. Jain, “ORB in 5ms : An
efficient SIMD friendly implementation,” in Asian Conference on Computer

Vision (ACCV), 2014.

[50] J. Weberruss, L. Kleeman, and T. Drummond, “ORB Feature Extraction and
Matching in Hardware,” in Australasian Conference Robotics and Automation

(ACRA), 2015.

[51] G. Bradski, “OpenCV,” Dr. Dobb’s Journal of Software Tools. 2000.

[52] O. Chum and J. Matas, “Matching with PROSAC-Progressive Sample
Consensus,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2005, pp. 220–226.

[53] M. a Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for
Model Fitting with Applicatlons to Image Analysis and Automated
Cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[54] P. Meinerzhagen, C. Roth, and A. Burg, “Towards generic low-power area-
efficient standard cell based memory architectures,” in Midwest Symposium on

Circuits and Systems, 2010, pp. 129–132.

[55] P. Meinerzhagen, O. Andersson, B. Mohammadi, Y. Sherazi, A. Burg, and J.
N. Rodrigues, “A 500 fW/bit 14fj/bit-access 4kb Standard-Cell Based Sub-VT
Memory in 65nm CMOS,” in European Solid-State Circuits Conference

(ESSCIRC), 2012, pp. 321–324.

[56] M. Horowitz, “Computing’s energy problem (and what we can do about it),”
in IEEE International Solid-State Circuits Conference (ISSCC), 2014, vol. 57,
pp. 10–14.

[57] J. Oh et al., “A 320 mW 342 GOPS Real-Time Dynamic Object Recognition
Processor for HD 720p Video Streams,” IEEE J. Solid State Circuits, vol. 48,
no. 1, pp. 33–45, 2013.

[58] J. M. Aman, J. Yao, and R. M. Summers, “Content-Based Image Retrieval on
CT Colonography Using Rotation and Scale Invariant Features and Bag-Of-
Words Model,” in IEEE International Symposium on Biomedical Imageing

(ISBI), 2010, pp. 1357–1360.

[59] R. G. J. Wijnhoven and P. H. N. De With, “Comparing Feature Matching for
Object Categorization in Video Surveillance,” Lect. Notes Comput. Sci., vol.
5807, pp. 410–421, 2009.

142

[60] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
Categorization with Bags of Keypoints,” in European Conference on

Computer Vision (ECCV), 2004, pp. 1–22.

[61] J. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated Circuits,
2nd ed. Prentice Hall, 2002.

[62] A. Raychowdhury, S. Mukhopadhyay, and K. Roy, “A Feasibility Study of
Subthreshold SRAM Across Technology Generations *,” in International

Conference on Computer Design (ICCD), 2005.

[63] B. H. Calhoun and A. P. Chandrakasan, “Static Noise Margin Variation for
Sub-threshold SRAM in 65-nm CMOS,” IEEE J. Solid State Circuits, vol. 41,
no. 7, pp. 1673–1679, 2006.

[64] M. Qazi, M. E. Sinangil, and A. P. Chandrakasan, “Challenges and Directions
for Low-Voltage SRAM,” IEEE Design and Test of Computers, pp. 32–43,
2011.

[65] K. Takeda et al., “A Read-Static-Noise-Margin-Free SRAM Cell for Low-
VDD and High-Speed Applications,” in IEEE Journal of Solid State Circuits

(JSSC), 2005, vol. 41, no. 1, pp. 478–480.

[66] J. P. Kulkarni, K. Kim, and K. Roy, “A 160 mV Robust Schmitt Trigger
Based Subthreshold SRAM,” IEEE J. Solid State Circuits, vol. 42, no. 10, pp.
2303–2313, 2007.

[67] J. P. Kulkarni, K. Kim, S. P. Park, and K. Roy, “Process variation tolerant
SRAM array for ultra low voltage applications,” in IEEE Design Automation

Conference (DAC), 2008, pp. 108–113.

