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Abstract

Recent advances in machine learning technologies and their chemical appli-

cations lead to the developments of diverse structure-property relationship

based prediction models for various chemical properties; the free energy of

solvation is one of them and plays a dominant role as a fundamental mea-

sure of solvation chemistry. Here, we introduce a novel machine learning-

based solvation model, which calculates the target solvation free energy

from pairwise atomistic interactions. The novelty of our proposed solva-

tion model involves rather simple architecture: two encoding function ex-

tracts vector representations of the atomic and the molecular features from

the given chemical structure, while the inner product between two atomistic

features calculates their interactions, instead of black-boxed perceptron net-

works. The cross-validation result on 6,493 experimental measurements for

952 organic solutes and 147 organic solvents achieves an outstanding per-

formance, which is 0.2 kcal/mol in MUE. The scaffold-based split method

exhibits 0.6 kcal/mol, which shows that the proposed model guarantees
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reasonable accuracy even for extrapolated cases. Moreover, the proposed

model shows an excellent transferability for enlarging training data due to

its solvent-non-specific nature. Analysis of the atomistic interaction map

shows there is a great potential that our proposed model reproduces group

contributions on the solvation energy, which makes us believe that the pro-

posed model not only provides the predicted target property, but also gives

us more detailed physicochemical insights.

Keywords: Deep learning, Structure-property relationship, Solvation free

energy, Solubility, Liquid property, Liquid system
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Chapter 1

Introduction

The importance of solvation or hydration mechanism and its involved free

energy change has made various in silico calculation methods for the solva-

tion energy a major topic in computational chemistry.[1–22] The solvation

free energy directly influences to many chemical properties in solution and

plays a dominant role in various chemical reactions: drug delivery[4, 15,

17, 23], organic synthesis[24], electrochemical redox reactions[25–28], et

cetera.

The realistic computer simulation approaches for the solvent and the

solute molecules directly offer the microscopic structure of the solvation

shell, which surrounds the solutes molecule.[9, 10, 13, 16, 17, 29] The sol-

vation shell structure could provide us detailed physicochemical informa-

tion like microscopic mechanisms on solvation or the interplay between the
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solvent and the solute molecules when we use an appropriate force field

model and parameters. However, those explicit solvation methods we stated

above need an extensive amount of numerical calculations since we have

to simulate each individual molecule in the solvated system. Moreover, the

free energy calculation procedure with an explicitly implemented solvent

model necessarily involves rare-event sampling methods, which make the

task even more computationally expensive. The realistic problems on the

explicit solvation model restrict its applications to classical molecular me-

chanics simulations,[9, 10, 16] or a limited QM/MM approaches.[13, 29]

For classical mechanics approaches for macromolecules or calculations

for small compounds at quantum-mechanical level, the idea of implicit sol-

vation enables us to calculate solvation energy with feasible time and com-

putational costs when one considers a given solvent as a continuous and

isotropic medium in the Poisson-Boltzmann equation.[1–3, 5–8, 11] Many

theoretical advances have introduced to construct the PB-based equation,

which involves parameterized solvent properties: the polarizable continuum

model (PCM),[11] the conductor-like screening model (COSMO),[3] gener-

alized Born approximations like solvation model based on density (SMD)[7]

or solvation model 6, 8, 12, ... (SMx).[1, 6] The conductor-like screening

model for realistic solvents (COSMO-RS) is a noteworthy solvation model

since it is believed to be the state-of-the-art method.[2] This is realized by

statistical thermodynamics treatment on the polarization charge densities,
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which helps COSMO-RS with making successful predictions even in polar

solvents where the fundamental idea of the dielectric continuum solvation

collapses.[8]

The quantitative structure activity relationship (QSAR) or the quan-

titative structure property relationship (QSPR) is a rather new approach,

which predicts the solvation free energy with a completely different point of

view when compared to computer simulation approaches with precisely de-

fined theoretical backgrounds[30, 31]. The underlying architecture of QSPR

consists of two elementary mathematical functions[30]: one is the encod-

ing function, which encodes the structural or chemical features of a given

compound into a molecular descriptor. The other, the mapping function,

predicts the target property (or activity) that we intend to find out using

the descriptor from the encoding function. Although we cannot expect de-

tailed chemical or physical insights other than the target property since the

QSAR/QSPR is a regression analysis in its intrinsic nature, It has shown

its advantages in terms of transferability and outstanding computational

efficiency[20, 30, 31].

Recent successes in the machine learning (ML) technique[32] and their

implementations in computational chemistry[20, 33] are promoting broad

applications of QSAR/QSPR in numerous chemical studies[4, 18, 21, 23,

27, 34–43]. Those studies proved that ML guarantees faster calculations

than computer simulations and more precise estimations than traditional

3



QSPR estimations; a decent number of models showed accuracies compa-

rable to ab initio solvation models in the aqueous system[20].

In this thesis, we introduce a novel artificial neural-network-based ML

model called Delfos that predicts free energies of solvation for generic or-

ganic solvents in the previous work[22]. The model not only has a great

potential of showing an accuracy comparable to the state-of-the-art compu-

tational chemistry methods[1, 2] but offers information about which sub-

structures play a dominant role in the solvation process. As a further de-

velopment, we propose an improved ML model for the solvation energy

estimation, which is based on the group-contribution method. The key idea

of the proposed model is the calculation of pairwise atomic interactions by

inner products of atomic feature vectors, while each encoder network for the

solvent and the solute extracts such atomic features.

The outline of the rest of the present thesis is as follows: in Chapter 2,

we mainly discuss the performance of Delfos, with both MD and ab ini-

tio simulation strategies[1, 2, 44, 45] and analyze database sensitivity using

cluster cross-validation method. We also visualize important substructures

in solvation via attention mechanism. In Chapter 3, we introduce a new ML

model for the solvation energy prediction, which is based on pairwise atom-

by-atom interactions. The chapter quantifies the proposed model’s perfor-

mance with 6,594 data points, mainly focused on group contributions and

pairwise atomistic interactions. In the last chapter of the thesis, we summa-

4



rize and conclude our work.
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Chapter 2

Delfos: Deep Learning Model for Prediction of Solvation Free

Energies in Generic Organic Solvents

2.1 Methods

2.1.1 Embedding of Chemical Contexts

Natural language processing (NLP) is one of the most cutting-edge subfields

of computer science in varied applications of machine learning and neural

networks[46–50]. To process human languages using computers, we need

to encode words and sentences and extract their linguistic properties. The

process is commonly implemented via word embedding method[46, 47].

To perform the task, unsupervised learning schemes such as skip-gram and

continuous bag of words (CBOW) algorithms generate a vector representa-

tion of the given word in an arbitrary vector space[47, 51]. If the necessary

vector space is well-defined, one can conjecture the semantic or syntactic
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features of the given word from the position of the embedded vector, and

the inner product of two vectors corresponding to two different words pro-

vides information about their semantic similarity.

It is worthwhile to note that we can employ the embedding technique

for chemical or biophysical processes if we consider an atom or a sub-

structure as a word and a compound as a sentence[52–54]. In that case,

positions of molecular substructures in the embedded vector space repre-

sent their chemical and physical properties, instead of linguistic informa-

tion. Several models have already been developed along the line of this

idea. For example, bio-vector models[52] that have been developed to en-

code sequences of proteins or DNAs, and atomic-vector embedding mod-

els have been introduced recently to encode structural features of chemical

compounds[53, 54]. Mol2Vec is one of such embedding techniques, and

it generates vector representations of a given molecule from the molecu-

lar sentence[54]. To make molecular sentences, Mol2Vec uses the Mor-

gan algorithm[55] that assorts identical atoms in the molecule. The algo-

rithm is commonly used to generate ECFP fingerprints[56], which are the

de facto standard in cheminformatics[57], and they make identifiers of the

given atom from the chemical environment where the atom is positioned.

An atom may have multiple identifiers depending on the pre-set maximum

value of radius rmax, which denotes the maximum topological distance be-

tween the given atom and its neighboring atoms. The atom itself is identified

8



Figure 2.1: Schematic illustration of the molecular embedding process for
acetonitrile (SMILES: CC#N) and rmax = 1. The Morgan algorithm dis-
criminates identifiers between two substructures: one is for itself (r = 0)
and the other considers its nearest neighbor atoms (r = 1). Then the em-
bedding layer calculates the vector representation from the given identifier.

by r = 0, and additional substructure identifiers for adjacent atoms are de-

noted by r = 1 (nearest neighbor), r = 2 (next nearest neighbor), and so on.

Since Mol2Vec has demonstrated promising performances in several appli-

cations of QSAR/QSPR[54], Delfos uses Mol2Vec as the primary encoding

means. We schematically illustrated embedding procedure for acetonitrile

in Fig. 2.1.

2.1.2 Encoder-Predictor Network

As shown in Fig. 2.2, the fundamental architecture of Delfos involves three

sub-neural networks: the solvent and the solute encoders extract dominant
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structural features of the given compound from SMILES strings, while the

predictor calculates the solvation energy of the given solvent-solute pair

from their encoded features.

The primary architecture of the encoder is based on two bidirectional

recurrent neural networks (BiRNNs)[58]. The network is designed for han-

dling sequential data and we consider the molecular sentence [x1, · · · ,xN ]

as a sequence of embedded substructures, xi. RNNs may have a failure

when input sequences are lengthy; gradients of the loss function can be

diluted or amplified because of accumulated precision error from the back-

propagation process[59]. The excessive or restrained gradient may cause a

decline in learning performance, and we call these two problems as van-

ishing or exploding gradient. To overcome these limits which stem from

lengthy input sequences, one may consider using both forward-directional

RNN (
−−−→
RNN) and backward-directional RNN (

←−−−
RNN) within a single layer:

−−−→
RNN([x1, · · · ,xN ]) = [

−→
h1, · · · ,

−→
hN ], (2.1a)

←−−−
RNN([x1, · · · ,xN ]) = [

←−
h1, · · · ,

←−
hN ], (2.1b)

←−→
RNN([x1, · · · ,xN ]) = [h1, · · · ,hN ]. (2.1c)

In Eqn. 2.1, xi is the embedded atomic vector of a given molecule,
−→
hi

and
←−
hi are hidden state outputs of each recurrent unit, and hi =

−→
hi;
←−
hi

means concatenation of two hidden states, respectively. The long-short term
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memory[60] (LSTM) and gated recurrent unit[61] (GRU) networks, which

are modifications of RNN, are invented to handle lengthy input sequences.

They introduce gates in each RNN cell state to memorize important infor-

mation of the previous cell state and minimize vanishing and exploding gra-

dient problem.

After RNN layers, the molecular sentences of both the solvent X =

[x1, · · · ,xN ] and the solute Y = [y1, · · · ,yM ] are converted to hidden

states, H = [h1, · · ·hN ] and G = [g1, · · · ,gM ], respectively. Each hidden

state is then put into the shared attention layer and weighted. The atten-

tion mechanism, which was originally proposed to enhance performances

of machine translator[48], is an essential technique in diverse NLP applica-

tions nowadays[49, 50]. Principles of the attention start from the definition

of the score function of hidden states and its normalization with the softmax

function:

αij =
exp(score(hi,gj))∑
k exp(score(hi,gk))

, (2.2a)

pi =

M∑
j

αijgj , (2.2b)

score(hi,gj) = hi · gj . (2.2c)

There are various score functions that have been introduced to achieve ef-

ficient predictions[48–50], and among them we use Luong’s dot-product
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attention[50] in Eqn. 2.2c as a score function since it is computationally ef-

ficient. The solvent context, P = αG denotes an emphasized hidden state H

with the attention alignment, α. We also get the solute context Q using the

same procedure. The context weighted from the attention layer is an L×2D

matrix, where L is the sequence length and D is the dimension of two RNN

hidden layers since we use bidirectional RNN (BiRNN). Two max-pooling

layers, which is the last part of each encoder reduces contexts H, G, P, and

Q to 2D-dimensional feature vectors u and v[50]:

u = MaxPooling([h1;p1, · · · ,hN ;pN ]), (2.3a)

v = MaxPooling([g1;q1, · · · ,gM ;qM ]). (2.3b)

The predictor has a single fully-connected perceptron layer with recti-

fier unit (ReLU) and an output layer. It uses the concatenated feature of the

solvent and solute [u;v] as an input. The overall architecture of our model

is shown in Figure 2.2. We also consider encoders without RNN and at-

tention layers in order to quantify the impact of these layers on prediction

performances of the network; each encoding network contains only the em-

bedding layer and directly connected to the MLP layer. The solvent and

solute features are simple summations of atomic vectors, u =
∑N

i xi and

v =
∑M

i yi, respectively. This model was initially used for gradient boost-
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Figure 2.2: The fundamental architecture of Delfos. Each encoder network
has one embedding and one recurrent layer, while the predictor has a fully-
connected MLP layer. Two encoders share an attention layer, which weights
outputs from recurrent layers. Black arrows indicate flow of input data.

ing (GBM) regression analysis for aqueous solubilities and toxicities[54].

2.2 Results and Discussions

2.2.1 Computational Setup and Results

We use the Minnesota solvation database[62] (MNSOL) as the dataset over

which we train and test, and it provides 3,037 experimental measures of

free energies of solvation and transfer energies for 790 unique solutes in 92

solvents. Because the MNSOL only contains common names of compounds,
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we perform an automated searching process using PubChemPy[63] script

and receive SMILES strings of compounds from PubChem database. There

are 363 results for charged solutes and 144 results for transfer free energies

in the MNSOL which are excluded from machine learning dataset, and 35

results of solvent-solute combinations are not valid in PubChem. We finally

prepare SMILES specifications of 2,495 solutions for 418 solutes and 91

solvents for the machine learning input.

For the implementation of the proposed neural networks, we use Keras

2.2.4 framework[64] with TensorFlow 1.12 backend[65]. At the very first

stage, Morgan algorithm for r = 0 and r = 1 generates molecular sen-

tences of the solvent and solute from their SMILES strings. Then the given

molecular sentence is embedded to a sequence of 300-dimensional sub-

structure vectors by the skip-gram pretrained Word2Vec model available

at https://github.com/samoturk/mol2vec, which contains information of ∼

20, 000, 000 compounds and ∼ 20, 000 substructures from the ZINC15

database[54]. We consider BiLSTM and BiGRU layers in both solvent and

solute encoders to compare their performances. Since our model is a regres-

sion problem, we use mean squared error (MSE) as the loss function.

We employ 10-fold cross-validation (CV) for secure representativeness

of the test data because the dataset we use has a limited number of exper-

imental measures; the total dataset is uniformly and randomly split into 10

subsets, and we iteratively choose one of the subsets as a test set and the
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training run uses the remaining 9 subsets. Consequentially, a 10-fold CV

task performs 10 independent training and test runs, and relative sizes of the

training and test sets are 9 to 1. We use Scikit-Learn library[66] to imple-

ment the CV task and perform an extensive grid search for tuning hyper-

parameters: learning algorithms, learning rates, and dimensions of hidden

layers. We select the stochastic gradient descent (SGD) algorithm with Nes-

terov momentum, whose learning rate is 0.0002 and momentum is 0.9. Opti-

mized hidden dimensions are 150 for recurrent layers and 2000 for the fully

connected layer. To minimize the variance of the test run, we take averages

for all results over 9 independent random CV, split from different random

states.

Solvation free energies that we calculated from the MNSOL using at-

tentive BiRNN encoders are exhibited in Fig. 2.3 and 2.4. Prediction errors

for the BiLSTM model are ±0.57 kcal/mol in RMSE, ±0.30 kcal/mol

in MAE, and the Pearson correlation coefficient is R2 = 0.96 while re-

sults from the BiGRU model indicate there is no meaningful difference

between the two recurrent models. The encoder without BiRNN and at-

tention layers produces much less accurate results, whose error metrics are

±0.77 kcal/mol in RMSE,±0.43 kcal/mol in MAE, and 0.92 in R2 value,

respectively.

We cannot directly compare our results with other ML models because

Delfos is the first ML-based study using the MNSOL database. Nonethe-
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less, several studies on aqueous system have previously calculated solubili-

ties or hydration free energies using various ML techniques and molecular

descriptors[4, 20, 53, 54, 67, 68]. For comparison, we have tested our neu-

ral network model for hydration free energy. A benchmark study of Wu

et al. [20] provides hydration energies of 642 small molecules in a group

of QSPR/ML models. Their RMSEs were up to 1.15 kcal/mol while our

prediction from the BiLSTM encoder attains 1.19 kcal/mol for the same

dataset and split method. This result suggests our neural network model

guarantees considerably good performances even in a specific solvent of

water.

Meanwhile, for studies which are not ML-based, there are several re-

sults from both classical and quantum-mechanical simulation studies that

use the MNSOL as the reference data[1, 2, 44, 45, 69–71]. In Table 2.1,

we choose two DFT studies which employ several widely-used QM solva-

tion models[1, 2] for comparison with our proposed ML model: solvation

model 8/12 (SM8/SM12), solvation model based on density (SMD), and

full/direct conductor-like screening model for realistic solvation (COSMO-

RS/D-COSMO-RS). Albeit all of those QM methods exhibited excellent

performances given chemical accuracy 1.0 kcal/mol, among the rest, full

COSMO-RS is a noteworthy solvation model since it is believed to be the

state-of-the-art method which shows the best accuracy[72]. This is realized

by statistical thermodynamics treatment on the polarization charge den-
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sities, which helps COSMO-RS with making successful predictions even

in polar solvents where the key idea of the dielectric continuum solva-

tion collapses[8, 72, 73]. As a result, COSMO-RS calculations with BP86

functional and TZVP basis set achieved 0.52 kcal/mol for 274 aqueous,

0.41 kcal/mol for 2,072 organic solvents, and 0.43 kcal/mol for the full

dataset in mean absolute error[2].

For the proposed ML models, Delfos with BiLSTM shows a compara-

ble accuracy in water solvent, which MAE is 0.64 kcal/mol. Delfos makes

much better predictions in non-aqueous organic solvents; machine learn-

ing for 2121 non-aqueous systems result in 0.24 kcal/mol, which is 44%

of SM12CM5 and 59% of COSMO-RS. However, one may argue that K-

fold CV from random split does not produce the real prediction accuracy

of the model. That is, the random-CV results only indicate the accuracy for

trained or practiced chemical structures. Accordingly, one may ask the fol-

lowing questions. For example, will the ML model ensure the comparable

prediction accuracy in “structurally” new compounds? What happens if the

ML model couldn’t learn sufficiently varied chemical structures? We will

discuss these questions in the next section.

2.2.2 Transferability of the Model for New Compounds

Since our study uses techniques of machine learning with empirical data

from experimental measures, there is a likelihood that Delfos would not
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Figure 2.3: Benchmark chart for three kinds of encoder networks, for two
metrics (MAE and RMSE). The BiLSTM and the BiGRU models show no
significant differences, while it makes relatively inaccurate predictions with-
out recurrent networks. All results are averaged over 9 independent test runs
and black lines on tops of boxes denote variances.
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Figure 2.4: Scatter plot for true (x-axis) and ML predicted (y-axis) values
of solvation energies in three different models: (a) BiLSTM, (b) BiGRU,
and (c) without recurrent layers. All results are averaged over 9 independent
10-fold CV runs.

19



Solvent Method Ndata MAE Ref
Aqueous SM12CM5/B3LYP/MG3S 374 0.77 [1]

SM8/M06-2X/6-31G(d) 366 0.89 [1]
SMD/M05-2X/6-31G(d) 366 0.88 [1]
COSMO-RS/BP86/TZVP 274 0.52 [2]
D-COSMO-RS/BP86/TZVP 274 0.94 [2]
Delfos/BiLSTM 374 0.64
Delfos/BiGRU 374 0.68
Delfos w/o RNNs 374 0.90

Non-aqueous SM12CM5/B3LYP/MG3S 2129 0.54 [1]
SM8/M06-2X/6-31G(d) 2129 0.61 [1]
SMD/M05-2X/6-31G(d) 2129 0.67 [1]
COSMO-RS/BP86/TZVP 2072 0.41 [2]
D-COSMO-RS/BP86/TZVP 2072 0.62 [2]
Delfos/BiLSTM 2121 0.24
Delfos/BiGRU 2121 0.24
Delfos w/o RNNs 2121 0.36

Table 2.1: Comparisons between encoder-predictor networks and various
quantum-mechanical solvation models for aqueous and non-aqueous solu-
tions. The error metric is MAE and kcal/mol. Data in bold texts are our
results, while QM results are taken from the work of Marenich et al. [1] and
Klamt and Diedenhofen [2].
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guarantee prediction accuracy for structurally new solvents or solutes which

are not present in the dataset, although the MNSOL contains a consider-

able number commonly-used solvents and solutes.[62]. In order to inves-

tigate this potential issue, we perform another train and test runs with the

cluster cross-validation[43, 74], instead of using the random-split CV. As a

start, we individually obtain 10 clusters for solvents and solutes using the

K-mean clustering algorithm and the molecular vector. The molecular vec-

tor is a simple summation of substructure vectors as we used for the sim-

ple MLP model without RNN encoders[54]: u =
∑N

i xi for solvents and

v =
∑M

i yi for solutes, respectively. Then, we iteratively perform cross-

validation process over each cluster. The size of each cluster is (422, 482,

186, 231, 443, 243, 143, 251, 15, 79) for solvents and (401, 672, 514, 75,

64, 6, 512, 54, 42, 155) for solutes, respectively.

Results from the solvent and the solute cluster CV tasks shown in Table

2.2 exhibit generalized expectation error ranges for new solvents or solutes

which are not in the dataset. Winter et al. [43] reported that the split method

based on the clustering brings an apparent degradation of prediction per-

formances in various properties; we find that our proposed model exhibits

a similar tendency as well. For the BiLSTM encoder model, increments of

MAE are 0.52 kcal/mol for the solvent clustering and 0.69 kcal/mol for

the solute clustering. The reason why the random K-fold CV exhibits su-

perior performances is obvious; if we have a pair (A, B) of solvent A and
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solute B in the test set and the training set have (A, C) and (D,B) pairs, then

both (A, C) and (D,B) could enhance prediction accuracy of (A, B). How-

ever, the clustering limits the location of a specific compound, and pairs of

specific solvent or solute should be either in the test set or the train set.

For an additional comparison, Table 2.2 also contains results taken from

SMD calculations with semi-empirical methods[45], COSMO, COSMO-

RS[2], and classical molecular dynamics[44] for four small organic sol-

vents: toluene (C6H5CH3), chloroform (CHCl3), acetonitrile (CH3CN), and

dimethyl sulfoxide ((CH3)2SO), respectively. Albeit MD is based on classi-

cal dynamics, the results of generalized amber force field (GAFF) tells us

that an explicit solvation model with a suitable force field could make con-

siderably good predictions. The bottom line of cluster CV is if the dataset for

train contains at least one side of the solvent-solvent pair of which we want

to estimate the solvation free energy, the expectation error of Delfos lies

within chemical accuracy 1.0 kcal/mol, which is the general error of com-

puter simulation scheme. Also, results for four organic solvents demonstrate

that predictions from the cluster CV have the accuracy that is comparable

with MD simulations using AMOEBA polarizable force field[44].

Results from the cluster CV highlight the necessity for discussion on

the importance of database preparation. As described earlier, the cluster CV

causes a considerable increase in prediction error, and we suspect that the

degradation mainly comes from the decline in the diversity of the training
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set. Namely, the number of substructures that the neural network learns in

training process is not so many as the random CV if we use the cluster

CV. To prove this speculation, we define unique substructures, which are

substructures that only exists in the test cluster. As shown in Figure 2.5, in

the solute cluster CV, MAE for 1,226 pairs which do not have any unique

substructures in solutes is 0.54 kcal/mol, while the prediction error for the

rest 1,269 solutions is 1.64 kcal/mol. The solvent cluster CV shows even

more extreme results: the MAE for 374 aqueous solvents is 2.48 kcal/mol,

while non-aqueous solvents exhibit 0.52 kcal/mol in contrast. We believe

that the outlying behavior of water is due to its distinctive nature. Water

has only one, unique substructure since the oxygen atom does not have any

neighbors. So the solvent clustering makes the network unable to learn the

structure of water in indirect ways, results in a prediction failure. This logic

tells us that the most critical thing in an ML prediction task is securement of

the training dataset which contains as many as possible kinds of solvents and

solutes. We believe that computational approaches would be as helpful as

experimental measures for enriching structural diversity of the training data,

given recent advances on QM solvation models[1, 2, 75] such as COSMO-

RS. Furthermore, since there are 418 solutes and 91 solvents in the dataset

we use[62], which make up 38,038 possible pairs, we expect Delfos and

MNSOL would guarantee similar precision levels with the random CV for

numerous systems.
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Solvent Method Ndata MAE RMSE Ref
All COSMO/TZVP 2346 2.15 2.57 [2]

COSMO-RS/TZVP 2346 0.42 0.75 [2]
SMD/PM6 2500 - 3.6 [45]
Random CV 2495 0.30 0.57
Solvent Clustering 2495 0.82 1.45
Solute Clustering 2495 0.99 1.61

Toluene MD/GAFF 21 0.48 0.63 [44]
MD/AMOEBA 21 0.92 1.18 [44]
COSMO/TZVP 21 2.17 2.71 [2]
COSMO-RS/TZVP 21 0.27 0.34 [2]
Solvent Clustering 21 0.66 1.10
Solute Clustering 21 0.93 1.46

Chloroform MD/GAFF 21 0.92 1.11 [44]
MD/AMOEBA 21 1.68 1.97 [44]
COSMO/TZVP 21 1.76 2.12 [2]
COSMO-RS/TZVP 21 0.50 0.66 [2]
Solvent Clustering 21 0.78 0.87
Solute Clustering 21 1.14 1.62

Acetonitrile MD/GAFF 6 0.43 0.52 [44]
MD/AMOEBA 6 0.73 0.77 [44]
COSMO/TZVP 6 1.42 1.58 [2]
COSMO-RS/TZVP 6 0.33 0.38 [2]
Solvent Clustering 6 0.74 0.82
Solute Clustering 6 0.80 0.94

DMSO MD/GAFF 6 0.61 0.75 [44]
MD/AMOEBA 6 1.12 1.21 [44]
COSMO/TZVP 6 1.31 1.42 [2]
COSMO-RS/TZVP 6 0.56 0.73 [2]
Solvent Clustering 6 0.93 1.19
Solute Clustering 6 0.91 1.11

Table 2.2: Prediction accuracy of the random-split CV, the solvent and so-
lute cluster CVs using K-mean algorithm, and several theoretical solvation
models for four different organic solvents: toluene (C6H5CH3), chloroform
(CHCl3), acetonitrile (CH3CN), and dimethyl sulfoxide ((CH3)2SO), re-
spectively. Units of MAE and RMSE are kcal/mol.
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Figure 2.5: Results of cross-validation tasks using K-mean clustering algo-
rithm for (a) solutes and (b) solvents. We conclude that unique substructures
in the given compounds are the main cause of the decline in prediction accu-
racy. Each encoder network includes a BiLSTM layer and we use the same
hyperparameters which are optimized in the random CV task.
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2.2.3 Visualization of Attention Mechanism

A useful aspect of attention mechanism is that the model provides not only

the prediction value of solvation energy of a given input but also a clue

to why the neural network makes such a prediction based on the correla-

tions between recurrent hidden states[49, 53, 76]. In this section, we visu-

alize how the attention layer operates, and verify how well such correla-

tions correspond to chemical intuitions for inter-molecular interactions. The

matrix of attention alignments, α from Eqn. 2.2a indicates which substruc-

tures in the given solvent and solute are strongly correlated with each other

so they play dominant roles in determining their solvation energy. In Fig-

ure 2.6, we demonstrate attention alignments of nitromethane (CH3NO2)

solute in four different solvents: 1-octanol (C8H17OH, 3.51 kcal/mol), 1-

butanol (C4H9OH, 3.93 kcal/mol), ethanol (C2H5OH, 4.34 kcal/mol), and

acetonitrile (CH3CN, 5.62 kcal/mol). The scheme for visualizing attention

alignments is as follows: (i) first, we calculate the average alignment 〈α〉j

of each substructure j of the solute over the entire solvent structure {i},

〈α〉j =
∑N

i αij/N . (ii) Then, we get relative amounts of averaged atten-

tion alignments [α̃1, · · · , α̃M ] from dividing 〈α〉j by the maximum value,

α̃j = 〈α〉j /max(〈α〉1 , · · · , 〈α〉M ). (iii) Also, since the embedding algo-

rithm which we use generates two substructure vectors per an atom, we in-

dividually visualize two alignments maps, [α̃1, α̃3, · · · , α̃M−1] (for r = 0)
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and [α̃2, α̃4, · · · , α̃M ] (for r = 1) for simpler and more intuitive illustra-

tion. (iv) Finally, the color representation of each atom in Fig. 2.6 denotes

the amount of α̃j ; the neural network judges that red-colored substructures

(higher α̃j) in the solute are more “similar” to the solvent and the model puts

more weights on them during the prediction task. In contrast, green-colored

substructures have lower α̃j , which means they do not have similarity with

the solvent molecule so much as red-colored one.

