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Summary 

 

Making machines more human has been a long-term research goal across 

different disciplines. Computer vision plays a major role in this goal by giving the 

machine a way to analyse and interpret an image by dividing images into smaller but 

meaningful segments. One critical step in computer vision is feature extraction, which 

identifies unique features of objects in an image or video. This could lead to a wide 

range of applications, including ubiquitous surveillance, which involves area 

monitoring, object detection, tracking, and remote sensing. For applications like 

surveillance, real-time processing is usually required, making the processing and 

analysis tasks more compute intensive, resource hungry, and therefore power 

consuming. To cater to battery-operated devices, or those using power from energy 

harvesting techniques, power consumption is pushed to sub-mW at tens of MHz 

frequency. Thus, designers are faced with two opposing constraints: high throughput 

and low energy. 

An energy-quality scalable feature extraction accelerator (EQSCALE) is 

presented as the first chip demonstration of the Oriented FAST Rotated BRIEF (ORB) 

algorithm. In this accelerator, tuning knobs are introduced, allowing for adjustable 

balance between the energy consumption and quality of the feature extraction 

accelerator. As proof of concept, a 40nm testchip was designed and tested to have an 

energy of 55.6pJ per pixel on VGA format at 30 fps, with area of 0.55 mm2. The effect 

of the different knobs on energy and accuracy, as well as some intuition on the trade-

off between energy and performance is presented, to allow for scalability depending on 

the need of the application. 

Memory also plays a role in both performance and energy consumption of the 

system. Leveraging on the high correlation of adjacent pixels in an image, a non-pre-

charged SRAM (NPSRAM) is proposed. Compared with conventional 8T SRAM, we 
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show that NPSRAM can reduce energy by 30-75%, with 15% area overhead, at iso-

speed.  

For ubiquitous surveillance, especially with sensor nodes for detecting and 

tracking objects, confidential information are passed from node to node. With the ever-

growing number of IoT devices and nodes, security issues like node cloning are 

expected to arise. There is therefore a need to ensure data authenticity, integrity and 

confidentiality. For this, we propose to use chip identification using physically 

unclonable functions (PUFs). A PUF is a function that maps an input challenge to an 

output response in a repeatable but unpredictable manner, leveraging on chip-specific 

random process variations. A novel class of mono-stable static (PUFs) for secure key 

generation and chip identification is presented. From a statistical quality viewpoint, the 

65nm PUF testchip achieved best-in-class reproducibility and uniqueness. Energy 

consumption was likewise shown to be the best compared to state of the art in PUFs, 

at 15fJ/bit. 
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Chapter 1 

Introduction 

 

Computers are known to outperform humans when it comes to computations and 

logical operations. When it comes to analyzing images and video scenes, however, 

humans could easily outperform computers. Research in computer vision and image 

and video processing has been developing to narrow this gap [1]. Image and video 

processing has become a trend in the last decade, with applications ranging from image 

reconstruction, restoration and enhancement, image and video compression, to object 

classification and real-time high-resolution 3D video rendering. These applications 

require a lot of computations at a high rate. As such, much is required from the 

computing unit.  

With the increasing demand for high connectivity in the internet of things (IoT) 

and ubiquitous surveillance, the demand for low-energy, real-time processing for 

computer vision applications continues to grow. Thus, designers are faced with two 

opposing constraints: high throughput and low energy [2]. Although desktop computers 

and servers are able to keep up with these demands, for mobile devices, the increasing 

power consumption becomes a challenge. To achieve low energy, designers have opted 

to aggressively scale voltages into the sub- or near-threshold region [3], [4]. However, 

scaling down voltage supply comes at a performance cost. To alleviate this problem, 

pipelining and parallelism are explored.  

Section 1.1, discusses existing techniques to achieve ultra-low power (ULP) and 

energy-efficient designs. In Section 1.2, an overview of our research on energy-

efficient feature extraction system, as well as the flow of this thesis is presented.  
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1.1  Energy- and Power-Limited Designs 

Moore’s law has predicted the scaling down of transistor sizes and increase in 

transistor density per chip. Although power per transistor decreases due to the decrease 

in transistor size, the increase in density results in an overall increase in power [5], [6]. 

To achieve ultra low power (ULP) consumption, aggressive voltage scaling has been 

the most widely used, due to the quadratic relationship between the supply voltage and 

power. With this decrease in VDD (to reduce power and therefore energy), comes the 

trade-off of larger delay (therefore increase in energy). This trade-off is best illustrated 

in [4] and shown in Fig. 1.1, where the minimum energy point (MEP).  

 
Fig. 1.1 Supply vs energy/operation, divided into super-VTH, Near-VTH and sub-VTH 
regions [4] 

 

From Fig. 1.1, working in the super-VTH region is the conventional region and 

results in high energy reduction with slight reduction in VDD. In the sub-VTH region, 

delay increases exponentially with VDD. The near-VTH region is where a good balance 

is between the change in energy and change in delay. The MEP may or may not be in 

the near-VTH region, but the minimum delay point (MDP) is at a higher energy point 

[7], [8]. Traditional designs have been targeting for the MDP, until energy constraints 

started to be tighter, that they proposed the energy-delay (ED) product as a metric [8]. 
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Depending on the application, some may favour energy over delay, using E2D or E3D 

as metrics, or favour delay using ED2 or ED3. 

Energy can be reduced at different levels of the design. At the architecture level, 

parallelism, pipelining and instruction set architecture (ISA) design have been explored 

[3], [6], [9]–[11]. At the circuit level, sizing, layout, and even new circuits have been 

used to allow the system to operate properly at low voltages [7], [10], [12], [13]. 

1.2  Thesis Overview 

 

Fig. 1.2 Feature extraction system overview 

 

An overview of the feature extraction system (Fig. 1.2) shows an imager passing 

data to a sub-frame buffer. Input rate to the buffer is assumed to be 30 frames/sec, by 

default. These pixels are temporarily stored in a sub-frame buffer and processed by a 

feature extraction accelerator, with an assumed input rate of 1 pixel per cycle. The 

feature extraction passes keypoints to an object classifier to identify objects from a 

database. A chip identification is needed to authenticate the device and the data it sends, 

a task that is essential in visual surveillance systems. To control all these processes 

(handshake between blocks, data security and chip authentication) a low-energy 

microcontroller (not shown in the figure) is needed. 
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At the heart of the feature extraction system is EQSCALE – an energy-quality 

scalable feature extraction accelerator. Chapter 2 starts with some basics and the state-

of-the-art in feature extraction algorithms. Metrics for comparison as well as literatures 

comparing different algorithms are also presented.  

Simulation results comparing the performance of three candidate algorithms, 

namely SIFT [14]–[16], SURF [17], [18] and ORB [19] are presented in Chapter 3. In 

this chapter, the concept of energy-quality scalability is introduced into the feature 

extraction accelerator (EQSCALE) through tuneable knobs, allowing for adjustable 

balance between energy and quality.  

Details of the hardware implementation and chip testing results are presented in 

Chapter 4. Using benchmark images, a quantitative analysis of the trade-off between 

energy and quality for every knob, as well as for a combination of the knobs is shown. 

Between the imager (currently external to the system) and the feature extraction 

accelerator (see Fig. 1.2) is a sub-frame buffer (as opposed to an external full-frame 

buffer), which is best implemented using an SRAM, for best balance between area and 

speed. Chapter 5 presents simulation results for a non-precharged SRAM (NPSRAM), 

which leverages on the high correlation of adjacent pixels in image. Different 

topologies that could allow for non-precharged bitlines and their corresponding issues 

and drawbacks are analyzed. The chapter is concluded with a comparison between the 

conventional 8T SRAM and the NPSRAM. 

Chapter 6 covers the concept of physically unclonable functions (PUFs) and their 

applications in hardware security, such as for chip identification. Metrics and 

discussion of the state-of-the-art are likewise covered. Finally, a novel class of static, 

monostable PUFs is presented, together with the results and comparison with other 

PUFs. 
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Results for the energy-efficient microcontroller design utilizing a customized 

standard cell library for sub-/near-threshold operation is presented in Chapter 7. 

Finally, we summarize the contribution of this thesis in Chapter 8. Discussion on 

possible future work, including the object detection and classification block in Fig. 1.2, 

is also included. 
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Chapter 2 

Feature Extraction Algorithms and their Suitability for 

Energy-Autonomous Computer Vision 

 

One critical step in computer vision is feature extraction. Given an image or a 

video scene, we, as humans with all the stored experience and complex visual system, 

can easily distinguish and classify the objects within it, as well as a perceived depth 

(i.e., foreground and background). In computers, on the other hand, an image is just a 

2-D array of pixel intensities. To be able to identify objects, it has to extract relevant 

information from the image or video frame. Similar to human vision system, feature 

extraction for computer vision is a continuous (always on) process, processing videos 

or scenes frame by frame. As such, aside from accuracy or quality of the algorithm, its 

complexity and therefore energy consumption also has to be considered for it to be 

suitable for energy-autonomous computer vision systems. It should be noted that recent 

researches on deep neural networks (DNNs), or specifically convolutional neural 

networks (CNNs), have shown remarkable results close to human accuracy in image 

classification and recognition [20]. However, current hardware implementations of 

CNNs occupy very large silicon area and suffer from high power consumption due to 

their complexity [21]. As such, researchers are still working on implementation 

optimizations for DNNs to reduce their silicon footprint and power consumption. 

Feature extraction goes through three major steps in analyzing an object in an 

image: (1) detection, (2) description, and (3) matching. To detect objects, the computer 

needs to find a point or set of points that may be unique to the object, such as edges, 

corners and blobs. These are called interest points, keypoints or features. The next step 
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is representing these features so that they can be scale and rotation invariant, and unique 

to the feature. This is called description. Finally, matching these described points 

usually requires computing distances to see if they match.   

Several detectors and descriptors have been proposed since the middle of 1900s. 

Most common of which are the Scale Invariant Feature Transform (SIFT) [14] and the 

Speeded Up Robust Features (SURF) [18]. Some background on these feature 

extraction algorithms will be presented in Section 2.1. Section 2.2 will discuss the 

metrics used in comparing these algorithms, as well as some comparison done using 

these metrics. The state of the art in hardware implementation of feature extraction 

accelerators is discussed in Section 2.3. 

2.1.  Background 

The concept of feature detection was first proposed in 1950s, in their efforts to 

understand our complex visual system [22], [23]. Its application in computer vision 

was first demonstrated a decade after in the Summer Project [24], with the goal of 

detecting an object. Different algorithms for feature extraction have been proposed 

thereafter, using them for various applications, such as image detection, classification 

and tracking, image stitching, and augmented reality, to name a few.  

Edges are one of the most intuitive features to detect objects, allowing the 

algorithm to draw the outline of the object. One way to detect edges is using Gaussian 

filters, to highlight abrupt intensity changes in the image [25]. Lindeberg [26] 

suggested that feature that catches the eye most are those that are stable at higher scales 

(greater distance). They then proposed the use of the extrema of the Laplacian of 

Gaussian (LoG) as an interest point detector to be scale invariant. One of the most 

popular interest point detector and descriptor today is the Scale Invariant Feature 

Transform (SIFT) [14]–[16]. Based on the work in [26], Lowe [16] proposed an 

approximation of LoG by creating an image pyramid through levels of Gaussian 
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smoothed images and then taking the difference of adjacent Gaussian smoothed images 

to create the difference of Gaussian (DoG). A candidate point is then considered an 

interest point if it is the extrema (maximum or minimum) among its 8 neighbours 

within the scale and the 9 neighbours each on the top and bottom scales (total of 26 

neighbour pixels in the 3x3x3 region). Fig. 2.1 illustrates the image pyramid and the 

interest point detection. 

 

 

 

Fig. 2.1 SIFT Interest Point Detection. An image pyramid (left) is created through 
levels of gaussian smoothed images (scales) and sub-sampled to create the next octave. 
A candidate point is considered an interest point if it is the extrema within the 3x3x3 
difference of Gaussian (DoG) region centered at the candidate point (right). 

 

For a feature detected at location x,y, the magnitude, m, and orientation, θ, of 

pixels around the interest point are calculated using the equations in Eq. 2.1 and Eq. 

2.2, respectively, where p(x,y) is the pixel intensity.  These are used for description, as 

illustrated in Fig. 2.2. The descriptor window is then divided into 4x4 sub-windows.  

Eight orientation bins are taken per sub-window, adding the magnitudes within the 

same orientation bin.  These magnitudes are then concatenated to form the 128-vector 

(8 orientation bins x 4x4 sub-windows) SIFT descriptor.   
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Fig. 2.2 SIFT keypoint description. Gradient magnitude and orientation is computed at 
each point in a region around the interest point (left).  Samples are then accumulated 
into orientation bins over 4x4 sub-regions (right).  Orientation magnitudes are then 
concatenated to form the descriptor vector. 

 

Although SIFT was proposed more than a decade ago, it still remains popular 

because of its superior performance. An almost similar but slightly simplified version 

of the detector and descriptor is the Speeded Up Robust Features (SURF) [18].  Instead 

of using DoG as an approximation of LoG, they simplified the smoothing through box 

filters, as shown in Fig. 2.3. Image scales are likewise created using enlarged filter 

boxes. Similar to SIFT, SURF interest points are also identified by finding the extrema 

within the 3x3x3 neighbourhood.   

 

Fig. 2.3 SURF Box Filters. From left to right, discretized Gaussian second order 
derivatives in the y-direction, and xy-direction, and their approximations (grey regions 
are zeros). 

 

The descriptor is done using Haar wavelet responses in the x- (denoted as dx) 

and y- (denoted as dy) directions. The descriptor vector becomes a little less complex, 
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that instead of having the orientation bins, the vector is formed by taking Σdx, Σ|dx|, 

Σdy and Σ|dy| for each sub window and concatenating these values, to form the 64-

vector (4 parameters x 4x4 sub-windows) descriptor. Details of this vector is shown in 

Fig. 2.4. 

 

Fig. 2.4 SURF Descriptor. The grid is oriented along the dominant orientation. The 
cumulative response along the x- and y- directions for each sub window are computed. 
The descriptor vector is formed by concatenating the Σdx, Σ|dx|, Σdy and Σ|dx| for each 
of the 4x4 sub window. 

 
Corners are also useful features to detect objects in an image. The work in [27] 

uses a combination of corners and edges to isolate objects from backgrounds. Since 

Gaussian filters are complex, they used a simpler [-2 -1 0 1 2] filter [1] to approximate 

the effect of Gaussian filtering. Another popular corner detector is the Features from 

Accelerated Segment Test (FAST) [28], [29]. In Fig. 2.5, the idea is to compare the 

intensity of the candidate pixel or interest point (labelled C in the figure) with those on 

the circumference of a circle around it (highlighted numbered pixels in the figure). Each 

of the surrounding pixels is labelled black if it is less (darker) than the candidate pixel 

by at least a threshold value; it is labelled white if it is greater than the candidate pixel 

by at least a threshold value; and grey if its intensity is just within a threshold of the 

candidate pixel intensity. A candidate point is then considered a feature if at least n 

(8<n<13) contiguous pixels are either all labelled white or all labelled black. 
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Fig. 2.5 FAST interest point detection. Point C is compared to 16 points around it to 
determine if C is an interest point. 

 
FAST is only a detector. That is, it detects only the location of an interest point 

– it does not represent this interest point into a value or vector that can be matched with 

points on a different image or in the database (for the case of objection recognition). In 

this case, the description is done using other available algorithms. A commonly used 

descriptor for FAST is the Binary Robust Independent Elementary Features (BRIEF) 

[30]. BRIEF is done by defining a test τ on a patch p of size SxS as in Eq. 2.3, where 

p(k) is the pixel intensity of p at k. The BRIEF descriptor f(p) is then the nd-dimensional 

bitstring in Eq. 2.4, where nd is 128, 256 or 512. 

��
; �, �� = �1       ! 
��� < 
���
0      $�ℎ&'( )&                                           (2.3) 

!*+�
� = ∑ 2.����
; �., �.��/./*+                                    (2.4) 

 
The problem with FAST-BRIEF is that it is neither scale nor rotation invariant. 

The group from Willow Garage proposed a FAST-BRIEF variant that is scale and 

rotation invariant. They called their algorithm the Oriented FAST Rotated BRIEF 

(ORB) [19]. Like SIFT and SURF, scale-invariance is achieved by creating an image 

pyramid and getting features points at each scale. Rotation-invariance, on the other 

hand, is achieved through the identification of orientation of the corner for each interest 

point, and constructing the descriptor vector based on this orientation.  Orientation is 

done using the concept of moments and centroid. The moment, mpq, of a patch and the 

corresponding centroid, C, are defined in Eq. 2.5 and Eq. 2.6, respectively. Having the 
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centroid, a vector is formed, connecting the center, O, and the centroid, C. The 

orientation, θ, is then given in Eq. 2.7. Given the x,y locations for the test bitstring in 

Eq. 2.3 and the patch orientation in Eq. 2.7, the locations are steered to get the new 

feature vector. 

��0 =  ∑ ���01��, ���,�                                             (2.5) 

2 =  �345
365

, 354
365

�                                                    (2.6) 

� =  �������7�, ��7�                                             (2.7) 

 

2.2.  Metrics and Comparison 

Several papers [31], [32] have compared different detectors and descriptors. In 

[31] they focused on the matching performance of the descriptors, using recall and 1-

precision (shown in Eq. 2.8 and Eq. 2.9, respectively) as their metrics. The number of 

correspondence would be the number of pairs identified as match using the distance 

comparison.  

'&8�99 =  #;<==>;? 3@?;A>B
#;<==>B�<*C>*;>B                                                    (2.8) 

1 − 
'&8 ) $� =  #D@EB> 3@?;A>B
#;<==>;? 3@?;A>B�#D@EB> 3@?;A>B                             (2.9) 

Using the data set from [33], their comparison results (arranged according to 

decreasing number of nearest neighbour correct matches) are shown in Table 2.1. A 

snapshot of the data set is also shown in Fig. 2.6. It should be noted that the gradient of 

location and orientation histogram (GLOH) is a descriptor proposed by the group, 

which uses principal components analysis (PCA) for matching. It can be seen in the 

table that GLOH performs best in their 2 metrics, followed closely by SIFT. 
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Table 2.1 Comparison Results [31] 
Descriptor Recall 1-precision #correct matches 

GLOH 0.25 0.52 192 
SIFT 0.24 0.56 177 

Shape context 0.22 0.59 166 
PCA-SIFT 0.19 0.65 139 
Moments 0.18 0.67 133 

Cross Correlation 0.15 0.72 113 
Steerable filters 0.12 0.78 90 

Spin images 0.09 0.84 64 
Differential invariants 0.07 0.87 54 

Complex filter 0.06 0.89 44 
 

 
Fig. 2.6 Benchmark images used for comparison 

With regards to Table 2.1, it should be noted that the recall metric reflects the 

same ranking as the number of correct matches, with the higher value corresponding to 

more correct matches. However, the absolute value of recall does not give any intuitive 

meaning. In [32], SIFT, SURF and PCA-SIFT, were compared using the same data set 

as in Fig. 2.6. Aside from execution time, they also used repeatability (shown in Eq. 

2.10) as a metric, where C(I1,I2) is the correspondence between image I1 and I2, and m1 

and m2 are the number of features for I1 and I2, respectively. Their results show that 

SURF is the fastest, while SIFT is the best in terms of repeatability with scale, rotation 

and blur changes. SURF, however, is the best in terms of repeatability with change in 

illuminations. It should be noted at this point that while recall is a metric for descriptors 
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(how well the representation uniquely identifies the feature), repeatability is a metric 

for detectors (whether the same feature is identified under different variations of the 

image).  

'�,� =  F�G4,GH�
3>@*�34,3H�                                                    (2.10) 

A comparison of the detectors and descriptors were also done using the OpenCV 

library [34], [35]. In terms of keypoint matching, they evaluated the average number 

of detected features as well as the percentage tracking, for the different feature 

detection algorithms. These are shown in Fig. 2.7 and Fig. 2.8, respectively. We can 

see from Fig. 2.7 that FAST detects more than 7x features compared to others. For this 

simulation, ORB always gives 702 features, which is set in the algorithm. In Fig. 2.8, 

we can see that ORB is almost able to track all the detected features. In terms of rotation 

invariance, they showed that SIFT and ORB perform best, as can be seen in Fig. 2.9. 

In terms of scale invariance, on the other hand, SIFT and SURF perform best (Fig. 

2.10). 

 

Fig. 2.7 Average number of detected keypoints 
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Fig. 2.8. Comparison for scale invariance 

 

Fig. 2.9. Comparison for rotation invariance 

 

Fig. 2.10. Comparison for scale invariance 
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We can see from both results that SIFT does seem to be a good candidate for a 

feature extraction algorithm. However, the drawback is the speed or execution time, as 

was already shown in [32]. Using the OpenCV library, the same results are also 

obtained, as shown in Fig. 2.11 and Fig. 2.12. The performance test was done on Mac 

Book Pro 2.2 with Core 2 Duo 2.13 GHz platform.   