[68] J. P. Kulkarni and K. Roy, “Ultralow-Voltage Process-Variation-Tolerant
Schmitt-Trigger-Based SRAM Design,” IEEE Trans. Very Large Scale Integr.

Syst., vol. 20, no. 2, pp. 319–332, 2012.

[69] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “A Variation-Tolerant Sub-
200 mV 6-T Subthreshold SRAM,” IEEE J. Solid State Circuits, vol. 43, no.
10, pp. 2338–2348, 2008.

[70] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A Sub-200mV 6T SRAM
in 0.13um CMOS,” in IEEE International Solid-State Circuits Conference

(ISSCC), 2007, pp. 8–10.

[71] L. Chang et al., “An 8T-SRAM for Variability Tolerance and Low-Voltage
Operation in High-Performance Caches,” IEEE J. Solid State Circuits, vol. 43,
no. 4, pp. 956–963, 2008.

[72] N. Verma and A. P. Chandrakasan, “A 65nm 8T Sub-Vt SRAM Employing
Sense-Amplifier Redundancy,” in IEEE International Solid-State Circuits

Conference (ISSCC), 2007, pp. 328–330.

[73] T. Kim, S. Member, J. Liu, J. Keane, C. H. Kim, and A. D. S. Cell, “A 0.2 V ,
480 kb Subthreshold SRAM With 1 k Cells Per Bitline for Ultra-Low-Voltage
Computing,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 518–529, 2008.

[74] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm Sub-threshold
SRAM Design for Ultra-Low-Voltage Operation,” IEEE J. Solid-State

Circuits, vol. 42, no. 3, pp. 680–688, Mar. 2007.

143

[75] M. Fojtik et al., “A Millimeter-Scale Energy-Autonomous Sensor System
With Stacked Battery and Solar Cells,” IEEE J. Solid State Circuits, vol. 48,
no. 3, pp. 801–813, 2013.

[76] G. Chen et al., “Millimeter-Scale Nearly Perpetual Sensor System with
Stacked Battery and Solar Cells,” in IEEE International Solid-State Circuits

Conference (ISSCC), 2010, pp. 166–167.

[77] M. E. Sinangil and A. P. Chandrakasan, “Application-Specific SRAM Design
Using Output Prediction to Reduce Bit-Line Switching Activity and
Statistically Gated Sense Amplifiers for Up to 1.9x Lower Energy / Access,”
IEEE J. Solid State Circuits, vol. 49, no. 1, pp. 1–11, 2014.

[78] M. E. Sinangil and A. P. Chandrakasan, “An SRAM Using Output Prediction
to Reduce BL-Switching Activity and Statistically-Gated SA for up to 1.9x
Reduction in Energy / Access,” in IEEE International Solid-State Circuits

Conference (ISSC), 2013, pp. 318–320.

[79] J. Kwon, I. J. Chang, I. Lee, H. Park, and J. Park, “Heterogeneous SRAM Cell
Sizing for Low-Power H.264 Applications,” IEEE Trans. Circuits Syst. I, vol.
59, no. 10, pp. 2275–2284, 2012.

[80] I. J. Chang, D. Mohapatra, and K. Roy, “A Priority-Based 6T/8T Hybrid
SRAM Architecture for Aggressive Voltage Scaling in Video Applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 2, pp. 101–112, Feb.
2011.

[81] N. Gong, S. Jiang, A. Challapalli, S. Fernandes, R. Sridhar, and S. Member,
“Ultra-Low Voltage Split-Data-Aware Embedded SRAM for Mobile Video
Applications,” IEEE Trans. Circuits Syst. II, vol. 59, no. 12, pp. 883–887,
2012.

[82] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power,” in International

Symposium on Computer Architecture (ISCA), 2002, pp. 148–157.

[83] B. Zimmer et al., “SRAM Assist Techniques for Operation in a Wide Voltage
Range in 28-nm CMOS,” IEEE Trans. Circuits Syst. II, vol. 59, no. 12, pp.
853–857, 2013.