Overall results in Fig. 2.6 imply that the chemical similarity taken from

the attention layer has a significant connection to fundamental knowledge

of chemistry like polarity or hydrophilicity. Each alcoholic solvent has one

hydrophilic – OH group, and it results in increasing contributions of the

nitro group in the solute as hydrocarbon chains of alcohols shorten. For

the acetonitrile-nitromethane solution, the attention mechanism reflects the

highest contributions of – NO2 groups due to strong polarity and aprotic

nature of the solvent. Although the attention mechanism seems to repro-

duce molecular interactions in a faithful way, however, we find there is a

defective prediction which does not agree with chemical knowledge. Two

oxygen atoms –– O and – O– in the nitro group are indistinguishable due

to the resonance structure, thus they must have equivalent contributions

in any solvents, but we find they show different attention scores in our

model. We believe those problems happen because the SMILES string of

nitromethane (C[N+](=O)[O-]) does not encode the resonance effect in the
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Figure 2.6: Relative and mean attention alignments map for nitromethane
in four different solvents: (a) octanol, (b) butanol, (c) ethanol, (d) and ace-
tonitrile, respectively. Color representations denote that the neural network
invests more weights on red, while green substructures have relatively low
contributions for the solvation energy.

nitro group. Indeed, the Morgan algorithm generates different identifiers for

two oxygen atoms in the nitro group, [864942730, 2378779377] for –– O and

[864942795, 2378775366] for – O– . The absence of resonance might be a

problem worthwhile considering when one intends to use word embedding

models with SMILES strings[43, 53, 54], although estimated solvation ener-

gies for nitromethane from the BiLSTM model are within a moderate error

range as shown in Fig. 2.6.
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Chapter 3

Group Contribution Method for the Solvation Energy

Estimation with Vector Representations of Atom

3.1 Model Description

3.1.1 Word Embedding

In the proposed work, the primary strategy for the encoding of the input

compound’s structure is the word embedding, mainly inspired by Google’s

word2vec model[46, 51]. The first attempt of continuous vector represen-

tations of human vocabularies in arbitrary space introduced in the mid-

1980s[51], however, the remarkable breakthrough has been made by devel-

opments of neural network language model (NNLM) and recurrent neural

network language model[77] (RNNLM).

The general procedure of word embedding starts from the construction

of a one-hot encoded vector x(I) = [x1(I), · · · , xV (I)] of a given, tok-
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enized input word I , where V is the vocabulary size[46]. By the nature of

one-hot encoding, we know the vector x has only one non-zero element at

the corresponding dimension to the given word, xI(I) = 1 and the other

elements are 0, in short, xi(I) = δi,I . Fig. 3.1 illustrates the embedding

procedure when the input context has only one word.

h(I) = x(I)W, (3.1a)

y(I) = Softmax(h(I)W
′
). (3.1b)

In Eqn. 3.1 and Fig. 3.1, the first fully-connected layer W forms a V ×N

matrix, and the second, W
′

is N ×V . So the hidden layer (or the projection

layer) h(I) has a shape of N -dimensional vector and is identical to the I-th

row of W, wI . The second FC layer calculates the output y(I), following

the equations shown below:

h(I)W
′

=
[
w
′
1 ·wI , · · · ,w

′
V ·wI

]
, (3.2a)

yi(I) =
exp(w

′
i ·wI)∑V

j=1 exp(w
′
j ·wI)

. (3.2b)

Each projecting element for the second FC layer in Eqn. 3.2, w
′
j is the j-th

column of W
′
. Both w and w

′
have the same shape, and one can either

use them as theN -dimensional embedded vector representation of the input

word. Since we train the embedding model as classification tasks with a
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specific target word T , the conditional probability of finding T given an

input I is:

P (T |I) = yJ(I). (3.3)

The general optimization scheme for the classification model is logistic

regression that is maximizing P (T |I) and minimizing the binary cross-

entropy loss function.

L = −x(T ) · logy(I) (3.4a)

= −w′T ·wI + log

V∑
j=1

exp(w
′
j ·wI). (3.4b)

Another essential feature of the word embedding is that both the input

word and the target word are taken from a single context. That is to say,

an embedding model calculates predictivity or co-occurrence between the

target word and the input word in a single sentence. This strategy makes the

embedding model as an unsupervised machine learning problem, so one can

easily enlarge the size of the pre-training dataset. There are two models in

Word2Vec: the continuous bag of words (CBOW) model and the skip-gram

model. As shown in Fig. 3.2, the CBOW model predicts the central word

from its neighboring words; the skip-gram model uses the central word as

the input to predict its neighbors. The model complexity of a CBOW model,
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Q is dependent on the embedding dimension D, the window length N and

the vocabulary size V .

Q = D(N + log2 V ), (3.5)

and for a skip-gram model, Q is as follows:

Q = ND(1 + log2 V ). (3.6)

The logarithmic dependence on the vocabulary size log2 V is originated

from the hierarchical softmax activation function, which makes it unnces-

sary for the model to update all weights in W and W
′
[51].

A number of studies showed that the the unsupervised context learning

in the word embedding scheme can also be a powerful tool for encoding

structural features of chemical compounds[18, 23, 43, 54]. The idea is real-

ized by the consideration of a given molecular structure as chemical contexts

of atoms of substructure; positions of projected atomic feature vectors in the

embedded vector space now represent their chemical or physical properties,

instead of linguistic information. In the present study, we use Mol2Vec em-

bedding model as the primary encoding means[54], which uses the Morgan

algorithm to assort atoms in an identical chemical environment and generate

the chemical context of a given compound[56].
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Figure 3.1: Embedding procedure for simple one-word context.

3.1.2 Network Architecture

In the proposed model, the linear regression task between the given chemical

structures of the solvent and solute molecules and their solvation free energy

starts with embedded vector representations of the given solvent xα and

solute yγ , where α and γ are atom indices. The entire molecular structure is

now can be expressed as a sequence of vectors or a matrix:

X = {xα} , (3.7a)

Y = {yγ} , (3.7b)
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Figure 3.2: Model architecture diagrams for (a) the CBOW model and (b)
the skip-gram model. The CBOW model predicts the current word based on
neighboring words, while the skip-gram words predicts surrounding words
from the current word.
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so xα and yγ are α-th row of X and γ-th row of Y, respectively. Then

the encoder function learns their chemical structures and extracts feature

matrices for the solvent P and the solute Q.

P = Encoder(X), (3.8a)

Q = Encoder(Y). (3.8b)

Columns of P and Q, pα and qγ involve atomistic chemical features of

atoms α and γ, which are directly related to the target property, the solva-

tion free energy. We now calculate the un-normalized attention (or chemical

similarity) between α and γ with on Luong’s dot-product attention score

function[50]:

Iαγ = −pα · qγ . (3.9)

Since our target quantity is the free energies of solvation, we expect such

chemical similarity Iαγ to well correspond to atomistic interactions between

α and γ, which involves both the energetic and the entropic contributions.

Eventually, the free energy of solvation of the given pair, which is the final

regression target, is given as a simple summation of atomistic interactions:

∆G◦sol =
∑
αγ

Iαγ . (3.10)
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Certainly, one can also calculate the free energies of solvation from two

molecular feature vectors, those are representing the solvent properties u

and the solute properties v, respectively:

∆G◦sol = u · v =

(∑
α

pα

)
·

(∑
α

qα

)
. (3.11)

The inner-product relation between molecular feature vectors u and v has a

formal analogy with the solvent-gas partition coefficient calculation method

via the solvation descriptor approach, which is founded by Abraham and

Acree[78, 79]:

logK = c+ eE + sS + aA+ bB + lL. (3.12)

In Eqn. 3.12, the solute descriptor (1, E, S,A,B,L) is determined from a

series of experimental measures, and the solvent descriptor (c, e, s, a, b, l)

is a fitted value. In our proposed model, both u and v are purely fitted

quantities from the scratch, with the skip-gram pre-training and the linear

regression analysis.

We choose and compare two different neural network models in order

to encode the input molecular structure and extract important structural or

chemical features which are strongly related to solvation behavior: one is

bidirectional language model (BiLM)[80] based on the recurrent neural net-
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work (RNN), the other is the graph convolutional neural network (GCN)[81]

which explicitly handles the connectivity (bonding) between atoms with the

adjacency matrix.

The detailed mathematical expressions of the bidirectional language model

are given below[80]:

−→
H(i+1) =

−−−→
RNN(

−→
H(i)), (3.13a)

←−
H(i+1) =

←−−−
RNN(

←−
H(i)). (3.13b)

In Eqn. 3.13, the right-headed arrow in
−−−→
RNN denotes a forward-directed re-

current unit which propagates from the leftmost of the sequence to the right-

most one. The BiLM also involves the backward-directed recurrent neural

network (
←−−−
RNN) and it propagates from the rightmost to the leftmost. The

superscript (i) in hidden layers H(i) denotes the position at the stacked con-

figuration: at the first stack, both forward-directed and backward-directed

RNN share the pre-trained sequence X as an input,
−→
H(0) =

←−
H(0) = X.

In addition, use of more improved versions of RNNs, e.g. the gated recur-

rent unit (GRU)[61] or the long-short term memory (LSTM)[60], are more

suitable when one considers cumulated numerical errors due to the deep-

structured nature of RNNs[59],

H(i) =
−→
H(i) +

←−
H(i). (3.14)
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Hidden layers from the forward and backward RNNs are then merged into a

single sequence, as described in Eq. 3.14. Finally, we obtain the sequence of

chemical feature vectors of the α-th atom in the given solvent with weighted

summation of rnn stacks,

P =
∑
i

ciH
(i). (3.15)

The encoder function for solutes has an identical neural network architec-

ture, which converts the pre-trained solute sequence Y into the feature se-

quence Q.

To sum up, the BiLM encoder considers a given molecule as just a sim-

ple sequence of atomic vector representations. The idea is quite clear and

rather straightfoward for implementation of the neural network. However,

this idea may causes “problems” in more complex compounds due to the

lack of intramolecular bonding information between atoms. We also con-

sider the graph convolutional neural network (GCN), which is one of the

most well-known algorithms in chemical applications of neural networks[34,

81]. The GCN model represents the input molecule as a mathematical graph,

instead of a simple sequence: each node corresponds to the atom, and each

edge in the adjacency matrix A involves connectivity (or existence of bond-
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ing) between atoms:

H(i+1) = GCN(H(i),A). (3.16)

The role of adjacency matrix in the GCN constrains convolution filters to the

node and its nearest neighbors. Eqn. 3.17 describes a more detailed mathe-

matical expression of the skip-connected GCN[81]

GCN(H, Ã) = σ(ÃHW1 + HW2 + b), (3.17)

where W1 and W2 are convolution filters, b is the bias vector, and σ de-

notes the activation function - we choose the hyperbolic tangent in the pro-

posed model. The GCN encoder also invloves stacked structure, and we can

obtain the feature sequence for each molecule with the same manner as de-

scribed in Eqn. 3.15.

3.2 Results and Discussions

3.2.1 Computational Details

For the training and test tasks of the proposed neural network, we prepare

6,594 experimental measures of free energies of solvation for 952 organic

solvents and 147 organic solutes, including some inert gases. 642 experi-

mental measures for free energies of hydration are taken from the FreeSolv
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Figure 3.3: Architecture of the proposed model. Each encoder network ex-
tracts atomistic feature vectors given pre-trained vector representations, and
the interaction map calculates pairwise atomistic interactions.
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database[14],and 5,952 data points for non-aqueous solvents are collected

with the Solv@TUM database version 1.0[78, 79], which is available at

https://github.com/hille721/solvatum. Compounds in the dataset involves 10

kinds of atoms, which are commonly used in organic chemistry: hydrogen

(H), carbon (C), oxygen (O), sulfur (S), nitrogen (N), phosphorus (P), fluo-

rine (F), chlorine (Cl), bromine (Br), and iodine (I). The maximum heavy-

atom count is 28 for solutes and 18 for solvents.

For the very first stage, we perform the skip-gram pre-training process

for 10,229,472 organic compounds, which are collected from the ZINC15

database[82], using Gensim 3.8.1 and Mol2Vec skip-gram model to con-

struct the 128-dimensional embedding lookup table[54]. For the implemen-

tation of the neural network model, we mainly use the Tensorflow 2.0 and

Keras 2.3.1 frameworks[65]. To construct the BiLM encoder, we both con-

sider CuDNN implementations[65] for the LSTM and the GRU, which are

basic layers in the Tensorflow. For GCN encoder, we use codes taken from

Spektral library version 0.1.1, which implements the skip-connected graph

convolutional network. Each model has L2 regularization to prevent exces-

sive changes on weights and minimize the variance and uses the RMSprop

algorithm with 10−3 of learning rate and ρ = 0.9 for optimizing its loss

function, the mean squared error (MSE).

We employ 5-fold cross-validation to evaluate the prediction accuracy

of the chosen model; the entire dataset is randomly split into five uniform-
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sized subsets, and we iteratively choose one of the subsets as a test set, and

the training run uses the remainder 4 subsets. Consequentially, a 5-fold CV

task performs 5 independent training and test runs, and relative sizes of the

training and test sets are 8 to 2. To minimize the variation of results from

CV tasks, we take averages for all results over 9 independent random CV,

split from different random states. The procedure for CV is implemented

with the Scikit-Learn library version 0.2.2[66].

3.2.2 Prediction Accuracy

The selection of the optimized model for the target property is realized by

an extensive grid-search task for tuning model hyperparameters. First, we

choose 32 as the batch size, and RMSprop as an optimization algorithm

with learning rate is 10−3. It is generally known that the smaller batch size

generates a better result; however, a too small batch size is computationally

inefficient, so we take the value of 32 as the point of compromise between

the prediction performance and the computational efficiency. Table 3.2.2

shows additional searching information for the optimized stack size of the

encoder networks and maximum epochs are 50 for the BiLM model and

100 for the GCN model, respectively. Fig. 3.4 shows epoch-evolution of

training and validation loss for both the BiLM/LSTM encoder and the GCN

encoder, where optimized stack size is 3. BiLM encoder shows a much faster

convergence behavior untill ∼ 50 epochs and overfitting appears, while the
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GCN encoder exhibits minimum validation loss around ∼ 100 epochs.

The results for test run using 5-fold CV tasks for the optimized models

with grid search tasks are shown at Fig. 3.5. We found that the BiLM en-

coder with the LSTM layer performs slightly better than the GCN encoder,

although their differences are not pronounced: the mean unsigned predic-

tion error (MUE) for the BiLM/LSTM encoder model is 0.19 kcal/mol,

while the GCN model results in 0.23 kcal/mol. Both MUE values show

that the our proposed mechanism is actually working and guarentees excel-

lent prediction accuracies for well-trained chemical structures. Moreover,

since we use a simple version of the graph-based neural network as the

encoder, we might expect the GCN-based model to perform better than a

simple graph-based embedding model or more progressed version of graph

neural networks to perform even better for chemical structures: such as the

messege-passing neural network (MPNN)[35], the deep tensor neural net-

work (DTNN)[36], and so on.

As the last of this section, we confirm whether or not the proposed neu-

ral network architecture is working as we designed. Fig. 3.6 presents t-SNE

visualizations for pre-trained solute vectors y and encoded molecular fea-

ture v[38]. Color codes denote predicted hydration free energies for 15,432

points, whose structures are randomly taken from the ZINC15[82]; red dots

correpond to the compounds with low hydration free energies while the blue

dots correspond to them with high hydration free energies. The correlation
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Encoder Stack
Training Validation Test
RMSE RMSE RMSE

BiLM

1 0.29± 0.00 0.59± 0.04
2 0.24± 0.01 0.44± 0.04
3 0.24± 0.01 0.43± 0.02 0.41± 0.01
4 0.23± 0.00 0.49± 0.03
5 0.20± 0.02 0.52± 0.02

GCN

1 0.34± 0.00 0.73± 0.04
2 0.26± 0.00 0.70± 0.07
3 0.25± 0.00 0.51± 0.08
4 0.26± 0.01 0.46± 0.05 0.44± 0.01
5 0.27± 0.01 0.77± 0.16

Table 3.1: Error metrics for training, validation, and test runs with respects
to the number of stacked encoder layers. The units of all errors are kcal/mol.

between molecular features and predicted free energies is a clear clue that

the model architecture can extract geometrical correlations and calculate

free energy. Meanwhile, the pre-trained solute vectors from the skip-gram

embedding model exhibit only weak correlations.

3.2.3 Model Transferability

Since our proposed neural network model is a solvent-non-specific one that

considers both the solvent structure and the solute structure as seperate in-

puts, it has a distinct character when compared to the other solvent-specific

ML models. The model can train with the structure of a single solute repeat-

edly when the solute has multiple solvation energy data for different kinds

of solvents[22]; this logic is also valid for a single solvent. Therefore, one

of the most useful advantages of our model is that we can easily enlarge the
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Figure 3.4: Epoch-evolution of mean squared loss functions (RMSE) for (a)
the GCN encoder model and (b) the BiLM encoder model. Solid lines denote
evolution of training losses while dotted lines denote validation losses. All
results are averaged over 8 independent cross-validation runs.
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Figure 3.5: (a) Prediction erros for two models in kcal/mol, taken from 5-
fold cross validation results. (b) Scatter plot between the experimental value
and ML the ML predicted value. Black circles denote the BiLM model while
the GCN results are shown in gray diamonds.
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Figure 3.6: 2-dimensional visualizations on (a) the pre-trained vector
∑

γ yγ
and (b) the molecular feature vector v for 15,432 solutes. We reduce the
dimension of each vector with the t-SNE algorithm. The color representation
denotes the hydration energy of each point.
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dataset for training, even in the scenario that we want to predict solvation

free energies for a specific solvent. Fig. 3.7 shows 5-fold cv results for 642

hydration free energies (FreeSolv) from both the BiLM and the GCN mod-

els, in two different situations. One uses only the FreeSolv[14] database for

train and test tasks, and the other additionally uses the Solv@TUM[78, 79].

Although the Solv@TUM database only involves non-aqueous data points,

it enhances each model’s accuracy by about 20% (BiLM) to 30% (GCN)

in terms of mean unsigned errors. Those results imply that there are possi-

ble applications of the transfer learning to other solvation-related properties,

like aqueous solubilities[4] or octanol-water partition coefficients.

However, in some other situations, the advantage we discussed above

might be a downside: the repetitive training for a single compound may

make the model tends to overfit, and they could weaken predictivity for

the structurally new compound, which is considered as an extrapolation.

We investigate the model’s predictivity for extrapolation situations with the

scaffold-based split[22, 35, 43]. Instead of the ordinary K-fold CV task

with the random and uniform split method, the K-means clustering algo-

rithm builds each fold with the MACCS substructural fingerprint. One can

simulate an extreme extrapolation situation through CV tasks over the clus-

tered fold. As shown in Fig. 3.8, albeit the scaffold-based split degrades

MUEs by a factor of three, they are still within an acceptable error range

∼ 0.6 kcal/mol, given chemical accuracy 1.0 kcal/mol. Furthermore, we
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Figure 3.7: CV-results for FreeSolv hydration energies with two different
training dataset selection. Deep-colored boxes denote CV results with the
augmented dataset with the Solv@TUM database.

do not see any clear evidence that our model tends to overfit more than other

solvent-specific models[35, 43].

3.2.4 Group Contributions of Solvation Energy

Although we showed that the proposed NN model guarantees an excellent

predictivity for solvation energies of various solute and solvent pairs, the

main objective of the present study is obtaining the solvation free energy as

the sum of decomposed inter-atomic interactions, as we described at Eq. 3.9

and 3.10. In order to verify whether or not the the model’s solvation energy

estimation has correspondence to group-contribution based calculation, we

define the sum of atomic interactions Iαγ over the solvent indices γ as the
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Figure 3.8: Comparison between CV results with the random-split and the
scaffold-based split (or cluster split).

group contributions of the α-th solute atom:

Iα =
∑
γ

Iαγ . (3.18)

Figure 3.9 shows hydration free energy contributions for four linear and

small organic solutes which have six heavy atoms: n-hexane (CCCCCC), 1-

chloropentane (CCCCCCl), pentaldehyde (CCCCC=O), and 1-aminopentane

(CCCCCN). As shown in Fig. 3.9, both the BiLM and the GCN model ex-

hibit a resembling tendency in group contributions; the model estimates that

atomic interactions between the solute atoms and water increases near the

hydrophilic groups. Although the results show that we can find a signifi-

cant correspondence to intuitive chemical knowledge, it might need further

quantified analysis of computer simulation approaches. For example, molec-
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ular dynamics simulations with an appropriate explicit solvation model. The

Kirkwood charging formula can give atomic free energy contributions with

pairwise interactions u(r, λ) and the solvation shell structure g(r, λ)[10]:

µ = ρ

∫ 1

0
dλ

∫
drg(r, λ)

∂u(r, λ)

∂λ
. (3.19)

However, there is an aspect that we can easily verify without quanti-

tative computer simulations. It is obvious that each atom in cyclohexane

and benzene must have identical contributions to the free energy, but the

results in Fig. 3.10 clearly shows that the BiLM model makes faulty pre-

dictions while the GCN model works well as expected. We believe that this

malfunctioning of the BiLM model originates from the sequential nature of

the recurrent neural network. Since the RNN considers the input molecule

is just a simple sequence of atomic vectors and there are no explicit state-

ments that involve bonding information, the model could not be aware of the

cyclic shape of the input compound[23, 34]. We conclude that it is inevitable

to use explicitly bond (or connectivity) information when one constructs a

group-contribution based ML model, although the RNN-based model well

predicts in terms of their sum.
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Figure 3.9: ML-calculated atomistic group contributions for four small, lin-
ear organic molecules which have six heavy atoms. The atom index starts
from the leftmost of the given molecule and only counts heavy atoms.
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Figure 3.10: Group contributions for two simple cyclic compounds: cyclo-
hexane and benzene.
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Chapter 4

Empirical Structure-Property Relationship Model for Liquid

Transport Properties

In this chapter, we present a simple structure-property relationship estima-

tion procedure for two major transport properties of the liquid state: the

dynamic viscosity (η) and the dielectric constant (ε).

Computer simulation approaches for the calculation of transport prop-

erties are not easily feasible since they are non-equilibrium measures which

are depending on the external field: shear stress (viscosity) and electric field

(dielectric constant). Generally, the calculation of transport property via

equilibrium simulation needs to generate multiple molecular dynamics tra-

jectories to evaluate the Green-Kubo relation, which is the exact mathemat-

ical expression for transport coefficients in the linear response regime[83]:

γ =

∫ ∞
0

dτ 〈A(0)A(τ)〉 . (4.1)
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Eqn. 4.1 calculates the given transport coefficient γ with the time integra-

tion of a specific time correlation function. At high-viscous liquids, it is

difficult to sample trajectories and calculate the Green-Kubo relation due to

extremely slow relaxation of the liquid system.

In previous chapters, we showed that the structure-property relationship

could be a powerful tool for the prediction of the free energy of solvation.

Here, we seek another application of SPR estimation of non-equilibrium

transport properties, which might be applicable in many systems - even in

viscous liquids. The basis of the present SPR model is the decision-tree re-

gression model; the model generates tree-like graphs of decision rules and

learns the training database[84]. Also, we employ two ensemble methods,

the random forest[85] (RF) and the gradient boosting[86] (GBM) algo-

rithms to minimize bias and variance of the tree-based machine learning

model.

The mathematical expression of the ensemble method starts with the

mathematical function F of a regression model an input descriptor x to its

label y[86]:

ŷi = F (xi;P), (4.2)

where P is the collection of trainable parameters of the function F and ŷ

is the predicted value of the model, given input descriptor x. The linear

regression task loss function L(yi, F (xi)) = (yi − ŷi)2 by the least-square
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method.

P∗ = arg min
P

∑
i

L(yi, F (xi;P)). (4.3)

A random forest regression model involves a set of independent, randomly

generated decision-tree subpredictors {F1(x;P1), · · · , FK(x;PK)}, and

one can get the optimized model from the ensemble average overK “weakly-

optimized” subpredictors[85].

F(xi) =
K∑
k=1

Fk(xi;P
∗
k). (4.4)

If the model is a classification problem, each subpredictor casts a unit vote

for the selection of the most popular class.