 

Fig. 2.11. Comparison of detection time 

 

Fig. 2.12. Comparison of total execution time 

Finally, performance of these descriptors using a video sequence was compared, 

and revealed that although SIFT and SURF still perform best, their performance still 

needs improvement. This result is shown in Fig. 2.13. 
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Fig. 2.13. Performance comparison using video sequence 

2.3.  State-of-the-Art Hardware Implementations 

In this section, we discuss state of the art hardware implementations of the 

feature extraction methods discussed in the previous section. Specifically, we have 

ASIC implementations of SIFT, SURF, FAST-BRIEF, and ORB FPGA 

implementations. We conclude this section with a simple comparison of these 

implementations. 

2.3.1  SIFT 

As was evident from the previous sections, SIFT has complex iterative 

computations. It was shown in [36] that more than half of the operations in SIFT is in 

Gaussian filtering. Their breakdown is shown in Fig. 2.14. As such implementations of 

SIFT are typically done using massively parallel SIMD processors [36]–[42]. To 

reduce computational complexity in the implementation of the SIFT algorithm, 

implementations typically include a region of interest (ROI) detector and do the feature 

extraction only on a portion of the image [37]–[41]. As an example, authors in [39], 

[40] used what they call the Unified Visual Attention Model (UVAM), where they 

process keypoint detection only on some region of interest (ROI).  Their model is 

illustrated in Fig. 2.15. We can see from the figure that their initial ROI selection is 

based on some saliency mapping. The ROI is then adjusted based on feedback from 

initial matching. 
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Fig. 2.14. Breakdown of computational requirement in SIFT [36] 

 

 
Fig. 2.15. Unified Visual Attention Model (UVAM) 

 
To achieve 30 fps with 640x480 resolution, massive parallelism using 4 single 

input multiple data (SIMD) vector processing elements and 32 multiple input multiple 

data (MIMD) scalar processing elements was implemented. Their results show 345mW 

power consumption in 0.13um process. A later version of their design in [43] improved 

on the UVAM by proposing the Context-Aware Visual Attention Model (CAVAM), 

which incorporates temporal similarities between successive frames. For this 

implementation, 31 heterogeneous cores -- with 4 simultaneous multithreading (SMT) 

cores for feature extraction, were used. Increased hardware utilization was 
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accomplished with their 5-stage pipeline operation, as shown in Fig. 2.16. Each image 

is divided into 16x16 tiles, and each tile is assigned to a thread in each of the SMT 

cores for feature extraction. Their results show that they can process 30 fps of 720x1280 

resolution with an average power of 320mW in 0.13um process. 

 

Fig. 2.16. SIFT 5-stage Pipeline Operation 

 

2.3.2  SURF 

Jeon, et. al. [44], [45] proposed to use SURF as their feature extraction engine 

for micro autonomous vehicle (MAV) navigation system. Unlike the work in [39] and 

[43], they used full frame extraction of feature point, without ROI detection. One 

simplification they did with the SURF algorithm is that instead of using multiple 

octaves with 4 scales per octave, they used a single octave with 5 scales. This is 

justifiable as they are targeting only 640x480 frame sizes, and therefore subsampling 

the image may not give very relevant information. To reduce the storage requirements, 

they divided the image into 11 sections with 88 pixels of overlap. Instead of SRAMs, 

they used a FIFO for image storage, and duplicated the image integrator for the 

descriptor block to eliminate the need of storing the integral image itself. In this way, 
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they are exchanging the additional image integrator with that of the SRAM for the 

integral image. Their architecture is shown in Fig. 2.17. 

 

Fig. 2.17. SURF Feature Extraction Architecture 

To further reduce energy consumption, they proposed a hybrid FIFO architecture 

using shift latches with balanced leakage compensation technique.  They also operated 

their system in 470mV supply voltage to further reduce their power consumption.  

Summary of their results is shown in Table 2.2. 

Table 2.2 SURF Implementation Summary 

 

2.3.3  FAST-BRIEF 

Park, et. al. [46] implemented FAST with BRIEF, using pattern-based matching. 

After labelling the surrounding pixels as white (brighter than the center pixel by a 

threshold), black (darker than the center pixel by a threshold) or grey (intensity within 

threshold from center pixel), they assemble the labels into a string and compare with a 

string of all whites and a string of all blacks (both of length n). The block diagram of 

the detector is shown in Fig. 2.18. To speed up the process, they included an early 

rejection hardware, which detects patterns that are definitely not corners. This is done 
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by examining the four compass directions (pixels 1,5, 9 and 13 of Fig. 2.5). To be a 

corner in FAST-12 (n=12), at least 3 of these pixels have to be all white or all black. In 

FAST-9 (n=9), at least two contiguous compass directions must be either both white or 

both black. Otherwise, the candidate point is rejected as not a corner. With this 

implementation, a segment test requires 1-3 cycles to complete. They also proposed a 

unified hardware platform for interest point detection of FAST and matching with 

BRIEF (Fig. 2.19). With this unified hardware platform, some resources (such as 

memory storage) are shared between the interest point detection and matching 

hardware, at the same time, load is somewhat balanced, resulting in an even pipeline 

operation. Table 2.3 shows their implementation summary.  It should be noted that 

more than 90% of their chip’s area is occupied by the SRAM for the descriptor buffer. 

 

Fig. 2.18. FAST Corner Detector 
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Fig. 2.19. FAST and BRIEF Unified Hardware Platform 

Table 2.3 FAST-BRIEF Implementation Summary 

 

2.3.4  ORB 

To the best of our knowledge, ASIC implementation of the ORB algorithm has 

not yet been proposed. There are, however, several FPGA implementations such as the 

works in [47]–[50]. A comparison between SURF and ORB was done and it was shown 

that ORB is 2-3x faster than SURF while occupying ~4x less FPGA area.  
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Chapter 3  

ORB Algorithm and IC Design Considerations 

 

Having established the necessary background on feature extraction algorithms 

and their metrics in the previous chapter, this Chapter continues with simulation results 

of the ORB algorithm implementation. Section 3.1 will cover some simple comparison 

among SIFT, SURF and ORB, to justify the choice of implementing ORB as our feature 

extraction algorithm. Analysis of the effect of individual knobs is presented in Section 

3.2. Section 3.3 covers the hardware model to show the effect of implementation 

simplification or approximations, and how the chosen knobs interact with the hardware 

implementation. 

3.1.  Comparison of SIFT, SURF and ORB 

OpenCV [51] was used to compare results for SIFT, SURF and ORB. Although 

comparison of some (or all) of these algorithms have been done in previous works, as 

discussed in the previous chapter, doing the comparison on our own allows us to verify 

the comparisons as well as identify weaknesses and strengths of algorithms that would 

likewise not be indicated in the comparisons. Knowing that each algorithm will have 

some tuneable parameters that affect its performance, default values for these 

parameters were used during comparison. For succeeding comparisons, we use 

execution time and recall as our metrics. Execution time is divided into the 3 major 

steps, namely, detection, description and matching for more intuitive analysis. It should 

be noted that the actual execution time or execution cycles of the final hardware 

implementation will be different from what we obtain from software simulations using 
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OpenCV, but the relative values for the different algorithms may still be indicative of 

their relative performance. 

The succeeding figures show the relative execution times of the 3 algorithms. 

All values are normalized with respect to SIFT, which is the slowest of the three. It can 

be seen from Fig. 3.1 that SURF is ~4x faster than SIFT in detection, and ~1.75x faster 

in description. ORB, on the other hand is ~20x faster than SIFT in both detection and 

description. Taking the total execution time (Fig. 3.1d), including time for matching, 

SURF is ~2x faster than SIFT while ORB is ~20x faster than SIFT, despite its higher 

matching time compared to both SIFT and SURF (Fig. 3.1c). 

  
(a) (b) 

  
(c) (d) 

Fig. 3.1 Normalized execution times of SIFT, SURF and ORB: (a) average detection 
time; (b) average description time; (c) average matching time; and (d) total execution 
time. 
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

Fig. 3.2. Normalized matching performance of SIFT, SURF and ORB using recall 
metric, using different image variations: (a) boat image, for zoom and rotation; (b) bark 
image, for zoom and rotation; and (c) graffiti image, for viewpoint vairiation. 
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Matching performance is evaluated using recall, which is simply the percentage 

of correct matches (as discussed in Chapter 2), as metric. Fig. 3.2 shows the results for 

3 different image sets: boat and bark for zoom with rotation invariance, and graffiti for 

viewpoint invariance. All values are normalized with respect to the SIFT performance. 

The x-axis represents increasing degree of variation (e.g., for rotation, higher degrees 

of rotation from the base image 1). In terms of invariance to zoom and rotation (Fig. 

3.2a and Fig. 3.2b) , it can be seen from the figure that ORB outperforms SURF and 

SIFT for slight variations in rotation (i.e., for 1-2 comparison), but all 3 algorithms 

perform almost equally for higher degrees of rotation. With regards to viewpoint 

changes, SIFT and ORB perform equally better than SURF at lower degrees, while 

ORB and SURF outperform SIFT at higher degrees. 

3.2.  Tuneable Knobs in ORB 

Having established ORB’s superior speed and comparable performance with 

SIFT and SURF, tuneable knobs that would allow us to play with energy-quality trade-

offs were identified. Several knobs are available both in the algorithm and in the 

hardware implementation. Investigation of each one of these knobs, for their suitability 

as energy-quality trade-off knobs, are presented in this section. 

3.2.1.  Number of keypoints 

To reduce the number of keypoints in the database for matching, ORB 

implements ranking of the keypoints and retains only a fixed number of keypoints for 

description (and eventually matching). An obvious way to increase the number of good 

matches is by increasing the number of keypoints. However, increasing the number of 

keypoints comes at a penalty of larger memory requirement with more comparisons for 

ranking, and therefore, higher energy.  
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(c) 

Fig. 3.3 Effect of number of keypoints on performance for (a) boat, (b) graffiti and (c) 
bark images 
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The default value of the number of retained keypoints is 400, and for our 

purpose, we call this knob nfeat. Fig. 3.3 and Fig. 3.5 show the effect of varying nfeat. 

The same 3 images (boat, graffiti and bark) were used for this analysis and for all 

succeeding analyses in this chapter. As can be seen consistently for all three images in 

Fig. 3.3, the performance in terms of matching percentage (percentage of good matches 

relative to declared matches) decreases quadratically with increasing number of 

retained keypoints, despite the increase in the number of good matches. This is best 

explained by the fact that ORB uses the brute force method for matching, thereby 

forcing a match for every retained keypoint (therefore increasing the divisor of 

performance metric). Indeed, in practical image matching, there will most likely be 

some keypoints that will not have a match from the keypoint database (i.e., occluded 

images). As such, a thresholding method for matching is proposed and will be 

discussed in more detail in the next chapter.  

One thing to notice in Fig. 3.3 is that the last few image pairs (images 5 and 6 in 

Fig. 3.3a, and images 4-6 in Fig. 3.3b and Fig. 3.3c) have no matches. A closer look at 

these matches with the boat image (Fig. 3.4), shows that although there were a few 

correct matches, they were not enough to detect an object and therefore OpenCV 

erroneously reports a high value for number of correct matches. As a remedy, we set 

this value to zero instead, to indicate that the object was not detected. Fig. 3.4a shows 

the matching between boat image 1 and image 2, where almost all filtered matches are 

correct. On the other hand, Fig. 3.4b shows the matching between boat image 1 and 

image 6, where only a few of the filtered matches are correct, and therefore, the object 

is not detected after using PROSAC [52] or RANSAC [53]. Thus, although there are 

some correct matches (albeit very few), they are recorded as 0 since no object was 

detected. 
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(a) 

 

 
(b) 

Fig. 3.4 Image matching in boat: (a) image 1 (left) & image 2 (right); and (b) image 1 
(left) & image 6 (right). Lines connecting the two images are the declared matches. 

 

With respect to the performance (Fig. 3.5), the time taken for computation of the 

keypoints increases quadratically (as indicated by an R2 value closer to 1 for poly 

compared to linear trendline) with the number of keypoints. So, care must be taken 

when one is planning to increase the number of keypoints. Thus, instead of increasing 

the number of keypoints to improve performance, we might also reduce the number 

keypoints to reduce energy consumption. From the plots, retaining 200 to 400 

keypoints seems to be reasonable, with only a slight increase in energy and ~2x good 

matches. 
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(c) 

Fig. 3.5 Total execution time of ORB for different images: (a) boat, (b) graffiti, (c) 
bark 
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3.2.2.  Threshold 

The number of keypoints is also affected by the threshold used to classify 

surrounding pixels as either bright, dark or grey. The higher the value of threshold, the 

lesser the number of keypoints detected. The default value is 20, and for our purpose, 

we call this knob thresh. Fig. 3.6 shows the effect of threshold on the number of 

keypoints. It can be seen from the figures that indeed, the number of keypoints 

decreases with increasing threshold value. The relationship between threshold and 

number of keypoints (Fig. 3.7) is a quadratic decay down to a threshold value less than 

40 (indicated by the red trend line), after which, the number of keypoints decays 

exponentially. This shows that for this set of benchmark images, threshold values 

below 40 may not give enough keypoints, causing the matching to fail. Of course, this 

conclusion is image-dependent, and the reasonable threshold value may vary 

depending on the image contrast. 

 

Fig. 3.6 Effect of threshold on number of detected keypoints 
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Fig. 3.7 Relationship between threshold and number of keypoints. For threshold <40, 
relationship is quadratic (red); for threshold >40, relationship is exponential. 

 

Fig. 3.8 shows the effect of threshold on execution time. From the figure, a slight 

decrease in detection time with increasing threshold is observed, which can be 

attributed to the decrease in number of clustered keypoints, thereby reducing the time 

needed to do the non-maximal suppression. However, no apparent trend can be seen in 

terms of the effect of threshold on total execution time. 

 

Fig. 3.8 Effect of threshold on execution time 
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3.2.3.  Descriptor length 

 

ORB uses 32 bytes for description. These bits are results of comparisons of pairs 

of pixel intensities, which are chosen based on their correlation (with the lower 

correlation preferred). The pairs are arranged in order of increasing correlation, with 

the least correlation pair corresponding to the MSB of the description vector. Thus, 

reducing the number of bits for the descriptor (keeping the lower correlations and 

discarding the higher ones) could have less impact on the accuracy of the descriptor for 

matching. For our purpose, we call this knob nlength, and we considered 2 possible 

values: 32B and 16B. This knob affects only the description, and is proportional to the 

size of the memory used for the comparison database as well as the computation effort 

to do brute force matching. Similarly, since description is done by bitwise comparison 

of the pixel pairs, reducing the length of the descriptor reduces the number of 

comparisons needed, and therefore, the time to do description, or the number of 

comparators needed if done in parallel.  

Fig. 3.9 shows the effect of descriptor length on the description time (detection 

time is unaffected by this knob). Indeed, we can see that the description time for the 

16B is always lower than that of the 32B, and the average description time for 32B 

length is 1.34x that of the 16B length. This shows great potential to reduce energy 

consumption of the ORB feature extraction accelerator. In terms of performance, on 

the other hand, no apparent trend can be found, as shown in Fig. 3.10. For the graffiti 

image pairs, the 16B length shows higher number of correct matches compared to the 

32B descriptor length. This could be due to the dissimilarity in the keypoints within the 

image, therefore the most uncorrelated half of the descriptor length is enough to declare 

a match. The opposite, however, is seen in the boat image pairs, while the bark image 

pairs shows higher for some pairs and lower for others. For these image pairs, reducing 

the descriptor length to 16B from 32B could cause mismatches, thereby reducing the 
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number of correct matches. In terms of averages, however, the average number of 

correct matches for the 32B descriptor length is slightly higher (additional 3 correct 

matches on average) than that of the 16B.  

 
Fig. 3.9 Description time with varying descriptor length 

 
Fig. 3.10 ORB performance with varying descriptor length 

 

3.2.4.  Number of pyramid levels 

Like SIFT, ORB addresses scale invariance by creating several scales of the 

image or pyramid levels, and detecting keypoints on those pyramids. Each of these 

pyramid levels is smoothened by a Gaussian filter to reduce the response along its 
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edges. Fig. 3.11 shows the number of good matches with respect to number of pyramid 

levels. It can be seen from the figure that, contrary to what we would expect, increasing 

the number of levels in fact reduces the number of good matches. This could be 

explained by the fact that the number of keypoints are almost N-tupled for N pyramid 

levels, but is eventually filtered into a fixed number of features, as dictated by nfeat 

(section 3.2.1).  

 
Fig. 3.11 ORB performance vs number of pyramid levels 

Looking at the execution time in Fig. 3.12, this trend in performance does not 

translate to any trend in execution time. Translating to energy, although execution time 

is almost constant, each additional pyramid is a new set of Gaussian filters and 

corresponding memory – therefore additional hardware resource and power, and thus 

higher energy. Thus, for our implementation, the pyramid levels was set to 1, without 

tuneability. It should be noted that in the current ORB as proposed in [19], analysis of 

the effects of the pyramid levels on the performance was not done in details. Adding 

octaves, similar to SIFT, and resolving keypoints across scales and octaves may need 

to be further explored. As such, until a revised algorithm for this is added onto ORB, 

having the additional pyramid levels may not be as useful as it was for SIFT. 
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Fig. 3.12 Total Execution time vs number of pyramid levels for different images: (a) 
graffiti; (b) bark; and (c) boat images 
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3.2.5.  Corner measure 

Two corner measure algorithms offered with OpenCV were chosen from: Harris 

[27] and FAST [29]. This corner measure is used for NMS after the initial FAST feature 

detection. The computational complexity of the Harris corner measure is higher than 

FAST corner measure, as depicted by the higher execution time of the Harris corner 

measure (Fig. 3.13a). This, however, comes at a penalty in performance (Fig. 3.13b).  

  

 

 

 

(a) 

  

 

 

 

 

(b) 

Fig. 3.13 FAST vs Harris corner measure in terms of (a) execution time and (b) number 
of good matches 
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Fig. 3.14 Comparison of Harris and FAST speed and performance using several image 
pairs 

 

Comparing good matches and execution times for different pairs of images, we 

can see in Fig. 3.14 that no apparent clustering is found, thereby leading us to conclude 

that both are comparable. Since FAST corner measure would be easier to implement, 

with less compute resource requirement, compared to Harris, all succeeding data will 

be based on the FAST corner measure, unless otherwise specified. We summarize all 

the tuneable parameters we have discussed, and their relative effects in Table 3.1 

below. 

Table 3.1 Parameters considered and their trade-off 
Parameter Definition Range of values 

(default in bold) 
Effect 

nfeat no. of retained 
keypoints 

200, 400, 800, 
1200, 1600, 2000 

~3x increase in execution 
time and performance from 

400 to 2000 keypoints 
levels no. of pyramid 

levels 
2, 4, 6, 8, 10 ~20% decrease in 

performance from 2 to 10 
levels 

nlength descriptor 
length (bytes) 

16, 32 1.3x higher description time 
from 16 to 32 

thresh threshold 20, 30, 40 slight decrease in detection 
time and quadric decrease in 
detection time with decrease 

in threshold 

 



39 

 

3.3  Hardware Model 

To approximate the effect of simplifications or approximations done for the 

hardware implementation, a Matlab model of the ORB hardware was implemented. 

Detection is done using string pattern comparison, as discussed in [46]. This design 

presents a simple implementation requiring only a 32-bit register, 16-bit adders, 

comparators and a simple FSM. The threshold knob thresh plays a role in this stage, as 

an input to the comparators to determine whether a pixel is to be labelled as dark, bright 

or grey. The lower the value of thresh, the more keypoints there will be. It should be 

noted at this point that one issue introduced by the detector is the repetitive access to 

same pixels, as each pixel will be needed by 16 different possible keypoints. Aside 

from these, pixels will also have to be re-accessed for description, in case of a keypoint. 

Details of the cache design considerations will be covered later in this section. 

A non-maximal suppression (NMS) block processes all identified keypoints 

from FAST detection. This process removes redundant points, and retains the one that 

is the most representative of the corner. As was shown in the previous section, FAST 

corner measure is faster than Harris corner, although the later may have more correct 

matches. For the hardware implementation, the FAST corner was chosen, reusing the 

value measured from detection. A keypoint is considered a corner if it has the highest 

corner measure within its nxn neighbourhood, where n could be 3 or 5. For simpler 

discussion, we refer to them here as NMS-n. In the OpenCV implementation of the 

ORB algorithm, they used NMS-3. It can be seen in Fig. 3.15 that the number of 

keypoints is reduced, while keeping the white spot feature of the butterfly. As point of 

comparison, we show the number of keypoints of the base image (image_1) of all the 

benchmark images in Table 3.2. We include the resulting number of filtered keypoints 

using NMS-3 and NMS-5. Comparing the data from Table 3.2, NMS-3 reduces the 

number of keypoints to somewhere 25.49% to 38.96%, while NMS-5 reduces the 

number of keypoints to 21.55% to 34.27%.  
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Fig. 3.15 Comparison of NMS-3 and NMS-5. NMS-5 reduces the number of keypoints 
while keeping the relevant feature. 

