1,656 research outputs found

    Resolution limit in community detection

    Get PDF
    Detecting community structure is fundamental to clarify the link between structure and function in complex networks and is used for practical applications in many disciplines. A successful method relies on the optimization of a quantity called modularity [Newman and Girvan, Phys. Rev. E 69, 026113 (2004)], which is a quality index of a partition of a network into communities. We find that modularity optimization may fail to identify modules smaller than a scale which depends on the total number L of links of the network and on the degree of interconnectedness of the modules, even in cases where modules are unambiguously defined. The probability that a module conceals well-defined substructures is the highest if the number of links internal to the module is of the order of \sqrt{2L} or smaller. We discuss the practical consequences of this result by analyzing partitions obtained through modularity optimization in artificial and real networks.Comment: 8 pages, 3 figures. Clarification of definition of community in Section II + minor revision

    Periodic and Near-Periodic Structures

    Get PDF

    Natural clustering: the modularity approach

    Full text link
    We show that modularity, a quantity introduced in the study of networked systems, can be generalized and used in the clustering problem as an indicator for the quality of the solution. The introduction of this measure arises very naturally in the case of clustering algorithms that are rooted in Statistical Mechanics and use the analogy with a physical system.Comment: 11 pages, 5 figure enlarged versio

    ์‹ฌ์ธตํ•™์Šต์„ ์ด์šฉํ•œ ์•ก์ฒด๊ณ„์˜ ์„ฑ์งˆ ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€,2020. 2. ์ •์—ฐ์ค€.์ตœ๊ทผ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ์ˆ ์˜ ๊ธ‰๊ฒฉํ•œ ๋ฐœ์ „๊ณผ ์ด์˜ ํ™”ํ•™ ๋ถ„์•ผ์— ๋Œ€ํ•œ ์ ์šฉ์€ ๋‹ค์–‘ํ•œ ํ™”ํ•™์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ๊ตฌ์กฐ-์„ฑ์งˆ ์ •๋Ÿ‰ ๊ด€๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์˜ˆ์ธก ๋ชจํ˜•์˜ ๊ฐœ๋ฐœ์„ ๊ฐ€์†ํ•˜๊ณ  ์žˆ๋‹ค. ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€๋Š” ๊ทธ๋Ÿฌํ•œ ๊ธฐ๊ณ„ํ•™์Šต์˜ ์ ์šฉ ์˜ˆ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ ๋‹ค์–‘ํ•œ ์šฉ๋งค ๋‚ด์˜ ํ™”ํ•™๋ฐ˜์‘์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ทผ๋ณธ์  ์„ฑ์งˆ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€๋ฅผ ์›์ž๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์‹ฌ์ธตํ•™์Šต ๊ธฐ๋ฐ˜ ์šฉ๋งคํ™” ๋ชจํ˜•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ์•ˆ๋œ ์‹ฌ์ธตํ•™์Šต ๋ชจํ˜•์˜ ๊ณ„์‚ฐ ๊ณผ์ •์€ ์šฉ๋งค์™€ ์šฉ์งˆ ๋ถ„์ž์— ๋Œ€ํ•œ ๋ถ€ํ˜ธํ™” ํ•จ์ˆ˜๊ฐ€ ๊ฐ ์›์ž์™€ ๋ถ„์ž๋“ค์˜ ๊ตฌ์กฐ์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ํ‘œํ˜„์„ ์ถ”์ถœํ•˜๋ฉฐ, ์ด๋ฅผ ํ† ๋Œ€๋กœ ์›์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์žกํ•œ ํผ์…‰ํŠธ๋ก  ์‹ ๊ฒฝ๋ง ๋Œ€์‹  ๋ฒกํ„ฐ๊ฐ„์˜ ๊ฐ„๋‹จํ•œ ๋‚ด์ ์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. 952๊ฐ€์ง€์˜ ์œ ๊ธฐ์šฉ์งˆ๊ณผ 147๊ฐ€์ง€์˜ ์œ ๊ธฐ์šฉ๋งค๋ฅผ ํฌํ•จํ•˜๋Š” 6,493๊ฐ€์ง€์˜ ์‹คํ—˜์น˜๋ฅผ ํ† ๋Œ€๋กœ ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์˜ ๊ต์ฐจ ๊ฒ€์ฆ ์‹œํ—˜์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ, ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ ๊ธฐ์ค€ 0.2 kcal/mol ์ˆ˜์ค€์œผ๋กœ ๋งค์šฐ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง„๋‹ค. ์Šค์บํด๋“œ-๊ธฐ๋ฐ˜ ๊ต์ฐจ ๊ฒ€์ฆ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ 0.6 kcal/mol ์ˆ˜์ค€์œผ๋กœ, ์™ธ์‚ฝ์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ๋ถ„์ž ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก์— ๋Œ€ํ•ด์„œ๋„ ์šฐ์ˆ˜ํ•œ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ํŠน์ • ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์€ ๊ทธ ๊ตฌ์กฐ ์ƒ ํŠน์ • ์šฉ๋งค์— ํŠนํ™”๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ๋†’์€ ์–‘๋„์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ํ•™์Šต์— ์ด์šฉํ•  ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ฅผ ๋Š˜์ด๋Š” ๋ฐ ์šฉ์ดํ•˜๋‹ค. ์›์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๋ถ„์„์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹ฌ์ธตํ•™์Šต ๋ชจํ˜• ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€์— ๋Œ€ํ•œ ๊ทธ๋ฃน-๊ธฐ์—ฌ๋„๋ฅผ ์ž˜ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•ด ๋‹จ์ˆœํžˆ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์„ฑ์งˆ๋งŒ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด ๋”์šฑ ์ƒ์„ธํ•œ ๋ฌผ๋ฆฌํ™”ํ•™์  ์ดํ•ด๋ฅผ ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค.Recent advances in machine learning technologies and their chemical applications lead to the developments of diverse structure-property relationship based prediction models for various chemical properties; the free energy of solvation is one of them and plays a dominant role as a fundamental measure of solvation chemistry. Here, we introduce a novel machine learning-based solvation model, which calculates the target solvation free energy from pairwise atomistic interactions. The novelty of our proposed solvation model involves rather simple architecture: two encoding function extracts vector representations of the atomic and the molecular features from the given chemical structure, while the inner product between two atomistic features calculates their interactions, instead of black-boxed perceptron networks. The cross-validation result on 6,493 experimental measurements for 952 organic solutes and 147 organic solvents achieves an outstanding performance, which is 0.2 kcal/mol in MUE. The scaffold-based split method exhibits 0.6 kcal/mol, which shows that the proposed model guarantees reasonable accuracy even for extrapolated cases. Moreover, the proposed model shows an excellent transferability for enlarging training data due to its solvent-non-specific nature. Analysis of the atomistic interaction map shows there is a great potential that our proposed model reproduces group contributions on the solvation energy, which makes us believe that the proposed model not only provides the predicted target property, but also gives us more detailed physicochemical insights.1. Introduction 1 2. Delfos: Deep Learning Model for Prediction of Solvation Free Energies in Generic Organic Solvents 7 2.1. Methods 7 2.1.1. Embedding of Chemical Contexts 7 2.1.2. Encoder-Predictor Network 9 2.2. Results and Discussions 13 2.2.1. Computational Setup and Results 13 2.2.2. Transferability of the Model for New Compounds 17 2.2.3. Visualization of Attention Mechanism 26 3. Group Contribution Method for the Solvation Energy Estimation with Vector Representations of Atom 29 3.1. Model Description 29 3.1.1. Word Embedding 29 3.1.2. Network Architecture 33 3.2. Results and Discussions 39 3.2.1. Computational Details 39 3.2.2. Prediction Accuracy 42 3.2.3. Model Transferability 44 3.2.4. Group Contributions of Solvation Energy 49 4. Empirical Structure-Property Relationship Model for Liquid Transport Properties 55 5. Concluding Remarks 61 A. Analyzing Kinetic Trapping as a First-Order Dynamical Phase Transition in the Ensemble of Stochastic Trajectories 65 A1. Introduction 65 A2. Theory 68 A3. Lattice Gas Model 70 A4. Mathematical Model 73 A5. Dynamical Phase Transitions 75 A6. Conclusion 82 B. Reaction-Path Thermodynamics of the Michaelis-Menten Kinetics 85 B1. Introduction 85 B2. Reaction Path Thermodynamics 88 B3. Fixed Observation Time 94 B4. Conclusions 101Docto