The gradient boosting algorithm takes a different approach to the RF

model. It has an analogy with the RF that the model consists a set of sub-

predictors, however, instead of the ensemble average over subpredictors, a

GBM model updates its prediction model Fk via the sequential iteration task

and chooses the last model F ∗K as the optimized model[86]:

F ∗k+1(x) = F ∗k (x) + hk(x). (4.5)

Here, we fit the base learner hk with pseudo-residuals {rik}:

rik = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=F ∗k−1(x)

. (4.6)
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At the very first stage, the initial model F ∗1 is equivalent with Eqn. 4.3.

We perform an extensive searching task over tens of elementary struc-

tural properties and choose the collection of 19 values, which are shown in

Table. 4.1, as the optimized molecular descriptor for liquid transport proper-

ties. All properties are available in RDkit 2019.09 python module, and their

evaluation process does not require additional simulations or theoretical cal-

culations. For the train and validation tasks, we collect 1,375 experimental

data for the liquid dynamic viscosity and the relative permittivity (the dielec-

tric constant) from the web version of DIPPR 801 database[87]. The two

decision-tree based ensemble models are implemented using Scikit-learn

0.22[66] and XGBoost 0.90 libraries.

We optimize the hyperparameters and evaluate the predictivity of two

models for two transport properties using the 5-fold cross-validation task.

The optimized RF model’s maximum tree depth is 8, while the GBM model

has 6 maximum nodes; both models have the same number of estimators,

100. Fig. 4.1 shows scatter plots between experimental values (x-axis) and

predicted values (y-axis). We also specify the Pearson correlation coefficient

in order to indicate the prediction accuracy of each model. The GBM model

shows better accuracy: R2 values are 0.91 for the dynamic viscosity and

0.81 for the dielectric constant in the logarithmic scale, respectively. while

the RF model shows R2 = 0.89 for the viscosity and 0.78 for the dielectric

constant, respectively.
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No. Property Unit
1 Molecular weight A. U.
2 Heavy atom weight A. U.
3 Maximum partial charge e
4 Minimum partial charge e
5 Fraction of sp3 carbons -
6 Labute accessible surface area Å

2

7 Topological polar surface area Å
2

8 Number of aliphatic carbocycles -
9 Number of aliphatic heterocycles -
10 Number of aromatic carbocycles -
11 Number of aromatic heterocycles -
12 Number of saturated carbocycles -
13 Number of saturated heterocycles -
14 Number of stereo centers -
15 Number of hydrogen bond acceptor -
16 Number of hydrogen bond donor -
17 Number of Lipinski hydrogen bond acceptor -
18 Number of Lipinski hydrogen bond donor -
19 Number of heteroatoms -

Table 4.1: Collection of 19 elementary structural properties for the descrip-
tion of a given organic molecule. All properties are available in RDKit
python module.
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Figure 4.1: Scatter plots for (a) the dynamic viscosity and (b) the dielec-
tric constant, respectively. ML predictions are obtained using 5-fold cross-
validation tasks over 1,375 data points, which are taken from the DIPPR 801
database.
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Chapter 5

Concluding Remarks

In the present study, we introduced a new approach for the solvation energy

prediction, which has a great potential to provide physicochemical insights

on the solvation process. The novelty of our neural network model is that

the model does not involve the perceptron networks for readout of encoded

features and estimation of the target property. Alternatively, we designed

the model such that it is possible to calculate pairwise atomic interactions

from inner products of atomistic feature vectors[50]. As a result, the model

produces the solvation free energy from the group-contribution based pre-

diction.

In Chapter 2, we reviewed our previous ML solvation model, Delfos.

The extensive calculations on 2495 experimental values[62] demonstrate

that Delfos exhibits excellent prediction accuracy, which is comparable with
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several well-known QM solvation models[1, 2] when the neural network is

trained with sufficiently varied chemical structures. Decline in performances

about 0.5 to 0.7 kcal/mol at the cluster CV tasks represents the accuracy for

a structurally new compound, suggesting the importance of preparation of

the ML databases even though Delfos still demonstrates comparable predic-

tions with some theoretical approaches such as MD with AMOEBA force

field[44] or DFT with pure COSMO[2]. The score matrix taken from the at-

tention mechanism gives us an interaction map between atoms and substruc-

ture; our model does provide not only a simple estimation of target property

but offers important pieces of information about which substructures play a

dominant role in solvation processes.

In Chapter 3, we introduced a new model for the solvation energy es-

timation and quantified the proposed model’s prediction performances for

6,493 experimental data points of solvation energies, which were taken from

the FreeSolv[14] and Solv@TUM database[37, 79]. We found a signif-

icant geometrical correlation between molecular feature vectors and pre-

dicted properties, which implies that the proposed model is actually work-

ing as we designed. The estimated prediction MUEs from K-fold CV are

0.19 kcal/mol for the BiLM encoder and 0.23 kcal/mol for the GCN model,

respectively.

The K-fold CV results from the scaffold-based split[43] showed the

prediction accuracy decreases by a factor of three in extreme extrapola-
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tion situations, but they still exhibit moderate performances, which were

0.60 kcal/mol. Moreover, we found that the solvent-non-specific structure

of the proposed model is appropriate for enlarging dataset size, that is to

say, experimental data points for a particular solvent is transferable to other

solvents; we conclude that this transferability is the reason for our model’s

outstanding predictivity[22].

Finally, we examined pairwise atomic interactions that are obtained from

the interaction map I and found a clear tendency between hydrophilic groups

and their contributions to the hydration free energy. However, the BiLM

model with the recurrent network has some faulty aspects in symmetric or

cyclic compounds, albeit it showed better predictions in terms of the total

solvation energy. This fact implies the sequential nature of the recurrent net-

work is inappropriate for constructing a group-contribution model, and an

explicit usage of the chemical bonding information is inevitable. Although

our results need an extra investigation from a quantitative point of view[10],

we believe that our model can provide detailed information on the solvation

mechanism, not only the predicted value of the target property.
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Appendix A

Analyzing Kinetic Trapping as a First-Order Dynamical Phase

Transition in the Ensemble of Stochastic Trajectories

A.1 Introduction

Self-assembly is the spontaneous process of disordered components to form

ordered patterns or structures. It is one of the most extensively studied re-

search area for complex systems[88–95]. Physical interactions between com-

ponents play a major role in the self-assembly process. Strength and speci-

ficity of the interactions induce the assembling process and determine their

assembled structure in the equilibrium condition. However, an obstacle due

to an energetic and/or entropic barrier makes it difficult for the system to

relax via the reversible dynamics, which hinders the formation of desired

assembly structure. The irreversible behavior in bond making and breaking

will hinder misbounded components to adjust their bonds easily[91, 96]. Oc-
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casionally the system will get trapped in the meta-stable glassy state instead

of its equilibrium structure. This behavior is usually called kinetic trapping.

There have been numerous works in computer simulation studies[97–104]

in order to avoid kinetic trapping and achieve effective assembled structure.

A molecular dynamics study of viral capsid growth reported the im-

portance of reversibility and interaction strength in self-assembly at sub-

microscopic scale[105]. In the work, the authors inspected the time evo-

lution of the cluster size distributions and argued excessive early growth

makes monomers trapped in the imperfect shell, resulting in a shortage of

free monomer. Analyzing the fluctuation-dissipation ratio (FDR) is another

useful strategy for analyzing reversibility[102]. The correlation-response re-

lation showed that the system is in short-time quasi-equilibrium states and

reversible in that time scale when the system shows a good assembly ki-

netics. A notable advance is demonstrained from the direct measurements

of bond making and breaking events[99, 103]. In Refs. 99 and 103, the au-

thors defined the flux and the traffic, which represents the net rate of bond

making and total events time scale, respectively. These two quantities give

us knowledge of the microscopic reversible behavior of bond-making and

breaking progress.

Since the self-assembly is an out-of-equilibrium process, studying its

behavior through equilibrium statistical mechanics is usually not valid. For

that reason, as we have mentioned earlier, a majority of preceding stud-
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ies have been based on manners of non-equilibrium statistical mechanics.

Meanwhile, recent progresses in the non-equilibrium statistical mechanics

framework introduced a useful method to handle out-of-equilibrium pro-

cesses by biasing trajectories[106–115]. The essential idea of the theory is

to implement the large deviation principle in trajectory space as the tra-

ditional framework of statistical mechanics has done in phase space. The

theory successfully proved that there exists dynamical symmetry break-

ing in several models of glass formers by both analytical and numerical

scheme[107, 108, 114]. Besides, this approach suggested there is practi-

cability of to manage thermodynamic properties like configuration, local

structure or energy via a purely dynamical method[116–118].

The self-assembly process has its analogy with the glass forming system

in that both systems usually prepared up via temperature quenching from the

disordered structure to ordered equilibrium or metastable structure. Focused

on this point, we make an attempt to implement the above-mentioned non-

equilibrium ensemble of trajectories in the self-assembly system, which has

never been tried before, to analyze and quantify the dynamics of the pro-

cess. Our goal is to understand the obstacle due to the restricted dynamics

in the self-assembly process as a dynamical symmetry breaking in trajec-

tory space. We expect our work will give an entirely new perspective to un-

derstand the kinetic trapping and the reversible dynamics in self-assembly

processes.
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A.2 Theory

In this study, we use the activity of a given trajectory as a measurable ob-

servable, which is projecting the reversibility of the self-assembling system.

Consider a stochastic trajectory X of classical and discrete Markov process;

we can regard the trajectory as a set of time-evolving configurations (x, t):

X = {(xK , tK), · · · , (x0, t0)}. The probability of finding a single tra-

jectory when observing a given system is described as successive products

of transition probability p(xi+1, ti+1|xi, ti) from the current configuration

(xi, ti) to next one (xi+1, ti+1) and the population of its starting configura-

tion p(x0, t0)[119, 120]:

P [X] =p(xK , tK |xK−1, tK−1)

· · · p(x1, t1|x0, t0)p(x0, t0). (A.1)

We assume that the dynamics of the system is governed by the master equa-

tion ∂t |p(t)〉 = W |p(t)〉 and since the model is a discrete process, the

master operator is defined as a matrix form:

W =
∑
x′ 6=x

w(x′|x)
∣∣x′〉 〈x| −∑

x

r(x) |x〉 〈x| . (A.2)

Here, w(x′|x) in the off-diagonal elements corresponds to the transition

rate from configuration x to x′, and the diagonal term, r(x) denotes the
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rate of escape from current configuration x, respectively. With transition

rates defined at the master equation, the transition probability of each step

will be w(xi|xi−1)e−(ti−ti−1)r(xi−1). Therefore, the probability distribution

functional of trajectory P [X] is given as follows[112]:

P [X] =e−(τ−tK)r(xK)p(x0)

×
K∏
i=1

w(xi|xi−1)e−(ti−ti−1)r(xi−1). (A.3)

There are two ways in measuring the length of given trajectory: the total

trajectory time (or observation time) τ and the number of configuration

changes during the trajectory, generally we call this activity, K. In a more

general approach, one can consider a time-extensive physical observable O

over the trajectory and its increment o. Then O will be incremented each

configuration change[107, 112]:

O[X] =

K∑
i=1

o(xi−1,xi). (A.4)

The observable O surely becomes activity K when the incremental value is

o = 1−δxi−1,x, that is 1, when the configuration changes, otherwise 0. If the

system had made its final Kth configuration jump at time tK and the final

configuration xK survives until the observation time τ , the first exponential

term remains. Or we can simply stop measuring the time evolution of the
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system when the final configuration jump happened. In this case, the first

exponential term will be not be needed.

There exist similar relations between extensive properties in the thermo-

dynamic ensemble: the particle number N and the volume V [110, 112]. In

the typical experimental scenario, we measure some physical observables in

fixed trajectory time τ . However, occasionally, it is much more convenient

to fix the activity of trajectory K when simulate systems exhibit very slow

dynamics[121].

A.3 Lattice Gas Model

We use an Ising lattice-gas in the two-dimensional square lattice as a model

of self-assembly process. More than two particles cannot occupy the same

lattice position, and a particle only interacts with the other particles in its

nearest neighbor lattice sites. The interaction energy of the system is defined

as follows:

H =
ε

2

∑
p

np. (A.5)

Here, ε denotes the strength of bonds between the particles, p is the index of

the nearest neighbor, and np is the occupancy (0 or 1) of the site p, respec-

tively. The model consists of N = 2048 particles on the two-dimensional

square lattice of V = 144 × 144, and the number density is ρ ∼ 0.10, ac-

cordingly. From the theoretical perspective, the system exhibits liquid-gas

70



phase coexistence when sinh4(ε/2Tc) > [1 − (2ρ − 1)8]−1. In the equi-

librium condition below the critical temperature, the assembly yield should

increase monotonically, and particles also ought to form a single large clus-

ter. But kinetic trapping due to the lack of reversibility in bond-making and

breaking processes makes it hard for the system to relax into equilibrium

configurations. As a result, below a specific temperature point, the system

is trapped in metastable states, which are composed of relatively small clus-

ters, and the assembly yield starts to decrease drastically. This phase separat-

ing behavior of the Ising lattice gas is in analogy with general self-assembly

processes[99].

We perform an extensive numerical simulation to obtain assemble tra-

jectories via a stochastic Monte Carlo scheme. To achieve this, we use the

classical kinetic Monte Carlo (kMC) method[121]. Given the current phase-

space position x of the system, the time interval to the next jump ∆t can be

calculated along the probability px(∆t) ∝ exp[−r(x)∆t], and a transition

x→ x′ is selected from all possible moves with transition ratew(x′|x). The

algorithm is appropriate for sampling trajectories with fixed activity since

kMC is a rejection-free process, and each Monte Carlo step corresponds to

a single jump between configurations[112].

We calculate the temperature dependence of the assembly yield n4,

which denotes the fraction of particles that have exactly four occupied near-

est neighbors, and the intensive trajectory time, τ/K. Since our simula-
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tion model is a typical model of the Ising lattice gas, the results shown

in Fig. A.1(a) reveal archetypal non-monotonic behavior as expected from

the other studies[101–103, 121]. Even if at thermodynamic equilibrium the

structure in the very low temperature range should form a single, large clus-

ter, kinetic trapping disrupts the assembling process and the system breaks

up into many, relatively small clusters. Consequentially, the system shows

the maximum assembly efficiency near the T ∼ 0.3, and it drops towards

to decreasing temperature. The intensive trajectory time in Fig. A.1 shows a

comparable temperature dependency with assembly yield.

For more detailed examination, the time evolution of the assembly yield

and the intensive trajectory time are plotted in Fig. A.1(c). The relation be-

tween two properties gives a more clear idea of trapping phenomena at lo-

cal minima. Both the assembly yield (Fig. A.1(a)) and the trajectory time

(Fig. A.1(b)) exhibit the local minima followed by a long plateau behav-

ior. After enough time has passed, eventually the plateau in the assembly

yield ends first; the trajectory time follows. This mechanism makes a kink

behavior in n4 as shown in the Fig. A.1(c). At the lower temperature regime

exhibits kinetic trapping, the system trapped in the point near τ/K ∼ 15

and n4 ∼ 8 × 10−3, and the graph sharply shoots up when the plateau in

the assembly yield disappears. This tendency gradually vanishes as the tem-

perature increases, and the system just bypasses that trapping region and

directly into assembling in the temperature range where good assemble is

72



Figure A.1: Time evolution plots of (a) the assembly yield, (b) intensive
trajectory length and (c) their relations (c) in the Ising lattice gas. Colors
of lines represent the temperature of the system (from T = 0.10 to 0.30).
In the temperature regime T < 0.15, where the kinetic trapping is strongly
happens, Plateaux in the structure and the dynamics cause a kink nearby
τK/ ∼ 15 and n4 ∼ 8× 10−3.

taking place in the end.

A.4 Mathematical Model

To get more advanced insight, we propose a minimal model that exhibits

kinetic trapping behavior as like as the lattice gas model. Grant and White-

lam already presented the prototype of our model to illustrate the non-

monotonical growth in self-assembly processes[96, 99]. Essentially the sys-

tem has three different energy levels. The unbound state represents non-
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bonded free particles and has the highest energy (E = 0), the misbound

states of intermediate energy value (E = −εmis) and the optimally bound

state (E = −εopt) on the ground level; it is obvious that εopt > εmis. Passing

through the unbound state is necessary if the system intends to transit from

metastable misbound states to the stable bound state. Additionally, there is

degeneracy Ωmis in the misbound state to achieve an entropic barrier.

The transition rate matrix (master operator) of the original model is de-

scribed as 3 × 3 matrix and the degeneracy is simply multiplied by transi-

tion and escape rates of unbound and misbound states[99]. We modify the

original model to accomplish the ’rattling’ dynamics between degenerated

misbound states. For example, the master operator of the Ωmis = 2 case is

expressed as 4× 4 matrix[112, 120]:

W =



−1− γ 1 1 0

1 −1− γ 1 0

γ γ −3 ν

0 0 1 −ν


. (A.6)

Each state can be described as a vector: misbound states(|1〉 , · · · , |Ωmis〉),

unbound state (|Ωmis + 1〉) and bound state (|Ωmis + 2〉), respectively. Based

on the detailed balance condition, transition rates from misbound to un-

bound is γ = exp(−εmis/T ) and bound to unbound is ν = exp(−εopt/T ),
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respectively. Rates toward to opposite directions are simply 1 by traditional

Metropolis acceptance criteria. Notwithstanding our modified model has

complicated dynamics more than the original one, it is obvious that the

probability of the bound state, Pbound = 〈Ωmis + 2|p(t)〉 will have exactly

the same equilibrium value ν/(1 + ν + Ωmisγ) when t→∞.

We perform numerical calculations for our minimal model using matrix

algebra to confirm that whether or not the model successfully reproduces

results from the Ising lattice gas. The time-evolution of a system can be

described as |p(t)〉 = exp(tW) |p(0)〉 and mean value of certain observ-

able O at the time t can be calculated from 〈O(t)〉 = 〈e|O |p(t)〉 where

|e〉 =
∑

x |x〉 is the projection state[108, 120]. We let binding energies of

misbound and bound states are εmis = ε and εopt = 2ε, respectively. Results

from numerical matrix calculations are shown in Fig. A.3. Outcomes well

correspond with the results obtained from the Ising lattice gas, especially as-

sembly yield versus intensive trajectory time graph demonstrates the same

kink in the kinetic trapping regime.

A.5 Dynamical Phase Transitions

In previous sections, we demonstrated there are kink behaviors between

structure (assembly yield, n4 or PBound) and dynamics (step time, τ/K)

in both numerical models during the kinetic trapping occur. Focused on this
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Figure A.2: A minimal three-state model of self-assembly. There are two
misbound states (M), which have the same intermediate energy, can transit
without any energy barrier. The transition rate from bound state (B, has
the lowest energy) to unbound state (U, has the highest energy) is ν, from
misbound states to unbound state is γ and rates to reverse directions are 1
due to the Metropolis criteria; jumping between misbound and bound states
are impossible.

fact, we suggest the possible existence of a crossover between two different

dynamical phases between in self-assembly processes. Recent advances in

the dynamic ensemble theory give us a crucial insight by introducing a vir-

tual field that biases trajectory length, which as an conjugate variable of the

ensemble of trajectories[107–114].

From the definition of observation probability of a given trajectory as

expressed in eqn (A.3), we can calculate the PDF of the τ in K-fixed trajec-

tories

P (τ |K) =

∫
DXK δ(τ − τ̂ [XK ])P [XK ], (A.7)

and its corresponding partition function with a conjugate field x of trajectory
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Figure A.3: Time evolution of (a) the assembly yield, (b) total trajectory
time per activity (b) and their relations (c) of the three-state minimal model.
The structural plateau and the dynamical plateau create a kink in the kinetic
trapping regime. These results are consistent with the more realistic model.
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time τ [107, 112]:

Z(x,K) =

∫
dτe−xτP (τ |K). (A.8)

We call these ensembles as (τ,K) and (x,K) ensemble, named after their

fixed variables, respectively. Non-equilibrium free energies of two cases are

defined as: Ψ(τ,K) = lnP (τ |K) and Φ(x,K) = lnZ(x,K). If both quan-

tities have the large deviation limit Ψ(τ,K) ∼ Kψ(τ) and Φ(x,K) ∼

Kφ(x), ψ and φ are convex conjugate to each other by Legendre-Fenchel

transform[115]. Finally we can describe the physical meaning of x from

Legendre duality:

∂Ψ

∂τ
≡ x(τ,K). (A.9)

One can explain x as an external field that biasing trajectory time, like what

the chemical potential µ and the pressure P does in traditional thermody-

namic ensemble. For Markov processes, we can get the partition sum of

trajectories using matrix product

Z(x,K) = 〈e|TK(x) |p(0)〉 , (A.10)

with off-diagonal transfer operator obtained from Laplace transform of the
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probability matrix of the system[109, 112]:

T(x) =
∑
x′=x

w(x′|x)

x+ r(x)

∣∣x′〉 〈x| . (A.11)

If the system is in the thermodynamic limit, whenK is large enough in other

words, we can directly obtain φ(x) from the largest eigenvalue of the oper-

ator T(x)[112, 115]. Many works analytically or numerically demonstrated

that the nonequilibrium ensemble exhibits dynamical first-order phase tran-

sitions in several abstract or realistic (atomistic) systems which describing

glassy dynamics[109, 111, 114]. For example, the kinetically constrained

model shows criticality at T = 0; therefore, there is always a phase coexis-

tence between low- (inactive) and high-activity (active) phases at any finite

temperature[107, 108].

The trajectory time per kMC step plays a relevant role in the assembling

process as we discussed in previous sections. Now our purpose is to con-

trol assemble dynamics of Ising lattice gas via biasing step time using the

(x,K) ensemble. We use the transition path sampling (TPS) scheme[122]

for sample ensembles of assembling trajectories in various T and x ranges.

The dynamical free energy, Φ(x,K) is calculated from the multistate Ben-

net acceptance ratio (MBAR)[123, 124]. As shown in the Fig. A.4 (b), as in

other model systems, our results clearly exhibit an active-inactive dynami-

cal phase transition when the field x is applied for total lengths (or time) of
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trajectories.

We also calculate the same quantity for the minimal model of matrix

products in Fig. A.4 (a). The results for the infinite-activity limit is obtained

from numerically diagonalized eigenvalue of T(x):

T(x) =



0 1
x+γ+1

1
x+3 0

1
x+γ+1 0 1

x+3 0

γ
x+γ+1

γ
x+γ+1 0 ν

x+ν

0 0 1
x+3 0


. (A.12)

A noteworthy feature is that first-order dynamical phase coexistences be-

come apparent as the temperature decreases in both two models. Namely, it

seems there is a finite critical temperature Tc > 0 exists, and when compared

with previous results, the criticality is located in the kinetic trapping regime.

This phenomenon is observed both in the Ising lattice gas and the minimal

model and is the distinguishable feature when compared to results from the

other models: the KCM or the TLG model[107, 108, 125]. Thus, we argue

that there are dynamical first-order phase transitions in self-assembly sys-

tems, and one can understand the kinetic trapping behavior as a consequence

of the phase separation in the ensemble of trajectories.
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Figure A.4: (a) Plot of the intensive trajectory time τ/K of the minimal
model from numerically diagonalized transfer matrix, T(x). The tempera-
ture range is from T/ε = 0.15 (blue line) to 0.30 (red line). (b) The same
quantity in the Ising lattice gas. Shooting TPS algorithm is applied for sam-
pling ensemble of trajectories. Singularity at low-temperature demonstrates
there is active-inactive coexistence near the x = 0.
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A.6 Conclusion

Adopting the activity concept as a projection of the reversibility of the

self-assembly process, we can easily understand the relation between struc-

tural relaxations and dynamical properties due to kinetic trapping in a self-

assemble system. Using Monte Carlo simulation and numerical calculation,

we discovered there are two dominant factors in trapping behavior in the

local minimum. When the temperature is low enough to exhibit kinetic trap-

ping, both structure and activity display plateau behaviors at a similar time

scale during assembly progress. Then the plateau due to structural trap dis-

appears first; escaping from the dynamical trap then follows. The minimal

model that we proposed successfully reproduces the results taken from both

the thermodynamic and the dynamic behavior of the relatively realistic lat-

tice gas model.

With the dynamic ensemble of trajectories approach using large devia-

tion formalism[109, 112], it seems that there is a a finite critical temperature

that exhibits a dynamical active-inactive first-order phase transition below

the temperature. In contrast, for the KCM of glass formers[107, 108], such

phase transitions always appear for T > 0. If the dynamic critical temper-

ature indeed exists, the kinetic trapping behavior might be described as an

active-inactive crossover in assemble trajectories.

As a perspective of the self-assembly process from disordered struc-
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ture to ordered equilibrium structure can be regarded as a feature of the

quenched disorder, we anticipate our mathematical model would be helpful

for understanding dynamical and structural properties of many other models

handling quenched system; glass forming fluids for example[109, 111, 114].

Certainly, it also might be a useful topic when applying for more realistic

models of self-assembly processes.
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Figure A.5: Estimated dynamical phase diagram of (left) the kinetically con-
strained model and (right) our model of the self-assembly processes. A dis-
tinguishable feature of the our model is in comparison with the KCMs is
there is a finite critical temperature Tc > 0 which exhibits a dynamic phase
coexistence below the Tc.
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Appendix B

Reaction-Path Thermodynamics of the Michaelis-Menten

Kinetics

B.1 Introduction

Michaelis-Menten kinetics[126, 127] is one of the most fundamental mech-

anism for describing catalytic or enzymatic reactions and it presents cru-

cial insights into the understanding of many biochemical or physical pro-

cesses in living systems[128]: enzyme reactions in the living cell, DNA

hybridization[68], gene regulation[129, 130], or molecular motors[131, 132].

Over a hundred years since its birth, there have been numerous theoretical

and experimental advances for studying the enzymatic mechanism in var-

ious systems and methods, especially spectroscopic quantifications at the

single-molecule level[133, 134]. Such a series of experimental successes in

the microscopic scale promoted studies in theoretical manners[130, 135–
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141]. A major topic in theoretical approaches is the timescale of enzy-

matic turnover[142, 143], which means time duration until a single reac-

tion ends. Many theoretical approaches have been developed to calculate

turnover time and to quantify its fluctuation behavior: from the solution

of the linear differential equation[134, 142, 143] in the ideal scenario to

reaction time distribution (RTD) methods in disordered systems with non-

Poissonian kinetics[135, 137, 138].