 
Table 3.2 Number of keypoints with NMS-3 and NMS-5 

Image Size # FAST 
keypoints 

#keypoints 
after NMS-3 

#keypoints 
after NMS-5 

Boat 680 x 850 21128 6510 5034 
Cars 600 x 900 5675 2146 1642 
UCB 600 x 800 14941 5802 4695 
Trees 700 x 1000 42628 13620 10362 
Bike 480 x 640 3624 1412 1242 

Graffiti 640 x 800 3503 893 755 
Linus 640 x 480 992 384 326 

Monarch 512 x 768 2912 864 726 
Monarch2 480 x 640 2641 732 617 

 

The difference in NMS-3 and NMS-5 filtered keypoints is further illustrated in 

Fig. 3.16. The pixel values of the inset image on the upper right corner of Fig. 3.15 is 

shown in the left image of Fig. 3.16. The identified FAST keypoints are highlighted in 

red. The corresponding scores of the pixels are shown on the right image of Fig. 3.16, 

where only the keypoints have non-zero scores. For NMS-3, the keypoint with score of 

1366 (highest in the area) invalidates all adjacent keypoints. The keypoint with score 

of 495 do not have adjacent neighbours that are keypoints and therefore remains a valid 

keypoint. For the case of the keypoint with score of 1208 (lower left), although it is not 
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within the close neighbour of 1366, it is still invalidated because it has adjacent 

neighbours that have higher scores. Thus, for NMS-3, both keypoints with scores 1366 

and 495 are passed on as valid keypoints. For the NMS-5, all keypoints within the 5x5 

neighbourhood of the keypoint with a score of 1366 are invalidated (including that with 

a score of 1208). Although the keypoint with score of 495 (upper right) is not within 

this neighbourhood, it still becomes invalidated because there are keypoints within its 

5x5 neighbourhood that have higher scores. Thus, for NMS-5, only the keypoint with 

score of 1366 is passed on as a valid keypoint. Indeed, this is what we should expect, 

since this is one corner and therefore should only have one representative keypoint. 

 
Fig. 3.16 NMS-3 and NMS-5 illustration. Pixel values (left) of a corner from Monarch 
image results to corresponding scores (left). Identified FAST keypoints are highlighted 
in red. 

 

After NMS, the filtered keypoints within a frame are ranked. The ranking is 

based on the corner measure used in the NMS block, therefore no additional compute 

resource is needed for the corner measure. The nfeat parameter (default value of 400) 

indicates how many features or keypoints to retain per frame. To reduce extra logic for 

this implementation, we use only 1 bit for nfeat to choose between 200 or 400 keypoints 

(‘0’ = 200; ‘1’ = 400). The insertion sort algorithm was used for this implementation 

as it is well suited for data being added only at runtime. To reduce the number of cycles 

needed to rank the keypoints, the whole stack was divided into 10 bins such that the 

worst-case number of comparison is reduced to 50.  

Description starts by taking the orientation or angle of rotation of the corner 

feature, based on the intensity centroid of the 15x15 patch around the keypoint. As 
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shown in the previous chapter, the computation resource needed would be multipliers 

(for mpq computation), and a divider and trigonometric computation for atan2. In the 

OpenCV implementation of ORB, the trigonometric function itself was used. For the 

trigonometric computation, an 8-bin look-up table was used. Since the angle is used to 

compute for rotated X and Y values, the cosine and sine values of the angles were stored 

in the LUT instead of the atan2. Table 3.3 below shows the look-up table. Data is 

accessed by specifying the address (last column). As can be seen from the table, fixed-

point representations were used to avoid the complexity of floating point arithmetic. 

Table 3.3 Look-up table for atan2 

 

 

Aside from Table 3.3, another LUT for the 256-pairs of pixels to be compared is 

also included. Fig. 3.17 shows these points, with the keypoint as center, and within a 

25x25 patch.  For each pair, the pixel ‘O’ is compared with pixel ‘◊◊◊◊’. The 256-bit 

description is a concatenation of all O-◊◊◊◊ comparisons (1 if greater, 0 otherwise). 
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Fig. 3.17 Representation of LUT for 256-pair pixels. The 25x25 patch is centered on 
the keypoint at (0,0). The comparison between O and ◊◊◊◊ for each of the 256 lines dictate 
the bit value for description. 

 

Aside from the comparison, the Descriptor block also needs to ensure that cache 

accesses are from different banks.  This is because the cache banks are designed to have 

only one read port, despite the cache having two read ports (which means that each 

read data must come from separate banks). Since the pixel pairs that need to be accessed 

are non-deterministic (unlike in the Detector and Orientation and blocks), there is no 

telling whether the two pixels are from the same bank.  In such cases where they are 

from the same bank, they have to be accessed at separate read cycles, thereby further 

increasing the time needed to finish the description time. Since each access is 7-pixels 

wide, determining which particular pixel to use for comparison also has to be 

performed. Due to limitation in number of pads, the descriptor vectors are outputted 4 

bits at a time.  

Another possible contention is the access to KEYPTS, where the keypoints for 

description are stored.  The Ranking block accesses KEYPTS both for reading (to 

compare and perform ranking) and writing (to store newly processed keypoints). The 

Orientation block, on the other hand, accesses KEYPTS to read the keypoint 
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coordinates, X and Y. Thus, a KCtrl block was added to facilitate arbitration between 

these accesses. Priority is given to the Ranking block as it is the more critical block in 

terms of timing. Handshaking between the Orientation and Descriptor blocks are 

handled within the blocks themselves and no further arbitration is needed.  

It should be noted that since we can only keep a patch of the image (equal to 

the size of the cache), we need to compute for the orientation and descriptor vector of 

the keypoints before we can replace the patch. Thus, we end up describing a lot more 

than the number of keypoints specified by nfeat.  From simulations using the 

benchmark images, we get 5x more keypoints. 

3.4.  Summary 

In this chapter, SIFT, SURF and ORB feature extraction algorithms were 

compared using OpenCV. It was shown that SURF is 2x faster than SIFT while ORB 

is 20x faster that SIFT, with all three having comparable performance in terms of 

matching percentage. This justifies the choice for using ORB as the base feature 

extraction algorithm. To allow for energy-quality scalability, several knobs were 

examined in terms of their effectivity in reducing energy without sacrificing too much 

on performance. Three knobs were eventually identified: the number of retained 

keypoints, nfeat, the length of descriptor, nlength, and detection threshold, thresh.  

In terms of approximations or simplifications with regards to hardware 

implementation of ORB, doing NMS within a 5x5 neighbourhood (NMS-5) was shown 

to be better than NMS-3 (NMS within a 3x3 neighbourhood) by effectively reducing 

the number of keypoint by ~4% without losing the feature. In terms of orientation 

computation, atan2 is approximated using an 8-bin LUT for angle computation. 
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Chapter 4  

EQSCALE Silicon Implementation and Results 

 

The hardware model for the ORB accelerator was presented in the previous 

chapter. In this chapter, we will cover more details of the hardware implementation, 

including other issues and design considerations with regards to parallelism and cache 

architecture. Details of the RTL design are presented in Section 4.1. Section 4.2 covers 

the RTL simulation and measurement with the tuneable knobs identified in the previous 

chapter. Energy-quality scalability using the tuneable knobs, is shown using our 40nm 

CMOS test chip, which we call EQSCALE. This is presented in Section 4.3. To 

improve the cycle timing of EQSCALE, a second version was designed, increasing 

CACHE capacity by 3x. The results and comparison of the 2 versions are presented in 

Section 4.4. Finally, Section 4.5 covers further optimizations that can be done on the 

feature extraction accelerator to improve in area and energy efficiency. 

4.1  RTL Design 

Fig. 4.1 shows the proposed architecture of the ORB accelerator. The CACHE 

and KEYPTS blocks are latch-based memories for low-voltage operation. The CACHE 

stores a patch of the image, while KEYPTS stores the coordinates and scores of ranked 

keypoints. The CORE comprises five pipelined blocks: Detector, NMS, Ranking, 

Orientation and Descriptor.  
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Fig. 4.1 EQSCALE architecture comprises a 2.7kB latch-based memory (CACHE) and 
a 0.9kB latch-based KEYPTS memory. Input rate is 1 pixel per cycle, with 8 bits per 
pixel. Knobs to alter the EQ trade-off are the threshold, thresh, number of retained 
features, nfeat, and length of descriptor, nlength. 

 

4.1.1  CACHE and KEYPTS 

CACHE and KEYPTS are latch-based memory using the standard cell memory 

(SCM) from [54], [55]. KEYPTS, on the other hand, is designed to have 18-bit words, 

arranged in 2 banks with 200 words/bank (~0.9kB). The simplified schematic of the 

SCM is shown in Fig. 4.2. For write operation (highlighted in red), address decoding 

(through WAD) is done in half a cycle and then the latches become transparent, taking 

DataIn as input. Data from the output of the latches go straight to read multiplexers 

(highlighted in blue). Read addresses are clocked in through registers and are used to 

decode (through RAD) the select signals for the read multiplexers. 
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Fig. 4.2 Standard Cell Memory Schematic. Items in red highlight the write circuitry 
while items in blue show the read circuitry. 

 
One energy consumption component not typically considered is the access to 

external memory. Access to external memory requires two orders more than on-chip 

cache access [56]. For this reason, we want to minimize or completely remove the 

external memory accesses. In EQSCALE implementation, we do this by performing 

description on the keypoints while they are still in the cache and before they are 

replaced. Thus, the need for an external frame buffer DRAM is eliminated. As 

mentioned in the previous chapter, this comes at a disadvantage of doing description 

on keypoints even if they are not among the top ranked keypoints. CACHE is designed 

to have a 7-pixel word (56 bits), arranged in 4 pages of 6 16-word banks/page. Thus, 

at one time, CACHE holds 64 rows of 42 pixels of the image (~2.7 kB). CACHE has 

2 read ports, with 2 read addresses RAdd1 and RAdd2. Each bank, however, has only 

one read port. Therefore, RAdd1 and RAdd2 should access different banks at a time. 

From Fig. 4.1, 3 different blocks request read access from CACHE through the 

MemCtrl: Detector, Orientation and Descriptor. An illustration of the re-use of CACHE 

data (detection then description) and accessed locations is shown in Fig. 4.3. 
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Fig. 4.3 CACHE re-use access illustration. Detector accesses a word within the pink 
shaded area of the CACHE while Orientation and Descriptor access a word within the 
blue-shaded area of the CACHE. 

 

The Detector block accesses pixels as they are written onto the CACHE. As an 

illustrative example in Fig. 4.3, Detector accesses a pixel within the pink-shaded page 

of the CACHE. In case of a keypoint, Orientation and Descriptor will need to access 

pixels around the keypoint. In Fig. 4.3, for example, the keypoint will be somewhere 

in the blue-shaded page of CACHE. After filling the whole CACHE, the contents at 

the top will be replaced, and Detector will move on to process the newly refilled data. 

However, if Descriptor is not done with this area yet, it will issue a STALL, thereby 

halting the overwriting of data. Once Descriptor is done with the page, the operation 

can proceed. Although this results in extra logic (to determine when to stall and when 

to resume), it allows Detector then possibly Orientation and Descriptor to reuse the 

data currently held in CACHE, and therefore once the data has been replaced, there 

will be no need to re-access it (thereby eliminating the need for an external DRAM 

storage.  

4.1.2  CORE Design 

Detection process is done in the Detector, NMS and Ranking blocks, while 

description is done in the Orientation and Descriptor blocks. The Detector block 

receives the data (2 sets of 7 pixels per access) directly from the cache.  Detection is 

done using string pattern comparison, as discussed by Park, et. al. [46]. This design 
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presents a simple implementation requiring only a 32-bit register, 16-bit adders, 

comparators and a simple FSM. To reduce the number of cache accesses (and therefore 

reduce access energy), detector implementation is done in parallel (7 parallel pattern 

detectors). The process starts by converting the pixels to bits, based on the threshold 

value. This is performed in the 2-stage pipelined Formatter block, which requires 7 

cache accesses in 13 cycles. In Fig. 4.4, it is shown that detection of 7 pixels can be 

done with only 2-word accesses (middle). The 42-pixel row of an image patch in the 

CACHE, divided into 6 banks (1 word per row), of which 7 interest points in the middle 

are processed for detection, is shown (top). For each 2-word row access (banks 2 and 

3), the pixels for the 16-pixel circle and its corresponding center is sent to the 

corresponding Det_unit block, which converts the 16-pixel circle to their 

corresponding bit strings.  

 
Fig. 4.4 Parallel detection of 7 pixels. Image window with 42 pixels per row is stored 
in CACHE, of which 7 pixels are keypoint-detected (top). For each access, pixels for 
each 16-pixel circle and the center interest point are sent to corresponding detector units 
(below). 

 

The operation of the Det_unit is shown in Fig. 4.5. For each interest point, for 

every row access from CACHE (first access is the middle row), the interest point 

(labelled C in each of the 7 circles in Fig. 4.4) and the 2 pixels belonging to the 16-

pixel circle are sent to the Det_unit (as Ai in the left circuit in Fig. 4.5). It should be 



50 

 

noted that for the case of the top and bottom rows, there are 3 pixels per circle. For 

these cases, the corresponding RAdd1 and RAdd2 values to CACHE are kept for 2 

accesses, where for the second round, the output of the 2nd parallel structure is ignored. 

Each pixel is then converted into 2 bits, text_bright_i and text_dark_i. Aside from the 

bit strings for detection, the corresponding scores (sum_bright and sum_dark) are also 

needed in case the interest point is indeed a keypoint (top right). To ensure proper 

timing, a simple 3-state FSM generates the needed control signals (bottom right). 

 
Fig. 4.5 Det_unit operation, to convert the pixels to their corresponding bit strings 
(text_bright and text_dark) for detection (left). Scores are also computed (top right). 
Generation of the control signals for handshake is also shown (right bottom). 

 

After the Formatter block is the Rotator block, which is also implemented as 7 

parallel units, one for each text output from Formatter. This block requires 3-6 cycles, 

depending on input pixel. Lastly, an 8-state SerialFSM block is added to give the output 

(valid/invalid) per pixel and necessary control signals. The simplified block diagram 

for the detector is shown in Fig. 4.6. 
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Fig. 4.6 Detector Block Diagram 

As can be seen from the figure, the whole detection process takes a maximum of 

28 cycles (and minimum of 25). Due to parallelism, however, this brings the detection 

time to 28/7 = 4 cycles per pixel. Synthesizing using a commercial 40nm CMOS 

technology shows an area estimate of 0.015 sq.mm and an estimated total power of 

2.61 mW at 330MHz with 0.9V supply. The breakdown of power and area for each 

sub-block is shown in Table 4.1 below. 

Table 4.1 Area and Power Estimates for Detector Block 
Block Leakage Power (uW) Total Power (mW) Area (sq. um) 

Formatter 2.44 1.43 8053.72 
Rotator 1.53 0.95 5894.94 

SerialFSM 0.37 0.23 1276.96 
DETECTOR 4.35 2.61 15225.61 

 

The NMS block performs non-maximal suppression of the identified keypoints 

to remove redundant points, and retain the one that is the most representative of the 

corner. As discussed in the previous chapter, a 2D NMS for 3-neighborhood (NMS-5) 

was implemented. For this implementation, a 7x5 entry memory was used.  An entry 

contains the relative X, relative Y, and corner measure (which we refer here as sum) for 

each keypoint. In case a pixel is not a keypoint, its corresponding entry is simply 

invalidated and not included in the comparison. The controller is an 8-state FSM, and 

at worst-case, it takes 28 cycles to perform NMS on one row of data. A row of data is 

essentially 7 pixels (as with the detector), although the number of keypoints per row 

would vary depending on the input image. Due to the image scanning pattern assumed 
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for the cache, a row of data would have a maximum of 3 keypoints. A new row is 

indicated by the assertion of an EOR signal.  After receiving 5 of these signals (i.e. 5 

rows of data from detector block), the keypoints in the middle row (if any) are 

compared with its neighbouring 5x5 region. After processing the middle row (row 3), 

the first row (row 1) is discarded and the same process is done when the next EOR 

signal is received. To ensure proper timing between the detector and NMS block, a 

separate array was used to store the keypoints (X, Y and sum) and EOR count 

(essentially a row indicator) from detector whenever a new keypoint is received while 

the NMS block is executing.  

It should be noted, however, that the left (right) edge of the scanned image will 

not be compared with the left (right) column of the image, thereby possibly having 

more keypoints than when doing NMS in software.  This limitation, being due to the 

finite cache memory. Simulations with benchmark images, however, show that this 

limitation adds only at most 10% of keypoints and does not affect the overall detection 

performance. Synthesizing the design using a commercial 40nm CMOS standard cell 

library gives a total area of 8898 um2 and total estimated power is 1.57 mW at 330 

MHz with 0.9V supply.   

After the NMS block is the Ranking block, which simply ranks all keypoints 

within the frame. The ranking block uses the sum from NMS block for ranking. The 

nfeat parameter, which indicates the number of retained features or keypoints per 

frame, is used as input to this block. For this implementation, we use only 1 bit for 

nfeat to choose between 200 or 400 keypoints (‘0’ = 200; ‘1’ = 400).  

The ranked keypoints (identified by the relative X and Y values), as well as their 

corresponding sum (corner measure) are stored in a separate memory, we refer here as 

KEYPTS. The RTL implementation uses pointer arrays (next and prev) to store and 

keep track of the rank of incoming keypoints. These are stored in a memory array in 
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the Ranking block to perform sorting. The insertion sort algorithm was used for this 

implementation as it is well suited for data being added only at runtime. As with any 

other sorting algorithm, the first N (where N is the number of keypoints to be retained) 

will be stored in KEYPTS and their relative ranking will be determined by the pointers 

in the Ranking block. To reduce the number of cycles needed to rank the keypoints 

thereafter, the whole stack was divided into 10 bin such that the worst-case number of 

comparison is reduced to 50. Index values of every bin's last sum is stored in a separate 

memory named as checkpoint array. Once a new keypoint sum is received, it is 

compared with existing sum values that are fetched from KEYPTS by going through 

the checkpoint indexes to determine the bin that the sum belongs to. Each sum value in 

that bin is then obtained from KEYPTS and compared against the input sum one at a 

time until the final rank is determined. For the first 400/200 values (nfeat 1/0), index 

of every sum is stored in the array pointers after ranking and once the array is full, the 

index of the sum with least value is discarded whenever an input sum is greater than 

the least sum value. To reduce the memory read access count, the value of the least 

sum is stored locally so that the input sum is discarded if its value is less than the least 

sum value. 

Synthesizing the design using a commercial 40nm CMOS standard cell library 

gives a total area of 0.067 mm2, of which 40% is from non-combinational cells. The 

total estimated power at 330 MHz with 0.9V supply 8.42 mW, most of which is from 

the registers. 

As discussed in the last section of the previous chapter, the Orientation block 

uses LUTs to implement the angle computation. Synthesizing the design using a 

commercial 40nm CMOS standard cell library gives a total area of 8382 um2 and the 

total estimated power at 330 MHz, 0.9V supply is 0.823 mW. 
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The Descriptor block, takes the input from the Orientation block to get data from 

CACHE and form the descriptor vector of a keypoint. The descriptor may be either 128 

bits or 256 bits, depending on the nlength knob (‘1’ for 256 and ‘0’ for 128). 

Description is done by simply comparing pairs of pixels within a 32x32 patch centered 

on the keypoint. For this implementation, the pixel pairs to be compared are already 

determined in the Orientation block, and therefore the Descriptor block only needs to 

access the specific pixels, do a comparison, and output either a 0 (if first pixel is lighter 

than the second) or 1 (otherwise). Aside from the comparison, the Descriptor block also 

needs to ensure that cache accesses are from different banks. This is because the cache 

banks are designed to have only one read port, despite the cache having two read ports 

(which means that each read data must come from separate banks). Since the pixel pairs 

that need to be accessed are non-deterministic (unlike in the Detector and Orientation 

and blocks), there is no telling whether the two pixels are from the same bank.  In such 

cases where they are from the same bank, they have to be accessed at separate read 

cycles, thereby further increasing the time needed to finish the description time. Since 

each access is 7-pixels wide, determining which pixel to use for comparison also needs 

to be performed. Due to limitation in number of pads, the descriptor vectors are 

outputted 4 bits at a time.  

RTL implementation of the Descriptor block use an 8-state FSM. One of the 

states takes care of the second read access in the case where both pixels are from the 

same cache bank. Another state takes care of determining which pixel from the 7-wide 

cache data is to be used for comparison. Comparison of the pixels is done in another 

state. The rest of the states take care of cache access and ensuring proper timing of 

signals. Synthesizing the design using a commercial 40nm CMOS standard cell library 

gives a total area of 1397 um2, of which 70% is from register. The total estimated power 

at 330 MHz, 0.9V supply is 0.25 mW, most of which is due to register dynamic power.  
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To integrate all these blocks together, several blocks had to be added. First, since 

detection does not start with every first pixel (description will need a 32x32 patch 

around the pixel), a MemCtrl block is added to generate an enable signal (DetEN) to 

tell the Detector block to start. It is also in the MemCtrl block where address to cache 

is generated. Furthermore, to avoid contention in cache access from either Descriptor 

or Orientation blocks, the MemCtrl block also acts as an arbiter for cache access. 