[84] S. K. Mathew et al., “A 0.19pJ/b PVT-Variation-Tolerant Hybrid Physically
Unclonable Function Circuit for 100% Stable Secure Key Generation in 22nm
CMOS,” in Digest of Technical Papers - IEEE International Solid-State

Circuits Conference (ISSCC), 2014, vol. 2, no. c, pp. 278–280.

[85] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. van der Sluis, and V. can
der Leest, “Experimental Evaluation of Physically Unclonable Functions in 65
nm CMOS,” in European Solid State Circuit Conference (ESSCIRC), 2012,
pp. 486–489.

[86] R. Maes, “Physically Unclonable Functions : Constructions , Properties and
Applications,” Katholieke Universiteit Leuven, 2012.

[87] S. Rosenblatt et al., “Field Tolerant Dynamic Intrinsic Chip ID Using 32 nm
High-K/Metal Gate SOI Embedded DRAM,” IEEE J. Solid State Circuits, vol.
48, no. 4, pp. 940–947, 2013.

144

[88] Y. Su, J. Holleman, and B. Otis, “A 1.6pJ/bit 96% Stable Chip-ID Generating
Circuit using Process Variations,” in Digest of Technical Papers - IEEE

International Solid-State Circuits Conference (ISSCC), 2007, pp. 406–408.

[89] D. Nedospasov, J. P. Seifert, C. Helfmeier, and C. Boit, “Invasive PUF
analysis,” in Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), 2013, pp. 30–38.

[90] A. Alvarez, W. Zhao, and M. Alioto, “15fJ/b Static Physically Unclonable
Functions for Secure Chip Identification with < 2% Native Bit Instability and
140x Inter/Intra PUF Hamming Distance Separation in 65nm,” in IEEE

International Solid-State Circuits Conference (ISSCC), 2015, vol. 5, pp. 256–
258.

[91] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon Physical
Random Functions,” in ACM Conference on Computer and communications

security (CCS), 2002, p. 148.

[92] T. Xu, J. B. Wendt, and M. Potkonjak, “Matched Digital PUFs for Low Power
Security in Implantable Medical Devices,” 2014 IEEE Int. Conf. Healthc.

Informatics, pp. 33–38, 2014.

[93] A.-R. Sadeghi and D. Naccache, Eds., Towards Hardware-Intrinsic Security:

Foundations and Practice. Springer, 2010.

[94] R. Maes, Physically Unclonable Functions: Construction, Properties and

Applications. London: Springer, 2013.

[95] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater, “On a New
Way to Read Data from Memory,” in International IEEE Security in Storage

Workshop, 2002, pp. 65–69.

[96] O. Kömmerling and M. G. Kuhn, “Design Principles for Tamper-Resistant
Smartcard Processors,” in USENIX Workshop on Smartcard Technology,
1999, pp. 9–20.

[97] A. B. Alvarez, W. Zhao, and M. Alioto, “Static Physically Unclonable
Functions for Secure Chip Identification at 0.6-1 V and 15fJ/bit in 65nm,”
IEEE J. Solid State Circuits, vol. 51, no. 3, pp. 763–775, 2016.

[98] K. Yang, Q. Dong, D. Blaauw, and D. Sylvester, “A Physically Unclonable
Function with BER < 10^-8 for Robust Chip Authentication Using Oscillator
Collapse in 40nm CMOS,” in IEEE International Solid-State Circuits

Conference (ISSCC), 2015, pp. 254–256.

[99] S. Stanzione and G. Iannaccone, “Silicon Physical Unclonable Function
Resistant to a 10^25-trial brute force Attack in 90 nm CMOS,” in Symposium

on VLSI Circuits, 2009, pp. 116–117.

[100] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas,
“Extracting Secret Keys from Integrated Circuits,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 13, no. 10, pp. 1200–1205, 2005.