E + S
kb−−⇀↽−−
ku

ES
kc−−→ E + P (B.1)

The principal idea of the Michaelis-Menten mechanism is there are two

stages in the enzymatic reaction process[126, 127]: (i) the reversible binding-

unbinding reactions between the substrate (S) and the enzyme (E) molecule,

E + S −−⇀↽−− ES and (ii) the irreversible catalytic reaction from the bound

enzyme-substrate complex (ES) to the product (P), ES −−→ E + P. We

need to pay attention to the unbinding (disassociation) reaction at the stage

(i) because the unbinding makes the process return to its initial state. Thus,

essentially, the Michaelis-Menten mechanism can be interpreted as a re-

newal process[135, 140], and ‘events’ of unbinding play an essential role

for the entire process. For example, chemical intuition tells that the increase

of unbinding rate ku has to result in the decrease of turnover rate, which is

true at least in ideal models which exhibit Poisson kinetics. However, para-
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doxically, in some cases where the waiting time distribution of catalysis is

not a single exponential form, slower disassociation may cause the faster

turnover[139, 140]. Such nonmonotonic dependencies between unbinding

and turnover suggest that we can classify enzymatic processes into two dif-

ferent dynamical phases, the inhibitory and excitatory unbinding.

The importance of the unbinding as we mentioned before signifies the

necessity of quantifying unbinding events in enzymatic reaction processes.

In the present work, we study several kinetic aspects of the Michaelis-Menten

mechanism in the single molecule level in the framework of the the nonequi-

librium statistical mechanics and quantify the statistical feature of unbinding

events. Recent statistical mechanical studies present a notable perspective

for handling systems in out-of-equilibrium. The core concept is a stochastic

trajectory (or path) can be thought as a microstate in the statistical ensemble

theory[113]. This idea and a mathematical formulation named the large de-

viation principle[115] leads to nonequilibrium ensemble theory. The main

purpose of the theory is to draw out-of-equilibrium or dynamical properties

of the system from theoretical or computer simulation methods. Further-

more, the nonequilibrium ensemble also successfully described the hetero-

geneous dynamical behavior in many systems, e.g., glass forming liquids[114,

117], kinetic networks[111, 144], active matters[145–147], or protein fold-

ing pathways[148] as an order-disorder symmetry breaking phenomenon

between metastable states when one uses ‘dynamical events’ as an order
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parameter. Based on preceding studies, we believe the nonequilibrium en-

semble theory will be a powerful tool for quantifying enzyme kinetics since

most chemical reactions, including enzymatic processes, are also out-of-

equilibrium processes.

This chapter is outlined as follows: In the second section, we suggest a

concept of a reaction-path entropy, construct the statistical thermodynamics

of enzymatic reaction paths, and calculate several major reaction timescales

of the single-enzyme and single-substrate model via the large deviations

principle and the nonequilibrium ensemble theory. In the third section, we

quantify the number of unbinding events K when we observe the system at

fixed timescale and evaluate the heterogeneous kinetics of the same model

as a dynamic order-disorder in unbinding rates. In the last section, we sum-

marize and conclude our results.

B.2 Reaction Path Thermodynamics

We use the single-molecule variant of the chemical master equation (CME)

of the Michaelis-Menten equation. The stochastic equation considers finite

numbers of molecules in a discrete manner, instead of their concentrations

in a continuous manner and each combination of quantities corresponds to a

different state of the system. Due to the law of conservation of mass, we can

assume that the system contains N = nE + nES of enzyme-type molecules
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and M = nS + nE + nP of ligand-type molecules[136, 142]. The master

equation of the system is as follows:

ṗ(nS, nES, t) =− [wbnS(N − nES) + wunES + wcnES]p(nS, nES, t)

+ wb(nS + 1)(N − nES + 1)p(nS + 1, nES − 1, t)

+ wu(nES + 1)p(nS − 1, nES + 1, t)

+ wc(nES + 1)p(nS, nES + 1, t).

(B.2)

Here, wb = kb/V
2
u , wu = ku/Vu, and wc = kc/Vu are the reaction rate

constants per unit volume Vu and subscripts b, u, and c denote the bind-

ing, the unbinding, and the catalysis event, respectively. Since the model

considers a discrete number of components, we use probabilities of states

p(nS, nES, t), instead of continuous concentrations. If the system contains

only one enzyme and substrate molecules, N = 1 and M = 1 in other

words, the equation B.2 can be reduced to the following form:

ṗS(t) = wupES(t)− wbpS(t), (B.3a)

ṗES(t) = wbpS(t)− (wu + wc)pES(t), (B.3b)

ṗP(t) = wcpES(t). (B.3c)

We omit the time evolution of the probability of enzyme E since it has the

relation with ES, pE(t) = 1−pES(t). If one considers a single reaction path
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E + S→ · · · → E + P of the equation B.3 which has K unbinding events,

then one can find the given path with the probability ρ[{path}][113, 119]:

ρ[{path}] = wbe
−wb∆t0

(
K∏
i=1

wue
−(wu+wc)∆t′iwbe

−wb∆ti

)

× wce−(wu+wc)∆t′0 .

(B.4)

Here, time intervals ∆ti and ∆t′i denote lifetimes of S and ES at individual

reaction stage, respectively. If we define the ‘total’ lifetime of each compo-

nent as the sum of individual lifetimes,
∑K

i=0 ∆ti = tS and
∑K

i=0 ∆t′i =

tES, then we can simplify the equation B.4 to

ρ[{path}] = wbwc(wuwb)Ke−wbtSe−(wb+wu)tES , (B.5)

which only depends on three nonequilibrium observables: the number of

unbinding events (K), the total lifetime of the substrate molecule (tS) and

the enzyme-substrate complex (tES), respectively. That is to say; we can

find a single reaction path with identical probability if three observables K,

tS, and tES are conserved. Hence, similar to N , V , and E in the canonical

equilibrium ensemble case, the principle of equal a priori probabilities is

valid, and it leads to the definition of the nonequilibrium microcanonical
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ensemble, described by the following path-dependent reaction entropy.

S ≡ −
∑
{path}

ρ[{path}] ln ρ[{path}] = − ln ρ[{path}] (B.6)

The microscopic number of all possible reaction paths (similar to microstates

in equilibrium statistical mechanics) Ω = 1/ρ depends on combinations of

∆ti and ∆t′i[149]:

Ω(K, tES, tS) =

∫
∑

∆ti=tS

d∆tK+1

∫
∑

∆t′i=tES

d∆t′K+1

=
K + 1

K!K!
tKESt

K
S .

(B.7)

In the equation B.7, each integral denotes the area of the (K+1)-dimension

hyper-sphere. Accordingly, we can evaluate the entropy of reaction paths

in the (K, tES, tS)-fixed ensemble, S(K, tES, tS) = ln Ω(K, tES, tS). Now

quantifying the MM kinetics with the language of statistical thermodynam-

ics is feasible by cause of the definition of the reaction path entropy and the

large deviations principle[115]. The Gärtner-Ellis theorem presents partition

functions of the following nonequilibrium canonical (K, tES, µ) and grand

canonical (K, ν, µ) ensembles

Z(K, tES, µ) =

∫ ∞
0

dtSe
−µtSΩ(K, tES, tS), (B.8a)

Q(K, ν, µ) =

∫ ∞
0

dtESe
−νtESZ(K, tES, µ), (B.8b)
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and their free energies spontaneously with certain conjugate fields µ and ν,

which biases tS and tES, respectively,

F(K, tES, µ) = K lnµ−K ln tES +K lnK −K, (B.9a)

G(K, ν, µ) = K ln ν +K lnµ. (B.9b)

Equations B.5 and B.8 suggest that µ = wb and ν = wu+wc, which in fact

means that escaping rates and lifetimes are mutually conjugate variables.

Therefore, the fundamental relations of the nonequilibrium thermodynam-

ics, F = µtS−S and G = νtES−F are valid. From equations B.7 and B.8,

conditional probability distributions of tS and tES in the K-fixed ensemble

are Poissonian as follows:

ρ(tS|K) =
µK+1tKS
K!

e−µtS , (B.10a)

ρ(tES|K) =
νK+1tKES

K!
e−νtES . (B.10b)

Note that the two lifetimes tS and tES are mutually independent. Since

the enzymatic turnover time, tt, is the sum of tS and tES, its conditional

probability distribution ρ(tt|K) takes a convolution form of ρ(tS|K) and

ρ(tES|K). The convolution is quite complicated for calculation due to tK
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term, but it can be easily obtained in the Laplace domain:

ρ(xt|K) =

[
µν

(µ+ xt)(ν + xt)

]K+1

. (B.11)

With Bayes’ theorem and considerations of the marginal probability of un-

binding events is products of transition probabilities ρ(K) = (wcw
K
u )/(wu+

wc)
K+1 by its definition[113, 119], Eqns. B.10 and B.11 finally give marginal

probability distributions of liftimes of S, ES, and turnover time

ρ(tS) = (wbwc/(wu + wc)) exp(−wbwctS/(wu + wc)), (B.12a)

ρ(tES) = wc exp(−wctES), (B.12b)

ρ(tt) = αβ(e−αtt − e−βtt)/(β − α), (B.12c)

where two constants α and β in the turnover time distribution are:

α =
λ+

√
λ2 − 4wbwc

2
, (B.13a)

β =
λ−

√
λ2 − 4wbwc

2
. (B.13b)

In the avobe equation, λ = wb + wu + wc. The probability distribution

of turnover time we obtained in the equation B.12 is identical with results

from the solution of linear differential equations[134, 142, 143]. We finally

obtain nonequilibrium ensemble average of the total lifetimes of S, ES, and
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the turnover time:

〈tS〉 =
wu + wc
wbwc

, (B.14a)

〈tES〉 =
1

wc
, (B.14b)

〈tt〉 =
wb + wu + wc

wbwc
. (B.14c)

B.3 Fixed Observation Time

In a certain theoretical or experimental scenario, it might be more conve-

nient to sample reaction paths with arbitrary observation time τ [150, 151],

instead of the fixed number of enzyme-substrate unbinding events K. Since

the kinetics of the system is governed by the master equation B.3, the time

evolution of the system can be described as |p(τ)〉 = U(τ) |p(0)〉 with the

propagator U(τ) = exp(τW). As we fix the observation time, we have to

consider not only ‘completed’ reaction paths but also sample ‘incompleted’

reaction paths which remain in |S〉 or |ES〉 at the observation time τ . Be-

cause the propagator can be decomposed into the operators of conditional

probabilities of unbinding events K as U(τ) =
∑

K P(K|τ), the condi-

tional probability of K at τ is P (K|τ) = 〈e|P(K|τ) |S〉 where |e〉 = |S〉+

|ES〉 + |P〉 is the projection state. For completed reaction paths (E + S →

· · · → E + P) where the final state is |P〉, the conditional probability of K
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at fixed τ is

〈P|P(K|τ) |S〉 =

∫ τ

0
dttρ(tt,K), (B.15)

where ρ(tt,K) = ρ(tt|K)ρ(K) is the joint probability distribution of tt and

K because 〈P|P(K|τ) |S〉 contains all the possible reaction paths that have

K unbinding events and turnover times smaller than τ .

For incompleted reaction paths where observation states are |E〉 or |ES〉,

we must consider the value of K at time τ , not tt due to the reaction is not

terminated yet at the observation time. It means τ = tS + tES < tt and we

have to consider the reaction path entropies of both cases, E + S → · · · →

E + S and E + S→ · · · → ES. First, we calculate ΩS, which describes the

microscopic number of paths which end at |S〉 and (K, tS, tES):

ΩS(K, tS, tES) =

√
K

(K − 1)!

√
K + 1

K!
tK−1
S tKES. (B.16)

We also have to consider reaction paths which end at |ES〉:

ΩES(K, tS, tES) =
K + 1

K!K!
tKS t

K
ES. (B.17)

Since ΩES is identical to Ω and ΩS also has a similar form with Ω, we

suppose that the Bayesian probability of (τ,K) for incompleted paths and

(tt,K) for completed paths have a nearly same analytical shape when K is

large enough. Therefore, we can approximate |S〉- and |ES〉-contributions
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of the P (K|τ):

〈S|P(K|τ) |S〉+ 〈ES|P(K|τ) |S〉 ' ρ(tt = τ,K)

ρ(tt = τ)

∫ ∞
τ

dttρ(tt). (B.18)

Here, the overall shape of the probability distribution comes from ρ(tt =

τ,K) and ρ(tt > τ)/ρ(tt = τ) is a normalization factor. Equations B.15

and B.18 present an approximate form of the conditional probability of the

number of unbinding events at fixed observation time:

P (K|τ) ' ρ(tt < τ,K) + ρ(tt = τ,K)
ρ(tt < τ)

ρ(tt = τ)
. (B.19)

We plot equation B.15, B.18, and B.19 for wb = 0.5, wu = 1.0, and

wc = 0.025 case in the Figure B.1-(a). The equation B.15 has the maxi-

mum value at K = 0 and shows almost the same decay behavior with ρ(K)

in the early stage; it drastically decreases where K is near the peak of Eqn.

B.18. This tendency results in a bimodal shape in their sum. The bimodal

behavior of P (K|τ) signifies that we can divide the probability distribution

into two different paths[115]: the unbinding-rich one and the unbinding-

poor one. Recent studies showed that there exist more than two dynamical

phases in systems which exhibit heterogeneous or glassy dynamics[106–

108, 111, 112, 114, 117, 137, 144–148]. In the same way, the Michaelis-

Menten mechanism shows heterogeneous kinetics in its unbinding events
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and results in the inactive-phase of ‘reaction-completed’ paths and active-

phase of ‘reaction-incompleted’ paths.

Again, we use the formalism of the large deviation principle to evaluate

the moment-generating function ofK with corresponding virtual, conjugate

variable s[106, 112, 115]:

Z(s, τ) =
∞∑
K=0

e−sKP (K|τ). (B.20)

The n-th derivative of Z(s, τ) gives the n-th moment of unbinding events

at fixed observation time τ , 〈Kn〉τ = (−1)nZ−1∂sZ(s, τ). One can also

calculate the cumulants from the cumulant generating function (or intensive

free energy), φ(s, τ) = lnZ(s, τ)/τ . The dynamic susceptibility, χk(s, τ)

is the second derivative of φ(s, τ) and denotes the amount of fluctuations of

unbinding rates per observation time, k = K/τ . In the Fig. B.2-(a), we plot

the observation time dependence of χk(s, τ). The dynamic susceptibility

has its maximum value at the point s = s∗, which separates the reaction

paths into two different dynamical phases, the active (s < s∗) one and the

inactive (s > s∗) one. We must note that the conjugate variable s is virtual

and it is barely known about its real physical meaning. The only thing we

know for sure is that we have to regard as s is zero for when one samples

the system’s reaction paths in ordinary conditions. Therefore, now what we

have to do is finding the phase-coexistence timescale τ∗ where the s∗(τ)
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becomes zero.

We need to know the general analytical behavior of s∗(τ) before ob-

taining τ∗. As shown in Fig. B.2-(b), s∗(τ) shows a power-law-like decay

over observation time and in the large deviation limit τ � 1, the value of

s∗ converges to a particular value, sc. We take a different mathematical ap-

proach in order to evaluate sc; one can obtain identical results with equation

B.19 from algebraic calculations[106, 107, 109, 112]. First, we start from

the definition of the master operator W:

W =


−wb wu 0

wb −(wu + wc) 0

0 wc 0

 . (B.21)

What we have to do is to decompose the master operator into two matrices,

W = Wm + Wr. Here, Wm is the operator of monitored reactions and

the other operator, Wr denotes the rest of transitions. Since we count the

number of unbinding reactions, we let Wm ≡ wu |1〉 〈2|. The propagator

U(τ) = exp(τW) is an exponential form of the master operator so we can

decompose it as

P(K|τ) =

∞∑
n=0

τK+n

(K + n)!
O(K,n), (B.22)

where O(K,n) isK-th order term of Wm from polynomial (Wm+Wr)
K+n
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and can be calculated from the recurrence formula, O(K,n) = WmO(K −

1, n)+WrO(K,n−1). We plot Eqns. B.19 and B.22 for cutoff nmax = 4096

in Fig. B.1-(b) in order to compare their precision. As we approximate ΩS '

Ω, we believe Eqn. B.22 shows more accurate results; the |S〉-contribution

in Eqn. B.19 causes a minor error in the active phase due to approximated

ΩS.

The moment generating function Z(s, τ) and cumulant generating func-

tion φ(s, τ) can be calculated from matrix product states:

Z(s, τ) = 〈e| exp(τe−sWm + τWr) |S〉 . (B.23)

In the ‘thermodynamic’ limit where τ is long enough, the largest eigenvalue

of the matrix Ws = e−sWm + Wr gives the large deviation function of

P (K|τ), φ(s) = limτ→∞ φ(s, τ). As the system has two different dynami-

cal phases, φ(s) shows a singularity at sc

φ(s) =


0 s > sc

−λ+
√
λ2−4γ(s)

2 s ≤ sc

(B.24)

where γ(s) = wbwu+wbwc−wbwue−s. The second part of equation B.24 is

smaller than zero when s is greater than sc, which makes sc to the boundary

between active and inactive phases. The value of s∗(τ), as we treated before,
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always converges to the negative value sc = − ln(1 + wc/wu) from γ(s =

sc) = 0.

φ(s, τ) and s∗(τ) for finite τ are much more complicated. In fact, Eqn.

B.23 can be evaluated from an analytical manner, however, the resulting ex-

pression is extremely abstruse for handling. Instead, we perform numerical

calculations, and also we consider both τ∗ and tt are functions of three rate

constants: wb, wu, and wc. Then, the chain rule gives a relation between τ∗

and 〈tt〉:

dτ∗

d 〈tt〉
=
∂τ∗

∂wb

∂wb
∂ 〈tt〉

+
∂τ∗

∂wu

∂wu
∂ 〈tt〉

+
∂τ∗

∂wc

∂wc
∂ 〈tt〉

= −wbwc
(

wb
wu + wc

∂τ∗

∂wb
− ∂τ∗

∂wu
+

wc
wb + wu

∂τ∗

∂wc

) (B.25)

We plot mean values of turnover times, numerically calculate transition

times at various binding, unbinding and catalysis rates in the Fig. B.3. We

find that there is strong linear correlations between τ∗ and 〈tt〉. Each data

set represents the case where two of the three rate constants are fixed, and

the remainder one varies; the linear relation, dτ∗/d 〈tt〉 ∼ 1.3 becomes

apparent when wu � wc. Since we let the catalysis stage is irreversible,

once a single reaction is over, the number of unbinding events of the given

path does not increase any more. It results in the population of the inactive

phase is continually increasing as observation time increases and for the ac-

tive phase, vice versa. In the thermodynamic limit, when the time is passed
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long enough in other words, only inactive paths are survived and P (K|τ)

converges to ρ(K), which is we presented in the previous section. So we

can also calculate the value of sc in the large deviation limit from the con-

vergence of Eqn. B.20,
∑∞

K=0 e
−sKρ(K). Such preference for the inactive

phase in a long observation time scale of the system would causes active-

inactive phase transition at τ∗ if the reaction process had started from the

active phase at short observation time scale. Understandably, the logic can

be different depending on the relative rate constants; the phase transition

will not be happening if the rate of catalysis, wc is sufficiently greater than

the rate of unbinding, wu. In that scenario, s∗(τ) always has negative value

even at the very short observation time τ , and the system stays in the inac-

tive phase from beginning till the end of reactions. This principle provides a

lower boundary in Fig. (reffig:timescale.

B.4 Conclusions

In the present study, we demonstrate that a series of mathematical formalisms

of the statistical thermodynamics in equilibrium systems are also suitable

for treating systems in out-of-equilibrium, especially single-molecule enzy-

matic reactions under the Poissonian Michaelis-Menten mechanism. Three

physical observables in nonequilibrium manner -the number of unbinding

events, total lifetimes of substrate and enzyme-substrate complex- lead us
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Figure B.1: (a) Conditional probability distribution P (K|τ), calculated us-
ing equation B.19 and inverse Laplace transform. The data obtained under
the condition wb = 0.5, wu = 1.0, wc = 0.025, and τ = 128. Red tri-
angles of completed paths are maldistributed in inactive state at maximum
K = 0, while blue squares of incompleted paths make active state at maxi-
mum K ' 40. (b) Comparision plot of the equation B.19 (square) and B.22
(circle). The approximation applied for evaluating ΩS makes subtle devia-
tion in active phase.
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Figure B.2: (a) Susceptibilities of the intensive number of unbinding events,
k = K/τ in various observation time scale and (b) their maximum position
s∗(τ) in variation of the observation time. The dataset is from the condition
wb = 0.5, wu = 1.0, and wc = 0.025 s∗ converges to negative value,
sc = − ln(1 + wc/wu) in the thermodynamic limit, while it becomes zero
at τ ' 147 which exhibits coexistence active paths and inactive paths.
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Figure B.3: Relation between mean-turnover times, 〈tt〉 and active-inactive
phase transition times,τ∗. Two of three reaction constants are fixed while the
remainder one is variating. The black dashed line clarifies that all datasets
represent linearly correlated tendency, approximately dτ∗/d 〈tt〉 ' 1.32 in
the large turnover time scale.

to the principle of a priori probabilities and the definition of the reaction

path entropy. Based on this idea, we successfully evaluated three statistical

ensembles of the out-of-equilibrium process: microcanonical (K, tES, tS),

canonical (K, tES, µ) and grand canonical (K, ν, µ) ensemble. Conjugate

intensive variables in these ensembles, µ and ν bias statistical weights of

trajectories, with the lifetimes of components tS and tES, respectively, and

one can uncover from the definition of a single reaction path that ν and µ

are just escaping ratios of the Markov process. Thermodynamic relations

between nonequilibrium ensembles give us probability distributions of sev-

eral important reaction time scales. Results obtained from the reaction path
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thermodynamics reproduces previous results based on mean-field theory.

Furthermore, for the considerations of the various theoretical or exper-

imental scenarios, we extended our results for fixed observation time, τ .

We evaluate Bayesian statistics and perform numerical calculations in or-

der to demonstrate that the enzymatic reaction has two different dynamical

phases, in fact, if one uses the number of unbinding events per the observa-

tion time, k = K/τ as an order parameter. We name these two phases as

the inactive (unbinding-poor) phase and the active (unbinding-rich) phase,

respectively. Because the system always takes inactive phases when obser-

vation time is long enough (in the thermodynamic limit), a first-order phase

transition from the active to the inactive phase may appear during the reac-

tion process, depending on the combination of reaction rate constants. The

transition time τ∗, which is the timescale that such phase transition appears,

show an approximately linear relation with the average value of enzymatic

turnover time, 〈tt〉.

Since there are various evidences that the unbinding of enzyme-substrate

doing a crucial role in the kinetics of complex enzymatic processes, we be-

lieve our work proposes a potential way for quantifying dynamical behav-

iors of systems under the MM mechanism. We will extend our study to gen-

eral models, especially non-Poisson (or heterogeneous) enzymatic reaction

process of the enzymatic reaction process. Also, we expect that our work

on the nonequilibrium ensemble theory can be applied to various systems in
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out-of-equilibrium.
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[36] Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.;

Tkatchenko, A. Quantum-chemical insights from deep tensor neural

networks. Nature Communications 2017, 8, 13890.

[37] Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible neu-

ral network potential with DFT accuracy at force field computational

cost. Chemical Science 2017, 8, 3192–3203.

[38] Ryu, S.; Lim, J.; Hong, S. H.; Kim, W. Y. Deeply learning molecular

structure-property relationships using attention- and gate-augmented

graph convolutional network. arXiv:1805.10988 [cs, stat] 2018,

arXiv: 1805.10988.
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국문초록

최근기계학습기술의급격한발전과이의화학분야에대한적용은다양

한 화학적 성질에 대한 구조-성질 정량 관계를 기반으로 한 예측 모형의

개발을가속하고있다.용매화자유에너지는그러한기계학습의적용예

중 하나이며 다양한 용매 내의 화학반응에서 중요한 역할을 하는 근본적

성질중하나이다.본연구에서우리는목표로하는용매화자유에너지를

원자간의 상호작용으로부터 구할 수 있는 새로운 심층학습 기반 용매화

모형을 소개한다. 제안된 심층학습 모형의 계산 과정은 용매와 용질 분

자에 대한 부호화 함수가 각 원자와 분자들의 구조적 성질에 대한 벡터

표현을 추출하며, 이를 토대로 원자간 상호작용을 복잡한 퍼셉트론 신경

망 대신 벡터간의 간단한 내적으로 구할 수 있다. 952가지의 유기용질과

147가지의유기용매를포함하는 6,493가지의실험치를토대로기계학습

모형의교차검증시험을실시한결과,평균절대오차기준 0.2 kcal/mol

수준으로 매우 높은 정확도를 가진다. 스캐폴드-기반 교차 검증의 결과

역시 0.6 kcal/mol 수준으로, 외삽으로 분류할 수 있는 비교적 새로운 분

자 구조에 대한 예측에 대해서도 우수한 정확도를 보인다. 또한, 제안된
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특정 기계학습 모형은 그 구조 상 특정 용매에 특화되지 않았기 때문에

높은양도성을가지며학습에이용할데이터의수를늘이는데용이하다.

원자간 상호작용에 대한 분석을 통해 제안된 심층학습 모형 용매화 자유

에너지에 대한 그룹-기여도를 잘 재현할 수 있음을 알 수 있으며, 기계학

습을통해단순히목표로하는성질만을예측하는것을넘어더욱상세한

물리화학적이해를하는것이가능할것이라기대할수있다.

주요어:심층학습,구조-성질정량관계,용매화자유에너지,용해도,액체

성질,액체계

학번: 2010-23098
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Abstract

Recent advances in machine learning technologies and their chemical appli-

cations lead to the developments of diverse structure-property relationship

based prediction models for various chemical properties; the free energy of

solvation is one of them and plays a dominant role as a fundamental mea-

sure of solvation chemistry. Here, we introduce a novel machine learning-

based solvation model, which calculates the target solvation free energy

from pairwise atomistic interactions. The novelty of our proposed solva-

tion model involves rather simple architecture: two encoding function ex-

tracts vector representations of the atomic and the molecular features from

the given chemical structure, while the inner product between two atomistic

features calculates their interactions, instead of black-boxed perceptron net-

works. The cross-validation result on 6,493 experimental measurements for

952 organic solutes and 147 organic solvents achieves an outstanding per-

formance, which is 0.2 kcal/mol in MUE. The scaffold-based split method

exhibits 0.6 kcal/mol, which shows that the proposed model guarantees

i



reasonable accuracy even for extrapolated cases. Moreover, the proposed

model shows an excellent transferability for enlarging training data due to

its solvent-non-specific nature. Analysis of the atomistic interaction map

shows there is a great potential that our proposed model reproduces group

contributions on the solvation energy, which makes us believe that the pro-

posed model not only provides the predicted target property, but also gives

us more detailed physicochemical insights.

Keywords: Deep learning, Structure-property relationship, Solvation free

energy, Solubility, Liquid property, Liquid system
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Chapter 1

Introduction

The importance of solvation or hydration mechanism and its involved free

energy change has made various in silico calculation methods for the solva-

tion energy a major topic in computational chemistry.[1–22] The solvation

free energy directly influences to many chemical properties in solution and

plays a dominant role in various chemical reactions: drug delivery[4, 15,

17, 23], organic synthesis[24], electrochemical redox reactions[25–28], et

cetera.