Priority is given to the Descriptor block since keypoint description needs to be 

completed first before a new keypoint from the Orientation block can be handled. 

Since both Detector and NMS require 28 cycles to process a row of 7 pixels, no 

further handshake is needed between them. This is not true, however, between the NMS 

and Ranking blocks. Since the NMS block could have a maximum of 3 keypoints per 

row, a 3-entry buffer (which we call KPBUF) was included to ensure that each keypoint 

is passed to the Ranking block only when the Ranking block is done processing the 

previous keypoint. Due to ranking process taking a longer time, it is still possible for 

the buffer to be filled before the Ranking block finishes processing. As such, a stall 

signal is generated within KPBUF and sent to MemCtrl to stall the detection process, 

and therefore generation of new keypoints. Another possible contention is the access 

to KEYPTS, where the keypoints for description are stored. The Ranking block 

accesses KEYPTS both for reading (to compare and perform ranking) and writing (to 

store newly processed keypoints). The Orientation block, on the other hand, accesses 

KEYPTS to read the keypoint coordinates, X and Y. Thus, a KCtrl block was added to 

facilitate arbitration between these accesses. Priority is given to the Ranking block as 

it is the more critical block in terms of timing. Handshaking between the Orientation 

and Descriptor blocks are handled within the blocks themselves and no further 

arbitration is needed.  

It should be noted that since we can only keep a patch of the image (equal to the 

size of the cache), we need to compute for the orientation and descriptor vector of the 
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keypoints before we can replace the patch. Thus, we end up describing a lot more than 

the number of keypoints specified by nfeat.  From simulations using the benchmark 

images, we determined we are getting 5x more keypoints. 

Summary of the area and power estimates (at 330MHz, 0.9V supply) of CORE 

block is shown in Table 4.2. From the table, we can see that the Ranking block occupies 

66% of the CORE area, and contributes 62% of its total power.  

Table 4.2 Power and Area Estimates of CORE 
Block Leakage 

Power (uW) 

Total Power 

(mW) 

Area  

(sq. um) 

PnR Area 

(sq. um) 

% Area 

WCtrl 0.128 0.098 526.73 816.56 0.50 

MemCtrl 0.338 0.075 914.46 970.02 0.59 

Detector 5.89 2.33 18440.68 25648.38 15.55 

NMS 2.5 1.53 9172.62 9978.07 6.05 

Ranking 20.7 8.50 72077.75 109200.8 66.22 

KCtrl 0.196 0.13 701.72 1001.6 0.61 

Orientation 3.15 0.84 8890.56 12621.95 7.65 

Descriptor 0.379 0.22 1431.66 1887.13 1.14 

Others 0.219 0.086 685.14 2791.35 1.69 

CORE 33.5 13.81 112841.3 164915.8 100 

 

The die photomicrograph, with the corresponding dimensions of the blocks (after 

90% shrinkage) is shown in Fig. 4.7. The die is 850umx1850um prior to shrinkage 

(1.27 mm2 after shrinkage), with an active area of 0.55 mm2. It can be seen from the 

figure that the CORE area is ~33% of total active area (without pads), while the 

CACHE is just slightly smaller at ~30%. 
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Fig. 4.7 EQSCALE die photomicrograph Die area = 765umx1665um = 1.27mm2. Core 
area = 607.5umx297um = 0.18mm2. Active area = 1304umx423um = 0.55mm2 
 

4.2  RTL Simulations with Tuneable Knobs 

Simulations were done on the placed and routed design to get the power and 

energy estimates with the different knobs identified the previous chapter. Fig. 4.8 

shows that CORE consumes more than 90% of the total power (and even higher when 

considering actual image vectors as inputs). From Fig. 4.9, PnR simulation results 

follow the same trend as that of the OpenCV simulation in terms of execution time. In 

terms of the descriptor length knob, nlength, Table 4.3 shows that the normalized 

execution time is considerably reduced compared to the OpenCV simulations, although 

both consistently show a decrease in energy with shorter descriptor length, as was 

predicted in Chapter 3. Fig. 4.10 shows the effect of the different knobs (nfeat, nlength 

and thresh) on the number of execution cycles. The default configuration (thresh=20, 

nfeat=1, and nlength=1) has the highest execution cycles. When increasing the thresh 

knob from 20 to 30 (30 to 40), the number of keypoints detected is reduced, causing 

the number of cycles required by execution to be reduced by 25% (31%).  Changing 

from nfeat from 400 (N1) to 200 (N0) reduces execution cycles by 34%. This is due to 

the reduced comparisons required in the Ranking block. When reducing nlength from 

32 bytes (L1) to 16 bytes (L0), the number of comparisons and cache accesses needed 

in the Descriptor block is reducing, thus, the execution time is cut down (by 34%). 
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Combining nlength (L0) with a thresh (higher value) gives the best result, with a 60% 

reduction in execution cycles.  

 
 

(a) (b) 
Fig. 4.8 Power consumption breakdown from PnR estimates (a) assuming arbitrary 
data and (b) using actual image as input 

 

 
Fig. 4.9 Normalized Execution Time vs Threshold 
 

Table 4.3 Normalized execution time vs descriptor length 

 Normalized Execution Time 

nlength PNR Simulation OpenCV Simulation 

0 0.623348055 0.825352113 

1 1 1 
 

Table 4.4 shows the power consumption of the three blocks with different knob 

settings. It is interesting to note that the total power consumption does not change much 
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with knob settings. This can be explained from what we saw in Fig. 4.8, where majority 

of the power consumption is from internal power of CORE. This means that the energy 

of the accelerator will be dictated by the corresponding execution time as dictated by 

the knob settings.  As an illustration, taking a VGA image as input, the corresponding 

energy at 0.9V and 330MHz frequency is shown in Table 4.5. As was predicted in the 

previous chapter, the highest energy is when thresh is set at the lowest (most number 

of detected keypoints) value and both nfeat and nlength are set to 1 (400 retained 

keypoints and 32B descriptor length). From the table, we can also see the same decrease 

in energy when thresh is increased from 20 to 30 (30 to 40). With regards to descriptor 

length, nlength, the consumed energy is reduced by 24-33% when the descriptor length 

is reduced from 32 bytes to 16 bytes. Lastly, in terms of nfeat, energy consumption is 

reduced by upto 34% for the case of thresh=20. 

 

 

Fig. 4.10 Execution cycles for different knob settings 
 

Table 4.4 Power consumption with different knob settings 

Block 

Total average power (mW) 

nlength=0 
thresh=20 

nlength=1 
thresh=16 

nlength=1 
thresh=20 

nlength=1 
thresh=30 

nlength=1 
thresh=36 

CORE 12.00 12.00 12.00 12.00 12.00 
CACHE 0.93 0.96 0.96 0.96 0.94 
KEYPTS 0.56 0.56 0.56 0.56 0.56 

Total 13.50 13.52 13.52 13.52 13.51 
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Table 4.5 Energy consumption at 0.9V, 330MHz with different knob settings 
Knob Settings Energy per frame (uJ) Energy/pixel 

thresh nfeat nlength CORE CACHE KEYPTS TOTAL (nJ) 

20 0 1 77.94 6.24 3.65 87.83 0.2859 

20 1 0 78.92 6.32 3.70 88.94 0.2895 

20 1 1 118.96 9.52 5.58 134.06 0.4364 

30 0 1 74.63 5.97 3.50 84.10 0.2738 

30 1 0 61.08 4.89 2.86 68.84 0.2241 

30 1 1 89.36 7.15 4.19 100.70 0.3278 

40 0 1 61.29 4.91 2.87 69.07 0.2248 
40 1 0 46.67 3.74 2.19 52.59 0.1712 
40 1 1 61.29 4.91 2.87 69.07 0.2248 

 

It should be noted that for Table 4.5, the energy consumption was computed 

based only on one frame, without considering the frame rate requirement. For example, 

having a high threshold value will result in shorter execution time (and therefore lower 

energy) compared to that with a lower threshold value. As such, one configuration will 

finish a frame faster than the other, and will therefore have to wait longer, which is the 

case of over-margined designs. For EQSCALE, we propose to leverage on this by 

relaxing the supply voltage, thereby further reducing energy consumption. This will be 

further discussed in the succeeding section. 

4.3  EQSCALE Results 

Fig. 4.11 shows the measured maximum operating frequency, fmax, for different 

supply voltages, and the corresponding power consumption of the ORB accelerator 

testchip in 40nm CMOS. In Fig. 4.11a, the maximum frequency at 0.9V and 1V are the 

same, which we attribute to the testing setup limiting the operating frequency of the 

system. Thus, we consider only supply voltages from 0.6V to 0.9V. The trendline 

equation was included to allow for interpolation between measured points. It can be 

seen in Fig. 4.11b that, consistent with the simulation results in Table 4.4, the CORE 

consumes most of the power (~90%).  
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(a) 

fmax 
(MHz) 

Supply 
(V) 

Power (mW) 

KEYPTS CACHE CORE TOTAL 

45 1 0.18 0.30 3.14 3.6190 
45 0.9 0.14 0.23 2.52 2.8820 
40 0.8 0.09 0.16 1.76 2.0077 
30 0.7 0.16 0.09 1.02 1.2765 
15 0.6 0.04 0.09 0.39 0.5152 

 

 

 

(b) 

Fig. 4.11 Measured (a) maximum clock frequency fmax and (b) power consumption of 
different blocks at fmax 

 

 
Fig. 4.12 Effect of VDD scaling on frame rate and energy per pixel.  

 

Energy per frame can be calculated using the data in Fig. 4.11 and the number 

of execution cycles needed per frame. Energy reduction is then possible through VDD 
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scaling, which in turn reduces frequency of operation. This translates to a degradation 

in performance either through the reduction in image resolution or frame rate. Fig. 4.12 

shows the impact of the VDD scaling on the frame rate and energy per pixel, for a VGA 

image. As can be seen from the figure, energy per pixel can be scaled from 310 pJ to 

166 pJ when scaling VDD from 09V to 0.6V, and frame rate from 30 fps to 10 fps.  

In EQSCALE, we use quality as a third dimension to this energy-performance 

tradeoff. Through the tunable knobs, we can tradeoff quality with energy and/or 

performance. Fig. 4.13 shows the energy-quality tradeoff when EQ knobs are 

individually swept in a 40nm testchip. Using recall as the matching performance 

metric, it can be seen from the figure that ORB turns out to have approximately the 

same quality as SIFT, when tuned to maximum quality (Q=1). At nominal VDD and 

maximum quality, EQSCALE consumes a power of 2.9mW at VGA and 30fps, which 

results to an energy per pixel of 310pJ/pixel. When reducing nlength from 256 down 

to 128 bits, the energy is reduced by 34% compared to the 256-bit default value, with 

a quality degradation of 10% (see red curve in Fig. 4.13). Analogously, when reducing 

nfeat from 400 down to 200, the energy decreases by 35% with a quality degradation 

of 42% (see green curve in Fig. 4.13). Increasing thresh knob from 20 to 40 (60) 

reduces energy by 48% (64%) and degrades quality by 19% (53%). At thresh=60, ORB 

achieves approximately the same quality as SURF. At such quality, successful image 

recognition is still achieved, as confirmed by the bounding box around the recognized 

object, as generated by an offline RANSAC [53] algorithm done in MATLAB. As an 

example, Fig. 4.14 shows sample matching images using the graffiti image from [33] 

for different quality targets. At maximum quality (i.e., Q=1), the image is properly 

matched, as indicated by the green box on the image on the right. At minimum 

allowable quality (i.e., Q=0.4), many keypoints are missed and object detection starts 

failing, as indicated by the smaller size of the bounding box. At lower quality (e.g., 
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Q=0.12), keypoints are no longer properly matched and thus no object is detected (i.e., 

the green bounding box disappears).  

 
Fig. 4.13 Energy-Quality tradeoff when tuning knobs nfeat, nlength and thresh at 
nominal VDD. 

 

 
Fig. 4.14 Illustration of image matching at different values of Q. 

 
The energy reduction in Fig. 4.13 is determined by the reduced number of 

execution cycles per frame, which also increases the throughput. Such excess 
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throughput can be used to relax the clock cycle, enabling more aggressive voltage 

scaling and further energy gains. When co-optimizing multiple knobs and VDD scaling, 

energy is further reduced, as shown in Fig. 4.15. Comparison between the solid lines 

in Fig. 4.15 and those in Fig. 4.13 reveals that VDD scaling offers an additional ~20% 

reduction in energy. When all knobs are adjusted for minimum energy, the 40nm 

testchip shows an energy/pixel of 55.6pJ and power consumption of 513uW on VGA 

format and 30fps. It should be noted that some combinations of EQ knobs (specifically, 

combining nlength and nfeat) may result in below minimum allowable quality (red 

boxes in Fig. 4.15). 

 

 
Fig. 4.15 Quality vs. energy with joint EQ knobs combined with voltage scaling. 

 

Table 4.6 shows the comparison of EQSCALE with state of the art feature 

extraction ASIC implementations discussed in Chapter 2. Some parameters are 

normalized with respect to 40nm for easier comparison. Compared to [44], EQSCALE 

achieves 5.3X power reduction, thanks to the lower complexity of ORB. EQSCALE 

has the lowest energy/pixel at iso-technology, with an energy reduction of 5.7X and 

7.5X over [46] and [44], respectively. EQSCALE also shows 1.8X area reduction 

compared to [46], thus exhibiting a favorable area/energy tradeoff as needed in IoT 
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applications.  

Table 4.6 Comparison of Results 

Parameter JSSC’13  
[57] 

TCASVT’13 
[46] 

JSSCC’14 
[44] 

This Work 

technology 0.13 µm 0.13 µm 28 nm 40 nm 

supply voltage 0.65 ~ 1.2V 1.2V 0.47V 0.6-0.9V 

on-chip memory 382kB SRAM 128kB SRAM ~7kB FIFO ~4kB Latch-Based 

clock frequency  50~200MHz 200MHz 27MHz 15-45MHz 

normalized  
clock frequency* 

 17.15-
68.6MHz 

68.6 38.57 15-45MHz 

energy-quality 
scalable 

NO NO NO YES 

power 320mW 182mW 2.7mW 0.51-2.9 mW 

energy/pixel 11.57 nJ 0.93 nJ 0.293 nJ 55.6-310 pJ 

normalized 
energy/pixel* 

3.97 nJ 0.32 nJ 0.42 nJ 55.6-310 pJ 

area (mm2) 32 10.24 2.22 0.55 

normalized 
area** (F2/106) 

1893.49 605 2831.63 343.75 

frame rate 
(resolution) 

30fps (HD) 94.3fps (HD) 30fps (VGA) 30fps (VGA) 

targeted 
application 

Unmanned 
Aerial 

Vehicles 

Embedded 
Vision 
System 

Micro 
Autonomous 

Vehicles 
(MAV) 

MAV, Smart 
Cameras 

algorithm SIFT FAST-BRIEF SURF ORB 

operation 
matching with 

external 
database 

maching with 
descriptor 

cache 

upto 
description 

upto description 

* normalized with respect to 40 nm technology, assuming 0.7X energy decrease/generation  
** F is the minimum feature size of the technology 

 

4.4  Effect of Cache Size 

For the case of the EQSCALE implementation in the previous section, detection 

is done in parallel for 7 pixels within a row. Since description works within a 31x31 

patch around a keypoint, 42 pixels are accessed per row. This means that 5/6 of the 
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pixels will need to be re-accessed in later time for detection. A possible improvement 

would be to widen the effective cache width to reduce the cache re-access ratio per 

row. We refer to Fig. 4.4 for illustration, to do detection on 7 pixels, we need to access 

42 pixels of the row. For a detection on 14 pixels, we access 42x2 = 84 pixels. In 

general, for detection of 7*N pixels, we access 42*N. Thus, the re-access ratio is 

42*N/7*N = 6. This means that we are accessing each pixel 6 times to perform that 

whole feature extraction. Widening the width reduces this re-access ratio, which is 

proportional to the energy consumption. This is better illustrated in Fig. 4.16, where 

EQSCALE v1 (the implementation in the previous section where width = 42) re-access 

is 6. Increasing the CACHE width by 3x gives a re-access ratio of 1.38, which is 4.3x 

better than EQSCALE v1. This is labelled as EQSCALE v2.  

 

Fig. 4.16 Effect of cache width on re-access ratio. Corresponding points for EQSCALE 
v1 and EQSCALE v2 (3x size) are indicated. 

 

The re-access of pixels affects energy consumption through increase in access 

energy, as well as through increase in number of cycles to do the operation. Table 4.7 

extends this phenomenon to the overall performance of the ORB accelerator. The 

column N represents the number of columns, same as the variable N in the previous 

paragraph. The frequency column is the required frequency to work with the indicated 
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image resolution. As can be seen from the table, EQSCALE v2 is ~4x faster than 

EQSCALE v1, at the cost of 3x area. It should be noted that the frequency indicated in 

the table is an optimistic value (actual required frequency will be higher). 

Table 4.7 Effect of increasing CACHE width by 3x 

 

One issue with the EQSCALE v1 implementation is that it seems far too slow 

compared to others in Table 4.6. Indeed, this is also confirmed in Table 4.7. Another 

reason (which is not considered in Table 4.7) is because access to memory is halted 

each time keypoint description is in progress. This increases the execution time, and 

therefore reduces the frame resolution possible given a fixed frame rate and same knob 

settings or accuracy. One solution is to add another set of read ports for CACHE. Doing 

all these changes to the CACHE affects not only the CACHE but the other blocks as 

well.   

Table 4.8 Area Comparison between EQSCALE versions 
 

Block 
EQSCALE v1 EQSCALE v2 

Synthesis 

Area (µµµµm2) 

Layout Area 

(µµµµm x µµµµm) 

Synthesis 

Area (µµµµm2) 

Layout Area 

(µµµµm x µµµµm) 
CORE 99930.60 675 x 350 134323.66 785 x 480 

CACHE 82127.60 420 x 470 252675.88 1010 x 520 
KEYPTS 27833.45 240 x 355 38406.16 240 x 415 

TEST 6199.58 375 x 100 11936.81 375 x 100 
CLKGEN 451.05 230 x 100 326.69 230 x 100 

SCANCHAIN 825.73 260 x 100 825.73 260 x 100 
TOTAL  1850 x 850  2500 x 880 

 

Area is one of the obvious changes from EQSCALE v1 to EQSCALE v2. The 

area comparison between the two versions is shown in Table 4.8. For EQSCALE v2, 
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indeed, CACHE is ~3x larger. To support the increase in CACHE size, and therefore 

the address width, CORE area likewise increased. From the table, CORE is 1.6x larger 

and KEYPTS is 1.2x larger. The microphotograph of the die is shown in Fig. 4.17. 

 
Fig. 4.17 EQSCALE v2 chip microphotograph 

The Detector block remains the same, taking 7 parallel detections at a time. To 

simplify memory access arbitration, the two sets of read ports are separated such that 

one pair is for detection (Detector + NMS) while the other pair is for description 

(Orientation + Descriptor). For NMS, the FIFO size is expected to contain all pixels in 

5 rows. Having 91 interest points per row, 5 rows would require a FIFO size of 455 

entries. To reduce the needed size, statistical simulations were done to determine the 

optimal FIFO size that would be as small as possible but without interrupting the 

operation due to overflow. Histogram of needed NMS buffer size considering 

consecutive 5 rows for the different images is shown in Fig. 4.18. It is shown in the 

figure that a maximum size of 129 was determined for the images considered. Since 

this is image dependent, margin was added, making the NMS buffer size of 140. In the 

unlikely case that an overflow still occurs (number of keypoints in 5 consecutive rows 

is greater than 140), a stall is generated to halt the detection until space is cleared out. 
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Fig. 4.18 NMS buffer size histogram. Maximum size needed for the considered data is 
129. 

 
Fig. 4.19 Ranking buffer size histogram. Maximum number of entries needed is 38. 

 

Operation of the Ranking block remains the same, except that similar to the NMS 

block, the buffer size has to be increased. In EQSCALE v1, the buffer size was 3 

entries, corresponding to the maximum number of keypoints per row. For the case of 

EQSCALE v2, the rate at which the Ranking block can process data also has to be 

considered. After similar extensive simulations, it was determined that a buffer size of 

45 entries should suffice (maximum seen is 38). The histogram is shown in Fig. 4.19. 

Like in the case of the NMS block, a stall signal (to halt NMS and then possibly 

Detector) is generated in the unlikely case that an overflow occurs.  

4.5  Further improvements to EQSCALE 

As illustrated in Chapter 1 (Fig. 1.2), an object detection and classification block 

is needed to complete the image analysis process. Matching is currently done offline, 

following the brute force method used in the original ORB. There are several other 

possible approaches for implementation, and we mention some of them in Section 

4.5.1. From previous sections, the Ranking block occupies most of the CORE area and 



70 

 

consumes most of its power. Therefore, improving the Ranking block would be a 

worthy endeavour, and is discussed in Section 4.5.2. Finally, other energy-efficient 

schemes related to the energy-quality scalability of EQSCALE are covered in Section 

4.5.3.  