[101] M. M. Yu, R. Sowell, A. Singh, D. M. Raihi, and S. Devadas, “Performance
Metrics and Empirical Results of a PUF Cryptographic Key Generation
ASIC,” in IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), 2012, pp. 108–115.

145

[102] A. Rukhin et al., “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” Natl. Inst. Stand.

Technol., vol. 800–22, no. Rev 1a, p. 131, 2010.

[103] J. Li and M. Seok, “A 3.07µm{\^{}}2/Bitcell Physically Unclonable Function
with 3.5{\%} and 1{\%} Bit-Instability across 0 to 80°C and 0.6 to 1.2V in a
65nm CMOS,” in IEEE Symposium on VLSI Circuits, Digest of Technical

Papers, 2015, pp. 250–251.

[104] D. Puntin, S. Stanzione, and G. Iannaccone, “CMOS Unclonable System for
Secure Authentication Based on Device Variability,” in European Solid State

Circuit Conference (ESSCIRC), 2008, pp. 130–133.

[105] G. Selimis et al., “Evaluation of 90nm 6T-SRAM as Physical Unclonable
Function for secure key generation in wireless sensor nodes,” Proc. - IEEE

Int. Symp. Circuits Syst., pp. 567–570, 2011.

[106] K. Lofstrom, W. R. Daasch, and D. Taylor, “IC Identification Circuit using
Device Mismatch,” in IEEE International Solid-State Circuits Conference

(ISSCC), 2000, vol. 46, no. 8, pp. 372–373.

[107] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way
Functions,” Science, vol. 297, no. September, pp. 2026–2030, 2002.

[108] J. Guajardo, S. S. Kumar, G. Schrijen, and P. Tuyls, “FPGA Intrinsic PUFs
and Their Use for IP Protection,” in Lecture Notes in Computer Science, P.
Paillier and I. Verbauwhede, Eds. Springer, Heidelberg, 2007, pp. 63–80.

[109] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in ACM/IEEE Design Automation

Conference, 2007, pp. 9–14.

[110] S. S. Kumar, J. Guajardo, R. Maes, G. Schrijen, and P. Tuyls, “The Butterfly
PUF Protecting IP on Every FPGA,” in IEEE International Workshop on

Hardware-Oriented Security and Trust (HOST), 2008, no. 71369, pp. 67–70.

[111] J. W. W. Lee, B. Gassend, G. E. E. Suh, M. van Dijk, and S. Devadas, “A
Technique to Build a Secret Key in Integrated Circuits for Identification and
Authentication Applications,” in Symposium on VLSI Circuits, 2004, pp. 176–
179.

[112] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. ürgen
Schmidhuber, “Modeling Attacks on Physical Unclonable Functions,” in
Proceedings of ACM conference on Computer and Communications Security,
2010, pp. 237–249.

[113] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State as an
Identifying Fingerprint and Source of True Random Numbers,” IEEE Trans.

Comput., vol. 58, no. 9, pp. 1198–1210, 2009.

[114] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic PUFs From Flip-Flops on
Reconfigurable Devices,” in Workshop on Information and System Security,
2008, no. 71369, pp. 1–17.

[115] P. Simons, E. Van Der Sluis, and V. Van Der Leest, “Buskeeper PUFs, a
promising alternative to D Flip-Flop PUFs,” in IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST), 2012, pp. 7–12.

146

[116] G.-J. Schrijen and V. Van Der Leest, “Comparative Analysis of SRAM
Memories used as PUF Primitives,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2012, pp. 1319–1324.

[117] M. Bhargava, C. Cakir, and K. Mai, “Attack Resistant Sense Amplifier Based
PUFs (SA-PUF) with Deterministic and Controllable Reliability of PUF
Responses,” in IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), 2010, pp. 106–111.

[118] M. Bhargava and K. Mai, “An efficient reliable PUF-based cryptographic key
generator in 65nm CMOS,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2014, vol. 1, pp. 1–6.