The realistic computer simulation approaches for the solvent and the

solute molecules directly offer the microscopic structure of the solvation

shell, which surrounds the solutes molecule.[9, 10, 13, 16, 17, 29] The sol-

vation shell structure could provide us detailed physicochemical informa-

tion like microscopic mechanisms on solvation or the interplay between the
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solvent and the solute molecules when we use an appropriate force field

model and parameters. However, those explicit solvation methods we stated

above need an extensive amount of numerical calculations since we have

to simulate each individual molecule in the solvated system. Moreover, the

free energy calculation procedure with an explicitly implemented solvent

model necessarily involves rare-event sampling methods, which make the

task even more computationally expensive. The realistic problems on the

explicit solvation model restrict its applications to classical molecular me-

chanics simulations,[9, 10, 16] or a limited QM/MM approaches.[13, 29]

For classical mechanics approaches for macromolecules or calculations

for small compounds at quantum-mechanical level, the idea of implicit sol-

vation enables us to calculate solvation energy with feasible time and com-

putational costs when one considers a given solvent as a continuous and

isotropic medium in the Poisson-Boltzmann equation.[1–3, 5–8, 11] Many

theoretical advances have introduced to construct the PB-based equation,

which involves parameterized solvent properties: the polarizable continuum

model (PCM),[11] the conductor-like screening model (COSMO),[3] gener-

alized Born approximations like solvation model based on density (SMD)[7]

or solvation model 6, 8, 12, ... (SMx).[1, 6] The conductor-like screening

model for realistic solvents (COSMO-RS) is a noteworthy solvation model

since it is believed to be the state-of-the-art method.[2] This is realized by

statistical thermodynamics treatment on the polarization charge densities,
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which helps COSMO-RS with making successful predictions even in polar

solvents where the fundamental idea of the dielectric continuum solvation

collapses.[8]

The quantitative structure activity relationship (QSAR) or the quan-

titative structure property relationship (QSPR) is a rather new approach,

which predicts the solvation free energy with a completely different point of

view when compared to computer simulation approaches with precisely de-

fined theoretical backgrounds[30, 31]. The underlying architecture of QSPR

consists of two elementary mathematical functions[30]: one is the encod-

ing function, which encodes the structural or chemical features of a given

compound into a molecular descriptor. The other, the mapping function,

predicts the target property (or activity) that we intend to find out using

the descriptor from the encoding function. Although we cannot expect de-

tailed chemical or physical insights other than the target property since the

QSAR/QSPR is a regression analysis in its intrinsic nature, It has shown

its advantages in terms of transferability and outstanding computational

efficiency[20, 30, 31].

Recent successes in the machine learning (ML) technique[32] and their

implementations in computational chemistry[20, 33] are promoting broad

applications of QSAR/QSPR in numerous chemical studies[4, 18, 21, 23,

27, 34–43]. Those studies proved that ML guarantees faster calculations

than computer simulations and more precise estimations than traditional
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QSPR estimations; a decent number of models showed accuracies compa-

rable to ab initio solvation models in the aqueous system[20].

In this thesis, we introduce a novel artificial neural-network-based ML

model called Delfos that predicts free energies of solvation for generic or-

ganic solvents in the previous work[22]. The model not only has a great

potential of showing an accuracy comparable to the state-of-the-art compu-

tational chemistry methods[1, 2] but offers information about which sub-

structures play a dominant role in the solvation process. As a further de-

velopment, we propose an improved ML model for the solvation energy

estimation, which is based on the group-contribution method. The key idea

of the proposed model is the calculation of pairwise atomic interactions by

inner products of atomic feature vectors, while each encoder network for the

solvent and the solute extracts such atomic features.

The outline of the rest of the present thesis is as follows: in Chapter 2,

we mainly discuss the performance of Delfos, with both MD and ab ini-

tio simulation strategies[1, 2, 44, 45] and analyze database sensitivity using

cluster cross-validation method. We also visualize important substructures

in solvation via attention mechanism. In Chapter 3, we introduce a new ML

model for the solvation energy prediction, which is based on pairwise atom-

by-atom interactions. The chapter quantifies the proposed model’s perfor-

mance with 6,594 data points, mainly focused on group contributions and

pairwise atomistic interactions. In the last chapter of the thesis, we summa-
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rize and conclude our work.
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Chapter 2

Delfos: Deep Learning Model for Prediction of Solvation Free

Energies in Generic Organic Solvents

2.1 Methods

2.1.1 Embedding of Chemical Contexts

Natural language processing (NLP) is one of the most cutting-edge subfields

of computer science in varied applications of machine learning and neural

networks[46–50]. To process human languages using computers, we need

to encode words and sentences and extract their linguistic properties. The

process is commonly implemented via word embedding method[46, 47].

To perform the task, unsupervised learning schemes such as skip-gram and

continuous bag of words (CBOW) algorithms generate a vector representa-

tion of the given word in an arbitrary vector space[47, 51]. If the necessary

vector space is well-defined, one can conjecture the semantic or syntactic
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features of the given word from the position of the embedded vector, and

the inner product of two vectors corresponding to two different words pro-

vides information about their semantic similarity.

It is worthwhile to note that we can employ the embedding technique

for chemical or biophysical processes if we consider an atom or a sub-

structure as a word and a compound as a sentence[52–54]. In that case,

positions of molecular substructures in the embedded vector space repre-

sent their chemical and physical properties, instead of linguistic informa-

tion. Several models have already been developed along the line of this

idea. For example, bio-vector models[52] that have been developed to en-

code sequences of proteins or DNAs, and atomic-vector embedding mod-

els have been introduced recently to encode structural features of chemical

compounds[53, 54]. Mol2Vec is one of such embedding techniques, and

it generates vector representations of a given molecule from the molecu-

lar sentence[54]. To make molecular sentences, Mol2Vec uses the Mor-

gan algorithm[55] that assorts identical atoms in the molecule. The algo-

rithm is commonly used to generate ECFP fingerprints[56], which are the

de facto standard in cheminformatics[57], and they make identifiers of the

given atom from the chemical environment where the atom is positioned.

An atom may have multiple identifiers depending on the pre-set maximum

value of radius rmax, which denotes the maximum topological distance be-

tween the given atom and its neighboring atoms. The atom itself is identified
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Figure 2.1: Schematic illustration of the molecular embedding process for
acetonitrile (SMILES: CC#N) and rmax = 1. The Morgan algorithm dis-
criminates identifiers between two substructures: one is for itself (r = 0)
and the other considers its nearest neighbor atoms (r = 1). Then the em-
bedding layer calculates the vector representation from the given identifier.

by r = 0, and additional substructure identifiers for adjacent atoms are de-

noted by r = 1 (nearest neighbor), r = 2 (next nearest neighbor), and so on.

Since Mol2Vec has demonstrated promising performances in several appli-

cations of QSAR/QSPR[54], Delfos uses Mol2Vec as the primary encoding

means. We schematically illustrated embedding procedure for acetonitrile

in Fig. 2.1.

2.1.2 Encoder-Predictor Network

As shown in Fig. 2.2, the fundamental architecture of Delfos involves three

sub-neural networks: the solvent and the solute encoders extract dominant
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structural features of the given compound from SMILES strings, while the

predictor calculates the solvation energy of the given solvent-solute pair

from their encoded features.

The primary architecture of the encoder is based on two bidirectional

recurrent neural networks (BiRNNs)[58]. The network is designed for han-

dling sequential data and we consider the molecular sentence [x1, · · · ,xN ]

as a sequence of embedded substructures, xi. RNNs may have a failure

when input sequences are lengthy; gradients of the loss function can be

diluted or amplified because of accumulated precision error from the back-

propagation process[59]. The excessive or restrained gradient may cause a

decline in learning performance, and we call these two problems as van-

ishing or exploding gradient. To overcome these limits which stem from

lengthy input sequences, one may consider using both forward-directional

RNN (
−−−→
RNN) and backward-directional RNN (

←−−−
RNN) within a single layer:

−−−→
RNN([x1, · · · ,xN ]) = [

−→
h1, · · · ,

−→
hN ], (2.1a)

←−−−
RNN([x1, · · · ,xN ]) = [

←−
h1, · · · ,

←−
hN ], (2.1b)

←−→
RNN([x1, · · · ,xN ]) = [h1, · · · ,hN ]. (2.1c)

In Eqn. 2.1, xi is the embedded atomic vector of a given molecule,
−→
hi

and
←−
hi are hidden state outputs of each recurrent unit, and hi =

−→
hi;
←−
hi

means concatenation of two hidden states, respectively. The long-short term
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memory[60] (LSTM) and gated recurrent unit[61] (GRU) networks, which

are modifications of RNN, are invented to handle lengthy input sequences.

They introduce gates in each RNN cell state to memorize important infor-

mation of the previous cell state and minimize vanishing and exploding gra-

dient problem.

After RNN layers, the molecular sentences of both the solvent X =

[x1, · · · ,xN ] and the solute Y = [y1, · · · ,yM ] are converted to hidden

states, H = [h1, · · ·hN ] and G = [g1, · · · ,gM ], respectively. Each hidden

state is then put into the shared attention layer and weighted. The atten-

tion mechanism, which was originally proposed to enhance performances

of machine translator[48], is an essential technique in diverse NLP applica-

tions nowadays[49, 50]. Principles of the attention start from the definition

of the score function of hidden states and its normalization with the softmax

function:

αij =
exp(score(hi,gj))∑
k exp(score(hi,gk))

, (2.2a)

pi =

M∑
j

αijgj , (2.2b)

score(hi,gj) = hi · gj . (2.2c)

There are various score functions that have been introduced to achieve ef-

ficient predictions[48–50], and among them we use Luong’s dot-product
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attention[50] in Eqn. 2.2c as a score function since it is computationally ef-

ficient. The solvent context, P = αG denotes an emphasized hidden state H

with the attention alignment, α. We also get the solute context Q using the

same procedure. The context weighted from the attention layer is an L×2D

matrix, where L is the sequence length and D is the dimension of two RNN

hidden layers since we use bidirectional RNN (BiRNN). Two max-pooling

layers, which is the last part of each encoder reduces contexts H, G, P, and

Q to 2D-dimensional feature vectors u and v[50]:

u = MaxPooling([h1;p1, · · · ,hN ;pN ]), (2.3a)

v = MaxPooling([g1;q1, · · · ,gM ;qM ]). (2.3b)

The predictor has a single fully-connected perceptron layer with recti-

fier unit (ReLU) and an output layer. It uses the concatenated feature of the

solvent and solute [u;v] as an input. The overall architecture of our model

is shown in Figure 2.2. We also consider encoders without RNN and at-

tention layers in order to quantify the impact of these layers on prediction

performances of the network; each encoding network contains only the em-

bedding layer and directly connected to the MLP layer. The solvent and

solute features are simple summations of atomic vectors, u =
∑N

i xi and

v =
∑M

i yi, respectively. This model was initially used for gradient boost-
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Figure 2.2: The fundamental architecture of Delfos. Each encoder network
has one embedding and one recurrent layer, while the predictor has a fully-
connected MLP layer. Two encoders share an attention layer, which weights
outputs from recurrent layers. Black arrows indicate flow of input data.

ing (GBM) regression analysis for aqueous solubilities and toxicities[54].

2.2 Results and Discussions

2.2.1 Computational Setup and Results

We use the Minnesota solvation database[62] (MNSOL) as the dataset over

which we train and test, and it provides 3,037 experimental measures of

free energies of solvation and transfer energies for 790 unique solutes in 92

solvents. Because the MNSOL only contains common names of compounds,
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we perform an automated searching process using PubChemPy[63] script

and receive SMILES strings of compounds from PubChem database. There

are 363 results for charged solutes and 144 results for transfer free energies

in the MNSOL which are excluded from machine learning dataset, and 35

results of solvent-solute combinations are not valid in PubChem. We finally

prepare SMILES specifications of 2,495 solutions for 418 solutes and 91

solvents for the machine learning input.

For the implementation of the proposed neural networks, we use Keras

2.2.4 framework[64] with TensorFlow 1.12 backend[65]. At the very first

stage, Morgan algorithm for r = 0 and r = 1 generates molecular sen-

tences of the solvent and solute from their SMILES strings. Then the given

molecular sentence is embedded to a sequence of 300-dimensional sub-

structure vectors by the skip-gram pretrained Word2Vec model available

at https://github.com/samoturk/mol2vec, which contains information of ∼

20, 000, 000 compounds and ∼ 20, 000 substructures from the ZINC15

database[54]. We consider BiLSTM and BiGRU layers in both solvent and

solute encoders to compare their performances. Since our model is a regres-

sion problem, we use mean squared error (MSE) as the loss function.

We employ 10-fold cross-validation (CV) for secure representativeness

of the test data because the dataset we use has a limited number of exper-

imental measures; the total dataset is uniformly and randomly split into 10

subsets, and we iteratively choose one of the subsets as a test set and the
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training run uses the remaining 9 subsets. Consequentially, a 10-fold CV

task performs 10 independent training and test runs, and relative sizes of the

training and test sets are 9 to 1. We use Scikit-Learn library[66] to imple-

ment the CV task and perform an extensive grid search for tuning hyper-

parameters: learning algorithms, learning rates, and dimensions of hidden

layers. We select the stochastic gradient descent (SGD) algorithm with Nes-

terov momentum, whose learning rate is 0.0002 and momentum is 0.9. Opti-

mized hidden dimensions are 150 for recurrent layers and 2000 for the fully

connected layer. To minimize the variance of the test run, we take averages

for all results over 9 independent random CV, split from different random

states.

Solvation free energies that we calculated from the MNSOL using at-

tentive BiRNN encoders are exhibited in Fig. 2.3 and 2.4. Prediction errors

for the BiLSTM model are ±0.57 kcal/mol in RMSE, ±0.30 kcal/mol

in MAE, and the Pearson correlation coefficient is R2 = 0.96 while re-

sults from the BiGRU model indicate there is no meaningful difference

between the two recurrent models. The encoder without BiRNN and at-

tention layers produces much less accurate results, whose error metrics are

±0.77 kcal/mol in RMSE,±0.43 kcal/mol in MAE, and 0.92 in R2 value,

respectively.

We cannot directly compare our results with other ML models because

Delfos is the first ML-based study using the MNSOL database. Nonethe-
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less, several studies on aqueous system have previously calculated solubili-

ties or hydration free energies using various ML techniques and molecular

descriptors[4, 20, 53, 54, 67, 68]. For comparison, we have tested our neu-

ral network model for hydration free energy. A benchmark study of Wu

et al. [20] provides hydration energies of 642 small molecules in a group

of QSPR/ML models. Their RMSEs were up to 1.15 kcal/mol while our

prediction from the BiLSTM encoder attains 1.19 kcal/mol for the same

dataset and split method. This result suggests our neural network model

guarantees considerably good performances even in a specific solvent of

water.

Meanwhile, for studies which are not ML-based, there are several re-

sults from both classical and quantum-mechanical simulation studies that

use the MNSOL as the reference data[1, 2, 44, 45, 69–71]. In Table 2.1,

we choose two DFT studies which employ several widely-used QM solva-

tion models[1, 2] for comparison with our proposed ML model: solvation

model 8/12 (SM8/SM12), solvation model based on density (SMD), and

full/direct conductor-like screening model for realistic solvation (COSMO-

RS/D-COSMO-RS). Albeit all of those QM methods exhibited excellent

performances given chemical accuracy 1.0 kcal/mol, among the rest, full

COSMO-RS is a noteworthy solvation model since it is believed to be the

state-of-the-art method which shows the best accuracy[72]. This is realized

by statistical thermodynamics treatment on the polarization charge den-
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sities, which helps COSMO-RS with making successful predictions even

in polar solvents where the key idea of the dielectric continuum solva-

tion collapses[8, 72, 73]. As a result, COSMO-RS calculations with BP86

functional and TZVP basis set achieved 0.52 kcal/mol for 274 aqueous,

0.41 kcal/mol for 2,072 organic solvents, and 0.43 kcal/mol for the full

dataset in mean absolute error[2].

For the proposed ML models, Delfos with BiLSTM shows a compara-

ble accuracy in water solvent, which MAE is 0.64 kcal/mol. Delfos makes

much better predictions in non-aqueous organic solvents; machine learn-

ing for 2121 non-aqueous systems result in 0.24 kcal/mol, which is 44%

of SM12CM5 and 59% of COSMO-RS. However, one may argue that K-

fold CV from random split does not produce the real prediction accuracy

of the model. That is, the random-CV results only indicate the accuracy for

trained or practiced chemical structures. Accordingly, one may ask the fol-

lowing questions. For example, will the ML model ensure the comparable

prediction accuracy in “structurally” new compounds? What happens if the

ML model couldn’t learn sufficiently varied chemical structures? We will

discuss these questions in the next section.

2.2.2 Transferability of the Model for New Compounds

Since our study uses techniques of machine learning with empirical data

from experimental measures, there is a likelihood that Delfos would not

17



Figure 2.3: Benchmark chart for three kinds of encoder networks, for two
metrics (MAE and RMSE). The BiLSTM and the BiGRU models show no
significant differences, while it makes relatively inaccurate predictions with-
out recurrent networks. All results are averaged over 9 independent test runs
and black lines on tops of boxes denote variances.
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Figure 2.4: Scatter plot for true (x-axis) and ML predicted (y-axis) values
of solvation energies in three different models: (a) BiLSTM, (b) BiGRU,
and (c) without recurrent layers. All results are averaged over 9 independent
10-fold CV runs.
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Solvent Method Ndata MAE Ref
Aqueous SM12CM5/B3LYP/MG3S 374 0.77 [1]

SM8/M06-2X/6-31G(d) 366 0.89 [1]
SMD/M05-2X/6-31G(d) 366 0.88 [1]
COSMO-RS/BP86/TZVP 274 0.52 [2]
D-COSMO-RS/BP86/TZVP 274 0.94 [2]
Delfos/BiLSTM 374 0.64
Delfos/BiGRU 374 0.68
Delfos w/o RNNs 374 0.90

Non-aqueous SM12CM5/B3LYP/MG3S 2129 0.54 [1]
SM8/M06-2X/6-31G(d) 2129 0.61 [1]
SMD/M05-2X/6-31G(d) 2129 0.67 [1]
COSMO-RS/BP86/TZVP 2072 0.41 [2]
D-COSMO-RS/BP86/TZVP 2072 0.62 [2]
Delfos/BiLSTM 2121 0.24
Delfos/BiGRU 2121 0.24
Delfos w/o RNNs 2121 0.36

Table 2.1: Comparisons between encoder-predictor networks and various
quantum-mechanical solvation models for aqueous and non-aqueous solu-
tions. The error metric is MAE and kcal/mol. Data in bold texts are our
results, while QM results are taken from the work of Marenich et al. [1] and
Klamt and Diedenhofen [2].
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guarantee prediction accuracy for structurally new solvents or solutes which

are not present in the dataset, although the MNSOL contains a consider-

able number commonly-used solvents and solutes.[62]. In order to inves-

tigate this potential issue, we perform another train and test runs with the

cluster cross-validation[43, 74], instead of using the random-split CV. As a

start, we individually obtain 10 clusters for solvents and solutes using the

K-mean clustering algorithm and the molecular vector. The molecular vec-

tor is a simple summation of substructure vectors as we used for the sim-

ple MLP model without RNN encoders[54]: u =
∑N

i xi for solvents and

v =
∑M

i yi for solutes, respectively. Then, we iteratively perform cross-

validation process over each cluster. The size of each cluster is (422, 482,

186, 231, 443, 243, 143, 251, 15, 79) for solvents and (401, 672, 514, 75,

64, 6, 512, 54, 42, 155) for solutes, respectively.

Results from the solvent and the solute cluster CV tasks shown in Table

2.2 exhibit generalized expectation error ranges for new solvents or solutes

which are not in the dataset. Winter et al. [43] reported that the split method

based on the clustering brings an apparent degradation of prediction per-

formances in various properties; we find that our proposed model exhibits

a similar tendency as well. For the BiLSTM encoder model, increments of

MAE are 0.52 kcal/mol for the solvent clustering and 0.69 kcal/mol for

the solute clustering. The reason why the random K-fold CV exhibits su-

perior performances is obvious; if we have a pair (A, B) of solvent A and
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solute B in the test set and the training set have (A, C) and (D,B) pairs, then

both (A, C) and (D,B) could enhance prediction accuracy of (A, B). How-

ever, the clustering limits the location of a specific compound, and pairs of

specific solvent or solute should be either in the test set or the train set.

For an additional comparison, Table 2.2 also contains results taken from

SMD calculations with semi-empirical methods[45], COSMO, COSMO-

RS[2], and classical molecular dynamics[44] for four small organic sol-

vents: toluene (C6H5CH3), chloroform (CHCl3), acetonitrile (CH3CN), and

dimethyl sulfoxide ((CH3)2SO), respectively. Albeit MD is based on classi-

cal dynamics, the results of generalized amber force field (GAFF) tells us

that an explicit solvation model with a suitable force field could make con-

siderably good predictions. The bottom line of cluster CV is if the dataset for

train contains at least one side of the solvent-solvent pair of which we want

to estimate the solvation free energy, the expectation error of Delfos lies

within chemical accuracy 1.0 kcal/mol, which is the general error of com-

puter simulation scheme. Also, results for four organic solvents demonstrate

that predictions from the cluster CV have the accuracy that is comparable

with MD simulations using AMOEBA polarizable force field[44].

Results from the cluster CV highlight the necessity for discussion on

the importance of database preparation. As described earlier, the cluster CV

causes a considerable increase in prediction error, and we suspect that the

degradation mainly comes from the decline in the diversity of the training
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set. Namely, the number of substructures that the neural network learns in

training process is not so many as the random CV if we use the cluster

CV. To prove this speculation, we define unique substructures, which are

substructures that only exists in the test cluster. As shown in Figure 2.5, in

the solute cluster CV, MAE for 1,226 pairs which do not have any unique

substructures in solutes is 0.54 kcal/mol, while the prediction error for the

rest 1,269 solutions is 1.64 kcal/mol. The solvent cluster CV shows even

more extreme results: the MAE for 374 aqueous solvents is 2.48 kcal/mol,

while non-aqueous solvents exhibit 0.52 kcal/mol in contrast. We believe

that the outlying behavior of water is due to its distinctive nature. Water

has only one, unique substructure since the oxygen atom does not have any

neighbors. So the solvent clustering makes the network unable to learn the

structure of water in indirect ways, results in a prediction failure. This logic

tells us that the most critical thing in an ML prediction task is securement of

the training dataset which contains as many as possible kinds of solvents and

solutes. We believe that computational approaches would be as helpful as

experimental measures for enriching structural diversity of the training data,

given recent advances on QM solvation models[1, 2, 75] such as COSMO-

RS. Furthermore, since there are 418 solutes and 91 solvents in the dataset

we use[62], which make up 38,038 possible pairs, we expect Delfos and

MNSOL would guarantee similar precision levels with the random CV for

numerous systems.
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Solvent Method Ndata MAE RMSE Ref
All COSMO/TZVP 2346 2.15 2.57 [2]

COSMO-RS/TZVP 2346 0.42 0.75 [2]
SMD/PM6 2500 - 3.6 [45]
Random CV 2495 0.30 0.57
Solvent Clustering 2495 0.82 1.45
Solute Clustering 2495 0.99 1.61

Toluene MD/GAFF 21 0.48 0.63 [44]
MD/AMOEBA 21 0.92 1.18 [44]
COSMO/TZVP 21 2.17 2.71 [2]
COSMO-RS/TZVP 21 0.27 0.34 [2]
Solvent Clustering 21 0.66 1.10
Solute Clustering 21 0.93 1.46

Chloroform MD/GAFF 21 0.92 1.11 [44]
MD/AMOEBA 21 1.68 1.97 [44]
COSMO/TZVP 21 1.76 2.12 [2]
COSMO-RS/TZVP 21 0.50 0.66 [2]
Solvent Clustering 21 0.78 0.87
Solute Clustering 21 1.14 1.62

Acetonitrile MD/GAFF 6 0.43 0.52 [44]
MD/AMOEBA 6 0.73 0.77 [44]
COSMO/TZVP 6 1.42 1.58 [2]
COSMO-RS/TZVP 6 0.33 0.38 [2]
Solvent Clustering 6 0.74 0.82
Solute Clustering 6 0.80 0.94

DMSO MD/GAFF 6 0.61 0.75 [44]
MD/AMOEBA 6 1.12 1.21 [44]
COSMO/TZVP 6 1.31 1.42 [2]
COSMO-RS/TZVP 6 0.56 0.73 [2]
Solvent Clustering 6 0.93 1.19
Solute Clustering 6 0.91 1.11

Table 2.2: Prediction accuracy of the random-split CV, the solvent and so-
lute cluster CVs using K-mean algorithm, and several theoretical solvation
models for four different organic solvents: toluene (C6H5CH3), chloroform
(CHCl3), acetonitrile (CH3CN), and dimethyl sulfoxide ((CH3)2SO), re-
spectively. Units of MAE and RMSE are kcal/mol.
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Figure 2.5: Results of cross-validation tasks using K-mean clustering algo-
rithm for (a) solutes and (b) solvents. We conclude that unique substructures
in the given compounds are the main cause of the decline in prediction accu-
racy. Each encoder network includes a BiLSTM layer and we use the same
hyperparameters which are optimized in the random CV task.
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2.2.3 Visualization of Attention Mechanism

A useful aspect of attention mechanism is that the model provides not only

the prediction value of solvation energy of a given input but also a clue

to why the neural network makes such a prediction based on the correla-

tions between recurrent hidden states[49, 53, 76]. In this section, we visu-

alize how the attention layer operates, and verify how well such correla-

tions correspond to chemical intuitions for inter-molecular interactions. The

matrix of attention alignments, α from Eqn. 2.2a indicates which substruc-

tures in the given solvent and solute are strongly correlated with each other

so they play dominant roles in determining their solvation energy. In Fig-

ure 2.6, we demonstrate attention alignments of nitromethane (CH3NO2)

solute in four different solvents: 1-octanol (C8H17OH, 3.51 kcal/mol), 1-

butanol (C4H9OH, 3.93 kcal/mol), ethanol (C2H5OH, 4.34 kcal/mol), and

acetonitrile (CH3CN, 5.62 kcal/mol). The scheme for visualizing attention

alignments is as follows: (i) first, we calculate the average alignment 〈α〉j

of each substructure j of the solute over the entire solvent structure {i},

〈α〉j =
∑N

i αij/N . (ii) Then, we get relative amounts of averaged atten-

tion alignments [α̃1, · · · , α̃M ] from dividing 〈α〉j by the maximum value,

α̃j = 〈α〉j /max(〈α〉1 , · · · , 〈α〉M ). (iii) Also, since the embedding algo-

rithm which we use generates two substructure vectors per an atom, we in-

dividually visualize two alignments maps, [α̃1, α̃3, · · · , α̃M−1] (for r = 0)
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and [α̃2, α̃4, · · · , α̃M ] (for r = 1) for simpler and more intuitive illustra-

tion. (iv) Finally, the color representation of each atom in Fig. 2.6 denotes

the amount of α̃j ; the neural network judges that red-colored substructures

(higher α̃j) in the solute are more “similar” to the solvent and the model puts

more weights on them during the prediction task. In contrast, green-colored

substructures have lower α̃j , which means they do not have similarity with

the solvent molecule so much as red-colored one.