4.5.1  Object Detection and Matching 

As mentioned in the previous chapter, matching in ORB is done via brute force 

method, forcing a match for each retained keypoint by comparing them with every 

keypoint in the database. As such, the recall values were low, despite successful object 

detection. One advantage of ORB over SIFT and SURF is the short descriptor length. 

Thus, bitwise comparison can be done in parallel (at the expense of additional 

hardware). Instead of forcing a match between described keypoints and the database, a 

nearest neighbour threshold can be applied, below which, no match will be declared. 

The histogram of hamming distances between pairs of keypoint 256-bit descriptors is 

shown in Fig. 4.21, showing a mean of 127 and standard deviation of 14.3. This means 

that we can use 127-3*14.3 = 84 as a threshold, above which they are not a match. 

 
Fig. 4.20 Descriptor hamming distance histogram shows a mean of 127 and standard 
deviation of 14.3 for 256-bit length descriptor. 
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Object detection and classification can be done by removing outliers using 

PROSAC [52] or RANSAC [53], and/or using bag of words or keypoints [58]–[60]. 

One area that can benefit from using the bag of words is classification using a large 

database. Object classification can be done, using machine learning, to match inexact 

histograms with histograms from the database. Region-of Interest (ROI) detection can 

be done in parallel, to reduce the effective size of the image to be processed. 

 

4.5.2  Ranking 

Cache data reuse to eliminate the need for external frame buffer memory dictates 

that description be done on some keypoints (before they are replaced in CACHE) even 

if they are not one of the top ranked keypoints within the frame. Thus, the nfeat knob, 

which limits the described keypoints only to those with high corner scores, does not 

really offer the best energy reduction advantage it is supposed to offer. An alternative 

would be to reduce the complexity of the Ranking block and keep only a few of the 

lower scores within the top nfeat keypoints. In this way, the KEYPTS block can be 

reduced or completely removed, at the same time reducing the number of cycles needed 

for the Ranking block. This idea is simplified below in Fig. 4.21. Fig. 4.21a shows the 

current implementation of the Ranking block, where a new item (score) is compared 

with checkpoint values to find the corresponding 40-entry bin that the new item belongs 

to. Since there are 10 checkpoints, with 40 entries per bin, maximum number of 

comparison to insert the new item is 50.  

In this proposed algorithm, a new entry is simultaneously compared with 3 

pointer values: MAX, MID and MIN (Fig. 4.21b). MAX is the highest score in the frame. 

MID is the highest score within the KEYPTS memory. MIN is the lowest value with 

the nfeat retained keypoints in the frame. It should be noted that nfeat is used as a 

counter and a new knob enqueue may be added to indicate the size of the KEYPTS 

buffer. Fig. 4.21c shows the simplified flowchart for each new item. If score<MIN, the 
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entry is simply discarded. A counter for the number of retained keypoints is included, 

if it is less than nfeat, then data are simply inserted. Otherwise, values in the KEYPTS 

memory may be replaced. If score is between MIN and MID, it is inserted onto the 

KEYPTS memory. If the memory is full, MID will be pushed out and replaced if 

counter < nfeat; otherwise, MIN will be pushed out and replaced. If score>MAX, MAX 

is replaced by score. If counter = nfeat (counter stops at nfeat), MAX is pushed into 

KEYPTS (replacing MID with MAX and pushing MIN out). If score is between MAX 

and MID and counter=nfeat, score is pushed into KEYPTS (similar to MAX, without 

replacing MAX). If, however, counter<nfeat, then the KEYPTS entries and pointers are 

retained as is. 

(a) 

 

 
(b) 

 

 
(c) 

Fig. 4.21 Illustration of proposed ranking implementation. EQSCALE ranking 
implementation is shown in (a). Modified version (b) uses less number of pointers and 
less KEYPTS entries. Algorithm is shown in (c) 
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It should be noted that in all these cases, a single cycle simultaneous comparison 

is enough to determine if the new entry will be described or not. The complexity of the 

actual ranking is also reduced to the first comparison plus the number of enqueue items. 

The total number of described keypoints will be equal or less than the current 

EQSCALE implementation. 

4.5.3  Other Energy-Efficient techniques 

The possibility of having an ROI detection was mentioned in Section 4.5.1. 

Aside from reducing the effective size of the image to be processed, and therefore 

reduce the number of detections needed per frame, ROI detection also gives more space 

and freedom for energy-quality scaling. For example, feature extraction can start with 

a lower quality target prior to ROI detection, and eventually (after ROI detection or 

estimation) increase the quality target with the smaller image size. Since the effective 

size is smaller, execution time will be less and therefore EQ knobs can be adjusted to 

improve the quality. Similarly, the ROI also serves as an EQ knob, since the image size 

is approximately proportional to the number of execution cycles. By adjusting the 

voltage (and therefore frequency), depending on the size of the ROI, energy is 

effectively reduced for a given quality target. 

A voltage-frequency-architecture co-optimization completes this cycle, allowing 

for some blocks (i.e., parallel detector units, KEYPTS bank) to be switched off to 

reduce power consumption, for the same voltage and frequency settings. This of course 

requires careful exploration of the methodology to determine optimal configuration of 

voltage, EQ knobs and power gate switches for a given quality target, image resolution 

and image type or application. 
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Chapter 5  

SRAM for Image and Video Application 

 

Memory contributes to a significant percentage of area and power consumption 

in digital systems. The universal choice for dense on-chip memory is the static random 

access memory (SRAM). We have shown in the previous chapter that the feature 

extraction accelerator can do away with the external DRAM for the frame buffer. 

However, due to the necessary re-access and possible stalls, a sub-frame buffer is 

needed. For our purpose, an SRAM is a suitable option, giving the best balance between 

area and energy. 

In this chapter, we will cover the design and simulation results of our proposed 

low energy SRAM for image and video applications. We start with some background 

and metrics on SRAMs in Section 5.1. Section 5.2 will cover the state of the art in 

SRAM bitcells for low energy and near-/sub-threshold operation, including 

application-specific SRAMs for image and video. Finally, we discuss simulation results 

for our proposed low energy non-precharged SRAM (NPSRAM) for image and video 

applications. 

5.1  SRAM Basics and Metrics 

An SRAM has three possible operations: (1) standby; (2) read; and (3) write. 

Associated with the 3 operations are the 3 possible failures. Although not common in 

normal strong inversion operation, lowering the VDD could cause a hold failure, where 

the cell is unable to retain its value. A read failure, on the other hand, happens when 

the cell value is flipped during a read operation, due to the precharged bitlines. A write 
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failure is the opposite of the read failure, where a write operation fails to flip the cell 

value as intended.  

The de facto implementation of SRAMs is the 6T SRAM [61] as shown in Fig. 

5.1. For a read operation, the wordline WL activates the access transistors M5 and M6, 

allowing the Q and Q’ to be written to BL and BL’, respectively. Since the access 

transistors and NMOS transistors, which are not good passers of logic 1, the bitlines 

(BL and BL’) are precharged to VDD prior to activating WL. For a write operation, the 

intended values for Q and Q’ are placed in BL and BL’, respectively, prior to activating 

WL.  

 
Fig. 5.1 Conventional 6T SRAM 
 

It should be noted that the only difference between a read and a write access as 

discussed in the previous paragraph, is the value on BL or BL’ (one of is 0 during a 

write operation, while both are 1 during a read operation. As such, care must be taken 

in sizing the transistors to avoid read or write failures. This is illustrated in Fig. 5.2, 

showing. Fig. 5.2a shows a possible read 0 contention, where, where the internal value 

is 0, and because of the precharge in the bitline, the internal value (rather than the 

bitline) could flip. To avoid this, M1 and M5 should be sized such that the voltage at 

the internal node (in this case, Q’) does not go higher than the switching threshold of 

the forward inverter. Fig. 5.2b, on the other hand, shows a possible write 0 contention, 

where the internal value (in this case Q) can flip the bitline instead of copying it. This 
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can be avoided by sizing M4 and M6 such that the internal node voltage (Q) will be 

pulled down enough to switch the feedback inverter. 

 
(a) (b) 

Fig. 5.2 SRAM sizing considerations for (a) read 0 and (b) write 0 contention 
 

To quantify the robustness of the SRAM, the static noise margin (SNM) is used 

[62]. Read (write) margin indicates the amount of noise the SRAM can tolerate before 

a read (write) failure occurs. This can be visually illustrated using the butterfly curve 

[63], [64], such as that shown in Fig. 5.3. The SNM is the length of the side of the 

largest square that can fit in the eye of the butterfly curve.  

 
Fig. 5.3 Static noise margin for (a) read, (b) write, and (c) hold [64] 

5.2  State of the Art 

Although guidelines for sizing the 6T SRAM minimizes the probability of 

failure, this alone is not enough when operating at near- or sub-threshold voltages. Fig. 

5.4 shows a sample butterfly curve of a 6T SRAM at near-threshold. It can be seen that 

the SNMs are degraded compared to that in Fig. 5.3, and especially for read SNM, no 

the curves overlap, indicating that a read failure may occur. With the demand for low 

power and low energy, operating at near-/sub-threshold is almost mandatory, and the 
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memory system should also be compatible. As such, several other bitcell topologies 

have been proposed. 

 
Fig. 5.4 SNM for (a) read, (b) write and (c) hold at near-threshold voltage 

 

5.2.1  Near-threshold SRAMs  

To alleviate the read static margin degradation in near-threshold operation, a 7T 

transistor was proposed [65], as shown in Fig. 5.5. Their approach is to break the 

forward path during a read operation, by adding a data protection transistor as 

highlighted in the figure. As discussed in the previous section, the problem with read 

operation is that the precharged bitline results in a possible read 0 failure. In this case, 

because of the added transistor, the forward inverter is disconnected from ground, and 

therefore V2 will not go low enough to flip the inverter. Read 0 failure is thus avoided.  

 
Fig. 5.5 7T SRAM [65] with added data protection transistor to remove read 0 failure. 
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Another solution to improve SRAM robustness is to replace the inverter with a 

Schmitt trigger, as shown in Fig. 5.6. Using a Schmitt trigger allows the switching 

threshold up or down depending on the direction of the data switching. They modified 

the Schmitt trigger to reduce the number of transistors, as highlighted in Fig. 5.6a, and 

were able to show successful operation down to 160mV [66]. They further modified 

the circuit to improve the read margin, as shown in Fig. 5.6b [67]. 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Fig. 5.6 Schmitt trigger based SRAM: (a) replacing inverter with a modified Schmitt 
trigger [66], (b) modified version for improved read margin [68]. 
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Another 6T SRAM (Fig. 5.7) uses transmission gate instead of the NMOS access 

transistor [69], [70], however, it requires virtual supplies for proper operation. They 

were able to show proper operation down to 193mV. 

 
Fig. 5.7 Single-ended 6T SRAM using transmission gate as access transistors [69]. 

 

One of the most popular topology to date for near-threshold SRAM is the 8T 

[71], where the read bitline is separated from the write bitlines. Thus, the internal node 

is not affected by the read port, and therefore read margin is greatly improved. The 

schematic is shown in Fig. 5.8. To reduce leakage power in the read bitline (and 

therefore allow more bitcells to be connected), a footer can be used [72]. Other 

modifications in the read buffer circuitry have been proposed to further reduce the 

minimum operating voltage and reduce leakage power [73]–[76]. A summary of the 

different topologies is presented in Table 5.1 for better comparison. 

 
Fig. 5.8 8T SRAM with separate read port [71] 
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Table 5.1 Comparison of SRAM bitcells 
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7T 
[65] 7 5 90 32x8x16 440 

50MHz 
@ 0.5V 1.13 

ST1 
[66] 10 3 130 256x16 160   2 
ST2 
[68] 10 4 130 128x16 150 

270kHz 
@300mV 2 

TG 
[70] 6 3 130 128x16 193 

5.6MHz 
@0.5V 1.42 

8T 
[71] 8 4 65 32kb 410 

295MHz 
@0.41V   

F-8T 
[72] 8 4 65 8x256x128 350   1.3 
SE10 
[74] 10 5 65 256k 400 

475kHz 
@0.4V 1.66 

D10 
[73] 10 5 130 480k 200 

120kHz 
@0.2   

RS 
[75] 10 6 180 64x32 300     

 

5.2.2  Application-Specific SRAMs 

When it comes to image and video data, one area we can leverage on is the high 

correlation of neighbouring pixel values. For a greyscale image, a pixel is usually 

represented using 8 bits and, per literature [77], more than 50% of the variations in 

pixel value lie within 3 bits of the data, showing the high correlation of the pixel values. 

As such, they proposed a prediction-based scheme to reduce the bitline switching [77], 

[78]. Their bitcell is similar to the footed 8T [72], but with 2 read ports (Fig. 5.9). The 

footer values are dictated by the predicted values (pred and predB). During a write 

operation, values are sent to BL and BLB then WWL is asserted to write BL and BLB to 

Q and QB, respectively. During a read operation, RBL0 and RBL1 are precharged to 

VDD and the predictions, pred and predB are set before RWL is asserted. If the prediction 

is correct, the bitline with a 0 prediction will be discharged, while the other bitline is 

disconnected from ground. If the prediction is wrong, both bitlines will remain at VDD. 

Obviously, the prediction mechanism is critical to their system. Indeed, their results 
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show that if all predictions are wrong, the access energy will be ~20% more than that 

of 8T. In the opposite extreme, if all predictions are correct, the resulting access energy 

will be ~20% less at nominal voltage and up to ~40% less at 0.6V.  

 
Fig. 5.9 Prediction-based SRAM for reduced bitline activity (PB-RBSA) [77] 

 

Another application-specific SRAM design for image and video leverages on the 

fact LSBs of a pixel will not affect the image that much, and therefore can be allowed 

to make errors. Thus, they proposed a heterogenous SRAM sizing [79], using larger 

sized 6T SRAMs for LSBs and smaller 6T SRAMs for MSBs. Similarly, work in [80] 

proposed to use 8T SRAMs for MSBs and 6T SRAMs for LSBs, while [81] proposed 

to use 8T SRAMs for LSBs and 10T SRAMs for MSBs. 

5.3  Non-Precharged SRAM (NPSRAM) 

Given the high correlation between adjacent pixels in an image or video, the 

probability of getting almost equal values with successive access is high. This 

motivates our implementation, which reduces bitline switching by removing the pre-

charge cycle of the SRAM. Thus, we have a non-precharged SRAM (NPSRAM). Our 

approach is to reduce the switching activity of the bitlines by simply removing the 

bitline pre-charging phase, unlike in [77], where bitline switching is reduced through 

prediction of values. This is justifiable because we expect the data to be almost always 

the same (with probability greater than 60%). For our purpose, we designed a 256x64x2 

memory array without column multiplexing. This design was simulated in a 65nm 

Low-Power (LP) CMOS process. 
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To reduce energy consumption further, we target a near-threshold voltage 

operation of 0.5V, as going into near-/sub-threshold voltage reduces power 

consumption quadratically. However, this requires different additional assist 

mechanisms to allow robust performance and perform proper read and write operations.  

The most common way is to separate the read and write port, like that of the 8T 

transistor [71]. We use the same concept of separating the read from the write port in 

the 8T. Furthermore, we propose to reduce the energy consumption even further by 

removing the precharge phase, thereby removing unnecessary 0-1-0 transition in the 

bitline. To support the removal of the precharging phase, we add an inverter with 

enough gain to the access transistor to drive the bitline. The circuit is shown in  

 
Fig. 5.10 Proposed non-precharged SRAM (NPSRAM) 

 

For additional read and write assist, we investigated three different flavours of 

our design: (1) Base; (2) Drowsy and (3) Assisted. The base design would have the 

minimal assist, with just wordline boosting to ensure proper write. The drowsy design 

is based on the drowsy cache concept [82], where the supply voltage is reduced when 

not reading. During a read operation, the voltage is returned to 500mV.  The assisted 

version is effectively an opposite approach as the drowsy, where the voltage is reduced 

during a write operation. For both the drowsy and assisted versions, wordline boosting 

was still considered. Although other assist techniques [83] have already been proposed 

and shown to be effective, we limited out investigation to these techniques to have the 

simplest possible assist circuitry that will ensure proper operation of the bitcell.  
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We evaluated the performance of the designs using 2000-pt Monte Carlo 

simulations in Cadence Virtuoso®. Delay and energy were evaluated to choose which 

scheme to implement.  One thing to take note for these three schemes/flavours is that 

all three can still be tested with the same memory array, provided proper separation of 

supply voltages and signals is ensured. Thus, in terms of area, both drowsy and assisted 

versions will have the same area. The base design can be made smaller, since the supply 

voltage can be routed horizontally or vertically, whichever could give better area. For 

the case of drowsy and assisted, the supply voltage must be routed horizontally as each 

row could have a different voltage depending on whether it is doing a read 

(VDD=500mV) or a write (VDD=350mV). For our design, the drowsy and assisted 

versions are 1.4x larger than the base. 

Table 5.2 shows the delay comparison of the three schemes mentioned above. It 

should be noted that these values were evaluated without the necessary drivers (some 

signals are still ideal), decoders and sense amplifiers. Delays are measured as the 

VDD/2 delay, which should be a pessimistic estimate once sense amplifiers are 

inserted. For simplicity and for fair comparison, we have set the wordline boosting to 

200mV above the supply (500mV). Thus, the supply voltage of the buffer drivers for 

the read wordline (RWL) and write wordline (WWL) is 700mV. We include the 8T in 

our comparison. For fairness, we also implement the same assist techniques with the 

8T. 

Table 5.2 Delay comparisons 
Bitcell µµµµ    

Mean Delay (ns) 
σσσσ  

Delay Stdev (ns) 
µµµµ + 3σσσσ 

(ns) 
8T 15 2.84 23.52 

Base 10.8933 1.5 15.39 
Drowsy 11.1 1.92 16.9 
Assisted 16.72 5.11 32.06 

 

It can be seen from Table 5.2 that the base design could be faster than the 8T, 

which in turn is faster than the drowsy or assisted schemes. The faster response of the 
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base design is expected since the supply voltage is constant and no timing penalty for 

supply voltage switching is incurred. 

Another more important parameter we are concerned with is the energy 

consumption. To approximate the energy of the whole memory array, we evaluate 

active and idle energy consumption of cells and extrapolate to get the total energy of 

the whole array for read and write operations as well as when idle. Table 5.3 shows the 

energy comparison of the bitcell schemes, including that of the 8T cell for comparison. 

Table 5.3 Energy comparisons 
Bitcell Read 

Energy (fJ) 
Write 

Energy (fJ) 
Idle Energy 

(fJ) 

8T 796.42 804.49 117.2 
Base 1083.05 906.91 597.89 

Drowsy 778.92 870.77 256.384 
Assisted 713.07 778.5 195.26 

 

From Table 5.3, we can see that although the base design gave the best 

performance in terms of speed in Table 5.2, it also has the highest energy. This is 

because the supply voltage for the base design is constantly at 500mV, unlike in other 

bitcells (including the 8T), where the voltage is lowered to 350mV during some parts 

of the operation. Looking at the energy consumption of the drowsy and assisted 

versions, on the other hand, we can say that our proposed bitcell has the potential of 

offering a low energy alternative SRAM bitcell. Comparing the drowsy and assisted 

versions, we can also say that the assisted consumes less energy compared to the 

drowsy version, making it more suitable for our low-energy application requirement. 

To approximate the energy consumption of the whole array, we used the energy 

per operation (including energy when idle) of the SRAM and extrapolate for the whole 

256x64 array. Shown in Fig. 5.11 is the energy per operation of an 8T SRAM and our 

proposed non-precharged SRAM (labelled here as NP2). We can see from the figure 

that our design can potentially save 50% of read energy.  Write energy will essentially 

be the same for both as we are applying the same write-assist technique to both SRAMs. 
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Fig. 5.11 Estimated energy of memory array 
 

After showing the promise of the proposed SRAM, we proceeded with the layout 

of the bitcells (Fig. 5.12) as well as the peripherals circuitry, such as the drivers and 

decoders. Shown in Table 5.4 is the area comparison of the SRAM with the 8T SRAM. 

We can see from the table that the proposed SRAM cell incurs a 15% area overhead 

relative to the 8T SRAM.   

 
Fig. 5.12 NPSRAM bitcell layout 

 

Table 5.4 Area comparisons 
 

 

 

  

Metric 8T NP2 
Area (F2) 750 859 

Normalized Area 1 1.15 
Normalized to 6T 1.3 1.5 
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Chapter 6  

Secure Chip Identification Using PUFs 

 

This chapter covers some background on physically unclonable functions 

(PUFs) and a discussion on our work on PUFs for secure chip identification. Section 

6.1 covers the basic introduction to PUFs. Section 6.2 discusses the properties of PUFs 

and the metrics used to evaluate them. The state of the art in PUFs is covered in Section 

6.3, followed by our proposed class of static monostable PUFs in Section 6.4. Finally, 

in Section 6.5, we cover some possible future work with PUFs. 