[119] R. Helinski, D. Acharyya, and J. Plusquellic, “A Physical Unclonable
Function Defined Using Power Distribution System Equivalent Resistance
Variations,” in ACM/IEEE Design Automation Conference, 2009, pp. 676–
681.

[120] D. Suzuki and K. Shimizu, “The Glitch PUF: A new Delay-PUF Architecture
Exploiting Glitch Shapes,” in Workshop on Cryptographic Hardware and

Embedded Systems (CHES), 2010, pp. 366–382.

[121] D. Ganta, V. Vivekraja, K. Priya, and L. Nazhandali, “A Highly Stable
Leakage-Based Silicon Physical Unclonable Functions,” in International

Conference on VLSI Design, 2011, pp. 135–140.

[122] B. D. Choi, T. W. Kim, and D. K. Kim, “Zero bit error rate ID generation
circuit using via formation probability in 0.18 μm CMOS process,” IET

Journals Mag., vol. 50, no. 12, pp. 876–877, 2014.

[123] N. Liu, S. Hanson, D. Sylvester, and D. Blaauw, “OxID: On-chip one-time
random ID generation using oxide breakdown,” Symp. VLSI Circuits, pp. 231–
232, Jun. 2010.

[124] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and R.
Wolters, “Read-Proof Hardware from Protective Coatings,” in Cryptographic

Hardware and Embedded Systems (CHES), 2006, pp. 369–383.

[125] D. Roy, J. H. Klootwijk, N. A. M. Verhaegh, H. H. A. J. Roosen, and R. A. M.
Wolters, “Comb Capacitor Structures for On-Chip Physical Uncloneable
Function,” IEEE Trans. Semicond. Manuf., vol. 22, no. 1, pp. 96–102, 2009.

[126] M. Wan, Z. He, S. Han, K. Dai, and X. Zou, “An Invasive-Attack-Resistant
PUF Based On Switched-Capacitor Circuit,” IEEE Trans. Circuits Syst. I, vol.
62, no. 8, pp. 2024–2034, 2015.

[127] S. Satpathy et al., “13fJ/bit Probing-resilient 250K PUF Array with Soft Dark-
bit Masking for 1.94 % Bit-error in 22nm Tri-gate CMOS,” in European Solid

State Circuit Conference (ESSCIRC), 2014, pp. 239–242.

[128] S. Mathew et al., “A 4fJ/bit Delay-Hardened Physically Unclonable Function
Circuit with Selective Bit Destabilization in 14nm Tri-gate CMOS,” in
Symposium on VLSI Circuits, 2016, pp. 248–249.

[129] M. Khayatzadeh and Y. Lian, “A 4 . 28 pJ / access High-Density Average-8T
Sub - Threshold SRAM with Reverse Narrow-Width Effect (RNWE) -Aware
Sizing,” in IEEE International Conference on Solid-State and Integrated

147

Circuit Technology (ICSICT), 2014, pp. 8–11.

[130] M. Bhargava, C. Cakir, and K. Mai, “Comparison of Bi-stable and Delay-
Based Physical Unclonable Functions from Measurements in 65nm bulk
CMOS,” in IEEE Custom Integrated Circuits Conference (CICC), 2012, pp.
1–4.

[131] A. Maiti and P. Schaumont, “Improved Ring Oscillator PUF: An FPGA-
friendly Secure Primitive,” J. Cryptol., vol. 24, no. 2, pp. 375–397, 2011.

[132] M. Alioto and A. Alvarez, “Physically Unclonable Function Database.”
[Online]. Available: http://www.green-ic.org/pufdb.

[133] G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A Single-Chip Secure
Processor,” IEEE Des. Test Comput., vol. 24, no. 6, pp. 570–580, Nov. 2007.

[134] C. Bösch, J. Guajardo, A. R. Sadeghi, J. Shokrollahi, and P. Tuyls, “Efficient
helper data key extractor on FPGAs,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5154 LNCS,
pp. 181–197, 2008.