Overall results in Fig. 2.6 imply that the chemical similarity taken from

the attention layer has a significant connection to fundamental knowledge

of chemistry like polarity or hydrophilicity. Each alcoholic solvent has one

hydrophilic – OH group, and it results in increasing contributions of the

nitro group in the solute as hydrocarbon chains of alcohols shorten. For

the acetonitrile-nitromethane solution, the attention mechanism reflects the

highest contributions of – NO2 groups due to strong polarity and aprotic

nature of the solvent. Although the attention mechanism seems to repro-

duce molecular interactions in a faithful way, however, we find there is a

defective prediction which does not agree with chemical knowledge. Two

oxygen atoms –– O and – O– in the nitro group are indistinguishable due

to the resonance structure, thus they must have equivalent contributions

in any solvents, but we find they show different attention scores in our

model. We believe those problems happen because the SMILES string of

nitromethane (C[N+](=O)[O-]) does not encode the resonance effect in the
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Figure 2.6: Relative and mean attention alignments map for nitromethane
in four different solvents: (a) octanol, (b) butanol, (c) ethanol, (d) and ace-
tonitrile, respectively. Color representations denote that the neural network
invests more weights on red, while green substructures have relatively low
contributions for the solvation energy.

nitro group. Indeed, the Morgan algorithm generates different identifiers for

two oxygen atoms in the nitro group, [864942730, 2378779377] for –– O and

[864942795, 2378775366] for – O– . The absence of resonance might be a

problem worthwhile considering when one intends to use word embedding

models with SMILES strings[43, 53, 54], although estimated solvation ener-

gies for nitromethane from the BiLSTM model are within a moderate error

range as shown in Fig. 2.6.
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Chapter 3

Group Contribution Method for the Solvation Energy

Estimation with Vector Representations of Atom

3.1 Model Description

3.1.1 Word Embedding

In the proposed work, the primary strategy for the encoding of the input

compound’s structure is the word embedding, mainly inspired by Google’s

word2vec model[46, 51]. The first attempt of continuous vector represen-

tations of human vocabularies in arbitrary space introduced in the mid-

1980s[51], however, the remarkable breakthrough has been made by devel-

opments of neural network language model (NNLM) and recurrent neural

network language model[77] (RNNLM).

The general procedure of word embedding starts from the construction

of a one-hot encoded vector x(I) = [x1(I), · · · , xV (I)] of a given, tok-
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enized input word I , where V is the vocabulary size[46]. By the nature of

one-hot encoding, we know the vector x has only one non-zero element at

the corresponding dimension to the given word, xI(I) = 1 and the other

elements are 0, in short, xi(I) = δi,I . Fig. 3.1 illustrates the embedding

procedure when the input context has only one word.

h(I) = x(I)W, (3.1a)

y(I) = Softmax(h(I)W
′
). (3.1b)

In Eqn. 3.1 and Fig. 3.1, the first fully-connected layer W forms a V ×N

matrix, and the second, W
′

is N ×V . So the hidden layer (or the projection

layer) h(I) has a shape of N -dimensional vector and is identical to the I-th

row of W, wI . The second FC layer calculates the output y(I), following

the equations shown below:

h(I)W
′

=
[
w
′
1 ·wI , · · · ,w

′
V ·wI

]
, (3.2a)

yi(I) =
exp(w

′
i ·wI)∑V

j=1 exp(w
′
j ·wI)

. (3.2b)

Each projecting element for the second FC layer in Eqn. 3.2, w
′
j is the j-th

column of W
′
. Both w and w

′
have the same shape, and one can either

use them as theN -dimensional embedded vector representation of the input

word. Since we train the embedding model as classification tasks with a
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specific target word T , the conditional probability of finding T given an

input I is:

P (T |I) = yJ(I). (3.3)

The general optimization scheme for the classification model is logistic

regression that is maximizing P (T |I) and minimizing the binary cross-

entropy loss function.

L = −x(T ) · logy(I) (3.4a)

= −w′T ·wI + log

V∑
j=1

exp(w
′
j ·wI). (3.4b)

Another essential feature of the word embedding is that both the input

word and the target word are taken from a single context. That is to say,

an embedding model calculates predictivity or co-occurrence between the

target word and the input word in a single sentence. This strategy makes the

embedding model as an unsupervised machine learning problem, so one can

easily enlarge the size of the pre-training dataset. There are two models in

Word2Vec: the continuous bag of words (CBOW) model and the skip-gram

model. As shown in Fig. 3.2, the CBOW model predicts the central word

from its neighboring words; the skip-gram model uses the central word as

the input to predict its neighbors. The model complexity of a CBOW model,
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Q is dependent on the embedding dimension D, the window length N and

the vocabulary size V .

Q = D(N + log2 V ), (3.5)

and for a skip-gram model, Q is as follows:

Q = ND(1 + log2 V ). (3.6)

The logarithmic dependence on the vocabulary size log2 V is originated

from the hierarchical softmax activation function, which makes it unnces-

sary for the model to update all weights in W and W
′
[51].

A number of studies showed that the the unsupervised context learning

in the word embedding scheme can also be a powerful tool for encoding

structural features of chemical compounds[18, 23, 43, 54]. The idea is real-

ized by the consideration of a given molecular structure as chemical contexts

of atoms of substructure; positions of projected atomic feature vectors in the

embedded vector space now represent their chemical or physical properties,

instead of linguistic information. In the present study, we use Mol2Vec em-

bedding model as the primary encoding means[54], which uses the Morgan

algorithm to assort atoms in an identical chemical environment and generate

the chemical context of a given compound[56].

32



Figure 3.1: Embedding procedure for simple one-word context.

3.1.2 Network Architecture

In the proposed model, the linear regression task between the given chemical

structures of the solvent and solute molecules and their solvation free energy

starts with embedded vector representations of the given solvent xα and

solute yγ , where α and γ are atom indices. The entire molecular structure is

now can be expressed as a sequence of vectors or a matrix:

X = {xα} , (3.7a)

Y = {yγ} , (3.7b)
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Figure 3.2: Model architecture diagrams for (a) the CBOW model and (b)
the skip-gram model. The CBOW model predicts the current word based on
neighboring words, while the skip-gram words predicts surrounding words
from the current word.
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so xα and yγ are α-th row of X and γ-th row of Y, respectively. Then

the encoder function learns their chemical structures and extracts feature

matrices for the solvent P and the solute Q.

P = Encoder(X), (3.8a)

Q = Encoder(Y). (3.8b)

Columns of P and Q, pα and qγ involve atomistic chemical features of

atoms α and γ, which are directly related to the target property, the solva-

tion free energy. We now calculate the un-normalized attention (or chemical

similarity) between α and γ with on Luong’s dot-product attention score

function[50]:

Iαγ = −pα · qγ . (3.9)

Since our target quantity is the free energies of solvation, we expect such

chemical similarity Iαγ to well correspond to atomistic interactions between

α and γ, which involves both the energetic and the entropic contributions.

Eventually, the free energy of solvation of the given pair, which is the final

regression target, is given as a simple summation of atomistic interactions:

∆G◦sol =
∑
αγ

Iαγ . (3.10)
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Certainly, one can also calculate the free energies of solvation from two

molecular feature vectors, those are representing the solvent properties u

and the solute properties v, respectively:

∆G◦sol = u · v =

(∑
α

pα

)
·

(∑
α

qα

)
. (3.11)

The inner-product relation between molecular feature vectors u and v has a

formal analogy with the solvent-gas partition coefficient calculation method

via the solvation descriptor approach, which is founded by Abraham and

Acree[78, 79]:

logK = c+ eE + sS + aA+ bB + lL. (3.12)

In Eqn. 3.12, the solute descriptor (1, E, S,A,B,L) is determined from a

series of experimental measures, and the solvent descriptor (c, e, s, a, b, l)

is a fitted value. In our proposed model, both u and v are purely fitted

quantities from the scratch, with the skip-gram pre-training and the linear

regression analysis.

We choose and compare two different neural network models in order

to encode the input molecular structure and extract important structural or

chemical features which are strongly related to solvation behavior: one is

bidirectional language model (BiLM)[80] based on the recurrent neural net-
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work (RNN), the other is the graph convolutional neural network (GCN)[81]

which explicitly handles the connectivity (bonding) between atoms with the

adjacency matrix.

The detailed mathematical expressions of the bidirectional language model

are given below[80]:

−→
H(i+1) =

−−−→
RNN(

−→
H(i)), (3.13a)

←−
H(i+1) =

←−−−
RNN(

←−
H(i)). (3.13b)

In Eqn. 3.13, the right-headed arrow in
−−−→
RNN denotes a forward-directed re-

current unit which propagates from the leftmost of the sequence to the right-

most one. The BiLM also involves the backward-directed recurrent neural

network (
←−−−
RNN) and it propagates from the rightmost to the leftmost. The

superscript (i) in hidden layers H(i) denotes the position at the stacked con-

figuration: at the first stack, both forward-directed and backward-directed

RNN share the pre-trained sequence X as an input,
−→
H(0) =

←−
H(0) = X.

In addition, use of more improved versions of RNNs, e.g. the gated recur-

rent unit (GRU)[61] or the long-short term memory (LSTM)[60], are more

suitable when one considers cumulated numerical errors due to the deep-

structured nature of RNNs[59],

H(i) =
−→
H(i) +

←−
H(i). (3.14)
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Hidden layers from the forward and backward RNNs are then merged into a

single sequence, as described in Eq. 3.14. Finally, we obtain the sequence of

chemical feature vectors of the α-th atom in the given solvent with weighted

summation of rnn stacks,

P =
∑
i

ciH
(i). (3.15)

The encoder function for solutes has an identical neural network architec-

ture, which converts the pre-trained solute sequence Y into the feature se-

quence Q.

To sum up, the BiLM encoder considers a given molecule as just a sim-

ple sequence of atomic vector representations. The idea is quite clear and

rather straightfoward for implementation of the neural network. However,

this idea may causes “problems” in more complex compounds due to the

lack of intramolecular bonding information between atoms. We also con-

sider the graph convolutional neural network (GCN), which is one of the

most well-known algorithms in chemical applications of neural networks[34,

81]. The GCN model represents the input molecule as a mathematical graph,

instead of a simple sequence: each node corresponds to the atom, and each

edge in the adjacency matrix A involves connectivity (or existence of bond-
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ing) between atoms:

H(i+1) = GCN(H(i),A). (3.16)

The role of adjacency matrix in the GCN constrains convolution filters to the

node and its nearest neighbors. Eqn. 3.17 describes a more detailed mathe-

matical expression of the skip-connected GCN[81]

GCN(H, Ã) = σ(ÃHW1 + HW2 + b), (3.17)

where W1 and W2 are convolution filters, b is the bias vector, and σ de-

notes the activation function - we choose the hyperbolic tangent in the pro-

posed model. The GCN encoder also invloves stacked structure, and we can

obtain the feature sequence for each molecule with the same manner as de-

scribed in Eqn. 3.15.

3.2 Results and Discussions

3.2.1 Computational Details

For the training and test tasks of the proposed neural network, we prepare

6,594 experimental measures of free energies of solvation for 952 organic

solvents and 147 organic solutes, including some inert gases. 642 experi-

mental measures for free energies of hydration are taken from the FreeSolv
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Figure 3.3: Architecture of the proposed model. Each encoder network ex-
tracts atomistic feature vectors given pre-trained vector representations, and
the interaction map calculates pairwise atomistic interactions.
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database[14],and 5,952 data points for non-aqueous solvents are collected

with the Solv@TUM database version 1.0[78, 79], which is available at

https://github.com/hille721/solvatum. Compounds in the dataset involves 10

kinds of atoms, which are commonly used in organic chemistry: hydrogen

(H), carbon (C), oxygen (O), sulfur (S), nitrogen (N), phosphorus (P), fluo-

rine (F), chlorine (Cl), bromine (Br), and iodine (I). The maximum heavy-

atom count is 28 for solutes and 18 for solvents.

For the very first stage, we perform the skip-gram pre-training process

for 10,229,472 organic compounds, which are collected from the ZINC15

database[82], using Gensim 3.8.1 and Mol2Vec skip-gram model to con-

struct the 128-dimensional embedding lookup table[54]. For the implemen-

tation of the neural network model, we mainly use the Tensorflow 2.0 and

Keras 2.3.1 frameworks[65]. To construct the BiLM encoder, we both con-

sider CuDNN implementations[65] for the LSTM and the GRU, which are

basic layers in the Tensorflow. For GCN encoder, we use codes taken from

Spektral library version 0.1.1, which implements the skip-connected graph

convolutional network. Each model has L2 regularization to prevent exces-

sive changes on weights and minimize the variance and uses the RMSprop

algorithm with 10−3 of learning rate and ρ = 0.9 for optimizing its loss

function, the mean squared error (MSE).

We employ 5-fold cross-validation to evaluate the prediction accuracy

of the chosen model; the entire dataset is randomly split into five uniform-
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sized subsets, and we iteratively choose one of the subsets as a test set, and

the training run uses the remainder 4 subsets. Consequentially, a 5-fold CV

task performs 5 independent training and test runs, and relative sizes of the

training and test sets are 8 to 2. To minimize the variation of results from

CV tasks, we take averages for all results over 9 independent random CV,

split from different random states. The procedure for CV is implemented

with the Scikit-Learn library version 0.2.2[66].

3.2.2 Prediction Accuracy

The selection of the optimized model for the target property is realized by

an extensive grid-search task for tuning model hyperparameters. First, we

choose 32 as the batch size, and RMSprop as an optimization algorithm

with learning rate is 10−3. It is generally known that the smaller batch size

generates a better result; however, a too small batch size is computationally

inefficient, so we take the value of 32 as the point of compromise between

the prediction performance and the computational efficiency. Table 3.2.2

shows additional searching information for the optimized stack size of the

encoder networks and maximum epochs are 50 for the BiLM model and

100 for the GCN model, respectively. Fig. 3.4 shows epoch-evolution of

training and validation loss for both the BiLM/LSTM encoder and the GCN

encoder, where optimized stack size is 3. BiLM encoder shows a much faster

convergence behavior untill ∼ 50 epochs and overfitting appears, while the
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GCN encoder exhibits minimum validation loss around ∼ 100 epochs.

The results for test run using 5-fold CV tasks for the optimized models

with grid search tasks are shown at Fig. 3.5. We found that the BiLM en-

coder with the LSTM layer performs slightly better than the GCN encoder,

although their differences are not pronounced: the mean unsigned predic-

tion error (MUE) for the BiLM/LSTM encoder model is 0.19 kcal/mol,

while the GCN model results in 0.23 kcal/mol. Both MUE values show

that the our proposed mechanism is actually working and guarentees excel-

lent prediction accuracies for well-trained chemical structures. Moreover,

since we use a simple version of the graph-based neural network as the

encoder, we might expect the GCN-based model to perform better than a

simple graph-based embedding model or more progressed version of graph

neural networks to perform even better for chemical structures: such as the

messege-passing neural network (MPNN)[35], the deep tensor neural net-

work (DTNN)[36], and so on.

As the last of this section, we confirm whether or not the proposed neu-

ral network architecture is working as we designed. Fig. 3.6 presents t-SNE

visualizations for pre-trained solute vectors y and encoded molecular fea-

ture v[38]. Color codes denote predicted hydration free energies for 15,432

points, whose structures are randomly taken from the ZINC15[82]; red dots

correpond to the compounds with low hydration free energies while the blue

dots correspond to them with high hydration free energies. The correlation
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Encoder Stack
Training Validation Test
RMSE RMSE RMSE

BiLM

1 0.29± 0.00 0.59± 0.04
2 0.24± 0.01 0.44± 0.04
3 0.24± 0.01 0.43± 0.02 0.41± 0.01
4 0.23± 0.00 0.49± 0.03
5 0.20± 0.02 0.52± 0.02

GCN

1 0.34± 0.00 0.73± 0.04
2 0.26± 0.00 0.70± 0.07
3 0.25± 0.00 0.51± 0.08
4 0.26± 0.01 0.46± 0.05 0.44± 0.01
5 0.27± 0.01 0.77± 0.16

Table 3.1: Error metrics for training, validation, and test runs with respects
to the number of stacked encoder layers. The units of all errors are kcal/mol.

between molecular features and predicted free energies is a clear clue that

the model architecture can extract geometrical correlations and calculate

free energy. Meanwhile, the pre-trained solute vectors from the skip-gram

embedding model exhibit only weak correlations.

3.2.3 Model Transferability

Since our proposed neural network model is a solvent-non-specific one that

considers both the solvent structure and the solute structure as seperate in-

puts, it has a distinct character when compared to the other solvent-specific

ML models. The model can train with the structure of a single solute repeat-

edly when the solute has multiple solvation energy data for different kinds

of solvents[22]; this logic is also valid for a single solvent. Therefore, one

of the most useful advantages of our model is that we can easily enlarge the
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Figure 3.4: Epoch-evolution of mean squared loss functions (RMSE) for (a)
the GCN encoder model and (b) the BiLM encoder model. Solid lines denote
evolution of training losses while dotted lines denote validation losses. All
results are averaged over 8 independent cross-validation runs.
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Figure 3.5: (a) Prediction erros for two models in kcal/mol, taken from 5-
fold cross validation results. (b) Scatter plot between the experimental value
and ML the ML predicted value. Black circles denote the BiLM model while
the GCN results are shown in gray diamonds.
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Figure 3.6: 2-dimensional visualizations on (a) the pre-trained vector
∑

γ yγ
and (b) the molecular feature vector v for 15,432 solutes. We reduce the
dimension of each vector with the t-SNE algorithm. The color representation
denotes the hydration energy of each point.
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dataset for training, even in the scenario that we want to predict solvation

free energies for a specific solvent. Fig. 3.7 shows 5-fold cv results for 642

hydration free energies (FreeSolv) from both the BiLM and the GCN mod-

els, in two different situations. One uses only the FreeSolv[14] database for

train and test tasks, and the other additionally uses the Solv@TUM[78, 79].

Although the Solv@TUM database only involves non-aqueous data points,

it enhances each model’s accuracy by about 20% (BiLM) to 30% (GCN)

in terms of mean unsigned errors. Those results imply that there are possi-

ble applications of the transfer learning to other solvation-related properties,

like aqueous solubilities[4] or octanol-water partition coefficients.

However, in some other situations, the advantage we discussed above

might be a downside: the repetitive training for a single compound may

make the model tends to overfit, and they could weaken predictivity for

the structurally new compound, which is considered as an extrapolation.

We investigate the model’s predictivity for extrapolation situations with the

scaffold-based split[22, 35, 43]. Instead of the ordinary K-fold CV task

with the random and uniform split method, the K-means clustering algo-

rithm builds each fold with the MACCS substructural fingerprint. One can

simulate an extreme extrapolation situation through CV tasks over the clus-

tered fold. As shown in Fig. 3.8, albeit the scaffold-based split degrades

MUEs by a factor of three, they are still within an acceptable error range

∼ 0.6 kcal/mol, given chemical accuracy 1.0 kcal/mol. Furthermore, we
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Figure 3.7: CV-results for FreeSolv hydration energies with two different
training dataset selection. Deep-colored boxes denote CV results with the
augmented dataset with the Solv@TUM database.

do not see any clear evidence that our model tends to overfit more than other

solvent-specific models[35, 43].

3.2.4 Group Contributions of Solvation Energy

Although we showed that the proposed NN model guarantees an excellent

predictivity for solvation energies of various solute and solvent pairs, the

main objective of the present study is obtaining the solvation free energy as

the sum of decomposed inter-atomic interactions, as we described at Eq. 3.9

and 3.10. In order to verify whether or not the the model’s solvation energy

estimation has correspondence to group-contribution based calculation, we

define the sum of atomic interactions Iαγ over the solvent indices γ as the
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Figure 3.8: Comparison between CV results with the random-split and the
scaffold-based split (or cluster split).

group contributions of the α-th solute atom:

Iα =
∑
γ

Iαγ . (3.18)

Figure 3.9 shows hydration free energy contributions for four linear and

small organic solutes which have six heavy atoms: n-hexane (CCCCCC), 1-

chloropentane (CCCCCCl), pentaldehyde (CCCCC=O), and 1-aminopentane

(CCCCCN). As shown in Fig. 3.9, both the BiLM and the GCN model ex-

hibit a resembling tendency in group contributions; the model estimates that

atomic interactions between the solute atoms and water increases near the

hydrophilic groups. Although the results show that we can find a signifi-

cant correspondence to intuitive chemical knowledge, it might need further

quantified analysis of computer simulation approaches. For example, molec-
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ular dynamics simulations with an appropriate explicit solvation model. The

Kirkwood charging formula can give atomic free energy contributions with

pairwise interactions u(r, λ) and the solvation shell structure g(r, λ)[10]:

µ = ρ

∫ 1

0
dλ

∫
drg(r, λ)

∂u(r, λ)

∂λ
. (3.19)

However, there is an aspect that we can easily verify without quanti-

tative computer simulations. It is obvious that each atom in cyclohexane

and benzene must have identical contributions to the free energy, but the

results in Fig. 3.10 clearly shows that the BiLM model makes faulty pre-

dictions while the GCN model works well as expected. We believe that this

malfunctioning of the BiLM model originates from the sequential nature of

the recurrent neural network. Since the RNN considers the input molecule

is just a simple sequence of atomic vectors and there are no explicit state-

ments that involve bonding information, the model could not be aware of the

cyclic shape of the input compound[23, 34]. We conclude that it is inevitable

to use explicitly bond (or connectivity) information when one constructs a

group-contribution based ML model, although the RNN-based model well

predicts in terms of their sum.
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Figure 3.9: ML-calculated atomistic group contributions for four small, lin-
ear organic molecules which have six heavy atoms. The atom index starts
from the leftmost of the given molecule and only counts heavy atoms.
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Figure 3.10: Group contributions for two simple cyclic compounds: cyclo-
hexane and benzene.
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Chapter 4

Empirical Structure-Property Relationship Model for Liquid

Transport Properties

In this chapter, we present a simple structure-property relationship estima-

tion procedure for two major transport properties of the liquid state: the

dynamic viscosity (η) and the dielectric constant (ε).

Computer simulation approaches for the calculation of transport prop-

erties are not easily feasible since they are non-equilibrium measures which

are depending on the external field: shear stress (viscosity) and electric field

(dielectric constant). Generally, the calculation of transport property via

equilibrium simulation needs to generate multiple molecular dynamics tra-

jectories to evaluate the Green-Kubo relation, which is the exact mathemat-

ical expression for transport coefficients in the linear response regime[83]:

γ =

∫ ∞
0

dτ 〈A(0)A(τ)〉 . (4.1)
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Eqn. 4.1 calculates the given transport coefficient γ with the time integra-

tion of a specific time correlation function. At high-viscous liquids, it is

difficult to sample trajectories and calculate the Green-Kubo relation due to

extremely slow relaxation of the liquid system.

In previous chapters, we showed that the structure-property relationship

could be a powerful tool for the prediction of the free energy of solvation.

Here, we seek another application of SPR estimation of non-equilibrium

transport properties, which might be applicable in many systems - even in

viscous liquids. The basis of the present SPR model is the decision-tree re-

gression model; the model generates tree-like graphs of decision rules and

learns the training database[84]. Also, we employ two ensemble methods,

the random forest[85] (RF) and the gradient boosting[86] (GBM) algo-

rithms to minimize bias and variance of the tree-based machine learning

model.

The mathematical expression of the ensemble method starts with the

mathematical function F of a regression model an input descriptor x to its

label y[86]:

ŷi = F (xi;P), (4.2)

where P is the collection of trainable parameters of the function F and ŷ

is the predicted value of the model, given input descriptor x. The linear

regression task loss function L(yi, F (xi)) = (yi − ŷi)2 by the least-square
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method.

P∗ = arg min
P

∑
i

L(yi, F (xi;P)). (4.3)

A random forest regression model involves a set of independent, randomly

generated decision-tree subpredictors {F1(x;P1), · · · , FK(x;PK)}, and

one can get the optimized model from the ensemble average overK “weakly-

optimized” subpredictors[85].

F(xi) =
K∑
k=1

Fk(xi;P
∗
k). (4.4)

If the model is a classification problem, each subpredictor casts a unit vote

for the selection of the most popular class.

The gradient boosting algorithm takes a different approach to the RF

model. It has an analogy with the RF that the model consists a set of sub-

predictors, however, instead of the ensemble average over subpredictors, a

GBM model updates its prediction model Fk via the sequential iteration task

and chooses the last model F ∗K as the optimized model[86]:

F ∗k+1(x) = F ∗k (x) + hk(x). (4.5)

Here, we fit the base learner hk with pseudo-residuals {rik}:

rik = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=F ∗k−1(x)

. (4.6)
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At the very first stage, the initial model F ∗1 is equivalent with Eqn. 4.3.

We perform an extensive searching task over tens of elementary struc-

tural properties and choose the collection of 19 values, which are shown in

Table. 4.1, as the optimized molecular descriptor for liquid transport proper-

ties. All properties are available in RDkit 2019.09 python module, and their

evaluation process does not require additional simulations or theoretical cal-

culations. For the train and validation tasks, we collect 1,375 experimental

data for the liquid dynamic viscosity and the relative permittivity (the dielec-

tric constant) from the web version of DIPPR 801 database[87]. The two

decision-tree based ensemble models are implemented using Scikit-learn

0.22[66] and XGBoost 0.90 libraries.

We optimize the hyperparameters and evaluate the predictivity of two

models for two transport properties using the 5-fold cross-validation task.