6.1 PUF Introduction 

The pervasiveness and the prospectively very large number of deployed nodes 

monitoring the environment, people and goods, makes security a fundamental 

challenge, especially in IoT applications. Security issues are expected to arise in terms 

of data authenticity, integrity and confidentiality. Indeed, it is necessary to assure that 

the data and the sender are legitimate, the data has been sent uncorrupted, and 

oftentimes data needs to be unreadable from an unintended receiver. Accordingly, 

security must be assured down to the hardware level, as the authenticity and the 

integrity need to be assured also in terms of the hardware implementation of each 

device or node (i.e., each node needs to be confirmed to be authentic and intact, while 

signalling in case it has been counterfeited or tampered with). 

In the recent past, Physically Unclonable Functions (PUFs) have emerged as 

potentially highly secure and lightweight solution to ensure data and hardware security, 

assuring trustworthiness down to the chip level [84]–[88]. A PUF is a function that 
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maps an input (digital) challenge to an output (digital) response in a repeatable but 

unpredictable manner, leveraging on chip-specific random process variations. PUFs 

are sometimes referred to as “silicon biometrics”, i.e. something equivalent to a “chip 

fingerprint” that is unique for each die.  As such, it eliminates the need to store any key, 

as the latter is naturally generated and embedded into the chip during its manufacturing. 

This avoids the need for key programming (e.g., via fuses or e-Flash), and makes 

devices less prone to the many existing attacks that uncover the content of memories 

[89], as discussed below. 

PUFs are used for chip identification and authentication [86]–[88], [90], [91], 

secure key storage and lightweight encryption [84], [92], hardware-entangled 

cryptography [93] and identification of malicious hardware [94]. In this thesis, we 

focus on PUFs for chip identification and authentication, and cover the other 

applications towards the end of the chapter. Chip identification and authentication are 

typically performed by preliminarily storing all challenge-response pairs (CRPs) of the 

chip PUF in a secure database, during a first enrolment phase. These (or a subset 

thereof) are used to verify the response of the chip to a given challenge during in-field 

operation, making sure not to reuse CRPs to reduce susceptibility to cloning, and 

counteract replay attacks. Fig. 6.1 shows an illustration of the enrolment process and 

chip authentication. 

To keep data secure during transmission, it is typically encrypted using a key 

that is stored externally, or in an on-chip non-volatile memory (NVM). Unfortunately, 

storing the key off chip or in an on-chip NVM facilitates the recovery of the key by 

other parties. Indeed, several studies have shown that NVM are prone to attacks and 

easy to read out [95], [96]. PUFs replace the conventional key storage, and hence offer 

superior robustness against invasive attacks, as they do not store information but rather 

recreate the keys when the chip is being powered on.  
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Fig. 6.1 Illustration of typical chip enrolment and subsequent in-field authentication 
using challenge-response pairs (CRPs) from PUFs. 

 

6.2  PUF Properties and Metrics 

Ideally, an array of PUF bitcells generate chip-specific keys that are: 

• unpredictable, leveraging on on-chip random process variations 

• repeatable, by amplifying random variations, while rejecting global 

variations and noise [85] 

• not directly accessible or measurable externally, once the enrolment phase 

is completed. 

There are two main types of PUFs: weak PUFs and strong PUFs. Weak PUFs 

have limited number of challenge-response pairs, making them equivalent to random 

key generators that are typically used for encryption and decryption. Weak PUFs 

essentially provide chip ID, whereas strong PUFs offer a very large number of 
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challenge-response pairs (CRPs) for one-time CRPs. Considering the expected long 

lifespan required by different applications, PUFs with very large number of CRPs (and 

therefore large area) are very expensive and typically infeasible. As a numerical 

example, Table 6.1 shows an example of the cost for a PUF with 256-bit key in 65nm 

[90], [97], assuming 5 cents/mm2. As can be seen, the cost of the PUF exceeds the 

typical target of $1/chip. 

Table 6.1 Example of SRAM PUF Silicon Cost 
(encrypted) data 
transmitted every 

PUF Capacity 
(MB) 

PUF area  
(mm2) 

silicon cost 
(US$) 

1 hour 5 24 1.2 

10 minutes 32 147 7.4 

1 minute 320 1,478 74 

 

Table 6.2 PUF Metrics and Typical Values 

metric measured by typical value  ideal value 

stability  Unstable Bits  1 - 60%  0  

repeatability  Intra-PUF FHD  0.8 - 15% 0  

uniqueness  Inter-PUF FHD  30 - 60 %  50%  

identifiability Inter/Intra HD  5 - 80  ∞ 

randomness 0/1 Bias 40 - 60 % 50% 

 

Given the fundamental PUF properties, such as stability, repeatability, 

uniqueness and randomness [94], and knowing the statistical nature of process 

variations, several metrics have been introduced to quantify the quality of PUF bitcells. 

In the following, such metrics are summarized in Table 6.2, where typical values based 

on current literature are also reported. In detail, any PUF output should ideally remain 

the same under fluctuating environmental conditions (e.g., voltage, temperature), and 

at any process corner. Actual PUFs are not able to provide perfectly stable outputs, due 
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to non-perfect rejection of noise, global and environmental variations. Stability is 

measured by counting all bits that become unstable across repeated PUF evaluations 

and environmental conditions, within the specified range of voltage and temperature of 

operation. 

Repeatability (or reproducibility) and uniqueness are measured from the 

Hamming Distance (HD) across several measurements of PUF keys. Such 

measurements are compared to a reference “golden” key [94] that is taken as the first 

measurement under nominal conditions. Repeatability is the average intra-PUF 

Hamming Distance (HD) between the golden key and several key evaluations with the 

same challenge in the same chip, under different environmental conditions. Highly 

reproducible PUFs should have low intra-PUF Hamming distance (ideally zero). 

Uniqueness, on the other hand, is taken as the average inter-PUF HD between the 

golden key and key evaluations from different chips under the same PUF input [84]. 

The inter-PUF HD should be close to the ideal value equal to half the length of the PUF 

key (e.g., the ideal inter-PUF HD of a 256-bit key is 128). Alternatively, the fractional 

Hamming Distance (FHD) can be used to quantify reproducibility and uniqueness [85], 

where the Hamming distance is simply expressed as a percentage of the key length, or 

the number of bits N in a PUF key (ideal inter-PUF FHD is 50%). Identifiability 

quantifies the distinguishability of a PUF instance to other instances, and is loosely 

taken as the ratio of the inter-PUF and intra-PUF HD (on the assumption that it is both 

repeatable and unique), where a larger value is desired [84], [94], [98]. 

Fig. 6.2 shows an example of probability distribution function of reproducibility 

(intra-PUF FHD) and uniqueness (inter-PUF FHD). A perfectly identifiable PUF 

ideally has no intersection between the inter-PUF and intra-PUF curves, which means 

that a single PUF response is enough to determine whether the chip is authentic or not. 

In practical cases, the two curves in Fig. 6.2 have an intersection, and an optimal 

decision threshold needs to be chosen to determine whether a given PUF is identifiable. 
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Such decision threshold is set by the point where Type I and Type II errors are 

minimized. Type I error is the false positive, where an invalid key is accepted as a valid 

one. Type II error, on the other hand, is the false negative, where a valid key is 

discarded as an invalid one. 

 
Fig. 6.2 Sample Inter- and Intra-PUF FHD showing decision threshold and Type I 
(false positive) and Type II (false negative) errors. 

 
Regarding chip authentication, false rejection rate (FRR) and false acceptance 

rate (FAR) can be used as relevant metrics to assess its quality and security level [99], 

[100]. Referring to Fig. 6.2, FRR corresponds to the probability of having an output 

with FHD under the false negative area, whereas FAR corresponds to the area under 

the false positive area. Accordingly, the PUF yield I can be defined as the probability 

of correct authentication, i.e. I =  1 − JKL − JLL. The bit error rate (BER) or the 

percentage of unstable bits can also be used as a metric of the quality of chip 

authentication, when the whole array is considered, rather than dividing the array into 

keys of length N. 
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Another important property of PUFs is the randomness of its responses, as 

needed to ensure their unpredictability. Randomness is routinely quantified through the 

statistical characterization in terms of 0/1 bias (defined as the probability of having a 1 

in a PUF output bit [101]), the entropy [84], and more thoroughly through the NIST 

randomness tests [102]. The NIST statistical test suite [102] is a set of tests to quantify 

the randomness of a stream of bits.  Version 2.1.2 contains 15 tests, each one exercising 

one property to test randomness.  The simplest of these tests is the frequency test, which 

computes the 0/1 ratio of the whole bitstream. For each of the tests, certain parameters 

need to be preliminarily set (e.g., length of bitstream n, block size M). Table 6.3 shows 

the complete list of the tests and parameters to be set. 

To quantify the randomness of PUF responses across different positions of PUF 

bitcell within the die, the autocorrelation function (ACF) is routinely used to detect 

repeating or correlated patterns among different responses [84], [98]. The correlation 

between PUF output bits is generally due to layout-dependent variations [90], [97], 

[103]. Visually, randomness can be represented in the form of the speckle diagram 

shown in Fig. 6.3, where each pixel represents a PUF bitcell and the PUF output 0’s 

(1’s) are represented with black (white) pixels. From the figure, the distribution looks 

somewhat random (i.e., there are no clear patterns) and the 0/1 bias is also close to ideal 

value of 0.5. 

 

Fig. 6.3 Sample speckle diagram [97] 
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Table 6.3 NIST Statistical Test Suite 

NIST test description 
minimum stream 

length n 
other 

parameters 

Frequency Test 
takes ratio of number 

of 1’s and 0’s 
100 -- 

Frequency test 
within a block 

ratio of 1’s and 0’s 
with M-bit block 

100 
M ≥ 20 

M > 0.01� 

Runs test 
relative oscillation of 

bit stream 
100 -- 

Longest Run of 
Ones 

length of longest 
consecutive 1’s with a 

block 
128 

M (set based 
on preset n) 

Binary Matrix 
Run 

rank of disjoint sub-
matrix 

38 ⋅ M ⋅ S M, S 

DFT 
detect periodic 

features 
103 -- 

Non-
overlapping 

Template 

detect occurrence of 
patterns in an m-bit 

window 
106 � = [2,10] 

Overlapping 
Template 

detects occurrence of 
patterns, with overlaps 

included 
106 � = [2,10] 

Universal 
Statistical Test 

number of bits 
between matching 

patterns 
387,840 

T = [6,16]; 
S = 10 ∗ 2V 

Linear 
Complexity 

Test 

length of equivalent 
LFSR 

106 M 

Serial Test 
detect frequency of 
overlapping patterns 

-- 
� <

9$W�� − 2  

Approximate 
Entropy 

detect frequency of 
overlapping patterns 

-- 
�

< 9$W�� − 5 

Cumulative 
Sums 

random walk 100 -- 

Random 
Excursions Test 

random walk cycle 106 -- 

Random 
Excursions 

Variant Test 

deviations from a 
random walk 

106 -- 

 

Most devices nowadays are tightly energy constrained, being either battery 

operated or energy harvested, hence the energy consumption of the PUF is another 

important metric. To abstract the energy from the PUF organization and size, the most 

commonly adopted metric is the energy per bit, obtained by dividing the average energy 
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per access by the number of bits within the key. The energy per bit of existing PUFs 

typically ranges from tens of fJ/bit to tens of pJ/bit [90], [97]. 

Silicon cost in terms of area is another important PUF metric. The effective area 

per bit (obtained by considering the actual number of available PUF bits obtained after 

removing unstable bits, and including the area cost of the circuitry performing post-

processing on the raw PUF output) may be used as a metric. Robustness to ageing and 

chip lifetime are assessed through accelerated ageing tests [99], [104], [105]. Modelling 

complexity, in terms of the number of brute force trials needed to model the PUF, can 

likewise be used to characterize PUFs [99]. 

6.3  PUF Topologies and State of the Art 

The concept of PUFs have been introduced in the early 2000s, and they have 

been initially referred to as ICID [106], Physical One-Way Functions (POWF) [107], 

or Physical Random Functions (PRF) [91], among others. ICID uses an array of 

MOSFET to generate the random values from random process mismatch, via FET drain 

current. The physical one-way function was proposed as a solution to the need for a 

one-way function (easy to evaluate but difficult to invert) for cryptographic 

applications. The approach uses a laser to scatter light through an inhomogeneous 

structure (at some precise angle, which serves as the challenge), as shown in Fig. 6.4. 

The resulting optical speckle diagram is hashed to obtain the key. Most of the literature 

has then reverted to silicon-based solutions, leveraging the low-cost and high-volume 

capability of CMOS chips. 

Most of the existing silicon PUFs can be classified as either delay-based or 

memory-based PUFs [91], [108]–[110]. In delay-based PUFs, bits are generated by 

comparing the delay of two nominally identical paths. The sign of the random delay 

difference between the two delays determines the output bit. One of the earliest 

implementation of such a concept is the ring oscillator (RO) PUF [91], [109], whose 
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digital output is determined by the relative frequency of each selected pair of nominally 

identical ring oscillators. Fig. 6.5a shows the general diagram of a ring oscillator PUF, 

where the challenge selects two of the available ring oscillators, and the corresponding 

response depends on whether the frequency of the first selected oscillator is greater 

than the second or not.  Knowing that these inverter chain ring oscillators tend to be 

very sensitive to environmental conditions, several techniques have been introduced to 

improve the high native instability rate, and poor statistical quality of this pair-wise 

comparison. Some of these techniques include the adoption of k-sum or 1-out-of-k 

masking techniques [109], [111].  

 

Fig. 6.4 Physical One-Way Function from a non-homogenous material 

 

 

 

 

(a) 

 

 

 

(b) 

 

Fig. 6.5 Delay-based PUFs: (a) ring oscillator (RO) PUF [109], (b) arbiter PUF [111] 
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Another delay-based PUF is the arbiter PUF [100], [109], [111], shown in Fig. 

6.5b. It compares the delay of two delay lines, and suffers from the same limitations as 

the RO PUF [91], [111]. An improved delay-based version was recently proposed [98], 

based on the oscillation collapse in an even-stage ring of delay-adjustable stages.  The 

delay is set by an applied input (PUF challenge) via inverter replica multiplexing. The 

native instability of PUF outputs was substantially reduced at the cost of much higher 

energy and the need for CTAT biasing. 

All above delay-based PUFs are also intrinsically vulnerable to PUF modelling 

attacks, which can capture and clone the content of the entire PUF with very low effort. 

Indeed, the PUF output is dictated by the overall PUF delay, which is in turn defined 

by the sum of the delays of cascaded stages. Since each stage delay is fixed (although 

unpredictable), identifying all stage delays from the analysis of the PUF outputs entails 

only a linear complexity, making the PUF easy to clone [112]. 

In memory-based PUFs, a bistable structure of two cross-coupled inverters is 

used to generate the output bits. They leverage on the natural tendency of cross-coupled 

inverters to resolve to a preferred state at the power-up, as determined by their 

asymmetry due to random variations [109]. For example, SRAM PUFs leverage this 

property in SRAM bitcells [108], [113]. Other similar PUFs are the Latch PUF [88], 

DFF PUF [114], butterfly PUF [110], and the buskeeper PUF [115], which is similar 

to the SRAM PUF albeit without the write ability, as access transistors are removed 

since PUF bitcells are read-only. The butterfly PUF follows the same concept of 

leveraging on the unstable state of cross-coupled inverters. It was proposed for 

implementation in an FPGA and uses the available cross-coupled latches instead of 

inverters, as shown in Fig. 6.6. The operation starts by asserting the excite signal, 

thereby forcing the PUF to be in the unstable state. This signal is then released and after 
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a few clock cycles, out signal settles to its natural stable state determined by the random 

variations in the related logic gates. 

 
Fig. 6.6 Butterfly PUF [110] 

 

A recent literature on memory-based PUFs and their experimental 

characterization has shown that PUFs typically have poor stability [116], and are highly 

vulnerable to semi- invasive attacks such as electrical and optical probing [89]. The 

same vulnerability to semi-invasive attacks is found in other PUFs that rely on the same 

principle, such as senseamp [117], [118]. For such PUFs, reasonable levels of stability 

are typically achieved through substantial temporal redundancy at the expense of 

energy consumption [119]. Other proposed PUFs are based on: 

• the glitch generated in digital paths, although they suffer from high instability 

rates [120] 

• the difference in leakage current generated by nominally identical transistors, 

although at the cost of large energy due to the necessary circuitry for 

current/voltage references and opamp [121] 

• DRAM errors under different wordline voltage, although such PUFs are 

highly vulnerable to non-invasive attacks [87] 

• the variations in supply network resistance, although this requires the 

generation of very large currents [119] 
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• open or short connection in vias [122] 

• oxide breakdown in OTP ROMs [123] 

• capacitance mismatch [124]–[126] 

A hybrid PUF was proposed in [84], [127], [128], combining delay and 

metastability as sources of randomness. The basic bitcell is shown in Fig. 6.7, where 

bistability is forced through the pre-charge transistors controlled by clk0 and clk1. The 

randomness in delay is introduced through the clock skew between clk0 and clk1. To 

reduce unstable bits, significant temporal majority voting is employed. Soft dark bit 

masking was also used in [127] by modulating the load in the bit and bit’, and masking 

bits that become unstable with the change in the load. Indeed, load modulation simply 

injects controlled perturbation in the stability of the PUF bitcell, which in turn permits 

to identify the truly stable bitcells that do not change output even in the presence of 

such perturbation. 

 

Fig. 6.7 Metastability-based PUF [84] 

 

To achieve adequate native stability despite voltage and temperature 

fluctuations, authors in [103] proposed to use a proportional-to-absolute-temperature 

(PTAT) as a bitcell. Fig. 6.8 shows the bitcell and the architecture and principle of 

operation of the PTAT-based PUF. As seen in the figure, the PUF bitcell output is 
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determined by the sign of the difference between Out_l and Out_r, both of which are 

independent of voltage and temperature. Aside from the high resiliency against voltage 

and temperature variation, another noteworthy feature of this PUF is its good area 

efficiency (only 727F2/bit, being F the minimum feature size of the adopted process), 

as enabled by the shared header per column. 

 
Fig. 6.8 PTAT-based PUF [103] 

 

6.4  Static, Monostable PUFs 

In this section, we present our proposed novel class of static mono-stable PUFs 

[90], [97] for extremely low energy operation and low native instability rate, which 

relies on the amplification of random transistor mismatch through two complementary 

current mirrors.  

6.4.1  Design and Operation 

Fig. 6.9 shows two implementations of the same general concept. Fig. 6.9a 

shows the INV_PUF bitcell implementation of this concept, which comprises the 

cascode current mirrors M1-M4 and M5-M8. The two 1:1 current mirrors see the same 

current flowing through their respective input transistors (M3 and M5), and tend to 

mirror it to their output transistors (M4 and M6, respectively). Without mismatch, M4 

and M6 would conduct the same saturation current (1YZ,[\] and 1Y^,[\]), and node Y 

would assume the same voltage as node X (e.g., _̀ `/2), due to the symmetry of the 

topology in Fig. 6.9a. However, random mismatch between M1-M2 and M7-M8 makes 
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these currents unpredictably different. The large output small-signal impedance RY at 

node Y (Fig. 6.9a) translates the difference in such currents into a large voltage 

deviation. Accordingly, the voltage at node Y becomes essentially _̀ ` if 1YZ,[\]- 

1Y^,[\]>0, or ground if 1YZ,[\]- 1Y^,[\]<0.  Thus, a digital output that is dominantly 

defined by the random mismatch between the two current mirrors is generated.  

 

Fig. 6.9 Static Mono-stable PUFs [97] (a) INV_PUF and (b) SA_PUF 
 

In statistically infrequent cases with extremely small mismatch, 1YZ,[\] −

 1Y^,[\] might still be close enough to zero even under random variations, so that the 

voltage deviation at node Y is not full swing, and the PUF output bit PUF_OUT 

becomes unstable. However, the percentage of such unstable bits will be shown to be 

very small, as expected from the large impedance at node Y. As an example, Fig. 6.10 

shows the statistical distribution of the voltage at node X, Y, and PUF_OUT due to the 

random mismatch, and shows that the voltage in X is rather insensitive to mismatch, 

whereas Y is very sensitive to it, and its voltages are mostly associated with digital high 

and low level (as defined by the traditional low- and high-input thresholds of the 

subsequent buffer). The infrequent intermediate voltages are associated with unstable 

bits, as discussed above. Similar considerations hold for PUF_OUT. In Fig. 6.9b, the 
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alternative SA_PUF topology adds a sense amplifier (transistors M9-M13) after M1-

M8 to further increase the voltage gain (and thus reduce the number of unstable bits) 

and introduce additional random mismatch through the sense amp offset. 