    Correlation of creep rate with microstructural changes during high temperature creep

    Get PDF
    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten

    Simple models of protein folding and of non--conventional drug design

    Full text link
    While all the information required for the folding of a protein is contained in its amino acid sequence, one has not yet learned how to extract this information to predict the three--dimensional, biologically active, native conformation of a protein whose sequence is known. Using insight obtained from simple model simulations of the folding of proteins, in particular of the fact that this phenomenon is essentially controlled by conserved (native) contacts among (few) strongly interacting ("hot"), as a rule hydrophobic, amino acids, which also stabilize local elementary structures (LES, hidden, incipient secondary structures like ฮฑ\alpha--helices and ฮฒ\beta--sheets) formed early in the folding process and leading to the postcritical folding nucleus (i.e., the minimum set of native contacts which bring the system pass beyond the highest free--energy barrier found in the whole folding process) it is possible to work out a succesful strategy for reading the native structure of designed proteins from the knowledge of only their amino acid sequence and of the contact energies among the amino acids. Because LES have undergone millions of years of evolution to selectively dock to their complementary structures, small peptides made out of the same amino acids as the LES are expected to selectively attach to the newly expressed (unfolded) protein and inhibit its folding, or to the native (fluctuating) native conformation and denaturate it. These peptides, or their mimetic molecules, can thus be used as effective non--conventional drugs to those already existing (and directed at neutralizing the active site of enzymes), displaying the advantage of not suffering from the uprise of resistance

    Ordinal Motifs in Lattices

    Full text link
    Lattices are a commonly used structure for the representation and analysis of relational and ontological knowledge. In particular, the analysis of these requires a decomposition of a large and high-dimensional lattice into a set of understandably large parts. With the present work we propose /ordinal motifs/ as analytical units of meaning. We study these ordinal substructures (or standard scales) through (full) scale-measures of formal contexts from the field of formal concept analysis. We show that the underlying decision problems are NP-complete and provide results on how one can incrementally identify ordinal motifs to save computational effort. Accompanying our theoretical results, we demonstrate how ordinal motifs can be leveraged to retrieve basic meaning from a medium sized ordinal data set
    • โ€ฆ
    corecore