The optimized RF model’s maximum tree depth is 8, while the GBM model

has 6 maximum nodes; both models have the same number of estimators,

100. Fig. 4.1 shows scatter plots between experimental values (x-axis) and

predicted values (y-axis). We also specify the Pearson correlation coefficient

in order to indicate the prediction accuracy of each model. The GBM model

shows better accuracy: R2 values are 0.91 for the dynamic viscosity and

0.81 for the dielectric constant in the logarithmic scale, respectively. while

the RF model shows R2 = 0.89 for the viscosity and 0.78 for the dielectric

constant, respectively.
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No. Property Unit
1 Molecular weight A. U.
2 Heavy atom weight A. U.
3 Maximum partial charge e
4 Minimum partial charge e
5 Fraction of sp3 carbons -
6 Labute accessible surface area Å

2

7 Topological polar surface area Å
2

8 Number of aliphatic carbocycles -
9 Number of aliphatic heterocycles -
10 Number of aromatic carbocycles -
11 Number of aromatic heterocycles -
12 Number of saturated carbocycles -
13 Number of saturated heterocycles -
14 Number of stereo centers -
15 Number of hydrogen bond acceptor -
16 Number of hydrogen bond donor -
17 Number of Lipinski hydrogen bond acceptor -
18 Number of Lipinski hydrogen bond donor -
19 Number of heteroatoms -

Table 4.1: Collection of 19 elementary structural properties for the descrip-
tion of a given organic molecule. All properties are available in RDKit
python module.
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Figure 4.1: Scatter plots for (a) the dynamic viscosity and (b) the dielec-
tric constant, respectively. ML predictions are obtained using 5-fold cross-
validation tasks over 1,375 data points, which are taken from the DIPPR 801
database.
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Chapter 5

Concluding Remarks

In the present study, we introduced a new approach for the solvation energy

prediction, which has a great potential to provide physicochemical insights

on the solvation process. The novelty of our neural network model is that

the model does not involve the perceptron networks for readout of encoded

features and estimation of the target property. Alternatively, we designed

the model such that it is possible to calculate pairwise atomic interactions

from inner products of atomistic feature vectors[50]. As a result, the model

produces the solvation free energy from the group-contribution based pre-

diction.

In Chapter 2, we reviewed our previous ML solvation model, Delfos.

The extensive calculations on 2495 experimental values[62] demonstrate

that Delfos exhibits excellent prediction accuracy, which is comparable with
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several well-known QM solvation models[1, 2] when the neural network is

trained with sufficiently varied chemical structures. Decline in performances

about 0.5 to 0.7 kcal/mol at the cluster CV tasks represents the accuracy for

a structurally new compound, suggesting the importance of preparation of

the ML databases even though Delfos still demonstrates comparable predic-

tions with some theoretical approaches such as MD with AMOEBA force

field[44] or DFT with pure COSMO[2]. The score matrix taken from the at-

tention mechanism gives us an interaction map between atoms and substruc-

ture; our model does provide not only a simple estimation of target property

but offers important pieces of information about which substructures play a

dominant role in solvation processes.

In Chapter 3, we introduced a new model for the solvation energy es-

timation and quantified the proposed model’s prediction performances for

6,493 experimental data points of solvation energies, which were taken from

the FreeSolv[14] and Solv@TUM database[37, 79]. We found a signif-

icant geometrical correlation between molecular feature vectors and pre-

dicted properties, which implies that the proposed model is actually work-

ing as we designed. The estimated prediction MUEs from K-fold CV are

0.19 kcal/mol for the BiLM encoder and 0.23 kcal/mol for the GCN model,

respectively.

The K-fold CV results from the scaffold-based split[43] showed the

prediction accuracy decreases by a factor of three in extreme extrapola-
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tion situations, but they still exhibit moderate performances, which were

0.60 kcal/mol. Moreover, we found that the solvent-non-specific structure

of the proposed model is appropriate for enlarging dataset size, that is to

say, experimental data points for a particular solvent is transferable to other

solvents; we conclude that this transferability is the reason for our model’s

outstanding predictivity[22].

Finally, we examined pairwise atomic interactions that are obtained from

the interaction map I and found a clear tendency between hydrophilic groups

and their contributions to the hydration free energy. However, the BiLM

model with the recurrent network has some faulty aspects in symmetric or

cyclic compounds, albeit it showed better predictions in terms of the total

solvation energy. This fact implies the sequential nature of the recurrent net-

work is inappropriate for constructing a group-contribution model, and an

explicit usage of the chemical bonding information is inevitable. Although

our results need an extra investigation from a quantitative point of view[10],

we believe that our model can provide detailed information on the solvation

mechanism, not only the predicted value of the target property.
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Appendix A

Analyzing Kinetic Trapping as a First-Order Dynamical Phase

Transition in the Ensemble of Stochastic Trajectories

A.1 Introduction

Self-assembly is the spontaneous process of disordered components to form

ordered patterns or structures. It is one of the most extensively studied re-

search area for complex systems[88–95]. Physical interactions between com-

ponents play a major role in the self-assembly process. Strength and speci-

ficity of the interactions induce the assembling process and determine their

assembled structure in the equilibrium condition. However, an obstacle due

to an energetic and/or entropic barrier makes it difficult for the system to

relax via the reversible dynamics, which hinders the formation of desired

assembly structure. The irreversible behavior in bond making and breaking

will hinder misbounded components to adjust their bonds easily[91, 96]. Oc-
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casionally the system will get trapped in the meta-stable glassy state instead

of its equilibrium structure. This behavior is usually called kinetic trapping.

There have been numerous works in computer simulation studies[97–104]

in order to avoid kinetic trapping and achieve effective assembled structure.

A molecular dynamics study of viral capsid growth reported the im-

portance of reversibility and interaction strength in self-assembly at sub-

microscopic scale[105]. In the work, the authors inspected the time evo-

lution of the cluster size distributions and argued excessive early growth

makes monomers trapped in the imperfect shell, resulting in a shortage of

free monomer. Analyzing the fluctuation-dissipation ratio (FDR) is another

useful strategy for analyzing reversibility[102]. The correlation-response re-

lation showed that the system is in short-time quasi-equilibrium states and

reversible in that time scale when the system shows a good assembly ki-

netics. A notable advance is demonstrained from the direct measurements

of bond making and breaking events[99, 103]. In Refs. 99 and 103, the au-

thors defined the flux and the traffic, which represents the net rate of bond

making and total events time scale, respectively. These two quantities give

us knowledge of the microscopic reversible behavior of bond-making and

breaking progress.

Since the self-assembly is an out-of-equilibrium process, studying its

behavior through equilibrium statistical mechanics is usually not valid. For

that reason, as we have mentioned earlier, a majority of preceding stud-
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ies have been based on manners of non-equilibrium statistical mechanics.

Meanwhile, recent progresses in the non-equilibrium statistical mechanics

framework introduced a useful method to handle out-of-equilibrium pro-

cesses by biasing trajectories[106–115]. The essential idea of the theory is

to implement the large deviation principle in trajectory space as the tra-

ditional framework of statistical mechanics has done in phase space. The

theory successfully proved that there exists dynamical symmetry break-

ing in several models of glass formers by both analytical and numerical

scheme[107, 108, 114]. Besides, this approach suggested there is practi-

cability of to manage thermodynamic properties like configuration, local

structure or energy via a purely dynamical method[116–118].

The self-assembly process has its analogy with the glass forming system

in that both systems usually prepared up via temperature quenching from the

disordered structure to ordered equilibrium or metastable structure. Focused

on this point, we make an attempt to implement the above-mentioned non-

equilibrium ensemble of trajectories in the self-assembly system, which has

never been tried before, to analyze and quantify the dynamics of the pro-

cess. Our goal is to understand the obstacle due to the restricted dynamics

in the self-assembly process as a dynamical symmetry breaking in trajec-

tory space. We expect our work will give an entirely new perspective to un-

derstand the kinetic trapping and the reversible dynamics in self-assembly

processes.
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A.2 Theory

In this study, we use the activity of a given trajectory as a measurable ob-

servable, which is projecting the reversibility of the self-assembling system.

Consider a stochastic trajectory X of classical and discrete Markov process;

we can regard the trajectory as a set of time-evolving configurations (x, t):

X = {(xK , tK), · · · , (x0, t0)}. The probability of finding a single tra-

jectory when observing a given system is described as successive products

of transition probability p(xi+1, ti+1|xi, ti) from the current configuration

(xi, ti) to next one (xi+1, ti+1) and the population of its starting configura-

tion p(x0, t0)[119, 120]:

P [X] =p(xK , tK |xK−1, tK−1)

· · · p(x1, t1|x0, t0)p(x0, t0). (A.1)

We assume that the dynamics of the system is governed by the master equa-

tion ∂t |p(t)〉 = W |p(t)〉 and since the model is a discrete process, the

master operator is defined as a matrix form:

W =
∑
x′ 6=x

w(x′|x)
∣∣x′〉 〈x| −∑

x

r(x) |x〉 〈x| . (A.2)

Here, w(x′|x) in the off-diagonal elements corresponds to the transition

rate from configuration x to x′, and the diagonal term, r(x) denotes the
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rate of escape from current configuration x, respectively. With transition

rates defined at the master equation, the transition probability of each step

will be w(xi|xi−1)e−(ti−ti−1)r(xi−1). Therefore, the probability distribution

functional of trajectory P [X] is given as follows[112]:

P [X] =e−(τ−tK)r(xK)p(x0)

×
K∏
i=1

w(xi|xi−1)e−(ti−ti−1)r(xi−1). (A.3)

There are two ways in measuring the length of given trajectory: the total

trajectory time (or observation time) τ and the number of configuration

changes during the trajectory, generally we call this activity, K. In a more

general approach, one can consider a time-extensive physical observable O

over the trajectory and its increment o. Then O will be incremented each

configuration change[107, 112]:

O[X] =

K∑
i=1

o(xi−1,xi). (A.4)

The observable O surely becomes activity K when the incremental value is

o = 1−δxi−1,x, that is 1, when the configuration changes, otherwise 0. If the

system had made its final Kth configuration jump at time tK and the final

configuration xK survives until the observation time τ , the first exponential

term remains. Or we can simply stop measuring the time evolution of the
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system when the final configuration jump happened. In this case, the first

exponential term will be not be needed.

There exist similar relations between extensive properties in the thermo-

dynamic ensemble: the particle number N and the volume V [110, 112]. In

the typical experimental scenario, we measure some physical observables in

fixed trajectory time τ . However, occasionally, it is much more convenient

to fix the activity of trajectory K when simulate systems exhibit very slow

dynamics[121].

A.3 Lattice Gas Model

We use an Ising lattice-gas in the two-dimensional square lattice as a model

of self-assembly process. More than two particles cannot occupy the same

lattice position, and a particle only interacts with the other particles in its

nearest neighbor lattice sites. The interaction energy of the system is defined

as follows:

H =
ε

2

∑
p

np. (A.5)

Here, ε denotes the strength of bonds between the particles, p is the index of

the nearest neighbor, and np is the occupancy (0 or 1) of the site p, respec-

tively. The model consists of N = 2048 particles on the two-dimensional

square lattice of V = 144 × 144, and the number density is ρ ∼ 0.10, ac-

cordingly. From the theoretical perspective, the system exhibits liquid-gas
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phase coexistence when sinh4(ε/2Tc) > [1 − (2ρ − 1)8]−1. In the equi-

librium condition below the critical temperature, the assembly yield should

increase monotonically, and particles also ought to form a single large clus-

ter. But kinetic trapping due to the lack of reversibility in bond-making and

breaking processes makes it hard for the system to relax into equilibrium

configurations. As a result, below a specific temperature point, the system

is trapped in metastable states, which are composed of relatively small clus-

ters, and the assembly yield starts to decrease drastically. This phase separat-

ing behavior of the Ising lattice gas is in analogy with general self-assembly

processes[99].

We perform an extensive numerical simulation to obtain assemble tra-

jectories via a stochastic Monte Carlo scheme. To achieve this, we use the

classical kinetic Monte Carlo (kMC) method[121]. Given the current phase-

space position x of the system, the time interval to the next jump ∆t can be

calculated along the probability px(∆t) ∝ exp[−r(x)∆t], and a transition

x→ x′ is selected from all possible moves with transition ratew(x′|x). The

algorithm is appropriate for sampling trajectories with fixed activity since

kMC is a rejection-free process, and each Monte Carlo step corresponds to

a single jump between configurations[112].

We calculate the temperature dependence of the assembly yield n4,

which denotes the fraction of particles that have exactly four occupied near-

est neighbors, and the intensive trajectory time, τ/K. Since our simula-
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tion model is a typical model of the Ising lattice gas, the results shown

in Fig. A.1(a) reveal archetypal non-monotonic behavior as expected from

the other studies[101–103, 121]. Even if at thermodynamic equilibrium the

structure in the very low temperature range should form a single, large clus-

ter, kinetic trapping disrupts the assembling process and the system breaks

up into many, relatively small clusters. Consequentially, the system shows

the maximum assembly efficiency near the T ∼ 0.3, and it drops towards

to decreasing temperature. The intensive trajectory time in Fig. A.1 shows a

comparable temperature dependency with assembly yield.

For more detailed examination, the time evolution of the assembly yield

and the intensive trajectory time are plotted in Fig. A.1(c). The relation be-

tween two properties gives a more clear idea of trapping phenomena at lo-

cal minima. Both the assembly yield (Fig. A.1(a)) and the trajectory time

(Fig. A.1(b)) exhibit the local minima followed by a long plateau behav-

ior. After enough time has passed, eventually the plateau in the assembly

yield ends first; the trajectory time follows. This mechanism makes a kink

behavior in n4 as shown in the Fig. A.1(c). At the lower temperature regime

exhibits kinetic trapping, the system trapped in the point near τ/K ∼ 15

and n4 ∼ 8 × 10−3, and the graph sharply shoots up when the plateau in

the assembly yield disappears. This tendency gradually vanishes as the tem-

perature increases, and the system just bypasses that trapping region and

directly into assembling in the temperature range where good assemble is
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Figure A.1: Time evolution plots of (a) the assembly yield, (b) intensive
trajectory length and (c) their relations (c) in the Ising lattice gas. Colors
of lines represent the temperature of the system (from T = 0.10 to 0.30).
In the temperature regime T < 0.15, where the kinetic trapping is strongly
happens, Plateaux in the structure and the dynamics cause a kink nearby
τK/ ∼ 15 and n4 ∼ 8× 10−3.

taking place in the end.

A.4 Mathematical Model

To get more advanced insight, we propose a minimal model that exhibits

kinetic trapping behavior as like as the lattice gas model. Grant and White-

lam already presented the prototype of our model to illustrate the non-

monotonical growth in self-assembly processes[96, 99]. Essentially the sys-

tem has three different energy levels. The unbound state represents non-
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bonded free particles and has the highest energy (E = 0), the misbound

states of intermediate energy value (E = −εmis) and the optimally bound

state (E = −εopt) on the ground level; it is obvious that εopt > εmis. Passing

through the unbound state is necessary if the system intends to transit from

metastable misbound states to the stable bound state. Additionally, there is

degeneracy Ωmis in the misbound state to achieve an entropic barrier.

The transition rate matrix (master operator) of the original model is de-

scribed as 3 × 3 matrix and the degeneracy is simply multiplied by transi-

tion and escape rates of unbound and misbound states[99]. We modify the

original model to accomplish the ’rattling’ dynamics between degenerated

misbound states. For example, the master operator of the Ωmis = 2 case is

expressed as 4× 4 matrix[112, 120]:

W =



−1− γ 1 1 0

1 −1− γ 1 0

γ γ −3 ν

0 0 1 −ν


. (A.6)

Each state can be described as a vector: misbound states(|1〉 , · · · , |Ωmis〉),

unbound state (|Ωmis + 1〉) and bound state (|Ωmis + 2〉), respectively. Based

on the detailed balance condition, transition rates from misbound to un-

bound is γ = exp(−εmis/T ) and bound to unbound is ν = exp(−εopt/T ),
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respectively. Rates toward to opposite directions are simply 1 by traditional

Metropolis acceptance criteria. Notwithstanding our modified model has

complicated dynamics more than the original one, it is obvious that the

probability of the bound state, Pbound = 〈Ωmis + 2|p(t)〉 will have exactly

the same equilibrium value ν/(1 + ν + Ωmisγ) when t→∞.

We perform numerical calculations for our minimal model using matrix

algebra to confirm that whether or not the model successfully reproduces

results from the Ising lattice gas. The time-evolution of a system can be

described as |p(t)〉 = exp(tW) |p(0)〉 and mean value of certain observ-

able O at the time t can be calculated from 〈O(t)〉 = 〈e|O |p(t)〉 where

|e〉 =
∑

x |x〉 is the projection state[108, 120]. We let binding energies of

misbound and bound states are εmis = ε and εopt = 2ε, respectively. Results

from numerical matrix calculations are shown in Fig. A.3. Outcomes well

correspond with the results obtained from the Ising lattice gas, especially as-

sembly yield versus intensive trajectory time graph demonstrates the same

kink in the kinetic trapping regime.

A.5 Dynamical Phase Transitions

In previous sections, we demonstrated there are kink behaviors between

structure (assembly yield, n4 or PBound) and dynamics (step time, τ/K)

in both numerical models during the kinetic trapping occur. Focused on this
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Figure A.2: A minimal three-state model of self-assembly. There are two
misbound states (M), which have the same intermediate energy, can transit
without any energy barrier. The transition rate from bound state (B, has
the lowest energy) to unbound state (U, has the highest energy) is ν, from
misbound states to unbound state is γ and rates to reverse directions are 1
due to the Metropolis criteria; jumping between misbound and bound states
are impossible.

fact, we suggest the possible existence of a crossover between two different

dynamical phases between in self-assembly processes. Recent advances in

the dynamic ensemble theory give us a crucial insight by introducing a vir-

tual field that biases trajectory length, which as an conjugate variable of the

ensemble of trajectories[107–114].

From the definition of observation probability of a given trajectory as

expressed in eqn (A.3), we can calculate the PDF of the τ in K-fixed trajec-

tories

P (τ |K) =

∫
DXK δ(τ − τ̂ [XK ])P [XK ], (A.7)

and its corresponding partition function with a conjugate field x of trajectory
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Figure A.3: Time evolution of (a) the assembly yield, (b) total trajectory
time per activity (b) and their relations (c) of the three-state minimal model.
The structural plateau and the dynamical plateau create a kink in the kinetic
trapping regime. These results are consistent with the more realistic model.
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time τ [107, 112]:

Z(x,K) =

∫
dτe−xτP (τ |K). (A.8)

We call these ensembles as (τ,K) and (x,K) ensemble, named after their

fixed variables, respectively. Non-equilibrium free energies of two cases are

defined as: Ψ(τ,K) = lnP (τ |K) and Φ(x,K) = lnZ(x,K). If both quan-

tities have the large deviation limit Ψ(τ,K) ∼ Kψ(τ) and Φ(x,K) ∼

Kφ(x), ψ and φ are convex conjugate to each other by Legendre-Fenchel

transform[115]. Finally we can describe the physical meaning of x from

Legendre duality:

∂Ψ

∂τ
≡ x(τ,K). (A.9)

One can explain x as an external field that biasing trajectory time, like what

the chemical potential µ and the pressure P does in traditional thermody-

namic ensemble. For Markov processes, we can get the partition sum of

trajectories using matrix product

Z(x,K) = 〈e|TK(x) |p(0)〉 , (A.10)

with off-diagonal transfer operator obtained from Laplace transform of the
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probability matrix of the system[109, 112]:

T(x) =
∑
x′=x

w(x′|x)

x+ r(x)

∣∣x′〉 〈x| . (A.11)

If the system is in the thermodynamic limit, whenK is large enough in other

words, we can directly obtain φ(x) from the largest eigenvalue of the oper-

ator T(x)[112, 115]. Many works analytically or numerically demonstrated

that the nonequilibrium ensemble exhibits dynamical first-order phase tran-

sitions in several abstract or realistic (atomistic) systems which describing

glassy dynamics[109, 111, 114]. For example, the kinetically constrained

model shows criticality at T = 0; therefore, there is always a phase coexis-

tence between low- (inactive) and high-activity (active) phases at any finite

temperature[107, 108].

The trajectory time per kMC step plays a relevant role in the assembling

process as we discussed in previous sections. Now our purpose is to con-

trol assemble dynamics of Ising lattice gas via biasing step time using the

(x,K) ensemble. We use the transition path sampling (TPS) scheme[122]

for sample ensembles of assembling trajectories in various T and x ranges.

The dynamical free energy, Φ(x,K) is calculated from the multistate Ben-

net acceptance ratio (MBAR)[123, 124]. As shown in the Fig. A.4 (b), as in

other model systems, our results clearly exhibit an active-inactive dynami-

cal phase transition when the field x is applied for total lengths (or time) of
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trajectories.

We also calculate the same quantity for the minimal model of matrix

products in Fig. A.4 (a). The results for the infinite-activity limit is obtained

from numerically diagonalized eigenvalue of T(x):

T(x) =



0 1
x+γ+1

1
x+3 0

1
x+γ+1 0 1

x+3 0

γ
x+γ+1

γ
x+γ+1 0 ν

x+ν

0 0 1
x+3 0


. (A.12)

A noteworthy feature is that first-order dynamical phase coexistences be-

come apparent as the temperature decreases in both two models. Namely, it

seems there is a finite critical temperature Tc > 0 exists, and when compared

with previous results, the criticality is located in the kinetic trapping regime.

This phenomenon is observed both in the Ising lattice gas and the minimal

model and is the distinguishable feature when compared to results from the

other models: the KCM or the TLG model[107, 108, 125]. Thus, we argue

that there are dynamical first-order phase transitions in self-assembly sys-

tems, and one can understand the kinetic trapping behavior as a consequence

of the phase separation in the ensemble of trajectories.

80



Figure A.4: (a) Plot of the intensive trajectory time τ/K of the minimal
model from numerically diagonalized transfer matrix, T(x). The tempera-
ture range is from T/ε = 0.15 (blue line) to 0.30 (red line). (b) The same
quantity in the Ising lattice gas. Shooting TPS algorithm is applied for sam-
pling ensemble of trajectories. Singularity at low-temperature demonstrates
there is active-inactive coexistence near the x = 0.
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A.6 Conclusion

Adopting the activity concept as a projection of the reversibility of the

self-assembly process, we can easily understand the relation between struc-

tural relaxations and dynamical properties due to kinetic trapping in a self-

assemble system. Using Monte Carlo simulation and numerical calculation,

we discovered there are two dominant factors in trapping behavior in the

local minimum. When the temperature is low enough to exhibit kinetic trap-

ping, both structure and activity display plateau behaviors at a similar time

scale during assembly progress. Then the plateau due to structural trap dis-

appears first; escaping from the dynamical trap then follows. The minimal

model that we proposed successfully reproduces the results taken from both

the thermodynamic and the dynamic behavior of the relatively realistic lat-

tice gas model.

With the dynamic ensemble of trajectories approach using large devia-

tion formalism[109, 112], it seems that there is a a finite critical temperature

that exhibits a dynamical active-inactive first-order phase transition below

the temperature. In contrast, for the KCM of glass formers[107, 108], such

phase transitions always appear for T > 0. If the dynamic critical temper-

ature indeed exists, the kinetic trapping behavior might be described as an

active-inactive crossover in assemble trajectories.

As a perspective of the self-assembly process from disordered struc-
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ture to ordered equilibrium structure can be regarded as a feature of the

quenched disorder, we anticipate our mathematical model would be helpful

for understanding dynamical and structural properties of many other models

handling quenched system; glass forming fluids for example[109, 111, 114].

Certainly, it also might be a useful topic when applying for more realistic

models of self-assembly processes.
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Figure A.5: Estimated dynamical phase diagram of (left) the kinetically con-
strained model and (right) our model of the self-assembly processes. A dis-
tinguishable feature of the our model is in comparison with the KCMs is
there is a finite critical temperature Tc > 0 which exhibits a dynamic phase
coexistence below the Tc.
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Appendix B

Reaction-Path Thermodynamics of the Michaelis-Menten

Kinetics

B.1 Introduction

Michaelis-Menten kinetics[126, 127] is one of the most fundamental mech-

anism for describing catalytic or enzymatic reactions and it presents cru-

cial insights into the understanding of many biochemical or physical pro-

cesses in living systems[128]: enzyme reactions in the living cell, DNA

hybridization[68], gene regulation[129, 130], or molecular motors[131, 132].

Over a hundred years since its birth, there have been numerous theoretical

and experimental advances for studying the enzymatic mechanism in var-

ious systems and methods, especially spectroscopic quantifications at the

single-molecule level[133, 134]. Such a series of experimental successes in

the microscopic scale promoted studies in theoretical manners[130, 135–
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141]. A major topic in theoretical approaches is the timescale of enzy-

matic turnover[142, 143], which means time duration until a single reac-

tion ends. Many theoretical approaches have been developed to calculate

turnover time and to quantify its fluctuation behavior: from the solution

of the linear differential equation[134, 142, 143] in the ideal scenario to

reaction time distribution (RTD) methods in disordered systems with non-

Poissonian kinetics[135, 137, 138].

E + S
kb−−⇀↽−−
ku

ES
kc−−→ E + P (B.1)

The principal idea of the Michaelis-Menten mechanism is there are two

stages in the enzymatic reaction process[126, 127]: (i) the reversible binding-

unbinding reactions between the substrate (S) and the enzyme (E) molecule,

E + S −−⇀↽−− ES and (ii) the irreversible catalytic reaction from the bound

enzyme-substrate complex (ES) to the product (P), ES −−→ E + P. We

need to pay attention to the unbinding (disassociation) reaction at the stage

(i) because the unbinding makes the process return to its initial state. Thus,

essentially, the Michaelis-Menten mechanism can be interpreted as a re-

newal process[135, 140], and ‘events’ of unbinding play an essential role

for the entire process. For example, chemical intuition tells that the increase

of unbinding rate ku has to result in the decrease of turnover rate, which is

true at least in ideal models which exhibit Poisson kinetics. However, para-
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doxically, in some cases where the waiting time distribution of catalysis is

not a single exponential form, slower disassociation may cause the faster

turnover[139, 140]. Such nonmonotonic dependencies between unbinding

and turnover suggest that we can classify enzymatic processes into two dif-

ferent dynamical phases, the inhibitory and excitatory unbinding.

The importance of the unbinding as we mentioned before signifies the

necessity of quantifying unbinding events in enzymatic reaction processes.

In the present work, we study several kinetic aspects of the Michaelis-Menten

mechanism in the single molecule level in the framework of the the nonequi-

librium statistical mechanics and quantify the statistical feature of unbinding

events. Recent statistical mechanical studies present a notable perspective

for handling systems in out-of-equilibrium. The core concept is a stochastic

trajectory (or path) can be thought as a microstate in the statistical ensemble

theory[113]. This idea and a mathematical formulation named the large de-

viation principle[115] leads to nonequilibrium ensemble theory. The main

purpose of the theory is to draw out-of-equilibrium or dynamical properties

of the system from theoretical or computer simulation methods. Further-

more, the nonequilibrium ensemble also successfully described the hetero-

geneous dynamical behavior in many systems, e.g., glass forming liquids[114,

117], kinetic networks[111, 144], active matters[145–147], or protein fold-

ing pathways[148] as an order-disorder symmetry breaking phenomenon

between metastable states when one uses ‘dynamical events’ as an order
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parameter. Based on preceding studies, we believe the nonequilibrium en-

semble theory will be a powerful tool for quantifying enzyme kinetics since

most chemical reactions, including enzymatic processes, are also out-of-

equilibrium processes.