 

Fig. 6.10 Sample statistical distribution of (a) VX, (b) VY and (c) PUF_OUT under 
variations (5k-pt Monte Carlo simulation) 

 

To verify the functionality and effectiveness of these PUF bitcells, a PUF array 

with 3,040 bits was implemented in 65nm CMOS technology. The transistor sizes used 

are shown in Fig. 6.9c, and the chip photomicrograph and the layout of the bitcell macro 

are shown in Fig. 6.11. Outputs are scanned out via a latch-based scan chain. The latch 

scan chain effectively implements a latch PUF, when isolating the INV_PUF and 

SA_PUF output from the scan chain through a multiplexer between the PUF output 

and the scan chain input. As in Fig. 6.11, when LOAD is set to 1 at the power up, 

intrinsic power-up state of latches is routed through INV_SCAN_IN and SA_SCAN_IN 

to the latch, instead of the PUF output. In this way, the first 95x32=3,040 output bits 

will correspond to the Latch_PUF output. Setting the signal LOAD to 0 uses the output 

of the PUF as input to the latch. Subsequently changing LOAD to 1 forms the scan 

chain, allowing these data to be scanned out serially.  
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Fig. 6.11 Chip photomicrograph, Bitcell Layout and Test Macro Schematics 

 
The testchip also includes a ring oscillator PUF (RO_PUF) to allow fair 

comparison at iso-technology. The design of the RO_PUF is similar to [109], and 

consists of 5-stage ring oscillators. The inverters within the chain are 3-stack HVT 

transistors, each with a size of 450nm/60nm (300nm/60nm) for the PMOS (NMOS). 

The driving inverter uses LVT transistors of same size, without stacking. The 

architecture of the RO_PUF is shown in Fig. 6.12, where the two-hot decoder ensures 

that 2 of the 1024 ring oscillators are selected at a time. The frequency dividers are 

programmable (divide by 8/16/32/64) to evaluate the difference between the 

frequencies of the selected ring oscillators. The selector signals SA<9:0> and SB<9:0> 

serve as PUF challenge inputs to choose the specific ring oscillator output to be routed 
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to freq_out1 and freq_out2 outputs, respectively. These outputs in turn are compared 

to get the RO_PUF output bit. Overall, the testchip permits to compare the two versions 

of the proposed PUF with latch and ring oscillator PUF sharing the very same die. Fair 

comparison with SRAM PUF is enabled by the measurements on an available SRAM 

array [129] implemented in the same technology. 

 

Fig. 6.12 RO-PUF Architecture and Layout 

 

6.4.2  Testchip Measurement and Comparison 

For all stability tests, 400 evaluations were performed per configuration, 

marking bits that change at any evaluation as unstable. The measured percentage of the 

native unstable bits at nominal condition (1V supply, 25oC temperature) is plotted in 

Fig. 6.13 versus the number of evaluations. From this figure, INV_PUF exhibits native 

bit instability of only 2.34% (for the most unstable die), and the SA_PUF offers a 

further improvement (1.88%), as expected from the voltage gain amplification and the 
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additional random variations introduced by the senseamp in Fig. 6.9b. As shown in 

Table I, the native bit instability of the proposed class of PUFs is an order of magnitude 

lower than all other PUFs, whose instability ranges from 16.66% (SRAM_PUF) to 

more than 30%, which is just slightly higher, but still consistent with previous reported 

results [127], [130], [131]. Note that for the RO_PUF was designed for 0.5 V operation 

and tests were performed at this voltage, as instability becomes even worse above this 

voltage. Interestingly, the proposed PUF achieves a native stability that is comparable 

to one of the best techniques [84], although the latter needs the joint adoption of three 

enhancement techniques that worsen energy efficiency (temporal majority voting), 

testing cost (burn-in) and area efficiency (unstable bit masking). In other words, the 

proposed PUF class is intrinsically more robust and trustworthy than all above PUFs, 

and can be made 100% stable through very limited design/tuning effort (e.g., by 

masking unstable bits to predefined values as in [84]). 

 

Fig. 6.13 Native Unstable Bit Count at Nominal Conditions for (a) INV_PUF and (b) 
SA_PUF 
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Table 6.4 Comparison of Different PUFs 
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For completeness, the stability for the SA_PUF was also studied as a function of 

the bias voltage of the senseamp tail EN in Fig. 6.9b, which was set at VDD/2 for most 

tests.  Fig. 6.14a plots the measured and simulated stability versus the EN voltage, and 

shows that this bias voltage does not affect the stability of the PUF, except for 

extremely low voltages.  Indeed, the unstable bit count remains essentially constant for 

EN voltages ranging from 0.25 V to 0.75 V (Fig. 6.14a), the spatial distribution of 0’s 

and 1’s is random, and bias (Pr[1]) is close to 0.5 (Fig. 6.14c). Instead, very low EN 

voltages below 0.25 V degrade the stability (up to 22%) and the distribution of 0’s and 

1’s (bias of 0.94) under the extreme case of grounded EN terminal (Fig. 6.14d). This is 

because a very low EN voltage (e.g., below 0.25 V) essentially turns the tail transistor 

off, and the senseamp pulls the output node of SA_PUF towards VDD, effectively 

introducing an undesirable systematic offset (Fig. 6.14b). 

 
Fig. 6.14 SA_PUF dependence on EN voltage in terms of (a) unstable bit percentage 
and (b) senseamp systematic offset, and resulting speckle diagram at (c) EN=0.75V 
and (d) EN=0. 

 
The resilience to PVT systematic and environmental variations was evaluated by 

measuring stability across different voltages, temperatures and different process 

corners. Regarding the effect of voltage on the bit stability, Fig. 6.15a shows that the 

native stability of the proposed class of PUFs is degraded only slightly (3.64% and 

3.53% for INV_PUF and SA_PUF) in the wide voltage range from 0.6 to 1 V. On the 
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other hand, the stability of the other measured PUFs (latch and SRAM) is severely 

degraded to 50-70% within the same voltage range. Overall, the proposed class of PUFs 

enables an order of magnitude improvement in stability, compared to most of the other 

PUFs. Specifically, a native stability improvement from 10.68X (at 1 V) to 14.11X (at 

0.6 V) is found compared to latch and SRAM PUF, and a 9.76X (or better) compared 

to [84] at 0.7 V (at larger voltages). As only exception where the stability improvement 

is lower than an order of magnitude, the proposed PUFs achieve a stability 

improvement of 2.5X compared to [98], which is however three orders of magnitude 

worse than the proposed PUF in terms of energy (see Table 6.4). Regarding the impact 

of the temperature on stability, Fig. 6.15b shows that native instability at 85 oC is 4.4% 

and 4.3%, respectively for INV_PUF and SA_PUF, which is 10.31X (or better) lower 

than all other PUFs. Comparing INV_PUF and SA_PUF, the latter is slightly more 

stable than INV_PUF under temperature variations. 

 
Fig. 6.15 Percentage unstable bit versus (a) supply voltage and (b) temperature for 
different PUFs  
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Fig. 6.16 Breakdown of percentage unstable bits in INV_PUF due to supply voltage 
(left) and temperature (right) 

 

To gain a better understanding of instability, the contributions of on-chip noise, 

voltage and temperature variations were separately analyzed. In particular, the 

contribution due only to noise was obtained by evaluating the number of unstable bits 

across 400 repeated accesses at a given voltage and temperature. The contribution of 

voltage variations was then obtained by removing the noise contribution (i.e., 

discarding the unstable bits due to noise alone) and considering the bits that flip when 

the voltage is reduced below the nominal voltage (1 V). Similar considerations hold for 

temperature variations. The resulting instability contributions of noise and voltage 

(temperature) for INV_PUF are shown in Fig. 6.16a (Fig. 6.16b). Results for SA_PUF 

are just slightly better (~0.033% at 0.6 V and ~0.039% at 85 oC) and were hence 

omitted. From Fig. 6.16a, the instability due to the noise is approximately constant 

(∼1.7%) across a wide range of voltages and temperatures, and dominates the total 

instability at relatively high voltages (0.8 V and above). This means that the total 

unstable bits will be reduced by ~1.7% when applying masking as in [84]. The 

instability due to voltage variations ranges from 0 to 2.1% when decreasing the voltage 
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down to 0.6 V, while the contribution of temperature variations ranges from 0 to 2.57% 

when increasing the temperature to 85 oC.  

The same procedure was followed for the other PUFs to mimic the effect of 

unstable bit masking, as shown in Fig. 6.17 for the Latch_PUF and SRAM_PUF, and 

Fig. 6.18 for RO_PUF. From Fig. 6.17, the difference between the masked and 

unmasked data for Latch_PUF ranges from 3.86% to 18.53%, while for SRAM_PUF 

is 9.11% to 13.82%. For the RO_PUF, the effect of voltage and temperature on the 

RO_PUF stability, with and without masking, is shown in Fig. 6.18. The data in this 

figure confirms that the RO_PUF is indeed highly unstable (as is evident in the 100% 

unstable bits at 0.3 V) and would need additional circuitry to improve its stability. Like 

the other PUFs, we can also see that the difference between the unstable bit count with 

and without masking is also high for both change in voltage and change in temperature, 

further confirming that the RO_PUF is sensitive to voltage and temperature changes.  

In [84], temporal majority voting was introduced prior to replacing the unstable bits 

with predefined ones, to reduce the number of unstable bits by 53%. 

 
Fig. 6.17 Effect of masking on unstable bits for Latch_PUF and SRAM_PUF with 
varying (a) supply voltage and (b) tempretaure 
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Fig. 6.18 Effect of masking on unstable bits for RO_PUF 

 

 
Fig. 6.19 Effect of body bias (to mimic systematic threshold variation) on stability, 
measured at (a) 1V and (b) 0.6V supply, and the corresponding speckle diagram and 
bias at (c) 1V and (d) 0.6V supply. 

 

Finally, the impact of systematic transistor variations was studied by modifying 

the PMOS threshold voltage through body biasing, which permits to introduce a skew 

between the NMOS and PMOS transistor strength (i.e., emulate different process 

corners). The instability is plotted in Fig. 6.19 as a function of the PMOS body bias 

voltage, VBP. From Fig. 6.19a, the percentage of unstable bits is increased to only 4.4% 

under 300 mV forward body biasing at 1 V supply, which corresponds to a 46-mV 
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systematic threshold voltage change (i.e., ∼3 standard deviations). Similar 

considerations hold at near-threshold voltages (Fig. 6.19b). The bias is only marginally 

affected by systematic variations as it changes only by 0.0007 (0.0089) at 1V (0.6V), 

as shown in Fig. 6.19c (Fig. 6.19d). These results show that the proposed class of PUFs 

is highly resilient to PVT variations, as stability of a few percentage points is 

maintained even under 3-σ threshold voltage variations, voltage variations of 0.4 V and 

temperatures up to 85 oC. 

 
Fig. 6.20 Speckle diagram of the golden key (top) and spatial autocorrelation from die 
#1 at nominal conditions for INV_PUF (left) and SA_PUF (right) 

 

The measured spatial distribution of INV_PUF and SA_PUF bits is shown in 

Fig. 6.20, which was obtained from measurements of die #1 of the implemented 65nm 

PUF array testchip under nominal condition (VDD = 1 V, 25oC). When grouping bitcells 

in typical 256-bit PUF words [84], the probability of generating a 1 in die #1 is very 

close to the ideal value of 0.5 (0.5072 for INV_PUF, 0.5046 for SA_PUF). Very similar 

results are obtained for all other tested dice. The spatial autocorrelation function value 

at 95% confidence level is close to the ideal value of 0 (less than 0.0363 for both 

INV_PUF and SA_PUF), showing a fundamental independence of every bit value from 
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its neighboring bits, and thus confirming effective rejection of layout-dependent 

variations. 

 

 
Fig. 6.21 INV_PUF (left) and SA_PUF (right) bias (top) and inter- and intra-PUF HD 
statistical distribution (bottom). 

 

Regarding uniqueness of the PUF, from Fig. 6.21, the inter-PUF HD across 10 

dice has average values of 128.35 for INV_PUF and 128.38 for SA_PUF, which are 

very close to the ideal value of 128. This confirms that the proposed class of PUFs 

exhibits very good uniqueness, in the sense that different dice will statistically have 

largely different values for the same input [85]. As summarized in Table 6.4, the 

proposed class of PUFs achieves the best uniqueness among most PUFs, being the latch 

PUF the second best with 126.43 inter-PUF HD. As only exception, the PUF in [98] 

has a marginally better inter-PUF HD of 128.18. 

Regarding the reproducibility, the average intra-PUF HD of the proposed class 

of PUFs is 0.8611 (0.8635) for INV_PUF (SA_PUF), which is close to the ideal zero 

value. These values are an order of magnitude better compared to [84], SRAM, latch, 

and ring oscillator PUFs, and 3X better compared to [98]. Regarding identifiability, the 

ratio of the inter- and intra-PUF HD of 149X for both INV_PUF and SA_PUF is the 
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highest to date, and shows 7.8X improvement over [84], 3X improvement over [98] 

and 20-30X over ring oscillator, latch and SRAM PUFs. 

Table 6.5 Summary of NIST Test Results 

 

 
PUF randomness was quantitatively assessed through statistical NIST tests 

[102], as more rigorous and systematic approach compared to bias analysis and visual 

inspection of the golden key mask (Fig. 6.20). For each NIST test, the p-value was 

evaluated to quantify the level of randomness of the PUF. In general, a p-value greater 

than 0.01 is desired to consider an arbitrary source of information random with 99% 

confidence, and higher values indicate a higher confidence about the source 

randomness [102]. Table 6.5 shows the average p-value for the NIST tests applied on 

the proposed PUFs.  From the table, we can also see that INV_PUF and SA_PUF pass 

all applicable NIST tests (tests that require n>3,040 were omitted). Also, the proposed 

PUFs consistently have high p-values in individual NIST tests, with no value below 

0.28. Hence, the proposed PUF class has high degree of randomness.  

Fig. 6.22 shows the energy consumption per bit of the proposed bitcells as a 

function of the supply voltage.  The minimum energy point for both INV_PUF and 

SA_PUF lies at around 0.9 V, although the latter has an energy that varies only weakly 

when reducing the voltage due to the additional (and fairly constant) power 

contribution of the tail current in the senseamp, SA_PUF has an energy per bit that is 

11X higher than INV_PUF, for supply voltages from 0.8 to 1 V and assuming an EN 

voltage of 0.5 V in SA_PUF. This energy gap can be narrowed by lowering EN voltage, 

although INV_PUF is expected to have lower energy in any case. 
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Fig. 6.22 Energy per bit of INV_PUF and SA_PUF for varying voltage supply 

 
As summarized in Table 6.4, INV_PUF offers a 39.4X energy reduction in the 

energy per bit at iso-technology, compared to the best previously reported value of 0.19 

pJ in 22 nm CMOS [84]. The energy of the few PUFs that were implemented in other 

technology nodes, such as [84], were scaled to the same 65-nm technology by assuming 

a 0.7X reduction in capacitance per technology node. Due to its relatively higher 

consumption compared to INV_PUF, SA_PUF offers only 3.63X improvement over 

[84]. Observe that the energy advantage obtained by INV_PUF is further enhanced 

when comparing the PUFs at iso-stability, thanks to the superior stability of the 

proposed PUF. Indeed, other PUFs requires substantial stability enhancement to reach 

the same level achieved by INV_PUF, translating into additional consumption that 

further degrades their energy efficiency. The effective area per bit in Table I was 

quantified by the ratio of the array area and the actual number of stable (i.e., usable) 

bitcells. The area per bit of the proposed PUFs is comparable to the most reasonable 

PUFs, being it 1.5X lower (higher) than [84] for the INV_PUF (SA_PUF). As 

expected, the SRAM PUF has better area efficiency than any other PUF, with the PUF 

in  [98] being the second best. From Table 6.4, INV_PUF is usually preferable between 

the proposed PUFs, by virtue of its lower energy and area, and relatively similar 

statistical characteristics. On the other hand, SA_PUF is preferable only when the 

requirements in terms of output statistical properties are so stringent that the increased 

area and energy cost is justified. Neither of the two proposed topologies requires any 
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calibration or additional reference/biasing circuitry.  

A more complete list of fabricated PUFs can be found in the new public PUF 

database [132] we compiled. Extracted trends in terms of native instability rate, area, 

and energy are shown in Fig. 6.23. From Fig. 6.23a, the metastability-based PUFs have 

the worst native instability rate, while the monostable PUFs exhibit the best native 

instability rate. The high native instability rate in metastability-based PUFs is reduced 

through post-processing and other stability enhancement techniques that increase 

testing time (i.e., cost). For the rest of the PUFs, the native instability rate has slightly 

increased over the years. From Fig. 6.23b, the area per bit is highest for delay-based 

PUFs, due to the large number of stages required to 1) limit the oscillation frequency 

to acceptable values that can be distinguished by the subsequent circuitry, 2) to mitigate 

the instability rate of individual ring oscillators via k-sum or 1-out-of-k masking [109], 

[111]. In general, the area efficiency of PUF bitcells has improved over time, especially 

due to the adoption of more digital approaches that offer better density than analog 

ones. Analog PUF bitcells have an opposite trend, as their area tends to increase over 

time, when area is normalized to the square of the minimum feature size of the 

technology. This is mostly because of their analog nature, which does not enable 

shrinking with finer technologies.  

From Fig. 6.23c, the energy per bit is improving, thanks to the adoption of more 

energy-aware PUFs. The circuit improvements in terms of energy dominate the benefits 

of mere technology scaling. This is shown by Fig. 6.23c, which plots the energy 

normalized to the energy consumed by a minimum-sized inverter in the same 

technology, and hence represents a technology-independent metric. Interestingly, from 

Fig. 6.23c delay-based PUFs are an exception, as they tend to have larger energy per 

bit over the years. This is due to the need for a larger number of ring oscillators or 

oscillations to maintain acceptable stability, in spite of the progressively worse native 

stability in Fig. 6.23a. 
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Fig. 6.23 Trend of (a) native instability rate, (b) normalized area per bit, (c) normalized 
energy per bit for different PUFs [132] 
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6.5  Possible Future Work on PUFs 

Some prior work enables the capability to assure a well-defined stability safety 

margin at the output word level [101], as a form of robustness assurance against 

individual bit instability. Other prior work focuses on improving the stability of PUF 

bitcells without quantitative stability assurance at run-time. For example, introducing 

burn-in hardening in [84] improves stability at the expense of significantly longer 

testing time. Another way to improve the statistical quality and suppress a limited 

number of unstable bits is through digital post-processing, at the expense of 

substantially larger silicon area and energy. The post-processing block can be a mixture 

of the following techniques: 

• Error Correcting Code (ECC), which introduces a large area/energy overhead 

especially for high levels of targeted security, as its complexity grows 

exponentially in applications requiring wider PUF outputs; post-processing also 

leaks information and makes the PUF more vulnerable to physical attacks [118]. 

Various ECCs were used [101], such as 2D Hamming [91], BCH [128], [133], 

two-stage ECC [134], soft-decision ECC [135], [136], Index-Based Syndrome 

[137], Code-Offset Syndrome [91], [109], [138]–[141], pattern matching 

techniques [140], and fuzzy extractors [139] 

• temporal majority voting across repeated PUF readings, which typically slow 

down and increase the energy per access by more than an order of magnitude 

[84], [128], [142]  

• on-the-fly PUF bitcell masking [127], and PUF redundancy [98], [109], which 

skips the bitcells that are found to be unstable at testing time by storing the bit 

error map in an additional volatile memory array [84], [118], [143]; this 

approach may introduce significant area/energy overhead, and considerably 

widens the opportunities to perform successful invasive attacks (e.g., interfering 

with PUF operation by writing on the additional memory). 
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Fig. 6.24 shows an example where ECC is used to improve the reliability of the 

PUF [GCD02]. In this implementation, redundant information is generated for each 

challenge-response pair, to allow the correction of the PUF output. The ECC overhead 

is ~14 kgates, which is about an order of magnitude bigger than the PUF array itself. 

Similarly, in [144], ECC encoder was shown to have an area of ~3-12 kgates, with the 

ECC decoder requiring an even larger area of ~20-75 kgates.  

 
Fig. 6.24 Block diagram of an improved PUF that utilizes ECC to improve the PUF 
reliability. 

 
Detection of instability was proposed in [143] during the PUF response 

generation, as shown in Fig. 6.25a. In this circuit, an unwanted 1-0 (0-1) transition 

results in a rising edge of the clock at the top (bottom) flipflop, which in turn sets 

VALID low. Similarly, in Fig. 6.25b, error is detected at boot time in [127], and is 

thereafter masked to a predefined value. In this circuit, error is indicated by a difference 

in the outputs of the latches, which in turn disables the latches, thereby keeping the 

error signal despite possible switches in PUFbit. In Fig. 6.25c, similar error detection 

in Fig. 6.25b is done using an XOR gate. Like Fig. 6.25a, this error produces a clock 

rising edge in the flipflop, thereby latching out the fixed logic 1 output to denote that 

an error has occurred. 
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Fig. 6.25 Possible circuits for runtime error detection: (a) glitch detector from [143]; 
(b) dark bit masking from [127]; and (c) canary-type detection 

 
Having a stable secret key embedded within the chip allows for proper chip 

authentication [91], [145]. Such keys can also be used as cryptographic keys [85] to 

encrypt data sent over wireless channel [146], or to establish a trusted communication 

between nodes in the network [147]. For node-to-node communications, the concept of 

combining a PUF with a crypto-core can also be used to reduce the circuit complexity 

and energy required for continuous authentication, thereby reducing the required PUF 

capacity at a given level of security. Conventional node-to-node communication is 

illustrated in Fig. 6.26, where CRPs are used to authenticate both nodes each time data 

is transferred between them. Instead, a more efficient security scheme is introduced in 

Fig. 6.27. In this “PUF-enabled node-to-node communication” scheme, secure PUF 
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key exchange is enabled at the authentication phase through cryptography. After one-

time authentication, both nodes can communicate with each other securely through 

encryption and decryption using the exchanged keys, and without server assistance 

(therefore not needing a large CRP database). This makes communication over 

complex networks scalable, as the database is involved only at the first communication 

between nodes. As can be seen in the figure, node-to-node communication is simplified 

through the joint use of PUF and cryptography, which permit to securely exchange keys 

over an insecure channel, and avoiding the very energy- and area-hungry public-key 

cryptography. Such interesting and synergistic use of PUFs and cryptography is here 

introduced and named “PUF-enhanced cryptography”. 