[135] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data algorithm
for SRAM PUFs,” in IEEE International Symposium on Information Theory,
2009, pp. 2101–2105.

[136] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-Overhead Implementation of a
Soft Decision Helper Data Algorithm for SRAM PUFs,” in IEEE

International Symposium on Information Theory, 2009, pp. 1–15.

[137] M. M. Yu, D. M. Raihi, R. Sowell, and S. Devadas, “Lightweight and Secure
PUF Key Storage Using Limits of Machine Learning,” in Workshop on

Cryptographic Hardware and Embedded Systems, 2011, pp. 358–373.

[138] M.-D. (Mandel) Yu and S. Devadas, “Secure and Robust Error Correction for
Physical Unclonable Functions,” IEEE Des. Test Comput., vol. 27, no. 1, pp.
48–65, Jan. 2010.

[139] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J.

Comput., vol. 38, no. 1, pp. 97–139, 2008.

[140] Z. S. Paral and S. Devadas, “Reliable and Efficient PUF-Based Key
Generation Using Pattern Matching,” in IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), 2011, no. 978, pp. 128–133.

[141] S. Eiroa, J. Castro, M. C. Martínez-Rodríguez, E. Tena, P. Brox, and I.
Baturone, “Reducing bit flipping problems in SRAM physical unclonable
functions for chip identification,” in IEEE International Conference on

Electronics, Circuits, and Systems (ICECS), 2012, pp. 392–395.

[142] J. Li and M. Seok, “A 3.07µm^2/Bitcell Physically Unclonable Function with
3.5% and 1% Bit-Instability across 0 to 80°C and 0.6 to 1.2V in a 65nm
CMOS,” in IEEE Symposium on VLSI Circuits, Digest of Technical Papers,
2015, pp. 250–251.

[143] B. Karpinskyy, Y. Lee, Y. Choi, Y. Kim, M. Noh, and S. Lee, “Physically
Unclonable Function for Secure Key Generation with a Key Error Rate of 2E-
38 in 45nm Smart-Card Chips,” in IEEE International Solid-State Circuits

148

Conference (ISSCC), 2016, pp. 158–160.

[144] M. T. Rahman, D. Forte, J. Fahrny, and M. Tehranipoor, “ARO-PUF: An
aging-resistant ring oscillator PUF design,” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2014, pp. 1–6.

[145] J. Bolus, B. Calhoun, and T. Blalock, “39 fJ/bit On-Chip Identification
ofWireless Sensors Based on Manufacturing Variation,” J. Low Power

Electron. Appl., vol. 4, no. 3, pp. 252–267, 2014.

[146] V. Jathar and L. Colaco, “Wireless Sensor Network - Authentication Protocol
for Military Surveillance,” Int. J. Sci. Res. Dev., vol. 4, no. 4, pp. 1467–1470,
2016.

[147] Y. M. Yussoff, H. Hashim, and M. D. Baba, “Identity-based Trusted
Authentication in Wireless Sensor Networks,” Comput. Res. Repos., vol. 9,
no. 3, pp. 230–239, 2012.

[148] M. Shiozaki, T. Kubota, T. Nakai, A. Takeuchi, T. Nishimura, and T. Fujino,
“Tamper-resistant authentication system with side-channel attack resistant
AES and PUF using MDR-ROM,” in IEEE International Symposium on

Circuits and Systems (ISCAS), 2015, vol. 2015–July, pp. 1462–1465.

[149] A. Aysu and P. Schaumont, “Precomputation Methods for Hash-Based
Signatures on Energy-Harvesting Platforms,” IEEE Trans. Comput., vol. 65,
no. 9, pp. 2925–2931, 2016.

[150] N. Ickes, Y. Sinangil, F. Pappalardo, E. Guidetti, and A. P. Chandrakasan, “A
10 pJ / cycle ultra-low-voltage 32-bit microprocessor system-on-chip,” in
European Solid-State Circuits Conference (ESSCIRC), 2011, pp. 159–162.