This chapter is outlined as follows: In the second section, we suggest a

concept of a reaction-path entropy, construct the statistical thermodynamics

of enzymatic reaction paths, and calculate several major reaction timescales

of the single-enzyme and single-substrate model via the large deviations

principle and the nonequilibrium ensemble theory. In the third section, we

quantify the number of unbinding events K when we observe the system at

fixed timescale and evaluate the heterogeneous kinetics of the same model

as a dynamic order-disorder in unbinding rates. In the last section, we sum-

marize and conclude our results.

B.2 Reaction Path Thermodynamics

We use the single-molecule variant of the chemical master equation (CME)

of the Michaelis-Menten equation. The stochastic equation considers finite

numbers of molecules in a discrete manner, instead of their concentrations

in a continuous manner and each combination of quantities corresponds to a

different state of the system. Due to the law of conservation of mass, we can

assume that the system contains N = nE + nES of enzyme-type molecules
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and M = nS + nE + nP of ligand-type molecules[136, 142]. The master

equation of the system is as follows:

ṗ(nS, nES, t) =− [wbnS(N − nES) + wunES + wcnES]p(nS, nES, t)

+ wb(nS + 1)(N − nES + 1)p(nS + 1, nES − 1, t)

+ wu(nES + 1)p(nS − 1, nES + 1, t)

+ wc(nES + 1)p(nS, nES + 1, t).

(B.2)

Here, wb = kb/V
2
u , wu = ku/Vu, and wc = kc/Vu are the reaction rate

constants per unit volume Vu and subscripts b, u, and c denote the bind-

ing, the unbinding, and the catalysis event, respectively. Since the model

considers a discrete number of components, we use probabilities of states

p(nS, nES, t), instead of continuous concentrations. If the system contains

only one enzyme and substrate molecules, N = 1 and M = 1 in other

words, the equation B.2 can be reduced to the following form:

ṗS(t) = wupES(t)− wbpS(t), (B.3a)

ṗES(t) = wbpS(t)− (wu + wc)pES(t), (B.3b)

ṗP(t) = wcpES(t). (B.3c)

We omit the time evolution of the probability of enzyme E since it has the

relation with ES, pE(t) = 1−pES(t). If one considers a single reaction path
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E + S→ · · · → E + P of the equation B.3 which has K unbinding events,

then one can find the given path with the probability ρ[{path}][113, 119]:

ρ[{path}] = wbe
−wb∆t0

(
K∏
i=1

wue
−(wu+wc)∆t′iwbe

−wb∆ti

)

× wce−(wu+wc)∆t′0 .

(B.4)

Here, time intervals ∆ti and ∆t′i denote lifetimes of S and ES at individual

reaction stage, respectively. If we define the ‘total’ lifetime of each compo-

nent as the sum of individual lifetimes,
∑K

i=0 ∆ti = tS and
∑K

i=0 ∆t′i =

tES, then we can simplify the equation B.4 to

ρ[{path}] = wbwc(wuwb)Ke−wbtSe−(wb+wu)tES , (B.5)

which only depends on three nonequilibrium observables: the number of

unbinding events (K), the total lifetime of the substrate molecule (tS) and

the enzyme-substrate complex (tES), respectively. That is to say; we can

find a single reaction path with identical probability if three observables K,

tS, and tES are conserved. Hence, similar to N , V , and E in the canonical

equilibrium ensemble case, the principle of equal a priori probabilities is

valid, and it leads to the definition of the nonequilibrium microcanonical
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ensemble, described by the following path-dependent reaction entropy.

S ≡ −
∑
{path}

ρ[{path}] ln ρ[{path}] = − ln ρ[{path}] (B.6)

The microscopic number of all possible reaction paths (similar to microstates

in equilibrium statistical mechanics) Ω = 1/ρ depends on combinations of

∆ti and ∆t′i[149]:

Ω(K, tES, tS) =

∫
∑

∆ti=tS

d∆tK+1

∫
∑

∆t′i=tES

d∆t′K+1

=
K + 1

K!K!
tKESt

K
S .

(B.7)

In the equation B.7, each integral denotes the area of the (K+1)-dimension

hyper-sphere. Accordingly, we can evaluate the entropy of reaction paths

in the (K, tES, tS)-fixed ensemble, S(K, tES, tS) = ln Ω(K, tES, tS). Now

quantifying the MM kinetics with the language of statistical thermodynam-

ics is feasible by cause of the definition of the reaction path entropy and the

large deviations principle[115]. The Gärtner-Ellis theorem presents partition

functions of the following nonequilibrium canonical (K, tES, µ) and grand

canonical (K, ν, µ) ensembles

Z(K, tES, µ) =

∫ ∞
0

dtSe
−µtSΩ(K, tES, tS), (B.8a)

Q(K, ν, µ) =

∫ ∞
0

dtESe
−νtESZ(K, tES, µ), (B.8b)
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and their free energies spontaneously with certain conjugate fields µ and ν,

which biases tS and tES, respectively,

F(K, tES, µ) = K lnµ−K ln tES +K lnK −K, (B.9a)

G(K, ν, µ) = K ln ν +K lnµ. (B.9b)

Equations B.5 and B.8 suggest that µ = wb and ν = wu+wc, which in fact

means that escaping rates and lifetimes are mutually conjugate variables.

Therefore, the fundamental relations of the nonequilibrium thermodynam-

ics, F = µtS−S and G = νtES−F are valid. From equations B.7 and B.8,

conditional probability distributions of tS and tES in the K-fixed ensemble

are Poissonian as follows:

ρ(tS|K) =
µK+1tKS
K!

e−µtS , (B.10a)

ρ(tES|K) =
νK+1tKES

K!
e−νtES . (B.10b)

Note that the two lifetimes tS and tES are mutually independent. Since

the enzymatic turnover time, tt, is the sum of tS and tES, its conditional

probability distribution ρ(tt|K) takes a convolution form of ρ(tS|K) and

ρ(tES|K). The convolution is quite complicated for calculation due to tK
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term, but it can be easily obtained in the Laplace domain:

ρ(xt|K) =

[
µν

(µ+ xt)(ν + xt)

]K+1

. (B.11)

With Bayes’ theorem and considerations of the marginal probability of un-

binding events is products of transition probabilities ρ(K) = (wcw
K
u )/(wu+

wc)
K+1 by its definition[113, 119], Eqns. B.10 and B.11 finally give marginal

probability distributions of liftimes of S, ES, and turnover time

ρ(tS) = (wbwc/(wu + wc)) exp(−wbwctS/(wu + wc)), (B.12a)

ρ(tES) = wc exp(−wctES), (B.12b)

ρ(tt) = αβ(e−αtt − e−βtt)/(β − α), (B.12c)

where two constants α and β in the turnover time distribution are:

α =
λ+

√
λ2 − 4wbwc

2
, (B.13a)

β =
λ−

√
λ2 − 4wbwc

2
. (B.13b)

In the avobe equation, λ = wb + wu + wc. The probability distribution

of turnover time we obtained in the equation B.12 is identical with results

from the solution of linear differential equations[134, 142, 143]. We finally

obtain nonequilibrium ensemble average of the total lifetimes of S, ES, and
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the turnover time:

〈tS〉 =
wu + wc
wbwc

, (B.14a)

〈tES〉 =
1

wc
, (B.14b)

〈tt〉 =
wb + wu + wc

wbwc
. (B.14c)

B.3 Fixed Observation Time

In a certain theoretical or experimental scenario, it might be more conve-

nient to sample reaction paths with arbitrary observation time τ [150, 151],

instead of the fixed number of enzyme-substrate unbinding events K. Since

the kinetics of the system is governed by the master equation B.3, the time

evolution of the system can be described as |p(τ)〉 = U(τ) |p(0)〉 with the

propagator U(τ) = exp(τW). As we fix the observation time, we have to

consider not only ‘completed’ reaction paths but also sample ‘incompleted’

reaction paths which remain in |S〉 or |ES〉 at the observation time τ . Be-

cause the propagator can be decomposed into the operators of conditional

probabilities of unbinding events K as U(τ) =
∑

K P(K|τ), the condi-

tional probability of K at τ is P (K|τ) = 〈e|P(K|τ) |S〉 where |e〉 = |S〉+

|ES〉 + |P〉 is the projection state. For completed reaction paths (E + S →

· · · → E + P) where the final state is |P〉, the conditional probability of K
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at fixed τ is

〈P|P(K|τ) |S〉 =

∫ τ

0
dttρ(tt,K), (B.15)

where ρ(tt,K) = ρ(tt|K)ρ(K) is the joint probability distribution of tt and

K because 〈P|P(K|τ) |S〉 contains all the possible reaction paths that have

K unbinding events and turnover times smaller than τ .

For incompleted reaction paths where observation states are |E〉 or |ES〉,

we must consider the value of K at time τ , not tt due to the reaction is not

terminated yet at the observation time. It means τ = tS + tES < tt and we

have to consider the reaction path entropies of both cases, E + S → · · · →

E + S and E + S→ · · · → ES. First, we calculate ΩS, which describes the

microscopic number of paths which end at |S〉 and (K, tS, tES):

ΩS(K, tS, tES) =

√
K

(K − 1)!

√
K + 1

K!
tK−1
S tKES. (B.16)

We also have to consider reaction paths which end at |ES〉:

ΩES(K, tS, tES) =
K + 1

K!K!
tKS t

K
ES. (B.17)

Since ΩES is identical to Ω and ΩS also has a similar form with Ω, we

suppose that the Bayesian probability of (τ,K) for incompleted paths and

(tt,K) for completed paths have a nearly same analytical shape when K is

large enough. Therefore, we can approximate |S〉- and |ES〉-contributions
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of the P (K|τ):

〈S|P(K|τ) |S〉+ 〈ES|P(K|τ) |S〉 ' ρ(tt = τ,K)

ρ(tt = τ)

∫ ∞
τ

dttρ(tt). (B.18)

Here, the overall shape of the probability distribution comes from ρ(tt =

τ,K) and ρ(tt > τ)/ρ(tt = τ) is a normalization factor. Equations B.15

and B.18 present an approximate form of the conditional probability of the

number of unbinding events at fixed observation time:

P (K|τ) ' ρ(tt < τ,K) + ρ(tt = τ,K)
ρ(tt < τ)

ρ(tt = τ)
. (B.19)

We plot equation B.15, B.18, and B.19 for wb = 0.5, wu = 1.0, and

wc = 0.025 case in the Figure B.1-(a). The equation B.15 has the maxi-

mum value at K = 0 and shows almost the same decay behavior with ρ(K)

in the early stage; it drastically decreases where K is near the peak of Eqn.

B.18. This tendency results in a bimodal shape in their sum. The bimodal

behavior of P (K|τ) signifies that we can divide the probability distribution

into two different paths[115]: the unbinding-rich one and the unbinding-

poor one. Recent studies showed that there exist more than two dynamical

phases in systems which exhibit heterogeneous or glassy dynamics[106–

108, 111, 112, 114, 117, 137, 144–148]. In the same way, the Michaelis-

Menten mechanism shows heterogeneous kinetics in its unbinding events
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and results in the inactive-phase of ‘reaction-completed’ paths and active-

phase of ‘reaction-incompleted’ paths.

Again, we use the formalism of the large deviation principle to evaluate

the moment-generating function ofK with corresponding virtual, conjugate

variable s[106, 112, 115]:

Z(s, τ) =
∞∑
K=0

e−sKP (K|τ). (B.20)

The n-th derivative of Z(s, τ) gives the n-th moment of unbinding events

at fixed observation time τ , 〈Kn〉τ = (−1)nZ−1∂sZ(s, τ). One can also

calculate the cumulants from the cumulant generating function (or intensive

free energy), φ(s, τ) = lnZ(s, τ)/τ . The dynamic susceptibility, χk(s, τ)

is the second derivative of φ(s, τ) and denotes the amount of fluctuations of

unbinding rates per observation time, k = K/τ . In the Fig. B.2-(a), we plot

the observation time dependence of χk(s, τ). The dynamic susceptibility

has its maximum value at the point s = s∗, which separates the reaction

paths into two different dynamical phases, the active (s < s∗) one and the

inactive (s > s∗) one. We must note that the conjugate variable s is virtual

and it is barely known about its real physical meaning. The only thing we

know for sure is that we have to regard as s is zero for when one samples

the system’s reaction paths in ordinary conditions. Therefore, now what we

have to do is finding the phase-coexistence timescale τ∗ where the s∗(τ)
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becomes zero.

We need to know the general analytical behavior of s∗(τ) before ob-

taining τ∗. As shown in Fig. B.2-(b), s∗(τ) shows a power-law-like decay

over observation time and in the large deviation limit τ � 1, the value of

s∗ converges to a particular value, sc. We take a different mathematical ap-

proach in order to evaluate sc; one can obtain identical results with equation

B.19 from algebraic calculations[106, 107, 109, 112]. First, we start from

the definition of the master operator W:

W =


−wb wu 0

wb −(wu + wc) 0

0 wc 0

 . (B.21)

What we have to do is to decompose the master operator into two matrices,

W = Wm + Wr. Here, Wm is the operator of monitored reactions and

the other operator, Wr denotes the rest of transitions. Since we count the

number of unbinding reactions, we let Wm ≡ wu |1〉 〈2|. The propagator

U(τ) = exp(τW) is an exponential form of the master operator so we can

decompose it as

P(K|τ) =

∞∑
n=0

τK+n

(K + n)!
O(K,n), (B.22)

where O(K,n) isK-th order term of Wm from polynomial (Wm+Wr)
K+n
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and can be calculated from the recurrence formula, O(K,n) = WmO(K −

1, n)+WrO(K,n−1). We plot Eqns. B.19 and B.22 for cutoff nmax = 4096

in Fig. B.1-(b) in order to compare their precision. As we approximate ΩS '

Ω, we believe Eqn. B.22 shows more accurate results; the |S〉-contribution

in Eqn. B.19 causes a minor error in the active phase due to approximated

ΩS.

The moment generating function Z(s, τ) and cumulant generating func-

tion φ(s, τ) can be calculated from matrix product states:

Z(s, τ) = 〈e| exp(τe−sWm + τWr) |S〉 . (B.23)

In the ‘thermodynamic’ limit where τ is long enough, the largest eigenvalue

of the matrix Ws = e−sWm + Wr gives the large deviation function of

P (K|τ), φ(s) = limτ→∞ φ(s, τ). As the system has two different dynami-

cal phases, φ(s) shows a singularity at sc

φ(s) =


0 s > sc

−λ+
√
λ2−4γ(s)

2 s ≤ sc

(B.24)

where γ(s) = wbwu+wbwc−wbwue−s. The second part of equation B.24 is

smaller than zero when s is greater than sc, which makes sc to the boundary

between active and inactive phases. The value of s∗(τ), as we treated before,
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always converges to the negative value sc = − ln(1 + wc/wu) from γ(s =

sc) = 0.

φ(s, τ) and s∗(τ) for finite τ are much more complicated. In fact, Eqn.

B.23 can be evaluated from an analytical manner, however, the resulting ex-

pression is extremely abstruse for handling. Instead, we perform numerical

calculations, and also we consider both τ∗ and tt are functions of three rate

constants: wb, wu, and wc. Then, the chain rule gives a relation between τ∗

and 〈tt〉:

dτ∗

d 〈tt〉
=
∂τ∗

∂wb

∂wb
∂ 〈tt〉

+
∂τ∗

∂wu

∂wu
∂ 〈tt〉

+
∂τ∗

∂wc

∂wc
∂ 〈tt〉

= −wbwc
(

wb
wu + wc

∂τ∗

∂wb
− ∂τ∗

∂wu
+

wc
wb + wu

∂τ∗

∂wc

) (B.25)

We plot mean values of turnover times, numerically calculate transition

times at various binding, unbinding and catalysis rates in the Fig. B.3. We

find that there is strong linear correlations between τ∗ and 〈tt〉. Each data

set represents the case where two of the three rate constants are fixed, and

the remainder one varies; the linear relation, dτ∗/d 〈tt〉 ∼ 1.3 becomes

apparent when wu � wc. Since we let the catalysis stage is irreversible,

once a single reaction is over, the number of unbinding events of the given

path does not increase any more. It results in the population of the inactive

phase is continually increasing as observation time increases and for the ac-

tive phase, vice versa. In the thermodynamic limit, when the time is passed
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long enough in other words, only inactive paths are survived and P (K|τ)

converges to ρ(K), which is we presented in the previous section. So we

can also calculate the value of sc in the large deviation limit from the con-

vergence of Eqn. B.20,
∑∞

K=0 e
−sKρ(K). Such preference for the inactive

phase in a long observation time scale of the system would causes active-

inactive phase transition at τ∗ if the reaction process had started from the

active phase at short observation time scale. Understandably, the logic can

be different depending on the relative rate constants; the phase transition

will not be happening if the rate of catalysis, wc is sufficiently greater than

the rate of unbinding, wu. In that scenario, s∗(τ) always has negative value

even at the very short observation time τ , and the system stays in the inac-

tive phase from beginning till the end of reactions. This principle provides a

lower boundary in Fig. (reffig:timescale.

B.4 Conclusions

In the present study, we demonstrate that a series of mathematical formalisms

of the statistical thermodynamics in equilibrium systems are also suitable

for treating systems in out-of-equilibrium, especially single-molecule enzy-

matic reactions under the Poissonian Michaelis-Menten mechanism. Three

physical observables in nonequilibrium manner -the number of unbinding

events, total lifetimes of substrate and enzyme-substrate complex- lead us
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Figure B.1: (a) Conditional probability distribution P (K|τ), calculated us-
ing equation B.19 and inverse Laplace transform. The data obtained under
the condition wb = 0.5, wu = 1.0, wc = 0.025, and τ = 128. Red tri-
angles of completed paths are maldistributed in inactive state at maximum
K = 0, while blue squares of incompleted paths make active state at maxi-
mum K ' 40. (b) Comparision plot of the equation B.19 (square) and B.22
(circle). The approximation applied for evaluating ΩS makes subtle devia-
tion in active phase.
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Figure B.2: (a) Susceptibilities of the intensive number of unbinding events,
k = K/τ in various observation time scale and (b) their maximum position
s∗(τ) in variation of the observation time. The dataset is from the condition
wb = 0.5, wu = 1.0, and wc = 0.025 s∗ converges to negative value,
sc = − ln(1 + wc/wu) in the thermodynamic limit, while it becomes zero
at τ ' 147 which exhibits coexistence active paths and inactive paths.
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Figure B.3: Relation between mean-turnover times, 〈tt〉 and active-inactive
phase transition times,τ∗. Two of three reaction constants are fixed while the
remainder one is variating. The black dashed line clarifies that all datasets
represent linearly correlated tendency, approximately dτ∗/d 〈tt〉 ' 1.32 in
the large turnover time scale.

to the principle of a priori probabilities and the definition of the reaction

path entropy. Based on this idea, we successfully evaluated three statistical

ensembles of the out-of-equilibrium process: microcanonical (K, tES, tS),

canonical (K, tES, µ) and grand canonical (K, ν, µ) ensemble. Conjugate

intensive variables in these ensembles, µ and ν bias statistical weights of

trajectories, with the lifetimes of components tS and tES, respectively, and

one can uncover from the definition of a single reaction path that ν and µ

are just escaping ratios of the Markov process. Thermodynamic relations

between nonequilibrium ensembles give us probability distributions of sev-

eral important reaction time scales. Results obtained from the reaction path
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thermodynamics reproduces previous results based on mean-field theory.

Furthermore, for the considerations of the various theoretical or exper-

imental scenarios, we extended our results for fixed observation time, τ .

We evaluate Bayesian statistics and perform numerical calculations in or-

der to demonstrate that the enzymatic reaction has two different dynamical

phases, in fact, if one uses the number of unbinding events per the observa-

tion time, k = K/τ as an order parameter. We name these two phases as

the inactive (unbinding-poor) phase and the active (unbinding-rich) phase,

respectively. Because the system always takes inactive phases when obser-

vation time is long enough (in the thermodynamic limit), a first-order phase

transition from the active to the inactive phase may appear during the reac-

tion process, depending on the combination of reaction rate constants. The

transition time τ∗, which is the timescale that such phase transition appears,

show an approximately linear relation with the average value of enzymatic

turnover time, 〈tt〉.

Since there are various evidences that the unbinding of enzyme-substrate

doing a crucial role in the kinetics of complex enzymatic processes, we be-

lieve our work proposes a potential way for quantifying dynamical behav-

iors of systems under the MM mechanism. We will extend our study to gen-

eral models, especially non-Poisson (or heterogeneous) enzymatic reaction

process of the enzymatic reaction process. Also, we expect that our work

on the nonequilibrium ensemble theory can be applied to various systems in
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out-of-equilibrium.
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[3] Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric

screening in solvents with explicit expressions for the screening en-

ergy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799–805.

[4] Delaney, J. S. ESOL: Estimating Aqueous Solubility Directly from

Molecular Structure. Journal of Chemical Information and Computer

Sciences 2004, 44, 1000–1005.

[5] Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Contin-

uum Solvation Models. Chemical Reviews 2005, 105, 2999–3094.

107



[6] Cramer, C. J.; Truhlar, D. G. A Universal Approach to Solvation

Modeling. Accounts of Chemical Research 2008, 41, 760–768.

[7] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation

Model Based on Solute Electron Density and on a Continuum Model

of the Solvent Defined by the Bulk Dielectric Constant and Atomic

Surface Tensions. The Journal of Physical Chemistry B 2009, 113,

6378–6396.

[8] Klamt, A.; Eckert, F.; Arlt, W. COSMO-RS: An Alternative to Simu-

lation for Calculating Thermodynamic Properties of Liquid Mixtures.

Annual Review of Chemical and Biomolecular Engineering 2010, 1,

101–122.

[9] Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sher-

man, W. Prediction of Absolute Solvation Free Energies using Molec-

ular Dynamics Free Energy Perturbation and the OPLS Force Field.

Journal of Chemical Theory and Computation 2010, 6, 1509–1519.

[10] Chong, S.-H.; Ham, S. Atomic decomposition of the protein solvation

free energy and its application to amyloid-beta protein in water. The

Journal of Chemical Physics 2011, 135, 034506.

[11] Mennucci, B. Polarizable continuum model: Polarizable continuum

108



model. Wiley Interdisciplinary Reviews: Computational Molecular

Science 2012, 2, 386–404.

[12] Sato, H. A modern solvation theory: quantum chemistry and statisti-

cal chemistry. Physical Chemistry Chemical Physics 2013, 15, 7450.

[13] König, G.; Pickard, F. C.; Mei, Y.; Brooks, B. R. Predicting hydra-

tion free energies with a hybrid QM/MM approach: an evaluation

of implicit and explicit solvation models in SAMPL4. Journal of

Computer-Aided Molecular Design 2014, 28, 245–257.

[14] Mobley, D. L.; Guthrie, J. P. FreeSolv: a database of experimental

and calculated hydration free energies, with input files. Journal of

Computer-Aided Molecular Design 2014, 28, 711–720.

[15] Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T.;

Mitchell, J. B. O. A review of methods for the calculation of solu-

tion free energies and the modelling of systems in solution. Physical

Chemistry Chemical Physics 2015, 17, 6174–6191.

[16] Zhang, J.; Tuguldur, B.; van der Spoel, D. Force Field Benchmark of

Organic Liquids. 2. Gibbs Energy of Solvation. Journal of Chemical

Information and Modeling 2015, 55, 1192–1201.

[17] Harder, E. et al. OPLS3: A Force Field Providing Broad Coverage of

109



Drug-like Small Molecules and Proteins. Journal of Chemical Theory

and Computation 2016, 12, 281–296.

[18] Coley, C. W.; Barzilay, R.; Green, W. H.; Jaakkola, T. S.; Jensen, K. F.

Convolutional Embedding of Attributed Molecular Graphs for Phys-

ical Property Prediction. Journal of Chemical Information and Mod-

eling 2017, 57, 1757–1772.

[19] Duarte Ramos Matos, G.; Kyu, D. Y.; Loeffler, H. H.; Chodera, J. D.;

Shirts, M. R.; Mobley, D. L. Approaches for Calculating Solvation

Free Energies and Enthalpies Demonstrated with an Update of the

FreeSolv Database. Journal of Chemical & Engineering Data 2017,

62, 1559–1569.

[20] Wu, Z.; Ramsundar, B.; Feinberg, E.; Gomes, J.; Geniesse, C.;

Pappu, A. S.; Leswing, K.; Pande, V. MoleculeNet: a benchmark for

molecular machine learning. Chemical Science 2018, 9, 513–530.
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국문초록

최근기계학습기술의급격한발전과이의화학분야에대한적용은다양

한 화학적 성질에 대한 구조-성질 정량 관계를 기반으로 한 예측 모형의

개발을가속하고있다.용매화자유에너지는그러한기계학습의적용예

중 하나이며 다양한 용매 내의 화학반응에서 중요한 역할을 하는 근본적

성질중하나이다.본연구에서우리는목표로하는용매화자유에너지를

원자간의 상호작용으로부터 구할 수 있는 새로운 심층학습 기반 용매화

모형을 소개한다. 제안된 심층학습 모형의 계산 과정은 용매와 용질 분

자에 대한 부호화 함수가 각 원자와 분자들의 구조적 성질에 대한 벡터

표현을 추출하며, 이를 토대로 원자간 상호작용을 복잡한 퍼셉트론 신경

망 대신 벡터간의 간단한 내적으로 구할 수 있다. 952가지의 유기용질과

147가지의유기용매를포함하는 6,493가지의실험치를토대로기계학습

모형의교차검증시험을실시한결과,평균절대오차기준 0.2 kcal/mol

수준으로 매우 높은 정확도를 가진다. 스캐폴드-기반 교차 검증의 결과

역시 0.6 kcal/mol 수준으로, 외삽으로 분류할 수 있는 비교적 새로운 분

자 구조에 대한 예측에 대해서도 우수한 정확도를 보인다. 또한, 제안된
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특정 기계학습 모형은 그 구조 상 특정 용매에 특화되지 않았기 때문에

높은양도성을가지며학습에이용할데이터의수를늘이는데용이하다.

원자간 상호작용에 대한 분석을 통해 제안된 심층학습 모형 용매화 자유

에너지에 대한 그룹-기여도를 잘 재현할 수 있음을 알 수 있으며, 기계학

습을통해단순히목표로하는성질만을예측하는것을넘어더욱상세한

물리화학적이해를하는것이가능할것이라기대할수있다.

주요어:심층학습,구조-성질정량관계,용매화자유에너지,용해도,액체

성질,액체계

학번: 2010-23098
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