 

Fig. 6.26 Conventional node-to-node data transfer through server, which needs to 
constantly assist the two nodes during their communications. 

 



121 

 

 

Fig. 6.27 PUF-enabled key exchange and node-to-node communication. 

 

Another interesting ramification of PUF-enhanced cryptography is the ability to 

substantially strengthen the security of a crypto-core against cryptanalytic attacks, by 

appropriately embedding a PUF into it. As illustrated in Fig. 6.28, PUF-enhanced 

cryptography goes beyond the traditional scheme of securely storing a single crypto-

key, and permits to extend the crypto-key compared to the size imposed by the crypto-

algorithm, thus making it stronger against cryptanalytic attacks. Traditionally, key 

extension is not possible since its length is dictated by the encryption standard. 

However, in PUF-enhanced cryptography, a PUF with capacity larger than the key is 

used to generate repeatable but unpredictable new keys that are combined with the 

conventional user key to generate the fixed length enhanced key used by the on-chip 

crypto-core. To this aim, the key enhancer in Fig. 6.28 is introduced to dynamically 

concatenate the user and PUF keys, and then compress them into the pre-defined 

length. Although the key enhancer in Fig. 6.28 is shown to be outside the crypto-core 
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(i.e., without interfering with conventional operation), it can also extend to the inside 

of the latter, and operate across several blocks of plaintext. The encryption sequence is 

initialized by the user key, and then managed by a key enhancer. The key enhancer can 

likewise be a simple finite state machine, which generates time-varying challenges to 

a PUF, or a lightweight cipher itself [148]. As a result, as opposed to the traditional 

scheme that uses a single private key, the PUF-enhanced cryptography scheme in Fig. 

6.28 actually uses a larger set of keys, whose number is basically limited by the desired 

PUF capacity. 

From an attacker point of view, guessing the private crypto-key of a typical 

cryptography system requires an effort that is (exponentially) defined by the size of the 

single key size. Instead, in the PUF-enhanced cryptography scheme in Fig. 6.28, the 

search space for the crypto-key is enlarged by the capacity of the PUF, thus easily 

making the key search unfeasible even under very powerful equipment and computing 

resources. In practical cases, the PUF-enhanced cryptography permits to drastically 

strengthen the security of an existing algorithm with (1) limited area cost, thanks to the 

exponential increase of the size of the key search space, under PUF capacity extension, 

and (2) no throughput penalty, since the generation of the PUF output is generally much 

faster than encryption. When using PUFs like in [97], the latter property is enabled by 

the intrinsically high speed of the PUF architecture, since PUF bits are always available 

at the output and only need to be routed to the circuitry that consumes them. 

 

Fig. 6.28 PUF-enhanced enhanced cryptography 



123 

 

 

The above mentioned dynamic change of the key over time is a tool to improve 

the strength of PUF-enhanced cryptography against cryptanalytic attacks. In the case 

of IoT devices relying on energy harvesting, changing keys becomes a necessity as 

dictated by the availability of supply. For example, in [149] key generation is divided 

into several phases and precomputation is done whenever supply available, and 

intermediate results are stored, for use in the next phase. 

In summary, PUF-enhanced cryptography permits to drastically enhance the 

security of a crypto-core by leveraging its synergy with a PUF, to generate time-varying 

crypto-keys instead of having a fixed one. In addition, the adoption of such PUF to 

enhance the crypto-algorithm also permits to easily scale up the level of security on 

demand. Indeed, the level of security defines the number of PUF words that are needed, 

and hence it only affects the periodicity of the key enhancer for a given PUF capacity. 

Also, the PUF unambiguously authenticates the die that the crypto-core runs on. In 

addition, the addition of a PUF to a crypto-core generally entails a very small energy 

overhead, as the energy per bit of a PUF is typically 2-3 orders of magnitude smaller 

than a crypto-core. Very similar considerations hold for the area efficiency. These 

features are particularly interesting in the context of the Internet of Things, as they 

make crypto-algorithms and crypto-cores affordable in terms of area and energy, thus 

enabling continuous and ubiquitous security. When a much higher level of security is 

occasionally needed, the PUF enhancement permits to further scale it up at a very low 

area/energy cost. 
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Chapter 7  

Energy-Efficient Microcontroller for Wireless Sensor 

Nodes 

 

Microcontrollers have been the enablers for embedded and emerging 

applications like wearable electronics and environment sensors [150]–[152]. They 

control system operations such as data transfer, external communications and power 

management, which is critical for battery-operated and energy-autonomous systems. 

To promote sustainable energy, several world-wide green initiatives have been set for 

2020, such as, but not limited to, reducing energy use by 20% and increasing the share 

of renewable energy to 20% [153]. In line with this aim, several researches focus on 

using power from harvested energy [76], [152], [154]. Correspondingly, the trend in 

MCUs is towards power efficiencies of 10uW/MHz or less, as shown in Fig. 7.1 [153].  

 
Fig. 7.1 Trends for Low-Power MCUs 
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One way to reduce power consumption is to aggressively scale the supply 

voltage to sub- or near-threshold operation [3], [4]. In this chapter, a near-threshold 

energy-efficient microcontroller SoC for WSN application is presented, to investigate 

some techniques for energy-efficient design methodology. The design features the 

following techniques: (1) instruction set architecture (ISA) extension for reduced 

number of cycles per operation; (2) near-threshold operation of MCU core; and (3) a 

customized standard cell to ensure proper operation at sub/near-threshold supply 

voltage [155].   

The block diagram of the microcontroller is shown in Fig. 7.2. The main block 

is named as Core. Being a Harvard architecture core, the instruction memory (IMEM) 

and data memory (DMEM) are separate. IMEM is a 2kB memory, with 16-bit word 

access. The DMEM is a 4kB memory, also with 16-bit word access. The list of input 

and output pins of the chip is given in Table 7.1. The core was designed using 

ASIPMeister®, a processor designer with the Brownie [156], [157] core as the base 

processor.   

 
Fig. 7.2 Microcontroller Block Diagram 
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Table 7.1 I/O Pins of Fabricated Chip 

PIN Direction Description Value 

CLK IN Synchronous system 10MHz freq 

BL_async_reset IN Asynchronous reset 

for bit loading 

‘1’ for reset 

BL_EN IN Bit loading enable 

signal 

‘1’ to enable data input 

System_async_reset IN Asynchronous reset ‘1’ for reset 

IMEM_SEL IN Select between ‘0’ for eDRAM  

MEM_PROBE[1:0] IN Choose byte to 

output to 

TEST_DATA 

“00” for IMEM LSB; 

“01” for IMEM MSB; 

“10” for DMEM LSB; 

“11” for DMEM MSB 

EXTINT_IN IN External interrupt to ‘1’ for interrupt 

SERIAL_DATA_IN IN Serial input to be 
 

EXTCATCH_OUT OUT Signals recognition 
 

TEST_DATA[7:0] OUT Multiplexed byte 

from DMEM or 

IMEM, as indicated 

by MEM_PROBE 

 

SLEEP_OUT OUT Sleep ‘1’ for sleep 

 

ASIPMeister® was used to generate the HDL codes for a 32-bit RISC processor. 

The generated codes use IP from Synopsys Designware® and were synthesized using 

Synopsys Design Vision®. Compiler and assembler tools for the processor were also 

provided with the ASIPMeister tool. Area, power and speed estimates are shown in 

Table 7.2 and Table 7.3, for 100MHz and 100kHz clock frequency, respectively. The 

1.2V library is the standard cell that came with the design kit, while the 0.5V and 0.3V 

libraries are custom libraries for subthreshold operation [155]. Synthesis with 0.3V was 

done only with 100kHz clock frequency constraint as it is cannot run at 100MHz. 
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Table 7.2 Processor Parameters at 100MHz 
Parameter 1.2V Library 0.5V Library 

Area (sq. um) 42447.24 62210.88 

Dynamic Power (uW) 433.73 25.48 

Leakage Power (nW) 3390.9 347.11 

Slack (ns) + 93.13 + 0.03 
 

Table 7.3 Processor Parameters at 100kHz 
Parameter 1.2V Library 0.5V Library 0.3V Library 

Area (sq. um) 44694.72 57614.40 65144.88 

Dynamic Power 254.62 uW 951.38 nW 120.69 nW 

Leakage Power 3.59 uW 318.91 nW 161.57 nW 

Slack (ns) + 9759.79 + 9403.86 + 92.03 

 

Table 7.4 Benchmark code sizes 
Benchmark Code length 

(32-bit words) 

Longest loop 

(32-bit words) 

Crypt3 1098 678 

AES 1179 571 

RLE 287 -- 

 

Three benchmarks, namely crypt3, AES and RLE, were used to profile the 

processor. Both crypt3 and AES are encryption algorithms, while RLE (run length 

encoding) is a compression algorithm. The compiler was used to obtain the assembly 

codes from the benchmark C codes. Table 7.4 shows the instruction count and longest 

loop for the three benchmarks. From the table, we can say that we would need at least 

1179x32 bits of program memory if we want to be able to perform AES, or 1098x32 

bits for crypt3. 

In the absence of a debugger for the processor, loops from the assembly code 

generated from the compiler were manually unrolled to determine the percentage usage 

of the different instructions and identify possible instructions to optimize. The 

corresponding percentages per benchmark is shown in Fig. 7.3. For all three 

benchmarks, the instructions with the highest percentages are NOP, ADDI, LW, LSOI 

and ADD. 
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Fig. 7.3 Instruction count per unrolled benchmark code 
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Careful examination of the assembly code shows that the NOP instructions can 

be reduced through compiler improvements, and thus were excluded from the analysis 

for instructions for ISA extension. One such extension is the combination of ADD and 

LSOI, as illustrated in Fig. 7.4. 

 
Fig. 7.4 LSAI instruction extension 

 

With the initial extensions (LSAI and branches) as well as improvements to 

reduce NOP, the total program memory needed for crypt3 was reduced by around 26%. 

By doing this, leakage power of the system can potentially be reduced through the use 

of a smaller program memory. 

The Brownie core comes in 16-bit (BrownieMicro16) and 32-bit 

(BrownieSTD32) versions. Table 7.5 shows the basic architecture of these cores. The 

two cores were compared in terms of area, power consumption and IMEM size 

requirement. Synopsys Design Vision® was used to synthesize the designs using a 

limited (generic gates only, with no adder or multiplier cell) customized standard cell 

for 500mV supply [10], [155] and a target frequency of 100 kHz. Table 7.6 shows the 

result of this comparison.   

Table 7.5 Brownie Core Architecture 
Parameter BrownieSTD32 BrownieMicro16 

Base Architecture RISC RISC 
Memory Architecture Harvard Harvard 

Data length 32 16 
Addressing Byte Byte 
# of GPRs 32 16 

# of pipeline stages 4 3 
# Floating Point Unit 0 0 

Forwarding Full forwarding Full forwarding 
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Table 7.6 Comparison of Brownie 32-bit and 16-bit Cores 
Parameter BrownieSTD32[19] BrownieMicro16 [20] 

Area (sq. um) 57614.88 12052.08 
Dynamic Power (nW) 951.38 197.81 
Leakage Power (nW) 318.91 61.46 

Total Power (uW) 1.27 0.30 
Slack (ns) 9403.86 9866.65 

 

As expected, we can see from Table 7.6 that the 16-bit core, BrownieMicro16, 

is smaller and consumes less power than its 32-bit counterpart, BrownieSTD32. This 

is because the BrownieMicro16 is a 16-bit processor, with 16 16-bit registers in the 

register file while the BrownieSTD32 is a 32-bit processor with 32 32-bit registers in 

the register file. What was not expected, however, was their more than 4x difference in 

area. In terms of power consumption, there is a 4x difference in total power 

consumption of BrownieMicro16 compared to BrownieSTD32. This can still be due to 

the more complex design of the BrownieSTD32 compared to that of BrownieMicro16. 

One thing to note, however, is that since the target application is that of WSNs, the 

cores are expected to be idle most of the time, and therefore consume mostly leakage 

power. Thus, in this respect, the BrownieMicro16 is still a better choice because of its 

low leakage power. The speed of the two cores are comparable, showing that both can 

reach upto 1MHz operating frequency. 

One possible benefit of a 32-bit processor over a 16-bit one could be the length 

of code needed to implement a certain task. The length of code would determine the 

size of the IMEM needed. And, knowing that memory units are usually leaky, we want 

to minimize the IMEM size needed. We determine the size requirement by taking the 

C code of representative WSN applications. These C codes were then compiled and 

assembled using the compiler and assembler that came with the core. The produced 

assembly code was not optimal, so we modified the assembly code a little, removing 

unnecessary NOPs. For the case of the BrownieMicro16, manual conversion from the 

original BrownieSTD32 had to be done since no compiler and assembler were provided 
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with the BrownieMicro16. After conversion, unnecessary NOPs were likewise 

removed, to have a fair comparison with the 32-bit version. We then determine the 

minimum size of IMEM needed by getting the nearest power of two size that could 

contain the largest code. Table 7.7 shows the resulting code lengths with three 

benchmarks used. The BrownieSTD32_mod represents the modified assembly code 

after removal of the unnecessary NOPs. 

Table 7.7 Code Size Comparison with 16- and 32-bit Cores 
Benchmark BrownieSTD32 BrownieSTD32_mod BrownieMicro16 

Crypt3 697 609 657 

RLE 168 142 142 

FIR 30 30 39 

 

We can see from Table 7.7 that except BrownieSTD32_mod indeed has shorter 

code length compared to BrownieMicro16. The longer code length of the FIR 

benchmark in the BrownieMicro16 core is because of the absence of a multiplier in the 

BrownieMicro16. The FIR benchmark is composed mostly of multiply and add 

commands, while the other two benchmarks are mostly compare and add. Thus, the 

absence of a multiplier unit in the BrownieMicro16 core forces the core to perform 

multiplication using a series of additions, thereby producing a lengthy code. Comparing 

all three benchmarks, however, the longest one is still the Crypt3. Thus, it is the Crypt3 

benchmark that will dictate the size of the IMEM. Based on the data from Table 7.7, 

we get a minimum IMEM size of 32kb for the BrownieSTD32 and 16kb for the 

BrownieMicro16. Thus, the BrownieMicro16 core is still a better choice compared to 

BrownieSTD32. Seeing the effect of the absence of a multiplier in the BrownieMicro16 

core, we then proceeded to extending its instruction to include multiplication in order 

to reduce code length, and more importantly, the number of cycles. 

A 16x16 multiplier unit in the BrownieMicro16 core was added, to go with the 

mult ISA extension. The new core with the additional multiplier unit (BrownieMult16) 

was synthesized using Synopsys Design Compiler® with the complete customized 
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500mV standard cell library [158].The comparison of the original BrownieMicro16 

with the new BrownieMult16, for a 7.5MHz operation at 0.5V is shown in Table 7.8.   

Table 7.8 Comparison of Cores at 0.5V, 7.5MHz 
Parameter BrownieMicro16 BrownieMult16 

Area (sq. um) 12639.60 18026.28 
Dynamic Power (uW) 3.27 3.33 

Leakage Power (nW) 60.38 94.05 
Total Power (uW) 3.33 3.42 

Slack (ns) 0.03 0 
 

Because of the addition of the multiplier unit, the increase in area and power is 

expected. It should be noted, though, that although the area increase is almost 50%, the 

increase in total power is less than 3%. This results in less than 0.5uW/MHz energy 

efficiency of the processor core. By adding the multiplier unit, the FIR code length is 

now 30, same as that of 32-bit version, which can be translated to an even better 

performance in terms of number of clock cycles for the operation.  

After verifying the functionality of the design, it was automatically placed and 

routed using Cadence SoC Encouter® and the resulting area of the core was 

approximately 180um x 180um. The area breakdown is shown in Fig. 7.5. 

 
Fig. 7.5 Area breakdown of BrownieMult16 core 
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The peripheral block in Fig. 7.2 was mainly added for interfacing and testing. It 

is composed of the bitloading circuit (for serial input to parallel output), a 128x16-bit 

memory array to act as alternate IMEM, a 64x16-bit ROM containing randomized 

numbers for key generation, and some multiplexers as well as synchronizing circuits 

for reset. The resulting area estimate for the peripheral block is 30657 sq.um, of which, 

almost 95% is from the alternate IMEM. 

A sample short pseudocode for testing (labelled as TEST) is shown in Fig. 7.6. 

Based on timing reports from synthesis, it was determined that the critical path would 

involve addition with register operands (ADD). Because of the complexity of the 

multiplier which is expected to be completed within 1 cycle, the MUL instruction was 

also included.   

 
Fig. 7.6 TEST pseudocode 

 
Fig. 7.7 shows the power consumption per operation of the core when ran at 

0.5V supply and 10MHz clock frequency. We can see from the figure that the power 

consumption of a NOP operation is only slightly less than a SLEEP operation. Also, 

the power consumption of TEST, which should include the critical path, is just slightly 

lower than a LD operation. Comparing the NOP and SLEEP with the LD and TEST, we 

can see that the NOP/SLEEP consumes just slightly above half of that consumed by a 

LD operation. It should be noted that these data are only for the core (IMEM, DMEM 

and peripheral block not included).   
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Fig. 7.7 Power consumption per instruction at 0.5V, 10MHz 

 
Fig. 7.8 Performance of the core using TEST code 

 

Fig. 7.8 shows the performance of the core for different supply voltage and clock 

frequency. It can be seen that the maximum efficiency point of the core is at around 

320mV with a frequency of around 750kHz. The operating point near the intersection 

of the efficiency and frequency plot is around 500mV with a frequency of 16.5MHz. 

Table 7.9 summarizes the design parameters of the core. It should be noted that the data 

in Table 7.6 refers only to the core. In this experiment, we were able to show the 

effectiveness of the custom library for 500mV. Our MCU’s efficiency of 1.86 uW/MHz 
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is also comparable with that of the SleepWalker MCU in [159], which has 2uW/MHz 

using also a 65nm CMOS technology. 

Table 7.9 BrownieMult16 Design Parameters 
Parameter Value 

Technology 65nm CMOS 

Supply Voltage 500 mV 

Frequency 10 MHZ 

Average Power 18.55 uW 

Efficiency 1.86 uW/MHz 
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Chapter 8  

Conclusion 

 

This thesis presents a base framework for the design of ubiquitous computer 

vision systems. In today’s era of internet of things and ubiquitous computing, the 

demand for high connectivity, especially with battery operated systems or those with 

embedded energy harvesting units, continuous to increase. Ubiquitous surveillance 

systems are not an exception. Scene analysis and object detection and classification 

through feature extraction requires continuous processing and therefore energy 

consumption. This poses more stringent constraints in current designs, compelling 

designers to design for sub- or near-threshold voltage operation, or propose energy-

efficient techniques.  

Energy-quality scalability adds another dimension to the existing energy-

performance trade-off. In EQSCALE (Chapters 3 and 4), we introduce tuneable knobs 

to allow balance between energy and quality (in terms of image resolution and 

matching percentage). We showed that we are able to provide an order improvement 

in energy consumption with a feature extraction hardware with similar area and 

complexity. Compared with a feature extraction hardware with similar energy 

consumption, the area of EQSCALE is an order smaller. 

With the data re-use in EQSCALE, an external DRAM (frame buffer) is no 

longer necessary. Instead, an SRAM that serves as a sub-frame (less than 1/3 of a 

frame) buffer can be used. Leveraging on the correlation between adjacent pixels in an 

image, a non-precharge SRAM (Chapter 5) was proposed. By removing the precharge 

stage, 50% of the energy consumption compared to 8T SRAM can potentially be saved. 

The resulting speed is comparable to 8T, with 15% area overhead. 
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To ensure the authenticity and security of data, a light weight physically 

unclonable function was proposed for use as chip identification (Chapter 6). A class of 

static, monostable PUFs was presented, and results have shown that it has the best 

repeatability, identifiability and randomness compared with other PUFs. It consumes 

15fJ/bit of energy, which is at least an order lower compared to other PUFs. 

Low yield due to variations is another key limitation when designing in sub- or 

near-threshold voltages. This can be improved through upsizing, or by adding more 

margin in the design to allot for the variations. Using a customized standard cell 

designed for near-threshold operation, a 16-bit MCU with modified instruction set was 

designed (Chapter 7). A maximum energy efficiency point at around 320mV (sub-

threshold) with a frequency of 750kHz was achieved using a commercial 65nm CMOS 

technology. Although ISA extension results in slightly larger area and power, it reduces 

energy consumption by decreasing the number of cycles required to finish one task. 
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