[151] W. Jin, S. Lu, W. He, and Z. Mao, “A 230mV 8-bit Sub-threshold
Microprocessor for Wireless Sensor Network,” in IEEE International

Conference on VLSI and System-on-Chip, 2011, no. 2009, pp. 126–129.

[152] B. A. Warneke and K. S. J. Pister, “An Ultra-Low Energy Microcontroller for
Smart Dust Wireless Sensor Networks,” in IEEE International Solid-State

Circuits Conference (ISSC), 2004, pp. 316–317.

[153] Y. Yano, “Take the Expressway to go Greener,” in IEEE International Solid-

State Circuits Conference (ISSCC), 2012, pp. 24–30.

[154] G. Chen, S. Hanson, D. Blaauw, and D. Sylvester, “Circuit Design Advances
for Wireless Sensing Applications,” Proc. IEEE, vol. 98, no. 11, pp. 1808–
1827, 2010.

[155] W. Zhao, Y. Ha, C. Hau, and A. B. Alvarez, “Robustness-Driven Energy-
Efficient Ultra-Low Voltage Standard Cell Design with Intra-Cell Mixed-V t
Methodology,” in International Symposium on Low Power Electronic Devices

(ISLPED), 2013, pp. 323–328.

[156] ASIP Solutions Inc., “Brownie STD 32 Reference Manual, v1.1,” 2008.

[157] ASIP Solutions Inc., “Brownie Micro 16 Reference Manual, v.2.0,” 2010.

[158] W. Zhao, Y. Ha, C. H. Hoo, and A. B. Alvarez, “Robustness-driven energy-
efficient ultra-low voltage standard cell design with intra-cell mixed-Vt
methodology,” in Proceedings of the International Symposium on Low Power

149

Electronics and Design, 2013.

[159] D. Bol et al., “SleepWalker: A 25-MHz 0.4-V Sub-mm 7- W/MHz
Microcontroller in 65-nm LP/GP CMOS for Low-CarbonWireless Sensor
Nodes,” IEEE J. Solid State Circuits, vol. 48, no. 1, pp. 20–32, 2013.

150

List of Publications

1. A. Alvarez and M. Alioto, “Security down to the Hardware Level,” in Enabling

the Internet of Things - from Circuits to Networks, Springer, 2017.

2. A. B. Alvarez, W. Zhao, and M. Alioto, “Static Physically Unclonable Functions
for Secure Chip Identification at 0.6-1 V and 15fJ/bit in 65nm,” IEEE J. Solid

State Circuits, vol. 51, no. 3, pp. 763–775, 2016.

3. A. Alvarez, W. Zhao, and M. Alioto, “15fJ/b Static Physically Unclonable
Functions for Secure Chip Identification with < 2% Native Bit Instability and 140x
Inter/Intra PUF Hamming Distance Separation in 65nm,” in IEEE International

Solid-State Circuits Conference (ISSCC), 2015, pp. 256–258.

4. W. Zhao, A. B. Alvarez, and Y. Ha, “A 65-nm 25.1-ns 30.7-fJ Robust
Subthreshold Level Shifter With Wide Conversion Range,” IEEE Trans. Circuits

Syst. II, vol. 62, no. 7, pp. 671–675, 2015.

5. W. Zhao, Y. Ha, C. Hau, and A. B. Alvarez, “Robustness-Driven Energy-Efficient
Ultra-Low Voltage Standard Cell Design with Intra-Cell Mixed-Vt
Methodology,” in International Symposium on Low Power Electronic Devices

(ISLPED), 2013, pp. 323–328.

	1-Alvarez-Title.pdf
	2-Alvarez-Introductory.pdf
	3-Alvarez-Contents.pdf
	4-Alvarez-Summary.pdf
	5-Alvarez-Table.pdf
	6-Alvarez-Main2.pdf

